
A comparison of the Kalman filter
and recurrent neural networks for

state estimation of dynamical
systems

by

Akihiro Takigawa

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Applied Mathematics

Waterloo, Ontario, Canada, 2023

© Akihiro Takigawa 2023

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

The study of dynamical systems is of great interest in many fields, with a wide range
of applications. In some cases, these dynamical systems may be affected by noise and
the availability of measurements may be limited. State estimations methods which can
account for these challenges are valuable tools in analyzing these systems. While for linear
systems the standard method is by using an algorithm called the Kalman filter, data-driven
methods employing the versatility of artificial neural networks have also been proposed. In
this thesis, we first introduce state estimation using the Kalman filter. Next, we provide
an overview of a type of artificial neural network called recurrent neural networks (RNNs),
which are particularly suited for tasks on time series data. We finally present the results of
implementing RNN-based estimators for a number of dynamical systems with comparisons
to Kalman filtering.

iii

Table of Contents

Author’s Declaration ii

Abstract iii

List of Figures vii

List of Tables ix

List of Algorithms x

1 Introduction 1

2 State Estimation 3

2.1 Weighted Least Squares . 5

2.2 Recursive estimation . 8

2.3 Process noise . 11

2.4 The Kalman filter . 14

2.5 Computational cost of the discrete-time Kalman filter 16

2.6 Extended Kalman filter . 20

3 Recurrent Neural Networks 23

3.1 Introduction to RNNs . 23

iv

3.2 Computational graph of RNNs . 25

3.3 The challenge of long-term dependencies 29

3.3.1 Skip Connections . 31

3.3.2 Leaky Units . 31

3.3.3 LSTMs . 32

4 Training RNNs 37

4.1 Gradient Descent . 37

4.1.1 Stochastic Gradient Descent . 40

4.1.2 Variants of Stochastic Gradient Descent 42

4.1.3 Adaptive learning rate methods . 45

4.2 Backpropagation through time (BPTT) . 48

4.3 Quantifying the performance of neural networks 53

4.4 Capacity of neural networks . 54

4.5 Regularization . 56

4.6 The curse of dimensionality and data selection 57

4.6.1 Persistent excitation . 59

4.7 Hyperparameter optimization . 61

4.7.1 Grid search and random search . 63

4.7.2 Bayesian optimization . 65

5 State estimation with RNNs and the Kalman filter 70

5.1 Previous work . 70

5.2 Methodology . 71

5.3 Comparing computational cost to classical algorithms 74

5.4 Connected mass-spring-damper systems . 77

5.5 Example: 5 DoF mass-spring-damper system 82

5.6 Example: 100 DoF mass-spring-damper system 85

v

5.7 Example: transfer learning to a clamped-free beam model 88

5.8 Example: randomly generated dynamical systems 97

5.8.1 Random dynamical system of order 20 98

5.8.2 Unstable random dynamical system of order 20 101

5.9 Example: Lorenz system . 104

6 Conclusion 107

vi

List of Figures

3.1 Computational graph of a feedforward neural network, drawn in two dif-
ferent styles. On the left, we draw a node for every unit. On the right,
the same neural network is shown more compactly by drawing a node for
each vector representing a layer’s activations, created by transformations
applied by the weights W to x and w to h. Nonlinear activation functions
map the connection between nodes. The arrows represent the direction of
computation. [1], p. 174 . 26

3.2 The computational graph of a simple recurrent neural network. [1], p. 376 27

3.3 The unrolled computational graph of the recurrent neural network shown in
Figure 3.2, across three time steps. [1], p. 376 28

3.4 A block diagram of a LSTM cell. [1], p. 409 33

4.1 The unrolled computational graph of a RNN. Each step of the input se-
quence x is transformed into the RNN hidden state h with weight matrix
U . A second weight matrix V is used to transform the hidden state into the
output o. Taking this as well as the labels y as parameters, the loss L is
calculated. The recurrent weights W are applied to the hidden state h to
create the recurrence relation across the number of steps contained in the
input sequence. The unrolled (unfolded) representation across three time
steps is shown on the right. The unrolled computational graph is a directed
acyclic graph (DAG), allowing for recursive computation of the gradients of
the loss function with respect to the weights of the RNN with BPTT. [1],
p.378 . 49

4.2 A typical relationship between errors and capacity of neural networks. [1],
p. 409 . 56

vii

4.3 Plots of 20 data points, as we increase the dimension of the data space. The
volume of the space represented grows quickly and the data becomes sparse. 57

4.4 Evolution of training (green) and validation (red) errors when training with
persistently exciting data (left), compared to training with data that is not
persistently exciting (right). 61

5.1 Free-body diagram of a two degree-of-freedom mass-spring-damper system. 78

5.2 Mean squared errors for the RNN-based estimator (green) and Kalman filter
(red) for the 100 time steps contained in each sequence in the test set. . . . 84

5.3 Mean squared errors for the RNN-based estimator (green) and Kalman filter
(red) for the 100 time steps contained in each sequence in the test set. . . . 87

5.4 A diagram of an clamped-free beam. The beam rotates by torque applied
at the hub x = 0. [2], p. 180 . 89

5.5 Training and validation errors over 50 epochs for two RNN-based estimators
on the clamped-free beam system. The first RNN was trained with default
initial conditions. The second RNN was transferred the weights and biases
from a trained RNN-based estimator for a five degree-of-freedom connected
mass-spring-damper system prior to training. 95

5.6 Mean squared errors for the RNN-based estimator (green), RNN-based es-
timator initialized with weights from the RNN trained on the 5 DoF mass-
spring-damper system (blue) and Kalman filter (red) for the 100 time steps
contained in each sequence in the test set. 96

5.7 Mean squared errors for the RNN-based estimator (green) and Kalman filter
(red) for the 100 time steps contained in each sequence in the test set. . . . 100

5.8 Mean squared errors for the RNN-based estimator (green) and Kalman filter
(red) for the 50 time steps contained in each sequence in the test set. . . . 103

5.9 Mean squared errors for the RNN-based estimator (green) and Extended
Kalman filter (red) for the 2000 time steps contained in each sequence in
the test set. 105

viii

List of Tables

5.1 Table of values for RNN-based estimators on connected mass-spring-damper
systems. 88

5.2 Table of values for RNN-based estimators on a clamped-free beam system. 97

5.3 Table of values for RNN-based estimators on randomly generated LTI systems.102

ix

List of Algorithms

1 Kalman filter . 16
2 Extended Kalman filter . 22
3 Batch Gradient Descent . 40
4 Stochastic Gradient Descent . 42
5 Mini-batch Gradient Descent . 43
6 Mini-batch Gradient Descent with momentum 44
7 AdaGrad . 46
8 RMSProp . 46
9 Adam . 48
10 Backpropagation through time . 52
11 build grad . 52
12 Basic training loop . 53

x

Chapter 1

Introduction

The study of dynamical systems is of great interest in many fields, with applications ranging

from the modeling of orbital mechanics in physics, the structurization of macroeconomic

processes in economics and the study of virus spread in epidemiology. The modeling of

dynamical systems has enabled us to better understand the key processes which power these

phenomena by providing a mathematical basis. It is often the case that our theoretical

formulations do not directly coincide with what is observed in the real world due to the

presence of noise in the processes or our measurements (or both). Measurements pose other

important issues. Not only can the measurements be noisy, we may only be able to take

a limited number of them. Furthermore, not every state of the dynamical system may be

measured. Hence, techniques that can clean up noise, as well as piece together information

from limited measurements to learn the true state of a dynamical system are valuable.

One popular technique to estimate the true state of dynamical systems is Kalman

1

filtering, pioneered by Swerling, Kalman and Bucy starting in the late 1950’s [3]. One of

its first major applications was in trajectory estimation, implemented in the navigation

computer for NASA’s Apollo program to land the first humans on the Moon. Since then,

the Kalman filter has been applied to a wide range of problems, such as in the guidance

of cruise missiles and more recently in navigation for autonomous vehicles.

However, artificial neural networks have become a popular choice in approximating

functions. The first arbitrary-width univeral approximation theorems were proven in the

late 1980’s, showing that artificial neural networks with as few as one hidden layer can

approximate a broad class of real-valued function to an arbitrary degree of accuracy [4].

The versatility of artificial neural networks in their ability to learn almost any kind of

process has led to its widespread adoption for a variety of use cases in both academia and

industry, including for state estimation.

We introduce these two methods in the context of estimating the states of noisy dy-

namical systems, focusing on linear systems. We first introduce state estimation with the

Kalman filter. Subsequently, we introduce a form of artificial neural network called the

recurrent neural network, which operates on sequential data. We also provide an overview

of the training process, which enables the neural network to learn to estimate the states

of noisy dynamical systems. Finally, we present results in comparing the performance of

each method on a number of examples.

2

Chapter 2

State Estimation

In this chapter, we introduce state estimation for linear dynamical systems. The descrip-

tions of weighted least squares estimation, recursive estimation, and the Kalman filter are

based on [5], Chapter 3, and can be found in more detail there.

State estimation aims to determine the internal state of a system, using both a mathe-

matical model in the form of a set of equations describing the physical system and measured

data of the system’s inputs and outputs. In many real-world applications, knowledge of

the internal state of a physical system is essential. For example, in designing a rocket for

aeronautical use, an engineer may want to know the internal temperature of its engine

core during flight to control the heat degradation of its respective components. A naive

solution to this problem would be to place sensors everywhere, and on everything. How-

ever, in many applications this is not practical, whether it may be due to cost, or the

unavailability of an appropriate sensor. Hence, we seek to determine the internal state of

3

a physical system from a limited number of imperfect measurements. A framework which

allows us to accomplish this is called an estimator.

In mathematical terms, given some system, suppose we have the following mathematical

model:

xk+1 = f(xk, uk, k),

yk = h(xk, uk, k), (2.1)

where xk+1, the state at time k + 1, depends on a function f applied to xk, the state at

time k, and uk, the input at time k. Similarly, the measurement yk depends on a function

h applied to xk and uk. We seek to determine xk, the internal state at time k. A state

estimator places this mathematical model in parallel with the physical system, and fed the

same inputs uk, produces x̂k, an estimate of the internal state. As the mathematical model

is imperfect, its output ŷk will contain errors when compared to the measured value of the

physical system, yk. The error ϵy = yk− ŷk can be fed back into the mathematical model to

correct the error. Thus, an estimator can be robust to model inaccuracies and measurement

noise, and is an indispensable tool for many real-world problems. In this paper, we focus

on estimation for discrete-time linear systems, that is, discrete-time systems where the

relationship between the state xk and the output yk is a linear mapping. This can be

modeled in the form

xk+1 = Akxk +Bkuk + wk,

yk = Hkxk +Dkuk + vk, (2.2)

4

where at time k, xk ∈ Rn is the state vector, Ak ∈ Rn×n is the state (process) matrix,

yk ∈ Rm is the output (measurement) vector, Hk ∈ Rm×n is the output (measurement)

matrix, uk ∈ Rr is the input vector, Bk ∈ Rn×r is the input matrix, and D ∈ Rm×r is

the feedthrough matrix. We also have wk ∈ Rn, the process noise at time k and vk ∈

Rm, the measurement noise at time k. The model (Ak, Bk, Hk, Dk), the control uk and

measurements yk are assumed known. The disturbances wk, vk and the initial condition x0

are not known. Given a model (Ak, Bk, Hk, Dk), the state xk and measurement y evolves

over time. In the subsequent subsections, we construct one example of an estimator known

as the Kalman filter, which is a widely used estimator for linear systems. Under the

assumption that noises in the system are Gaussian, the Kalman filter minimizes the mean

squared error (MSE) between the measured state and true state of the system, and is

considered to be an optimal estimator for linear systems.

2.1 Weighted Least Squares

Before we delve into the details of the Kalman filter, we first consider the simpler problem

of estimating a vector x ∈ Rn from a noisy measurement y ∈ Rm. This is described by the

following equation:

y = Hx+ v, (2.3)

where the measurement y is a linear combination of x and measurement noise v. To

simplify our calculations, we assume H is invertible. Suppose we would like to construct

an estimator to produce an estimate x̂. Our goal is to minimize the error between the

5

measurement y and and the estimated output Hx̂, given by

ϵy = y −Hx̂. (2.4)

In the case that the covariance of the noise is the same for all elements of y, the most

probable value of the vector x is the value of x̂ that minimizes the sum of squares between

y and Hx̂. However, the covariance of the noise may be different for each element of y, with

each of the m elements of y having standard deviations σ1, . . . , σm, so y has a covariance

matrix

R =

σ2
1 0

. . .

0 σ2
m

 . (2.5)

We assume the matrix R to be positive definite. Note that this is the case when R is

a diagonal matrix with positive diagonal entries. Then, for example, if σ1 is relatively

large, then y1 is a relatively noisy measurement, so minimizing ϵy1 is not as valuable as

minimizing the other elements of ϵy. This leads us to consider the cost function

J =
ϵ2y1
σ2
1

+ · · ·+
ϵ2ym
σ2
m

,

known as the weighted sum of squares. Minimizing this cost would place more value in

relatively accurate measurements, as opposed to noisy measurements. The method of using

the weighted sum of squares for estimation is known as the weighted least squares method.

6

We can rewrite our cost function as

J = ϵTyR
−1ϵy

= (y −Hx̂)TR−1(y −Hx̂)

= yTR−1y − x̂THTR−1y − yTR−1Hx̂+ x̂THTR−1Hx̂. (2.6)

Recalling that R is a positive definite diagonal matrix, for vectors a ∈ Rn and b = Ha, we

can write

aTHTR−1Ha = (Ha)TR−1Ha = bTR−1b. (2.7)

Since R is positive definite, so is R−1. Then, b ̸= 0 implies bTR−1b > 0 and b = 0 implies

bTR−1b = 0, so bTR−1b ≥ 0 for all b ∈ Rm. Thus, HTR−1H is positive semi-definite.

We now take the derivative of our cost function J and set it to zero:

∂J

∂x̂
= −2yTR−1H + 2x̂THTR−1H = 2(−y +Hx̂)TR−1H = 0. (2.8)

This yields

x̂ = (HTR−1H)−1HTR−1y. (2.9)

Furthermore, taking the second derivative gives us

∂2J

∂x̂2
= 2HTR−1H ≥ 0, (2.10)

as we have previously shown HTR−1H to be positive semi-definite. Hence, (2.9) is the

unique minimum of J .

7

2.2 Recursive estimation

We now consider the more advanced problem of estimation on time-evolving measurements.

Suppose the measurement y now changes with time, described by the equation

yk = Hkxk + vk, (2.11)

where the subscript k denotes a variable at time step k. The signal vk is Gaussian mea-

surement noise with mean zero and a known covariance matrix Rk at time step k. While

it is possible to produce an estimate using the weighted least squares method, this is in-

efficient due to the need to recalculate our estimate by first producing a new weighted

sum of squares cost function, then taking its first derivative at each time step. Instead, we

introduce a method known as recursive estimation, where we instead progressively improve

the estimate produced in the first time step with new information gleaned from subsequent

measurements. Hence, we now seek to minimize the expected value of the estimation error

xk − x̂k.

Given a measurement

yk = Hkxk + vk, (2.12)

a linear recursive estimator has the form

x̂k = x̂k−1 +Kk(yk −Hkx̂k−1). (2.13)

At each time step k, the measurement matrix Hk is known but xk and vk are unknown. The

8

vector Kk is called the gain, whose construction differs depending on the kind of recursive

estimator. At each time step k, an updated estimate x̂k is produced by multiplying the

gain with the term yk −Hkx̂k−1, called the correction term. We assume that the expected

value of the measurement noise vk, E(vk) = 0 at each time step. Then, the mean estimation

error produced by our linear recursive estimator is

E(xk − x̂k) = E(xk − (x̂k−1 +Kk(yk −Hkx̂k−1)))

= E(xk − x̂k−1 −Kk(yk −Hkx̂k−1))

= E(xk − x̂k−1 −Kk((Hkxk + vk)−Hkx̂k−1))

= E(xk − x̂k−1 −KkHk(xk − x̂k−1)−Kkvk)

= E(xk − x̂k−1)−KkHk E(xk − x̂k−1)−Kk E(vk)

= (I −KkHk)E(xk − x̂k−1)−Kk E(vk) (2.14)

The difference between the expected value of the estimate and the expected true value is

known as the estimator’s bias, denoted B(x̂k) = E(x̂k) − E(xk). In the case of the linear

recursive estimator, if E(xk − x̂k−1) = 0 and E(vk) = 0, then E(xk − x̂k) = 0. In other

words, if our initial estimate x̂0 is equal to E(xk) and we have mean zero measurement

noise vk, then the mean estimation error E(xk − x̂k) = 0, implying B(x̂k) = 0. Estimators

satisfying this are called unbiased estimators. Hence, if E(xk) = x̂0 and the measurement

noise is zero mean and independent as in the previous section, minimizing the square of

the expected value of the estimation error is equivalent to minimizing the weighted sum of

squares cost because the most probable value of xk (in other words, E(xk)) is the x̂k which

minimizes the weighted sum of squares cost.

