
FJMP: Factorized Joint Multi-Agent
Motion Prediction

by

Luke Rowe

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2023

© Luke Rowe 2023

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Multi-agent motion prediction is an important problem in an autonomous driving
pipeline, and it involves forecasting the future behaviour of multiple agents in complex
driving environments. Autonomous vehicles (AVs) should produce accurate predictions of
future agent behaviour in order to make safe and informed plans in safety-critical scenar-
ios. Importantly, AVs should generate scene-consistent future predictions that predict the
joint future behaviour of multiple agents, as this enables reasoning about potential future
multi-agent interactions, which are critical for downstream planning.

In this thesis, we address the problem of generating a set of scene-level, or joint, future
trajectory predictions in multi-agent driving scenarios. To this end, we propose FJMP, a
Factorized Joint Motion Prediction framework for multi-agent interactive driving scenar-
ios. FJMP models the future scene interaction dynamics as a sparse directed interaction
graph, where nodes represent agents and edges denote explicit interactions between agents.
We then prune the graph into a directed acyclic graph (DAG) and decompose the joint
prediction task into a sequence of marginal and conditional predictions according to the
partial ordering of the DAG, where joint future trajectories are decoded using a directed
acyclic graph neural network (DAGNN). We conduct experiments on two autonomous driv-
ing datasets and demonstrate that FJMP produces more accurate and scene-consistent
joint trajectory predictions than existing approaches. Importantly, we show that FJMP
produces superior joint forecasts compared to non-factorized approaches on the most in-
teractive and kinematically interesting agents, which highlights the benefit of our proposed
factorization.

iii

Acknowledgements

I would like to thank my advisor, Prof. Krzysztof Czarnecki, for the invaluable guidance,
encouragement, and support he provided throughout my graduate studies. I am incredibly
thankful for the freedom he granted me to explore and pursue my research interests, which
has not only greatly enriched my graduate experience but also fostered my growth and
confidence as a researcher.

I would also like to thank all the members of the WISE lab for their kindness and
support throughout my studies. I am especially thankful to Prarthana Bhattacharyya,
Martin Ethier, Eli-Henry Dykhne, Prof. Sean Sedwards, and Dr. Vahdat Abdelzad for
their engagement with my research and constructive feedback at our weekly meetings.
Finally, I would like to thank Benjamin Thérien for the numerous insightful discussions
and brainstorming sessions we have had within our office space.

To my family – Mom, Dad, Daniel, Juliet, Felix, and Ellis – thank you for being a
constant source of company and support throughout my graduate studies. I am incredibly
lucky to have you all in my life. Finally, to my wife, Charithe, thank you for being a
constant source of love, support, and laughter throughout my graduate studies and for
being by my side every day. Without you, this thesis would not have been possible.

iv

Dedication

To Charithe

v

Table of Contents

Author’s Declaration ii

Abstract iii

Acknowledgements iv

Dedication v

List of Figures ix

List of Tables xii

1 Introduction 1

2 Background 5

2.1 Multi-Agent Motion Prediction . 5

2.1.1 Why Joint Prediction? . 6

2.2 Graph Neural Networks . 7

2.2.1 Graph Theory Basics . 7

2.2.2 Neural Message Passing . 8

2.2.3 Directed Acyclic Graph Neural Network (DAGNN) 9

vi

3 Related Work 11

3.1 Motion Prediction in Driving Scenarios . 11

3.2 Interaction Modeling for Motion Prediction 12

3.3 Joint Motion Prediction . 13

4 Method 15

4.1 Preliminaries . 15

4.1.1 Proposed Joint Factorization . 15

4.1.2 Input Preprocessing . 17

4.2 Feature Encoder . 17

4.2.1 LaneGCN Encoder . 17

4.2.2 Auxiliary Proposal Decoder . 19

4.3 DAG Predictor . 19

4.3.1 Interaction Graph Predictor . 19

4.3.2 Dagification . 20

4.3.3 Acyclicity Loss . 21

4.4 Factorized Joint Trajectory Decoder . 22

4.4.1 Multiple Futures . 24

4.5 Training Details . 24

4.6 Inference . 25

5 Experiments 27

5.1 Datasets . 27

5.2 Implementation Details . 28

5.2.1 INTERACTION . 28

5.2.2 Argoverse 2 . 29

5.3 Evaluation Metrics . 29

5.4 Methods under Comparison . 30

vii

5.4.1 Non-Factorized Baseline . 30

5.5 Results . 31

5.5.1 Joint Prediction Results . 31

5.5.2 Interaction Graph Predictor Results 32

5.5.3 Ground-truth Interaction Graph Predictor Performance 33

5.5.4 Induced Interaction Graph Performance 34

5.6 Ablation Studies . 34

5.6.1 Sparse vs. Dense Interaction Graphs 34

5.6.2 Proposal Decoder and Teacher Forcing Ablation Study 35

5.6.3 Non-Factorized Baseline Ablation Study 36

5.6.4 DAG Acyclicity Loss . 37

5.7 Qualitative Evaluation . 39

5.7.1 INTERACTION . 39

5.7.2 Argoverse 2 . 39

5.7.3 Failure Cases . 39

6 Conclusion 44

6.1 Conclusion . 44

6.2 Limitations and Future Work . 44

References 46

APPENDICES 54

A Additional Evaluation Details 55

A.1 Miss Rate . 55

A.2 Collision Checker . 55

A.3 Constant Velocity Model . 56

A.4 Ground-truth Interaction Graph Statistics 58

viii

List of Figures

1.1 An illustration of the directed acyclic interaction graph, comprised of col-
ored nodes and red arrows. The dotted black lines denote the ground-truth
futures over a short time horizon. FJMP first produces marginal predic-
tions for the green (dashed) nodes, followed by a conditional prediction for
the yellow (dotted) node and a conditional prediction for the purple (solid)
node, with conditioning on the predicted future of the parent nodes in the
graph. 2

2.1 (a) An illustration of a marginal prediction output forK = 2, where we focus
on the blue agent. Each colour represents an agent trajectory mode, with
associated trajectory likelihoods. (b) An illustration of a joint prediction
output, with K = 2. Each colour represents a joint trajectory mode, with
associated joint likelihoods. 6

3.1 An example of a lane graph, where we focus on the blue lane node. The lane
nodes can be thought of as representations of lane sections. The predecessor,
successor, left, and right connections are denoted by the green, purple, red,
and yellow connections, respectively. 12

ix

4.1 Illustration of the proposed FJMP framework. (a) Agent histories and
the HD-Map are first processed by a LaneGCN-inspired feature encoder.
(b) During training, the LaneGCN-encoded features are fed into an aux-
iliary future proposal decoder trained with a regression loss to encourage
the LaneGCN features to be future-aware. (c) The future-aware LaneGCN-
features are processed by a GNN that predicts the pairwise influencer-reactor
relationships supervised by a focal loss. A directed interaction graph G is
constructed from the predicted edge probabilities and cycles are removed via
an efficient “dagification” procedure. (d). The predicted DAG and future-
aware LaneGCN features are fed into a factorized DAGNN-based trajectory
decoder (red agent removed for simplicity), which producesK (K = 2 shown
above) factorized joint futures in parallel and is supervised by a joint regres-
sion loss. 16

4.2 Examples of cycles in the ground-truth interaction graphs in the Argoverse
2 dataset. 21

4.3 High-level schematic of the training stages of FJMP. 26

4.4 High-level schematic of the FJMP architecture at inference time. 26

5.1 Comparison of FJMP and M2I labeling heuristics on a congested scene from
the INTERACTION dataset. The ground-truth pasts are indicated in yellow
and the ground-truth futures are indicated in green. Lane boundaries are
depicted as grey lines. Each red arrow points from an influencer agent to its
corresponding reactor agent. We note that two agents at the bottom-right
of the scene are on the shoulder of the lane. 36

5.2 Qualitative examples of FJMP on agent-dense scenes in the INTERACTION
dataset. 40

5.3 Qualitative examples of left-turn interactive scenes in the Argoverse 2 vali-
dation set. All predicted DAGs match the ground-truth DAG. In all scenes,
FJMP correctly identifies the passing vehicle as the influencer and the left-
turning vehicle as the reactor. The Non-Factorized baseline consistently
predicts overly conservative behaviour that avoids the influencer trajectory.
In contrast, FJMP consistently captures the proper left-turn behaviour. . 41

x

5.4 Qualitative examples of leader-follower interactive scenes in the Argoverse
2 validation set. Predicted DAGs are shown on the right, where true posi-
tive edges are indicated in solid black and true negative edges are shown in
dotted black. In all of the above scenes, FJMP correctly predicts chains of
influencer-reactor relationships. In the first row, the non-factorized baseline
predicts conservative behaviour for the trailing vehicle. In contrast, FJMP
predicts proper leader-follower behaviour for the trailing vehicle (leaf node
in the DAG). In the second and third rows, the right-turn mode of the
trailing vehicle is missed by the non-factorized baseline, whereas FJMP cor-
rectly identifies the right-turn mode due to correctly identifying the leader-
follower interaction. In the last row, the non-factorized baseline predicts
scene-incompliant behaviour for the trailing vehicle whereas FJMP predicts
proper leader-follower dynamics reflecting the predicted DAG. 42

