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GLOBAL EXISTENCE AND DECAY OF THE INHOMOGENEOUS MUSKAT

PROBLEM WITH LIPSCHITZ INITIAL DATA

DIEGO ALONSO-ORÁN AND RAFAEL GRANERO-BELINCHÓN

Abstract. In this work we study the inhomogeneous Muskat problem, i.e. the evolution of an
internal wave between two different fluids in a porous medium with discontinuous permeability.
In particular, under precise conditions on the initial datum and the physical quantities of the
problem, our results ensure the decay of the solutions towards the equilibrium state in the
Lipschitz norm. In addition, we establish the global existence and decay of Lipschitz solutions.
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1. Introduction and prior results

Probably due to the ubiquitous nature of fluids, free boundary problems in fluid dynamics have
attracted the attention of many different research groups in the last decades. These problems are
physically interesting and mathematically challenging and, moreover, they are very connected to
real world applications.

In this paper we consider one of these problems, the so-called inhomogeneous Muskat problem
(see [38] for a recent review). This problem studies the motion of two incompressible homogeneous
fluids filling an inhomogeneous porous medium where the permeability is a step function. These
fluids are assumed to be separated by a sharp interface (see Figure 1 below). Then, the plane is
divided in the following three domains

Ω+(t) = {(x, y) ∈ T× R, f(x, t) < y <∞} , (1.1a)

Ω−
top(t) = {(x, y) ∈ T× R, −h2 < y < f(x, t)} , (1.1b)

Ω−

bottom = {(x, y) ∈ T× R, −∞ < y < −h2} , (1.1c)

where T denotes the unit circumference, namely, T = [−π, π] with periodic boundary conditions.
These domains are separated by the interfaces

Γ(t) = {(x, f(x, t)), x1 ∈ T} , (1.2a)

Γperm = {(x,−h2), x1 ∈ T} , (1.2b)

where the function f and the constant h2 satisfy

min
x∈T

f(x, t) > 0 and h2 > 0. (1.3)

We observe that f(x, t) is an unknown that must be determined from the dynamics while h2 is
part of the data of the problem. The fixed-in-time interface Γperm denotes the line accross which
the permeability function κ(x) has a jump, namely

κ(x) =

{
κ+ in Ω+(t) ∪ Ω−

top(t)

κ− in Ω−
top(t) ∪ Ω−

bottom

,

for given positive constants κ± > 0. With this notation, assuming that the acceleration due to
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Figure 1. Physical setting

gravity is equal to 1 and denoting by u, p and ρ the velocity, pressure and density of the fluids, the
equations describing the phenomenon are

u+

κ+
+∇p+ = −ρ+e2, in Ω+(t)× [0, T ] , (1.4a)

u−

κ+
+∇p− = −ρ−e2, in Ω−

top(t)× [0, T ] , (1.4b)

u−

κ−
+∇p− = −ρ−e2, in Ω−

bottom × [0, T ] , (1.4c)

∇ · u+ = 0, in Ω+(t)× [0, T ] , (1.4d)

∇ · u− = 0, in Ω−
top(t)× [0, T ] , (1.4e)

∇ · u− = 0, in Ω−

bottom × [0, T ] , (1.4f)

[[p]] = 0 on Γ(t)× [0, T ], (1.4g)

[[p]] = 0 on Γperm × [0, T ], (1.4h)

[[∇p · e2]] = −
[[ 1
κ

]]
u− · e2 on Γperm × [0, T ], (1.4i)

where n is the upward pointing unit normal to Γ(t) and [[w]] = w+ − w− denotes the jump of a
discontinuous function w across Γ(t) or Γperm.

As it is well-known, this system can be written equivalently using the contour equation formu-
lation [8]. In this case, the inhomogeneous Muskat problem (1.4) is equivalent to the following
nonlinear and nonlocal PDE for the free boundary f(x, t):

∂tf(x) =
κ+(ρ− − ρ+)

4π
P.V.

∫

T

sin(β)(∂xf(x)− ∂xf(x− β))

cosh(f(x)− f(x− β)) − cos(β)
dβ

+
1

4π
P.V.

∫

T

(∂xf(x) sinh(f(x) + h2) + sin(x− β))̟2(β)

cosh(f(x) + h2)− cos(x− β)
dβ, (1.5)

where the second vorticity amplitude ̟2(x) can be written as

̟2(β) = AP.V.

∫

T

sinh(h2 + f(γ))∂xf(γ)

cosh(h2 + f(γ))− cos(β − γ)
dγ, (1.6)

and we have defined the parameter

A :=
κ+(ρ− − ρ+)

2π

κ+ − κ−

κ+ + κ−
.

This contour equation can be written in divergence form as

∂tf(x) =
κ+(ρ− − ρ+)

π
∂xP.V.

∫

T

arctan

(
tanh((f(x)− f(x− β))/2)

tan(β/2)

)
dβ

+
1

4π
∂xP.V.

∫

T

log(cosh(f(x) + h2)− cos(x− β))̟2(β)dβ, (1.7)
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where, furthermore, ̟2 is a zero order operator in f . Indeed, we can compute

̟2(β) = AP.V.

∫

T

sinh(h2 + f(γ))∂xf(γ)dγ

cosh(h2 + f(γ))− cos(β − γ)
±

sin(β − γ)

cosh(h2 + f(γ))− cos(β − γ)

= AP.V.

∫

T

∂γ log(cosh(h2 + f(γ))− cos(β − γ)) +AP.V.

∫

T

sin(β − γ)

cosh(h2 + f(γ))− cos(β − γ)

= AP.V.

∫

T

sin(β − γ)

cosh(h2 + f(γ))− cos(β − γ)
.

As a consequence, it admits a straightforward notion of weak solution. Namely, f is a weak solution
of (1.7) (and consequently of (1.4)) if and only if for all φ(x, t) ∈ C∞

c ([0, T ) × T) the following
equality holds

−

∫

T

φ(x)f0(x)dx −

∫ T

0

∫

T

∂tφf(x)dxds

+
κ+(ρ− − ρ+)

π

∫ T

0

∫

T

∂xφ(x)P.V.

∫

T

arctan

(
tanh((f(x) − f(x− β))/2)

tan(β/2)

)
dβdxds

+
1

4π

∫ T

0

∫

T

∂xφ(x)P.V.

∫

T

log(cosh(f(x) + h2)− cos(x− β))̟2(β)dβdxds = 0. (1.8)

The Muskat problem is a popular research topic and the literature is huge. For an overview of
the different results available we refer to [6, 7, 16, 20, 21, 22, 28, 29, 30, 38, 40, 41, 46, 47] and the
references therein.

The Muskat problem is scale invariant under the transformation

fλ(x, t) =
1

λ
f(λx, λt).

This scaling serves as a zoom in towards the small scales and implies that the L2−based Sobolev
spaces Hr for r > 3/2 are subcritical. In this range of spaces a local solution is known to exists
for arbitrary initial data (see for instance [1, 6, 20, 21, 22, 40, 42, 45]).

As a byproduct of the previous scaling, we can define a number of critical spaces. Some of them
are the Sobolev space H3/2, the Lipschitz class W 1,∞, the space of C1 functions or the Wiener
space

A1 = {f s.t. iξf̂(ξ) ∈ L1},

among others. To develop new ideas and tools to handle the very difficult case of initial data in
critical spaces is a very hot research area in PDEs. In this regard, we refer to the works by Córdoba
& Gancedo [22] and Constantin, Córdoba, Gancedo & Strain[18], Constantin, Córdoba, Gancedo,
Rodŕıguez-Piazza & Strain [17], Gancedo, Garćıa-Juárez, Patel & Strain[32], Patel & Strain [44]
and Gancedo, Granero & Scrobogna [34] for the proof of the global existence of strong solution for
small initial data in the Wiener space A1.

Similarly, we refer to the works by Córdoba & Lazar [26] (see also [38]), Gancedo & Lazar
[35] and Alazard & Nguyen [2, 4, 3, 5] for results regarding the space H3/2. In these papers the
global existence for small initial data in the critical space H3/2 were proved furthermore, the local
existence for arbitrary initial data in the critical space has been also established. Let us emphasize
that in some of the previous results the initial data is also assumed to be Lipschitz.