9

We now turn our attention to determining the appropriate Kalman gain which mini-

mizes the square of the expected value of the estimation error. Rewriting the cost at time

step k gives

Jk = E(||x− x̂k||2)

= E((x− x̂k)
T (x− x̂k))

= E(Tr((x− x̂k)
T (x− x̂k)))

= Tr(E((x− x̂k)
T (x− x̂k)))

= Tr(Pk). (2.15)

The matrix Pk is the covariance matrix of the estimation error at time step k. We now

formulate a recursive representation of Pk:

Pk = E((x− x̂k)(x− x̂k)
T)

= E(((I −KkCk)(x− x̂k−1)−Kkvk)((I −KkCk)(x− x̂k−1)−Kkvk)
T)

= (I −KkCk)E((x− x̂k−1)(x− x̂k−1)
T)(I −KkCk)

T

−Kk E(vk(x− x̂k−1)
T)(I −KkCk)

T − (I −KkCk)E((x− x̂k−1)v
T
k)K

T
k

+Kk E(vkvTk)KT
k . (2.16)

If we assume that the measurement noise vk has mean zero, then the estimation error at

time step k − 1 is independent of vk. This implies

E(vk(x− x̂k−1)
T) = E(vk)E((x− x̂k−1)

T) = 0. (2.17)

10

Hence we can rewrite our Pk as

Pk = (I −KkHk)Pk−1(I −KkHk)
T +KkRkK

T
k , (2.18)

where Rk = E(vkvTk) denotes the covariance matrix of the measurement noise at time step

k.

We proceed to calculate the Kalman gain which minimizes the cost by taking its deriva-

tive with respect to the gain,

∂Jk
∂Kk

= 2(I −KkH)Pk−1(−HT) + 2KkR.

Setting this to zero and solving for Kk yields a recursive expression for the optimal

Kalman gain,

Kk = Pk−1H
T (HPk−1H

T +R)−1. (2.19)

Substituting the optimal Kk into (2.13) enables us to recursively produce state estimates

from measurements.

2.3 Process noise

We finalize our discussion of the building blocks of the Kalman filter by addressing the

issue of deriving the covariance of the estimation error when the true state is also subject

11

to noise. Suppose we are given a linear discrete-time system

xk = Akxk−1 + wk, (2.20)

where wk is a zero-mean Gaussian process noise with covariance matrix Qk. Then, the

evolution of x̂k, the state estimate at time step k is described by

x̂k = Akx̂k−1, (2.21)

since we assume the process noise wk has mean zero. The covariance matrix Pk of the

estimation error at time step k is

Pk = E((x− x̂k)(x− x̂k)
T)

= E((Akxk−1 + wk − Akx̂k−1)(Akxk−1 + wk − Akx̂k−1)
T)

= E((Ak(xk−1 − x̂k−1) + wk)(Ak(xk−1 − x̂k−1) + wk)
T)

= E(Ak(xk−1 − x̂k−1)(xk−1 − x̂k−1)
TAT

k + Ak(xk−1 − x̂k−1)w
T
k + wk(xk−1 − x̂k−1)

TAT
k + wkw

T
k)

= Ak E((xk−1 − x̂k−1)(xk−1 − x̂k−1)
T)AT

k + E(Ak(xk−1 − x̂k−1)w
T
k) + E(wk(xk−1 − x̂k−1)

TAT
k)

+ E(wkw
T
k). (2.22)

12

Since the estimation error at time step k−1 is independent of the process noise wk at time

step k,

E(Ak(xk−1 − x̂k−1)w
T
k) = Ak E(xk−1 − x̂k−1))E(wT

k) = 0,

E(wk(xk−1 − x̂k−1)
TAT

k) = E(wk)E(xk−1 − x̂k−1)
T)AT

k = 0. (2.23)

Substituting this into (2.22) gives us

Pk = Ak E((xk−1 − x̂k−1)(xk−1 − x̂k−1)
T)AT

k + E(wkw
T
k)

= AkPk−1A
T
k +Qk. (2.24)

When the matrices A and Q are constant, this becomes

P = APAT +Q, (2.25)

called the discrete Lyapunov equation. It is shown in [5], Section 4.1 that when λiλj ̸= 1

for all i, j = 1, . . . , n where λ1, . . . , λn are the eigenvalues of A, this has a unique solution

for any Q. Specifically, if the system is stable (i.e. states do not explode over time), then

the eigenvalues of A will have magnitudes less than one so this condition will always be

satisfied. Hence, for stable systems we can always solve the discrete Lyapunov equation to

obtain a unique P .

13

2.4 The Kalman filter

In this section we present the Kalman filter algorithm [6] for linear discrete-time systems.

Note that there also exists a Kalman filter which can be applied to linear continuous-time

systems. However, we will not delve into this here, and will focus on linear discrete-time

systems.

Given a linear discrete-time system:

xk = Akxk−1 + wk

yk = Hkxk + vk, (2.26)

where xk ∈ Rn is the state at time k, Ak ∈ Rn×n is the process matrix at time k, yk ∈ Rm is

the measurement at time k, Hk ∈ Rm×n is the measurement matrix at time k. We assume

wk, the process noise at time k and vk, the measurement noise at time k are uncorrelated

white noises with zero mean and known covariance matrices Qk and Rk respectively, that

is,

wk ∼ N(0, Qk),

vk ∼ N(0, Rk). (2.27)

The discrete-time Kalman filter applied to the above system will filter out the noise

and provide an optimal estimate of the true state. At each time step, the algorithm uses

only the updated estimates from the previous step and the given system dynamics. Each

14

time step consists of two phases, the Predict phase and the Update phase. In the Predict

phase, the algorithm produces an initial state estimate x−
k and estimation error covariance

matrix P−
k at time step k from those of the previous time step k − 1, filtering the process

noise w as described in section 2.3. In the Update phase, the initial state estimate and

estimation error covariance matrix are corrected recursively to account for measurement

error by calculating the Kalman gain as described in section 2.2, producing the updated

state estimate x̂+
k and estimation error covariance matrix P+

k at time step k. These values

can then be fed back to the Predict phase at time step k + 1, allowing the two phases to

be repeated indefinitely to produce state estimates for an arbitrary number of time steps.

When the process model is constant, the initial prediction of the estimation error covariance

P− simplifies to solving the discrete Lyapunov equation. If the solvability condition for the

discrete Lyapunov equation is met, this will have a unique solution. Hence, the Kalman

filter will converge to produce the same mean squared error regardless of initial conditions

in this case. The Kalman filter algorithm is shown in Algorithm 1.

A key feature of the Kalman filter is its ability to “decide” the degree of confidence

it places in the measurement or the model when producing the updated state estimate.

If the measurement is to be trusted more than the model, then the norm ||R|| should be

lower than ||Q||. Hence the greater the trust in the measurement more than the model,

the greater the ratio ||Q||/||R|| will become. This decision is captured in the calculation

of the Kalman gain in the update phase.

15

Algorithm 1 Kalman filter

Require: Initial state estimate x̂+
0

Require: Initial covariance matrix of the estimation error P+
0

k ← 1
while not stopped do

Predict:
Predict state estimate, x̂−

k = Akx̂
+
k−1

Predict covariance of the estimation errors, P−
k = AkP

+
k−1A

T
K +Qk

Update:
Calculate the optimal Kalman gain, Kk = P−

k HT
k−1(Hk−1P

−
k HT

k−1 +Rk)
−1

Update state estimate, x̂+
k = x̂−

k +Kk(yk −Hkx̂
−
k)

Update covariance of the estimate, P+
k = (I −KkHk)P

−
k

k ← k + 1
end while

2.5 Computational cost of the discrete-time Kalman

filter

Here, we derive the computational cost of the Kalman filter shown in Algorithm 1 by

deriving its asymptotic computational complexity. Note that there are two main notions

of computational complexity– time complexity and space complexity. Time complexity

describes the amount of computation time an algorithm requires to complete, typically by

counting the number of elementary operations that the algorithm needs to perform, under

the assumption that each elementary operations requires a fixed amount of time. Space

complexity describes the amount of memory space required by the algorithm, similarly

found by counting the number of variables the algorithm needs to save, under the assump-

tion that each variable requires a fixed amount of memory space. For both computational

complexities, the worst case behavior, that is, the maximum amount of resources that are

16

needed over all inputs of size n, expressed in asymptotic notation is considered.

In this work, we will focus on the time complexity as the measure of computational cost

because an algorithm’s space complexity is bounded by its time complexity. Any change

to an algorithm which increases its space complexity will require the algorithm to write to

the additional spaced used, also increasing its time complexity. We start with calculating

the time complexity of the state update,

x̂−
k = Akx̂

+
k−1, (2.28)

where Ak ∈ Rn×n is the system matrix at time step k, x̂−
k , x̂

+
k−1 ∈ Rn are state estimates at

time steps k and k−1, respectively. Calculation of Akx̂
+
k−1 has time complexity O(n2), due

to the properties of matrix-vector multiplication. Next, for the prediction of the covariance

matrix of the estimation error,

P−
k = AkP

+
k−1A

T
k +Qk, (2.29)

where P−
k , P+

k−1 ∈ Rn×n are respectively the predicted covariance matrix of the estimation

error at time step k and the corrected covariance matrix of the estimation error at time

step k−1, and Qk ∈ Rn×n is the covariance matrix of the process noise at time step k. The

computation of AkP
+
k−1A

T
k first requires multiplication of two n× n matrices AkP

+
k−1, and

then the multiplication of the resulting n×n matrix with another n×n matrix AT
k . As the

multiplication of two n × n matrices has time complexity O(n3), the time complexity of

the matrix multiplications at this step is O(2n3). (Note: while Strassen’s algorithm [7] is

17

a more efficient matrix multiplication algorithm which has seen some adoption in publicly

available scientific computing software, we use schoolbook matrix multiplication because

the efficiency of Strassen’s algorithm does not apply to sparse matrix multiplication and it

is less numerically stable [8], reducing its generality.) Adding to this the time complexity

O(n2) of the matrix transpose AT
k , as well as the addition of the n2 elements of Qk results

in O(2n3 + 2n2) time complexity for this step. The “Predict” phase of the Kalman filter

algorithm has a total time complexity of O(2n3 + 3n2).

We now look at the “Update” phase of the Kalman filter algorithm. We first calculate

the optimal Kalman gain,

Kk = P−
k HT

k−1(Hk−1P
−
k HT

k−1 +Rk)
−1, (2.30)

recalling that Hk−1 ∈ Rm×n is the measurement matrix at time step k−1, and Rk ∈ Rm×m

is the covariance matrix of the measurement error at time step k. From the properties of

matrix multiplication we get time complexity O(mn2) for Hk−1P
−
k , so the matrix multipli-

cations in Hk−1P
−
k HT

k−1 have time complexity O(mn2+m2n). The matrix transpose HT
k−1,

adds another O(n2) in time complexity, assuming m ≤ n. Combined with the O(m2) time

complexity of adding Rk, the time complexity of Hk−1P
−
k HT

k−1+Rk is O(mn2+m2n+n2).

We proceed to invert this n × n matrix, which requires O(n3) time, resulting in the time

complexity of O(mn2 +m2n+ n2 + n3) to compute (Hk−1P
−
k HT

k−1 +Rk)
−1. Now, P−

k HT
k−1

requires O(mn2 + n2) time, and since the multiplication of n × m and m × m matrices

P−
k HT

k−1 and (Hk−1P
−
k HT

k−1+Rk)
−1 requires O(m2n) time, the time complexity of this step

is O(n3 + 2n(m2 +mn+ n)).

18

We now apply the Kalman gain to produce the updated state estimate,

x̂+
k = x̂−

k +Kk(yk −Hkx̂
−
k), (2.31)

where yk ∈ Rm is the measurement at time step k. Since the operations required to compute

yk −Hkx̂
−
k are one matrix-vector multiplication and one addition, we require O(m+mn)

time here. The multiplication of a n ×m matrix with a m × 1 vector in Kk(yk − Hkx̂
−
k)

results in the time complexity O(m+2mn). Finally, the addition of x̂−
k requires O(n) time,

so we require O(m+ n+ 2mn) time to compute this step.

In the final step, we calculate the time complexity of updating the covariance matrix

of the estimation error,

P+
k = (I −KkHk)P

−
k . (2.32)

First, KkHk requires O(n2m) time from the properties of matrix multiplication. Hence,

the time complexity of I −KkHk is O((m+1)n2). As (I −KkHk)P
−
k is the multiplication

of two n× n matrices, the total time complexity of this step is O(n3 + (m+ 1)n2).

Summing the time complexities of each step, the time complexity of the “Update” step

of the Kalman filter is O(2n(m2+n2+m)+ 3n2(m+1)+m+n). Adding this to the time

complexity of the previous “Predict” step, the total cost of one iteration of the Kalman

filter is

O(2n3 + 3n2) +O(2n(m2 + n2 +m) + 3n2(m+ 1) +m+ n)

= O(2n(m2 + 2n2 +m) + 3n2(m+ 2) +m+ n). (2.33)

19

Hence for large n, the time complexity of the Kalman filter scales roughly cubically

with respect to the size of the state vector. The computation cost becomes higher for time-

varying systems, as static lookup tables cannot efficiently capture behavior of dynamics

that change with time. However, an alternative formulation using adaptive lookup tables

can be found in [9].

Kalman filters are only applicable for linear dynamical systems. However, there are

a number of algorithms for state of estimation of nonlinear systems. One such estimator

called the Extended Kalman filter, which extends the Kalman filter for nonlinear systems

by linearizing the dynamical system in both the Predict and Update steps.

2.6 Extended Kalman filter

Here we discuss an extension of the Kalman filter called the Extended Kalman filter (EKF)

which is applicable to many nonlinear systems.

The Extended Kalman filter is a generalization of the Kalman filter to nonlinear sys-

tems. The idea of the EKF is to linearize the system at each time step, treating the system

as a time-variant linear system. The EKF requires the Jacobian matrices of the nonlinear

process and measurement models with respect to the state and noise to be available. Given

20

a nonlinear discrete-time system

xk = f(k, xk−1, wk),

yk = h(k, xk, vk),

wk ∼ N(0, Qk),

vk ∼ N(0, Rk),

The Extended Kalman filter algorithm is shown in Algorithm 2.

The EKF uses a first-order approximation to obtain a linear estimate of the system.

This may fail to provide a good estimate when the system is highly nonlinear. Kalman

filter extensions using higher order approximations exist and may be used in these cases,

such as the Iterated EKF and the Second-Order EKF.

The time complexity of the EKF is bounded below by O(9n3 + 8n2 + 2n), as it does

everything the linear Kalman filter does. The computational cost of linearization depends

on the numerical technique used. For example, using a finite difference method [10] such

as the forward difference or backward difference methods would lead to an additional

O(n) time complexity for each linearization. Due to the popularity of the EKF, many

implementations which improve computational cost have been proposed. See [11] for such

a implementation for models of radar systems.

