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Abstract

NP-complete problems like the Boolean Satisfiability (SAT) Problem are ubiquitous in
computer science, mathematics, and engineering. Consequently, researchers have devel-
oped algorithms such as Conflict-Driven Clause-Learning (CDCL) SAT solvers, aimed at
determining the satisfiability of Boolean formulas. As the result of decades of research
in the development of CDCL SAT solvers, these algorithms solve real-life SAT instances
surprisingly quickly, performing well despite the fact that the SAT problem is believed to
be intractable in general. While modern CDCL SAT solvers are efficient for many real-
world applications, there is continual demand for ever more powerful heuristics for newer
applications. This demand in turn provides the impetus for research in solver heuristics.
In this thesis, we address this need by proposing a new heuristic for Boolean Constraint
Propagation (BCP), a key component of CDCL SAT solvers, and a novel, extensible, ar-
chitectural design of an Extended Resolution (ER) SAT solver, a class of solvers that is
more powerful than CDCL solvers.

The impressive performance of CDCL SAT solvers on real-life Boolean instances is, in
part, made possible by a combination of logical reasoning rules and heuristics integrated
into different components of the solvers. Given that such combinations are currently the
most successful paradigm in SAT solving, it is natural to ask how such combinations can
be made even more efficient. We observe that there are two different approaches that can
be taken to improve SAT solvers: one approach is to modify individual components within
the SAT solving algorithm, and the other approach is to change the overall structure of
the algorithm. We explore both approaches in this thesis.

Following the first approach, we examine a critical component of CDCL: the Boolean
Constraint Propagation (BCP) algorithm, which systematically finds implications of vari-
able assignments made by the solver. In most implementations of BCP, variable values
are propagated greedily – the values of implied variables are set immediately after they are
detected. This observation suggests that there could be a smarter way to perform BCP
by prioritizing part of the search space rather than propagating implied variables imme-
diately after they are encountered. In this work, we develop an algorithm which allows
BCP to prioritize propagations, choose a heuristic priority ordering of the variables, and
demonstrate a class of instances where our prioritized BCP algorithm, combined with this
heuristic ordering, is able to outperform the traditional BCP algorithm.

For the second approach, we note that solvers are fundamentally mathematical proof
systems, and that CDCL produces proofs in the Resolution proof system, which is theoret-
ically weaker than Extended Resolution (ER), a related proof system. Hence, it is natural
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to try integrating ER techniques into the CDCL algorithm, thus rendering it more pow-
erful. However, it is well known that automating the ER proof system deterministically
can be very challenging. Instead of proposing a single set of techniques to implement the
ER proof system, we develop a programmatic framework (and an associated set of tech-
niques) that enables one to upgrade CDCL solvers into an ER-based SAT solver. More
precisely, we add three new major programmatic components: extension variable addition,
extension variable substitution, and extension variable deletion. These components can be
easily extended to test various ER ideas and heuristics. One of our considered heuristics
is shown to be generally competitive with the baseline CDCL solver while improving upon
the baseline for a specific class of cryptographic instances.
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Chapter 1

Introduction

There is perhaps no problem in computer science more famous or frustrating than the
question of P vs. NP. At its most fundamental level, computer science is the study of
algorithms, which makes it especially compelling that such a seemingly simple question
about algorithms has remained unresolved for more than half a century [26]: what makes
a problem “easy” or “hard” for an algorithm to solve? Informally, P refers to the group of
problems where solutions are easy to find, and NP refers to the group of problems where
solutions are easy to verify. NP-complete problems are the most difficult problems in NP;
finding an algorithm which efficiently solves one NP-complete problem would immediately
yield efficient algorithms for solving every problem in NP. In this sense, all NP-complete
problems are “equally difficult”. These kinds of problems appear abundantly in many
subdomains of mathematics [38, 51], engineering [14, 17], and computer science [47], so
progress in improving our algorithms for solving NP-complete problems is not only of
great theoretical interest, but also enormous practical interest.

The Boolean Satisfiability (SAT) problem, as the archetypal NP-complete problem [26],
lies at the heart of P vs. NP. Although it has not yet been theoretically resolved whether
NP-complete problems can be solved efficiently, the majority of computer science practi-
tioners suspect that efficient algorithms for solving a general instance of the SAT problem
do not exist. Despite this, gigantic real-world SAT instances containing millions of vari-
ables and constraints are regularly solved in astonishingly small time frames across many
disparate fields thanks to modern Conflict-Driven Clause-Learning (CDCL) SAT solvers,
which automatically search for solutions for the SAT problem. In theory, there should not
be anything special about these algorithms – they are subject to the same underlying limi-
tations as any algorithm for the SAT problem, and there are still many instances of the SAT
problem where these solvers perform poorly. However, decades of cumulative research and
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development have revealed various techniques and heuristics which work well in practice,
even on problems for which the solvers were not originally designed. Some examples of this
include fields such as cryptanalysis [66], program analysis [14], and mathematics [38, 51].

The remarkable performance of modern CDCL SAT solvers is made possible by a small
number of core components [48]: backtracking search, efficient constraint propagation,
heuristic-controlled decision branching, conflict analysis and conflict-driven clause learn-
ing, intermittent search restarts, and preprocessing/inprocessing. Historically, progress in
improving the performance of CDCL SAT solvers has come from improving one or more
of these components. Thus, it is natural to ask whether existing work in the literature has
already identified all potential design spaces within these components, and whether we can
augment solvers with additional components to improve their performance.

1.1 Problem Statement

The overarching problem addressed in this thesis is the question of how the traditional
CDCL SAT solver framework can be modified to improve its performance. We explore
two main ideas: first, a modification of the traditional propagation algorithm to follow a
priority ordering of the variables; and second, an extension of the CDCL framework with
additional components to incorporate the Extended Resolution (ER) proof system [83],
which is theoretically known to be capable of producing exponentially smaller proofs than
Resolution (Res), the proof system underlying traditional CDCL SAT solvers [6, 27, 49].
We take a similar approach to both ideas: first, we develop general frameworks to facilitate
the testing of heuristics for these unexplored design spaces in current state-of-the-art SAT
solvers; then, we implement our frameworks over existing SAT solvers; thirdly, using our
implementations of our frameworks, we develop heuristics to improve the overall perfor-
mance of the solvers; and finally, we conduct empirical evaluations of our heuristics to
identify those which improve upon the original solvers.

To facilitate the discovery of useful heuristics, we first impose the following design
requirements on our frameworks:

1. First, the frameworks should be extensible – they should support the usage of a wide
range of heuristics. Particularly, for the case of ER, where there has already been
some work in developing ER-based solvers, the framework must also support the
implementation of comparable methods in the literature.

2. Second, the computational overhead incurred by the frameworks should not signifi-
cantly deteriorate the performance of the underlying SAT solver.
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We further require our discovered heuristics to have the following properties:

1. There must be at least one class of problem instances where the heuristics improve
over the performance of the base solver; i.e., the average solving time of the solver
augmented with the heuristic should be less than the average solving time of the
original solver, and the number of instances solved should be larger.

2. The heuristics must not cause the performance of the base solver to degrade signifi-
cantly over other practical classes of problem instances.

1.2 Summary of Contributions

Prioritized Boolean Constraint Propagation: We first propose a new priority-based
BCP algorithm called Delayed BCP, and explain it using the idea of a variable assignment
lifecycle, where each variable transitions through a set of states during the run of a CDCL
solver. In particular, we identify the “queued” state, which previously had not been ex-
plicitly identified as a state. The Delayed BCP algorithm acts as a framework for testing
various heuristic priority orderings. We implement the Delayed BCP method and empiri-
cally evaluate its performance, and find that it improves solver performance on some classes
of instances while degrading performance for other instance classes. Then, we use Rein-
forcement Learning (RL) methods with online learning to dynamically switch between our
priority-based BCP method and the traditional BCP method, and demonstrate a smaller
performance deterioration while maintaining improved performance on a select class of
instances. A slightly more detailed explanation of each contribution follows:

1. Delayed BCP: We introduce the Delayed BCP algorithm, which differs from
the traditional (Immediate BCP) algorithm in terms of the order in which variables
are assigned. In Immediate BCP, queued variables are assigned as soon as a unit
clause is discovered (“immediately”), and propagation is done in the same order as
the variables are assigned (“in-order”). By contrast, in Delayed BCP, variables that
are intended to be assigned a value are first queued, and then they are assigned
values according to a desired variable priority order (“delayed” and “out-of-order”).
This delay in assigning values to variables changes the order in which variables get
propagated during BCP, as opposed to Immediate BCP, which in turn changes how
conflicts arise during unit propagation.
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2. Dynamic BCP Algorithm Selection with Thompson Sampling: We model
the BCP algorithm selection problem as a Multi-Armed Bandit (MAB) problem [70]
and use a Thompson sampling approach [80, 81] as an online learning method to
choose between the different BCP algorithms. Since we expect the best choice of
BCP algorithm to change throughout a run of the solver, we modify the Thompson
sampling method to encourage the decision agent to explore different choices.

3. Extensive Experimental Evaluation: We implement the Delayed BCP technique
in the MapleSAT [55], MapleLCM [60], and CaDiCaL [10] solvers, and perform extensive
empirical evaluations against the corresponding baseline solvers over a wide selection
of benchmark instances. We show empirically that despite the fact that Delayed BCP
often requires additional unit propagations to detect a conflict, and despite the addi-
tional overhead associated with maintaining a priority queue which slows down unit
propagation even when the solver is not in a conflicting state, our method outper-
forms the baseline solvers over some classes of instances generated from cryptographic
applications. It is especially notable that despite performing similarly to the baseline
solver in terms of CPU time, our method performs a smaller number of propagations
overall, indicating that priority-based BCP performs “smarter” propagations than
the traditional method.

Extended Resolution SAT Solvers: We propose a framework to augment existing
CDCL SAT solvers with Extended Resolution (ER) techniques, building upon previous
work in the literature [3, 43]. In the implementation of our framework, we introduce
various data structures and algorithms for the efficient management of extension variables
and their definitions. Using this framework, we identify a handful of possible heuristics for
each component of the method, and conduct an empirical evaluation to determine whether
our techniques are helpful. To illustrate the versatility of our method, we also implement
some existing ER techniques from the literature [3, 13] using our framework and evaluate
them experimentally. A slightly more detailed explanation of each contribution follows:

1. ER Solver Development Framework: Our framework for developing ER-based
SAT solvers consists of three major components: variable definition, variable substi-
tution, and variable deletion. We further divide variable definition into three minor
subcomponents: clause filtering/selection, definition generation, and clause introduc-
tion. We identify common tasks that are necessary for the implementation of any
practical ER solver and provide algorithms for managing extension variables and
definition clauses, extracting common functionality to minimize the work required
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to develop new ER solver heuristics. In particular, we provide algorithms for intro-
ducing and keeping track of extension variables and their definitions, substituting
extension variables into learnt clauses, and deleting unused extension variables.

2. ER Solver Heuristics: We motivate a handful of natural heuristics for each compo-
nent of the framework; e.g., only considering low-LBD clauses when defining exten-
sion variables, substituting variables in low-width clauses, and deleting low-activity
extension variables. We also consider some heuristics for introducing extension vari-
ables: one based on randomly selecting literals from clauses with high activities, and
another based on common pairs of literals that appear frequently among high-activity
clauses.

3. Empirical Evaluation: We implement the heuristics discussed above and perform a
large set of experiments to evaluate their efficacy. We additionally implement the Lo-
cal Extended Resolution idea introduced in the GlucosER and MiniSATER solvers [3]
to check the robustness of their results. We especially focus on the Pigeonhole Princi-
ple (PHP) formulae because short proofs are known for this class of instances [27], and
Urquhart formulae, because previous ER techniques reported improved performance
on these instances [3]. Both the PHP and Urquhart families of problem instances are
considered to be difficult for traditional CDCL SAT solvers.

The rest of the thesis is structured as follows: Chapter 2 provides background on
the SAT problem (including Boolean Constraint Propagation and Extended Resolution)
and relevant information from the field of machine learning (particularly Reinforcement
Learning); Chapter 3 presents our methods for Prioritized BCP, an empirical evaluation of
the different techniques, and a discussion of related work; Chapter 4 presents our framework
for developing Extended Resolution SAT solvers, a selection of the algorithms developed
to address the problem, an empirical evaluation of our method, and a discussion of related
work; and finally, Chapter 5 concludes the thesis and outlines potential areas of research
for future work.

5



Chapter 2

Background

This chapter presents the background information necessary to understand the contri-
butions in this thesis, including an overview of the Boolean Satisfiability (SAT) Problem,
Conflict-Driven Clause-Learning (CDCL) SAT solvers, and relevant methods from machine
learning. We present definitions of relevant terminology and review important concepts.

2.1 SAT Solving

SAT solvers are algorithms for automatically solving instances of the Boolean Satisfiability
Problem. To understand the definition of this problem, we first need to define some key
concepts about Boolean formulae.

A Boolean formula is essentially a function over Boolean variables, which are variables
that can take on one of two values: either true (represented by the symbol ⊤) or false
(represented by the symbol ⊥). Boolean formulae can be represented syntactically by
combining Boolean operators, or semantically by truth tables, which list the output values
corresponding to each possible input. Since truth tables must contain separate entries
for every possible input, they tend to be much larger than the smallest equivalent syn-
tactic combination of operators. Thus, Boolean formulae are conventionally expressed by
combining Boolean operators rather than by their truth tables.
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2.1.1 Conjunctive Normal Form (CNF)

In general, Boolean formulae can have arbitrarily complex structures, with diverse oper-
ators nested and sequenced in many different ways. This structural complexity makes it
difficult for SAT solving algorithms to efficiently reason with these formulae directly. For-
tunately, all Boolean formulae can be expressed in multiple equivalent ways, and there is
an efficient algorithm which can transform an arbitrary Boolean formula into Conjunctive
Normal Form (CNF) [83], which is a format that is much easier to reason about. Conse-
quently, the vast majority of modern SAT solvers expect the input formula to be in CNF.
For the remainder of this thesis, Boolean formulae are assumed to be in CNF.

We define Boolean formulae in CNF syntactically as follows: A variable (typically
represented by one of the symbols x, y, or z) is a Boolean variable. A literal is either a
variable by itself (x), which is said to be a positive literal, or the negation of a variable
(¬x), which is said to be a negative literal. A clause is a disjunction of literals; e.g.,
c = (x1 ∨ x2 ∨ ¬x3). Finally, a formula is a conjunction of clauses; e.g., ϕ = (x1 ∨ x2 ∨
¬x3) ∧ (¬x2 ∨ x4 ∨ ¬x5). For convenience, we will sometimes refer to a clause as a set of
literals, where the disjunctions between literals are implied. Similarly, we will sometimes
refer to a formula as a set of clauses, where the conjunctions between clauses are implied.

Evaluating Boolean Formulae Recall that Boolean formulae represent functions over
Boolean variables, where mapping variables to different truth values can result in different
outputs for the formula. This mapping of variables to truth values, either ⊤ or ⊥, is called
an assignment, denoted α. If an assignment maps every variable in the formula to a truth
value, the assignment is said to be complete. Otherwise, the assignment is said to be partial.
If a variable x appears in an assignment α, x is said to be assigned by α. Otherwise, x is
said to be unassigned. For convenience, we sometimes express variable assignments as a
set of literals, where the sign associated with a literal stands in for the truth value in the
assignment. For example, the assignment α = {x 7→ ⊤, y 7→ ⊥} maps x to true and y to
false. Equivalently, this could be denoted α = {x,¬y}.

Then, given a CNF Boolean formula and a variable assignment α, we can compute the
truth value of the formula under α as follows:

• The value of a variable x is given directly by α. If α is a partial assignment that does
not map x to a truth value, then the truth value of x is undefined.

• The truth value of a literal l is equal to the truth value of x if l = x. Otherwise, if
l = ¬x, then the truth value of l is equal to the negation of the truth value of x. If
the truth value of x is undefined, then the truth value of l is also undefined.

7



• A clause C evaluates to ⊤ if it contains any literal l which evaluates to ⊤. A clause
C evaluates to ⊥ if every literal in C evaluates to ⊥. Otherwise, the truth value of
C is undefined.

• A formula ϕ evaluates to ⊤ if every clause in ϕ evaluates to ⊤. A formula ϕ evaluates
to ⊥ if it contains any clause C which evaluates to ⊥. Otherwise, the truth value of
ϕ is undefined.

Clauses that evaluate to ⊤ under an assignment are said to be satisfied, and those
that evaluate to ⊥ are said to be falsified. Clauses that are neither satisfied nor falsified,
and which contain only a single unassigned literal, are said to be unit clauses, and the
unassigned literals in such clauses are called unit literals. Assignments which cause ϕ
to evaluate to ⊤ are called satisfying assignments, and assignments which cause ϕ to
evaluate to ⊥ are called falsifying assignments. Falsifying partial assignments cannot be
extended to satisfying complete assignments by assigning additional variables. In SAT
solvers, variable assignments are typically stored in a list, where variables are positioned
in the list according to the order in which they became assigned. This ordered list is
known as the assignment trail. For convenience, we use the terms variable assignment and
assignment trail interchangeably.