5.5 Qualitative examples of failure cases of the FJMP model. All predicted
DAGs match the ground truth. In both rows, the interaction graph is cor-
rectly predicted; however, the influencer trajectory is erroneously predicted,
which negatively biases the reactor’s prediction to follow the influencer. . . 43

A.1 Histogram of FDEs on interacting agents in (a) the INTERACTION dataset,
and (b) the Argoverse 2 dataset. The left y-axis corresponds to the his-
togram and the right y-axis corresponds to the empirical cumulative distri-
bution function (CDF). 57

xi

List of Tables

5.1 Joint prediction results on the INTERACTION multi-agent test set. Meth-
ods are sorted by the official ranking metric (CMR). For each metric, the
best method is bolded and the second-best method is underlined. Lower is
better for all metrics. 31

5.2 Non-Factorized Baseline vs. FJMP performance on joint metrics on the
INTERACTION and Argoverse 2 validation sets. Lower is better for all
metrics. We evaluate two settings on Argoverse 2: Scored, which include
both scored and focal agents in Argoverse 2 dataset; and All, which includes
all scored, focal, and unscored agents. Argoverse 2 lacks agent bounding
box information, so SCR is not computed. ∆ denotes the difference in
performance between FJMP and the Non-Factorized baseline. 32

5.3 Accuracy of each edge type on the INTERACTION and Argoverse 2 vali-
dation sets with the FJMP interaction graph predictor. 33

5.4 FJMP with ground-truth vs learned interaction graphs at training and in-
ference time on the Argoverse 2 validation set, All setting. For each metric,
the best model is bolded. Train IG indicates the interaction graphs that
are used during training, where Learned denotes the predicted interaction
graphs from the interaction graph predictor and Ground-truth denotes
the interaction graphs obtained from the labeling heuristic. The Inference
IG column is interpreted similarly. 33

5.5 Ablation study that compares the effect of the DAG acyclicity loss on the
Argoverse 2 dataset. Num. Cycles is the number of cycles predicted in
the Argoverse 2 validation set. 34

xii

5.6 Comparison of sparse vs. dense interaction graphs on the INTERACTION
validation set. The FJMP model is trained and evaluated using the ground-
truth sparse interaction graphs, and FJMP (Dense) is trained and evalu-
ated using dense ground-truth interaction graphs attained via the M2I [49]
labeling heuristic. Prop. Edges measures the proportion of agent pairs
connected in the ground-truth training interaction graphs. Inf. Time is
the inference time per validation scene on 1 NVIDIA Tesla V100 GPU. . . 35

5.7 Ablation study of FJMP on Argoverse 2 validation set, All setting. Prop?
denotes whether we include the proposal decoder during training. TF?
denotes whether we teacher-force the influencer trajectories during training. 37

5.8 Ablation study of FJMP on the INTERACTION validation set. Prop?
denotes whether we include the proposal decoder during training. TF?
denotes whether we teacher-force the influencer trajectories during training. 37

5.9 Ablation study of the Non-Factorized Baseline model on the INTERAC-
TION validation set. Multiple Futures Method denotes the method
used to attain multiple joint futures. Hyperparameter Configuration
denotes the hyperparameter settings for batch size, learning rate/step, and
the number of training epochs. Feature Encoder denotes whether we
use the LaneGCN feature encoder (LaneGCN) or the simplified LaneGCN
feature encoder with fewer components (FJMP). 38

5.10 Ablation study that compares the effect of the DAG acyclicity loss on the
Argoverse 2 dataset. Num. Cycles is the number of cycles predicted in
the Argoverse 2 validation set. 38

5.11 Ablation study that compares the effect of the DAG acyclicity loss on the
downstream joint prediction performance on the Argoverse 2 dataset. . . . 38

A.1 Non-Factorized Baseline vs. FJMP performance on Argoverse 2 SMR metric
on the Argoverse 2 validation set. ∆ denotes the difference in performance
between FJMP and the Non-Factorized baseline. 56

A.2 Number of interactive agents in the INTERACTION and Argoverse 2 datasets
that attain at least dm in FDE with a constant velocity model. In paren-
theses, we include the total number of evaluated agents (interactive + non-
interactive) in the respective validation sets. 58

A.3 Edge type proportions in the INTERACTION and Argoverse 2 training set
interaction graphs with the FJMP labeling heuristic. 58

xiii

Chapter 1

Introduction

Multi-agent motion prediction is an important task in a self-driving pipeline, and it in-
volves forecasting the future positions of multiple agents in complex driving environments.
It is important that an autonomous vehicle (AV) generates plausible and diverse future
predictions. This capability enables AVs to plan collision-free trajectories while safely and
effectively interacting with other road agents. While humans exhibit a remarkable ability
to predict the future behaviour of other road users while driving, the task of multi-agent
motion prediction remains a challenging problem for AVs. This difficulty arises primar-
ily from AVs’ inability to directly observe the intent of other road agents, leading to a
substantial amount of aleatoric uncertainty in future trajectory estimation. This is a prob-
lem for humans too; however, humans often rely on subtle cues and signals to indicate
intent, which is challenging for AVs to reliably interpret. Moreover, multi-agent motion
prediction requires reasoning effectively about the interactions and negotiations with other
human road users, which requires a sophisticated understanding of social norms on the
road. Human drivers have an intuitive grasp of these norms, but imbuing AVs with such
social awareness is a complex endeavour [57]. Addressing these open challenges in multi-
agent motion prediction is crucial for ensuring more safe and robust interactions between
AVs and human agents on the road.

Most existing works in multi-agent motion prediction predict a set of marginal trajec-
tories for each agent [34, 19, 61, 35, 14, 53, 23], and thus fail to explicitly account for
agent interactions in the future. This results in trajectory predictions that are not consis-
tent with each other. For example, the most likely marginal prediction for two interacting
agents may collide with each other, when in reality a negotiation between agents to avoid
collision is far more likely. As scene-consistent future predictions are critical for down-
stream planning, recent work has shifted toward generating a set of scene-level, or joint,

1

Figure 1.1: An illustration of the directed acyclic interaction graph, comprised of colored
nodes and red arrows. The dotted black lines denote the ground-truth futures over a
short time horizon. FJMP first produces marginal predictions for the green (dashed)
nodes, followed by a conditional prediction for the yellow (dotted) node and a conditional
prediction for the purple (solid) node, with conditioning on the predicted future of the
parent nodes in the graph.

future trajectory predictions [49, 17, 5, 42, 7, 8, 18, 47, 66, 37, 68, 20], whereby each mode
consists of a future trajectory prediction for each agent and the predicted trajectories are
consistent with each other.

In this thesis, we focus on the problem of generating a set of joint future trajectory pre-
dictions in multi-agent driving scenarios. Unlike marginal prediction, the joint trajectory
prediction space grows exponentially with the number of agents in the scene, which makes
this prediction setting particularly challenging. A common approach for this setting is to
simultaneously predict the joint futures for all agents in the scene [17, 5, 42, 18, 8, 66, 68];
however, this approach fails to explicitly reason about future interactions in the joint pre-
dictions. To address this limitation, recent work has shown that decomposing the joint
prediction task of two interacting agents into a marginal prediction for the influencer agent
and a conditional prediction for the reactor agent, where the reactor’s prediction conditions

2

on the predicted future of the influencer, can generate more accurate and scene-consistent
joint predictions than methods that generate marginal predictions or simultaneous joint
predictions [49, 32]. However, these methods are optimized for the joint prediction of only
two interacting agents, and they do not efficiently scale to scenes with a large number of
interacting agents.

To address these limitations of existing joint motion predictors, in this thesis we pro-
pose FJMP – a Factorized Joint Motion Prediction framework that efficiently generates
joint predictions for driving scenarios with an arbitrarily large number of agents by fac-
torizing the joint prediction task into a sequence of marginal and conditional predictions.
FJMP models the future scene interaction dynamics as a sparse directed interaction graph,
where an edge denotes an explicit interaction between a pair of agents, and the direction
of the edge is determined by their influencer-reactor relationship [49, 28, 31], as can be
seen in Figure 1.1. We propose a mechanism to efficiently prune the interaction graph
into a directed acyclic graph (DAG). Joint future trajectory predictions are then decoded
as a sequence of marginal and conditional predictions according to the partial ordering of
the DAG, whereby marginal predictions are generated for the source node(s) in the DAG
and conditional predictions are generated for non-source nodes that condition on the pre-
dicted future of their parents in the DAG. To enable this sequential trajectory decoding,
we adapt a lightweight directed acyclic graph neural network (DAGNN) [51] architecture
for efficiently processing predicted future information through the DAG and decoding the
marginal and conditional trajectory predictions. Our main contributions can be summa-
rized as follows:

• We propose FJMP, a novel joint motion prediction framework that generates factor-
ized joint trajectory predictions over sparse directed acyclic interaction graphs. To
our knowledge, FJMP is the first framework that enables scalable factorized joint
prediction on scenes with arbitrarily many interacting agents.

• We validate our proposed method on both the multi-agent INTERACTION dataset
and the Argoverse 2 dataset and demonstrate that FJMP produces scene-consistent
joint predictions for scenes with up to 50 agents that outperform non-factorized
approaches, especially on the most interactive and kinematically complex agents.
FJMP achieves state-of-the-art performance across several metrics on the challenging
multi-agent prediction benchmark of the INTERACTION dataset and ranks 1st on
the official leaderboard.

