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Monte Carlo and theoretical calculations of the first four perturbation
coefficients in the high temperature series expansion of the free energy
for discrete and core-softened potential models
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The first four perturbation coefficients in the expansion of the Helmholtz free energy in power series
of the inverse of the reduced temperature for a number of potential models with hard-sphere cores
plus core-softened and discontinuous tails are obtained from Monte Carlo simulations. The potential
models considered include square-well, double square-well, and square-shoulder plus square-well,
with different potential parameters. These simulation data are used to evaluate the performance of a
traditional macroscopic compressibility approximation (MCA) for the second order coefficient and
a recent coupling parameter series expansion (CPSE) for the first four coefficients. Comprehensive
comparison indicates the incapability of the MCA for the second order coefficient in most non-
stringent situations, and significance of the CPSE in accurately calculating these four coefficients.
© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4811285]

I. INTRODUCTION

High temperature series expansion (hereafter abbreviated
as HTSE) of free energy is on the basis of a class of perturba-
tion theories constituting a successful approach to obtain the
equilibrium properties of fluids and solids.1 In many situa-
tions, truncation of the HTSE after the first-order term, giving
rise to a first-order perturbation theory, provides satisfactory
enough results. In other situations, particularly at low tem-
peratures and especially for short-ranged potentials, higher-
order terms need to be included.2 The second-order Barker-
Henderson (BH) perturbation theory based on a macroscopic
compressibility approximation (MCA)3 was one of the first
attempts to go beyond first-order and since then has been fre-
quently used. However, values of the second-order coefficient
predicted by the MCA are unsatisfactory for some potential
models.4, 5 On the other hand, convergence of the HTSE is
not guaranteed at low enough temperatures, for which sys-
tems with very short-ranged potentials may remain in the fluid
phase. This highlights a need for a better knowledge of the
higher-order coefficients in the HTSE or, alternatively, to re-
sort to a different kind of theory.

The first of these possibilities can be faced, to some ex-
tent, by means of Monte Carlo (MC) simulation, in the form
that we will summarize in Sec. II. Concerning the second
choice, perturbation theories, other that the HTSE, are still an
appealing choice, as they are based on some reference system
whose thermodynamic and structural properties are known
accurately and often analytically. Within this context, one of
us6 derived quite recently an accurate perturbation formula-
tion based on a coupling parameter series expansion (CPSE)
that, in certain particular situations, can provide the pertur-
bation coefficients of the HTSE. The availability of accu-
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rate simulation data for these higher-order coefficients in the
HTSE can help to test the performance of the CPSE in pre-
dicting these coefficients, which is vital to higher-order im-
plementation of the HTSE.

Simulation data for the first- and second-order pertur-
bation coefficients in the HTSE have been reported by sev-
eral authors7–13 for different potential models. In a recent
work,14 there have been obtained from Monte Carlo simu-
lations the third- and fourth-order perturbation coefficients
for square-well (SW) fluids with variable range. In this work
we wish to gain insight into the efficacy of the Zhou CPSE6

in predicting these coefficients and to this end we first de-
termine from Monte Carlo simulations the first- to fourth-
order perturbation coefficients for fluids interacting through
square well potential and two core-softened (CS) potentials,
respectively, and then both the Monte Carlo results and CPSE
predictions are compared with each other. The main reason,
that we investigate additionally two CS potentials, can be ex-
plained as follows. The CS potential is one kind of very im-
portant model potentials. It has been demonstrated that the
CS potential system, i.e., the system with softening of the
repulsive part of interparticle interaction, can effectively ap-
proximate real substances15 by demonstrating some unusual
phase transitions—transition between two crystal phases of
the same symmetry, which ends in a critical point similar to
the gas–liquid one and liquid–liquid phase transition (LLPT),
and many features of common network-forming liquids such
as water and silica, including polymorphism and thermo-
dynamic anomalies. However, the reported studies examine
the CS systems and relevant anomalies mainly by computer
simulation,16 and few theoretical investigations indicate how
easily these artificial potentials can be tackled by traditional
theories.17 Consequently, the CS potentials may be better
suited than other traditional potential models in demonstrat-
ing the potential of an approximate theory.
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Structure of the present paper is organized as follows: in
Sec. II the potential models considered and simulation details
are described, and the procedure used to calculate the coeffi-
cients of the HTSE in the framework of the CPSE is detailed;
the results are collected and analyzed in Sec. III; and our con-
clusions are summarized in Sec. IV.