2.1.2 The Boolean Satisfiability Problem

Given an input Boolean formula ϕ, the Boolean Satisfiability (SAT) problem is the question
of whether it is possible to assign values to the variables of ϕ such that ϕ evaluates to ⊤. We
refer to algorithms for solving this problem as SAT solvers. SAT solvers determine whether
ϕ is satisfiable (i.e., there exists a satisfying variable assignment) or unsatisfiable (i.e., every
possible variable assignment is a falsifying assignment). When ϕ is satisfiable, the SAT
solver must output “SAT” with a satisfying assignment. Otherwise, if ϕ is unsatisfiable, the
SAT solver must output “UNSAT”. In some applications, the SAT solver is also required
to output a proof of the formula’s unsatisfiability.

2.1.3 Boolean Constraint Propagation

The Boolean Constraint Propagation (BCP) algorithm, sometimes also called unit propa-
gation, was first introduced as part of the DPLL SAT solver [29, 28]. The key observation
underlying the BCP algorithm is the following: if a partial assignment α can be extended
to a complete satisfying assignment α′ and α falsifies all the literals in a clause C except
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Algorithm 1: The traditional algorithm for performing BCP

Input: FIFO propagation queue: q
Output: A falsified clause if one exists

1 while q.size() > 0 do
2 p← q.pop();
3 foreach clause c rendered unit by p, resulting in unit literal l do
4 if c is falsified then
5 q.clear();
6 return c;

7 else
8 q.push(l);
9 assign(l);

10 reason[var(l)]← c;

11 end

12 end

13 end
14 return no conflict ;

for one unassigned literal l, then α′ must assign the variable corresponding to l such that
l evaluates to ⊤. The BCP algorithm consists of repeatedly finding and assigning these
unit literals until it reaches a fixed point. This fixed point can be SAT (i.e., the formula is
satisfied by the current assignment), conflict (i.e., the formula is falsified under the current
assignment), or UNKNOWN (i.e., BCP alone cannot determine the satisfiability of the
input formula under the current partial assignment). Variables assigned through BCP are
said to be implied. The BCP algorithm is responsible for assigning all the additional vari-
ables in the input formula implied by previously assigned variables and identifying clauses
that are falsified by the new variable assignments if such clauses exist.

The pseudocode for the traditional BCP algorithm (which we refer to as Immediate
BCP) is presented as Algorithm 1. For brevity, we omit the details of BCP associated with
maintaining data structures for the two-watched literal scheme, which is an optimization for
the BCP algorithm. When a CDCL SAT solver makes a branching decision on a variable,
that variable (along with its assigned polarity) is added to the propagation queue. In
Immediate BCP, the propagation queue is a First-In-First-Out (FIFO) data structure,
so the algorithm processes variables in the order that they appear in the queue. This
corresponds to lines 1 and 2 of Algorithm 1, where Immediate BCP continually gets the
next variable p from the queue until there are no variables remaining to be processed. Line 3
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iterates through all the clauses and checks whether they become unit clauses after assigning
p. If the clause is falsified by the assignment of p, Immediate BCP clears the propagation
queue and returns the conflicting clause in lines 4-6. Otherwise, the unit literal l is assigned
the value ⊤ and is added to the propagation queue in lines 8 and 9. The value assigned to l
is immediately available to assist further unit propagation. Line 10 records the clause that
is responsible for the propagation – this is used to maintain an implication graph, which
is then used for learning clauses after BCP detects a conflict. Finally, if BCP finishes
propagating everything in the propagation queue without encountering a falsified clause,
it returns no conflict at line 14.

Two-Watched Literal Scheme: The major development in BCP since its inception
in DPLL was the invention of the two-watched literal scheme, introduced as part of the
Chaff SAT solver [64]. The two-watched literal scheme enables the efficient detection of
unit literals and falsified clauses in many practical contexts, thus greatly accelerating the
speed of BCP. The insight behind this scheme is that clauses become unit only when there
is exactly one literal unassigned under a partial assignment. Thus, if the BCP scheme
keeps track of two unassigned literals for each clause, it can efficiently determine whether
or not a clause is unit without examining the entire clause.

2.1.4 Conflict-Driven Clause-Learning (CDCL) SAT Solver

The DPLL class of algorithms pioneered by Davis and Putnam [29, 28] represents the
first significant attempt to automatically solve instances of the SAT problem. The DPLL
algorithm is a backtracking search algorithm, where the algorithm guesses assignments for
variables, computes the implications of its guesses using BCP, and reverts its guesses if
they do not result in a satisfying variable assignment.

After several decades of research work, the field was revolutionized by the introduction
of the CDCL paradigm in the GRASP SAT solver [62], which now serves as the foundation
of most modern SAT solvers. Whereas DPLL implicitly learned that certain variable
assignments led to conflict and did not explore them again due to the backtracking nature
of the search, CDCL built upon DPLL by explicitly learning clauses to block conflicting
variable assignments. This change resulted in improvement over the DPLL algorithm
because learnt clauses could block the underlying reason for the conflict rather than the
entire variable assignment that led to the conflict. Another reason for the performance
improvement of CDCL over DPLL is that learnt clauses can be used as part of the unit
propagation procedure. Pseudocode for the CDCL procedure is presented as Algorithm 2.
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Algorithm 2: Pseudocode for the CDCL Procedure

Input: Boolean formula ϕ
Output: SAT or UNSAT

1 while true do
2 propagate();
3 if conflict() then
4 analyze();
5 if rootConflict() then return UNSAT ;
6 backjump();

7 else
8 if allVariablesAssigned() then return SAT ;
9 maybe forget();

10 maybe restart();
11 decide();

12 end

13 end

Branching In CDCL solvers, variables can become assigned in two different ways: either
by BCP as described in Section 2.1.3, or as a decision when no clauses have been falsified
and there are no unit clauses remaining to be propagated (line 11 of Algorithm 2). In this
second case, the solver essentially guesses the value corresponding to a variable. Variables
assigned this way are said to be decision variables or branch variables, and the combination
of a decision variable and its corresponding value is called a decision literal or branch
literal. The decision level for a variable x is the number of decision variables already in
the assignment trail when x is assigned, excluding x itself.

As evidenced by results from empirical work [64, 57], the order and polarity in which
the solver branches upon variables is a critical factor in the overall running time of the
algorithm. Thus, the design of the decision heuristic (a.k.a. branching heuristic) in CDCL
solvers is the subject of a large body of research in the SAT research community. In
practice, the branching heuristic is often divided into a variable selection heuristic, which
chooses the order of decision variables, and a polarity heuristic, which chooses the truth
value to assign to the decision variable. Some common variable selection heuristics are
VSIDS [64, 8], CHB [56], and LRB [59]. We note that the polarity heuristic in most
SAT solvers is the phase saving heuristic [68], and as a result, the SAT literature often
refers to the variable selection heuristic alone as the branching heuristic, assuming that
that the polarity heuristic is phase saving. In this thesis, we will usually also refer to the
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Previous assignment:
{x9@1,¬x10@2,¬x11@2}

Decision:
x1@3

c1 = (¬x1 ∨ x2)

c2 = (¬x1 ∨ x3 ∨ x9)

c3 = (¬x2 ∨ ¬x3 ∨ x4)

c4 = (¬x4 ∨ x5 ∨ x10)

c5 = (¬x4 ∨ x6 ∨ x11)

c6 = (¬x5 ∨ ¬x6)

c7 = (x1 ∨ x8)

(a) Clause Database

x1 @3

x2 @ 3

x3 @ 3

x4 @ 3

x5 @ 3

x6 @ 3

x9 @ 1

x10 @ 2

x11 @ 2

⊥

c1

c2

c4

c3

c4

c5

c2

c4

c5

c6

c6

(b) Implication graph

Figure 2.1: A clause database and a partial implication graph, focusing on decision level
3. Variable assignments are labeled with their decision levels, and edges are labeled with
their reason clauses. This example was adapted from the original GRASP paper [62].

variable selection heuristic as the branching heuristic. However, where it is relevant, we
will distinguish between the variable selection heuristic and the polarity heuristic.

Implication Graphs The CDCL paradigm improves upon the DPLL algorithm by de-
ductively learning additional clauses when clauses in the formula become falsified. This is
done by maintaining a data structure known as an implication graph, which records the rea-
sons and levels at which variables are assigned, either via a decision or through BCP. When
a clause is falsified, the solver examines the implication graph to determine the reason for
the conflict, and learns a new clause to prevent that conflict from reoccurring [62].

An implication graph is a directed acyclic graph. Every assigned variable is a node in
the graph, where the values of variables come immediately from decisions made by the SAT
solver, or are implied by unit clauses. Directed edges correspond to unit clauses, where
there is an edge from x to y if both x and y appear in a unit clause C, the literal for x
is falsified in C, and y is the unit literal in C. By convention, nodes with no incoming
edges (source nodes) correspond either to unit literals in the input formula or to decisions
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made by the SAT solver. When the solver is in a conflicting state and a clause is falsified,
the corresponding implication graph is called the conflict graph. In this case, there is
also an extra conflict node which corresponds to the falsified clause. An example of an
implication graph is shown in Figure 2.1. In illustrations of implication graphs in this
thesis – particularly, for conflict graphs – to focus on the part of the graph responsible
for the conflict, we typically omit many parts of the implication graph which are set at
decision levels before the conflicting decision level. We will also omit the decision level
labels and edge labels in the remainder of this thesis.

Clause Learning When a conflict arises and a clause is falsified during a solver’s search,
the conflict is typically only caused by a small subset of the decision variables. The major
difference between the DPLL and CDCL algorithms is that where DPLL implicitly blocks
the combination of all the decision variables at the time of conflict, CDCL instead explicitly
learns clauses encoding the underlying reason for the conflict to prevent it from happening
again. In order to do this, the CDCL algorithm performs conflict analysis by examining
the implication graph after BCP discovers a conflict (line 4 of Algorithm 2).

Clauses can be learned using the conflict graph by starting from the conflict node and
exploring backward along the edges, keeping track of a frontier of edges that have not yet
been explored [62]. At any time along this backward exploration, the vertices connected to
the origins of the unexplored edges imply the conflict by unit propagation. Then the partial
variable assignments corresponding to those vertices will always be a falsifying assignment,
so the solver can block that assignment by negating the conjunction of those variables. A
more graphical way to understand the algorithm is to look at the frontier as a “cut” of
the conflict graph, partitioning the vertices into two sets: one which contains vertices on
the same side as the conflict, and another which contains vertices on the same side as the
decision variables. Then for any cut where all the decision variables are on the “left” and
the conflict is on the “right”, the vertices immediately to the left of the cut correspond to
a possible learnt clause.

For any given conflict graph, there may be many different ways to construct a cut of
the graph, and consequently, there are many possible clauses which can be learnt when
the solver encounters a conflict. Hence, there are many different possible clause learning
schemes, but the one which is most popular in current SAT solvers – and which is the only
learning scheme used in this thesis – is the First Unique Implication Point (1UIP) clause
learning scheme [64, 62]. This scheme never explores edges corresponding to variables set at
decision levels before the conflict, so the only remaining question is where to place the cut
at the conflicting decision level. Let d be the decision variable which was set immediately
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before the conflict. The 1UIP scheme works by considering nodes v in the graph where every
path from d to the conflict node passes through v (i.e., unique implication points). Since
there may be multiple such nodes, the scheme selects the one closest to the conflict node
(i.e., the first UIP encountered when exploring backward from the conflict node). Then the
scheme places the cut immediately before this node (i.e., intersecting the incoming edges),
which yields the 1UIP learnt clause.

Backtracking and Backjumping Once the solver has detected a conflict and generated
a learnt clause, it must backtrack and unassign some of the assigned variables until it is no
longer in a conflicting state (line 6 of Algorithm 2). In DPLL, it is only the most recent
decision that leads to the conflict, so it is sufficient to only unassign the variables set at
the conflicting decision level, up to and including the decision variable x which led to the
conflict. In this situation, it is guaranteed that no clauses will be falsified after unassigning
those variables. This policy of only undoing the variable assignments at the most recent
decision level (going from decision level n to decision level n− 1) is known as chronological
backtracking, or simply backtracking. After backtracking, the solver knows that x must be
set to the opposite polarity under its current partial assignment, so it “decides” to set x
to the other truth value. Once the solver has encountered conflicts with both polarities for
x, it backtracks by an additional decision level.

Although the idea of backtracking is similar for CDCL, the implementation is slightly
more complicated: if the learnt clause C only contains a single literal l from the conflicting
decision level n (which is the case for 1UIP learnt clauses), then after backtracking, C
becomes a unit clause, which should propagate l at the next highest decision level n′ in
C, which could then result in additional implications at level n′. Since it is often the case
that n′ ̸= n − 1, it is not sufficient to backtrack by a single decision level – rather, the
solver must undo all the variable assignments at made after decision level n′. This policy
of reverting the variable assignments from multiple decision levels at once is known as non-
chronological backtracking, or backjumping, and is the standard backtracking/backjumping
technique for modern CDCL solvers [62].

Solver Restarts A restart is essentially a backjump to decision level 0: it discards the
existing implication graph and unassigns all the variables set after decision level 0 [33].
However, unlike backjumping, restarts are not triggered by conflicts and learnt clauses.
Instead, restarts are typically triggered by a heuristic condition when the solver is in a
non-conflicting state after BCP (line 10 of Algorithm 2). At first glance, restarts appear
counter-productive, discarding the search effort that had been made by the solver. How-
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ever, restarts only change the variable assignment – they do not affect the other parts of the
solver state; restarts preserve the solver’s learnt clauses and also the data associated with
heuristics, such the ordering prescribed by the branching heuristic. In practice, restarts
allow SAT solvers to quickly solve instances which otherwise require enormous amounts of
computation time [32, 58], and solvers with restarts have been theoretically proven to be
more effective1 than solvers without restarts [54].

Clause Deletion Each clause learnt by a CDCL solver blocks a (partial) assignment,
thereby reducing the size of the solver’s search space. Unfortunately, storing and using
learnt clauses is not free – there is a memory cost required to store learnt clauses, and even
ignoring the details of real-world computer architectures, there is a run time cost associated
with checking each clause for propagation during BCP. In the worst case, CDCL solvers
may have to learn exponentially many clauses [25, 27], which quickly becomes impractical
for solver implementations. Fortunately, many learnt clauses are only useful in a “local”
section of the solver’s search, and can be forgotten after the solver no longer needs them,
thereby freeing up computational resources for additional learnt clauses. In some cases, it
may be productive to forget learnt clauses even if they are useful in multiple parts of the
search, as long as they can be quickly re-learnt.

For these reasons, modern CDCL SAT solvers frequently perform clause deletion, dis-
carding large numbers of learnt clauses according to clause deletion heuristics (line 9 of
Algorithm 2). Clause deletion heuristics must be designed carefully: if they delete the
clauses the solver needs in order to progress, the solver may enter a loop of deriving useful
clauses, deleting them, and re-deriving the useful clauses. Unfortunately, it can be difficult
to determine a priori which learnt clauses are only useful in the short term, and which
will be useful in the solver’s future search. The approach taken for this problem in most
modern CDCL solvers is to define some measure of clause “quality” and then use it to
determine which learnt clauses can be deleted, where “high quality” clauses are kept and
“low quality” clauses are discarded. We note that only learnt clauses are deleted – remov-
ing the original input clauses changes the meaning of satisfiability, and it is non-trivial to
preserve the original formula’s satisfiability or unsatisfiability if its clauses are deleted.

Measures of Clause Quality There are two different approaches to defining clause
quality: the first is to use theoretical arguments for situations where clauses are useful,
and the second is to collect data during solver execution to predict whether clauses will

1The propositional proof systems corresponding to solvers with restarts are exponentially stronger than
those without restarts.
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be useful in the future. A natural property to use as a measurement of clause quality
is the size of the clause (i.e., the number of literals in the clause). Intuitively, shorter
clauses prune away a larger section of the search space, so shorter clauses are “higher
quality” clauses. A metric with similar intuition to clause size is the concept of Literal
Block Distance (LBD), which is defined as the number of distinct decision levels appearing
in a clause at the time that it is learnt by the solver [4]. Intuitively, clauses which can
be falsified by a smaller number of decisions are more useful than clauses which can only
be falsified by a large number of decisions, so clauses with small LBD values are “higher
quality” clauses. Another way to select “high quality” clauses is to assume that clauses
which have proven to be useful recently in a solver’s search will continue to be useful in
the future, using the solver’s actual behaviour to determine the quality of clauses. One
possible approach to this is to extend the idea of VSIDS [64] from variables to clauses
resulting in the idea of clause activity [31].