This thesis is structured into six chapters as follows:

3

• Chapter 2 provides a necessary background. In this chapter, we formally define the
multi-agent motion prediction problem and articulate the rationale behind favoring
joint motion prediction over marginal motion prediction. We also present a concise
overview of graph neural networks (GNNs).

• Chapter 3 surveys relevant literature in motion prediction for autonomous driving,
interaction modeling for autonomous driving, and joint motion prediction. This
chapter is adapted from [45].

• Chapter 4 presents the proposed FJMPmethod in detail, elucidating the architectural
details of the feature encoder, DAG predictor, and factorized joint decoder. This
chapter is adapted from [45].

• Chapter 5 conducts a detailed analysis of the performance of FJMP across two popu-
lar autonomous driving datasets, as well as a comprehensive ablation study that offers
insights into the impact of the core components of FJMP on its overall performance.
This chapter is adapted from [45].

• Chapter 6 summarizes our contributions and closes with limitations and several in-
teresting directions for future work.

4

Chapter 2

Background

In this chapter, we begin by formally defining the multi-agent motion prediction problem,
and we explain the rationale behind addressing the task of joint motion prediction. Next,
we provide a concise background of GNNs and cover a GNN variant that is utilized in
FJMP: the directed acyclic graph neural network (DAGNN) [51].

2.1 Multi-Agent Motion Prediction

The goal of multi-agent motion prediction is to predict the future Tfut timesteps of N
dynamic agents in a scene given the past motion of the N agents and the structure of the
High-Definition (HD) Map. As there are multiple possible futures for a given past, the
joint motion prediction task involves predicting K > 1 modalities, whereby each modality
consists of a predicted future for each agent in the scene. We let X and Y denote the past
trajectories and future trajectories for all N agents in the scene, respectively, where XS
denotes the past trajectories for all agents in the set S ⊆ [N], and YS is defined similarly.

Most existing work in multi-agent motion prediction is focused on the task of marginal
prediction. Specifically, for each agent i, the marginal prediction task involves predict-
ing K future trajectories with optional associated probabilities: {Ŷ k

{i}, p(Ŷ
k
{i})}Kk=1, where∑K

k=1 p(Ŷ
k
{i}) = 1. The primary reason for such focus is that the dominant evaluation met-

rics driving most popular motion prediction benchmarks [6, 3, 58, 13] are based on min-
imum trajectory displacement errors computed independently for each agent of interest.
This thesis, however, is focused on the task of joint motion prediction. Concretely, the joint
prediction task involves predicting a set of K future scene evolutions, or joint trajectory

5

(a) marginal prediction (b) joint prediction

Figure 2.1: (a) An illustration of a marginal prediction output for K = 2, where we
focus on the blue agent. Each colour represents an agent trajectory mode, with associated
trajectory likelihoods. (b) An illustration of a joint prediction output, with K = 2. Each
colour represents a joint trajectory mode, with associated joint likelihoods.

predictions, with optional associated probabilities: {Ŷ k, p(Ŷ k)}Kk=1, where
∑K

k=1 p(Ŷ
k) = 1.

Importantly, in the marginal case, we assign a probability to each agent trajectory predic-
tion, whereas in the joint case, we assign a probability to each joint trajectory prediction,
where a joint trajectory prediction consists of an agent trajectory prediction for every
agent of interest. Figure 2.1 illustrates the difference between marginal prediction and
joint prediction.

2.1.1 Why Joint Prediction?

Although marginal prediction is more extensively studied in the motion prediction litera-
ture, it has clear drawbacks compared with joint motion prediction. In particular, marginal
predictions are not associated across multiple agents, which results in scene-inconsistent
predictions. This makes it difficult to reason about the multi-agent interactions that may
evolve in the future, which is critical for downstream planning. Although a naive solution
could be to enumerate all possible combinations of marginal predictions to produce joint
predictions, this approach is computationally intractable for large scenes, as the output
space grows exponentially in the number of agents in the scene. That is, forN agents andK
marginal predictions per agent, there are NK such combinations. Instead, joint prediction

6

offers a more tractable approach that involves directly generatingK joint future predictions
that account for multi-agent interactions. For these reasons, we study the joint motion pre-
diction task in this thesis. Moreover, many popular benchmarks have recently released a
corresponding joint prediction benchmark, where minimum trajectory-displacement errors
are calculated at the scene-level, rather than at the agent-level [13, 64, 58].

2.2 Graph Neural Networks

Graphs, which are sets of nodes connected by edges, naturally arise in a wide variety
of disciplines – including biology, sociology, computer science, and medicine. Given the
modern advancements in deep learning, there has been a recent surge of interest in applying
deep learning methods in the graph-structured domain. These new graph algorithms,
generally grouped under the name graph neural networks (GNNs), have shown significant
improvements in both performance and efficiency in a variety of graph-related tasks, such
as node, edge, and graph classification [60]. In this section, we provide a brief overview of
graph neural networks (GNNs) and a GNN variant that is used in the FJMP architecture for
learning representations over DAGs: the directed acyclic graph neural network (DAGNN).

2.2.1 Graph Theory Basics

We define a graph by a tuple G = (V , E), where V is a set of N vertices and E ⊆ V × V is
a set of directed edges between pairs of vertices in V .

We define a walk on a graph G = (V , E) as a finite sequence of edges (e1, e2, . . . , ek) in
E that join a sequence of vertices (v0, v1, . . . , vk) in V such that ei = (vi−1, vi) for all i. A
trail is a walk in which all edges are distinct, and a cycle is a non-empty trail in which
only the first and last vertices are equal. A graph G is a directed acyclic graph (DAG) if
there are no cycles in G. Every DAG G = (V , E) admits a unique topological ordering of
its vertices, which is an ordering of the vertices such that for every edge e = (u, v) ∈ E , u
comes before v in the ordering.

As we are interested in learning representations over the vertices in G, we assume that
each vertex v in V has an associated feature vector hv ∈ RD, which can be aggregated to
form a feature matrix H ∈ RN×D. The connectivity of the graph can be represented as
an N × N adjacency matrix A, where Auv = 1 for all (u, v) ∈ E . Given a vertex v ∈ V ,
we define the neighbourhood of v by N (v) = {u : (u, v) ∈ E}. It is important to note
that it is possible to attach additional features to the edges E ; however, for simplicity, we

7

assume that all features lie on the vertices V of G. At a high level, a GNN is a function
parameterized by a neural network fθ(G,H) that leverages the graph structure of G to
learn meaningful representations over the vertices V , given initial features H. A GNN can
be decomposed into a sequence of neural message passing layers, which we cover in the
following section.

2.2.2 Neural Message Passing

A neural message passing layer ℓ takes the following form:

hℓ
v = COMBℓ(hℓ−1

v ,AGGℓ({hℓ−1
u |u ∈ N (v)})), (2.1)

where h0
v = hv is the initial node feature for node v, and AGGℓ and COMBℓ are pa-

rameterized neural networks. At a high level, a neural message passing layer first applies
a permutation-invariant pooling layer AGGℓ that aggregates the features from the local
neighbourhood of v and then updates the node representation of v with an update function
COMBℓ. The output of AGGℓ is commonly referred to as a message, which is a represen-
tation of the information coming from the local neighbourhood of v. We apply a neural
message passing layer ℓ independently to all nodes v ∈ V . We emphasize that a neural
message passing layer exploits the graph structure of G by updating the representation of
v with features from the local neighbourhood of v. This is similar to how a convolutional
neural network computes local features through the convolution operation [30], but in the
case of GNNs the convolutional window is defined by the vertex neighbourhood.

Common examples of the pooling layer AGGℓ include summation and mean; however,
AGGℓ may also be parameterized by a neural network, as we will see in Section 2.2.3. The
update function COMBℓ is typically represented by a simple multi-layer perceptron (MLP)
or recurrent neural network (RNN), as we will see in Section 2.2.3.

A GNN is simply a sequence of L neural message passing layers, where each neural
message passing layer is parameterized with its own set of neural network weights θℓ. After
applying multiple layers of neural message passing, the final node representations can be
used for tasks such as node classification and graph classification [60]. For example, for node
classification, typically a differentiable loss function is computed for all nodes concurrently,
which enables updating the weights {θℓ}Lℓ=1 of the GNN via backpropagation.

8

2.2.3 Directed Acyclic Graph Neural Network (DAGNN)

A DAGNN is a recently proposed GNN architecture that is tailored specifically for DAG
classification tasks [51]. While a typical GNN applies a neural message passing layer to
all vertices in parallel, DAGs offer a unique topological ordering that can serve as an
inductive bias, enabling the learning of more powerful representations over DAGs. The
core principle behind a DAGNN is to leverage this partial ordering by updating node
representations sequentially, following the topological ordering of the DAG. Specifically,
neural message passing layer ℓ in a DAGNN takes the following form:

hℓ
v = COMBℓ(hℓ−1

v ,AGGℓ({hℓ
u|u ∈ paG(v)},hℓ−1

v)), (2.2)

where paG denotes the parents of v in G. Processing information according to the topolog-
ical ordering enables using more recently updated information to update the node repre-
sentations. Notably, AGGℓ aggregates features hℓ

u from the parents of v that have already
been updated in layer ℓ.