II. MODELS AND METHODS

The model potentials considered are described as fol-
lows:

Square-well (SW) potential,

u (r) =

⎧⎪⎨
⎪⎩

∞, r < σ

−ε, σ ≤ r ≤ λσ

0, r > λσ

, (1)

where ε is an energy parameter of the potentials considered
and λ is the potential width in units of the diameter σ of the
hard sphere (HS).

Double square-well (DSW) potential,

u (r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∞, r < σ

−δε, σ ≤ r ≤ λ1σ

−ε, λ1σ ≤ r ≤ λ2σ

0, r > λ2σ

. (2)

Square-shoulder plus square-well (SSSW) potential,

u (r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∞, r < σ

δε, σ ≤ r ≤ λ1σ

−ε, λ1σ ≤ r ≤ λ2σ

0, r > λ2σ

. (3)

In Eqs. (2) and (3), δ is a positive number, and is used to adjust
the softness of the CS potentials considered; λ1 and λ2, both
in units of the HS diameter σ , serve to adjust the widths of
different potential ranges.

The first of these potential models is perhaps the most
widely used to test performance of approximate statistical me-
chanics theories and model real materials with success. The
latter two are particularly interesting as they have been pro-
posed to give account of the liquid-liquid transition in water,
which in turn might explain the anomalous properties of water
at low temperatures.18

In the HTSE an excess Helmholtz free energy per par-
ticle fex of a fluid with an intermolecular potential u(r) can
be expressed as an expansion in power series of an inverse
of reduced temperature T ∗ = kBT/ε, where kB is Boltzmann
constant and T is the absolute temperature, in a form

βfex = βfex−ref +
∝∑

n=1

an (ρ)

T ∗n
. (4)

In this expansion, fex−ref is a Helmholtz free energy of a
reference fluid, for the potential models considered presently,
the HS fluid is a natural choice as the reference fluid, and cor-
responding fex−ref is obtained by integrating the well-known
Carnahan-Starling equation of state.19 an is the coefficient of

the nth perturbation term, and the first several can be obtained
by means of simulations from the fluctuations of the pertur-
bation energy as calculated in the reference system. The first
four terms are given by7, 20

a1 = 1

N

∑
i

〈Ni〉0 u∗
1 (ri), (5)

a2 = −1

2

1

N

∑
i,j

[〈NiNj 〉0 − 〈Ni〉0〈Nj 〉0]u∗
1(ri)u

∗
1(rj ), (6)

a3 = 1

6

1

N

∑
i,j,k

[〈NiNjNk〉0 − 3〈NiNj 〉0〈Nk〉0

+ 2〈Ni〉0〈Nj 〉0〈Nk〉0] × u∗
1(ri)u

∗
1(rj )u∗

1(rk), (7)

a4 = − 1

24

1

N

∑
i,j,k,l

[〈NiNjNkNl〉0 − 4〈NiNjNk〉0〈Nl〉0

− 3〈NiNj 〉0〈NkNl〉0 + 12〈NiNj 〉0〈Nk〉0〈Nl〉0

− 6〈Ni〉0〈Nj 〉0〈Nk〉0〈Nl〉0]u∗
1(ri)u

∗
1(rj )u∗

1(rk)u∗
1(rl),

(8)

where Ni is the number of molecular distances in the interval
(ri, ri + 1), with �r = ri + 1 − ri � σ , i = 0, 1, . . . , angular
brackets indicate averages, subscript 0 means that the aver-
ages are performed in the reference system, and a3, where
u1(r) is the perturbation part of the potential considered, and
is equal to u(r) subtracted by the HS potential.