2.1.5 Propositional Proof Systems

Directly studying SAT solvers from a theoretical perspective can be quite difficult: SAT
solvers tend to be very complex algorithms with many moving parts, and this makes them
difficult to model mathematically. As an abstraction, theorists study SAT solvers from
the lens of proof complexity : the execution of SAT solving algorithms can be modelled
using proof systems, and then proving formal theorems about the proof systems allows for
statements about the behaviour of the corresponding algorithms. In general, proof systems
consist of axioms and inference rules for deriving new facts from old ones, but in this thesis,
it is sufficient to think of proof systems as rules for deriving additional clauses.

Then a proof for a clause is the series of inference rule statements required to derive
it. We will primarily be concerned with proofs for the empty clause, which corresponds
to an unsatisfiable formula (“refutation” proofs). Some concepts which are often used to
discuss proof systems are “strength” and “automatability”. The idea of strength is used to
compare different proof systems: if two proof systems are able to prove that a formula is
unsatisfiable, the one which requires fewer proof steps – or equivalently, the one with the
smallest proof size – is said to be “stronger” than the other. The idea of automatability
refers to the difficulty of searching for proofs in a proof system, or the time complexity
required for a deterministic algorithm to find a proof that is at most polynomially larger
than the shortest possible proof [7]. If any proof in proof system A can be converted into
a proof in proof system B in at most polynomial time, A is said to “p-simulate” B. If A
p-simulates B and B p-simulates A, then A and B are said to be “p-equivalent.”
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Resolution In CDCL, the clause learning procedure can be modelled by applications
of the resolution inference rule, which is a rule for deriving a new clause (known as the
resolvent) from two existing clauses. In particular, consider two clauses CA and CB where
CA contains a literal l and CB contains the negation of the literal, ¬l). Whenever such a
pair of clauses exists, resolution permits the derivation of the clause containing the literals
(CA ∪ CB) \ {l,¬l}.

(a1 ∨ a2 ∨ ... ∨ an ∨ l) (¬l ∨ b1 ∨ a2 ∨ ... ∨ bm)

(a1 ∨ a2 ∨ ... ∨ an ∨ b1 ∨ a2 ∨ ... ∨ bm)
Resolution

The general resolution proof system (Res) is the proof system which contains resolution
as the only inference rule. Res is a sound and complete refutation proof system. Here,
sound means that the resolvent is always a logical consequence of the two input clauses,
and complete means that if a formula is unsatisfiable, Res is able to derive the empty
clause after finitely many applications of the resolution proof rule) [71].

The clause learning scheme described in Section 2.1.4 can be viewed as a series of appli-
cations of the resolution proof rule: performing resolution on all the clauses corresponding
to edges on the conflict side of the implication graph results in the same clause as the learnt
clause generated by the clause learning scheme. Since all the clauses learnt by CDCL can
be modelled by an equivalent series of resolution steps, the time complexity of the CDCL
algorithm on an input of size n is bounded by the size of the smallest possible Res proof
for that same input. In fact, under some assumptions on branching and restarts, CDCL is
known to p-simulate general resolution [69]. Unfortunately, despite this promising result,
it turns out that unless P = NP , resolution is not automatable [2].

Extended Resolution Another proof system which is closely related to Res is the
Extended Resolution (ER) proof system discovered by Tseitin [83], which introduces one
additional inference rule (known as the extension rule) in addition to resolution: it allows
for extension variables (also known as new variables) to be introduced into the formula by
the addition of clauses encoding their definitions, where new variables x are defined as being
equivalent to a disjunction of two literals a and b. This is done by converting the formula
x↔ (a∨b) to CNF, which results in the addition of the clauses (¬x∨a∨b)∧(x∨¬a)∧(x∨¬b).
Some work in the literature uses an alternative definition of the extension rule, where new
variables can be defined to be equal to any formula over existing variables. However, this is
not necessary and does not affect the theoretical strength of ER: a definition over a large
formula can be broken down into smaller definitions by introducing additional extension
variables. These two variants of ER are p-equivalent.
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Since the inference rules in ER comprise a strict superset of the inference rules in Res,
it is obvious that ER p-simulates Res: every Res proof is already a ER proof. However,
not every ER proof is a Res proof, and Res does not p-simulate ER. In fact, ER is
exponentially stronger than Res; i.e., there are formulas where the smallest Res proof is
exponentially larger than the smallest ER proof [34, 27]. Despite its conceptual simplicity,
ER is as strong as the strongest known propositional proof systems [52]. Unfortunately
for SAT solver developers, ER p-simulates Res and Res is not automatable, so ER is also
not automatable.

2.1.6 Empirical Evaluation

The performance of SAT solvers is typically compared whenever changes are made to their
source code, heuristics, or parameter values. In this thesis, as well as in much of the work
in the SAT community, solvers are compared using cactus plots and PAR-2 scores.

Cactus Plot Results of experiments are typically visualized using cactus plots. To
generate a cactus plot for a solver, the solver is run on every instance in a benchmark, and
the computation time required to solve each instance is recorded. If a solver runs out of
time, the recorded time is set equal to the time limit. Then, the instances are sorted in
ascending order according to the computation time, and each instance is assigned an index
corresponding to its position in the sorted order. A point is plotted for each instance,
where the x-axis corresponds to the solving time, and the y-axis corresponds to the index.
Then, the points in the plot can be interpreted as the number of instances that were solved
for a specific amount of computation time. Finally, although the data is discrete, data
points with consecutive indices are often joined by straight lines. An example of a cactus
plot is presented as Figure 2.2. Curves which are higher up and further to the left indicate
stronger solvers.

PAR-2 Score Penalized Average Runtime (PAR) scores [12] are the standard metric
used to compare SAT solver performance, both in the empirical SAT literature and at the
SAT competition. In both these contexts, SAT solvers are not permitted to run indefinitely
– there is a CPU time limit which is enforced for each problem instance. A PAR score is
essentially a weighted average of a SAT solver’s running time across an entire benchmark; it
tries to reward instances where the SAT solver successfully solved the problem and penalize
instances where the SAT solver ran out of time. For example, using a time limit of 5000
seconds, the penalty is 2 × 5000 = 10000. Therefore, the PAR-2 score for each solver is

18



Figure 2.2: A cactus plot for the CaDiCaL and MapleLCM SAT solvers on the 400 instances
from the main track of the SAT 2022 competition using a 5000 second time limit.

computed as follows, where n is the total number of instances and ti is the time taken by
the solver to solve instance i:

PAR-2 =
1

n

n∑
i

{
ti if instance i was solved

10000 otherwise
(2.1)

Computational Environment All the experiments in this thesis were conducted using
a time limit of 5000 seconds of CPU time on Intel E5-2683 v4 Broadwell @ 2.1GHz CPUs
on the Graham computing cluster [67] for every solver on each instance. The time limit
was chosen according to the standard for the SAT competition [21].
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2.2 Machine Learning

Machine learning is a field of computer science which is broadly concerned with learning
patterns from data, typically for either classifying data or making predictions about fu-
ture data. Machine learning techniques have been wildly successful in tackling difficult
problems in many different domains, including formal logic and the development of SAT
solvers [59]. Although there are many approaches to machine learning, we will focus solely
on reinforcement learning in this thesis.

2.2.1 Reinforcement Learning

At its core, reinforcement learning is a tool for solving optimization problems, where there
is some notion of an “optimal” or “best” solution. Under the reinforcement learning
paradigm, these optimization problems are modelled as a series of interactions between an
agent and its environment, where the agent chooses between actions depending on the state
of its environment, and the environment responds to these actions by some modification
in its state. As suggested by its name, the key idea in reinforcement learning (RL) is anal-
ogous to the idea of reinforcement in psychology [82]. When the agent chooses an action
that causes a “desirable” change in its environment, it receives positive reinforcement as
feedback, rewarding its good behaviour. Similarly, when the agent chooses an action that
causes an “undesirable” change in its environment, it receives negative reinforcement, pun-
ishing its bad behaviour. In reinforcement learning, the positive and negative reinforcement
are often collectively called the reward.

The Multi-Armed Bandit Problem Although there are many sophisticated problems
and techniques in RL, we only consider a very simple formulation of RL problems in
this thesis. In particular, we consider the Multi-Armed Bandit (MAB) problem, and
introduce it with the classical motivating example [79]. Consider a gambler (a “bandit”)
with access to n slot machines (“arms”), each of which rewards different amounts of money
according to different probability distributions. When the gambler plays a slot machine,
they sample from that machine’s reward probability distribution and receive a sum of money
corresponding to the sampled value. The goal of the gambler is to maximize their total
winnings by playing the slot machines with the best expected outcomes.

However, the rewards and probability distributions for each slot machine are not known
to the gambler ahead of time, so the gambler must choose between exploring new options
and exploiting options that have already been explored. Specifically, the gambler needs to
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decide on which slot machines to play, how many times to play each of them, and the order
in which they are played. As a further complication (and variation of the MAB problem),
the reward distributions for each slot machine may also change over time.

2.2.2 Thompson Sampling

There are many approaches to the MAB problem, and some variations of the problem are
known to have optimal strategies (i.e., strategies which maximize the expected value of the
total long-term rewards). One strategy is the Thompson sampling method [80, 81], where
the intuition is to choose between the arms proportionally to the probability that each arm
is optimal [75]. This is done by maintaining a continuous probability distribution between 0
and 1 for each arm, where 1 indicates that the arm is optimal, and 0 indicates that the arm
is not optimal. Specifically, the Thompson sampling method works by randomly sampling
values from beta distributions (discussed below), choosing the arm with the largest sampled
value, and updating the probability distribution for the chosen arm based on the rewards.

Beta distribution Beta distributions constitute a family of continuous probability dis-
tributions between 0 and 1, parameterized by two “shape parameters” α and β, which can
take any positive real value. The probability density function of the beta distribution is
given by the following equation, where Γ(z) is the gamma function [46]:

f(x;α, β) :=
Γ(a+ b)

Γ(a)Γ(b)
· xα−1(1− x)β−1 (2.2)

Note that the shape of this function is given by xα−1(1−x)β−1, and the coefficient involving
the gamma function is just a constant normalization factor.

One property of this distribution which is crucial for Thompson sampling is that if the
prior probability distribution is a beta distribution, then the posterior distribution after
making additional observations from new data is also a beta distribution, just with differ-
ent parameter values. This means that updating the priority distribution for Thompson
sampling is very convenient – it can be done simply by updating the parameter values.
In particular, one way of interpreting the shape parameters is to let α denote the total
number of “successes”, and to let β denote the total number of “failures”.

Some other important properties of this distribution which are relevant to this thesis are
that the mean of the distribution is given by α

α+β
[46], and the variance of the distribution

is given by αβ
(α+β)2(α+β+1)

[46]. Observe that as the number of successes increases, the mean
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of the distribution moves toward 1, and as the number of failures increases, the mean of the
distribution moves toward 0. Furthermore, as the number of trials increases, the variance
in the probability distribution decreases, approaching 0 as the number of trials grows large.

2.2.3 Exponential Moving Average

Exponential moving averages (EMA) are a type of weighted moving average in which the
weights decrease exponentially. In this thesis, we only consider EMA in the context of time-
series data, where EMA is used to place greater emphasis on recent data. The intuition
for using EMA is that old data might be misleading when considering systems that change
over time, so the influence of each data point in our analysis should decrease as the data
grows older. Consider a list of data: d0, d1, ..., dn, where dt is the datum for time-step
t. There are two different formulations of EMA, which can be simply stated in terms of
recurrences. Using a decay value r, these recurrences are as follows:

EMA0 = d0

EMAt+1 = r · EMAt + (1− r) · dt+1

(2.3)

EMA0 = d0

EMAt+1 = r · EMAt+1 + dt+1

(2.4)

In the special case where every di takes on an equal value d, the final values of EMAn

and EMAn can each be computed using the equation for a sum of a geometric series. This
yields the following expressions for EMAn and EMAn:

EMAn =
d · (1− rn)

1− r

EMAn = d · (1 + rn − rn−1)

(2.5)

Then, considering the largest value of di and taking the limit of these expressions as n
tends to infinity yields upper bounds on the maximum possible values of the exponential
moving averages, denoted here as EMAsup and EMAsup.

EMAsup =
d

1− r

EMAsup = d
(2.6)
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Chapter 3

Priority-Based Algorithms for
Boolean Constraint Propagation

The design and implementation of efficient Boolean Constraint Propagation (BCP) engines
is one of the key reasons responsible for the remarkable success of modern Conflict-Driven
Clause-Learning (CDCL) SAT solvers in solving practical problem instances obtained from
real-world applications. It is well known that a significant portion of a modern SAT
solver’s time is spent performing BCP – often close to 80% of the total solving time [64]
– so it is essential for solvers to perform BCP as efficiently as possible. Consequently,
considerable effort has been invested into improving the performance of BCP. Perhaps the
most important innovation in this context is the development of the two-watched literal
scheme [64], which greatly increased the rate at which variables are propagated without
sacrificing the correctness of the propagation algorithm.

Despite the substantial research that has already gone into the development of BCP,
there is still a lot of room left to be explored in terms of the design of practical BCP algo-
rithms. Notably, modern SAT solvers improve upon the heuristics used in the scheme and
the implementation of the scheme itself, but the underlying algorithm remains the same.
We observe that there are two features that all previously proposed BCP algorithms share:
namely, they perform assignments immediately and propagate variables in-order. More
precisely, by immediately, we mean that variables are assigned as soon as the correspond-
ing unit clause is discovered, and by in-order, we mean that variables are propagated in
the order in which they are inserted on the assignment trail (viewed as a FIFO queue) by
the solver during its execution. We call such algorithms “Immediate BCP”. As we show in
this work, there are scenarios where such policies may not be the optimal way to propagate
variables in a CDCL SAT solver. In certain settings, it may be prudent to delay assigning
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a variable or perform propagation based on an order different from the policy favoured by
current BCP engines.

Before describing Delayed BCP, we first formally characterize the concept of the variable
assignment lifecycle, which is essentially a state transition diagram whose states correspond
to the stages a variable may be in during a solver’s execution, and whose transitions corre-
spond to solver actions (e.g., backjumping). We believe that this explicit characterization
enables a clearer understanding – and consequently, exploration – of novel designs of BCP
algorithms. The idea that the variables of an input Boolean formula may go through vari-
ous states during a solver’s execution, such as assigned or unassigned, is widely understood
by the SAT community. We add to this by identifying a new state, namely, queued (i.e.,
the variable is stored in a queue and is ready to be propagated), that had previously not
been explicitly recognized. We also identify the solver actions that may trigger transitions
(e.g., backjumping) between the various variable states. We describe these transitions and
describe the variable states more precisely in Section 3.1.

A queued variable is one whose truth value has been determined through unit prop-
agation but has not yet been processed by BCP. In particular, it is possible to design
a BCP algorithm such that a queued variable does not contribute to setting additional
variables’ values during BCP. Put differently, depending on the order in which the queued
variables may be subsequently assigned or processed, one can get very different kinds of
BCP algorithms, such as delayed and out-of-order as described below.

3.1 Definitions

3.1.1 Variable Assignment Lifecycle

Based on our understanding of Immediate BCP, we can identify at least four major states
which variables transition through in a CDCL solver: dormant, queued, processing,
and processed. Further, we observe that the variables transition between these states
whenever the solver executes a major action such as backjumping or BCP. The resultant
transition diagrams, or variable assignment lifecycles, are helpful in understanding how the
Immediate BCP and Delayed BCP algorithms differ from each other. Below, we provide
more formal definitions for the four major states that variables can be in.

Definition 3.1. Queued: A variable xi is queued if xi is stored in the propagation queue.
Depending on the BCP algorithm, queued variables may be either assigned or unassigned;
i.e., it is possible to have queued variables which do not assist in unit propagation.
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The propagation queue may be either a FIFO or priority queue. Note that the propa-
gation queue holding queued variables does not have to be an explicit data structure when
implemented in practice – in particular, FIFO propagation queues are commonly stored
implicitly as part of the assignment trail.

Definition 3.2. Processing: A variable xi is processing if xi is currently being unit
propagated. When xi is processing, there may be literals that remain to be queued or
assigned by unit propagation from xi.

Definition 3.3. Processed: A variable xi is processed iff xi has been fully unit propa-
gated. This means that either

(a) BCP has discovered a falsified clause containing xi, or
(b) All the literals unit propagated by xi are either queued or assigned.

Definition 3.4. Dormant: A variable xi is dormant if it does not fall in any of the
above states. In particular, a dormant variable xi does not have any truth value at all, and
it is not stored in the propagation queue.

3.1.2 Priority, Propagation, and Assignment Orders

We formally define various terms such as immediate, delayed, in-order, and out-of-
order to more precisely characterize the behaviour of BCP and explain our proposed
methods. To distinguish between the internal state of a SAT solver and the intuitive idea
of prioritization, we also define three different orderings of the variables: priority order,
propagation order, and assignment order.

Definition 3.5. Immediate and delayed variable assignment: We say that a BCP algo-
rithm performs immediate variable assignment during its execution if it assigns a variable
immediately after discovering a corresponding unit clause1. Otherwise, we say that the
BCP algorithm performs delayed variable assignment.

Definition 3.6. In-order and out-of-order variable propagation: We say that a BCP
algorithm performs in-order variable propagation if it processes and propagates variables
in the same order that variables appear on the assignment trail. Otherwise, we say that
the BCP algorithm performs out-of-order variable propagation.