Remarkably, certain solutions to the Muskat problem experience turning singularities [12, 13, 24,
25, 36], i.e. a finite time blow up of the derivative of the interface f , and splash singularities [14],
i.e. a self intersection of the interface. Then, the Lipschitz norm seems of particular importance
for the Muskat problem. In this regards, we refer to the pioneering work of Córdoba & Gancedo
[23] (see also [17, 18, 37]) where a maximum principle for the W 1,∞ was established. Similarly, we
refer to the work Constantin, Gancedo, Shvydkoy & Vicol [19] for a proof of the global existence
of solution corresponding to small initial data in the Lipschitz class. Similar results have been
obtained by Cameron [9, 10, 11]. In the case of C1 initial data the interested reader is referred to
the work by Chen, Nguyen, & Xu [15].

The cases of porous media with discontinuous permeability or impervious boundaries have con-
sidered in a number of previous works. In particular, the known results covering the local existence
and finite time singularities are contained in the papers [8, 27, 36, 45]. However, to the best of
our knowledge, the only global results were obtained in [37, 39, 43]. Remarkably, in the case of a
discontinuous permeability the only result in critical spaces is the paper by Patel & Shankar [43]
where the authors consider initial data in Wiener space A1.

Numerical simulations for the inhomogeneous Muskat problem were carried over in the paper [8].
Those simulations suggest that the amplitude of the internal wave decays towards the equilibrium
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at least for most of the initial data. However, a rigorous proof or a counterexample of the possible
decay towards equilibrium in Lipschitz norm remain as an open question in the case of a porous
medium with two different permeabilities. Furthermore, the global in time existence for small
Lipschitz initial data was also another open problem so far. The purpose of this paper is to clarify
the previously mentioned questions. Specifically, in this work we establish conditions on the initial
data and the physical parameters of the problem that ensure the decay of the solution in W 1,∞

towards the equilibrium state. In addition, we also prove the global existence of weak solutions
and their decay towards the flat equilibrium.

Besides the fact that the problem is more nonlocal due to the permeability jump, the inhomo-
geneous Muskat problem is more challenging also due to the fact that there is a new scenario of
possible pathological behaviour. Indeed, when the internal wave separating both fluids reaches
the curve where the permeability changes its value, the contour equation becomes more defiant in
the sense that the term with the double integral becomes singular. In particular, our results rule
out the previously mentioned scenario (see the figure below) where the internal wave reaches the
curve where the permeability changes and, at the same time, discard the possibility of turning and
splash singularities.

Γperm

Γ(t0)

Γ(t1)

Figure 2. Internal wave touching the curve where the permeability changes.

1.1. Main results. The purpose of this paper is to study the global existence of weak solutions
and the trend to equilibrium of the inhomogeneous Muskat problem in the Lipschitz class. In
particular, our first result shows the decay of the L∞ norm and reads as follows:

Theorem 1.1. Let 0 < f ∈ C([0, T ], H3(T)) be a smooth solution to (1.5), assume that the system
is in the Rayleigh-Taylor stable case ρ− − ρ+ > 0 and that h2 > 0 and define

〈f(x, 0)〉 =
1

2π

∫

T

f(x, 0)dx.

Then if

1

cosh((max
x

f(x, 0)− (min
x
f(x, 0))/2)

−
8|κ

+
−κ−

κ++κ−
|

π2(cosh(h2 + 〈f(x, 0)〉)− 1)3
sinh(〈f(x, 0)〉+max

x
f(x, 0)−min

x
f(x, 0) + h2) > 0, (1.9)

we have that

(max
x

f(x, t)−min
x
f(x, t)) ≤ (max

x
f(x, 0)−min

x
f(x, 0))e−µt (1.10)

for a sufficiently small constant 0 < µ depending only on the physical parameters of the problem
and the initial data. In particular, the solution remains non-negative and we have the following
bound

‖f(t)‖L∞ ≤ 〈f(x, 0)〉 + (max
x

f(x, 0)−min
x
f(x, 0))e−µt.

Our second result deals with the Ẇ 1,∞ maximum principle:

Theorem 1.2. Let 0 < f ∈ C([0, T ], H3(T)) be a smooth solution to (1.5), assume that the system
is in the Rayleigh-Taylor stable case ρ−− ρ+ > 0 and that h2 > 0. Let us furthermore assume that
the initial data satisfies the hypothesis of Theorem 1.1 and, in addition, that

0 >−
κ+(ρ− − ρ+)

4
‖∂xf(0)‖L∞ (1− P(‖∂xf(0)‖L∞)) + π |A|

cosh(‖f(0)‖L∞ + h2)

(cosh(h2)− 1)2
‖∂xf(0)‖

2
L∞

+ 2π |A|
sinh2(‖f(0)‖L∞ + h2)

(cosh(h2)− 1)3
‖∂xf(0)‖

2
L∞ + 2π |A|

sinh(‖f(0)‖L∞ + h2)

(cosh(h2)− 1)3
‖∂xf(0)‖L∞ ,

(1.11)
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with

P(z) =




1
(
1− (sinh(z(π/2)))

2
)2 − 1


+

1

2
z(cosh(πz)2π + π sinh(πz)).

Then, the solution satifies

‖∂xf(t)‖L∞ ≤ ‖∂xf(0)‖e
−µt,

for a sufficiently small constant µ depending on the parameters of the problem and the initial data.

Finally, we state our result ensuring the global existence and decay of solutions to the inhomo-
geneous Muskat problem (1.5).

Theorem 1.3. Let 0 < f0 ∈ W 1,∞ be the initial data for the inhomogeneous Muskat problem
(1.5) satisfying the hypotheses of Theorems 1.1 and 1.2. Let us consider that the system is in the
Rayleigh-Taylor stable case ρ− − ρ+ > 0 and that h2 > 0. There exists a constant c such that if

‖∂xf0‖L∞ ≤ c,

there exist at least one global weak solution (in the sense of definition (1.8))

f ∈ L∞(0, T ;W 1,∞) ∩ L2(0, T ;H3/2) ∀T > 0.

Furthermore, this solution satisfies

‖f(t)‖L∞ ≤ 〈f(x, 0)〉 + (max
x

f(x, 0)−min
x
f(x, 0))e−µt.

‖∂xf(t)‖L∞ ≤ ‖∂xf(0)‖e
−µt,

for a sufficiently small constant µ depending on the parameters of the problem and the initial data.

1.2. Notation. We will use the following notation throughout the manuscript. We are working on
the one dimensional torus T = [−π, π], endowed with periodic boundary conditions. For 1 ≤ p <∞
we denote by Lp(T;R) the standard Lebesgue space of measurable p-integrable R-valued functions
and by L∞(T;R) the space of essentially bounded functions. Particularly, L2(T;R) is equipped
with the inner product (f, g)L2 =

∫
T
f · g dx, where g denotes the complex conjugate of g. The

Fourier coefficients and the Fourier series of f(x) ∈ L2(T;R) are defined by f̂(ξ) =
∫
T
f(x)e−ixξ dx

and f(x) = 1
2π

∑
k∈Z

f̂(k)eixk, respectively. We define the L2-based Sobolev space Hs on T with
values in R as

Hs(T;R) :=

{
f ∈ L2(T;R) : ‖f‖2Hs(T;R) =

∑

k∈Z

|(1 + |k|2)s/2f(k)|2 < +∞

}
.

In case s ∈ Z
+, the Sobolev space W s,p(T;R) is defined as

W s,p(T) = {f ∈ Lp(T), ∂sxf ∈ Lp(T)}

endowed with the norm

‖f‖
p
W s,p(T) = ‖f‖

p
Lp + ‖∂sxf‖

p
Lp

where ∂x is the classical first order differential operator with respect x. Their homogenous coun-
terparts will be denoted by Ẇ s,p(T,R) and Ḣs(T,R) when p = 2. To simplify notation, we will
just write

Lp = Lp(T,R), Hs = Hs(T,R), W s,p =W s,p(T,R), Ḣs = Ḣs(T,R), Ẇ s,p = Ẇ s,p(T,R).