For the particular case of a system with the SW poten-
tial, u∗

i (r) = −1 within the potential well 1 ≤ x ≤ λ, where
x = r/σ , and the expressions of these perturbation terms take
the simple form8

a1 = −〈M〉0

N
, (9)

a2 = −1

2

1

N
〈(M − 〈M〉0)2〉0, (10)

a3 = −1

6

1

N
〈(M − 〈M〉0)3〉0, (11)

a4 = − 1

24

1

N

[〈(M − 〈M〉0)4〉0 − 3
〈(
M − 〈M〉0

)2〉2
0

]
, (12)

where M is the number of pairs separated by a distance x ≤ λ.
The expressions (5)–(12) can be evaluated from simulation in
the HS reference system, as said before. Thus, using expres-
sions (9)–(12), the terms up to n = 4 for the SW fluid were
obtained long time ago8 for λ = 1.5 and more recently14 for
1.1 ≤ λ ≤ 3.0 with step 0.1. Expressions (5)–(8) are required
for potential models with continuous tails as well as for po-
tentials with a combination of several subwells or shoulders
and wells, like DSW and SSSW potentials considered here.
However, the calculations of the perturbation terms from sim-
ulations for n > 2 for potentials with continuous tails is com-
putationally very demanding and so, in general, only the first-
and second-order perturbation coefficients have been reported
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TABLE I. Simulation results of a1 to a4 for the SW fluids with different well
widths. The numbers between parenthesis are the statistical uncertainties in
the last decimal place.

ρ∗ a1 a2 a3 a4

λ = 1.2
0.10 − 0.1697 − 0.0741(1) − 0.0201(2) − 0.0042(8)
0.20 − 0.3792 − 0.1413(1) − 0.0302(5) − 0.005(4)
0.30 − 0.6365(1) − 0.1968(1) − 0.0313(6) − 0.008(5)
0.40 − 0.9507 − 0.2366(2) − 0.0283(6) − 0.003(8)
0.50 − 1.3307 − 0.2574(1) − 0.024(2) − 0.003(6)
0.60 − 1.7852 − 0.2596(2) − 0.017(2) − 0.00(1)
0.70 − 2.3204 − 0.2475(3) − 0.012(1) − 0.008(8)
0.80 − 2.9372(1) − 0.2290(1) − 0.009(2) − 0.003(7)
0.90 − 3.6276(1) − 0.2128(2) − 0.005(2) − 0.000(8)

λ = 1.5
0.10 − 0.5333 − 0.1941(1) − 0.0550(7) − 0.025(6)
0.20 − 1.1399 − 0.2915(1) − 0.075(2) − 0.04(1)
0.30 − 1.8156 − 0.3209(2) − 0.074(2) − 0.03(2)
0.40 − 2.5494 − 0.3168(2) − 0.055(1) − 0.03(1)
0.50 − 3.3227 − 0.3086(2) − 0.029(2) 0.00(1)
0.60 − 4.1086 − 0.3077(4) − 0.011(1) 0.00(2)
0.70 − 4.8724(1) − 0.3059(5) − 0.002(2) 0.00(1)
0.80 − 5.5744(1) − 0.2854(7) 0.005(4) 0.00(1)
0.90 − 6.1725(1) − 0.2390(5) 0.013(2) 0.01(2)

λ = 2.0
0.10 − 1.5053 − 0.4467(3) − 0.235(2) − 0.22(3)
0.20 − 3.0715 − 0.5505(2) − 0.283(5) − 0.33(3)
0.30 − 4.6622 − 0.5458(2) − 0.181(2) − 0.22(3)
0.40 − 6.2448 − 0.5359(3) − 0.088(3) − 0.11(4)
0.50 − 7.8001 − 0.5505(6) − 0.053(4) − 0.01(3)
0.60 − 9.3322 − 0.5964(5) − 0.057(5) − 0.04(3)
0.70 − 10.8790(1) − 0.6728(8) − 0.06(1) − 0.0(1)
0.80 − 12.5170(1) − 0.756(2) − 0.05(2) 0.1(1)
0.90 − 14.3477(3) − 0.800(2) − 0.00(2) 0.2(2)