21

Algorithm 2 Extended Kalman filter

Require: Initial state estimate x̂+
0

Require: Initial covariance matrix of the estimation error P+
0

k ← 1
while not stopped do

Predict:
Predict state estimate, x̂−

k = f(k, x̂+
k−1, 0)

Linearize the process, Ak =
∂f
∂x

∣∣∣∣
(k,x̂+

k−1,0)

,

Linearize the process, Lk =
∂f
∂w

∣∣∣∣
(k,x̂+

k−1,0)

Predict covariance of the estimation error, P−
k = AkP

+
k−1A

T
K + LkQkL

T
k

Update:

Linearize the measurement, Hk =
∂h
∂x

∣∣∣∣
(k,x̂−

k ,0)

,

Linearize the measurement, Mk =
∂h
∂v

∣∣∣∣
(k,x̂−

k ,0)

Obtain the optimal Kalman gain, Kk − P−
k HT

k−1(Hk−1P
−
k HT

k−1 +MkRkM
T
k)

−1

Update state estimate, x̂+
k = x̂−

k +Kk(yk − h(k, x̂−
k , 0))

Update covariance of the estimation error, P+
k = (I −KkHk)P

−
k

k ← k + 1
end while

22

Chapter 3

Recurrent Neural Networks

3.1 Introduction to RNNs

An artificial neural network (NN) is a machine learning tool which can approximate a wide

class of functions. A NN is a set of units called artificial neurons, each of which take a

weighted sum of a given input and apply a nonlinear transformation. By optimizing the

weights of the artificial neurons in a process called training, we can enable the artificial

neurons to produce outputs which approximate a target function. In an ordinary neural

network (called a feedforward neural network), artificial neurons are arranged in structures

called hidden layers. Hence, artificial neurons are also known as hidden units. Artificial

neurons in the same hidden layer are independent of one another, thereby enabling each

artificial neuron to focus on learning a part of the target mapping. The output of the

entire hidden layer is called the hidden state of the NN, which is transformed by an output

23

layer to return the final output. Multiple hidden layers can be stacked, that is, the output

of one hidden layer can be passed to a second hidden layer and so on, to enable NNs to

represent increasingly complicated mappings.

A Recurrent Neural Network (RNN) is a form of neural network that is designed to

exhibit dynamic behavior. A RNN extends the ordinary NN by having its hidden state

incorporate a form of “memory” of events that occurred in the past, enabling the pro-

cessing of variable length sequential inputs, typically found in tasks such as unsegmented

connected handwriting recognition and speech recognition in natural language processing

and system identification and state estimation in dynamical systems theory. RNNs are

especially suitable for tasks involving dynamical systems because the state of a dynamical

system is dependent upon its state at a previous time step, producing sequential time-

series data which RNNs excel in handling. While feedforward NNs can also work with

sequential data, each item in the sequence must be a separate input, making for large

input sizes for long sequences. Furthermore, changing the length of the input sequence

would require changing the NN architecture itself, making working with datasets contain-

ing variable length sequences inpractical. RNNs can handle sequences efficiently because

its architecture remains unchanged even as sequence length is varied.

What makes recurrent networks “recurrent” is parameter sharing. If we were to con-

sider the two sentences “I went to Waterloo in 2023” and “In 2023, I went to Waterloo”

and ask which year the subject went to Waterloo, we would recognize the year 2023 as

being the relevant text string in both sentences, despite it being in different locations in

the two sentences. Now, suppose we task a feedforward neural network with extracting the

year, feeding the whole sentences as the input. Then, because the NN would have different

24

parameters for each input feature, it would need to learn all of the rules of the language

separately at each position in the sentence, making this task difficult. However, a recur-

rent neural network shares the weights across many time steps, with each output being a

function of the outputs at previous time steps. The internal recurrence relation produced

by the RNN allows for the rules learned in the first sentence to be shared with the second

even though the relevant text string is in completely different locations, sidestepping this

problem. In general, we refer to RNNs as operating on a sequence of vectors x(t), with t

being the time step between 1 and τ .

The description of the structure of a RNN, the forward propagation process, as well as

the descriptions of improvements to the RNN in this chapter were adapted from [1], where

more details can be found.

3.2 Computational graph of RNNs

A computational graph is a way of visualizing the set of computations involved in mapping

inputs and parameters of a neural network to outputs and the loss. Figure 3.1 depicts a

simplified version of this for a standard feedforward neural network.

A standard feedforward neural network is a directed acyclic graph. Since the compu-

tations done in this network to get an output given an input only move in one direction,

it is easy to optimize the weights by backpropagating in the reverse direction (from the

output layer to the input layer) to get the gradients with respect to the parameters, and

then conducting gradient descent.

25

Figure 3.1: Computational graph of a feedforward neural network, drawn in two different
styles. On the left, we draw a node for every unit. On the right, the same neural network is
shown more compactly by drawing a node for each vector representing a layer’s activations,
created by transformations applied by the weights W to x and w to h. Nonlinear activa-
tion functions map the connection between nodes. The arrows represent the direction of
computation. [1], p. 174

26

Figure 3.2: The computational graph of a simple recurrent neural network. [1], p. 376

However, many recurrent neural networks define the values of their hidden neurons by

h(t) = σ(h(t−1), x(t); θ),

where h(t) is the state of the hidden neuron at time step t, x(t) is the input at time step t,

θ is the set of parameters of the neural network and σ is a nonlinear activation function.

Because the state of the hidden neurons depend on its states at previous time steps, the

computational graph of a recurrent neural network typically looks like Figure 3.2, with

weights U and V connecting the input layer to the hidden layer, then to the output layer

respectively, while an additional weight W relates the previous states of the hidden layer

to its current state.

The computational graph of a recurrent neural network is therefore a directed cyclic

graph, making backpropagation not as straightforward as the previously described feed-

forward case. Fortunately, for an input sequence of finite length τ , we know that the cycle

at the hidden layer will only loop around τ − 1 times. Hence, we can redraw our compu-

27

Figure 3.3: The unrolled computational graph of the recurrent neural network shown in
Figure 3.2, across three time steps. [1], p. 376

tational graph in the unrolled form as seen in Figure 3.3, by applying the definition of h

τ − 1 times. More precisely, from time steps t = 1 to t = τ , we apply the following update

equations:

a(t) = Wh(t−1) + Ux(t),

h(t) = σh(a
(t)),

o(t) = V h(t) + c,

y(t) = σo(o
(t)),

where at time step t, a(t) is the activation for the hidden layer, h(t) is the state of the hidden

layer, o(t) is the activation of the output layer and y(t) is the output. The parameters are

the weight matrices W,U, V as well as the biases b and c, and finally we have two activation

functions σh and σo for the hidden and output layers respectively.

Unrolling the RNN’s computational graph transforms it into a directed acyclic graph,

allowing us to apply backpropagation to get the gradients with respect to the parameters

of the neural network in a similar manner to the feedforward neural network case. This

28

variant of backpropagation is called backpropagation through time (BPTT), which will be

discussed further in the next chapter.

3.3 The challenge of long-term dependencies

A difficulty that neural network optimization algorithms must overcome arises when the

computational graph becomes extremely deep. Feedforward networks with many layers

have such deep computational graphs. This is also the case for recurrent networks working

on long sequences, which construct very deep computational graphs by repeatedly applying

the same operations at each time step.

As an example, suppose that a computational graph contains a path that consists of

repeatedly multiplying by a matrix W . After t steps, this is equivalent to multiplying by

W t. Let the decomposition of W in terms of its eigenvalues λ be W = V diag(λ)V −1.

Then,

W t = (V diag(λ)v−1)t = V diag(λ)tV −1. (3.1)

Any eigenvalues λi that are not near a magnitude of 1 will either explode if they are greater

than 1 in magnitude or vanish if they are less than 1 in magnitude. The vanishing and

exploding gradient problems refers to the fact that gradients through a computational graph

are also scaled according to diag(λ)t. In the next chapter, we will see how gradient-based

optimization methods are used to optimize the parameters of a RNN to complete a given

task. Vanishing gradients make it difficult to know which direction the parameters should

move to improve the cost function, while exploding gradients can make learning unstable.

29

Recurrent networks use the same matrix W at each time step, but feedforward net-

works do not, so even very deep feedforward networks can largely avoid the vanishing and

exploding gradient problem [12]. See [13] for more details on these challenges. For RNNs,

this means that when working with temporal sequences with long term dependencies, the

gradient of a long term interaction has exponentially smaller magnitude than the gradient

of a short term interaction. While it is not impossible to learn, it may take a very long

time to learn these long-term dependencies, because the signal about these dependencies

will tend to be hidden by the smallest fluctuations arising from short-term dependencies.

In practice, [13] showed that as the span of the dependencies that need to be captured

increases, gradient-based optimization becomes increasingly difficult, with the probability

of successful training of a RNN via stochastic gradient descent rapidly reaching 0 for se-

quences of only length 10 or 20. We will discuss stochastic gradient descent further in the

next chapter.

Various solutions have been proposed to combat the challenge posed by long-term

dependencies in RNNs. One idea is to design a neural network architecture that operates at

multiple time scales so that so that some parts of the network operate at smaller intervals

between time steps and can handle short-term dependencies, while other parts operate

at longer intervals and transfer dependencies from the distant past to the present more

efficiently.

30

3.3.1 Skip Connections

One way to operate at longer time scales is to add direct connections from variables in the

distant past to variables in the present. The idea of using such connections was inspired by

experiments in incorporating delays in feedforward neural networks, and first attributed to

[14]. In [14], since gradients may vanish or explode exponentially with respect to the num-

ber of time steps τ , recurrent connections with a time-delay of d, called skip connections,

were introduced to mitigate this problem. With skip connections, gradients now diminish

exponentially as a function of τ
d
rather than τ . However, since not all connections are

delayed, gradients may still explode exponentially in τ . Hence, skip connections allow the

learning algorithm to capture longer dependencies although not all long-term dependencies

may be represented well in this way.

3.3.2 Leaky Units

Another way to obtain paths on which the product of the gradients is close to one is to

have units with linear self-connections and a weight near one on these connections. Linear

self-connections behave similarly to a running average. Suppose we accumulate a running

average µ(t) of some value v(t) by updating

µ(t) ← αµ(t−1) + (1− α)v(t). (3.2)

Then the parameter α is an example of a linear self-connection from µ(t−1) to µ(t). When α

is near one, the running average remembers information about the past for a longer time,

31

and when α is near zero, information about the past is quickly discarded. Hidden units

with linear self-connections are called leaky units, and were first proposed by [15] and [16].

Skip connections through d time steps are a way of ensuring that the RNN always learns

to be influenced by a value from d time steps earlier. The use of a linear self-connection

with a weight near one is a different way of ensuring that the unit can access values from

the past, allowing this effect to be adapted more flexibly by adjusting the real-valued α

rather than by adjusting the integer-valued skip length.

3.3.3 LSTMs

The most effective recurrent neural networks belong to a class called gated RNNs. Like

leaky units, gated RNNs seek to create paths in the computational graph through time

where the gradients with respect to the parameters do not vanish nor explode. For leaky

units, this was done by choosing a parameter α which serves as a connection weight gov-

erning the importance placed on long-term dependencies. In gated RNNs, we generalize

this idea further by allowing the connection weights to change at each time step. The

reason for this is while leaky units enable the RNN to accumulate information over a long

timeframe, it has no mechanism to explicitly forget information, instead relying on the

values of the connection weights to let it decay passively. As the utility of explicitly for-

getting information may be difficult to see, we provide an example from natural language

processing. Suppose we would like to predict the next word in the statement,

“Ann went to her room and slept. Bob was working in .” (3.3)

32

Figure 3.4: A block diagram of a LSTM cell. [1], p. 409

As the subject of the first sentence (Ann) is different from that of the second (Bob), the

information from the first sentence is redundant in predicting the next word in this state-

ment. However, a leaky unit would not be able to discern this, only forgetting information

as dictated by the static connection weights. The idea is a gated RNN would be able

to learn when to forget information, discarding unnecessary information and keeping the

paths through which the gradients are calculated succinct.

Long short-term memory (LSTM) [17] is the most widely used gated RNN implemen-

tation. A block diagram of the LSTM is shown in Figure 3.4. While in a simple RNN such

as that described earlier in this chapter, we simply apply an element-wise nonlinearity to

33

the affine transformation of inputs and recurrent units, LSTMs have an internal recurrence

in a structure known as a LSTM cell, in addition to the outer recurrence present in all

RNNs. Taking the same inputs and outputs as an ordinary RNN, each LSTM cell contains

a system of sigmoidal gates which control the flow of information.

The basic component of a LSTM cell is the state unit s
(t)
i for time step t and LSTM cell i.

This stores the LSTM cell state, which has a self-connection like the leaky unit introduced

in the previous section. A LSTM cell behaves much like a conveyer belt, passing the LSTM

cell state though each gate. The final output gate transforms the LSTM cell state into the

hidden state we are familiar with from our analysis of a simple RNN. We now proceed to

describe the gates in a LSTM cell.

The forget gate

The first step in an LSTM is to decide what information to throw away from the cell state.

This is done by the forget gate unit f
(t)
i , which takes the input vector x(t) at time step t

and hidden state h(t−1) at the previous time step t− 1 to give an output between 0 and 1

for each element of the cell state s
(t)
i using the sigmoid function. A value near one means

that the variable is important for the given task and should not be forgotten, while a value

near zero says that the information should be forgotten. This is represented as

f
(t)
i = σ

(
bfi +

∑
j

U f
i,jx

(t)
j +

∑
j

W f
i,jh

(t−1)
j

)
, (3.4)

where bfi , U
f
i,j and W f

i,j are the biases, input weights and recurrent weights for the forget

gates respectively. This is used as the self-connection weight for the LSTM state unit,

34

acting similarly to the leaky unit self-connection weight, but having the flexibility of being

learnable at each time step.

The external input gate

Next, we must decide what new information to store in the LSTM cell state. We do this

in two steps, the first step being deciding what values of the LSTM cell state to update.

This is done through the external input gate,

g
(t)
i = σ

(
bgi +

∑
j

U g
i,jx

(t)
j +

∑
j

W g
i,jh

(t−1)
j

)
, (3.5)

where bgi , U
g
i,j and W g

i,j are the biases, input weights and recurrent weights for the forget

gates respectively. The external input gate is structurally similar to the forget gate, pro-

ducing values between zero and one for each element in the LSTM cell state. A value near

one means that the corresponding element of the LSTM cell state should be updated, while

a value near zero signifies that it should not.

After deciding which values of the LSTM cell state to update, we update our state unit,

giving the update of the LSTM cell state as

s
(t)
i = f

(t)
i s

(t−1)
i + g

(t)
i σ

(
bi +

∑
j

Ui,jx
(t)
j +

∑
j

Wi,jh
(t−1)
j

)
, (3.6)

where b, U and W are the biases, input weights and recurrent weights of the LSTM cell,

analogous to those of recurrent units in a simple RNN.

35

The output gate

Finally, we produce the output h
(t)
i , which is the hidden state at time step t. This is

done through the output gate, which uses a sigmoid function to filter what elements of the

LSTM cell state should be reflected in the hidden state. The output gate is represented as

q
(t)
i = σ

(
boi +

∑
j

U o
i,jx

(t)
j +

∑
j

W o
i,jh

(t−1)
j

)
, (3.7)

where boi , U
o
i,j and W o

i,j are the biases, input weights and recurrent weights for the output

gates respectively. Once again, a value near one means that the corresponding element of

the LSTM cell state should be reflected in the hidden state, while a value near zero signifies

that it should not. The final output is produced by passing the filtered LSTM cell state to

a hyperbolic tangent activation function,

h
(t)
i = tanh

(
s
(t)
i

)
q
(t)
i . (3.8)

LSTM networks have been shown to learn long-term dependencies more easily than

simple RNNs [18]. LSTMs has been successful in many applications, such as speech recog-

nition, machine translation and state estimation of dynamical systems [19].

36

Chapter 4

Training RNNs

We now discuss the procedure of determining good values for the weights of a RNN in

order to get a desired behavior, called training.

We first introduce some basic concepts of training RNNs. Many of these are ap-

plicable to training other machine learning algorithms as well. We then present the

Backpropagation-through-time (BPTT) algorithm briefly introduced in the previous chap-

ter. Once again, much of the content of this chapter can be found in more detail in [1].

4.1 Gradient Descent

Optimization is at the heart of machine learning, with most algorithms attempting to

minimize (or maximize) some objective function. In particular, during training, we seek to

minimize a cost function which gives the error between the output of the neural network

37

and the target values (called labels). Note that cost function is often used interchangeably

with loss function and error function in the literature. However, to avoid ambiguity, here

we will use “cost” as a measure of error over multiple examples, such as the training set,

and “loss” to refer to the measure of error on single examples.