1This is sometimes called greedy variable assignment in informal contexts.
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in FIFO queue
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Backjump/Restart
BCP
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Decision/BCP

Backjump/Restart

Backjump

Figure 3.1: The traditional variable assignment lifecycle under Immediate BCP, showing
how variables move between the different states as they are assigned and unassigned during
a solver’s search. A variable x transitions from “processing” to “dormant” if a conflict
is discovered while propagating x or x. A variable y transitions from “processed” to
“dormant” if it is unset during a restart or during a backjump after a conflict. A variable z
transitions from “processed” to “queued in FIFO queue” if z or z is the asserted literal in
a conflict.

Definition 3.7. Variable priority order: For a given call to BCP, the variable priority
order is the desired ordering for propagating variables. This ordering can be either static
or dynamic, defined explicitly by some heuristic (e.g., orders defined by variable selection
heuristics such as VSIDS or LRB), or implicitly by the structure of the BCP algorithm.

Definition 3.8. Variable propagation order: For a given branch in a SAT solver’s
recursive search tree, the variable propagation order is the order in which variables
are processed by the BCP algorithm. This corresponds to the order in which variables are
popped off the propagation queue.

Definition 3.9. Variable assignment order: For a given branch in a SAT solver’s
recursive search tree, the variable assignment order is the order in which variables are
assigned, either by BCP or the variable selection heuristics. (It turns out that for all BCP
algorithms we consider, the order in which variables are inserted into the assignment trail
exactly corresponds to the variable assignment order.)

We note that there is a subtle difference between the propagation order and the priority
order. While it is true that the priority order affects the propagation order, setting a
priority order does not completely determine the propagation order. This is because the
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¬c
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e

Figure 3.2: The implication graph for the formula F = (b ∨ ¬c) ∧ (a ∨ b ∨ c) ∧ (c ∨ d) ∧
(¬a ∨ e) under the initial partial assignment α = {¬b}.

propagation order depends on the literals that are currently available to be propagated.
For example, in Figure 3.2, if we choose the priority order (e, a, b, c, d) and use immediate
variable assignment, the first variable to be propagated must be b regardless of the priority
order, since it is initially the only assigned variable. Since c and a are assigned as a result
of propagating b, BCP can choose to propagate either a or c. Since a occurs before c in
the chosen priority order, a is propagated next, assigning e. Similarly, e is propagated
before c, which is propagated before d. Then the propagation order for this example is
(b, a, e, c, d). If we had used delayed variable assignment instead, the propagation order
would be (b, c, a, e, d). Observe that both these propagation orders are different from the
chosen priority order.

Observe also that after propagating the variables b and c from the clauses in the shown
formula, the solver has two choices: it can either check for variables implied by a, or check
for variables implied by d. The existence of this choice presents us with an opportunity to
design novel BCP algorithms, and is the focus of this chapter.

3.2 New BCP Algorithms

In this section, we describe the Delayed BCP algorithm in detail, starting by motivating
the idea of prioritization. We note that that one could envision a variety of BCP methods
by using different priority orders, or by further modifying the variable lifecycle diagram.

3.2.1 Motivation for Priority Orders in BCP

To motivate our technique, we examine the role of BCP in CDCL SAT solvers. There are at
least two purposes that BCP serves: first, it seeks to discover conflicts via unit propagation,
and second, it constructs the conflict graph to aid clause learning. For example, consider

27



the Immediate BCP method, which immediately assigns variable values upon discovering
corresponding unit clauses (instead of merely queuing values for assignment at a future
point in time). It goes without saying that this greedy assignment of values to variables
may not always be the fastest way of discovering conflicts or necessarily result in “optimal”
ones. Having said that, this approach does work well in many settings, and in the absence
of any other heuristic, it has remained the mainstay in BCP design.

However, irrespective of how one defines clause quality, it is fair to say that the way Im-
mediate BCP constructs conflict graphs may not always result in learning optimal clauses.
Therefore, it behooves us to explore different ways of constructing conflict graphs than the
default one used by modern CDCL solvers.

One way to change the way conflict graphs are constructed by solvers is to change
the order in which they assign and propagate variables, relative to the current Immediate
BCP approach. A very natural order to consider here is the priority order as defined by
branching heuristics such as VSIDS [64], LRB [59], CHB [56], or VMTF [72]. We already
have considerable empirical evidence that branching in the order defined by these branching
heuristics works well for many practical applications. Hence, it is natural to consider using
them for priority BCP as well.

The design of our Delayed BCP algorithm takes advantage of existing priority orders
as defined by these branching heuristics, and our empirical results bear out the hypothesis
that priority orders can be more effective relative to the default propagation order used by
the Immediate BCP method. Further, our algorithms are designed to take advantage of
any priority order that a solver developer or user may choose to define.

3.2.2 Design Considerations

A subtle factor which one needs to consider when designing priority-based BCP algorithms
is that simply selecting a variable priority order does not fully prescribe a variable assign-
ment order or a variable propagation order. The clause learning algorithm used by modern
CDCL SAT solvers imposes an invariant on the assignment trail: namely, variables must
appear on the assignment trail in topological order; i.e., if a variable x implies y, x must
appear before y on the assignment trail. BCP determines the order in which variables are
assigned, and thus, the order in which they appear on the assignment trail. Modifying the
BCP algorithm to perform variable propagation according to a given priority order, while
respecting this assignment order invariant, presents us with at least two choices, each of
which results in a different priority-based BCP algorithm. The first choice is to propagate
variables in an order different from the assignment order, and the second choice is to assign
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variables in an order different from the order in which the corresponding unit clauses are
discovered by BCP.

We further note that our proposed algorithms can be used in conjunction with any
priority order; i.e., the desired priority ordering of the variables can be selected indepen-
dently of the BCP algorithm. Thus, the concept of priority-based BCP introduces two
different design spaces: the selection of the priority order, and the architecture of the BCP
algorithm itself. In this work, we choose to focus on the design on the BCP algorithm,
while leveraging the priority orders as defined by branching heuristics such as VSIDS [64]
or LRB [59].

3.2.3 Delayed BCP

One way of modifying the Immediate BCP algorithm to respect a variable priority order is
to delay the assignment of a variable until the point at which BCP processes that variable
(delayed variable assignment), but propagate variables in the order that they are assigned
(in-order variable propagation). This choice delays the detection of conflicts that would
otherwise have been found under immediate variable assignment, but ensures that the
propagation order is still a topological order with respect to the implication graph. It is
only after a variable has been assigned a value that it can contribute to unit propagation.

Therefore, this choice means that detected conflicts are caused by variables at the con-
flicting decision level that appear earlier in the variable priority order, since only assigned
variables can participate in conflicts. We note that variables set at earlier decision levels
may participate in conflicts regardless of their priority.

We refer to the algorithm resulting from these choices as Delayed BCP, which we
present as Algorithm 3. This algorithm replaces the traditional FIFO propagation queue
with a priority queue, and decision and asserted literals are implicitly given maximal pri-
ority. Where this algorithm differs significantly from Immediate BCP is in how literals are
assigned. This difference can be understood from Delayed BCP’s variable lifecycle diagram
(Figure 3.3), where the “queued” state has been moved to the “unassigned” category as
compared with Immediate BCP’s lifecycle diagram. Since variables are queued but not
assigned, this means that they do not assist in unit propagations until they are popped
off the propagation queue and assigned. This means that Delayed BCP requires more
computational effort to detect conflicts than Immediate BCP.

Delayed BCP introduces an additional complication as compared with Immediate BCP:
since variable assignment is postponed, Delayed BCP must check the propagation queue
when searching for conflicts and before adding a variable to the queue. In practice, instead
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Algorithm 3: Delayed BCP

Input: Propagation queue (priority queue) pq.
Output: A falsified clause if one exists.

1 while pq.size() > 0 do
2 p← pq.pop();
3 assign(p);
4 foreach clause c rendered unit by p, resulting in unit literal l do
5 if c is falsified then
6 pq.clear();
7 return c;

8 else if pq.contains(−l) then
9 assign(−l);

10 pq.clear();
11 return c;

12 else if not pq.contains(l) then
13 reason[var(l)]← c;
14 pq.push(l);

15 end

16 end

17 end
18 return no conflict ;

of performing a search on the queue, it is more effective to keep a separate data structure to
check (in constant time) whether a variable has been queued, and the value with which it
was queued. Additionally, when a conflict occurs as a result of a variable in the propagation
queue, the conflicting literal must be assigned and placed on the assignment trail.

We summarize this algorithm with the following invariant, where v1 and v2 are variables:

Invariant 3.10. if v1 occurs earlier in the priority order than v2, and both v1 and v2 are
available for assignment, it must be true that v1 is assigned and processed before v2 is
assigned.

3.2.4 Other Possible BCP Variants

Another choice for modifying the traditional BCP algorithm to respect a variable priority
order is to process variables in an order different than they are assigned (out-of-order
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Figure 3.3: The lifecycle of a variable under Delayed BCP. The only conceptual differ-
ences from the variable lifecycle under Immediate BCP are that the “queued” state has
moved from being assigned to being unassigned, and that the propagation queue is now a
priority queue.

variable propagation), while assigning variables immediately once suitable unit clauses
have been discovered (greedy variable assignment). This has the benefit that conflicts can
be detected as soon as possible, but the detected conflicts might involve variables that occur
very late in the priority order. Essentially, the only difference between Immediate BCP and
Out-of-Order BCP is that the latter uses a priority queue instead of the traditional FIFO
queue. This enables Out-of-Order BCP to propagate variables with respect to a priority
order, whereas Immediate BCP cannot. One subtlety to consider here is that decision
literals and asserted literals should always be assigned and propagated before any of the
literals they imply, and thus they should always be considered to have maximal priority.

We summarize this algorithm with the following invariant, where v1 and v2 are variables:

Invariant 3.11. if v1 occurs earlier in the priority order than v2, and both v1 and v2 are
available for propagation, it must be true that v1 is processed before v2 is processed.

Although we have characterized the Out-of-Order BCP algorithm, we do not explore it
in detail in our empirical work because preliminary experiments using an implementation
on the MapleLCM [60] solver indicated a severe degradation of solver performance across all
considered benchmarks. Moreover, out-of-order propagation vastly complicates the imple-
mentation of the technique in the CaDiCaL [10] solver, which relies on in-order propagation
as an invariant for its specialized conflict analysis procedure.

One could also envision a variant of BCP with a further modification of the variable
lifecycle diagram to add a transition from “Processing” to “Queued”, where the BCP
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algorithm switches between propagating different variables, and variables can go back
and forth between “Processing” and “Queued” multiple times before all their implications
have been propagated. However, we do not explore this idea at all due to its conceptual
complexity – it is not clear how this idea would be beneficial, and there is no obvious
mechanism for deciding when to partially process a variable and when to fully process it.

3.3 Priority-Based BCP with RL

In our empirical work, we observe that the various algorithms for BCP do not perform
equally well on all instance classes. In particular, Immediate BCP appears to perform the
best on SAT competition instances, whereas Delayed BCP appears to perform the best
on SATcoin instances. This motivates a natural question: can we switch between the
different BCP variants to improve the performance of the solver in general? We approach
this problem using Reinforcement Learning.

We would like to learn a policy for choosing when to choose Immediate BCP over
Delayed BCP, or vice versa. Ideally, this would be a function which takes the current
state of the solver as input, and outputs the best version of BCP to use for the next call
to unit propagation (i.e., the version of BCP which results in the highest-quality learnt
clauses). Unfortunately, learning and using this ideal function is not practical: considering
the entire state of the solver is unfeasible in practice, and it is difficult to separate the
effects of different versions of BCP when the current state of the implication graph is
affected by all the versions of BCP used previously. Therefore, we consider a significantly
simplified approximation of the ideal function: whenever the solver restarts (i.e., when the
decision level is 0), taking the recent performance of each version of BCP as input, output
the version of BCP which will result in the highest-quality learnt clauses until the next
time the solver restarts.

Assuming that SAT solvers perform local search (which is encouraged by branching
heuristics like VSIDS [64]), we know that recent solver behaviour is a good predictor for
future solver behaviour. Therefore, we can predict the best version of BCP to use by
switching between the different BCP algorithms and keeping track of solver performance
using each algorithm. There are multiple ways to measure solver performance, but we
consider two heuristics, both of which resulted in approximately the same performance in
our preliminary testing. The first heuristic is to use the average LBD [4] of learnt clauses
during each period between restarts as a proxy for measuring solver performance. LBD
was chosen here because it is often used to measure the quality of learnt clauses in the SAT
literature. The second heuristic we tested is the average number of propagations resulting
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Algorithm 4: Decayed Thompson Sampling Algorithm

Input: The BCP variant actionprev used in the previous period, and a Boolean
value success indicating whether actionprev resulted in a success.

Output: The variant of BCP actionnext to use in the next period.
// Decay all shape parameters

1 for each actioni ∈ actions do
2 alphas[actioni]← alphas[actioni]× decay;
3 betas[actioni]← betas[actioni]× decay;

4 end
// Update the beta distribution of the previous action

5 if success then alphas[actionprev]← alphas[actionprev] + 1 ;
6 else betas[actionprev]← betas[actionprev] + 1 ;
// Select the action with the largest sampled value

7 samplenext ← 0;
8 actionnext ← null;
9 for each actioni ∈ actions do

10 samplei ← samplebetadistribution(1 + alphas[actioni], 1 + betas[actioni]);
11 if samplenext ≤ samplei then
12 samplenext ← samplei;
13 actionnext ← actioni;

14 end

15 end
16 return actionnext

from each decision. The intuition for this metric is that learnt clauses are useful if they
constrain the search space (i.e., by forcing additional propagations). For brevity, we choose
to use LBD for all the results presented in this thesis.2

This selection problem is an optimization problem – we want to find a sequence of
BCP variants which maximizes the performance of the solver as measured by some proxy
metric M . We model this optimization problem as an instance of the Multi-Armed Bandit
problem with two arms, where the decision agent chooses between two actions, each of
which corresponds to a choice of BCP algorithm. We approach this problem using the
Thompson sampling method [80, 81] to balance the exploration of the different options
with the exploitation of options which are known to perform well. Upon each solver

2Propagations per decision (PPD) is still a good metric: a variant of our solver using this idea, named
MapleCaDiCaL PPD 500 500, achieved third place in the 2023 SAT Competition [23].
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restart, we use the Thompson sampling method to select the variant of BCP to use until
the next solver restart. During this period, we measure the average value of the metric M ,
and at the end of the period, we compare it with the average historical value of M , which is
represented using a exponential moving average (Equation 2.3). If the most recent average
value of M is larger than the historical value of M , we say that the most recent decision
was a success, and give the decision agent a reward for that decision by incrementing the
α parameter for the corresponding beta distribution. Otherwise, the most recent decision
was a failure, and we increment the β parameter of the beta distribution instead.

Finally, we modify the Thompson sampling method by applying a multiplicative decay
to the α and β shape parameters for each beta distribution after each restart (Equation 2.4).
This modification is made out of the concern that over a long solver run, the decision
agent might settle on a single option and never explore other options, which is problematic
because different variants of BCP could be useful at different stages of the search, especially
as the search space evolves as a result of clause learning. Without this decay, the shape
parameters could grow without bound, and the decision agent could eventually get stuck
picking a single option. The inclusion of the decay means that the shape parameters are
bounded, which means that there is always a chance for the decision agent to explore other
options. We present the modified Thompson sampling algorithm as Algorithm 4.

Consider the scenario where the solver always chooses the same variant of BCP, and
where every decision is a success. The value of α resulting in the limit of this process is
clearly an upper bound on all the possible values of α. Similarly, this gives an upper bound
on the value of β when we assume that every decision is a failure. Let 0 < r < 1 be the
decay value for the shape parameters. By Equation 2.6, the upper bound is 1

1−r
, which is

a constant. Therefore, the shape parameters α and β are bounded between 0 and 1
1−r

.

3.4 Empirical Evaluation

In this section, we show that Delayed BCP performs better than Immediate BCP on the
SATcoin benchmark, and that the propagations performed by Delayed BCP are of “higher
quality” than the propagations performed by Immediate BCP. We further demonstrate
that our chosen priority order performs better than chance, and that our reinforcement
learning method is able to learn a policy for switching between the BCP variants which
performs better than chance.

To evaluate the efficacy of Delayed BCP as compared with Immediate BCP, we conduct
a large number of experiments and compare the computation times required to solve a
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Solver Description
CaDiCaL Unmodified CaDiCaL solver
CaDiCaL dbcp branch order Delayed BCP using the branching priority order
CaDiCaL dbcp rnd order Delayed BCP using a random priority order
CaDiCaL dbcp rl switch RL switching between BCP variants
CaDiCaL dbcp rnd switch Random switching between BCP variants

Table 3.1: Summary of solvers used for the empirical evaluation of Delayed BCP.

broad variety of benchmark instances. Since the focus of our method alters the behaviour
of BCP, we also measure the number of propagations per second to estimate the overhead
associated with maintaining the additional data structures of each technique.