λ = 3.0
0.10 − 5.4780(1) − 1.422(2) − 2.68(2) − 9.7(3)
0.20 − 11.0207(1) − 1.594(1) − 3.17(2) − 15.0(7)
0.30 − 16.6041(1) − 1.489(1) − 2.10(2) − 9.9(5)
0.40 − 22.2073(1) − 1.398(2) − 1.06(3) − 4.4(3)
0.50 − 27.8038(1) − 1.392(2) − 0.46(3) − 1.3(2)
0.60 − 33.3744(1) − 1.479(2) − 0.21(4) − 0.5(4)
0.70 − 38.9459(1) − 1.648(2) − 0.17(2) − 0.1(7)
0.80 − 44.6359(4) − 1.855(5) − 0.1(1) 0(1)
0.90 − 50.6304(4) − 2.04(1) 0.0(1) 0(2)

for a number of these potential models. An exception is a re-
cent paper from us,21 in which also the term for n = 3 was
reported for several potential models with continuous tails.

In this work, we have carried out simulations in the NVT
ensemble of the reference HS fluid to obtain the values of a1

to a4 from expressions (5)–(8) for the potential models de-
scribed above with different potential parameters. To be spe-
cific, for the SW fluids, the considered values of the potential
parameter λ are 1.2, 1.5, 2.0, and 3.0, respectively; for the
DSW fluids, three sets of parameter combinations are consid-
ered, they are set 1: λ1 = 1.1, λ2 = 1.2, and δ = 0.5; set 2: λ1

= 1.2, λ2 = 1.5, and δ = 0.5; and set 3: λ1 = 1.4, λ2 = 2.0,
and δ = 0.5, respectively; for the SSSW fluids, the considered
parameter combinations are set 1: λ1 = 2.0, λ2 = 2.2, and δ

TABLE II. As in Table I, but for the DSW fluids with different well width
combinations

ρ∗ a1 a2 a3 a4

λ1 = 1.1 λ2 = 1.2 δ = 0.5
0.10 − 0.1306 − 0.0494 − 0.0129(1) − 0.0027(4)
0.20 − 0.2904 − 0.0959(1) − 0.0210(3) − 0.003(2)
0.30 − 0.4845 − 0.1376(1) − 0.0251(3) − 0.005(2)
0.40 − 0.7178 − 0.1734(1) − 0.0268(5) − 0.003(3)
0.50 − 0.9948 − 0.2030 − 0.027(1) − 0.003(5)
0.60 − 1.3176 − 0.2282(1) − 0.027(1) 0.000(7)
0.70 − 1.6846 − 0.2526(2) − 0.027(1) − 0.01(1)
0.80 − 2.0873 − 0.2785(3) − 0.030(1) 0.00(1)
0.90 − 2.5067(1) − 0.3035(3) − 0.034(4) − 0.01(1)

λ1 = 1.2 λ2 = 1.5 δ = 0.5
0.10 − 0.4484 − 0.1549(1) − 0.0413(3) − 0.014(3)
0.20 − 0.9504 − 0.2493(1) − 0.056(1) − 0.019(9)
0.30 − 1.4973 − 0.3080(2) − 0.054(1) − 0.01(2)
0.40 − 2.0740 − 0.3550(1) − 0.042(1) − 0.01(1)
0.50 − 2.6573 − 0.4029(3) − 0.031(3) 0.02(2)
0.60 − 3.2160 − 0.4450(5) − 0.026(3) 0.01(4)
0.70 − 3.7123(1) − 0.4602(7) − 0.017(4) 0.01(4)
0.80 − 4.1058(1) − 0.429(1) 0.000(7) 0.01(4)
0.90 − 4.3587(2) − 0.3570(7) 0.018(5) 0.03(3)