Given a function f : Rm → R that we seek to minimize, the most commonly used

technique to find the minimum is called gradient descent, first introduced by Cauchy in

1847. At a point x ∈ Rm, the directional derivative of f in the direction of the unit

vector u represents the instantaneous rate of change of f when moving through x in the

direction u. This is given by the derivative of f(x + αu) evaluated at α = 0, giving

∂
∂α
f(x+ αu) = uT∇xf(x). To minimize f , we first find the direction in which f decreases

most quickly by minimizing the directional derivative. We get

minuT∇xf(x) = min||u||2||∇xf(x)||2cos θ, (4.1)

where θ is the angle between u and ∇xf(x). Since u is a unit vector, we substitute ||u||2= 1

to get

minuT∇xf(x) = min||∇xf(x)||2cos θ. (4.2)

It is clear that the directional derivative of f at point x is minimized when cos θ is at its

minimum value of −1, that is, when the direction vector u points in the opposite direction

as the gradient∇xf(x). Hence, the gradient represents the direction of steepest ascent, and

we can decrease f by moving in the opposite direction, the direction of steepest descent.

38

The gradient descent algorithm iterates to a new point

x′ = x− ϵ∇xf(x), (4.3)

where the learning rate ϵ is a scalar parameter specifying the step size of the descent.

Steepest descent will repeatedly propose new points until the gradient ∇xf(x) is zero.

(Recall that when ∇xf(x) = 0, x is a critical point of f .)

While the above description applies to gradient descent from a single point, the same

idea is used when working with multiple samples to train a neural network, in a dataset

called the training set. Instead of iterating to the opposite direction of a single gradient,

we can take the average of the gradients with respect to all points in the training set, the

opposite direction of this corresponding to a direction moving closer to a optimal solution

in general. This algorithm is known as batch gradient descent, or simply gradient descent,

and is the most basic gradient-based optimization algorithm used in the training of neural

networks.

In more formal terms, suppose our training set consists of N sample inputs xi, . . . , xN .

Then, our cost function can be written as an average loss over the training set,

J(θ) =
1

N

N∑
i=1

L(yi, f(xi; θ)), (4.4)

where L is the per-example loss function, f(xi; θ) is the output of a neural network with

input xi, θ are the parameters of the neural network, and yi is the target output corre-

sponding to input xi. The batch gradient descent algorithm is described in Algorithm

39

3.

Algorithm 3 Batch Gradient Descent

Require: N > 0, ϵ > 0
while stopping threshold is not met do

for i = 1, . . . , N do
∇θJ(θ)← ∇θJ(θ) +∇θL(yi, f(xi; θ))

end for
θ ← θ − ϵ 1

N
∇θJ(θ)

end while

For one iteration of the batch gradient descent algorithm, we must calculate all m

gradients for the samples in the training set. While this may be fine when working with

moderately sized training sets, when the training set is large, the amount of time required

for the algorithm to converge may become impractical. This issue has led to the develop-

ment of other variants of gradient descent which reduce the number of gradient calculations

required before iterating.

4.1.1 Stochastic Gradient Descent

Stochastic gradient descent (SGD) is the most common optimization algorithm used in

machine learning to minimize the cost function associated with the algorithm. While it is

well-known mostly among the machine learning community today, its origin can be traced

much eariler to the work of Robbins and Monro, in which they presented a rootfinding

algorithm for functions that are difficult to compute analytically. SGD is particularly

useful for large training sets, as it updates the neural network’s parameters based on a

random data point, rather than the entire dataset. This makes it computationally efficient

40

and scalable to large datasets.

Given a cost function

J(θ) =
1

N

N∑
i=1

L(yi, f(xi; θ)), (4.5)

where N is the number of training examples, yi is the target output for the ith example, xi

is the input for the ith example, f(xi; θ) is the predicted output for the ith example, and

θ are the algorithm parameters, we first initialize the algorithm parameters θ to random

values. For each iteration, we randomly select a single sample from the training data and

compute the gradient of the loss function with respect to the algorithm parameters, which

is ∇θL(yi, f(xi, θ)). The new gradient is used to give the updated cost function parameters

θ(t+ 1) = θ(t)− ϵ∇θL(yi, f(xi; θ)), (4.6)

where ϵ is the learning rate. These steps are repeated until a stopping criterion is met,

such as a maximum number of iterations or a desired level of performance.

We assume the training set contains independent, identically distributed samples. Since

SGD randomly samples from this dataset in each iteration, we get from linearity of expec-

tation

E(∇θL(yi, f(xi; θ))) = ∇θ E(L(yi, f(xi; θ))) (4.7)

= ∇θ
1

N

N∑
i=1

L(yi, f(xi; θ)) (4.8)

= ∇θJ(θ). (4.9)

41

Hence, the expected gradient with respect to the training set is the gradient of the overall

cost. Therefore, SGD will iterate closer to a local minima on average.

The key difference between stochastic gradient descent and batch gradient descent

is that stochastic gradient descent uses only a single sample from the data to compute

the gradient at each iteration. This makes it faster and more scalable to large datasets.

Another benefit which arises from the stochastic nature of SGD is that the noisy gradient

estimates can sometimes dislodge the algorithm from a local minima of the cost function

[20], allowing it to converge to a global minima. However, this randomness also makes

SGD more prone to convergence issues such as the algorithm oscillating between higher

cost and lower cost solutions instead of smoothly iterating to lower cost solutions. The

algorithm is shown in Algorithm 4.

Algorithm 4 Stochastic Gradient Descent

Require: N > 0, α > 0
while stopping criterion is not met do

Randomly shuffle the samples in the training set
for i = 1, . . . , N do

θ ← θ − ϵ∇θL(yi, f(xi; θ))
end for

end while

4.1.2 Variants of Stochastic Gradient Descent

There are several variants of stochastic gradient descent that address some of the issues of

the basic algorithm, such as oscillating training and slow convergence.

42

Mini-batch gradient descent

Mini-batch gradient descent is a compromise between batch gradient descent and stochastic

gradient descent, where the algorithm parameters are updated based on a small fixed-size

batch of training examples B called a mini-batch, rather than a single sample in the case

of stochastic gradient descent, or the entire dataset in the case of batch gradient descent.

This reduces the noise and oscillations of stochastic gradient descent, while being more

scalable than batch gradient descent. This algorithm is shown in Algorithm 5, and can be

derived from a small modification to the SGD algorithm shown in Algorithm 4.

Algorithm 5 Mini-batch Gradient Descent

Require: b > 0, α > 0
while stopping criterion is not met do

Randomly select a subset B of the training set
for i = 1, . . . , b do
∇θJ(θ)← 1

|B|
∑b

i=1∇θL(yi, f(xi; θ))

θ ← θ − ϵ∇θJ(θ)
end for

end while

Note that b = ⌈ N
|B|⌉ is the number of subsets of the training set. The gradient is

now an average of the the gradients of the losses for samples in each mini-batch, reducing

the algorithm’s susceptibility to oscillations from noisy gradients, and often improving

convergence speed.

Momentum

Momentum is another technique used to smooth out weight updates and prevent oscilla-

tions during training. Just as a weighted ball rolling downhill would not stop in small holes

43

along the hill, and would only stop at the bottom of the valley, momentum can prevent

the training process from converging to local minima of the cost function. At time step t,

the momentum term v(t) is defined as a moving average of the past gradients,

v(t) = βv(t− 1) + (1− β)∇θJ(θ). (4.10)

The parameter β controls the degree to which gradients from the distant past are consid-

ered. The updated parameters are

θ(t+ 1) = θ(t)− αv(t). (4.11)

Another benefit of momentum is that it can help to accelerate the convergence of the opti-

mization process, by allowing the gradient to accumulate in the direction of the dominant

features of the loss surface [21]. This can be particularly useful in deep learning, where the

loss surface can be very complex and high-dimensional. Mini-batch gradient descent with

added momentum is shown in Algorithm 6.

Algorithm 6 Mini-batch Gradient Descent with momentum

Require: N > 0, α > 0
while stopping criterion is not met do

Randomly select a subset B(t) of the training set
for i = 1, . . . , N do
∇θJ(θ)← 1

|B(t)|
∑N

i=1∇θL(yi, f(xi; θ))

v(t)← βv(t− 1) + (1− β)∇θJ(θ)
θ ← θ − αv(t)

end for
end while

44

4.1.3 Adaptive learning rate methods

These methods adapt the learning rate based on the gradient history, in order to im-

prove the convergence rate and avoid oscillations. Some popular examples are AdaGrad,

RMSProp, and Adam, which we introduce below.

AdaGrad

The AdaGrad algorithm [22], presented in Algorithm 7, customizes the learning rates of

each algorithm parameter by adjusting them in proportion to the inverse square root of

their historical squared values. This approach causes parameters with large gradients with

respect to the cost function to experience a more significant reduction in their learning rate,

while those with smaller gradients experience a more modest reduction. Hence, AdaGrad

is claimed to improve upon SGD in cases where the gradient vectors are sparse. However,

a disadvantage of AdaGrad is the accumulation of squared gradients from the start of

training may result in progressively greater reductions in learning rate, especially when

the gradients are large, stalling training.

RMSProp

The RMSProp algorithm [23], is a modification to AdaGrad that aims to enhance its

performance in non-convex settings. While AdaGrad converges quickly when applied to

a convex function, it may struggle with non-convex functions, particularly if the learning

rate becomes very small before reaching a locally convex region. To address this issue,

RMSProp introduces momentum to the squared gradients, using an exponential moving

45

Algorithm 7 AdaGrad

Require: Learning rate ϵ > 0
Require: Decay rate ρ > 0
Require: A small constant δ > 0 to ensure numerical stability of division.
r = 0
while stopping criterion is not met do

Sample a subset B(t) of the training set
Compute the gradient g ← 1

|B(t)|
∑N

i=1∇θL(yi, f(xi; θ))
Accumulate the squared gradient r ← r + g ⊙ g
Compute parameter update ∆θ ← − ϵ√

r+δ
⊙ g

Update parameters θ ← θ +∆θ
end while

average to discard distant historical information and converge quickly once a locally convex

region is found, behaving much like an instance of AdaGrad that was initialized within that

region. The updated algorithm is presented in Algorithm 8, where a new hyperparameter

ρ controls the length scale of the moving average.

Algorithm 8 RMSProp

Require: Learning rate ϵ > 0
Require: A small constant δ > 0 to ensure numerical stability of division.
r = 0
while stopping criterion is not met do

Sample a subset B(t) of the training set
Compute the gradient g ← 1

|B(t)|
∑N

i=1∇θL(yi, f(xi; θ))

Accumulate the squared gradient r ← ρr + (1− ρ)g ⊙ g
Compute parameter update ∆θ ← − ϵ√

r+δ
⊙ g

Update parameters θ ← θ +∆θ
end while

46

Adam

Adam [24] is another widely used adaptive learning rate optimization algorithm. It is

named for “adaptive moments,” and is inspired by RMSProp. Like in RMSProp, momen-

tum is introduced by keeping exponential moving averages. In Adam, these are kept for

the sum of gradients (called the first moment) and the sum of squared gradients (called the

second moment). An issue that both RMSProp and Adam faces is that the exponential

moving averages may be biased upon initialization because they are always initialized to

zero regardless of the true moments. This leads to suboptimal parameter updates which

may slow down training before the exponential moving average can correct itself. Adam

improves upon RMSProp by correcting for the bias.

Adam is considered to be fairly robust to the choice of hyperparameters [1], making it

a popular optimizer. The algorithm is presented in Algorithm 9. At the time of writing,

Adam is a recommended optimizer in several machine learning software libraries, including

PyTorch and Keras.

47

Algorithm 9 Adam

Require: Learning rate ϵ > 0
Require: Exponential decay rates ρ1, ρ2 ∈ [0, 1) for each momentum.
Require: A small constant δ > 0 to ensure numerical stability of division.
r = 0, s = 0
t = 0
while stopping criterion is not met do

Sample a subset B(t) of the training set
Compute the gradient g ← 1

|B(t)|
∑N

i=1∇θL(yi, f(xi; θ))
t← t+ 1
Update biased first moment estimate r ← ρ1r + (1− ρ1)g
Update biased second moment estimate s← ρ2s+ (1− ρ2)g ⊙ g
Correct the bias in the first moment estimate r̂ ← r

1−ρt1
Correct the bias in the second moment estimate ŝ← s

1−ρt2

Compute parameter update ∆θ ← − ϵr̂√
ŝ+δ
⊙ g

Update parameters θ ← θ +∆θ
end while

4.2 Backpropagation through time (BPTT)

In the previous section, we discussed how we can optimize the parameters of a machine

learning alogirthm by finding the minima of a cost function which gives a measure of the

error between the target values and algorithm outputs on the training set, using gradient-

based optimization algorithms such as stochastic gradient descent. In this section, we

discuss how to calculate the gradients required in these algorithms, specifically focusing on

the case of RNNs. The algorithm which does this is called backpropagation through time

(BPTT).

Computing the gradient of a recurrent neural network means recursively computing

the gradient of a given loss function L(Y, f(X; θ)) with respect to the parameters of the

48

Figure 4.1: The unrolled computational graph of a RNN. Each step of the input sequence
x is transformed into the RNN hidden state h with weight matrix U . A second weight
matrix V is used to transform the hidden state into the output o. Taking this as well as
the labels y as parameters, the loss L is calculated. The recurrent weights W are applied
to the hidden state h to create the recurrence relation across the number of steps contained
in the input sequence. The unrolled (unfolded) representation across three time steps is
shown on the right. The unrolled computational graph is a directed acyclic graph (DAG),
allowing for recursive computation of the gradients of the loss function with respect to the
weights of the RNN with BPTT. [1], p.378

49

network. In recurrent neural networks, if we define a loss L(t) at each time step t, then the

total loss across the network is simply the sum of all losses across all time steps
∑

∀t L
(t).

We now illustrate an example of calculating the gradients of the recurrent neural net-

work described in the previous chapter. In the interest of simplicity, we construct a concrete

example with commonly used activation and loss functions, letting the output activation

σo be the softmax function, defined as

σo(xi) =
expxi∑n

i=1 xi

(4.12)

for each element xi of an input vector x ∈ Rn. For the activations at the hidden layers σh,

the hyperbolic tangent function is used. We use a negative log-likelihood of the true target

as our loss function. We start the recursion at the nodes immediately before the final loss

in the unrolled computational graph in Figure 4.1. Then,

∂L

∂L(t)
= 1. (4.13)

Next, we calculate the gradient on the outputs o
(t)
i at time step t. For each element i of

o(t):

(∇o(t)L)i =
∂L

∂o
(t)
i

=
∂L

∂L(t)

∂L(t)

∂o
(t)
i

= y(t) − 1. (4.14)

We now work our way backwards, starting from the end of the sequence at time step τ .

Let V be the output layer weight. Since h(τ) only has o(τ) as a descendent, the gradient

50

with respect to the recurrence weight is

∇h(τ)L = V T∇o(τ)L. (4.15)

We continue to iterate backwards in time from time steps τ − 1 to 1. diag(1− (h(t+1))2) is

the Jacobian of the hyperbolic tangent activation σh function associated with the hidden

layer at time t+1. Since for t < τ , h(t) has descendants in both o(t) and h(t+1), its gradient

is

∇h(τ)L = W T (∇h(t+1)L) + diag(1− (h(t+1))2) + V T (∇o(t)L). (4.16)

Once we compute the gradients with respect to the internal nodes h(t), o(t), we can

proceed to calculate the gradients with respect to the hidden layer weight U , the output

layer weight V , the recurrent weight W , hidden layer bias b and output layer bias c in

much the same way. In fact, the gradient of the parameters are

∇UL =
∑
t

diag(1− (h(t))2)(∇h(t)L)x(t)T ,

∇VL =
∑
t

(∇o(t)L)h
(t)T ,

∇WL =
∑
t

diag(1− (h(t))2)(∇h(t)L)h(t−1)T ,

∇bL =
∑
t

diag(1− (h(t))2)∇h(t)L,

∇cL =
∑
t

∇o(t)L. (4.17)

The algorithm is typically implemented as shown in Algorithm 10.

51

Algorithm 10 Backpropagation through time

Require: T ̸= ∅, the set of variables whose gradients we seek to compute.
Require: G(V,E), the computational graph of the RNN. V and E are the set of vertices
and edges of the graph, respectively.