In practice, the DAGNN parameterizes the aggregation function with additive atten-
tion. Specifically, the message for node v in layer ℓ is computed as:

mℓ
v := AGGℓ({hℓ

u|u ∈ paG(v)},hℓ−1
v) =

∑
u∈paG(v)

αℓ
vu(h

ℓ−1
v ,hℓ

u)h
ℓ
u. (2.3)

The attention coefficients αℓ
vu assign varying importance to the different neighbours of v

and they are computed as follows:

αℓ
vu(h

ℓ−1
v ,hℓ

u) = softmaxu∈paG(v)

(
wℓT

1 hℓ−1
v +wℓT

2 hℓ
u

)
, (2.4)

where wℓT

1 and wℓT

2 are learnable weight vectors. By definition, the source nodes s ∈ S
in the DAG contain no parents; that is paG(s) = ∅. In this case, we let AGGℓ({hℓ

u|u ∈
paG(s)},hℓ−1

s) = AGGℓ(∅,hℓ−1
s) := 0.

The DAGNN introduces a parameterization of the update function using a gated-
recurrent unit (GRU), which is commonly employed for sequential data processing, but
in this context, it proves effective for processing data in topological order as well. Specifi-
cally, the updated node representation is computed as:

hℓ
v = COMBℓ(hℓ−1

v ,mℓ
v) = GRUℓ(hℓ−1

v ,mℓ
v). (2.5)

We emphasize that the input to the GRU is the node representation for v in the previous
layer hℓ−1

v , and the hidden state is the message mℓ
v. The reason is that the message

9

effectively keeps track of the section of the DAG that has already been processed, thus
taking on the role of the hidden state.

After performing L layers of DAGNN neural message passing, the DAGNN derives a
graph representation for the DAG that can be used for DAG classification. Specifically,
we max-pool the representations on the leaf nodes F of the DAG. We note that due
to the sequential processing through the partial order, the leaf nodes effectively contain
information about the full DAG. Concretely, the graph representation is computed as:

hG = MLP(Max-Poolv∈F(∥Lℓ=0 h
ℓ
v)), (2.6)

where ∥ denotes the concatenation operation. The DAGNN captures the dependencies and
relationships among nodes in the directed acyclic graph and leverages the topological order
to enhance its representation learning capability. This formulation proves to be useful for
achieving superior performance on several DAG classification tasks [51], and will be utilized
for performing factorized joint trajectory decoding, as we will see in Section 4.4.

10

Chapter 3

Related Work

In this chapter, we survey the relevant related work, including related work in motion pre-
diction for driving scenarios, interaction modeling for motion prediction, and joint motion
prediction.

3.1 Motion Prediction in Driving Scenarios

Given the recent growing interest in autonomous driving, many large-scale motion predic-
tion driving datasets [6, 58, 13, 3, 64] have been publically released, which has enabled
rapid progress in the development of data-driven motion prediction methods. RNNs are a
popular choice for encoding agent trajectories [17, 15, 16, 10, 26, 7] and convolutional neu-
ral networks (CNNs) are widely used in earlier works to process the birds-eye view (BEV)
rasterized encoding of the HD map [18, 5, 43, 40, 7, 15]. As rasterized HD-map encodings
do not explicitly capture the topological structure of the lanes and are constrained by a
limited receptive field, recent methods have proposed vectorized [14, 19, 35, 46], lane graph
[34, 16, 9], and point cloud [61] representations for the HD-map encoding. Inspired by the
success of transformers in both natural language processing [54, 11] and vision [12], several
end-to-end transformer-based methods have recently been proposed for motion prediction
[18, 42, 35, 46, 21, 67, 23]. However, many of these transformer-based methods are ex-
tremely costly in model size and inference speed, which makes them impractical for use in
real-world settings. FJMP adopts a LaneGCN-inspired architecture [34] due to its strong
performance on competitive benchmarks [6], while retaining a small model size and fast
inference speed. LaneGCN represents the HD-map as a lane graph. A lane graph is a graph
G = (V , {Epre, Esuc, Eleft, Eright}), where the vertex set V consists of densely sampled lane

11

Figure 3.1: An example of a lane graph, where we focus on the blue lane node. The lane
nodes can be thought of as representations of lane sections. The predecessor, successor,
left, and right connections are denoted by the green, purple, red, and yellow connections,
respectively.

nodes along the lane centerlines of the HD-map structure, and Ei, i ∈ {pre, suc, left, right},
correspond to the predecessor, successor, left and right connections in the lane graph. Typ-
ically, a GNN learns feature representations over the lane nodes in G, which are informed
by the local connectivity of the lane graph. An example of a lane graph is shown in Figure
3.1.

3.2 Interaction Modeling for Motion Prediction

Data-driven methods typically use attention-based mechanisms [35, 42, 18, 34, 17, 67] or
graph neural networks (GNNs) [5, 63, 33, 36, 14, 23, 28, 4] to model agent interactions for
motion prediction. Recent works have demonstrated the importance of not only modeling
agent interactions in the observed agent histories but also reasoning explicitly about the
agent interactions that may occur in the future [46, 49, 1, 32, 29, 31]. MTR [46] proposes
to generate future trajectory hypotheses as an auxiliary task, where the future hypotheses
are fed into the interaction module so that it can better reason about future interactions.
QCNeXt [66] performs self-attention on learnable per-agent future embeddings that are de-
coded into joint trajectory predictions, which enables reasoning about the self-consistency
of the corresponding future predictions. GameFormer [20] formulates joint trajectory de-

12

coding as a multi-level game, where joint predictions from level i−1 are used together with
the scene context to refine the joint predictions at level i; however, such iterative refine-
ment can be costly at runtime. JFP [37] uses a probabilistic graphical model on top of the
marginal trajectory candidates and learned potentials to generate scene-consistent joint
predictions. Multiple works reason about future interactions through predicted pairwise
influencer-reactor relationships [49, 32, 31], where the agent who reaches the conflict point
first is defined as the influencer, and the reactor otherwise. Other works predict an explicit
interaction graph for modelling future interactions between agents [37, 1, 33, 7, 28]. FJMP
uses attention to model interactions in the agent histories and constructs a sparse interac-
tion graph based on pairwise influencer-reactor relationships to model future interactions.

3.3 Joint Motion Prediction

The majority of existing motion prediction systems generate marginal predictions for each
agent [53, 16, 48, 10, 14, 43, 40, 26, 21, 15, 2, 62, 34, 19, 61, 67, 35, 56, 23, 46, 63,
9]; however, marginal predictions lack an association of futures across agents. Recent
works have explored generating simultaneous joint predictions [42, 5, 8, 17, 18], but these
methods do not explicitly reason about future interactions in the joint predictions. Other
works generate joint predictions for two-agent interactive scenarios by selecting K joint
futures among all K2 possible combinations of the marginal predictions [46, 59], which
quickly becomes intractable as the number of agents in the scene increases. ScePT [7]
proposes to handle the exponentially growing joint prediction space by decomposing joint
prediction into the prediction of interactive cliques. However, the density of large cliques
imposes a severe computational burden at inference time, which requires ScePT to upper-
bound the maximum clique size to 4. To avoid the computational burden associated with
dense interaction graphs, FJMP models future interactions as a sparse interaction graph
consisting only of the strongest interactions, which enables efficient joint decoding over
interactive scenarios with many interacting agents.

Our proposed method is most closely related to M2I [49], which first predicts the
influencer-reactor relationship between a pair of interacting agents and then generates a
marginal prediction for the influencer agent followed by a conditional prediction for the
reactor agent. However, we differ from M2I in three critical ways. First, M2I is designed
specifically to perform joint prediction of two interacting agents, as their model design
assumes one influencer agent and one reactor agent. In contrast, FJMP naturally scales to
an arbitrary number of interacting agents, where an agent may have multiple influencers
and influence multiple reactors. Second, M2I requires a costly inference-time procedure

13

that does not scale to multiple agents whereby N conditional predictions are generated for
each marginal prediction, resulting in N2 joint predictions that are pruned to K = 6 based
on predicted likelihood. On the contrary, FJMP coherently aligns the joint predictions of a
given modality through the DAG and directly produces K = 6 factorized joint predictions
without any required pruning, which allows the system to seamlessly scale to scenes with an
arbitrarily large number of agents. Third, M2I uses separate decoders for the marginal and
conditional prediction, whereas FJMP decodes both marginal and conditional predictions
using the same decoder, making it more parameter-efficient.

14

Chapter 4

Method

In this section, we describe our proposed factorized joint motion prediction framework,
illustrated in Figure 4.1.