λ1 = 1.4 λ2 = 2.0 δ = 0.5
0.10 − 1.3072 − 0.3871(2) − 0.150(2) − 0.11(2)
0.20 − 2.6421 − 0.5327(2) − 0.148(4) − 0.13(3)
0.30 − 3.9673 − 0.5983(3) − 0.069(3) − 0.06(3)
0.40 − 5.2510 − 0.6419(3) − 0.019(4) − 0.03(5)
0.50 − 6.4781 − 0.6822(7) − 0.012(5) 0.03(6)
0.60 − 7.6605 − 0.7405(8) − 0.039(8) − 0.04(7)
0.70 − 8.8484(1) − 0.826(1) − 0.05(1) 0.0(1)
0.80 − 10.1352(2) − 0.904(2) − 0.05(2) 0.1(3)
0.90 − 11.6431(4) − 0.909(3) − 0.02(3) 0.2(3)

= 0.5; set 2: λ1 = 1.5, λ2 = 2.2, and δ = 2.0; and set 3: λ1

= 1.6, λ2 = 2.3, and δ = 2.0, respectively. We considered sys-
tems with N = 500 particles, initially placed in a FCC config-
uration, �r = 0.1σ , 5 × 104 cycles for equilibration and 106

cycles for production, each cycle consisting of N attempted
particle moves. The results are reported in Tables I–III for
the potential models cited with different sets of parameters
as mentioned above and reduced densities ρ∗ = ρσ 3 ranging
from 0.1 to 0.9, where ρ = N/V throughout the text is the
number density. The data quoted in these tables are averages
performed over as many as 102 independent runs. Partial aver-
ages performed every 10 independent runs have been used to
estimate the statistical uncertainty as the standard deviation.

Two theoretical approaches are available for estimating
the perturbation coefficient(s). One is the well-known MCA,3

which calculates a2 in the way,

a2 = πρ

∫
drr2 (βu1 (r))2 gHS (r, ρ)

1

β

(
∂ρ

∂P

)
HS

, (13)

where β = 1/kBT, gHS(r, ρ) is radial distribution function
(rdf) of the reference HS fluid, obtained from the Verlet-
Weis correction22 of the Percus-Yevick solution;23 1

β
( ∂ρ

∂P
)HS

is inverse of a reduced compressibility of the HS fluid
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TABLE III. As in Table I but for the SSSW fluids with different potential
parameters.

ρ∗ a1 a2 a3 a4

λ1 = 2.0 λ2 = 2.2 δ = 0.5
0.10 0.2000 − 0.4167(2) − 0.075(2) − 0.02(2)
0.20 0.4345 − 0.7609(4) − 0.153(4) − 0.02(6)
0.30 0.6798 − 1.0676(4) − 0.223(6) 0.0(2)
0.40 0.9010 − 1.3683(4) − 0.28(2) − 0.1(2)
0.50 1.0573(1) − 1.671(1) − 0.33(2) 0.2(4)
0.60 1.1164 − 1.977(2) − 0.31(4) 0.1(7)
0.70 1.0793(1) − 2.310(3) − 0.28(5) 0.3(8)
0.80 1.0181(2) − 2.675(5) − 0.25(8) 0(2)
0.90 1.1025(6) − 2.966(8) − 0.4(1) 0(4)

λ1 = 1.5 λ2 = 2.2 δ = 2.0
0.10 − 0.4581 − 1.5795(5) 0.30(1) 0.1(4)
0.20 − 0.7530 − 2.710(1) 0.46(4) 0.4(6)
0.30 − 0.8667(1) − 3.331(2) 0.68(5) 1(1)
0.40 − 0.8181 − 3.588(2) 0.73(7) 0(2)
0.50 − 0.6747(1) − 3.743(2) 0.54(9) 0(1)
0.60 − 0.5562(1) − 3.903(6) 0.4(1) 1(3)
0.70 − 0.6219(3) − 3.902(5) 0.3(2) 0(3)
0.80 − 1.0342(4) − 3.524(8) 0.1(2) −1(3)
0.90 − 1.9014(4) − 2.874(7) − 0.2(1) 0(3)