Require: z, the variable to be differentiated.
G← G′, the subgraph of G containing only nodes that are parents of z and children of
nodes in T.
gradients[z] ← 1, where gradients is a data structure associating RNN parameters to
their gradients.
for v ∈ T do build grad(V,G,G′, gradients)
end for

Much of the computation is done in the recursive build grad method, as shown in

Algorithm 11. The BPTT algorithm requires O(n) operations, where n is the number

Algorithm 11 build grad

Require: v, the variable whose gradient should be added to gradients.
Require: G, the computational graph of the RNN.
Require: G′, the pruned computational graph of the RNN.
Require: gradients, the data structure mapping nodes to their gradients.
if v ∈ gradients then return gradients[v]
end if
i← 1
for all children c of G′ do

D ← build grad(c,G,G′, gradients)
g(i) ← gradients calculated using the chain rule, from parents of c in G′

i← i+ 1
end for
g ←

∑
i g

(i)

gradients[v] = g

of nodes in the RNN’s computational graph. However, each operation may itself have

higher order time complexity with respect to its input– for example, the time complexity

of schoolbook matrix multiplication is cubic with respect to the largest matrix dimension.

52

Armed with a way to measure the error of a recurrent neural network, a gradient

descent-based method of reducing it, and finally a way to calculate the gradients with

respect to the weights of the network, we are now ready to present a basic procedure for

training RNNs, shown in Figure 12.

Algorithm 12 Basic training loop

Require: X ̸= ∅, the input features of the training set.
Require: Y ̸= ∅, the target labels of the training set.
while maximum number of epochs is not met do

Y ′ ← f(X)
Get the cost of Y ′ with respect to the target labels Y .
Backpropagate on the cost function with respect to the neural network parameters.
Using a gradient-based optimizer, update the parameters of the neural network.

end while

4.3 Quantifying the performance of neural networks

The main challenge in training a neural network is that it must perform well on unseen

inputs. The ability of a trained neural network to perform on previously unobserved inputs

is called generalization. Typically, when we train a neural network, we are able to calculate

a measure of error on the training set (called the training error). However, what we would

actually like to have is the expected error on all unobserved inputs, called the generalization

error, which we cannot measure. We can estimate this by separately collecting a represen-

tative sample (called a test set) in addition to the training set, and evaluating the error of

the neural network on this, called the test error. Since the two datasets were separately

produced from the same generating process, we assume the samples in each dataset are

53

independent from each other, and the two datasets are identically distributed. Then, the

expected training error is equal to the expected test error because the two datasets share

the same data generating distribution. Hence, by optimizing the parameters of the neural

network to reduce the training error, we can expect to reduce the test error as well, which

is equivalent to reducing the estimated generalization error.

When a neural network fails to generalize, the neural network can be broadly considered

considered to be either underfitting or overfitting. Underfitting occurs when the neural

network is unable to obtain a sufficiently low training error and hence fails to generalize

to the test data, while overfitting occurs when the neural network fails to generalize to the

test data because it has learned too much specific information of the training data.

4.4 Capacity of neural networks

One of the main methods of controlling how likely a neural network is to overfit or underfit

is by modifying its capacity. A neural network’s capacity is its ability to approximate a

variety of functions. When the capacity is too low, it would underfit because it would

be unable to fit a function to the training set. On the hand, if the capacity is too high,

the neural network can overfit by memorizing properties of the training set that are not

reflected in the true data generating distribution. In order to modify the capacity of the

neural network, we can first vary the number of inputs it accepts. The capacity generally

increases when the number of allowable inputs increases. Next, we can also alter the

number of parameters that are tied to each input, such as the size of a hidden layer as

well as the number of hidden layers in the case of a neural network. Naturally, a neural

54

network with a large number of parameters would generally have the capacity to fit more

complicated functions.

It is difficult to give an exact quantification of a neural network’s capacity. A neural

network’s capacity is not only affected by its number of inputs and parameters, but also

by the optimization algorithm chosen for the training process. Once the optimizer’s initial

conditions are known it becomes a deterministic algorithm, so the optimizer would only

be able to procedurally generate a subset of the parameters configurations in the entire

parameter space. Hence, the optimal parameter configuration may never be chosen, so

the effective capacity of a neural network may differ from its representational capacity.

However, typically the relationship between the capacity and the training and test errors

can be categorized into the underfitting regime and overfitting regime, as shown in Figure

4.2. When the capacity is low, training and test errors are both high and the neural

network is in the underfitting regime. As capacity is increased the training error decreases,

but the difference between the training and test errors increases. The capacity eventually

becomes too high and this difference outweighs the decrease in the training error. As a

result, the neural network enters the overfitting regime. The sweet spot between the two

regimes is where the neural network is at optimal representational capacity.

55

Figure 4.2: A typical relationship between errors and capacity of neural networks. [1], p.
409

4.5 Regularization

As we mentioned earlier, our choice of optimizer in the training process has an effect on the

effective capacity of a neural network. Since neural networks use probabilistic rules to infer

rules that are probably correct for most members of a data distribution, we can optimize

the effective capacity of a neural network by preferring solutions which closely match the

data distribution, only choosing another solution if it significantly fits the training data

better than the equivalent preferred solution. The methods of both implicitly and explicitly

expressing preferences for certain solutions are known as regularization. A common way of

explicitly expressing preferences for certain solutions is by adding a penalizing regularizer

term to the cost function J(θ) we minimize in training. For example, L2 regularization,

commonly known as weight decay, imposes the penalty λwTw, where w are the weights

of a neural network and the decay rate λ is chosen beforehand. The new cost function

56

becomes

J(θ)reg = J(θ) + λwTw. (4.18)

The larger λ is, the more the regularizer term penalizes large weights by amplifying the

cost associated with them. Hence, increasing λ makes our training prefer progressively

smaller weights.

4.6 The curse of dimensionality and data selection

The quality of data is just as important as the configuration of a neural network. As

its strong name suggests, the curse of dimensionality is an observation on the increasing

amount of data required to train a neural network to generalize sufficiently well as the

number of dimensions of the input becomes larger. The gist of the curse can be seen by

looking at how representative a number of given data points is of the data space as we

increase its number of dimensions.

Figure 4.3 plots 20 data points in a (a) 1D (b) 2D and (c) 3D setting, divided into

Figure 4.3: Plots of 20 data points, as we increase the dimension of the data space. The
volume of the space represented grows quickly and the data becomes sparse.

57

equally sized regions. In the one-dimensional setting, the data is contained in all four line

segments of length 5 constituting the data space, and hence is representative of the data

space. However, as we increase its number of dimensions, the data becomes sparse and

less representative of the data space, with the data only being captured in 11/16 squares

in the two dimensional setting, and 13/64 cubes in the three dimensional setting.

Trunk [25] provides an example which demonstrates how the number of features and

the size of the training set can affect the performance of a neural network. Consider a

neural network tasked with classifying l-dimensional data points (with l features) into one

of two classes ω1 and ω2, each with equal a priori probabilities P (ω1) = P (ω2) = 1/2. We

assume that each class is normally distributed with mean µ for class ω1 and −µ for class

ω2, with

µ =

[
1, 1√

2
, 1√

3
, . . . , 1√

l

]T
. (4.19)

Thus, each additional feature of points in ω1 and ω2 has mean nearer to zero, reducing its

discriminatory power. We also assume that each feature is independent, with each class

having the same covariance matrix Σ = I. Then, the optimal classifier rule is equivalent

to the minimum Euclidean distance classifier, which classifies a feature vector x to ω1 if

||x− µ||2< ||x+ µ||2, (4.20)

or equivalently xTµ > 0, and classifies to ω2 otherwise.

Trunk found that for any l, if both the mean and variance of each class are known,

then we can discriminate between the two classes with perfect accuracy by arbitrarily

58

increasing the number of features. However, if the variance is known but the mean of each

class is estimated based on a finite training set, then increasing the number of features

leads to lower accuracy, which eventually degrades to the accuracy of random guessing as

the number of features tends to infinity. Trunk’s results suggested that with finite training

data, the number of features must be kept low for good classification performance and the

optimal number of features increases with the number of samples in the training set.

While Trunk’s example illustrates an extreme case of the curse of dimensionality in ma-

chine learning, it is generally the case that as the number of input dimensions is increased,

the same number of samples will become much less representative of the overall data space,

increasing the likelihood of overfitting. While in theory we can always rectify this issue

simply by producing larger and larger datasets, this is often infeasible due to resource

constraints, such as the limited availability of time and computing power to generate new

samples. For this reason, we must take careful consideration of what information we feed

to our neural network, taking care that the data collected is a representative sample of

the actual data generating distribution. For example, if we seek to estimate the state of

a dynamical system, we must ensure that the sampled measurements are rich enough to

fully capture the dynamics of the system. This condition is known as persistent excitation.

4.6.1 Persistent excitation

System identification is an experimental alternative to mathematical modeling. Instead of

analytically describing the behavior of a process or phenomenon starting from basic physical

laws, in system identification experiments are performed on the system; the recorded data is

59

then fitted to an appropriate model structure by finding the optimal parameters. Persistent

excitation [26] is a fundamental concept in system identification that refers to the property

of a system input that ensures the identification of the system parameters. In particular, a

system input is said to be persistently exciting if it contains enough energy across a range of

frequencies, such that it can uniquely identify the system parameters. If the system input

is not persistently exciting, it may not contain enough information to accurately identify

the system parameters, leading to poor estimator performance. In particular, if the input

energy is concentrated in a narrow frequency band, it may not be possible to accurately

estimate the parameters that govern the dynamics of the system at other frequencies.

To ensure persistent excitation, it is important to design the system input in such a

way that it contains enough energy across a range of frequencies. This can be achieved

by using signals with a wide frequency content, such as white noise or pseudo-random

binary sequences, or by designing specific input signals that are tailored to the system

under consideration. It is shown in [26] that for controllable (i.e. for any initial state x0

and final state xf , we can determine a finite sequence of inputs to change the state of the

system from x0 to xf) linear discrete-time systems, such input will always be persistently

exciting.

Figure 4.4 illustrates the importance of selecting quality data, in the context of training

a RNN to estimate the states of a 50 DoF connected mass-spring-damper system. Con-

nected mass-spring-damper systems and the experiment setup are described in detail in the

subsequent chapter. The two plots show the training and validation (discussed in the next

section) losses when training over 500 iterations on the training data. The plot on the left

was produced when the training data was generated with persistently exciting white noise

60

Figure 4.4: Evolution of training (green) and validation (red) errors when training with
persistently exciting data (left), compared to training with data that is not persistently
exciting (right).

input to the system. The plot on the right was produced when the input was Gaussian

noise with mean value 1, which is not persistently exciting. The training converges rapidly

to low error values when the data is persistently exciting, while training fails to converge

when they are not. All other variables were selected to be the same.

4.7 Hyperparameter optimization

The training process of a neural network enables it to learn various parameters in order

to best approximate a target function. We saw earlier that gradient descent-based opti-

mizers are an effective manner of doing this. However, there are also settings that are

not learned by the algorithm during training but are rather set manually by the user be-

forehand. These settings have to do with the behavior of the training process itself, and

61

are called hyperparameters. Examples of hyperparameters include the learning rate and

regularization strength of gradient-based optimizers, the number of hidden layers and the

size of the hidden layers in neural networks, and the number of epochs (iterations on the

training set) for which training should be conducted.

There are several reasons why hyperparameters are distinct from regular parameters.

In many cases, a setting is a hyperparameter because it would be inappropriate to learn

it during the training process. For example, if we were to learn the size of a hidden layer

during training, the optimizer would always choose the largest possible value because this

results in the highest neural network capacity, leading to overfitting. Hence we produce a

separate dataset called the validation set to evaluate the effects of the hyperparameters.

As the test set must be unobserved by the neural network until its final evaluation, the

validation set must be independent of it. Thus, it is typical to create the validation set

as a subset of the training data, with 20% of the training data held out as the validation

set, and the remaining 80% being used for training. This is fitting, as in a sense we

use the validation set to “train” the hyperparameters of the neural network. Just as the

neural network’s test error is an estimate of the generalization error, so is the error over

the validation set (called the validation error) because it is a dataset that is not used for

learning the algorithm parameters. For this reason, the validation error is often used as

a proxy for the generalization error during the training process. A common method of

diagnosing overfitting due to overtraining is to plot the training error and validation error

after each epoch on the same graph. The epoch where the training error begins diverging

from the validation error is a good estimate for the optimal number of epochs. However,

it must be noted that if the validation set is used for tuning the hyperparameters of the

62

training, the validation error tends to underestimate the generalization error.

The process of tuning the hyperparameters in order to find the combination of hyper-

parameter values that result in the best training performance is called hyperparameter

optimization. Specifically, given an objective function (cost function) f(x) with x ∈ X,

the set of hyperparameter choices, we would like to find

x∗ = argmin
x∈X

f(x), (4.21)

the choice of hyperparameters that yields the lowest value of the objective function. Hy-

perparameter optimization is an important step in building effective neural networks. It

involves searching through a space of possible hyperparameter values to find the combina-

tion that yields the best performance on a validation dataset. There are several different

techniques used for hyperparameter optimization. The most basic of these are grid search

and random search. However, there also exists more advanced techniques such as Bayesian

optimization. These methods differ in terms of their computational cost and search strat-

egy, but they all aim to find the best hyperparameters to optimize the training performance.

4.7.1 Grid search and random search

Grid search and random search are two simple methods for hyperparameter optimization.

In grid search, we create a grid of all possible combinations of hyperparameter values and

evaluate each combination using cross-validation. This involves dividing the dataset into

a training set and a validation set, then training the neural network on the training set

63

with each combination of hyperparameters and finally evaluating the performance of the

neural network on the validation set. The combination of hyperparameters that results in

the best performance is then selected.

While grid search is simple and easy to implement, it can be computationally expensive

when there are many hyperparameters to tune, as it requires training a neural network for

every combination of hyperparameters in the grid. Given k hyperparameters to be tuned,

with each hyperparameter having nk possible choices, let a = max(n1, . . . , nk). Then, the

number of hyperparameter combinations we must check is bounded above by ak, giving

grid search an exponential time complexity of O(ak). The effectiveness of grid search can

also be limited by the granularity of the grid, which when set too coarse can miss important

regions of the hyperparameter space. On the other hand, random search involves randomly

sampling hyperparameter values from a specified distribution and evaluating the neural

network trained with each set of sampled hyperparameters. Unlike grid search, random

search does not rely on a pre-defined set of hyperparameter values, which can help to avoid

missing important regions of the hyperparameter space.

While random search can be less computationally expensive than grid search, it can be

less effective at finding the optimal hyperparameters, especially when the hyperparameter

space is large and complex. However, it can be a good starting point for hyperparameter

optimization and can be useful for exploring the hyperparameter space.

64

4.7.2 Bayesian optimization

An inherent issue with random search is that is it inefficient. As hyperparameters are

selected with no assumptions made on the distribution of well-performing hyperparameters,

many hyperparameters returned by random search will not improve training performance.

Bayesian optimization is a more advanced method for hyperparameter optimization that

uses a probabilistic model to select the next set of hyperparameters to evaluate, based

on the results of previous evaluations. It is particularly effective for high-dimensional

and noisy hyperparameter spaces, where grid search and random search can prove to be

computationally expensive.

In Bayesian optimization, we search for the optimal hyperparameters x∗ by first con-

structing a model of p(y|x), the probability of error y given hyperparameters x, called the

surrogate model. Next, we select promising hyperparameters by using a criterion of how

desirable a given hyperparameter combination is in improving training performance, called

the acquisition function. A popular acquisition function is Expected Improvement.

Expected Improvement

Expected Improvement (EI) is a popular acquisition function first proposed in [27], and

further developed in [28]. Let y = f(x). Then, the Expected Improvement is defined as

EIy∗(x) =

∫ y∗

−∞
(y∗ − y)p(y|x)dy, (4.22)

65

where the threshold value y∗ is a control variable set by the user, x is a choice of hyperpa-

rameters to evaluate and y is the actual value of the objective function on hyperparameters

x. The threshold value y∗ is typically chosen to be the current best value of the objective

function on a previous evaluation. We see that if p(y|x) is zero everywhere when y < y∗,

then EIy∗(x) = 0. Otherwise, this integral will be positive, meaning that the choice of

hyperparameters x is expected to yield a better result than the current best evaluation on

the objective function.

In other words, the Expected Improvement is the expected increase in performance over

the current best performance if the surrogate model is evaluated on a choice of hyperpa-

rameters x. If the expected performance of x is worse than the current best performance,

the Expected Improvement is 0.

Furthermore, it was shown in [28] that the Expected Improvement at x can be expressed

as

EIy∗(x) =

∫ y∗

−∞
(y∗ − y)p(y|x)dy

= σ(x)(sΦ(s) + ϕ(s)), (4.23)

where s = (µ(x)− y∗)/σ(x) is the Expected Improvement at x normalized by its standard

deviation, and ϕ and Φ are the standard normal probability density and cumulative density

functions respectively. Hence, EI can be thought of as the improvement averaged with

respect to the posterior probability of obtaining it. Therefore, EI balances the exploitation

of solutions which are very likely to be a little better than y∗ with the exploration of other

solutions which may turn out to be significantly better, albeit with lower probability.