We denote with C = C(·) any positive universal constant that may depend on fixed parameters
and controlled quantities. Note also that this constant may vary from line to line. It is also
important to remind that in order to light notation the condition almost everywhere (a.e) is not
always indicated.

1.3. Plan of the paper. We conclude the introduction by outlining the contents of this paper.
In Section 2 we present the proof of Theorem 1.1 showing the decay in the L∞ norm of the
solution. In Section 3 we prove the decay in the Ẇ 1,∞ norm of the solution providing the proof
of Theorem 1.2. Later, in Section 4 we prove the existence of global weak solutions. To that
purpose, we first regularize the problem and show a priori estimates of the approximated solutions
in H3. Furthermore, the approximated solutions also satisfy the pointwise estimates obtained in
Theorems 1.1 and 1.2. Next, we show uniform H1 estimates which are of lower order but allow
us to use the parabolic gain of regularity ensuring the needed compacity to pass to the limit and
establishing Theorem 1.3.
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2. Decay in L∞

In this section we establish the decay in the L∞ norm of the solution.

Proof of Theorem 1.1. The proof follows from a pointwise method. This pointwise approach allow
us to track the dynamics for the oscillation of the function f and will ensure that f decays towards
the equilibrium and maintains its positivity.

Without losing generality we assume that
∫

T

f(x) dx = 2π.

Then, we can write

f = 1 + g,

where g has zero mean, i.e. ∫

T

g(x) dx = 0.

Before showing the oscillation decay (1.10), let us rewrite system (1.5)-(1.6) in a much more
convenient way. To that purpose, we recall the divergence form of the Muskat problem (1.7). Thus,
expanding the derivative we have that

∂tf(x) =
κ+(ρ− − ρ+)

2π
∂xf(x)P.V.

∫

T

tan((x − β)/2)(1− tanh2((f(x) − f(β)/2))

tan2((x− β)/2) + tanh2((f(x)− f(β)/2))
dβ

−
κ+(ρ− − ρ+)

2π
P.V.

∫

T

tanh((f(x) − f(β))/2)(1 + tan2((x− β)/2)

tan2((x− β)/2) + tanh2((f(x) − f(β)/2))
dβ

+
A

4π
P.V.

∫

T

∫

T

(∂xf(x) sinh(f(x) + h2) + sin(w))

cosh(f(x) + h2)− cos(w)

sin(z)

cosh(h2 + f(x− w − z))− cos(z)
dz dw

(2.1)

where we have used the change of variables x− β = w and β − γ = z. Using the fact that

P.V.

∫

T

sin(z)

cosh(f(x− w) + h2)− cos(z)
dz = 0

we rewrite the last integral in (2.1) as

A

4π
P.V.

∫

T

∫

T

(∂xf(x) sinh(f(x) + h2) + sin(w))

cosh(f(x) + h2)− cos(w)

sin(z)

cosh(h2 + f(x− w − z))− cos(z)
dz dw

=
A

4π
P.V.

∫

T

∫

T

[
(∂xf(x) sinh(f(x) + h2) + sin(w))

cosh(f(x) + h2)− cos(w)

]

×

[
sin(z)

cosh(h2 + f(x− w − z))− cos(z)
−

sin(z)

cosh(f(x− w) + h2)− cos(z)

]
dz dw

=−
A

4π
P.V.

∫

T

∫

T

[
(∂xf(x) sinh(f(x) + h2) + sin(w))

cosh(f(x) + h2)− cos(w)

]

×
sin(z) (cosh(f(x− w − z) + h2)− cosh(f(x− w) + h2))

[cosh(h2 + f(x− w − z))− cos(z)] [cosh(h2 + f(x− w)) − cos(z)]
dz dw

=
A

4π
P.V.

∫

T

∫

T

[
(∂xf(x) sinh(f(x) + h2) + sin(w))

cosh(f(x) + h2)− cos(w)

]

×
sin(z)(f(x− w − z)− f(x− w))

[cosh(h2 + f(x− w − z))− cos(z)] [cosh(h2 + f(x− w)) − cos(z)]

×

∫ 1

0

sinh [λ(f(x − w − z) + h2)− (1− λ)(f(x − w) + h2)] dλ dz dw. (2.2)

Due to the smoothness of f , we have that g ∈ C1([0, T ]× T). In particular,

M(t) = max
x

g(x, t) = g(xt, t) > 0 (2.3)

and

m(t) = min
x
g(x, t) = g(xt, t) < 0 (2.4)

are Lipschitz functions. Indeed, to see this it is enough to observe that M(t) satisfies
6



|M(t)−M(s)| =

{
g(xt, t)− g(xs, s) if M(t) > M(s)
g(xs, s)− g(xt, t) if M(s) > M(t)

≤

{
g(xt, t)− g(xt, s) if M(t) > M(s)
g(xs, s)− g(xs, t) if M(s) > M(t)

≤

{
|∂tg(xt, z)||t− s| if M(t) > M(s)
|∂tg(xs, z)||t− s| if M(s) > M(t)

≤ max
y,z

|∂tg(y, z)||t− s|.

For m(t) we can compute similarly and conclude

|m(t)−m(s)| ≤ max
y,z

|∂tg(y, z)||t− s|.

We invoke Rademacher’s Theorem to obtain that M(t) and m(t) are differentiable (in t) almost
everywhere. Then we have that

M ′(t) = lim
h→0

g(xt+h, t+ h)− g(xt, t)

h

= lim
h→0

g(xt+h, t+ h)− g(xt, t)± g(xt+h, t)

h

≤ lim
h→0

g(xt+h, t+ h)− g(xt+h, t)

h
≤ ∂tg(xt, t).

Similarly,

M ′(t) = lim
h→0

g(xt+h, t+ h)− g(xt, t)

h

= lim
h→0

g(xt+h, t+ h)− g(xt, t)± g(xt, t+ h)

h

≥ lim
h→0

g(xt, t+ h)− g(xt, t)

h
≥ ∂tg(xt, t).

As a consequence

M ′(t) = ∂tg(xt, t) a.e.

Similarly, we can obtain that

m′(t) = ∂tg(xt, t) a.e.

Therefore, taking x = xt in equation (2.1) and using that ∂xg(xt, t) = 0, we infer that

M ′(t) =−
κ+(ρ− − ρ+)

2π
P.V.

∫

T

tanh((g(xt)− g(β))/2)(1 + tan2((xt − β)/2)

tan2((xt − β)/2) + tanh2((g(xt)− g(β)/2))
dβ

+
A

4π
P.V.

∫

T

∫

T

sin(w)

cosh(1 + g(xt) + h2)− cos(w)

sin(z)

cosh(h2 + 1 + g(xt − w − z))− cos(z)
dz dw

Using the previous calculations in (2.2), we can further write

M ′(t) = −
κ+(ρ− − ρ+)

2π
P.V.

∫

T

tanh((M(t)− g(β))/2)(1 + tan2((xt − β)/2)

tan2((xt − β)/2) + tanh2((M(t)− g(β)/2))
dβ

+
A

4π
P.V.

∫

T

∫

T

[
sin(w)

cosh(M(t) + 1 + h2)− cos(w)

]

×
sin(z)(g(xt − w − z)− g(xt − w))

[cosh(h2 + g(xt − w − z) + 1)− cos(z)] [cosh(h2 + g(xt − w) + 1)− cos(z)]
dz dw

×

∫ 1

0

sinh [λ(g(xt − w − z) + 1 + h2)− (1− λ)(g(xt − w) + 1 + h2)] dλ

:= K1 +K2.