λ1 = 1.6 λ2 = 2.3 δ = 2.0
0.1 − 0.3126 − 1.8500(6) 0.34(2) 0.1(7)
0.2 − 0.4538(1) − 3.048(2) 0.50(5) 0(1)
0.3 − 0.4340(1) − 3.658(1) 0.66(5) 0(1)
0.4 − 0.3084(1) − 3.958(2) 0.59(7) 1(2)
0.5 − 0.1796(1) − 4.172(3) 0.4(1) 0(2)
0.6 − 0.1862(1) − 4.265(6) 0.32(9) 0(2)
0.7 − 0.4723(2) − 4.081(8) 0.2(2) 1(5)
0.8 − 1.1372(4) − 3.716(8) 0.2(1) 0(6)
0.9 − 2.1875(5) − 3.59(1) 0.6(2) 0(3)

(P denoting pressure), calculated by integrating the Carnahan-
Starling equation of state.19

In contrast with the MCA, which in practice only pro-
vides a2, the CPSE works for all perturbation coefficients of
the HTSE in principle. The CPSE features its expression as

βfex−Zhou = βfex−ref +
∝∑

n=1

βfper−n, (14)

where

βfper−n = (1/n!)2πρ

∫
drr2βu1(r)

× ∂ (n−1)gimag (r, ζ, ρ, T )

∂ζ (n−1)

∣∣∣∣
ζ=0

, (15)

and gimag(r, ζ , ρ, T) is rdf of an imaginary bulk
fluid with a pair potential u(r; ζ ) = uHS(r) + ζu1(r),
∂ (n − 1)gimag/∂ζ (n − 1)|ξ = 0 is (n − 1)-order derivative of gimag

with respect to ζ evaluated at ζ = 0, and ∂0gimag(r, ζ , ρ,
T)/∂ζ 0|ζ = 0 = gimag(r, 0, ρ, T) is actually the rdf of the HS
reference fluid. Given that both the HTSE and CPSE use the
HS fluid as the reference fluid, both perturbation schemes
have the same first-order term as clearly seen in their ex-
pressions. For the numerical details on the calculation of
∂ (n − 1)gimag/∂ζ (n − 1)|ξ = 0, the interested readers can have a

(a)

(b)

(c)
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FIG. 1. HTSE coefficient a1 for fluids with the SW, DSW, and SSSW poten-
tials, respectively. Points are the simulation data of this work and the short-
dashed curves are the theoretical results from the CPSE.

reference to original papers6 and one review paper24 relevant
to the CPSE, and not repeated here.

Although they are two different perturbation frameworks,
the relationship between the CPSE and HTSE is established
by a mathematical equation proved recently by Zhou,24 i.e.,

an = βfper−n

∣∣
T ∗=1 , n ≥ 1. (16)

Equation (16) is also the basis of using the CPSE to calculate
an, the most essential input information in implementing the
HTSE.

III. RESULTS AND DISCUSSIONS

The results of a1 to a4 for SW fluids in general are in
excellent agreement with the data reported in Ref. 14, with
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FIG. 2. As in Fig. 1, but for the HTSE coefficient a2 and the continuous
curves are the results of the BH MCA.

the exception of a2 to a4 for λ = 3.0, for which the absolute
values of the present data are greater for ρ∗ ≤ 0.5. These dif-
ferences are believed to be due to the fact that we have used a
greater number of particles in the simulations as well as a very
big number of independent runs. The statistical error becomes
considerably high for a3 and a4, especially for values of these
quantities close to zero. Performing simulations with differ-
ent numbers of particles, from N = 256 to N = 1372, we have
found that the error increases with the number of particles
used in the simulation, a fact that was also noted in Ref. 14.
The relative error is more notable for λ ≤ 1.5, because the val-
ues of a3 and a4 are very small. This may have a considerable
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FIG. 3. As in Fig. 1, but for the HTSE coefficient a3.

importance for λ = 1.2, as in this case the fluid phase extends
to reduced temperatures well below T ∗ = 1 and so the pertur-
bation terms with n > 2, even if they are small, may have a
considerable contribution to the free energy. The absolute val-
ues of a3 and a4 increase with λ and become even greater than
a2 at low densities for λ = 3.0, but their relative importance
will be small, because in this case the reduced temperatures
in the fluid phase are well above T ∗ = 1. The results for the
square shoulder (SS) potential are equal to those for the SW
potential, except for the change in the signs of a1 and a3.