66

In order to evaluate the acquisition function, we must model p(y|x). One way of doing

this is by using a framework called the Tree-structured Parzen estimator.

Tree-structured Parzen Estimator

The Tree-structured Parzen Estimator (TPE) [29] is a framework which implements the

surrogate model in a way which streamlines the process of choosing hyperparameters with

Expected Improvement.

Instead of directly modeling p(y|x), TPE models p(x|y), the probability of observing

hyperparameters x given training error y, by creating a “good” distribution l(x) and “bad”

distribution g(x):

p(x|y) =

l(x), if y < y∗

g(x), if y ≥ y∗,

(4.24)

where y∗ is a threshold value of the objective function chosen so that p(y < y∗) = γ for some

quantile γ of the observed training errors. For example, γ = 0.5 means hyperparameters

which produce the top 50% of the smallest errors will be used to create l(x), while the

bottom 50% will be used to create g(x). Hence, when the training error is lower than y∗,

p(x|y) is the probability distribution l(x), otherwise it is g(x).

Intuitively, it should be the case that promising hyperparameters would display high

probability under the “good” distribution l(x) while simultaneously have low probability

under the “bad” distribution g(x). Then, the ratio l(x)/g(x) is a measure of the “goodness”

of hyperparameters x.

67

In fact, since (4.24) implies

p(x) =

∫ ∞

−∞
p(x|y)p(y)dy = γl(x) + (1− γ)g(x),

substituting (4.24) into (4.22) through Bayes theorem, the Expected Improvement becomes

EIy∗(x) =

∫ y∗

−∞
(y∗ − y)p(y|x)dy

=

∫ y∗

−∞
(y∗ − y)

p(x|y)p(y)
p(x)

dy

=

∫ y∗

−∞
(y∗ − y)

p(x|y)p(y)
γl(x) + (1− γ)g(x)

dy

=
l(x)

γl(x) + (1− γ)g(x)

∫ y∗

−∞
(y∗ − y)p(y)dy

=
γy∗l(x)− l(x)

γl(x) + (1− γ)g(x)

∫ y∗

−∞
p(y)dy. (4.25)

Hence, EIy∗(x) is proportional to (γ + g(x)
l(x)

(1 − γ))−1, that is, the EI is proportional to

the ratio l(x)/g(x). Thus, by sampling hyperparameters from the “good” distribution l(x)

and ranking candidates according to l(x)/g(x), TPE efficiently returns hyperparameter

candidates which are guaranteed to increase EI without having to evaluate the integral

itself. The time complexity of TPE is linear with respect to the number of hyperparameters

being optimized and the number of training errors observed per evaluation.

Once a set of candidate hyperparameters is proposed, this is evaluated on the objective

function. The result is used to update the surrogate model, completing one iteration

of Bayesian optimization with TPE. For the full description of the framework see [29].

The Bayesian optimization process is repeated until a stopping criterion is met, such as a

68

maximum number of evaluations or a desired level of performance.

Bayesian optimization can be computationally expensive, as it requires evaluating the

performance of the surrogate model on each set of hyperparameters. However, it is of-

ten still much cheaper to compute than the objective function itself, especially for high

dimensional neural networks (see [30] for an example of this in a computer vision appli-

cation), making this method of hyperparameter optimization indispensable in the training

of certain complex neural networks. It must be said that while Bayesian optimization has

yielded fantastic results in certain applications, it is not a catch-all method for optimizing

hyperparameters [1].

69

Chapter 5

State estimation with RNNs and the

Kalman filter

In this section we compare the performance of the Kalman filter to that of recurrent neural

networks for state estimation of noisy dynamical systems. We first present some previous

work done on this subject.

5.1 Previous work

An early comparison of the performance of the Kalman filter to RNNs was conducted in

by DeCruyenaere et al. [31]. They compared the performance of the two methods on

24 different examples of linear dynamical systems, not all of which satisfy the Kalman

filter requirements of Gaussian noise. They found that if the Kalman filter requirements

70

are met, then a Kalman filter and recurrent neural network performs similarly in terms

of accurately predicting the true state of the noisy systems. However, when the Kalman

filter assumptions are not met, we can find a recurrent neural network which produces

significantly more accurate estimates than the Kalman filter. More recently, Chenna et al.

[32] conducts a similar comparison for a state estimation problem and a tracking problem,

coming to similar conclusions.

For nonlinear systems, Feldkamp et al. [19] compared the performance of the Extended

Kalman filter to a recurrent neural network. Their conclusions were in line with those

from the studies done on linear systems. For noisy nonlinear systems such that the EKF

provided high accuracy, a recurrent neural network was able to perform to a similar degree

of accuracy. However, for highly nonlinear systems where the EKF performed poorly, a

recurrent neural network was able to provide much more accurate estimates of the true

state.

5.2 Methodology

We implement RNN-based state estimators for a number of example dynamical systems

and compare them to a Kalman filter. For each system considered, we simulate the mea-

surements yk and the true states xk across time steps k, which is used as data for training,

validation and testing of the RNNs. Each sample in our data is a sequence of tuples

{(yk, xk)}Nk=1. The number of time steps N in the sequence is varied as needed for training.

Each sequence is started at random non-zero initial conditions and in order to excite all

of the modes of our system, we add Gaussian white noise inputs at each time step. The

71

simulated data is split into a training set and validation set, using a standard 80%-20%

split. The size of the dataset is varied as required for each example.

We train the RNNs using the measurements yk as the features and the true states

xk as the labels. The goal is for the RNN to produce accurate state estimates x̂k given

measurements yk.

The RNN architecture consists of one or more LSTM hidden layers, combined with a

feedforward output layer. The RNN is constructed using the PyTorch 1.13 [33] machine

learning software library. We train the weights of this network by minimizing the Mean

Squared Error cost function, using the Adam optimizer. The training is conducted using

mini-batches from our training set, the sizes of which are varied as needed.

The hyperparameters of the RNN are the number of LSTM layers, the number of LSTM

cells in each layer, the learning rate of the Adam optimizer and the number of epochs to

train for. The values for these hyperparameters were first tuned manually. Then, using

these values as a starting point, random search then Bayesian optimization using TPE was

conducted to seek improved hyperparameter combinations.

The RNN-based estimator’s performance is compared against a benchmark Kalman

filter on a previously unseen test set. The test set is generated in the same manner as the

training and validation sets, and its size is chosen to be equal to that of the validation

set. For each sequence in the test set, the mean squared errors of the two estimators with

respect to the true states is used as a measure of accuracy. Furthermore, we also measure

the execution times of each estimator. The average of these over the test data is compared.

The benchmark Kalman filter’s performance is verified by comparing the mean squared

72

errors of the state estimate produced on the validation set against the average trace of

the covariance matrix P of the estimation error produced by the Kalman filter at the end

of each batch. Since the Kalman filter minimizes the mean squared error of its estimates

which is equivalent to tr(P) and we can find a unique minimum for this by solving the

discrete Lyapunov equation, we first establish that the Kalman filter’s mean square error

on the validation set is close to this value.

For each evaluation of the Kalman filter, the initial estimate is set to zero, while the

estimation error covariance matrix is set to an identity matrix of appropriate dimensions.

Similarly, the RNN hidden state and LSTM cell state are zero-initialized as well.

The PyTorch library makes extensive use of parallel programming. On modern com-

puters, the speedup caused by parallelism is known to be more significant for algorithms

evaluated on high dimensional data [34], as increased CPU and GPU core counts and

random-access memory allow for many simultaneous operations and advanced algorithms

for linear algebra, sometimes built into the CPU itself, enable efficient computation. To

allow a fair comparison, our Kalman filter must be parallelized where possible as well.

Hence, our Kalman filter is implemented using the CuPy [35] software package, which

provides a GPU-accelerated version of a subset of the functionality of the popular NumPy

[36] linear algebra software package.

All code was compiled and executed on a workstation utilizing: AMD Threadripper

1950X 16-core CPU; NVIDIA GTX 1070 GPU; 128GB DDR4-2666 RAM.

73

5.3 Comparing computational cost to classical algo-

rithms

As we derived in Chapter 2, the time complexity of the Kalman filter is O(2n(m2 + 2n2 +

m)+3n2(m+2)+m+n) per iteration, where n is the size of the state vector and m is the

size of the measurement vector. We would like to set some expectations about the runtime

of a RNN-based estimator by comparing its time complexity to that of a Kalman filter. For

our examples we use LSTMs, so here we derive the time complexity of a one-layer LSTM

operating for one time step.

In the case of a neural network with LSTM layers, we also need to take into account

the recurrent connections in the LSTM cells. In the case of a standard RNN, its hidden

layers compute

ht = tanh(Wihyt + bih +Whhht−1 + bhh), (5.1)

where Wih ∈ Rh×m is the input weight, yt ∈ Rm is the input vector, bii ∈ Rh is the input

bias, Whh ∈ Rh×h is the matrix of recurrent connections, ht−1 ∈ Rh is the hidden state at

time step t− 1 and finally bhh ∈ Rh is the bias for the recurrent connections. It is easy to

see that this is analogous to the computation of one of the gates in a LSTM cell. Hence,

we can derive the time complexity of a standard RNN by deriving that of a LSTM, so we

will not do this separately.

In order to stay true to the calculations done in our examples, we use the notation used

in the PyTorch [33] implementation. For the evaluation of one hidden layer of LSTM cells

74

across one time step, the required computations are represented by

it = σ (Wiiyt + bii +Whiht−1 + bhi)

ft = σ (Wifyt + bif +Whfht−1 + bhf)

gt = tanh (Wigyt + big +Whght−1 + bhg)

ot = σ (Wioyt + bio +Whoht−1 + bho)

ct = ft ⊙ ct−1 + it ⊙ gt

ht = ot ⊙ tanh (ct) , (5.2)

where ⊙ is element-wise multiplication. Note that this deviates from the LSTM described

in Chapter 3, pp. 28 - 32 by using the hyperbolic tangent function in the weights gt for

the external input gate, while the previously described LSTM uses the sigmoid function.

We start with calculating the time complexity of it (the input gate). Recall that ft

(forget gate), gt (cell) and ot (output gate) work in the same way, so they will have identical

time complexity. The equation for the input gate is

it = σ (Wiiyt + bii +Whiht−1 + bhi) , (5.3)

where Wii ∈ Rh×m is the input gate weight, xt ∈ Rm is the input vector, bii ∈ Rh is

the input gate bias, Whi ∈ Rh×h is the matrix of recurrent connections, ht−1 ∈ Rh is the

hidden state at time step t− 1 and finally bhi ∈ Rh is the bias for the recurrent connections.

Now, looking at each operation inside the equation, we first see Wiiyt has time complexity

O(hm), due to the properties of matrix-vector multiplication. Hence, Wiixt + bii has time

75

complexity O(hm + h) because it is the sum of two vectors, both with size h. Similarly,

Whiht−1 has time complexity O(h2), so Whiht−1+bhi has time complexity O(h2+h). Thus,

the time complexity of the external input gate is

O(hm+ h+ h2 + h) = O(hm+ 2h+ h2) = O(h(m+ 2 + h)). (5.4)

As the time complexity of the sigmoid function is O(h), the time complexity of the

input gate is O(h(m+2+h)). As the two remaining gates have the same time complexity,

we get O(3h(m + 2 + h)) for the time complexity after computing the three gates in the

LSTM cells.

Similarly, the time complexity of the hyperbolic tangent function is O(h), the time

complexity before the LSTM cell update is O(4h(m+ 2 + h)).

For the cell update

ct = ft ⊙ ct−1 + it ⊙ gt, (5.5)

where ct ∈ Rh is the LSTM cell state, as element-wise multiplication has time complexity

O(h), we get a time complexity of O(2h). Anologously, the computation of the hidden

state at time step t

ht = ot ⊙ tanh (ct) , (5.6)

also has time complexity O(2h).

Therefore, the overall time complexity of a LSTM is the summed time complexity of

its parts,

O(4h(m+ 2 + h) + 4h) = O(4h(m+ 3 + h)). (5.7)

76

The time complexity of one iteration of the LSTM is overall quadratic with respect to

the hidden layer size, but will also scale linearly with respect to the input size. If we use

more than one hidden layer, than the time complexity would scale linearly with this as

well.

In comparison, the Kalman filter has a time complexity that is cubic with respect to

the system order. Hence, in cases where a LSTM has a hidden layer size not much larger

than the system order, it may have better runtime than a Kalman filter. However, this

will ultimately depend on the exact architecture used.

5.4 Connected mass-spring-damper systems

The mass-spring-damper system is a standard dynamical system which is taught as an

example in many classes. It is a useful system to study because it is representative of

many kinds of oscillating physical processes.

Like many mechanical systems, Newton’s laws are used in the analysis of this dynamical

system. Newton’s second law,

∑
F = ma = m

∂2x

∂t2
, (5.8)

states that the sum of the forces acting on a body equals the product of its mass and

acceleration. Newton’s third law states that whenever a body exerts a force on another

object, then the second object exerts a contact force of the same magnitude, acting in the

opposite direction.

77

m1 m2

k1 k2

d1 d2

f1

x1

f2

x2

Figure 5.1: Free-body diagram of a two degree-of-freedom mass-spring-damper system.

As shown in the free-body diagram in Figure 5.1, the spring forces are proportional to

the displacement of the masses acting on it, x1 and x2. We consider the displacement of

the masses to the right to be the positive direction. While only one mass is acting on the

second spring, we must be careful to note that both masses are acting on the first spring.

Similarly, the viscous damping force is proportional to the velocities of the masses, ẋ1 and

ẋ2. Since both forces are opposite the motion of the masses, they are in the negative

direction.

Now, summing the forces acting on each mass and applying Newton’s second law,

we can describe a system of n connected mass-spring-dampers as a system of differential

78

equations

m1ẍ1(t) = −k1x1(t) + k2(x2(t)− x1)− d1ẋ1(t) + d2(ẋ2(t)− ẋ1(t)) + f1(t)

m2ẍ1(t) = −k2(x2(t)− x1(t)) + k3(x3(t)− x2(t))− d2(ẋ2(t)− ẋ1(t)) + d3(ẋ3(t)− ẋ2(t)) + f2(t)

m3ẍ3(t) = −k3(x3(t)− x2(t)) + k4(x4(t)− x3(t))− d3(ẋ3(t)− ẋ2(t)) + d4(ẋ4(t)− ẋ3(t)) + f3(t)

...

mnẍn(t) = −k3(xn(t)− xn−1(t))− dn(ẋn(t)− ẋn−1(t)) + fn(t), (5.9)

where m1, . . . ,mn are the weights of each mass, k1, . . . , kn are the spring coefficients of the

springs above each mass, d1, . . . , dn are the damping coefficients, and f1, . . . , fn are the

inputs applied to each mass. Written in state space form, this becomes

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t), (5.10)

79

with matrices

A =

0 1 0 .

−k1+k2
m1

−d1+d2
m1

k2
m1

d2
m1

0

0 0 0 1 0

k2
m2

d2
m2

−k2+k3
m2

−d2+d3
m2

k3
m2

d3
m2

0

0 0 0 0 0 1 0

0 0 k3
m3

d3
m3

−k3+k4
m3

−d3+d4
m3

k4
m3

d4
m3

0 . . .

. . .

0 kn
mn

dn
mn

− kn
mn
− dn

mn

,

(5.11)

B =

0

1
m1

0

0

0 1
m2

0 . . .

. . .

0 1
mn

. (5.12)

80

The state and input vectors are

x(t) =

x1(t)

ẋ1(t)

...

xn(t)

ẋn(t)

and u(t) =

f1(t)

f2(t)

...

fn−1(t)

fn(t)

. (5.13)

The input vector is given at each time step, representing input force on each of the n

masses. The measurement matrix C is a n×2n matrix such that the (2i−1)-th element of

the ith row is 1 and all other elements are 0 while D is a zero matrix, so our measurement

vector contains only the positions of each mass. The state vector contains the displacement

and velocity of each mass in the system, and is to be estimated.