4.1 Preliminaries

4.1.1 Proposed Joint Factorization

We let X and Y denote the past trajectories and future trajectories for all N agents in the
scene, respectively, where XS denotes the past trajectories for all agents in the set S ⊆ [N],
and YS is defined similarly. Moreover, we let C be an encoding of the HD-map context. We
first propose to model the future scene interaction dynamics as a DAG G = {V , E}, where
the vertices V = [N] correspond to the N dynamic agents in the scene, and a directed edge
emn ∈ E ; m,n ∈ [N], denotes an explicit interaction between agents m and n whereby m
is the influencer and n is the reactor of the interaction. We propose to factorize the joint
future trajectory distribution P (Y |X,C) over the DAG G as follows:

P (Y |X,C) =
N−1∏
n=0

P (Y{n}|YpaG(n), X, C), (4.1)

where paG(n) denotes the set containing the parents of node n in G. Intuitively, the pro-
posed joint factorization can be interpreted as an inductive bias that encourages accounting
for the predicted future of the agent(s) that influence agent n when predicting the future

15

Combine + Conditional Prediction

LaneGCN
Feature Encoder

HD-Map + Agent History

(a) Feature Encoder

Node-to-edge Propagation

Relation
Predictor

DagificationEdge Prediction

LaneGCN-Encoded
Agent Features

(c) Directed Acyclic Interaction Graph Predictor

Future
Trajectory
Decoder

Predicted
Future

Trajectory
Encoder

Associated Marginal Predictions for Source Node(s) Graph Attention Aggregation

GRU
Combine

Future
Trajectory
Decoder

Auxiliary
Proposal
Decoder

(b) Proposal Decoder

(d) Factorized Joint Decoder

0

0

0

0

1

1

1

1

0

10

1

Figure 4.1: Illustration of the proposed FJMP framework. (a) Agent histories and the HD-
Map are first processed by a LaneGCN-inspired feature encoder. (b) During training, the
LaneGCN-encoded features are fed into an auxiliary future proposal decoder trained with a
regression loss to encourage the LaneGCN features to be future-aware. (c) The future-aware
LaneGCN-features are processed by a GNN that predicts the pairwise influencer-reactor
relationships supervised by a focal loss. A directed interaction graph G is constructed
from the predicted edge probabilities and cycles are removed via an efficient “dagification”
procedure. (d). The predicted DAG and future-aware LaneGCN features are fed into
a factorized DAGNN-based trajectory decoder (red agent removed for simplicity), which
produces K (K = 2 shown above) factorized joint futures in parallel and is supervised by
a joint regression loss.

16

of agent n. We hypothesize that this inductive bias will ease the complexity of learning
the joint distribution when compared to methods that produce a joint prediction for all N
agents simultaneously.

4.1.2 Input Preprocessing

The past trajectory of a given agent is expressed as a sequence of Tobs states, which contains
the 2D position, the velocity, and the heading of the agent at each timestep. We denote
the past state of agent n at timestep t, t ∈ [Tobs], by xn

t = [pn
t ,v

n
t , ψ

n
t], where p

n
t ∈ R2 is the

position, vn
t ∈ R2 is the velocity, and ψn

t ∈ R is the yaw angle. We are also provided the
agent type an. As in LaneGCN [34], we convert the sequence of 2D positional coordinates
of each agent n to a sequence of coordinate displacements: p̂n

t = pn
t − pn

t−1 for all t. We
encode the HD-Map as a lane graph with M nodes, each denoting the location of the
midpoint of a lane centerline segment. Using the lane graph construction proposed in
LaneGCN, four adjacency matrices, {Ai}i∈{pre, suc, left, right}, Ai ∈ RM×M , are calculated
to represent the predecessor, successor, left, and right node connectivities in the lane
graph, respectively. Our system takes as input the M lane node positional coordinates,
the lane node connectivities {Ai}i∈{pre, suc, left, right}, and the preprocessed agent history

states x̂n
t := [p̂n

t ,v
n
t , ψ

n
t] for all n ∈ [N], t ∈ [Tobs]. We let X̂{n} := [x̂n

0 , . . . , x̂
n
Tobs−1] be the

sequence of preprocessed observed states for agent n.

4.2 Feature Encoder

4.2.1 LaneGCN Encoder

To encode the agent history and HD-map data, we employ a LaneGCN backbone [34]
with a few key modifications. For processing the agent histories, we replace LaneGCN’s
proposed ActorNet architecture with a gated recurrent unit (GRU) module, as shown in
Equation 4.2:

ha
n = GRU(X̂{n}), (4.2)

for all n ∈ [N], where the output of GRU(·) is the final hidden state. For processing
the HD-Map, we employ LaneGCN’s MapNet architecture, which consists of L graph
convolutional operators that enrich the lane node features by propagating them through
the lane graph. Specifically, we parameterize layer ℓ in the MapNet architecture by

17

θℓ := {W0
ℓ ,W

left
ℓ ,Wright

ℓ } ∪ {Wpre
ℓ,2h

,Wsuc
ℓ,2h
}H−1
h=0 , where H is the maximum dilation size.

We update the map embeddings C ∈ RM×Dm , where M is the number of lane nodes and
Dm is the lane node feature dimension, with the graph convolutional operator defined as
follows:

C← CW0
ℓ +

H−1∑
h=0

A2h

preCWpre
ℓ,2h

+A2h

sucCWsuc
ℓ,2h +

∑
dir∈{left, right}

AdirCWdir
ℓ . (4.3)

Here, A2h

pre and A2h

suc represent the predecessor and successor adjacency matrices for nodes
that are 2h hops away, respectively. After L applications of Equation 4.3, where each layer
ℓ is parameterized with its own weights θℓ, we get a set of lane-node features Hm that
capture the spatial relationships between lane nodes in the HD-map structure.

We then employ the FusionNet architecture introduced in LaneGCN [34] for fusing the
map and actor features, but we remove the actor-to-lane (A2L) and lane-to-lane (L2L)
modules, keeping only the lane-to-actor (L2A) and actor-to-actor (A2A) modules. We
observed a minimal loss in performance when removing the A2L and L2L modules, and
we benefited from the reduced parameter count, which is consistent with [2]. Concretely,
the FusionNet architecture first fuses the map information into the GRU-encoded agent
features via KL2A applications of linear attention, where each linear attention layer is
parameterized by a set of weights θL2A

k := {WL2A
k,0 ,W

L2A
k,1 ,W

L2A
k,2 } and the linear attention

mechanism is defined by:

ha
n ← ha

nW
L2A
k,0 +

∑
p

ϕ((ha
n ∥ ∆np ∥ hm

p)W
L2A
k,1)WL2A

k,2 , (4.4)

where hm
p is the p’th lane node feature, ∆np = MLP(pp

tc − pn
tc) where tc := Tobs − 1 is

the present timestep, ∥ denotes concatenation along the feature dimension, and ϕ is the
composition of layer normalization and a ReLU activation. The summation is over the
lane indices p that are within 20 meters of agent n’s position at the present timestep.

Next, the FusionNet architecture models agent-to-agent interactions in the observed
histories via KA2A applications of linear attention, where each linear attention layer is
parameterized by a set of weights θA2A

k := {WA2A
k,0 ,WA2A

k,1 ,WA2A
k,2 } and the linear attention

mechanism is defined by:

ha
n ← ha

nW
A2A
k,0 +

∑
p

ϕ((ha
n ∥ ∆np ∥ ha

p)W
A2A
k,1)WA2A

k,2 . (4.5)

The summation is over the agent indices p that are within 100 meters of the agent n’s
position at the present timestep. The output of the LaneGCN FusionNet architecture is a
set of agent features H = {hn}n∈[N] for each agent.

18

4.2.2 Auxiliary Proposal Decoder

While the output of the LaneGCN feature encoder provides informative map-aware agent
features, the A2A module only considers agent interactions in the observed past trajecto-
ries. However, these features will be used downstream to reason about agent interactions
in the future, and thus we desire agent feature representations that are future-aware –
agent features that are predictive of the future. To this end, we propose to regularize
the LaneGCN agent feature representations with an auxiliary pretext task that predicts
joint future trajectories on top of the LaneGCN-encoded agent features. We adopt a pro-
posal decoder fprop, which decodes K joint future trajectories from the LaneGCN-encoded
features {ŷn

prop,k}k∈[K] = fprop(hn) and it is supervised by a joint regression loss Lprop.
More details of the joint regression loss can be found in Section 4.5. We hypothesize that
the proposed pretext task will regularize the LaneGCN feature representations so that it
contains future context that will be useful for reasoning about future interactions in the
downstream modules. We note that the proposal decoder is discarded at inference time
and is only used to regularize features during training.

4.3 DAG Predictor

4.3.1 Interaction Graph Predictor

In order to construct the directed acyclic interaction graph, we first must classify the future
interaction label between every pair of agents in the scene. This task can be formulated as
a classification task where we classify every edge in a fully-connected undirected interaction
graph GU = {V , EU}, where each agent corresponds to a node in V . Similar to [49, 31, 28,
32], given an edge em,n ∈ EU , the classification task assumes three labels: no-interaction,
m-influences-n, and n-influences-m, where the ground-truth future interaction label
is heuristically determined using their ground-truth future trajectories. Concretely, we
employ a collision checker to check for a collision between agents m and n at all pairs of
future timesteps (tm, tn) where |tm− tn| ≤ ϵI for some threshold ϵI . Details of the collision
checker can be found in Section A.2. We let C denote the set of timestep pairs where a
collision is detected. If |C| = 0, then m and n are not interacting and the edge is labeled
no-interaction. Otherwise, we identify the first such pair of timesteps (t̂m, t̂n) ∈ C where
a collision is detected:

(t̂m, t̂n) = argmin
(tm,tn)∈C

min{tm, tn}. (4.6)

19

If |C| > 0, then there exists a conflict point between the two agents, and the influencer
agent is defined as the agent who reaches the conflict point first. Specifically, if t̂m < t̂n,
then we assign the edge the label m-influences-n, and otherwise we assign the edge the
label n-influences-m.