Taking into account that

tan2((xt − β)/2) + tanh2((M(t)− g(β)/2)) ≤ tan2((xt − β)/2 + 1,

sinh((M(t)− g(β))/2) ≥ (M(t)− g(β))/2,

7



we have that K1 is bounded by

K1 ≤ −
κ+(ρ− − ρ+)

2π

∫

T

(M(t)− g(β))/2)

cosh((M(t)− g(β)/2))
dβ

≤ −
κ+(ρ− − ρ+)

2π

1

cosh((M(t)−m(t)/2))

∫

T

(M(t)− g(β))/2) dβ

≤ −
κ+(ρ− − ρ+)

2

M(t)

cosh((M(t)−m(t)/2))

due to the mean zero condition. To estimate the term K2 it suffices to notice that

cosh(M(t) + 1 + h2)− cos(z) ≥ cosh(1 + h2)− 1

and hence

K2 ≤
|A|

2π

(M(t)−m(t)) sinh(1 +M(t) + h2)

(cosh(h2 + 1)− 1)3

∫

T

∫

T

|sin(w) sin(z)| dzdw

≤
8|A|

π(cosh(h2 + 1)− 1)3
(M(t)−m(t)) sinh(1 +M(t)−m(t) + h2),

where we have used that

−m(t) > 0.

Thus, collecting both estimates we have shown that

M ′(t) ≤ −
κ+(ρ− − ρ+)

2

M(t)

cosh((M(t)−m(t)/2))

+
8|A|

π(cosh(h2 + 1)− 1)3
(M(t)−m(t)) sinh(1 +M(t)−m(t) + h2)) a.e. (2.5)

Similarly, we can compute

−m′(t) = −
κ+(ρ− − ρ+)

2π
P.V.

∫

T

tanh((g(β)−m(t))/2)(1 + tan2((xt − β)/2)

tan2((xt − β)/2) + tanh2((m(t)− g(β)/2))
dβ

−
A

4π
P.V.

∫

T

∫

T

[
sin(w)

cosh(m(t) + 1 + h2)− cos(w)

]

×
sin(z)(g(xt − w − z)− g(xt − w))

[cosh(h2 + g(xt − w − z) + 1)− cos(z)] [cosh(h2 + g(xt − w) + 1)− cos(z)]
dz dw

×

∫ 1

0

sinh [λ(g(xt − w − z) + 1 + h2)− (1− λ)(g(xt − w) + 1 + h2)] dλ

:= L1 + L2.

Reasoning as before, we find that

L1 ≤
κ+(ρ− − ρ+)

2

m(t)

cosh((M(t)−m(t)/2))

L2 ≤
8|A|

π(cosh(h2 + 1)− 1)3
(M(t)−m(t)) sinh(1 +M(t)−m(t) + h2).

Thus, we have found the following estimate for m′(t)

−m′(t) ≤
κ+(ρ2 − ρ1)

2

m(t)

cosh((M(t)−m(t)/2))

+
8|A|

π(cosh(h2 + 1)− 1)3
(M(t)−m(t)) sinh(1 +M(t)−m(t) + h2) a.e. (2.6)

Next, we study the evolution of the oscillation of g

O(t) =M(t)−m(t).

We combine (2.5)-(2.6) to show that

O′(t) ≤ −
κ+(ρ− − ρ+)

2
O(t)

(
1

cosh(O(t)/2)

−
16|A|

κ+(ρ− − ρ+)π(cosh(h2 + 1)− 1)3
sinh(1 +O(t) + h2)

)
a.e. (2.7)
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By the smallness assumption (1.9), we have that at time t = 0,

O′(t)

∣∣∣∣
t=0

≤ −
κ+(ρ− − ρ+)

2
O(0)

(
1

cosh(O(0)/2)

−
16|A|

κ+(ρ− − ρ+)π(cosh(h2 + 1)− 1)3
sinh(1 +O(0) + h2)

)

and hence there exists a sufficiently small 0 < δ such that

O′(t) < 0 a.e. =⇒ O(t) < O(0), ∀0 ≤ t < δ. (2.8)

We observe that, if the smallness condition (1.9) holds at time t = 0, then the smallness condition
(1.9) propagates with the evolution. Then, we find that

O(t) < O(0), ∀t ≥ 0. (2.9)

Furthermore, by equation (2.7) we deduce that

O′(t) ≤ −µO(t) (2.10)

where

µ =
κ+(ρ− − ρ+)

2

(
1

cosh(O(0)/2)
−

16|A|

κ+(ρ− − ρ+)π(cosh(h2 + 1)− 1)3
sinh(1 +O(0) + h2)

)

which after a straightforward integration yields

O(t) ≤ O(0)exp(−µt). (2.11)

Once we have proved that the oscillation of g decays, we only have to observe that

max
x

f(x, t)−min
x
f(x, t) = O(t)

and that

max
x

f(x, t) = max
x

f(x, t)−min
x
f(x, t) + min

x
f(x, t) ≤ O(t) + 〈f(x, t)〉.

From this inequality we conclude the result by noticing that the mean of f is preserved by the
evolution due to the divergence form of the Muskat problem (1.7).

�

3. Decay in Ẇ 1,∞

In this section we show the decay in the Ẇ 1,∞ norm of the solution.

Proof of Theorem 1.2. The proof follows from a careful pointwise estimate as in Theorem 1.1. We
observe that, due to the hypoteses in the statement and Theorem 1.1, the solution f(x, t) remains
non-negative for all times. We start rewriting the equation in a more convenient form. Changing
variables in the first integral of the evolution equation (1.5), we observe that

∂tf(x) =
κ+(ρ− − ρ+)

4π
P.V.

∫

T

sin(x− β)(∂xf(x)− ∂xf(β))

cosh(f(x)− f(β)) − cos(x− β)
dβ

+
1

4π
P.V.

∫

T

(∂xf(x) sinh(f(x) + h2) + sin(x− β))̟2(β)

cosh(f(x) + h2)− cos(x− β)
dβ (3.1)

where the second vorticity amplitude ̟2(β) can be written as

̟2(β) = AP.V.

∫

T

sinh(h2 + f(γ))∂xf(γ)

cosh(h2 + f(γ))− cos(β − γ)
dγ.

Taking a space derivative of (3.1) and writing the last term in (3.1) as in (2.1) we infer

∂t∂xf(x) = I1 + I2

where

I1 =
κ+(ρ− − ρ+)

4π
P.V. ∂x

∫

T

sin(x− β)(∂xf(x)− ∂xf(β))

cosh(f(x)− f(x− β))− cos(x − β)
dβ,

I2 =
A

4π
P.V. ∂x

∫

T

∫

T

(∂xf(x) sinh(f(x) + h2) + sin(w))

cosh(f(x) + h2)− cos(w)

sin(z)

cosh(h2 + f(x− w − z))− cos(z)
dz dw.
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Using Leibniz rule we obtain

I1 =
κ+(ρ− − ρ+)

4π
P.V.

∫

T

∂x

(
sin(x− β)(∂xf(x)− ∂xf(β))

cosh(f(x)− f(β))− cos(x− β)

)
dβ

+
κ+(ρ− − ρ+)

4π

(
lim
ǫ→0

[
sin(x− β)(∂xf(x)− ∂xf(β))

cosh(f(x) − f(β))− cos(x− β)

]x+π

x+ǫ

+ lim
ǫ→0

[
sin(x− β)(∂xf(x)− ∂xf(β))

cosh(f(x)− f(β))− cos(x− β)

]x−ǫ

x+π

)
= I11 + I12.

Using the periodicity, we find that the boundary terms vanish

I12 = −
κ+(ρ− − ρ+)

4π

(
0−

∂xf(x)

∂xf(x)2 + 1

)
+
κ+(ρ− − ρ+)

π

(
0−

∂xf(x)

∂xf(x)2 + 1

)
= 0.

Expanding the derivative in I11

I11 =
κ+(ρ− − ρ+)

4π
P.V.

∫

T

cos(x − β)(∂xf(x)− ∂xf(β))

cosh(f(x)− f(β)) − cos(x− β)
dβ

−
κ+(ρ− − ρ+)

4π
P.V.

∫

T

sin(x− β)(∂xf(x)− ∂xf(β)) (sinh(f(x)− f(β))∂xf(x) + sin(x− β))

(cosh(f(x) − f(β))− cos(x− β))2
dβ

+
κ+(ρ− − ρ+)

4π
P.V.

∫

T

∂2xf(x) sin(x − β)

cosh(f(x) − f(β))− cos(x− β)
dβ = I111 + I112 + I113.

We can split further the second term as

I112 = −
κ+(ρ− − ρ+)

4π
P.V.