In the next three sections, we present some results utilizing an RNN to estimate the

state of the spring-mass-damper system shown above. For each example, we construct a

dataset by simulating the system. We first discretize the continuous-time system using the

zero-order hold method, where we assume each sample value is fixed until the next sample

time. The sampling rate is chosen to be higher than the Nyquist rate, which is twice the

frequency of the highest frequency component of the system. The effects of discretization

are not considered in this work. The system is then made noisy by adding process noise

wk and measurement noise vk to the process and measurement equations respectively. The

noises are Gaussian, zero mean and uncorrelated.

81

5.5 Example: 5 DoF mass-spring-damper system

We begin with a small mass-spring-damper system with five connected masses. The masses,

the spring constants and the damping constants were chosen uniformly at random. The

masses were drawn from the interval [50, 200], the spring constants from [500, 3000] and

the damping constants from [2, 20]. At each time step, a Gaussian white noise input

with zero mean and covariance matrix diag(10 . . . 10) ∈ R5×5 is applied. There is no

correlation between the input force applied to one mass and the input force applied to

another. Furthermore, we inject Gaussian process noise with zero mean and the covariance

matrixQ = diag(0.01, . . . , 0.01) ∈ R10×10, and Gaussian measurement noise with zero mean

and the covariance matrix R = diag(0.0625, . . . , 0.0625) ∈ R5×5.

The highest frequency component was found at 15.28Hz. The system was discretized

using the zero-order hold method, with a sampling rate of 0.01s.

We generate a dataset consisting of 640 independent sequences of 100 time steps, with

each initial state variable drawn uniformly from the interval [−50, 50]. This was further

separated into twenty batches of 32 sequences each. Of these, four batches were selected

at random to form a validation set. The remaining batches were used to form the training

set.

The RNN estimator consists of one hidden layer of 25 LSTM cells, giving a total of

4750 trainable parameters. The output layer is linear, applying a linear transformation

to the final hidden states of the LSTM, and producing a state estimate of the connected

mass-spring-damper system. Training was conducted for 450 epochs, with the learning

rate of the Adam optimizer set to 0.001.

82

Separately, we generated a test set consisting of four batches of sequences of length

100, randomly initialized to non-zero values. Applying the Kalman filter to the test data

produced a mean squared error of 8.532, averaged across twenty batches. Evaluation of our

trained RNN on the test data produced a mean squared error of 8.097, a 5.09% improvement

compared to the Kalman filter. The theoretical minimum mean squared error, found by

solving the discrete Lyapunov equation was 8.730. The mean squared errors across one

sample sequence in the test set is shown in Figure 5.2. We were able to train the RNN-

based estimator to exceed the performance of the Kalman filter. However, much of the

error of the Kalman filter is concentrated in the first ten time steps. The Kalman filter

and the RNN-based estimator performed similarly in subsequent time steps.

The training time for the RNN was 21.4 seconds. The execution time of the RNN-based

estimator on the test set was 14 milliseconds. In comparison, the execution time of the

Kalman filter on the same data was 19 milliseconds. Not only were we able to achieve

a better estimate with the RNN-based estimator, it also does so faster than the Kalman

filter.

83

Figure 5.2: Mean squared errors for the RNN-based estimator (green) and Kalman filter
(red) for the 100 time steps contained in each sequence in the test set.

84

5.6 Example: 100 DoF mass-spring-damper system

We seek now to evaluate the efficacy of a RNN-based estimator on a larger dynamical

system. Here, we construct a RNN-based estimator for a mass-spring-damper system with

100 connected masses. The state vector of this system contains the displacement and

velocity for each of the 100 masses, for a total of 200 state variables to estimate.

The masses, spring constants and damping constants were chosen uniformly at random.

The masses were drawn from the interval [50, 200], the spring constants from [500, 3000]

and the damping constants from [2, 20]. At each time step, a Gaussian white noise input

with zero mean and covariance matrix diag(10 . . . 10) ∈ R100×100 is applied. There is

no correlation between the input force applied to one mass and the input force applied to

another. Furthermore, we inject Gaussian process noise with zero mean and the covariance

matrix Q = diag(0.01, . . . , 0.01) ∈ R200×200, and Gaussian measurement noise with zero

mean and the covariance matrix R = diag(0.0625, . . . , 0.0625) ∈ R100×100.

The highest frequency component was found at 8.24Hz. The system was discretized

using the zero-order hold method, with a sampling rate of 0.01s.

We generate a dataset consisting of 3200 independent sequences of 100 time steps, each

with random initial state variables drawn uniformly from the interval [−50, 50]. This was

further separated into 100 batches of 32 sequences each. Of these, twenty batches were

selected at random to form a validation set. The remaining batches were used to form the

training set.

With 100 connected masses, we now have a dynamical system of order 200. Here, we

start to see the curse of dimensionality come into play. While we were able to train a RNN-

85

based estimator which exceeded the performance of the Kalman filter with a dataset of 640

sequences, for our larger system we were only able to obtain satisfactory performance when

training with 3200 sequences. Furthermore, as we have twenty times the number of state

variables, our dataset is 100 times the size of the dataset used to train the RNN to estimate

the 5 DoF mass-spring-damper model presented in the previous section. This is easily seen

from the file size of the datasets– 2.23 gigabytes for the 100 DoF system, compared to the

23.4 megabyte file size for the 5 DoF system. As a result, we see a signficant increase in

the amount of time required for data generation– 2.3 minutes for the 5 DoF system, and

27 minutes For the 100 DoF system. Note that the time required should not be expected

to scale linearly, especially as the systems being simulated become high dimensional, as

the matrix multiplications in the simulation requires O(n3) time.

We constructed our RNN with one hidden layer of 200 LSTM cells, giving 281, 800

trainable parameters. While other configurations were considered, we found that the hid-

den layer size of 25 used in the 5 DoF system case did not provide enough representational

capacity to fit the high-dimensional data. On the other hand, we also found no significant

benefit in using hidden layer sizes larger than 200 or using additional layers.

The Kalman filter applied to the test set produced a mean squared error of 195.647.

Training for 580 epochs with a learning rate of 0.0005 over the course of 32 minutes, the

RNN-based estimator produced a mean squared error of 176.511, a 9.53% improvement

compared to the Kalman filter as shown in Figure 5.3. The theoretical minimum mean

squared error was 215.813. However, much of the error of the Kalman filter is concentrated

in the first ten time steps. The Kalman filter and the RNN-based estimator performed

similarly in the subsequent time steps.

86

Figure 5.3: Mean squared errors for the RNN-based estimator (green) and Kalman filter
(red) for the 100 time steps contained in each sequence in the test set.

We were once again able to produce a RNN-based estimator with better performance

than the Kalman filter. The advantage that the RNN’s parallelism poses is even more

noticeable with this larger system– the execution time of the RNN-based estimator is a

230 milliseconds on the test set, compared to 325 milliseconds for the Kalman filter.

The results for the two mass-spring-damper examples are summarized in Table 5.1.

87

System RNN parameters MSE Kalman filter MSE Runtime (ms) KF runtime (ms)

Number of layers LSTM cells per layer Learning rate Epochs

5 DoF 1 25 0.001 450 8.097 8.532 14 19
100 DoF 1 200 0.0005 580 176.511 195.647 230 325

Table 5.1: Table of values for RNN-based estimators on connected mass-spring-damper
systems.

5.7 Example: transfer learning to a clamped-free beam

model

Our numerical examples on estimating the states of connected mass-spring-damper systems

of varying orders has shown that a RNN-based estimator could be a viable and even a faster

alternative to a Kalman filter. However, one significant disadvantage of utilizing RNNs is

the required training process, which we would like to shorten.

To this end, we would like to see if a RNN-based estimator trained on data from one

dynamical system would perform well when applied to a different system with similar

dynamics. We also seek to find a way to utilize the results of training a RNN-based

estimator of one dynamical system to facilitate better training on a different system with

similar dynamics.

As we mentioned earlier, the mass-spring-damper system bears similarity to many kinds

of oscillating processes. One similar oscillating process is that of an clamped-free beam.

The clamped-free beam is shown in Figure 5.4. The system is a single beam connected

to a hub on one end. The beam is moved by applying torque at the hub. This system is

modeled by the Euler-Bernoulli equation, which is a partial differential equation relating

the static deflection deflection of a beam w(x) to its bending stiffness EI and applied load

88

Figure 5.4: A diagram of an clamped-free beam. The beam rotates by torque applied at
the hub x = 0. [2], p. 180

q, written as

EI
∂4w

∂x4
= q. (5.14)

Since this is a fourth-order partial differential equation, we have four initial conditions to

consider. In the case of the clamped-free beam, these are

w(0) = w′(0) = 0,

w′′′(L) = w′′(L) = 0. (5.15)

By taking a truncation of the Fourier transform of this partial differential equation, we

can obtain a system of linear ordinary differential equations which approximates the above

dynamical system. For our example, we take an example from [2], obtaining a tenth-order

89

dynamical system,

ẋ = Ax+Bu

y = Cx+Du, (5.16)

with the process matrix

A =

0 1 0 .

0 .

0 1 0

0 . . . −ω2
1 −2ζω1 0

0 1 0

0 −ω2
2 −2ζω2 0

0 0 1 0 . . .

0 −ω2
3 −2ζω3 0 . . .

0 . 0 1

0 . −ω2
4 −2ζω4

(5.17)

90

and

B =
1

0.0829

0

1

0

2.886

0

−2.345

0

−0.910

0

−0.454

. (5.18)

The measurement matrix C is the 10 × 10 identity matrix and D is a matrix with all

elements zero. The first four natural frequencies are ω1 = 55.89, ω2 = 131.74, ω3 = 313.81

and ω4 = 603.67 radians per second. The damping ratio for each frequency is set to

ζ = 0.002.

At each time step, a Gaussian white noise input torque with zero mean and variance

one is applied. Furthermore, we inject Gaussian process noise with zero mean and the

covariance matrix Q = diag(0.02, . . . , 0.02) ∈ R10×10, and Gaussian measurement noise

with zero mean and the covariance matrix R = diag(0.05, . . . , 0.05) ∈ R10×10.

For our simulation, we discretize this system with the zero-order hold method, choosing

a sampling time of 0.002 seconds. We then generate 640 sequences of 100 time steps to

produce our training data.

91

We first train an RNN-based estimator for this system. As the 5 DoF mass-spring-

damper and the clamped-free beam are both systems of order ten, we use the same con-

figuration for the RNN, constructing it with one hidden layer of 25 LSTM cells. Splitting

our training set into twenty batches of 32 sequences each, we trained for 300 epochs with

a learning rate of 0.001. The training required 170.3 seconds on our machine.

The RNN-based estimator produced a mean squared error of 495.590 over the test set.

The Kalman filter produced a mean squared error of 514.615. Hence, the RNN-based

estimator’s performance was comparable to Kalman filter, with less than 5% difference in

MSE. The theoretical minimum mean squared error was 496.194.

We next attempt to improve the training of the RNN-based estimator by conducting

what is known as transfer learning [37]. Transfer learning is a training technique that

allows the knowledge gained from training one neural network on a specific task to be

transferred to a different but related task. It is particularly useful when the target task

has limited training data, but there is a large amount of training data available for a related

task.

The basic idea behind transfer learning is to use a pre-trained model as a starting

point, and then fine-tune it on the target task. The pre-trained model is typically trained

on a large dataset and has learned a set of features that are useful for many different tasks.

These features can then be used as a starting point for the target task, rather than starting

from scratch.

There are several ways to perform transfer learning, depending on the similarity between

the source and target tasks. The two most common approaches are:

92

• Feature extraction. In this approach, the pre-trained model is used as a fixed feature

extractor, and only the final layer(s) of the model are replaced and trained on the

target task. This is particularly useful when the source and target tasks are similar

in terms of the input features, but different in terms of the output labels. See [38]

for an example of this approach in the context of classifying brains tumors using a

convolutional neural network (CNN) trained on brain MRI images.

• Fine-tuning. In this approach, the pre-trained model is refined on the target task by

updating the weights of some or all of the layers in the model. This is particularly

useful when the source and target tasks are similar in terms of both the input features

and the output labels. See [39] for an application of this approach in the context of

training an LSTM model to predict the health of industrial manufacturing machines.

Transfer learning has several advantages over training a model from scratch. First, it

can significantly reduce the amount of training data required for the target task, as the

pre-trained model has already learned a set of useful features. This can be particularly

useful in applications where labeled data is expensive or difficult to obtain. It can also

reduce the amount of training required, lowering the computational cost of training.

Transfer learning can also help to improve the generalization error of the model, by

providing a better starting point for the optimization process. This is useful when the

target task has a limited number of labeled examples, as it can help to avoid overfitting.

As both our clamped-free beam system and 5 DoF mass-spring-damper system are

dynamical systems of order ten and only five of ten state variables are measured, both

RNN-based estimators can have the same architecture. Hence, we take the fine-tuning

93

approach, reusing the parameters of the trained RNN-based estimator for the 5 DoF mass-

spring-damper system as the initial conditions of the RNN-based estimator to be trained

for the clamped-free beam system.

As can be seen in Figure 5.5, we immediately found that the training of this new RNN-

based estimator started with training and validation errors much lower than that of the

previous RNN-based estimator. This led to a significant reduction in the number of epochs

required for training to converge, with the new RNN converging at approximately epoch

13, while the RNN trained from scratch converged at epoch 30. Furthermore, we found that

the training losses and validation losses achieved by the weight transferred RNN were on

average lower than that of the RNN initialized with default settings. Our new RNN-based

estimator achieved a mean square error of 471.718, a 8.34% improvement in accuracy over

the Kalman filter.

As they share the same architecture, the execution times of the two RNN-based esti-

mators were virtually indistinguishable, clocking in at 14 milliseconds and 15 milliseconds

on the test set. In comparison, the Kalman filter required 18 milliseconds.

The mean squared errors produced by each estimator on the test set are shown in

Figure 5.6. We find that transfer learning can reduce the training time and improve

training outcome when creating RNN-based estimators for systems with similar dynamics.

The results for the damp-free beam examples are summarized in Table 5.2.

94

Figure 5.5: Training and validation errors over 50 epochs for two RNN-based estimators on
the clamped-free beam system. The first RNN was trained with default initial conditions.
The second RNN was transferred the weights and biases from a trained RNN-based esti-
mator for a five degree-of-freedom connected mass-spring-damper system prior to training.

95

Figure 5.6: Mean squared errors for the RNN-based estimator (green), RNN-based esti-
mator initialized with weights from the RNN trained on the 5 DoF mass-spring-damper
system (blue) and Kalman filter (red) for the 100 time steps contained in each sequence in
the test set.

96

Reused weights RNN parameters MSE Kalman filter MSE Runtime (ms) KF runtime (ms)

LSTM cells Learning rate Epochs

No 25 0.001 300 495.590 514.615 14 18
Yes 25 0.0005 100 471.718 514.615 15 18

Table 5.2: Table of values for RNN-based estimators on a clamped-free beam system.

5.8 Example: randomly generated dynamical systems

We now would like to see if we are able to create performative RNN-based estimators

for arbitrary dynamical systems. To this end, we randomly generate a system of order

20 with ten inputs and ten outputs. For our second example, we modify this system

to induce instability. The dynamical systems were generated with the drss function in

MATLAB r2022b, which generates random discrete-time LTI (linear, time-invariant) test

models with unspecified sampling rates. Furthermore, we verified that for both systems

the current state can be estimated using only the information from the measurements, a

condition called observability (see [5], Chapter 1, Section 1.7.2). For LTI systems of the

form

xk = Axk−1 +Buk

yk = Hxk +Duk, (5.19)

97

one way to check for observability is to see if the observability matrix

H

HA

...

HAn−1

(5.20)

has column rank n. Then, each state variable can be represented as a linear combina-

tion of the measurement variables yk. As these systems are random, there is no physical

interpretation attached to the state.

5.8.1 Random dynamical system of order 20

At each time step, we inject Gaussian process and measurement noises with zero mean. For

this system, they are covariances Q = diag(1, . . . , 1) ∈ R20×20 and R = diag(2.5, . . . , 2.5) ∈

R10×10, respectively. Furthermore, to ensure persistent excitation of the system, we apply

a Gaussian white noise input with zero mean and covariance diag(1.5, . . . , 1.5) ∈ R20×20 as

well.

For our RNN, we choose an architecture of one hidden layer containing thirty LSTM

cells, yielding 5660 trainable parameters. The training set contains 160 batches of 32

sequences, each of which are length 100 with state variables initialized randomly from a

uniform distribution on the interval [−10, 10]. We train the RNN to estimate the states

of this system for 1350 epochs using the Adam optimizer, with a learning rate of 0.0015.