With the heuristic interaction labels, we train a classifier to predict the interaction
type on each edge of GU . We first initialize the node features of GU to the future-aware
LaneGCN agent features hn. We then perform a node-to-edge feature propagation step,
where for each edge em,n:

he
m,n = fedge

([
hm||hn||fdist(pm

tc − pn
tc)||am,n

])
, (4.7)

where fedge and fdist are 2-layer MLPs, tc := Tobs − 1 is the present timestep, and am,n =
ftype([am, an]) is the output of a 2-layer MLP ftype applied to the agent types am, an. We
then classify the interaction label using a 2-layer MLP fint with a softmax activation, which
outputs a 3-dimensional softmax probability vector:

r̂m,n = softmax(fint(h
e
m,n)). (4.8)

The interaction classifier is trained with a focal loss Lint = Lγ,α
focal(R, R̂) with hyperpa-

rameters γ and α, where R̂ is the predicted interaction label distributions and R is the
ground-truth interaction labels. From the predicted interaction label distributions, we can
construct a directed interaction graph G = {V , E} by selecting the interaction label on each
edge with the highest predicted probability. For each pair of agents, we add a directed
edge from the predicted influencer to the predicted reactor if an interaction is predicted to
exist, and no edge is added otherwise.

4.3.2 Dagification

In order to perform factorized joint prediction over the learned directed interaction graph G,
we require G to be a DAG. We propose to remove cycles from G, or “dagify” G, by iterating
through the cycles in G and removing the edges with the lowest predicted probability.
We efficiently enumerate the cycles in G using Johnson’s algorithm [24], which has time
complexity O((|V| + |E|)(c + 1)), where c is the number of cycles in G. As the directed
interaction graphs are typically sparse (|V| ≈ |E|) with a small number of cycles, for our
application Johnson’s algorithm runs approximately linear in the number of agents in the
scene.

20

0

1

GT Trajectories

GT Trajectories

GT DAG

GT DAG

2

0

1

2

2

Figure 4.2: Examples of cycles in the ground-truth interaction graphs in the Argoverse 2
dataset.

4.3.3 Acyclicity Loss

FJMP requires a DAG to perform factorized decoding. We first note that there are only 50
cycles in the ground-truth interaction graph across all 225, 000 scenes in the Argoverse 2
dataset [58], with 48 cycles in the training set and 2 cycles in the validation set. The large
majority of the cycles arise from crowds of pedestrians walking in opposite directions, as
shown in the top panel of Figure 4.2. A couple of cycles arise from cyclic structures in the
trajectories, as shown in the bottom panel of Figure 4.2.

To encourage the FJMP interaction graph predictor to predict DAGs, we include an
optional differentiable acyclicity loss function to bias the predictor to predict DAGs, which
reduces the computational overhead of the dagification procedure proposed in Section 4.3.2.

21

Concretely, we introduce the following differentiable acyclicity loss function:

LDAG = λDAG

(
tr(eÂ⊙Â)−N

)
, (4.9)

where ⊙ denotes element-wise multiplication, eM denotes the matrix exponential operator
on matrix M , and Â ∈ RN×N is the predicted weighted adjacency matrix derived from the
softmax probability scores output by the interaction graph predictor:

Âmn = r̂m,n[1], (4.10)

Ânm = r̂m,n[2]. (4.11)

We interpret the weighted adjacency matrix as an edge (m,n) existing between nodes m
and n iff Âmn > 0. It can be shown that LDAG ≥ 0 and LDAG = 0 iff the graph induced
by Â is acyclic [65]. Moreover, it can be shown that the values of LDAG quantify the
“DAG-ness” of the graph, with lower values of LDAG indicating graphs that are closer to a
DAG [65]. We note that the DAG loss is not used in the default FJMP formulation, but
we experiment with adding the DAG loss in the ablation study conducted in Section 5.6.4.

4.4 Factorized Joint Trajectory Decoder

Given the future-aware LaneGCN feature encodingsH = {hn}n∈[N] and the directed acyclic
interaction graph G, we perform factorized joint prediction according to the unique partial
ordering of G. We parameterize the factorized joint trajectory decoder using an adapted
directed acyclic graph neural network (DAGNN) [51]. The originally proposed DAGNN
framework performs DAG-level classification tasks on top of the representations of the
leaf nodes in the DAG, where node features are propagated to the leaf nodes sequentially
according to the partial ordering of the DAG. Although we desire to process the agents
according to the partial ordering of the interaction graph G, we also aim to use the in-
termediate updated node features of the DAG to generate conditional future trajectory
predictions, and thus we adapt the DAGNN design to fit this criterion. We explain first
how to produce a factorized joint prediction using the proposed adapted DAGNN decoder,
and then how the proposed decoder is extended to produce multiple joint futures.

The factorized decoder first processes the source node(s) S in parallel. For each source
node s ∈ S, we first decode a marginal future trajectory prediction:

ŷs = DECODE(hs), (4.12)

22

where DECODE is a residual block followed by a linear layer and ŷs ∈ R2Tfut is the sequence
of predicted future trajectory coordinates. We then encode the predicted future trajectories
of each source node s ∈ S:

es = ENCODE(ŷs), (4.13)

where ENCODE is a 3-layer MLP. For each s ∈ S, the encoding of the predicted future es
is then fed along the outgoing edges of s. Namely, after processing the source nodes S, we
update the features of the nodes that are next in the partial ordering of G. For every such
node n, we perform the following update:

hn ← COMB(AGG({em + amn|m ∈ paG(n)}) ,hn) , (4.14)

where AGG is a neural network that aggregates the node features from n’s parents and
COMB is a neural network that combines this aggregated information with n’s features to
update the feature representation of n with conditional context about the predicted future
of n’s parents. amn = fdec

type([am, an]) is the output of a 2-layer MLP fdec
type applied to the

agent types. From here, we let bmn := em + amn. Similar to DAGNN [51] which uses
additive attention, we parameterize AGG using graph attention [55]:

mn := AGG({bmn|m ∈ paG(n)}) =
∑

m∈paG(n)

αmnW1bmn, (4.15)

αmn =
exp(LeakyReLU(a⊤ [W1bmn||W2hn]))∑

k∈paG(n)
exp(LeakyReLU(a⊤ [W1bkn||W2hn]))

. (4.16)

COMB is parameterized by a GRU recurrent module:

hn ← COMB(mn,hn) = GRU(mn,hn). (4.17)

As the aggregated messagemn provides conditional context for updating the representation
of hn, mn is treated as the input and hn is treated as the hidden state. It is important to
note that the roles of the input and hidden state are reversed in the original DAGNN design
[51]. The updated representation hn for node n is now imbued with conditional context
about the predicted future of the parent(s) of n, which can now be fed into DECODE to
produce conditional future predictions for agent n. We sequentially continue the process of
encoding, aggregating, combining, and decoding according to the DAG’s partial order until
all nodes in the DAG have a future trajectory prediction. The future trajectory predictions
of all nodes are then conglomerated to attain a factorized joint prediction. We note that

23

all nodes in the same topological order index i can be processed concurrently, resulting
in an effective “sequence” length for the FJMP decoding procedure equal to the length of
the longest path in the DAG. Typically, the longest path in the DAG is < 5, which limits
the overhead for sequential processing and makes it less computationally expensive for our
application.

4.4.1 Multiple Futures

To extend the DAGNN factorized decoder to produce multiple factorized joint predictions,
we simply process K copies of H = {hn}n∈[N] through the DAG in parallel. To ensure
each copy of H generates a different set of futures, we concatenate a one-hot encoding
of the modality with hn along the feature dimension, for each n ∈ [N], prior to it being
fed into DECODE. This approach is similar to the multiple futures approach proposed
in SceneTransformer [42], and we found it to work well in our application. We train the
factorized joint predictor to produce diverse multiple futures by training with a winner-
takes-all joint regression loss Lreg. More details about the regression loss can be found in
Section 4.5.