3.4.1 Experimental Setup

Solvers To determine whether changes in solver performance due to our methods gen-
eralize across different CDCL SAT solvers, we chose to implement our methods on three
different solvers: MapleSAT [55], MapleLCM [60], and CaDiCaL [10]. CaDiCaL is currently one
of the best SAT solvers across all classes of problem benchmarks, so improvement against
this solver represents an improvement in the state of the art. Although the MapleSAT and
MapleLCM solvers are no longer considered state-of-the-art, we include them in our compar-
ison because their source code differs significantly from CaDiCaL. In our experimentation,
we observed similar changes in performance across all solvers with and without our pro-
posed priority BCP methods, which gives us greater confidence in the robustness of our
technique. However, for clarity, we only present the results for the CaDiCaL-based solvers
in the plots and tables in the main body of the thesis. In our experiments, we implement
several variations of our Delayed BCP method3. We present a summary of our solvers in
Table 3.1. We also include the Virtual Best Solver (VBS) in our comparison as a reference
for the best possible improvement using our techniques.

As discussed in Section 3.2.2, we choose to use the solvers’ existing branching heuris-
tics to define the variable priority ordering during BCP. This means that CaDiCaL uses
eVSIDS [8] whereas MapleSAT and MapleLCM use VSIDS [64], CHB [56], and LRB [59].
We considered every combination of the MapleSAT and MapleLCM solvers with the VSIDS,
CHB, and LRB variable prioritization heuristics, with each of the different variants of
BCP (Immediate BCP and Delayed BCP). We note that the MapleLCM solver dynamically

3Source code for the solvers is available at https://github.com/chjon/cadical-priority-bcp
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Benchmark # of Instances Source / Description
SATcoin 236 Restricted-nonce bitcoin-mining [39, 40]
UNSATcoin 300 Unsatisfiable variants of SATcoin [39, 40]
SAT2022 400 SAT Competition 2022 (Main Track) [22]
SAT2021 400 SAT Competition 2021 (Main Track) [20]
SAT2020 400 SAT Competition 2020 (Main Track) [19]
SAT2019 400 SAT Competition 2019 (Main Track) [24]
Total 2136

Table 3.2: Summary of benchmark instances used for the empirical evaluation of Delayed
BCP. For brevity in our other tables and cactus plots, the SAT competition instances are
combined into a single SATcomp benchmark containing 1600 instances.

switches between its branching heuristics – we implemented our method such that the pri-
ority order used by BCP also switches appropriately. We also experimented with setting
MapleLCM to use a fixed branching heuristic, which produced analogous results.

Benchmarks To evaluate the efficacy of our approach, we considered six different classes
of instances, for a total of 2136 considered benchmark instances. Our testing primarily
focused on cryptographic applications of SAT and instances from previous years of the
SAT competition (2019-2022), including both satisfiable and unsatisfiable instances. A
summary of these benchmarks is presented in Table 3.2.

3.4.2 Experiments and Results

To isolate the change in performance due to each component of our method, we perform
a series of experiments, incrementally augmenting the solver with our proposed changes.
The overall performance results of all our experiments are presented in the cactus plots in
Figure 3.4. The PAR-2 scores for each solver are summarized in Table 3.3.

Experiment 1: Priority BCP vs. Traditional BCP

We begin by comparing the performance of the base solver using the traditional Immediate
BCP method (CaDiCaL) with the same solver using the Delayed BCP method instead
(CaDiCaL dbcp branch order). For both CaDiCaL and MapleLCM, we observe mixed results
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(a) SATcomp (b) UNSATcoin

Figure 3.4: Cactus plots comparing the performance of our method with the baseline
method using the CaDiCaL solver on the SATcomp and UNSATcoin benchmarks.

Solver SATcomp SATcoin UNSATcoin

VBS 3661.15 438.16 1045.35
CaDiCaL 4131.66 753.87 1642.17
CaDiCaL dbcp branch order 4605.08 882.11 1741.59
CaDiCaL dbcp rnd order 4803.99 1356.38 2387.13
CaDiCaL dbcp rl switch 4306.26 634.07 1299.58
CaDiCaL dbcp rnd switch 4672.13 1464.11 1888.08

Table 3.3: PAR-2 scores summarizing the performance of each solver for each benchmark.

when using the Delayed BCP method. From Table 3.3, we observe that in terms of PAR-
2 scores, CaDiCaL dbcp branch order performs slightly worse than CaDiCaL on all the
considered benchmarks. However, this solver also solves more instances on the UNSATcoin
(see Figure 3.4b) and SATcoin instances (not shown). Therefore, we conclude that overall,
the Delayed BCP technique is still competitive with the traditional method.

The competitive performance of the CaDiCaL dbcp branch order solver is especially
notable when considering the propagation rates of each solver: examining the total number
of propagations and the propagation rate for each solver reveals that our proposed methods
propagate variables at a lower rate than the traditional technique, resulting in fewer total
propagations overall (see Figure 3.5). The decreased propagation rate can be attributed
to the computation time associated with maintaining priority queues, which are computa-
tionally more expensive to use than FIFO queues. However, despite the lower propagation
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(a) SATcomp (b) UNSATcoin

Figure 3.5: Plots comparing the propagation rate of our method with the baseline method
using the CaDiCaL solver on the SATcomp and UNSATcoin benchmarks.

rate, our solvers still perform competitively with the baseline, which suggests that the
Delayed BCP technique performs “smarter” propagations than the traditional method. In
particular, we observe that the VBS has a slightly lower propagation rate than the base
solver, indicating that greedily maximizing the propagation rate without consideration for
the assignment and propagation orders is not an optimal policy when considering overall
solver behaviour.

Experiment 2: Random Priority Order vs. Branching Heuristic Order

The results of Experiment 1 seem to agree with our intuition that the assignment and
propagation orders are important, and that there is still room for improvement in the
BCP algorithm. In Section 3.2.1, we proposed using the ordering defined by the branch-
ing heuristic as the priority ordering for BCP. This is the ordering which was used in
Experiment 1. To evaluate the importance of the chosen priority order, we compare
CaDiCaL dbcp branch order with a randomized priority order, which we implement as
CaDiCaL dbcp rnd order. Since the ordering defined by the branching heuristic changes
over time, we also dynamically modify the randomized priority order for a fairer compari-
son. Rather than modifying the priority order after every conflict like what is done for the
order based on the branching heuristics, we chose to shuffle the priority order only upon
restarts to reduce the effect of the overhead associated with shuffling the priority order.

From this experiment, we observe that the Delayed BCP solver using the branching
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heuristic for the priority order significantly outperforms the Delayed BCP solver with
the random priority order (see Figure 3.4). Again, this affirms that the priority order
is important, and it agrees with our expectation that a “smart” version of BCP should
perform better than random chance. Therefore, for our remaining experiments, we choose
to use each solver’s branching heuristic to define the priority order.

Experiment 3: Random Switching between BCP Variants vs. RL

From Experiment 1, we know that Immediate BCP performs better on some benchmarks,
and Delayed BCP performs better on others. Extrapolating this result, we conclude that
for each call to BCP during a solver’s search, one of the BCP variants must lead to better
overall solver performance. Therefore, intelligently choosing which version of BCP to use
at each point in a solver’s search should result in better overall performance. As described
in Section 3.3, we choose to approach this problem using reinforcement learning, which we
implement in the CaDiCaL dbcp rl switch solver.

As a control, we implement the CaDiCaL dbcp rnd switch solver which switches ran-
domly between the different BCP variants with uniform probability upon each restart.
This allows us to determine whether the RL method performs better than chance. As
seen in Figure 3.4, the CaDiCaL dbcp rl switch solver performs significantly better than
CaDiCaL dbcp rnd switch. Disappointingly, the CaDiCaL dbcp rl switch solver only per-
forms slightly better than the CaDiCaL dbcp branch order solver (which doesn’t use RL)
on the SATcomp benchmarks, and overall, is still slightly worse than the unmodified base
solver, CaDiCaL. However, on the SATcoin and UNSATcoin instances, the RL method per-
forms much better than both the solvers which only use a single version of BCP. This
indicates that the RL agent is indeed capable of learning a policy which allows it to choose
the best variant of BCP for the problem.

3.5 Related Work

Ever since the idea of BCP was introduced in DPLL [28, 29], most work on BCP in the lit-
erature has been on the efficient implementation of the algorithm. The two-watched-literal
scheme introduced in Chaff was the first major advancement in this area. Prior to the
invention of the two-watched-literal scheme, solvers detected unit clauses by maintaining
a counter of falsified literals for each clause, and performing propagation once every literal
except one became falsified [64]. Maintaining this counter required visiting every clause
containing a literal upon making a variable assignment, even when those clauses contained
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many unassigned literals. The two-watched literal scheme made it possible to visit signifi-
cantly fewer clauses by introducing a new data structure – known as a watcher – to keep
track of only two unassigned literals per clause – known as watched literals. When either
one of the two watched literals in the watcher becomes falsified, the two-watched-literal
scheme attempts to replace the falsified literal with another unassigned literal in the clause.
If it fails to do so, the remaining unassigned literal is implied.

Subsequent to Chaff, work on BCP moved to the efficient implementation of the two-
watched-literal scheme, and to heuristics for selecting watched literals. The Lingeling

solver [9] implemented special handling of the watchers in binary clauses to avoid some
of the overhead associated with the general case – in particular, binary clauses are stored
completely in the watches instead of maintaining an additional clause data structure. The
Kissat solver further improved on the implementation of the watchers and watcher stacks
to optimize them for modern hardware by significantly reducing the size of the watcher
data structures and carefully managing memory [11].

3.5.1 Selecting Watched Literals

Prior work in the literature also explores the problem of selecting the literals to watch in
each clause. From the definition of the two-watched-literal scheme, one can observe that
whenever one of the two watched literals in a clause is falsified, a new watcher needs to
be computed for that clause. Therefore, if the solver chooses a new watched literal which
is quickly falsified during the search, it will have to perform additional computation to
choose another watched literal. This additional work could have been avoided by choosing
the watched literal to be the literal in the clause which is the last to be falsified. Since it is
difficult to know ahead of time which literal will be falsified last, solver developers approach
this problem using heuristics to select watched literals. For example, the Lingeling solver
implements the literal-move-to-front (LMTF) scheme [9], and recent work by Iser and
Balyo chooses to select “stable” literals [45].

Since the choice of watched literals affects the order in which clauses are examined
during BCP, this problem initially appears to be related to prioritizing literals during
propagation. However, further inspection reveals that this connection is nebulous – watcher
selection does not directly affect the order in which literals are propagated during BCP,
but it can affect the order in which clauses are examined for each watched literal. This,
in turn, can ultimately have indirect effects on the topology of the implication graph that
is constructed during BCP and on the order in which the implication graph is explored.
Since these effects are very indirect, we consider the techniques developed for the problem
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of watcher selection to be largely orthogonal to the methods proposed in this thesis. The
major consequence of intelligent watcher selection is not prioritization during BCP, but
rather, the reduction of the number of times that each clause is examined.

3.5.2 Clause Prioritization

Since binary clauses only contain two literals, they must result in the propagation of some
variable if one of the literals in a binary clause is falsified. Hence, to perform propagations
as quickly as possible, a common optimization in implementations of BCP is to check
the watchers for binary clauses before checking the watchers for other clauses. Although
this optimization is not typically framed as prioritization and there is no explicit priority
ordering over the literals, the literals in binary clauses are indeed prioritized over the literals
in non-binary clauses.

There have been some recent papers further developing this type of prioritization in
BCP, such as the “core-first unit propagation” technique proposed by Chen [16], and the
prioritized propagation heuristic implemented by CaDiCaL PriPro [5].4 Rather than pri-
oritizing literals to propagate, they focus instead on prioritizing sets of clauses to check for
propagation. For example, in the core-first unit propagation technique, the BCP algorithm
examines the watchers for core clauses before checking the watchers for all other clauses.
Therefore, unit literals will be discovered and propagated in a different order than the
order which would result from all clauses having equal priority during BCP. In cases where
a literal is asserted by multiple clauses, this class of prioritization techniques has a direct
effect on the topology of the implication graph, which makes these techniques much more
closely related to our method, conceptually. However, we note that this class of clause
prioritization techniques is still orthogonal to our prioritization method – delaying the as-
signment of variables or propagating variables out of order with respect to the assignment
trail would still result in different BCP algorithms.

4We thank the reviewers of our SAT conference paper submission for bringing these techniques to our
attention.
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Chapter 4

A Framework for Extended
Resolution SAT Solvers

All search algorithms can be viewed as algorithms which explore and prune a search tree,
systematically learning which portions of the search space do not contain the solution until
either a solution is found, or the entirety of the search space has been pruned away and
no solutions exist. Modern CDCL SAT solvers perform this learning very explicitly: after
encountering a conflicting state at some point along the search, they generate a clause
encoding the reason for the conflict in order to avoid exploring that conflicting portion of
the search space. To ensure that the learnt clauses generated by a solver do not erroneously
affect the algorithm’s final output, the SAT community uses proof systems to model the
behaviour of their solvers, and requires that each learnt clause can be derived by the proof
rules in their corresponding proof systems. This means that a SAT solver’s computational
power is limited by the strength of its underlying proof system: if small proofs do not exist
for a certain problem instance in a given proof system, then any SAT solver based on that
proof system must necessarily take a long time to solve that problem instance.

Traditional CDCL SAT solvers derive learnt clauses in a process that be modelled by
the Resolution proof system (Res) [6]. Unfortunately, there are many instance classes
which are known to require at least exponential-sized proofs for Res. One such class of
instances is the family of Pigeonhole Principle formulae [27]. Therefore, if we hope to
develop SAT solvers which are capable of solving these problems quickly, we must explore
techniques with more powerful underlying proof systems. Some approaches to this problem
from the literature include symmetry-breaking techniques [63, 73] which exploit some of the
structure present in real-world instances and combinatorial problems, and Satisfiability-
Driven Clause-Learning (SDCL) SAT solvers [37, 36] which can learn clauses even when
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the solver is not in a conflicting part of the search tree. In our approach, we utilize the
Extended Resolution (ER) proof system [83], which is very closely related to Res, and
which is known to be exponentially stronger [27, 49].

Unfortunately, it is not simple to automate the generation of proofs for strong proof
systems. Given a set of axioms and proof rules, there is a combinatorial explosion in the
choices of how rules should be applied and the order in which they should be applied,
which means that there are an enormous number of different ways to discover a final proof.
For this reason, every SAT solver relies on a set of heuristics to restrict the set of possible
actions to guide its search for a small proof. In particular, for ER, existing work in the
literature only attempted to automate a very restricted version of the proof system. We
address this shortcoming by developing a solver framework which is capable of generating
ER proofs in much greater generality, and identify design spaces for heuristics to restrict
the types of proofs generated rather than starting from a restricted proof system.

In this chapter, we describe our ER SAT solver framework, implement it over an
existing SAT solver, and demonstrate that it is capable of implementing existing methods
from the literature. We additionally identify a new set of heuristics for our framework
and empirically demonstrate that it improves the performance of the solver on a class of
problem instances.

4.1 Major Components

The power of the ER proof system comes from the ability to compactly represent facts
about the input formula as extension variables, and to efficiently reason over those facts by
reasoning over the extension variables. In general, extension variables can be defined over
arbitrary Boolean formulae. However, in keeping with the original definition of ER [83],
we only consider extension variables x of the form x ↔ a ∨ b, where a and b are literals.
As noted in Section 2.1.5, this limitation does not significantly affect the power of the ER
proof system, and requiring the definitions of extension variables to take this form means
that every extension variable can be treated the same way by the solver, which vastly
simplifies the development of a general set of techniques for ER-based SAT solvers.

Our framework for ER-based SAT solvers is a modification of the traditional CDCL
algorithm, and consists of three additional major components. A flowchart depicting the
modified CDCL algorithm is presented as Figure 4.1, and a summary of each of the new
components is as follows:

43



BCP
Pick Branch

Literal

Introduce EVs

Define EVs

Select Clauses

Conflict?

Analyze
Conflict

(Re)start

Clause
Deletion

Delete EVs

All Vars
Assigned?

SAT

Root?

UNSAT

EV Substitution

Backjump

EV Addition

NoYes

No

Yes

Yes

No

Figure 4.1: A high-level overview of the CDCL algorithm augmented with our ER frame-
work. The components highlighted in red represent new steps introduced by our framework
for managing extension variables (EVs). Components in dotted regions are optional steps
during the run of the solver, which are triggered by user-defined heuristics.

1. Extension variable addition: This component is responsible for determining the
conditions for adding extension variables, generating new variable definitions, and
adding them to the solver. We observe that the procedure for introducing new
variables is essentially composed of the same three steps for all the ER heuristics in
the literature: clause filtering/selection (i.e., choosing an “interesting” set of clauses
which can be used to define a set of variables), definition generation (i.e., taking a set
of clauses and defining new variables with respect to the literals in the clauses), and
clause introduction (i.e., adding clauses to the solver to encode the definitions of the
new variables). Therefore, we implement our extension variable addition component
as three subcomponents, each of which is responsible for one of these three steps.