Concerning the DSW potential model, one can see in
Table II that the statistical errors in a1 and a2 are negligible
and, for the sets of parameters considered in this work, the
magnitude of a3 is very small and that of a4 negligible for re-
duced densities ρ∗ ≥ 0.4, on accounting for the fact that, for
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FIG. 4. As in Fig. 1, but for the SW fluids HTSE coefficient a4.

the latter, the statistical error is even greater than the magni-
tude of a4 itself at moderate to high densities. Similar consid-
erations as for the DSW apply to the values of a1 and a2 for
the SSSW potential listed in Table III. The magnitude of a3

in this case is considerable at all densities while that of a4, al-
though it may be of the order of that of a3 or even greater for
some sets of potential parameters, apparently cannot be reli-
ably obtained from simulation, as the statistical errors become
greater than the values of a4 themselves at all densities.

Comparison between the CPSE, MCA, and simulation
data can be graphically discussed. To avoid an excessive num-
ber of the figures, it is advisable to group the figures for each
ai, i = 1, . . . , 3, including as subfigures the results for all
the potential models considered, and one figure for a4 for
each potential model. Thus, there are six figures altogether,
Figs. 1–3 for a1, a2, and a3, respectively, and Figs. 4–6 for a4

with SW, DSW, and SSSW potential, respectively.
Figure 1 compares the results of a1 obtained from the

CPSE described in Sec. II with the simulation data listed in
Tables I–III. The agreement is excellent in all the cases stud-
ied, as one might have expected, as the first-order term in the
CPSE at T ∗ = 1 is equal to the first-order perturbation coef-
ficient in the HTSE and the latter is known to be accurately
predicted from theory provided that we use an accurate ex-
pression for the rdf of the reference hard-sphere fluid. The
theoretical second-order coefficient a2 is compared in Fig. 2
with the simulation data listed in Tables I–III. Again the CPSE
predictions agree very satisfactorily with simulations for all
the potential models and parameter values considered. In con-

trast, the Barker-Henderson MCA, which is also included for
comparison, strongly deviates from simulation data at both,
low and high densities, especially for large potential widths.

Similar accuracy is provided by the CPSE for the third-
order coefficient a3, as Fig. 3 shows, even for the extreme case
of the SW potential with λ = 3.0, for which the values of a3

are considerably great.
Figures 4–6 display the results for the fourth-order per-

turbation coefficient a4. In this case, the simulation data are
affected by a considerable uncertainty, as said before, which
prevents a detailed analysis of the theoretical predictions,
but even so the CPSE seems to work quite well and this is
particularly clear for SW fluids with large well widths, as
Fig. 4 shows. As a matter of fact, for this coefficient the
CPSE seems to be more reliable than the simulation itself,
as the statistical uncertainty of the latter seems to be im-
possible to reduce at present and, therefore, accurate simula-
tion data cannot be obtained from the procedure described in
Sec. II.

It should be pointed out that if the sign of u1(r), the
perturbation part of the potential considered, is changed, ai,
i = positive odd integer, will change the sign, but ai, i = posi-
tive even integer, remains unchanged, and this conclusion can
be clearly and easily confirmed with the help of the procedure
used in the CPSE to calculate the ai by numerical derivative
based on the finite difference method. Thus, with a simple
transform the simulation data reported here actually also ap-
ply for a square shoulder potential, double square shoulder
potential, and square well plus square shoulder potential, and
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FIG. 5. As in Fig. 1, but for the DSW fluids HTSE coefficient a4.

the above analysis may also prove useful at least in these po-
tential models.