∫

T

sin(x − β)(∂xf(x)− ∂xf(β)) sinh(f(x)− f(β))∂xf(x)

(cosh(f(x) − f(β))− cos(x− β))2
dβ

−
κ+(ρ− − ρ+)

4π
P.V.

∫

T

sin2(x− β)(∂xf(x)− ∂xf(β))

(cosh(f(x)− f(β))− cos(x − β))2
dβ

from where, changing variables,

I111 + I112 =
κ+(ρ− − ρ+)

4π
P.V.

∫

T

∂xf(x)− ∂xf(x− β)

(cosh(f(x) − f(x− β))− cos(β))2

×

[
cosh(f(x)− f(x− β)) cos(β) − 1− sin(β) sinh(f(x) − f(x− β))∂xf(x)

]
dβ.

Hence

I1 =
κ+(ρ− − ρ+)

4π
P.V.

∫

T

∂xf(x)− ∂xf(x− β)

(cosh(f(x) − f(x− β)) − cos(β))2

×

[
cosh(f(x)− f(x− β)) cos(β)− 1− sin(β) sinh(f(x)− f(x− β))∂xf(x)

]
dβ

+
κ+(ρ− − ρ+)

4π
P.V.

∫

T

∂2xf(x) sin(x− β)

cosh(f(x)− f(β))− cos(x− β)
dβ. (3.2)

On the other hand, computing the derivative in I2 we find that

I2 = I21 + I22 + I23

with

I21 =
A

4π
P.V.

∫

T

∫

T

(
∂2xf(x) sinh(f(x) + h2) + (∂xf(x))

2 cosh(f(x) + h2)
)

cosh(f(x) + h2)− cos(w)

×
sin(z)

cosh(h2 + f(x− w − z))− cos(z)
dz dw

I22 = −
A

4π
P.V.

∫

T

∫

T

(∂xf(x))
2 sinh2(f(x) + h2) + sin(w) sinh(f(x) + h2)∂xf(x)

(cosh(f(x) + h2)− cos(w))2

×
sin(z)

cosh(h2 + f(x− w − z))− cos(z)
dz dw

I23 = −
A

4π
P.V.

∫

T

∫

T

(∂xf(x) sinh(f(x) + h2) + sin(w))(sinh(h2 + f(x− w − z))∂xf(x− w − z))

cosh(f(x) + h2)− cos(w)

×
sin(z)

(cosh(h2 + f(x− w − z))− cos(z))2
dz dw
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Collecting the previous computations, we have shown that

∂t∂xf(x) =
κ+(ρ− − ρ+)

4π
P.V.

∫

T

∂xf(x)− ∂xf(x− β)

(cosh(f(x) − f(x− β)) − cos(β))2

×

[
cosh(f(x)− f(x− β)) cos(β)− 1− sin(β) sinh(f(x)− f(x− β))∂xf(x)

]
dβ

+
κ+(ρ− − ρ+)

4π
P.V.

∫

T

∂2xf(x) sin(x− β)

cosh(f(x)− f(β))− cos(x− β)
dβ

+
A

4π
P.V.

∫

T

∫

T

(
∂2xf(x) sinh(f(x) + h2) + (∂xf(x))

2 cosh(f(x) + h2)
)

cosh(f(x) + h2)− cos(w)

×
sin(z)

cosh(h2 + f(x− w − z))− cos(z)
dz dw

−
A

4π
P.V.

∫

T

∫

T

(∂xf(x))
2 sinh2(f(x) + h2) + sin(w) sinh(f(x) + h2)∂xf(x)

(cosh(f(x) + h2)− cos(w))2

×
sin(z)

cosh(h2 + f(x− w − z))− cos(z)
dz dw

−
A

4π
P.V.

∫

T

∫

T

(∂xf(x) sinh(f(x) + h2) + sin(w))(sinh(h2 + f(x− w − z))∂xf(x− w − z))

cosh(f(x) + h2)− cos(w)

×
sin(z)

(cosh(h2 + f(x− w − z))− cos(z))2
dz dw. (3.3)

As in the proof of Theorem 1.1, we define

M(t) = max
x

∂xf(x, t) = ∂xf(xt, t) > 0 (3.4)

and
m(t) = min

x
∂xf(x, t) = ∂xf(xt, t) < 0. (3.5)

Due to the smoothness of f , we infer by the Sobolev embedding that ∂xf ∈ C1([0, T ] × T). As
a consequence, following the arguments in Section 2, we find that M(t) and m(t) are Lipschitz
functions and then, due to Radamacher’s Theorem, they are differentiable almost everywhere.
Moreover,

M ′(t) = ∂t∂xf(xt, t), m′(t) = ∂t∂xf(xt, t) a.e..

Therefore, evaluating (3.3) at x = xt and noticing that ∂2xf(xt) = 0 we find that

M ′(t) = J1 + J2 + J3 + J4 (3.6)

where

J1 =
κ+(ρ− − ρ+)

4π
P.V.

∫

T

M(t)− ∂xf(xt − β)

(cosh(f(xt)− f(xt − β))− cos(β))2

×

[
cosh(f(xt)− f(xt − β)) cos(β)− 1− sin(β) sinh(f(xt)− f(xt − β))M(t)

]
dβ,

J2 =
A

4π
P.V.

∫

T

∫

T

M(t)2 cosh(f(xt) + h2)

cosh(f(xt) + h2)− cos(w)
×

sin(z)

cosh(h2 + f(xt − w − z))− cos(z)
dz dw

J3 = −
A

4π
P.V.

∫

T

∫

T

M(t)2 sinh2(f(xt) + h2) + sin(w) sinh(f(xt) + h2)M(t)

(cosh(f(xt) + h2)− cos(w))2

×
sin(z)

cosh(h2 + f(xt − w − z))− cos(z)
dz dw

J4 = −
A

4π
P.V.

∫

T

∫

T

(M(t) sinh(f(xt) + h2) + sin(w))(sinh(h2 + f(xt − w − z))∂xf(xt − w − z))

cosh(f(xt) + h2)− cos(w)

×
sin(z)

(cosh(h2 + f(xt − w − z))− cos(z))2
dz dw

Using that the solution f remains non-neagative due to Theorem 1.1, we can obtain the following
upper bounds for J2 to J4,

|J2| ≤ π |A|
cosh(‖f‖L∞ + h2)

(cosh(h2)− 1)2
M(t)2 (3.7)

|J3| ≤ π |A|
sinh2(‖f‖L∞ + h2)

(cosh(h2)− 1)3
M(t)2 + π |A|

sinh(‖f‖L∞ + h2)

(cosh(h2)− 1)3
M(t) (3.8)
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and

|J4| ≤ π |A|
sinh2(‖f‖L∞ + h2)

(cosh(h2)− 1)3
M(t)‖∂xf‖L∞ + π |A|

sinh(‖f‖L∞ + h2)

(cosh(h2)− 1)3
‖∂xf‖L∞. (3.9)

Manipulating J1 and using the trigonometric identities

2 sin2(x/2) = 1− cos(x), 2 sinh2(x/2) = cosh(x)− 1,

we observe that

J1 =
κ+(ρ− − ρ+)

4π
P.V.

∫

T

M(t)− ∂xf(xt − β)

(cosh(f(xt)− f(xt − β)) − cos(β))2

×

[
(cos(β)− 1) + (cosh(f(xt)− f(xt − β))− 1) cos(β)− sin(β) sinh(f(xt)− f(xt − β))M(t)

]
dβ

= J11 + J12

with

J11 = −
κ+(ρ− − ρ+)

8π
P.V.

∫

T

(M(t)− ∂xf(xt − β))

sin2(β/2)

1
(
1 + sinh2((f(xt)−f(xt−β))/2)

sin2(β/2)

)2 dβ,

and

J12 =
κ+(ρ− − ρ+)

4π
P.V.

∫

T

M(t)− ∂xf(xt − β)

(cosh(f(xt)− f(xt − β)) − cos(β))2

×

[
(cosh(f(xt)− f(xt − β))− 1) cos(β) − sin(β) sinh(f(xt)− f(xt − β))M(t)

]
dβ.