2. Extension variable substitution: This component is responsible for decreasing
the size of learnt clauses by replacing pairs of literals with their corresponding exten-
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sion variables. For example, if the solver learns the clause (a∨b∨c) and the extension
variable x↔ a∨b has been added to the solver, the learnt clause is changed to (x∨c).
As discovered in the work by Audemard et al. [3], this substitution of literals encour-
ages the solver to learn further clauses involving extension variables. Unfortunately,
the implementation of this idea requires a quadratic-time algorithm in the worst case.
We introduce a modified algorithm which improves upon the average running time of
variable substitution. We note that there are some complications with this basic idea
due to interactions with the invariant expected by the two-watched-literal scheme.

3. Extension variable deletion: Not every definition results in a useful extension
variable, and even if an extension variable is useful, it may only be useful for a small
portion of the solver’s search. Unnecessarily storing the definitions of unused ex-
tension variables wastes memory resources and needlessly increases computational
overhead when performing operations like variable substitution. Consequently, de-
spite that the ER proof system does not prescribe variable deletion, the deletion of
extension variables must be considered for practical reasons. Since the operation of
deleting variables is the same regardless of how one chooses to select variables for
deletion, our framework provides a common algorithm for removing extension vari-
ables from our data structures, which can then be used whenever other heuristics
decide that extension variables should be deleted.

The following sections present data structures and algorithms for the implementation
of our framework, including algorithms for efficiently substituting extension variables into
learnt clauses and deleting extension variables.

4.1.1 Data Structures

Strictly speaking, to augment a CDCL SAT solver with Extended Resolution, it is sufficient
to add a set of clauses encoding the definitions of each extension variable. However, it is
helpful to keep track of the definition of each extension variable more explicitly – this en-
ables the implementation of several practical techniques, and facilitates the development of
heuristics where this information is required. Therefore, we choose to store the definitions
of extension variables redundantly: in addition to a database of definition clauses (imple-
mented as a map from extension variables to a list of definition clauses), we also store the
relationship between each extension variable and the pair of literals used to define it.

We propose the ExtDefMap data structure for keeping track of extension variable def-
initions and the dependencies between them. The design of this data structure revolves
around efficiently identifying basis literals and basis variables, which we define as follows:
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Algorithm 5: ExtDefMap insertion

Input: The extension definition x↔ a ∨ b to insert into the ExtDefMap.
1 if not varToPairMap.contains(x) and not pairToVarMap.contains({a, b})

then
2 varToPairMap.insert(x, {a, b})
3 pairToVarMap.insert({a, b}, x)
4 basisCount[a]← basisCount[a] + 1
5 basisCount[b]← basisCount[b] + 1
6 nonbasisVars.insert(x)
7 if basisCount[a] + basisCount[¬a] = 1 then nonbasisVars.remove(var(a))
8 if basisCount[b] + basisCount[¬b] = 1 then nonbasisVars.remove(var(b))

9 end

Definition 4.1 (Basis literal / basis variable). A basis literal is any literal that partici-
pates in the definition of an extension variable. Similarly, a basis variable is any variable
that participates in the definition of an extension variable.

For example, given the extension variable definitions x↔ a∨¬b and y ↔ ¬a∨ c, there
are three basis variables (a, b, and c) and four basis literals (a, ¬b, ¬a, and c).

The first part of our data structure is quite obvious – we need to know the pair of basis
literals corresponding to each extension variable, so we store a map data structure which
maps extension variables to corresponding pairs of basis literals. We refer to this map as the
varToPairMap. To avoid wasted computational resources, it is important not to introduce
multiple extension variables with identical definitions. Thus, we also would like to be able
to efficiently determine whether there is already an extension variable corresponding to
a pair of literals. Unfortunately, the standard map data structure only provides efficient
lookups in a single direction, so to implement this, we use a second map data structure
which maps pairs of basis literals1 to their corresponding extension variables. We refer to
this second map as the pairToVarMap. We note that this implementation duplicates the
storage of the extension variables and their basis literal pairs – what we really want is a
single bidirectional map data structure. However, for clarity of exposition, we use a pair
of maps, maintained in parallel.

1To avoid issues involving two different representations of the same pair of literals (e.g. a∨ b vs. b∨ a),
we assume a canonical representation of literal pairs. In our implementation, we use a total ordering over
the literals and ensure that literals appear in sorted order when the pair is inserted into the map.
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Algorithm 6: ExtDefMap deletion

Input: The extension variable x to delete from the ExtDefMap.
1 if varToPairMap.contains(x) and basisCount[x] = 0 then
2 {a, b} ← varToPairMap[x]
3 varToPairMap.remove(x)
4 pairToVarMap.remove({a, b})
5 basisCount[var(a)]← basisCount[var(a)]− 1
6 basisCount[var(b)]← basisCount[var(b)]− 1
7 nonbasisVars.remove(x)
8 if basisCount[a] + basisCount[¬a] = 0 then nonbasisVars.insert(var(a))
9 if basisCount[b] + basisCount[¬b] = 0 then nonbasisVars.insert(var(b))

10 end

Observe that new extension variables can be defined over any literals present in the for-
mula, including previously introduced extension variables. Hence, when deleting extension
variables, we must be careful not to delete extension variables which are basis variables.
Consider the operation of checking whether an extension variable x is a basis variable: if
no additional information is stored apart from the definitions of extension variables, one
would have to iterate over every extension variable and check each definition to see if it
contains either x or ¬x. This is a linear-time operation in the total number of extension
variables, so simply searching for extension variables to delete can become very expensive.

Fortunately, by using the idea of reference counting, this check can be performed in
constant time without affecting the asymptotic time complexity of other important opera-
tions. For each literal l, we maintain the counter basisCount[l] (initialized to zero), which
tracks the number of times each literal appears as part of a definition. The basisCount[l]
counter is incremented whenever a new extension variable whose definition contains l is
added, and it is decremented whenever an extension variable whose definition contains l
is deleted. Then, whenever the basisCount[l] counter is greater than zero, l must be a
basis literal. It follows that whenever basisCount[l]+basisCount[¬l] is greater than zero,
var(l) must be a basis variable. As a further optional optimization, we can store a set called
nonbasisVars which contains every extension variable that is not a basis variable. This
set can be updated in constant time whenever the state of the corresponding basisCount

counters become zero or non-zero, which allows us to efficiently access the set of variables
which can be deleted.

Then the ExtDefMap data structure is comprised of four internal components (three
maps and one set): varToPairMap, pairToVarMap, basisCount, and nonbasisVars. All
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four of these components can be implemented using hash tables for constant-time modifi-
cation and search. We define two modification operations for the ExtDefMap data struc-
ture: insert(x, {a, b}), which inserts extension variables defined as x ↔ a ∨ b, and
remove(x), which removes the extension variable x. We present the algorithms corre-
sponding to insert and remove as Algorithms 5 and 6, respectively. We can also define
some helper functions: containsVar(x), which checks whether x is an extension variable;
varToPair(x), which gets the pair of basis literals corresponding to the extension variable
x; containsPair(a∨b), which checks whether there is an extension variable corresponding
to the pair of basis literals a ∨ b; pairToVar(a ∨ b), which returns the extension variable
corresponding a∨ b; and isBasisLit(l), which returns true if and only if basisCount[l]
is greater than zero. Note that all these functions are essentially just applications of the
traditional map lookup operations, so we do not present them here.

4.1.2 Extension Variable Definition

Recall that the ER proof system consists of only two proof rules which can be sequenced
in any order, with the sole restriction being that extension variables can only be used for
resolution if they have already been defined. Then, in theory, we can restrict ER by di-
viding it into two phases: first, define every extension variable required for the proof using
only the new variable rule; and second, complete the proof using only the resolution rule.
This suggests that we can simply preprocess the formula to add the necessary extension
variables, and then pass the preprocessed formula to a traditional CDCL SAT solver. Un-
fortunately, it is very difficult to determine the “optimal” set of extension variables ahead
of time – the search space for a set of extension variables is enormous, and although there
has been some work in the literature demonstrating situations where extension variables
are useful [15, 76, 74], it is not known what properties extension variables should have to
be useful in general.

Consider the problem of selecting an extension variable definition given a formula con-
taining n variables. This is simply the problem of selecting two distinct variables, each of
which can occur with one of two polarities, for a total number of

(
n
2

)
·2 ·2 = 2n(n−1) pos-

sibilities. Hence, we see that as additional extension variables are introduced, the number
of possibilities for each new definition grows quadratically. As a result, when consider-
ing combinations of multiple extension variables, the number of combinations of possible
extension variables grows super-exponentially2.

2When adding n−1 extension variables to a formula with n variables, there are at least 4n−1 · (2n−3)!!
possible sets of extension variable definitions. For more details, see Appendix A.
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Clearly, it is infeasible to exhaustively search for the best set of extension variable defi-
nitions. Therefore, to approach the problem of choosing definitions for extension variables,
we choose not to define all the extension variables at once, but rather, to define variables
intermittently, using heuristics guided by the solver’s search. It is obvious that the “opti-
mal” definitions for extension variables depend heavily on the given problem instance, so
any practical algorithm for introducing useful extension variables will need to examine the
formula to identify some “interesting” part of it, take the “interesting” clauses and define
extension variables over some of their literals, and finally, add the new variables and their
definitions into the solver. Our framework implements these steps as three subcomponents,
which we call clause selection, definition generation, and variable introduction.

Clause Selection The clause selection subcomponent is responsible for identifying parts
of the formula where extension variables would be useful. Our framework does not prescribe
a method for performing this task; rather, it makes use of a user-defined heuristic function
which takes the entire state of the SAT solver as input, and which outputs a subset of
the solver’s clauses. Since it can be computationally expensive to consider every clause
in the formula, we include some practical design choices in the implementation of our
framework – we further split clause selection into two smaller steps: first, use an inexpensive
approximation to filter out clauses which are not expected to be helpful; and second, use
a more refined heuristic to select from the remaining clauses. It is not strictly necessary
to perform any approximate clause filtering, but we include this in our framework as an
opportunity for optimization.

A general approach to clause selection would examine every clause in the formula each
time the solver decides to introduce an extension variable. This is necessary for some
clause selection heuristics, but for other heuristics where the set of interesting clauses
does not change a lot over time, this may involve unnecessary recomputation. Thus, as
a further practical optimization for selecting clauses, our framework supports performing
clause selection incrementally for each learnt clause.

Definition Generation This subcomponent takes the set of clauses generated by clause
selection and uses them to define a set of extension variables. Similarly to clause selection,
definition generation uses a user-defined heuristic function. In this case, the heuristic
function is used to choose definitions for extension variables. As an implementation note,
rather than requiring extension definitions to be represented by the clauses encoding the
equivalence of an extension variable with its definition, we represent new variable definitions
as a mapping from extension variables to a VarDef data structure. We make this design
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choice to move the responsibility of encoding definitions into clauses away from the user
heuristic. The task of encoding definitions as clauses is common to all general ER-based
techniques, so by making this task part of our framework, we simplify the process of defining
extension variables and reduce the possibility of errors due to maintaining duplicated code.

The VarDef data structure contains the pair of literals a and b comprising an extension
variable x ↔ a ∨ b. Additionally, the data structure contains a (potentially empty) set of
auxiliary clauses – some of the ER techniques proposed by prior work introduce auxiliary
clauses at the same time as new extension variables [13], so we design our framework to
support this by treating auxiliary clauses as part of each extension variable’s definition.

Variable Introduction The variable introduction subcomponent takes the mapping of
extension variables to VarDefs generated by the definition generation subcomponent as
input and appropriately updates the solver’s data structures. In particular, it registers the
variable definitions in the solver’s ExtDefMap and adds the clauses encoding the definition
to the database of definition clauses.

The definitions of extension variables are encoded by Boolean formulae which assert
that each extension variable should be set to true if and only if its corresponding definition
is satisfied. In particular, extension variables of the form x↔ a∨b are encoded by Boolean
formulae of the form x↔ a∨b, which is represented in CNF by the following three clauses:
(x ∨ ¬a) ∧ (x ∨ ¬b) ∧ (¬x ∨ a ∨ b). The task of introducing these clauses into the solver
is essentially identical for all possible extension variable definitions, so we treat this as
a modular subcomponent which can be implemented independently of the heuristics for
variable definition.

4.1.3 Extension Variable Substitution

As Audemard et al. [3] note in their work, substituting extension variables in place of
their definitions in newly learnt clauses encourages the participation of extension variables
in future conflicts. Similarly to these authors, we only consider newly learnt clauses when
performing variable substitution in order to reduce its associated computational overhead.

To this end, we further restrict the types of variable substitution which we perform.
Regardless of how extension variables are defined, they can only appear in one of two
polarities. Since the design of our framework forces all extension variables to be of the
form x = li ∨ lj, this means we only need to consider two cases. In the positive case,
x ≡ (a∨ b), we can scan each learnt clause to identify pairs of literals that define extension
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Algorithm 7: Extension Variable Substitution

Input: A clause C = [l1, l2, ..., lk], and ExtDefMap X
Output: A clause C ′ equivalent to C, where literal pairs defining extension

variables have been replaced by their corresponding extension variable
// Get indices of all basis literals in C

1 basisLitIdxs← [];
2 for i← 0; i < |C|; i← i+ 1 do
3 if X.isBasisLit(l) then basisLitIdxs.append(i) ;
4 end
// Substitute basis literal pairs with extension variables

5 substituted← {};
6 for i← 0; i < |basisLitIdxs|; i← i+ 1 do
7 pi ← basisLitIdxs[i];
8 if C[pi] = ⊥ then continue;
9 for j ← i+ 1; j < |basisLitIdxs|; j ← j + 1 do

10 pj ← basisLitIdxs[j];
11 if C[pj] = ⊥ then continue;
12 if X.containsPair(C[pi] ∨ C[pj]) then
13 x← X.pairToVar(C[pi] ∨ C[pj]);
14 C[pi]← x;
15 C[pj]← ⊥;
16 substituted← substituted ∪ {x}
17 end

18 end

19 end
// Remove ⊥

20 C ′ ← simplify(C);
// Fix implication graph

21 for each xi ∈ substituted do
22 if xi is unassigned then
23 (ai, bi)← X.varToPair(xi);
24 Propagate x̄i from the definition clause (x̄i ∨ ai ∨ bi);

25 end

26 end
27 return C ′
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variables. In the negative case, ¬x ≡ (¬a ∧ ¬b), we need to replace conjunctions of two
clauses of the form (¬a ∨ c1 ∨ c2 ∨ ... ∨ ck) ∧ (¬b ∨ c1 ∨ c2 ∨ ... ∨ ck) with a single clause
(¬x ∨ c1 ∨ c2 ∨ ... ∨ ck). For example, given a candidate learnt clause (a ∨ b ∨ c ∨ d), we
can instead learn the clause (x ∨ c ∨ d). In the negative case, ¬x = (¬a ∧ ¬b), we need to
replace conjunctions of two clauses of the form (¬a∨c1∨c2∨ ...∨ck)∧ (¬b∨c1∨c2∨ ...∨ck)
with a single clause (¬x∨c1∨c2∨ ...∨ck). Unfortunately, we found that identifying eligible
pairs of clauses for this type of substitution requires high computational overhead, so we
only consider substituting literal disjunctions within a single clause.

Since variable substitution requires finding an extension variable corresponding to a
pair of literals, a naive approach would simply be to check every pair of literals in a clause
for a corresponding extension variable. Since clauses of size k contain

(
k
2

)
possible literal

pairs, this approach is a Θ(k2)-time algorithm. However, from our experimentation, we ob-
serve that many literals do not participate in extension variable definitions. This suggests
an optimization of the algorithm: if a clause contains k′ basis literals, then only considering
basis literals reduces the running time of our algorithm to Θ(k+ k′2) using the ExtDefMap
data structure. Although the worst case performance of the algorithm is still Θ(k2), the
modified algorithm is much faster in practice. In their solver, Audemard et al. [3] prefer
adding extension variables with higher VSIDS activities when there are multiple options
for substitution. This is a heuristic which encourages resolution on extended variables, but
does not affect the theoretical properties of the solver [3]. We found this to be compu-
tationally expensive, and instead employ a greedy algorithm to replace the first detected
literal pairs. Our method for performing variable substitution is presented as Algorithm 7.

Observe that after substituting literals into C to get C ′, Algorithm 7 amends the
implication graph in lines 21 to 26. This is necessary to ensure that C ′ is an asserting
clause. Since C is an asserting clause, every literal in C must be falsified at the point of
clause learning. However, BCP exits immediately upon detecting a conflict and does not
perform all possible propagations, so C ′ may contain literals that are unassigned.