4.5 Training Details

We first train the interaction graph predictor separately using its own feature encoder
weights. The interaction graph predictor is trained via gradient descent, where the loss
function is defined by:

L1 = Lint + Lprop. (4.18)

If we use the DAG acyclicity loss, the interaction graph predictor loss is defined by L1 =
Lint + Lprop + LDAG; however, the DAG acyclicity loss is not used in the default FJMP
architecture. We experiment with utilizing the DAG acyclicity loss as an ablation in Section
5.6.4. Next, we train the factorized joint decoder using its own feature encoder weights,
where the interaction graphs G are generated with the trained interaction graph predictor.
The factorized joint predictor is trained via gradient-descent, where the loss function is
defined by:

L2 = Lreg + Lprop. (4.19)

24

Similar to M2I [49], we employ teacher forcing of the influencer’s future trajectories during
training, which helps to learn the proper influencer-reactor dynamics. The joint regression
loss Lreg({Ŷk}k∈[K], Y) := Lℓ1({Ŷk}k∈[K], Y) is a scene-level smooth ℓ1 regression loss applied

to the best modality of K = 6 joint modalities {Ŷk}k∈[K], where the best modality attains
the minimum loss:

Lℓ1({Ŷk}k∈[K], Y) = min
k∈[K]

1

A · Tfut

∑
a∈[A]

∑
t∈[Tfut]

reg(Ŷ a
t,k − Y a

t), (4.20)

where Y denotes the ground-truth future trajectory coordinates of all A agents in the
scene, reg(x) =

∑
i d(xi), xi is the i’th element of x, and d(x) is the smooth ℓ1 loss defined

by:

d(x) =

{
0.5x2, if ||x||1 ≤ 1

||x||1 − 0.5, otherwise.
(4.21)

Similarly, the auxiliary decoder loss Lprop is a scene-level smooth ℓ1 loss applied to the best

of K = 15 joint proposals {Ŷ prop
k }k∈[K]:

Lprop({Ŷ prop
k }k∈[K], Y) := Lℓ1({Ŷ

prop
k }k∈[K], Y). (4.22)

We use the auxiliary proposal loss Lprop for training both the interaction graph predictor
(L1 in Equation 4.18) and the factorized joint decoder (L2 in Equation 4.19) as both
modules require explicit reasoning about interactions in the future trajectories, and thus
future-aware agent features are beneficial for both modules.

Figure 4.3 illustrates a high-level schematic of the FJMP architecture training stages
at training time. We note that Feature Encoder 1 and Feature Encoder 2 consist of the
same architecture as described in Section 4.2, but use separate weights.

4.6 Inference

Figure 4.4 illustrates a high-level schematic of the FJMP architecture and data flow at
inference time. We note that at inference time the proposal decoders are removed.

25

Input
Trajectories
+HD-Map

Feature
Encoder 1
(Fig. 2a) Interaction

Graph
Predictor
(Fig. 2c)

Dagified
Interaction

Graph

Proposal
Decoder
(Fig. 2b)

 Joint
Predictions

(a) Interaction Graph Predictor training stage of FJMP.

Input
Trajectories
+HD-Map

Feature
Encoder 1
(Fig. 2a)

Interaction
Graph

Predictor
(Fig. 2c)

Factorized
Joint

Decoder
(Fig. 2d)

 Factorized
Joint Predictions

Dagified
Interaction

Graph

Input
Trajectories
+HD-Map

Feature
Encoder 2
(Fig. 2a)

Proposal
Decoder
(Fig. 2b)

 Joint
Predictions

(b) Factorized Joint Predictor train-
ing stage of FJMP.

Figure 4.3: High-level schematic of the training stages of FJMP.

Input
Trajectories
+HD-Map

Feature
Encoder 1
(Fig. 2a)

Interaction
Graph

Predictor
(Fig. 2c)

Factorized
Joint

Decoder
(Fig. 2d)

Feature
Encoder 2
(Fig. 2a)

 Factorized
Joint Predictions

Dagified
Interaction

Graph

Figure 4.4: High-level schematic of the FJMP architecture at inference time.

26

Chapter 5

Experiments

In this chapter, we introduce the INTERACTION and Argoverse 2 motion prediction
datasets that we use to evaluate FJMP. We also provide comprehensive implementation
details of FJMP for each dataset. Furthermore, we provide an overview of the evaluation
metrics that we use to quantify joint prediction performance as well as the performance of
the FJMP interaction graph predictor. Next, we provide a concise overview of the methods
we compare with FJMP. We conclude by conducting a detailed analysis of both quantitative
and qualitative results across both datasets. Additionally, we present an ablation study
that provides insight on the core components of FJMP responsible for its performance
improvement.

5.1 Datasets

We evaluate FJMP on the INTERACTION v1.2 multi-agent dataset and the Argoverse
2 dataset, as both have multi-agent evaluation schemes for scenes with many interacting
agents and require predicting joint futures for scenes with up to 40 and 56 agents, respec-
tively. However, currently, only INTERACTION has a public benchmark for multi-agent
joint prediction. Argoverse 2 contains scored and focal actors, which are high-quality tracks
near the ego vehicle; and unscored actors, which are high-quality tracks more than 30m
from the ego vehicle. We evaluate FJMP on (i) only the scored and focal actors; and (ii)
all scored, focal, and unscored actors.

INTERACTION requires predicting 3 seconds into the future given 1 second of past
observations sampled at 10Hz. INTERACTION contains 47,584 training scenes, 11,794

27

validation scenes, and 2,644 test scenes. A scene consists of a 4 s sequence of observations
(1 s past, 3 s future) for each agent. INTERACTION contains pedestrians, bicyclists, and
vehicles as context agents but only requires predicting vehicles in their multi-agent chal-
lenge. As bounding box length/width information is not provided for the pedestrian/cyclist
labels, we set the length and width to a pre-defined value of 0.7m. We note that pedestrians
and cyclists are not differentiated in the INTERACTION dataset.

Argoverse 2 requires predicting 6 seconds into the future given 5 seconds of past ob-
servations sampled at 10Hz. Argoverse 2 contains 199,908 training scenes and 24,988
validation scenes. A scene consists of an 11 s sequence of observations (5 s past, 6 s future)
for each agent. Argoverse 2 requires predicting trajectories for 5 agent types: vehicle,
pedestrian, bicyclist, motorcyclist, and bus. As bounding box length/width information
is not provided in the Argoverse 2 dataset, we use the following predefined length/width
in meters for each agent type to construct the interaction labels (length/width): vehicle
(4.0/2.0), pedestrian (0.7/0.7), bicyclist (2.0/0.7), motorcyclist (2.0/0.7), bus (12.5/2.5).

5.2 Implementation Details

Our models are trained on 4 NVIDIA Tesla V100 GPUs using the Adam optimizer [27].
The interaction graph predictor and factorized joint decoder are trained with the same
hyperparameters. Our INTERACTION and Argoverse 2 models train in 10 and 15 hours,
respectively. We now specify the implementation details for each dataset.

5.2.1 INTERACTION

For INTERACTION, we set the batch size to 64 and train for 50 epochs with a learning
rate of 1e-3, step-decayed by a factor of 1/5 at epochs 40 and 48. The hidden dimension
of FJMP is 128 except for the GRU history encoder, which has a hidden dimension of 256.
The output of the GRU encoder is mapped to dimension 128 with a linear layer. We set
K = 6 for the factorized decoder and K = 15 for the proposal decoders. For training the
interaction graph predictor, we set γ = 5 and α = [1, 2, 4]. We set ϵI = 2.5 s. During
training, we center and rotate the scene on a random agent, as an input normalization
step. During validation and test time, we center and rotate the scene on the agent closest
to the centroid of the agents’ current positions. We use L = 2 MapNet layers, KL2A = 2
L2A layers, and KA2A = 2 A2A layers. We use all agents in the scene for context that
contains a ground-truth position at the present timestep. As centerline information is not

28

provided in INTERACTION, for each lanelet we interpolate P evenly-spaced centerline
points, where P = min{10,max{L,R}} and L,R are the number of points on the lanelet’s
left and right boundaries, respectively; that is, we restrict long lanelets to have a maximum
of 10 evenly-spaced centerline points. At validation time, we consider for evaluation all
vehicles that contain a ground-truth position at both the present and final timesteps. We
train our model on the train and validation set with the same training hyperparameters
before evaluating FJMP on the INTERACTION test set.

5.2.2 Argoverse 2

The details in Section 5.2.1 apply to Argoverse 2 with the following exceptions. We set the
batch size to 128 and train for 36 epochs with a learning rate of 1e-3, step-decayed by a
factor of 1/10 at epoch 32. As bounding-box information is not provided with Argoverse 2,
the collision checker used to construct interaction labels uses a predefined length/width for
each agent type, as listed in Section 5.1. For training the interaction graph predictor, we
set γ = 5 and α = [1, 4, 4]. We set ϵI = 6 s as interactions are comparatively more sparse
in Argoverse 2. At validation time, we center on the ego vehicle. We increase the number
of MapNet layers to 4 in Argoverse 2 to handle the larger amount of unique roadway.
The L2A threshold is set to 10m as the centerline points are comparatively more dense
in Argoverse 2 than in INTERACTION. We use all scored, unscored, and focal agents in
the scene for context that contains a ground-truth position at the present timestep. In the
Scored validation setting (see Section 5.2), we consider for evaluation all scored and focal
agents with a ground-truth position at both the present and final timesteps. In the All
validation setting (see Section 5.2), we consider for evaluation all scored, unscored, and
focal agents with a ground-truth position at both the present and final timesteps.

5.3 Evaluation Metrics

We report the following joint prediction metrics: minFDE is the final displacement error
(FDE) between the ground-truth and closest predicted future trajectory endpoint from
the K joint predictions; minADE is the average displacement error (ADE) between the
ground-truth and closest predicted future trajectory from the K joint predictions; SMR
is the minimum proportion of agents whose predicted trajectories “miss” the ground-truth
from the K joint predictions, where a miss is defined in Appendix A.1; and SCR is the
proportion of modalities where two or more agents collide. The INTERACTION test set
additionally reports two joint prediction metrics: CrossCol is the same as SCR but does

29

not count ego collisions, and CMR is the same as SMR but only considers modalities
without non-ego collisions. For all metrics, we evaluate K = 6.