In order to estimate J11 we observe that the trigonometric analog of the incremental quotient can
be estimated as

sinh((f(xt)− f(xt − β))/2)

sin(β/2)
=

sinh((f(xt)− f(xt − β))/2)

β/2

β/2

sin(β/2)

≤
sinh(‖∂xf‖L∞(β/2))

β/2

π

2

≤ sinh(‖∂xf‖L∞(π/2)), (3.10)

and then, for sufficiently small initial data, it can be assumed to be arbitrarily small. Furthermore,
using the geometric series

1

1 + r
=

∞∑

n=0

rn(−1)n

and its derivative
1

(1 + r)2
=

∞∑

k=0

(1 + k)rk(−1)k

we find the expression

1
(
1 + sinh2((f(xt)−f(xt−β))/2)

sin2(β/2)

)2 = 1 +
∞∑

k=1

(
sinh((f(xt)− f(xt − β))/2)

sin(β/2)

)2k

(−1)k(1 + k) (3.11)

where the convergence of the series is ensured (at least locally in time) if the Lipschitz seminorm
of the initial data is small enough. Combining (3.10) and (3.11) we have that

J11 ≤ −
κ+(ρ− − ρ+)

8π

[
P.V.

∫

T

(M(t)− ∂xf(xt − β))

sin2(β/2)
dβ

+ P.V.

∫

T

∞∑

k=1

(M(t)− ∂xf(xt − β))

sin2(β/2)

(
sinh((f(xt)− f(xt − β))/2)

sin(β/2)

)2k

(1 + k) dβ

]

≤ −
κ+(ρ− − ρ+)

8π

[
P.V.

∫

T

(M(t)− ∂xf(xt − β))

sin2(β/2)
dβ

+




1
(
1− (sinh(‖∂xf‖L∞(π/2)))2

)2 − 1


P.V.

∫

T

(M(t)− ∂xf(xt − β))

sin2(β/2)
dβ

]
(3.12)
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To bound the term J12 we notice that

cosh(f(xt)− f(xt − β))− 1 =

∫ 1

0

∂λ cosh(λ(f(xt)− f(xt − β)))dλ ≤ |β|‖∂xf‖L∞ sinh(β‖∂xf‖L∞)

sinh(f(xt)− f(xt − β)) =

∫ 1

0

∂λ sinh(λ(f(xt)− f(xt − β)))dλ ≤ |β|‖∂xf‖L∞ cosh(β‖∂xf‖L∞).

and that
sin(x)

sin(x/2)
≤ 2,

sinh(x‖∂xf‖L∞)

sin(x/2)
≤ sinh(π‖∂xf‖L∞),

x

sin(x/2)
≤ π.

Therefore, we have that

|J12| ≤
κ+(ρ− − ρ+)

16π
‖∂xf‖L∞(cosh(π‖∂xf‖L∞)2π + π sinh(π‖∂xf‖L∞))

× P.V.

∫

T

M(t)− ∂xf(xt − β)

sin2(β/2)
dβ. (3.13)

As a consequence, collecting estimates (3.7), (3.8), (3.9), (3.12) and (3.13) we have shown that

M ′(t) ≤ −
κ+(ρ− − ρ+)

8π
P.V.

∫

T

(M(t)− ∂xf(xt − β))

sin2(β/2)
dβ (1− P(‖∂xf‖L∞))

+ π |A|
cosh(‖f‖L∞ + h2)

(cosh(h2)− 1)2
M(t)2

+ 2π |A|
sinh2(‖f‖L∞ + h2)

(cosh(h2)− 1)3
M(t)‖∂xf‖L∞ + 2π |A|

sinh(‖f‖L∞ + h2)

(cosh(h2)− 1)3
‖∂xf‖L∞ a.e.,

with

P =




1
(
1− (sinh(‖∂xf‖L∞(π/2)))

2
)2 − 1


+

1

2
‖∂xf‖L∞(cosh(π‖∂xf‖L∞)2π+π sinh(π‖∂xf‖L∞)).

Using that

P.V.

∫

T

(M(t)− ∂xf(xt − β))

sin2(β/2)
dβ ≥ 2πM(t)

we conclude that

M ′(t) ≤ −
κ+(ρ− − ρ+)

4
M(t) (1− P(‖∂xf‖L∞)) + π |A|

cosh(‖f‖L∞ + h2)

(cosh(h2)− 1)2
M(t)2

+ 2π |A|
sinh2(‖f‖L∞ + h2)

(cosh(h2)− 1)3
M(t)‖∂xf‖L∞ + 2π |A|

sinh(‖f‖L∞ + h2)

(cosh(h2)− 1)3
‖∂xf‖L∞ a.e.,

Similarly, when we evaluate (3.3) in x = xt and use that ∂2xf(xt) = 0, we find that

−m′(t) ≤
κ+(ρ− − ρ+)

8π
P.V.

∫

T

(m(t)− ∂xf(xt − β))

sin2(β/2)
dβ (1− P(‖∂xf‖L∞))

+ π |A|
cosh(‖f‖L∞ + h2)

(cosh(h2)− 1)2
m(t)2

+ 2π |A|
sinh2(‖f‖L∞ + h2)

(cosh(h2)− 1)3
|m(t)| ‖∂xf‖L∞ + 2π |A|

sinh(‖f‖L∞ + h2)

(cosh(h2)− 1)3
‖∂xf‖L∞ a.e.,

As before, we estimate that

−P.V.

∫

T

(m(t)− ∂xf(xt − β))

sin2(β/2)
dβ ≥ −2πm(t),

thus,

−m′(t) ≤
κ+(ρ− − ρ+)

4
m(t) (1− P(‖∂xf‖L∞)) + π |A|

cosh(‖f‖L∞ + h2)

(cosh(h2)− 1)2
m(t)2

+ 2π |A|
sinh2(‖f‖L∞ + h2)

(cosh(h2)− 1)3
|m(t)| ‖∂xf‖L∞ + 2π |A|

sinh(‖f‖L∞ + h2)

(cosh(h2)− 1)3
‖∂xf‖L∞ a.e.,

We observe that when

‖∂xf‖L∞ =M(t),
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we find that

d

dt
‖∂xf‖L∞ ≤ −

κ+(ρ− − ρ+)

4
‖∂xf‖L∞ (1− P(‖∂xf‖L∞)) + π |A|

cosh(‖f‖L∞ + h2)

(cosh(h2)− 1)2
‖∂xf‖

2
L∞

+ 2π |A|
sinh2(‖f‖L∞ + h2)

(cosh(h2)− 1)3
‖∂xf‖

2
L∞ + 2π |A|

sinh(‖f‖L∞ + h2)

(cosh(h2)− 1)3
‖∂xf‖L∞ a.e..

(3.14)

In the case where

‖∂xf‖L∞ = −m(t),

we also obtain the previous inequality (3.14). As a consequence, we conclude that (3.14) holds
almost everywhere in time and, if the initial data is small enough according to the statement of
the Theorem (see equation (1.11)), we conclude the exponential decay towards the equilibrium.

�

4. Global existence of weak solutions

In this section we prove the global existence of weak solutions for (1.5). The proof follows the
same approach as the proof in [33]:

(1) We adopt a vanishing viscosity approach. This regularization procedure leads to globally
defined solutions and is well-adapted to our pointwise estimates obtained in the previous
sections.

(2) Then, we repeat the pointwise estimates in the previous sections to conclude that the
approximate solutions decay in the Lipschitz norm.

(3) We perform L∞(0, T ;H1) estimates. These estimates give us that the approximate solu-
tions are uniformly bounded in L2(0, T ;H3/2). This parabolic gain of regularity ensures
the compacity and allow us to pass to the limit.

(4) This limit is a weak solution of (1.5).

Proof of Theorem 1.3. Step 1 (The regularization approach): We consider the following reg-
ularized problem

∂tf
ε(x) =

κ+(ρ− − ρ+)

4π
P.V.

∫

T

sin(β)(∂xf
ε(x)− ∂xf

ε(x− β))

cosh(f ε(x)− f ε(x− β))− cos(β)
dβ

+
1

4π
P.V.