IV. CONCLUSIONS

To conclude, the present paper provides comprehensive
simulation data sources for the first four coefficients of the
HTSE for fluid state characterized by several model poten-
tials, and besides that, the theoretical calculations for these
coefficients are performed in the framework of the CPSE for
a particular unit reduced temperature wherein each expan-
sion term in the CPSE is proved24 to be exactly equal to the
relevant order expansion coefficient of the HTSE. A tradi-
tional MCA is also used for calculations of the second order
coefficient only. Detailed comparison based on these coeffi-
cients from the two different routes leads to several natural
conclusions:

(i) The CPSE shows excellent performance in achieving
accurate calculations of higher order coefficients of the
HTSE. Specifically, the CPSE perfectly coincides with
the simulation data for the case of the second order co-
efficient wherein the simulation errors are negligibly
small. For the higher-order coefficients wherein simu-
lation errors are very large, and exact and clear com-
parisons are not possible; however, for these uncertain
cases, the CPSE curves not only reproduce the density
dependence of the simulation data but also pass through
nearby the simulated data points, which are distributed
in both sides of the curve. This clearly indicates the po-
tential of the CPSE in providing accurate sources for
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(c)
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FIG. 6. As in Fig. 1, but for the SSSW fluids HTSE coefficient a4.

these higher-order coefficients although the accuracies
remain to be tested in the future. In the present condi-
tions, these higher-order coefficients are unobtainable
accurately even by simulation approach, and the excel-
lent properties of the CPSE as mentioned above provide
the chance for acquiring fitting expressions for these
higher-order coefficients.

(ii) The MCA for the second order coefficient is only quan-
titatively reliable at very low densities, and its devia-
tion from the “exact” simulation results tends to be-
come more evident as density increases, and eventually
the MCA becomes qualitatively incorrect. This finding
clearly indicates that the MCA is a crude approxima-
tion, and one is uncertain whether including the second
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order perturbation term from the MCA will certainly
improves the HTSE.

(iii) Upon acquirement of the higher-order coefficients of
the HTSE, one can construct a higher-order HTSE ther-
modynamic perturbation theory. Simulation approach
has two shortcomings in getting these coefficients:
(1) Simulation results for third order or higher order
coefficients are inevitably with very large statistical er-
rors as shown in Figs. 3–6, and this makes it difficult
and even impossible to fit these discrete points to a con-
tinuous curve as a function of density; (2) Moreover,
even for the second-order coefficient, which is readily
estimated accurately by simulation calculations, the
simulations take longer time, and the coefficients with
different potential parameters need to be simulated indi-
vidually. Consequently, using simulation data to obtain
fitting expressions for these higher-order coefficients
beyond first one is unworkable at least in present condi-
tions. Encouragingly, ability of the CPSE to help one in
quickly and accurately acquiring these coefficients be-
yond first order enables it to play a significant role in
constructing a higher-order HTSE thermodynamic per-
turbation theory and evaluating the convergence of the
latter, and relevant studies will be reported in subse-
quent papers.

(iv) The present CPSE is not accompanied by renormal-
ization method, and is only a mean field theory; so,
the CPSE is not expected to be very accurate near
the critical point, although we cannot go further in the
discussion of this point as simulation data for the crit-
ical parameters are not available for the fluids consid-
ered, apart from the square-well fluid. For the latter,
it was shown in two previous papers25, 26 from one of
the present authors that the third-order CPSE provides
quite satisfactory predictions for the liquid-vapor co-
existence, even near the critical point, and the criti-
cal parameters for several well widths; the third-order
CPSE, combined with a non-hard sphere perturbation
technique, can be applied even for states hardly or not
accessible by simulation, such as fluids at extremely
low temperatures and near glass states, as demonstrated
in a previous paper.2 In any case, the limited accuracy
near the critical point is a common feature of most
of the existing mean field theories of fluids. Some-
times, simple perturbation approaches in combination
with renormalization techniques have been developed,
as demonstrated in a pioneering work by White and co-
workers,27 but in general their accuracy relies on the use
of a number of adjustable parameters, and particularly,
an excellent mean field theory is a necessary premise
for formulating a global theory valid over entire phase

space. The present CPSE obviously meets this require-
ment, and its combination with renormalization tech-
niques will be reported in separate papers.
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