Correctness of Substitution Our implementation of the extended resolution solver
framework performs extension variable substitution after learning a clause, but before
performing backtracking. This raises the concern of whether the solver behaviour remains
correct in the event that the asserting literal is substituted out of the clause. The original
learnt clause must have been an asserting clause, but it is unclear whether the clause is
still asserting after extension variable substitution. This concern consists of two questions:
whether an asserting literal always exists after extension variable substitution, and whether
the computed backtrack level for the original learnt clause remains valid for the substituted
clause if the clause is asserting.
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Consider the extension variable x ↔ a ∨ b and an asserting clause C containing the
literals a and b. Let C ′ be the clause resulting from C after extension variable substitution.
By the definition of extension variable substitution, C ′ contains x, and does not contain
either a or b. To address the questions above, we prove the following claims:

Lemma 4.2. Every literal in C ′ is falsified.

Proof. Since C is an asserting clause, every literal in C is falsified. Therefore, every literal
in C ∩ C ′ is falsified. Then we only need to consider literals in C ′ \ C, which corresponds
exactly to the set of newly-substituted extension variables. Let x be any literal in C ′ \ C.
By the definition of the substitution algorithm, this must be an extension variable with
definition x ↔ a ∨ b for some pair of literals a, b ∈ C. Since a and b are both in C, they
must be falsified. Then the definition of x is falsified, so it is possible to propagate it
and assign x to false. Therefore, after the substitution algorithm amends the implication
graph, x must be falsified. Since x is an arbitrary literal in C ′ \ C, every literal in C ′ \ C
must be falsified. Therefore, every literal in C ′ is falsified.

Theorem 4.3. Let C be an asserting clause, and let C ′ be the clause resulting from
substituting extension variables into C. Let x be a newly-substituted extension variable
(i.e., x ∈ (C ′ \ C)) with definition x ↔ a ∨ b. Then all the literals in C ′ are falsified, and
the decision level of x is equal to the decision level of the literal that is falsified later out
of a and b. Without loss of generality, we will assume that a is falsified before b.

Proof. We know from Lemma 4.2 that all the literals in C ′ must be falsified. Since C is
an asserting clause, all its literals must also be falsified. The proof that x and b have the
same decision level proceeds by contradiction: suppose for the sake of contradiction that
the decision level of x is not equal to the decision level of b. Let lx and lb be the decision
levels of x and b respectively. Then either lb > lx – which is a contradiction because the
definition of x would propagate b to false immediately after x is falsified at level lx – or
lb < lx, which is a contradiction because the definition of x would propagate x to false at
decision level lb. Therefore, the decision levels of x and b must be equal.

Corollary 4.4. C ′ is an asserting clause, and x is the asserting literal in C ′ if and only if
either a or b is the asserting literal in C.

Then we have shown that the solver behaviour remains correct even with variable
substitution: the new clause is always asserting, and the backtracking level remains the
same regardless of whether extension variables were substituted into the clause.
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4.1.4 Extension Variable Deletion

Similarly to learnt clauses, some extension variables may not be useful in the solver’s proof
search. These extension variables ultimately slow down the solver by causing fruitless unit
propagations and taking up extra memory. The extension variable deletion stage of our
ER solver framework is the last phase in an extension variable’s lifetime. It is responsible
for removing references to the deleted extension variable from every data structure in the
solver, including clause databases and the ExtDefMap data structure.

To the best of our knowledge, there are no known results on the best conditions in which
to delete extension variables. Thus, we take a similar approach to the problem as Audemard
et al. [3] - we perform extension variable deletion at the same time as learnt clause deletion.
However, unlike their implementation, we do not maintain an explicit dependency graph to
track dependencies between the definitions of extension variables. Instead, we again make
use of the ExtDefMap data structure to identify non-basis variables. The variable deletion
approach taken in our ER solver framework is otherwise the same as the approach used
in GlucosER [3]: we delete low-activity extension variables which do not participate in the
definitions of other extension variables.

4.2 Heuristics

When choosing heuristics, it is important to account for the complexity of the algorithms
implementing the heuristics. These algorithms can easily dominate the running time of
the solver, negating any advantage granted by the introduced extension variables.

4.2.1 Clause Selection

The heuristic used to select the set of clauses for extension variable addition has a significant
effect on the relevance of the extension variables for the solver. Additionally, the number
of selected clauses will affect the running time of the algorithm used to define variables.
Therefore, it is prudent to choose a well-motivated clause selection heuristic. A well-
known ER proof of the pigeon-hole principle [27] proceeds by defining extension variables
in a manner which suggests that knowledge of the global problem structure is essential to
efficiently using extension variables. One idea for approaching this is to select long clauses
as a proxy for “global” knowledge. However, in our preliminary experiments, we found that
this performed significantly worse than the heuristics we describe below, which represent
more “local” reasoning.
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High-Activity Clauses A commonly-held belief in the SAT community is that CDCL
solvers perform “local” search, where learnt clauses constrain the part of the search space
where the solver is searching. Although there is no consensus yet about the formal definition
of “local”, one idea which has been proposed is clause activity, which is commonly used in
clause deletion heuristics [4]. Therefore, a natural heuristic to consider is to generate new
variables from the clauses with the highest activities in the hope that the new variables
will encode useful information about the local search space.

In particular, we choose to select the top k clauses with the highest activities. We note
that it is possible for multiple clauses to have equal activities, and that when choosing
the top k clauses with the highest activities, some clauses will need to be excluded despite
having an activity in the top k; e.g., consider the case where the top k+1. There are many
possible algorithms for selecting the k largest elements in a set, but we consider two which
are based on common sorting algorithms:

1. The quickselect algorithm [42] is an algorithm for selecting the kth largest element
from a list of n elements. This algorithm is closely related to the quicksort algo-
rithm [41], which is an unstable sorting algorithm3. For a list containing n elements,
the average time complexity of the quickselect algorithm is O(n), with a worst-case
complexity of O(n2). Although this algorithm is usually only used to select the kth

largest element, a side effect of its close relation to quicksort is that it partially sorts
the data such that the selected element partitions the list into two groups, where
one group contains all the elements larger than the selected element. This makes it
simple to adapt quickselect to the problem of selecting the top k elements.

2. The insertion sort algorithm [50] is a stable sorting algorithm which builds a sorted
list as it scans through the input list. We use this algorithm to build a sorted list
of the top k elements, and do not sort the rest of the elements. This approach has
a time complexity of O(kn), which is significantly worse than the complexity of the
quickselect algorithm. Therefore, it behooves us to choose a small constant k to keep
the runtime of this algorithm manageable.

Despite the poor time complexity of the insertion sort algorithm, our preliminary exper-
iments indicate that the ER solver using the insertion sort algorithm actually outperforms
the version of the ER solver using the quickselect algorithm. Since all other variables were
kept relatively constant, this indicates that the stability of the sorting algorithm is sig-
nificant in avoiding performance deterioration in the rest of the solver. Thus, in the final

3A sorting algorithm is stable if for any two elements with the same key value, their relative order in
the input list is preserved in the output list.
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experimental evaluation, we only consider the variant of the solver using the insertion sort
algorithm for selecting the set of k clauses with the highest activities.

Clause Filtering Since the time complexity of the insertion-sort-based clause selection
algorithm depends on the number of clauses it needs to examine, one possible optimization
is to first use a heuristic to filter out clauses which are unlikely to be in the top k. We
consider two different heuristics for this subcomponent of clause selection, based on the
width and LBD of learnt clauses. To evaluate the efficacy of our methods, we also include
the trivial filtering heuristic which accepts every clause.

For the clause width heuristic, we discard clauses from further consideration if the width
of the clause does not lie within a certain range [wmin, wmax]. Similarly, for the LBD clause
filtering heuristic, we exclude clauses from further consideration if the LBD of the clause
does not lie within a certain range [ℓmin, ℓmax]. To motivate the usage of a relatively small
value for wmax, observe that short clauses constrain the search space more tightly than
long clauses, so they are more likely to participate in conflicts, giving them relatively high
clause activities. A similar argument holds for ℓmax. The exact values of these parameters
can be tuned, but for our experiments, we choose values of wmax = 7 and ℓmax = 5.

The choice of wmin and ℓmin is motivated not by the activities of the clauses, but
rather by the probability that an extension variable would be useful for the solver. Clause
with very small widths or very low LBD are already very strong constraints on the search
space. Since introducing extension variables of the form x ↔ a ∨ b adds the clauses
(¬x∨a∨ b)∧ (x∨¬a)∧ (x∨¬b), introducing extension variables always introduces clauses
of width 3, which is a weaker constraint than a binary clause. Therefore, a reasonable
condition for filtering clauses is to exclude clauses with width w < 3, so we choose wmin = 3.
Since the LBD of a clause is a lower bound on the width of the clause (by the definition of
LBD), choosing ℓmin = 3 also satisfies this condition.

4.2.2 Extension Variable Definition

The heuristic chosen for defining extension variables is a deciding factor for the success
or failure of our method. As a control heuristic, we consider selecting pairs of literals at
random from the set of selected clauses. The implementation of this heuristic is trivial and
is not discussed here. We also consider another heuristic, which is outlined below:

Common Literal Pairs Part of the intuition underlying the extended resolution proof
system is that extension variables allow us to efficiently reason over facts about the problem
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instance. Thus, one idea for introducing extension variables is to maximize the number
of times that the extension variable can be reused. We approach this by attempting to
maximize the number of clauses where the extension variable can be substituted.

An outline of the algorithm is as follows: First, we count the number of occurrences of
each literal pair in a clause, using a hash table to keep track of the count for each pair of
literals. For m clauses of size k, this can be done with time complexity Θ(mk2), with a
worst-case space requirement of Θ(mk2) literal pairs. Then, to find the n most frequently
occurring literal pairs, we use the quickselect algorithm [42] as discussed in Section 4.2.1
with an expected overall time complexity of Θ(mk2).

4.2.3 Extension Variable Substitution

As discussed in Section 4.1.3, the worst-case time complexity of the extension variable
substitution algorithm for a clause of size k is Θ(k2). Since the variable substitution algo-
rithm is executed for every learnt clause, the total computational overhead associated with
variable substitution is potentially very high. To mitigate this, our ER solver framework
supports the use of heuristics to avoid performing substitution in irrelevant learnt clauses.

Similarly to clause selection, we perform a filtering step to avoid performing the ex-
tension variable substitution algorithm on clauses which are unlikely to be useful. Again,
we consider filtering clauses based on ranges of clause width or LBD, skipping the ex-
tension variable substitution step if the width of the clause does not lie within the range
[wmin, wmax], or when using the LBD clause filtering heuristic, skipping substitution if the
LBD of the clause does not lie within the range [ℓmin, ℓmax].

In particular, because the extension variable substitution algorithm has time complex-
ity Θ(k2) for a clause of size k, it is beneficial to choose a relatively small value of wmax.
Otherwise, it is possible for the solver’s running time to become dominated by the com-
putation associated with the substitution algorithm. As in the case of clause selection, it
is also useful to ignore clauses containing fewer than three literals. Our extension vari-
ables are defined over pairs of clauses, so unit clauses can safely be ignored. If the solver
learns a binary clause containing a pair of literals corresponding to an extension variable,
that variable becomes completely redundant: the assignment of the extension variable is
essentially forced, so that extension variable will never participate in any useful resolution
steps. Hence, we choose wmin = 3.
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4.2.4 Extension Variable Deletion

Our framework supports arbitrary user-defined heuristics for selecting extension variables
to delete. Although it is not clear what makes extension variables useful, we choose to
take an approach similar to the traditional activity-based learnt clause deletion heuristic,
and choose to delete extension variables with low activities. In particular, we consider
two different activity-based methods for selecting extension variables to delete: delConst,
which deletes all extension variables whose VSIDS scores fall below a constant threshold;
and delFrac, which deletes the least active fraction (e.g. 50%) of all extension variables.

Our preliminary experiments measuring the effect of enabling or disabling these deletion
heuristics showed that the ER solver performs much better with extension variable deletion
enabled than with it disabled. We also found that the delFrac heuristic significantly
outperforms delConst on average, so only delFrac is considered as a deletion heuristic in
our final empirical evaluation.

4.3 Empirical Evaluation

In this section, we demonstrate our framework’s ability to implement a variety of heuris-
tics and facilitate the development and evaluation of new heuristics, and show that CDCL
solvers augmented with our ER framework are still competitive with the unmodified CDCL
solvers. To evaluate the efficacy of our ER methods, we conduct a large number of experi-
ments and compare the computation times required to solve a broad variety of benchmark
instances. We also examine the usage of extension variables in an attempt to measure the
quality of the variables introduced by our methods.

4.3.1 Experimental Setup

Solvers We augmented the MapleSAT and MapleLCM solvers with our ER framework.4

However, we found that the results for MapleSAT and MapleLCM are very similar, so for
brevity, we only present the results for the stronger MapleLCM-based solvers in this thesis.
Since the ER framework introduces many different design spaces, each of which can use
one of many different possible heuristics, there is a combinatorial explosion in the num-
ber of possible ER solvers. The components of our framework interact heavily with each
other, so it is difficult to predict which combination of heuristics results in the best solver.

4Source code for the solvers is available at https://github.com/chjon/xMapleSAT
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Solver Description
MapleLCM Unmodified MapleLCM solver
xMapleLCM common Common literal pairs from high-activity clauses
xMapleLCM random Random literal pairs from high-activity clauses
xMapleLCM ler LER method for introducing extension variables

Table 4.1: Summary of solvers used for the empirical evaluation of our ER framework.

Benchmark # of Instances Source / Description
rand3cnf 170 Randomly-generated 3CNF instances [53]
urquhart 27 Urquhart instances [18, 84]
php 17 Pigeonhole principle (and functional PHP) [53]
sat2019 400 SAT Competition 2019 (Main Track) [24]
sat2020 400 SAT Competition 2020 (Main Track) [19]
Total 1014

Table 4.2: Summary of instances used for the empirical evaluation of our ER-based solvers.

As a simplifying assumption to keep the number of considered solvers small, our exper-
imentation assumes that the heuristics are independent – rather than trying to find the
best combination of heuristics across every design space all at once, we look for the best
heuristic locally within each design space, and take the combination of the best heuristics
in our final solver. A summary of the solvers we considered is presented as Table 4.1. We
also include the Virtual Best Solver (VBS) in our comparison as a reference for the best
possible improvement using our techniques.

Benchmarks We selected a variety of instances for our testing. These instances are
summarized in Table 4.2. The rand3cnf benchmark contains instances which are gener-
ally considered to be difficult for SAT solvers, and are included just to see if there is a
large difference in behaviour between traditional SAT solvers and our ER-based solvers.
Similarly, the sat2019 and sat2020 instances are included to measure whether our meth-
ods cause performance deterioration in general. The php family of instances is known to
have short ER proofs in theory, and previous ER solvers performed well on urquhart

instances, so if our ER techniques are successful, we should expect to see improvement on
these benchmarks.
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Solver rand3cnf urquhart php sat2019 sat2020

VBS 2041.47 938.15 3620.40 4641.26 5327.14
MapleLCM 2371.96 5291.61 4119.39 5058.46 5933.10
xMapleLCM common 2502.10 3531.34 4202.47 5495.80 6054.41
xMapleLCM random 2468.91 4003.26 4118.92 5701.78 6262.23
xMapleLCM ler 2528.94 962.78 3668.86 5647.48 6181.24

Table 4.3: PAR-2 scores summarizing the performance of each solver for each benchmark.

(a) Maximum number of live extension
variables.

(b) Extension variable decision fraction.

Figure 4.2: Plots comparing the maximum number of live extension variables and the
fraction of decisions made on extension variables for each ER-based solver on each instance.

4.3.2 Experiments and Results

Experiment 1: Quantity and quality of extension variables

To compare the internal behaviour of the ER-based solvers, we measure a few statistics
regarding the usage of extension variables in the implemented solvers. In particular, we
measure the number of extension variables, the maximum number of live (i.e., not deleted)
extension variables at any point in the solver’s execution, and the number of decisions on
those variables. The number of live extension variables is significant for practical reasons:
since there are so many possible definitions for extension variables, we must be careful not
to add too many extension variables and overwhelm the solver. Each extension variable
introduced into the solver requires additional memory resources, so if a large number
of variables are added, the solver’s run time may become dominated by the overhead
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Solver Total Selection Addition Substitution Deletion
xMapleLCM common 5.128% 3.441% 0.377% 1.279% 0.031%
xMapleLCM random 4.872% 3.495% 0.009% 1.252% 0.116%
xMapleLCM ler 5.097% 3.058% 0.876% 1.138% 0.025%

Table 4.4: The average percentage of solver running time dedicated to ER-related com-
putation for the clause selection (Selection), extension variable addition (Addition), ex-
tension variable substitution (Substitution), and extension variable deletion (Deletion)
components of our ER solver framework for each solver, measured over all benchmarks.

associated with memory management. We present the data for the maximum number of
live extension variables in Figure 4.2a.

From this data, we observe that for most benchmark instances, the maximum number
of extension variables present in the solver at any one time is relatively small. However,
in some cases, the number of extension variables present in the solver becomes significant,
and even exceeds the number of variables in the original formula. Surprisingly, all the ER-
based solvers introduce approximately the same number of extension variables. The LER
method tries to introduce extension variables after every learnt clause, whereas the other
considered methods only try to introduce extension variables upon restarts. Since all the
considered ER-based SAT solvers introduce approximately the same number of extension
variables, it is difficult to say whether a large number of extension variables is beneficial
in ER proof search.