∫

T

(∂xf
ε(x) sinh(f ε(x) + h2) + sin(x − β))̟2(β)

cosh(f ε(x) + h2)− cos(x− β)
dβ + ε∂2xf

ε(x), (4.1)

with initial data

f ε0 (x) = Jε ∗ f0

where Jε denotes the periodic heat kernel at time t = ε. From this point onwards, abusing notation
we drop the ε notation from f . As before, equation (4.1) can be written in divergence form

∂tf
ε(x) =

κ+(ρ− − ρ+)

π
∂xP.V.

∫

T

arctan

(
tanh((f ε(x)− f ε(x − β))/2)

tan(β/2)

)
dβ

+
1

4π
∂xP.V.

∫

T

log(cosh(f ε(x) + h2)− cos(x − β))̟2(β)dβ + ε∂2xf
ε(x), (4.2)

The local well-posedness of (4.1) in C([0, Tε], H
3) is obtained as in [8, §3.1]. Furthermore, this

sequence of approximate solutions exists globally. Indeed, multiplying the previous equation by f
and integrating by parts, we find that

1

2

d

dt
‖f‖2L2 + ε‖∂xf‖

2
L2

= −
κ+(ρ− − ρ+)

π

∫

T

∂xfP.V.

∫

T

arctan

(
tanh((f(x)− f(x− β))/2)

tan(β/2)

)
dβ dx

−
1

4π

∫

T

∂xfP.V.

∫

T

log(cosh(f(x) + h2)− cos(x − β))̟2(β)dβ dx

≤
ε

2
‖∂xf‖

2
L2 + Cε(‖f0‖W 1,∞).

14



If we now multiply (4.1) by −∂2xf and integrate in space we find

1

2

d

dt
‖∂xf‖

2
L2 + ε‖∂2xf‖

2
L2

= −
κ+(ρ− − ρ+)

π

∫

T

∂2xf∂xP.V.

∫

T

arctan

(
tanh((f(x)− f(x− β))/2)

tan(β/2)

)
dβ dx

−
1

4π

∫

T

∂2xf∂xP.V.

∫

T

log(cosh(f(x) + h2)− cos(x− β))̟2(β)dβ dx.

After taking ε > 0 small enough, we can ensure that f ε0 also satisfies the hypotheses in Theorems
1.1 and 1.2. Then, using that

∂xP.V.

∫

T

arctan

(
tanh((f(x) − f(x− β))/2)

tan(β/2)

)
dβ = P.V.

∫

T

sin(β)(∂xf(x) − ∂xf(x− β))

cosh(f(x)− f(x− β))− cos(β)
dβ

= P.V.

∫

T

sin(β)

sin(β/2)

(∂xf(x)− ∂xf(x− β))

sin(β/2)

×
1

2
(
1 + sinh2((f(x)−f(x−β))/2)

sin2(β/2)

)dβ

together with Jensen inequality, we obtain

‖∂xP.V.

∫

T

arctan

(
tanh((f(x)− f(x− β))/2)

tan(β/2)

)
dβ‖L2 ≤ C(‖f0‖W 1,∞)‖f‖Ḣ3/2 ,

so that, using Sobolev interpolation

‖f‖Ḣ3/2 ≤ ‖∂xf‖
1/2
L2 ‖∂

2
xf‖

1/2
L2

and Young’s inequality

a3/2b1/2 ≤ εa2 + Cεb
2,

we conclude

1

2

d

dt
‖∂xf‖

2
L2 + ε‖∂2xf‖

2
L2 ≤

ε

2
‖∂2xf‖

2
L2 + Cε(‖f0‖W 1,∞)‖∂xf‖

2
L2.

Using the same ideas (see also [31, 37]), we conclude that

1

2

d

dt
‖∂3xf‖

2
L2 + ε‖∂4xf‖

2
L2 ≤

ε

2
‖∂4xf‖

2
L2 + Cε(‖f0‖W 1,∞)‖∂3xf‖

2
L2.

Step 2 (Uniform estimates in W 1,∞): The approximate solutions constructed above satisfy
the pointwise estimates obtained in the previous sections. In particular, we have the global bounds

‖f ε‖L∞ ≤ ‖f0‖L∞

and

‖∂xf
ε‖L∞ ≤ ‖∂xf0‖L∞ .

Step 3 (Uniform estimates in H1): We recall (3.3). Then we find that

1

2

d

dt
‖∂xf‖

2
L2 + ε‖∂2xf‖

2
L2 = I1 + I2 + I3 + I4 + I5

15



with

I1 =
κ+(ρ− − ρ+)

4π
P.V.

∫

T

∫

T

∂xf(x)
∂xf(x)− ∂xf(x− β)

(cosh(f(x)− f(x− β))− cos(β))2

×

[
cosh(f(x)− f(x− β)) cos(β)− 1− sin(β) sinh(f(x)− f(x− β))∂xf(x)

]
dβ dx

I2 =
κ+(ρ− − ρ+)

4π
P.V.

∫

T

∫

T

∂xf(x)
∂2xf(x) sin(x− β)

cosh(f(x) − f(β))− cos(x− β)
dβ dx

I3 =
A

4π
P.V.

∫

T

∫

T

∫

T

∂xf(x)

(
∂2xf(x) sinh(f(x) + h2) + (∂xf(x))

2 cosh(f(x) + h2)
)

cosh(f(x) + h2)− cos(w)

×
sin(z)

cosh(h2 + f(x− w − z))− cos(z)
dz dw dx

I4 = −
A

4π
P.V.

∫

T

∫

T

∫

T

∂xf(x)
(∂xf(x))

2 sinh2(f(x) + h2) + sin(w) sinh(f(x) + h2)∂xf(x)

(cosh(f(x) + h2)− cos(w))2

×
sin(z)

cosh(h2 + f(x− w − z))− cos(z)
dz dw dx

I5 = −
A

4π
P.V.

∫

T

∫

T

∫

T

∂xf(x)
(∂xf(x) sinh(f(x) + h2) + sin(w))(sinh(h2 + f(x− w − z))∂xf(x− w − z))

cosh(f(x) + h2)− cos(w)

×
sin(z)

(cosh(h2 + f(x− w − z))− cos(z))2
dz dw dx.

We write I1 as follows

I1 = I11 + I12

with

I11 = −
κ+(ρ− − ρ+)

8π

∫

T

P.V.

∫

T

∂xf(x)
(∂xf(x)− ∂xf(x− β))

sin2(β/2)

1
(
1 + sinh2((f(x)−f(x−β))/2)

sin2(β/2)

)2 dβ dx,

and

I12 =
κ+(ρ− − ρ+)

4π

∫

T

P.V.

∫

T

∂xf(x)
∂xf(x)− ∂xf(x− β)

(cosh(f(x)− f(x− β))− cos(β))2

×

[
(cosh(f(x) − f(x− β))− 1) cos(β)− sin(β) sinh(f(x)− f(x− β))∂xf(x)

]
dβ dx.

Changing variables we find that

I11 = −
κ+(ρ− − ρ+)

8π

∫

T

P.V.

∫

T

∂xf(x)
(∂xf(x)− ∂xf(β))

sin2((x − β)/2)

1
(
1 + sinh2((f(x)−f(β))/2)

sin2((x−β)/2)

)2 dβ dx

=
κ+(ρ− − ρ+)

8π

∫

T

P.V.

∫

T

∂xf(β)
(∂xf(x)− ∂xf(β))

sin2((x− β)/2)

1
(
1 + sinh2((f(x)−f(β))/2)

sin2((x−β)/2)

)2 dβ dx

= −
κ+(ρ− − ρ+)

16π

∫

T

P.V.

∫

T

(∂xf(x)− ∂xf(β))
2

sin2((x − β)/2)

1
(
1 + sinh2((f(x)−f(β))/2)

sin2((x−β)/2)

)2 dβ dx.

Now we observe that, using the estimates in Theorem 1.2,

I11 ≤ −δ(‖f0‖W 1,∞)‖∂xf‖
2
H1/2 ,

where, for uniformly bounded Lipschitz functions,

0 < c ≤ δ(‖f0‖W 1,∞).
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Similarly, we have that

I12 =
κ+(ρ− − ρ+)

4π

∫

T

P.V.