The values of the hyperparameters were chosen through trial-and-error, as well as Bayesian

98

optimization.

We found training our RNN-based estimator for this system to be more challenging

than the previous systems. We attribute this to the random nature of this system. In the

case of the connected mass-spring-dampers, we know that every second state variable are

velocities and hence intrinsically tied to the state variables preceding it (the displacement

of the corresponding masses). As randomly generated dynamical systems have no physical

interpretation, it is natural that a RNN-based estimator for this system would require a

combination of greater model capacity and larger datasets to train.

The RNN-based estimator gave a mean squared error of 23.527 on the test set. In

comparison, the mean squared error of the Kalman filter was 22.422, a 4.93% percent

better accuracy. The theoretical minimum mean squared error was found to be 18.737.

The training of the RNN required 192 seconds. The execution time of the RNN-based

estimator was 12 milliseconds, while that of the Kalman filter was 26 milliseconds.

We were able to train an RNN-based estimator to perform comparably to a Kalman

filter in estimating the states of a randomly generated LTI system of order twenty. However,

we found this to be more challenging than the previous examples, requiring extensive

optimization of the RNN’s hyperparameters.

99

Figure 5.7: Mean squared errors for the RNN-based estimator (green) and Kalman filter
(red) for the 100 time steps contained in each sequence in the test set.

100

5.8.2 Unstable random dynamical system of order 20

We are now interested in whether or not we can train a RNN-based estimator for an

unstable LTI system. A system is stable when its output signal is bounded and does not

increase to infinity as time goes on. LTI systems of the form

xk = Axk−1 +Buk

yk = Hxk +Duk (5.21)

are stable when the real parts of the eigenvalues of the system matrix A have absolute

values less than or equal to 1. As the sum of the real parts of the eigenvalues of A is equal

to tr(A), we can induce instability by adding a diagonal matrix with diagonal elements

greater than or equal to one. Hence, we create an unstable system by adding the identity

matrix to the system matrix A of the random system of order 20 from the previous example.

This new system was verified to be observable by looking at the rank of its observability

matrix.

For our RNN, we choose an architecture of one hidden layers each containing 32 LSTM

cells for a total of 6292 trainable parameters. The training set contains 120 batches of

32 sequences, each of which are length 50. The state variables were initialized randomly

from a uniform distribution on the interval [−10, 10]. The short sequence lengths were

necessitated by the unstable system, as longer sequences would blow up. We also found

compensating for the shorter sequences with a large number of batches to be detrimental

to training performance, requiring us to use less data. We train the RNN to estimate the

101

states of this system for 500 epochs using the Adam optimizer, with a learning rate of

0.01. The values of the hyperparameters were chosen through trial-and-error, as well as

Bayesian optimization.

The mean squared errors produced on the test set are shown in Figure 5.8. Our RNN-

based estimator gave a mean squared error of 65.102 on the test set. In comparison,

the mean squared error of the Kalman filter was 49.534, a 41.43% better accuracy. The

theoretical mean squared error was 59.83.

The training of the RNN required 251 seconds. The execution times of the RNN-based

estimator and Kalman filters were 8 milliseconds and 10 milliseconds, respectively.

Despite intensive effort, we found it challenging to train a RNN-based estimator to

obtain performance comparable to a Kalman filter in this case. The results for the two

mass-spring-damper examples are summarized in Table 5.3.

System RNN parameters MSE Kalman filter MSE Runtime (ms) KF runtime (ms)

LSTM cells per layer Learning rate Epochs

Order 20 30 0.0015 1350 23.527 22.422 12 26
Unstable 32 0.01 500 65.102 49.534 8 10

Table 5.3: Table of values for RNN-based estimators on randomly generated LTI systems.

102

Figure 5.8: Mean squared errors for the RNN-based estimator (green) and Kalman filter
(red) for the 50 time steps contained in each sequence in the test set.

103

5.9 Example: Lorenz system

As our final example, we construct a RNN-based estimator for the Lorenz attractor, a

nonlinear system which is known for the butterfly effect [40], describing the phenomenon

where a small change in one state of a deterministic nonlinear system can result in large

differences in a later state. We compare the performance of this against the Extended

Kalman filter. The Lorenz system is described by

ẋ = σ(y − x)

ẏ = x(ρ− z)− y

ż = xy − βz, (5.22)

where σ, ρ and β are system parameters. For our example, we choose (σ, ρ, β) = (10, 28, 8
3
).

For our RNN, we choose an architecture of one hidden layer of twenty LSTM cells, for a

total of 1903 trainable parameters. The training set contains eight batches of 32 sequences,

each of which are length 2000, initialized randomly. We train the RNN to estimate the

states of this system for 150 epochs using the Adam optimizer, with a learning rate of

0.001. The values of the hyperparameters were chosen through trial-and-error.

Our RNN-based estimator gave a mean squared error of 3.492 on the test set, while

the EKF gave a mean squared error of 24.480. For the Lorenz system, our RNN-based

estimator performed 85.73% better than the EKF. The execution time of our RNN-based

estimator was also faster, taking 48 milliseconds compared to 221 milliseconds for the EKF.

The training time for the RNN was 50 seconds.

104

Figure 5.9: Mean squared errors for the RNN-based estimator (green) and Extended
Kalman filter (red) for the 2000 time steps contained in each sequence in the test set.

105

Using the same methodology as was used for the preceding linear systems, we were able

to train a RNN to estimate the states of this non-linear system as well, with an accuracy

significantly better than an Extended Kalman filter.

106

Chapter 6

Conclusion

Through our examples, we have demonstrated that RNNs are able to estimate the states

of noisy linear dynamical systems. We have found several benefits to the RNN-based

estimator. Primarily, we were able to train a RNN to achieve equivalent performance

in comparison to a Kalman filter. Another advantage which the RNN-based estimator

possesses is it does not require prior knowledge of the governing equations of the dynam-

ical system. Unlike the Kalman filter, the purely data-driven nature of our RNN-based

estimator allow its use in cases where the dynamical system has not been fully identified.

A major disadvantage of the RNN-based estimator is the amount of work required before

it can be used. While a Kalman filter can be used immediately after implementation, a

RNN-based estimator also has to be trained, requiring us to 1) gather a large amount of

high-quality data, 2) run the training procedure for a number of iterations, 3) optimize

the hyperparameters of the recurrent neural network, and 4) verify the generalization

107

of the trained model. Not only are these steps time and labor intensive, the curse of

dimensionality increases the difficulty of these tasks considerably for high-dimensional data,

though techniques such as transfer learning can also make them easier. Combined with

the stochastic nature of gradient-based optimization, it is not guaranteed that an optimal

solution can be found. One the other hand, the Kalman filter is a minimum mean squared

error estimator where its expected degree of performance is known. A significant amount

of labor and computational resources must be dedicated in order to produce a RNN-based

estimator, so this must also be considered prior to deciding which method to use.

In the end, there is no clear answer with regard to which of the two estimation methods

is superior. Instead, this comes down to situation and user preference. We can only con-

clude that RNN-based estimators are viable for state estimation of noisy linear dynamical

systems. They have several benefits over a Kalman filter, and may warrant consideration

as a alternative to Kalman filtering in a variety of applications.

108

Bibliography

[1] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,

2016. http://www.deeplearningbook.org.

[2] Kirsten A. Morris. Introduction to Feedback Control. Harcourt-Brace, 2000.

[3] O. A. Stepanove. Kalman filtering: Past and present. an outlook from Russia. (on the

occasion of the 80th birthday of Rudolf Emil Kalman). Gyroscopy and Navigation,

2(2):105, 2011.

[4] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward net-

works are universal approximators. Neural Networks, 2(5):359–366, 1989.

[5] Dan Simon. Optimal state estimation: Kalman, H Infinity, and nonlinear approaches.

John Wiley and Sons, Inc., 2006.

[6] Rudolph Emil Kalman. A new approach to linear filtering and prediction problems.

Transactions of the ASME–Journal of Basic Engineering, 82(Series D):35–45, 1960.

[7] V. Strassen. Gaussian elimination is not optimal. Numerische Mathematik,

13(4):354–356, 1969.

109

[8] Webb Miller. Computational complexity and numerical stability. SIAM Journal on

Computing, 4(2):97–107, 1975.

[9] C Guardiola, B Pla, D Blanco-Rodriguez, and L Eriksson. A computationally efficient

kalman filter based estimator for updating look-up tables applied to nox estimation

in diesel engines. Control engineering practice, 21(11):1455–1468, 2013.

[10] Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt Haberland, Tyler Reddy,

David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan

Bright, Stéfan J van der Walt, Matthew Brett, Joshua Wilson, K Jarrod Millman,

Nikolay Mayorov, Andrew R J Nelson, Eric Jones, Robert Kern, Eric Larson, C J

Carey, İlhan Polat, Yu Feng, Eric W Moore, Jake VanderPlas, Denis Laxalde, Josef

Perktold, Robert Cimrman, Ian Henriksen, E A Quintero, Charles R Harris, Anne M

Archibald, Antônio H Ribeiro, Fabian Pedregosa, and Paul van Mulbregt. Scipy

1.0: fundamental algorithms for scientific computing in python. Nature methods,

17(3):261–272, 2020.

[11] Piotr Kaniewski. Extended kalman filter with reduced computational demands for

systems with non-linear measurement models. Sensors, 20(6):1584–, 2020.

[12] David Sussillo. Neural circuits as computational dynamical systems. Current opinion

in neurobiology, 25:156–163, 2014.

[13] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient

descent is difficult. IEEE transactions on neural networks, 5(2):157–166, 1994.

110

[14] Tsungnan Lin, B.G. Horne, P. Tino, and C.L. Giles. Learning long-term dependencies

in narx recurrent neural networks. IEEE transactions on neural networks, 7(6):1329–

1338, 1996.

[15] Michael C. Mozer. Induction of multiscale temporal structure. Advances in neural

information processing systems, 4, 1991.

[16] Salah El Hihi and Yoshua Bengio. Hierarchical recurrent neural networks for long-term

dependencies. Advances in neural information processing systems, 8, 1995.

[17] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural compu-

tation, 9(8):1735–1780, 1997.

[18] Alex Graves. Supervised sequence labelling with recurrent neural networks. Studies

in Computational Intelligence, 2012.

[19] Lee A. Feldkamp, Danil V. Prokhorov, and Timothy M. Feldkamp. Simple and con-

ditioned adaptive behavior from Kalman filter trained recurrent networks. Neural

Networks, 16(5-6):683–689, 2003.

[20] Bobby Kleinberg, Yuanzhi Li, and Yang Yuan. An alternative view: When does SGD

escape local minima? In Jennifer Dy and Andreas Krause, editors, Proceedings of

the 35th International Conference on Machine Learning, volume 80 of Proceedings of

Machine Learning Research, pages 2698–2707. PMLR, 2018.

[21] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance

of initialization and momentum in deep learning. In Sanjoy Dasgupta and David

111

McAllester, editors, Proceedings of the 30th International Conference on Machine

Learning, volume 28 of Proceedings of Machine Learning Research, pages 1139–1147,

Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR.

[22] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online

learning and stochastic optimization. Journal of machine learning research, 12(7),

2011.

[23] T. Tieleman and G. Hinton. Rmsprop: Divide the gradient by a running average of

its recent magnitude. In Neural Networks for Machine Learning, volume 6.5, pages

26–31. Coursera, 2012.

[24] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In

Yoshua Bengio and Yann LeCun, editors, 3rd International Conference on Learning

Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track

Proceedings, 2015.

[25] G. V. Trunk. A problem of dimensionality: A simple example. IEEE Transactions on

Pattern Analysis and Machine Intelligence, PAMI-1(3):306–307, 1979.

[26] Michael Green and John B. Moore. Persistence of excitation in linear systems. In

1985 American Control Conference, pages 412–417, 1985.

[27] Jonas Močkus. On bayesian methods for seeking the extremum. In Optimization

Techniques IFIP Technical Conference: Novosibirsk, July 1–7, 1974, pages 400–404.

Springer, 1975.

112

[28] Donald R Jones, Matthias Schonlau, and William J Welch. Efficient global opti-

mization of expensive black-box functions. Journal of Global optimization, 13(4):455,

1998.

[29] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for

hyper-parameter optimization. Advances in neural information processing systems,

24, 2011.

[30] James Bergstra, Daniel Yamins, and David Cox. Making a science of model search:

Hyperparameter optimization in hundreds of dimensions for vision architectures. In

International conference on machine learning, pages 115–123. PMLR, 2013.

[31] J.P. DeCruyenaere and H.M. Hafez. A comparison between Kalman filters and recur-

rent neural networks. In IJCNN International Joint Conference on Neural Networks,

volume 4, pages 247–251, 1992.

[32] S. Kumar Chenna, Yogesh Kr. Jain, Himanshu Kapoor, Raju S. Bapi, N. Yadaiah,

Atul Negi, V. Seshagiri Rao, and B. L. Deekshatulu. State estimation and tracking

problems: A comparison between Kalman filter and recurrent neural networks. In

Nikhil Ranjan Pal, Nik Kasabov, Rajani K. Mudi, Srimanta Pal, and Swapan Kumar

Parui, editors, Neural Information Processing, pages 275–281. Springer, 2004.

[33] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmai-

son, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani,

Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Py-

113

Torch: An Imperative Style, High-Performance Deep Learning Library. In Advances

in Neural Information Processing Systems 32, pages 8024–8035. Curran Associates,

Inc., 2019.

[34] Wen-mei W. Hwu, David B. Kirk, and Izzat El Hajj. In Programming Massively Par-

allel Processors (Fourth Edition), pages 123–147. Morgan Kaufmann, fourth edition

edition, 2023.

[35] Ryosuke Okuta, Yuya Unno, Daisuke Nishino, Shohei Hido, and Crissman Loomis.

Cupy: A numpy-compatible library for nvidia gpu calculations. In Proceedings of

Workshop on Machine Learning Systems (LearningSys) in The Thirty-first Annual

Conference on Neural Information Processing Systems (NIPS), 2017.

[36] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli

Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J.

Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew

Brett, Allan Haldane, Jaime Fernández del Ŕıo, Mark Wiebe, Pearu Peterson, Pierre

Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi,

Christoph Gohlke, and Travis E. Oliphant. Array programming with NumPy. Nature,

585(7825):357–362, September 2020.

[37] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu,

Hui Xiong, and Qing He. A comprehensive survey on transfer learning. Proceedings

of the IEEE, 109(1):43–76, 2020.

114

[38] S. Deepak and P.M. Ameer. Brain tumor classification using deep CNN features via

transfer learning. Computers in Biology and Medicine, 111:103345, 2019.

[39] Lixiong Wang, Hanjie Liu, Zhen Pan, Dian Fan, Ciming Zhou, and Zhigang Wang.

Long short-term memory neural network with transfer learning and ensemble learning

for remaining useful life prediction. Sensors (Basel, Switzerland), 22(15):5744–, 2022.

[40] Catherine Rouvas-Nicolis and Gregoire Nicolis. Butterfly effect. Scholarpedia,

4(5):1720, 2009.

115

	Author's Declaration
	Abstract
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	State Estimation
	Weighted Least Squares
	Recursive estimation
	Process noise
	The Kalman filter
	Computational cost of the discrete-time Kalman filter
	Extended Kalman filter

	Recurrent Neural Networks
	Introduction to RNNs
	Computational graph of RNNs
	The challenge of long-term dependencies
	Skip Connections
	Leaky Units
	LSTMs

	Training RNNs
	Gradient Descent
	Stochastic Gradient Descent
	Variants of Stochastic Gradient Descent
	Adaptive learning rate methods

	Backpropagation through time (BPTT)
	Quantifying the performance of neural networks
	Capacity of neural networks
	Regularization
	The curse of dimensionality and data selection
	Persistent excitation

	Hyperparameter optimization
	Grid search and random search
	Bayesian optimization

	State estimation with RNNs and the Kalman filter
	Previous work
	Methodology
	Comparing computational cost to classical algorithms
	Connected mass-spring-damper systems
	Example: 5 DoF mass-spring-damper system
	Example: 100 DoF mass-spring-damper system
	Example: transfer learning to a clamped-free beam model
	Example: randomly generated dynamical systems
	Random dynamical system of order 20
	Unstable random dynamical system of order 20

	Example: Lorenz system

	Conclusion