In the work on LER [3], the authors claim that frequent branching on extension vari-
ables indicates that the resultant proof is a proof in LER and not just Res. We extrapolate
their reasoning to claim that instances where the solver frequently branches on extension
variables are instances where the generated proof is an ER proof. If this is true, our ex-
perimental data shows that the considered solvers generate Res refutations and not ER
proofs for the majority of problem instances. Figure 4.2b presents this data as a plot of
the fraction of decisions where the solver branches on an extension variable. In the vast
majority of instances, extension variables make up a minute proportion of all decisions.
Examining this data in the context of Figure 4.2a, cases where the number of decisions
on extension variables is large may instead be indicative of cases where the solver is over-
whelmed by extension variables. Then we cannot claim with certainty that a large number
of extension variable decisions implies that the resulting proof is an ER proof.
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(a) SAT2019 (b) SAT2020

Figure 4.3: Cactus plots comparing the performance of our method with LER and the
baseline method using the MapleLCM solver on the SAT2019 and SAT2020 benchmarks.

Experiment 2: Measuring the overhead of our ER framework

A major goal of our ER framework is to facilitate the development of ER-based SAT
solvers and heuristics without compromising too much of the performance of the underlying
CDCL solver. When performing this development, it is often difficult to determine whether
changes in overall solver performance are due to the chosen set of heuristics, or due to
improvements in implementation. To aid in this process, we added timing instrumentation
to our solver implementation to measure the performance overhead associated with each
component in the framework. Since each of the components we introduce in our framework
has the potential to dominate the running time of our solver, this allows us to identify
areas to prioritize for optimization, as well as to decide whether the computational cost
for implementing a certain set of heuristics outweighs the associated benefits. We present
this data for each ER-based solver in Table 4.4.

We see that the average overall ER computational overhead associated with each of
the ER-based solvers is fairly small, with less than 6% of total computation time going
toward ER-specific computation for each solver on average. Thus, the implementation
of our framework and chosen heuristics seem to be successful with respect to the goal of
reducing ER-related computational overhead. We observe that the most computationally
expensive component of the framework is clause selection, followed by extension variable
substitution. The relatively high computational cost of extension variable substitution is
expected, whereas the high cost of clause selection is somewhat surprising. Unfortunately,
as seen in Figure 4.3, our ER-based methods perform slightly worse than the base solver
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(a) php (b) urquhart

Figure 4.4: Cactus plots comparing the performance of our method with LER and the
baseline method using the MapleLCM solver on the php and urquhart benchmarks.

on the diverse selection of instances from the SAT competition.

We hypothesize that the high computational cost of clause selection is a result of the
streaming algorithm we use to keep track of the set of selected clauses, which is discussed
in Section 4.1.2. Specifically, the cost is likely associated with learnt clause deletion and
the periodic garbage collection of the clause database. The set of selected clauses keeps
track of the index of each selected clause rather than duplicating and storing the entirety
of each selected clause. Therefore, to prevent dangling references to clauses, we must
remove deleted clauses from the set of selected clauses every time clause selection occurs,
and we must additionally map each stored index to a new index upon garbage collection,
where the positions of clauses in memory are altered. In light of these results, we believe
that it may be worthwhile to recompute the set of selected clauses on demand every time
extension variable addition is performed rather than use this streaming algorithm. We
relegate further experimentation on these methods to future work.

Experiment 3: Testing the efficacy of our ER framework

As a demonstration of the versatility of our framework, we use it to implement a method
from the literature and attempt to reproduce the results described in the corresponding
paper. Specifically, we implement the LER method introduced by Audemard et al. [3].
They demonstrated that their ER solver outperformed the base solver on the functional
pigeonhole principle (FPHP) [25, 53] and Urquhart [84] families of problems, but did not
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improve on the SAT competition instances.

We implemented their method using our framework by defining appropriate heuristics
for each component of the framework. Although we only observed a small improvement on
the php benchmark, we were able to reproduce a significant improvement on the urquhart
benchmark (see Figure 4.4). This suggests that the performance improvement of the re-
stricted LER method over the Urquhart benchmark is robust to changes in solver imple-
mentation and combinations of heuristics, whereas the improvement over PHP is sensitive
to these details. We also observe that our other ER heuristics are able to outperform the
base solver on the urquhart benchmark. Interestingly, even the xMapleLCM random solver
improves performance here, which suggests that some of the success of the other methods
comes from simply defining extension variables over high-activity variables.

4.4 Related Work

Tseitin’s discovery of the Extended Resolution proof system [83] and Cook’s proof that
ER is a much stronger proof system than Resolution [27] inspired many attempts to
automate ER and integrate it into SAT solvers. However, due to the difficulty of choosing
useful extension variable definitions, most work has been in very restricted applications
of ER, or in developing methods using alternate proof systems which can be viewed as
constructing ER proofs rather than trying to automate ER directly. This body of work
includes pre-processing techniques [77, 61], symmetry-breaking methods [74] and BDD-
based SAT solvers [15, 76]. Comparatively, there has only been a small amount of work
investigating the direct integration of ER into the heart of SAT solving algorithms.

4.4.1 Local Extended Resolution

So far, the most successful attempt to directly implement an ER-based SAT solver is
based on Local Extended Resolution (LER), which is a restriction of ER that is easier
to automate [3]. LER which only allows extension variables to be defined if particular
pairs of clauses have already been derived; specifically, LER only allows the definition of
x↔ a∨ b if the two clauses C1 = (¬a∨ c0 ∨ c1 ∨ ...∨ ck) and C2 = (¬b∨ c0 ∨ c1 ∨ ...∨ ck))
are already available; i.e., C1 and C2 are either original or derived clauses. In their solver,
Audemard et al. [3] further restrict the proof system to define extension variables only if
the previous two learnt clauses have the appropriate form. They demonstrate empirical
improvements on the functional pigeonhole principle and Urquhart families of instances,
although the performance of the solver still scales exponentially.
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4.4.2 Extended Clause Learning

Another attempt at implementing an ER-based SAT solver is the Extended Clause Learn-
ing (ECL) scheme introduced by Huang [43], which is equivalent in power to ER. Un-
like LER and the original definition of ER, ECL permits the definition of new extension
variables over entire clauses rather than only binary clauses. Specifically, in ECL, new
extension variables x↔ α can be defined when the solver reaches a conflicting assignment
and α is a subset of the solver’s assignment trail (i.e., every literal in α is negated by the
assignment trail). At this point, it is difficult to set x with an appropriate value and deci-
sion level, so the ECL algorithm simply restarts the solver. Using their implementation of
an ECL-based SAT solver, Huang shows improvements on several small families of bench-
marks, as well as significant performance deterioration on some other benchmarks [43]. The
ECL solver was not tested against the PHP or Urquhart instances, so it remains unclear
whether the ECL approach scales well for these classes of problems.
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Chapter 5

Conclusion and Future Work

In this thesis, we presented two major contributions: one for the design of BCP algorithms,
and another for the design of SAT solvers based on Extended Resolution.

First, we presented Delayed BCP (as well as a design space for related BCP algorithms),
a novel prioritized BCP algorithm. Delayed BCP is the first BCP algorithm to utilize a
priority ordering of the literals while performing unit propagation. We demonstrated that
by using an appropriate priority order, Delayed BCP is able to outperform the traditional
BCP algorithm for some benchmarks, and that Delayed BCP remains competitive with
the traditional algorithm despite propagating unit clauses at a slower rate. We also showed
that Reinforcement Learning methods are able to learn a policy for dynamically switching
between BCP algorithms during a solver’s search, and that this combined approach is able
to outperform both variants of BCP individually for some benchmarks.

Future empirical work in this area should study the effect of other priority orders, and
investigate whether it could be advantageous to switch between priority orders rather than
only switching between BCP variants. We note that the existing body of work on prioritized
BCP algorithms only examines these algorithms from an empirical perspective, and it is
currently not deeply understood why prioritized BCP algorithms sometimes outperforms
the traditional algorithm. Thus, it would be greatly beneficial to also study the effects
of prioritized BCP from a theoretical perspective, as this could lead to better choices of
priority orderings and eventually, faster SAT solvers.

Second, we presented a conceptual framework for the programmatic development of
SAT solvers based on Extended Resolution, and implemented it into some popular SAT
solvers. We introduce the ExtDefMap data structure for efficiently implementing our algo-
rithms, and explore various heuristics for each component of the framework. By examining
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the computational overhead of our implementation, we observe that our design decisions
are largely effective in avoiding performance deterioration. We show that our framework
is flexible enough to implement a variety of heuristics, thereby demonstrating that our
framework is an effective tool for quickly developing ER-based solvers and studying the
effects of different heuristics. Finally, we compare ER-based solvers using various heuris-
tics, partially reproduce some of the results in the literature, and demonstrate a class of
instances where our method improves over the base solver.

As we identified in the development of our framework, there are many different design
spaces associated with ER-based SAT solvers, and there are countless heuristics which
could be implemented in each design space. Hence, some obvious future empirical work is
to investigate the performance of additional heuristics for each component. It would also
be advantageous to consider interactions between all the different components of the solver
rather than optimizing the performance of each component in isolation. For example, by
considering Cook’s short proof of PHP [27], Audemard et al. [3] demonstrated empirically
that it is insufficient just to introduce all the “best” extension variable definitions – there-
fore, the extension variable definition heuristic should be considered in tandem with the
solver’s branching heuristic.

Overall, we were successful in achieving the goals outlined at the beginning of this
thesis. Our technique for prioritized BCP easily supports different heuristics for various
priority orders, and our framework for developing Extended Resolution-based SAT solvers
is similarly capable of implementing a wide range of heuristics for introducing and man-
aging extension variables. For both Delayed BCP and our ER-based solvers, we identified
efficiently-computable heuristics such that our solvers remain competitive with the unmod-
ified baseline solvers over a diverse selection of benchmark instances, and we demonstrated
that there are classes of instances where the solvers implementing our techniques improve
over the base solvers.
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Carsten Sinz and Uwe Egly, editors, Theory and Applications of Satisfiability Testing
– SAT 2014, pages 219–226, Cham, 2014. Springer International Publishing.
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Appendix A

Bounds on the Number of Sets of
Extension Variable Definitions

We would like to answer the following: how many ways are there to define k distinct
extension variables over n input variables? Let this number be given by the function
f(k, n). Unfortunately, it is difficult to answer this question as an exact function of k and
n for a few reasons. However, we can compute some upper and lower bounds on this value
to get an idea of its magnitude.

In this Appendix, we will make use of Stirling’s asymptotic approximation for factorials
and double factorials [30]:

n! ≈
√
2πn

(n
e

)n
(A.1)

n!! ≈

{√
πn
(
n
e

)n/2
n is even

√
2n
(
n
e

)n/2
n is odd

(A.2)

A.1 Lower Bound

Consider the restricted problem where each variable can appear in the definition of at
most one extension variable. Let g(k, n) be the total number of ways to define k extension
variables under this restrictions. Consider the further restriction where the basis variables
only appear positively. Let g+(n) be the total number of ways to define k extension
variables under the two restrictions above. Clearly, the number of ways to define a set
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of extension variables while respecting these restrictions must be less than the number of
ways to define a set of extension variables in general.

Observe that each time a new variable is defined, it “consumes” two previously available
variables, for a net change of -1 variables each time an extension variable is defined. Then
we can define at most n−1 extension variables, so g+(k, n) and g(k, n) are not well defined
for k > n − 1. Consider the case of k = n − 1. In this case, the relationships between
variables are structured as a binary tree, where the leaf nodes correspond to the original
variables and the internal nodes correspond to extension variables. Importantly, the names
of the original variables are significant, whereas the names of the extension variables are
arbitrary and interchangeable. Then the number of possible ways to define extension
variables for this restricted case is equal to the number of full binary trees with n labeled
leaf nodes.

Conveniently, this sequence is essentially given by OEIS sequence A001147 [44]: a(n′) =
(2n′ − 1)!!, which describes the number of full binary trees with n′ + 1 labeled leaf nodes.
The proof that this is counted by this sequence is given by Example 5.2.6 in Enumerative
Combinatorics [78]. We have n = n′+1 leaf nodes, so g+(n− 1, n) = a(n− 1) = (2n− 3)!!.

We can now compute g(n − 1, n) as a function of g+(n − 1, n). Observe that after
introducing n−1 extension variables, there is exactly one extension variable which is not a
basis variable (i.e., the variable corresponding to the root of the binary tree). Since there
are n original variables and n− 1 extension variables, this means that there are a total of
n+ (n− 1)− 1 = 2(n− 1) basis literals. Since each basis variable appears exactly once in
a definition, we have 22(n−1) = 4n−1 possible basis literals. Therefore, we have

g(n− 1, n) = 4n−1g+(n− 1, n) = 4n−1(2n− 3)!!

Applying Stirling’s approximation (Equation A.2) gives the following formula, which
grows super-exponentially in n:

g(n− 1, n) = Θ

(
4n−1

√
2(2n− 3)

(
(2n− 3)

e

)(2n−3)/2
)

Since the constraints defining g(n − 1, n) are unrealistically restrictive, this is a very
loose lower bound on f(n − 1, n). It is simple to observe that the number of possible
combinations of extension variable definitions must increase strictly monotonically with
the number of extension variables. It follows that f(k, n) > f(k′, n) for all k > k′, and
therefore, f(k, n) ≥ g(min (k, n), n) for all k and n. If we consider k = Θ(n), we see
that f grows super-exponentially, and so, the number of possible sets of extension variable
definitions grows super-exponentially in the number of variables in the formula.
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A.2 Upper Bound

We can compute an upper bound on the total possible number of sets of extension variable
definitions by allowing the introduction of extension variables with identical definitions.
Consider the problem of selecting a single extension variable definition given a formula
containing n variables. This is simply the problem of selecting two distinct variables, each
of which can occur with one of two polarities, for a total number of

(
n
2

)
· 2 · 2 = 2n(n− 1)

possibilities.

After introducing this first extension variable, the formula contains n+1 variables. To
count the number of possibilities for a second extension variable, we can pretend that we are
simply defining a single extension variable over a formula containing n+1 variables, which
gives

(
n+1
2

)
· 2 · 2 = 2(n + 1)(n) possible definitions for the second variable. Multiplying

these two numbers together vastly over-counts the number of possible combinations of
definitions. However, we will accept this for now as a loose upper bound. Continuing this
process for k new variables, we have that the total number of combinations of extension
variable definitions is upper bounded by the following product:

h(k, n) =
k−1∏
i=0

2(n+ i)(n+ i− 1) = 2k · (n+ k − 1)!

(n− 1)!
· (n+ k − 2)!

(n− 2)!

= 2k · (n− 1)

(n+ k − 1)
·
(
(n+ k − 1)!

(n− 1)!

)2

In particular, if we choose k = n− 1, we have the following:

h(n− 1, n) = 2n−1 · n− 1

2n− 2

(
(2n− 2)!

(n− 1)!

)2

= 2n−2 ·
(
(2n− 2)!

(n− 1)!

)2

A.3 Comparison of Bounds

Since it is not immediately clear that h(n − 1, n) = o(g(n − 1, n)), we will consider the

limit R of the ratio g(n−1,n)
h(n−1,n)

as n→∞ as a sanity check:

R := lim
n→∞

4n−1(2n− 3)!!

2n−2 ·
(

(2n−2)!
(n−1)!

)2
= lim

n→∞
2n · (2n− 3)!! · ((n− 1)!)2

((2n− 2)!)2
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We can evaluate this limit using Stirling’s asymptotic approximations of the factorial and
double factorial functions [30]:

R = lim
n→∞

2n ·

√
2(2n− 3)

(
(2n−3)

e

)(2n−3)/2

·
(√

2π(n− 1)
(

(n−1)
e

)(n−1)
)2

(√
2π(2n− 2)

(
(2n−2)

e

)(2n−2)
)2

= lim
n→∞
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= lim
n→∞

2n−(1/2)−4(n−1) · (2n− 3)n−1 · e−n+(3/2)+2(n−1) · (n− 1)−2(n−1)

= lim
n→∞

2−3(n−1)+1/2 · (2n− 3)n−1 · e(n−1)+(1/2) · (n− 1)−2(n−1)

= lim
n→∞

(
2−3 · (2n− 3) · e · (n− 1)−2

)n−1 · (2e)1/2

=
√
2e lim

n→∞

(
(2n− 3)e

23(n− 1)2

)n−1

= 0

Therefore, h(n − 1, n) = o(g(n − 1, n)), so we conclude f(n − 1, n) = Ω (g(n− 1, n)) and
f(n− 1, n) = O (h(n− 1, n)):

f(n− 1, n) = Ω (4n(2n− 3)!!) (A.3)

f(n− 1, n) = O

(
2n ·

(
(2n− 2)!

(n− 1)!

)2
)

(A.4)
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