∫

T

∂xf(x)
∂xf(x)− ∂xf(β)

(cosh(f(x) − f(β))− cos(x− β))2

×

[
(cosh(f(x)− f(β)) − 1) cos(x − β)− sin(x− β) sinh(f(x) − f(β))∂xf(x)

]
dβ dx

= −
κ+(ρ− − ρ+)

4π

∫

T

P.V.

∫

T

∂xf(β)
∂xf(x)− ∂xf(β)

(cosh(f(x)− f(β))− cos(x − β))2

×

[
(cosh(f(x)− f(β)) − 1) cos(x − β)− sin(x− β) sinh(f(x) − f(β))∂xf(β)

]
dβ dx

=
κ+(ρ− − ρ+)

8π

∫

T

P.V.

∫

T

(∂xf(x)− ∂xf(β))
2

(cosh(f(x)− f(β))− cos(x− β))2

×

[
(cosh(f(x)− f(β)) − 1) cos(x − β)

]

−
κ+(ρ− − ρ+)

8π

∫

T

P.V.

∫

T

(∂xf(x) + ∂xf(β))
(∂xf(x)− ∂xf(β))

2

(cosh(f(x)− f(β))− cos(x − β))2

×

[
sin(x − β) sinh(f(x)− f(β))

]
dβ dx

≤ C(‖f0‖W 1,∞)‖∂xf0‖L∞‖∂xf‖
2
H1/2 .

Changing variables and integrating by parts, we estimate

I2 = −
κ+(ρ− − ρ+)

4π
P.V.

∫

T

∫

T

(∂xf(x))
2

2
∂x

(
sin(β)

cosh(f(x) − f(x− β))− cos(β)

)
dβ dx

=
κ+(ρ− − ρ+)

4π
P.V.

∫

T

∫

T

(∂xf(x))
2

2

sin(β) sinh(f(x) − f(x− β))(∂xf(x)− ∂xf(x− β))

(cosh(f(x) − f(x− β)) − cos(β))2
dβ dx

=
κ+(ρ− − ρ+)

4π
P.V.

∫

T

∫

T

(∂xf(x))
2

2

sin(x− β) sinh(f(x) − f(β))(∂xf(x)− ∂xf(β))

(cosh(f(x)− f(β))− cos(x− β))2
dβ dx

= −
κ+(ρ− − ρ+)

4π
P.V.

∫

T

∫

T

(∂xf(β))
2

2

sin(x− β) sinh(f(x)− f(β))(∂xf(x)− ∂xf(β))

(cosh(f(x) − f(β))− cos(x− β))2
dβ dx

=
κ+(ρ− − ρ+)

8π
P.V.

∫

T

∫

T

(∂xf(x) + ∂xf(β))

2

sin(x− β) sinh(f(x)− f(β))(∂xf(x)− ∂xf(β))
2

(cosh(f(x)− f(β)) − cos(x− β))2
dβ dx

≤ C(‖f0‖W 1,∞)‖∂xf0‖L∞‖∂xf‖
2
H1/2 .

Integrating by parts, we have that

I3 = −
A

4π
P.V.

∫

T

∫

T

∫

T

(∂xf(x))
2∂x

(
sinh(f(x) + h2)

cosh(f(x) + h2)− cos(w)

×
sin(z)

cosh(h2 + f(x− w − z))− cos(z)

)
dz dw dx+ C(‖f0‖W 1,∞)‖∂xf‖

2
L2

≤ C(‖f0‖W 1,∞)‖∂xf‖
2
L2.

Similarly,
I4 + I5 ≤ C(‖f0‖W 1,∞)‖∂xf‖

2
L2.

As a consequence, we find that

1

2

d

dt
‖∂xf‖

2
L2+δ(‖f0‖W 1,∞)‖∂xf‖

2
H1/2 ≤ C(‖f0‖W 1,∞)‖∂xf0‖L∞‖∂xf‖

2
H1/2+C(‖f0‖W 1,∞)‖∂xf‖

2
L2.

And as a consequence, due to the smallness of the initial data, we conclude

d

dt
‖∂xf‖

2
L2 + σ‖∂xf‖

2
H1/2 ≤ C(‖f0‖W 1,∞)‖∂xf‖

2
L2 ,

for a sufficiently small σ. Using Gronwall tinequality, the previous inequality ensures the following
ε-uniform bounds

‖∂xf
ε‖L2 ≤ ‖∂xf0‖L2eCt.

and ∫ T

0

‖∂xf
ε(s)‖2H1/2ds ≤

‖∂xf0‖L2

σ
eCt.

Step 4 (Passing to the limit): We have the following uniform bounds

‖f ε‖L∞ ≤ ‖f0‖L∞ ,
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‖∂xf
ε‖L∞ ≤ ‖∂xf0‖L∞ ,

‖∂xf
ε‖L2 ≤ ‖∂xf0‖L2eCt,

∫ T

0

‖∂xf
ε(s)‖2H1/2ds ≤

‖∂xf0‖L2

σ
eCt.

Due to Banach-Alaoglu Theorem, we obtain that there exists a subsequence (denoted again by f ε)
that satisfies the following

f ε
∗
⇀ f ∈ L∞(0, T ;L∞),

∂xf
ε ∗
⇀ ∂xf ∈ L∞(0, T ;L∞),

∂xf
ε ⇀ ∂xf ∈ L2(0, T ;H1/2),

where

f ∈ L∞(0, T ;W 1,∞) ∩ L2(0, T ;H3/2).

Using duality, we find that

‖∂tf
ε‖H−1 = sup

ψ∈H1

〈∂tf
ε, ψ〉 ≤ C(‖f0‖W 1,∞).

Due to a classical Aubin-Lions type argument (see Corollary 4 of [48]), we also conclude the
following strong convergence

∂xf
ε → ∂xf ∈ L2(0, T ;H1/2−ǫ), ∀ǫ > 0.

Equipped with these convergences we can conclude that the limit function f is indeed a weak
solution to the inhomogeneous Muskat problem (1.5) in the sense of definition (1.8) (see [33] for
more details). �

Acknowledgments

D.A-O is supported by the Alexander von Humboldt Foundation. R.G-B is supported by the
project “Mathematical Analysis of Fluids and Applications” with reference PID2019-109348GA-
I00/AEI/ 10.13039/501100011033 and acronym “MAFyA” funded by Agencia Estatal de Inves-
tigación and the Ministerio de Ciencia, Innovacion y Universidades (MICIU). Project supported
by a 2021 Leonardo Grant for Researchers and Cultural Creators, BBVA Fundation. The BBVA
Foundation accepts no responsability for the opinions, statements and contents included in the
project and/or the results thereof, which are entirely the responsability of the authors.

References

[1] T. Alazard and O. Lazar. Paralinearization of the muskat equation and application to the cauchy problem.
Archive for Rational Mechanics and Analysis, 237(2):545–583, 2020.

[2] T. Alazard and Q.-H. Nguyen. Endpoint Sobolev theory for the Muskat equation. arXiv preprint
arXiv:2010.06915, 2020.

[3] T. Alazard and Q.-H. Nguyen. On the Cauchy problem for the Muskat equation. ii: Critical initial data. Annals
of PDE, 7(1):1–25, 2021.

[4] T. Alazard and Q.-H. Nguyen. On the Cauchy problem for the Muskat equation with non-Lipschitz initial data.
Communications in Partial Differential Equations, pages 1–42, 2021.

[5] T. Alazard and Q.-H. Nguyen. Quasilinearization of the 3d Muskat equation, and applications to the critical
Cauchy problem. arXiv preprint arXiv:2103.02474, 2021.

[6] D. M. Ambrose. Well-posedness of two-phase Hele–Shaw flow without surface tension. European Journal of
Applied Mathematics, 15(5):597–607, 2004.

[7] D. M. Ambrose. The zero surface tension limit of two-dimensional interfacial Darcy flow. Journal of Mathe-
matical Fluid Mechanics, 16(1):105–143, 2014.
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