These six joint prediction metrics do not necessarily capture the performance on the
most interactive and challenging cases in the dataset, which is critically important for
benchmarking and improving motion prediction systems. To address this limitation, we
propose two new interactive metrics: (i) iminFDE first identifies the modality k with
minimum FDE over all the agents in the scene and then computes the FDE of modality
k only over agents that are interactive, which we heuristically define as agents with at
least one incident edge in the ground-truth sparse interaction graph, where ϵI = 2.5 s. (ii)
iminADE first identifies the modality k with minimum ADE over all the agents in the
scene and then computes the ADE of modality k only over agents that are interactive.
We found that many of the interactive cases in the datasets contain kinematically simple
cases where agents exhibit simple leader-follower behaviour. To evaluate the challenging
interactive cases, we further remove interactive agents in our evaluation that attain less
than d meters in FDE with a constant velocity model. Details of the constant velocity
model are in Appendix A.3. These metrics are denoted iminFDEd and iminADEd,
where we report d = 3, 5.

For the interaction graph predictor, we measure the edge accuracy for the 3 edge types:
no-interaction, m-influences-n, n-influences-m, as well as the number of cycles pre-
dicted in the interaction graphs across all scenes in the validation set.

5.4 Methods under Comparison

We compare FJMP against the top-performing methods on the INTERACTION multi-
agent test set leaderboard [17, 23, 19, 18]. FJMP is the only method on the leaderboard
that performs factorized joint prediction. To systematically measure the improvement of
FJMP over non-factorized approaches, we compare FJMP against a baseline called Non-
Factorized, which computesK simultaneous joint futures from the feature representations
output by the adapted LaneGCN feature encoder.

5.4.1 Non-Factorized Baseline

We explain the non-factorized baseline described in Section 5.4 in more detail. The non-
factorized baseline uses the same feature encoder architecture as FJMP, but the factorized

30

joint decoder is replaced with a DECODE module consisting of a residual block and lin-
ear layer for simultaneously decoding K joint future trajectory coordinates, where diverse
futures are obtained by appending a one-hot encoding of the modality index to the agent
feature representation before feeding it into DECODE, as is done in FJMP. The DECODE
module is the same architecture as the DECODE module used in FJMP. The non-factorized
baseline is trained with the scene-level winner-takes-all smooth ℓ1 loss Lreg that is described
in Section 4.5. The non-factorized baseline is trained with the same training hyperparam-
eters as FJMP.

5.5 Results

5.5.1 Joint Prediction Results

Model Venue minADE minFDE SMR CrossCol CMR

THOMAS [17] ICLR 2022 0.416 0.968 0.179 0.128 0.252
HDGT [23] - 0.303 0.958 0.194 0.163 0.236
DenseTNT [19] ICCV 2021 0.420 1.130 0.224 0.000 0.224
AutoBot [18] ICLR 2022 0.312 1.015 0.193 0.043 0.207
HGT-Joint - 0.307 1.056 0.186 0.016 0.190
Traj-MAE - 0.307 0.966 0.183 0.021 0.188

FJMP (Ours) - 0.275 0.922 0.185 0.005 0.187

Table 5.1: Joint prediction results on the INTERACTION multi-agent test set. Methods
are sorted by the official ranking metric (CMR). For each metric, the best method is
bolded and the second-best method is underlined. Lower is better for all metrics.

The joint prediction results for the top-performing methods on the INTERACTION
multi-agent test set are shown in Table 5.1. FJMP performs the best on minFDE, minADE,
and the official ranking metric CMR, while performing competitively on other metrics. Cru-
cially, FJMP produces joint predictions that are both more accurate—as demonstrated by
its superior performance on minADE and minFDE—and more scene-consistent—as demon-
strated by its near-zero collision rate—than non-factorized approaches, which highlights
the benefit of the proposed joint factorization.

Table 5.2 reports validation results on the INTERACTION and Argoverse 2 datasets,
where we compare FJMP against the baseline method without joint factorization. For

31

Dataset Actors Evaluated Model minFDE minADE SCR SMR iminFDE iminADE iminFDE3 iminADE3 iminFDE5 iminADE5

Interaction - Non-Factorized 0.643 0.199 0.004 0.088 0.688 0.210 0.784 0.240 0.854 0.261
FJMP 0.630 0.194 0.003 0.084 0.672 0.206 0.758 0.232 0.826 0.252

∆ 0.013 0.005 0.001 0.004 0.016 0.004 0.026 0.008 0.028 0.009

Argoverse 2 Scored Non-Factorized 1.965 0.834 - 0.349 2.957 1.223 3.276 1.340 3.436 1.399
FJMP 1.921 0.819 - 0.343 2.893 1.204 3.205 1.320 3.356 1.377

∆ 0.044 0.015 - 0.006 0.064 0.019 0.071 0.020 0.080 0.022

All Non-Factorized 1.995 0.825 - 0.340 3.302 1.309 3.759 1.477 3.952 1.545
FJMP 1.963 0.812 - 0.337 3.204 1.273 3.652 1.439 3.839 1.504

∆ 0.032 0.013 - 0.003 0.098 0.036 0.107 0.038 0.113 0.041

Table 5.2: Non-Factorized Baseline vs. FJMP performance on joint metrics on the INTER-
ACTION and Argoverse 2 validation sets. Lower is better for all metrics. We evaluate two
settings on Argoverse 2: Scored, which include both scored and focal agents in Argoverse 2
dataset; and All, which includes all scored, focal, and unscored agents. Argoverse 2 lacks
agent bounding box information, so SCR is not computed. ∆ denotes the difference in
performance between FJMP and the Non-Factorized baseline.

Argoverse 2, we have two evaluation schemes: (i) we evaluate the joint predictions of the
scored and focal agents (Scored), and (ii) we evaluate the joint predictions of the scored, un-
scored, and focal agents (All) to demonstrate its scalability to scenes with a large number of
agents. The results show that the proposed joint factorized predictor consistently provides
an improvement in performance over the non-factorized baseline. We expect that FJMP
improves the most over the baseline on the interactive cases in the dataset, as the proposed
factorization directly enables conditioning the reactor predictions on the predicted futures
of their influencers. Importantly, we note that for scenes with no predicted interactions,
the factorization becomes a product of marginal predictions and thus FJMP reduces to
the non-factorized prediction. As expected, the relative improvement of FJMP over the
baseline is larger on the interactive and kinematically interesting cases, as demonstrated
by a larger performance improvement on the interactive minFDE/minADE metrics. This
indicates that the performance improvement from the joint factorization concentrates on
the challenging interactive cases, while still producing accurate joint predictions for the
full scene.

5.5.2 Interaction Graph Predictor Results

The edge type accuracies of the proposed interaction graph predictor on the INTERAC-
TION and Argoverse 2 validation sets are reported in Table 5.3. Although we employed
the focal loss, the m-influences-n and n-influences-m classes performed the worst in
edge type accuracy as the class labels are very imbalanced, as shown in Appendix A.4.

32

Dataset Edge Type Edge Type Accuracy

INTERACTION no-interaction 0.992
m-influences-n 0.940
n-influences-m 0.939

Argoverse 2 no-interaction 0.990
m-influences-n 0.847
n-influences-m 0.859

Table 5.3: Accuracy of each edge type on the INTERACTION and Argoverse 2 validation
sets with the FJMP interaction graph predictor.

Model Train IG Inference IG minFDE minADE iminFDE iminADE

FJMP Learned Learned 1.963 0.812 3.204 1.273
FJMP Learned Ground-truth 1.947 0.807 3.165 1.265
FJMP Ground-truth Ground-truth 1.888 0.789 2.986 1.220
FJMP Ground-truth Learned 2.076 0.854 3.326 1.317

Table 5.4: FJMP with ground-truth vs learned interaction graphs at training and inference
time on the Argoverse 2 validation set, All setting. For each metric, the best model is
bolded. Train IG indicates the interaction graphs that are used during training, where
Learned denotes the predicted interaction graphs from the interaction graph predictor
and Ground-truth denotes the interaction graphs obtained from the labeling heuristic.
The Inference IG column is interpreted similarly.

5.5.3 Ground-truth Interaction Graph Predictor Performance

Table 5.4 compares the performance of FJMP with three modified versions of FJMP,
where either the training or inference (or both) interaction graphs are replaced with the
ground-truth heuristic interaction graphs. The results in Table 5.4 indicate that the choice
of interaction graph has a considerable effect on the performance of the factorized joint
predictor, as indicated by an additional 4 cm improvement in iminFDE with the ground-
truth interaction graph at inference time over the predicted interaction graph. Moreover,
when the model is trained and evaluated with the ground-truth interaction graphs, we see
a substantial increase in performance over FJMP with the learned interaction graphs. This
indicates that further refinement of the interaction graph predictor may yield additional
performance improvements with our FJMP design, which we leave to future work. We also
see that training with the ground truth interaction graph and evaluating with the learned
interaction graph performs the worst, as the network does not learn to reason about errors
in the learned interaction graph.

33

Model Focal Loss no-interaction Acc. m-influences-n Acc. n-influences-m Acc.

FJMP ✓ 0.990 0.847 0.859
FJMP ✗ 0.997 0.807 0.815
Induced - 0.996 0.830 0.837

Table 5.5: Ablation study that compares the effect of the DAG acyclicity loss on the
Argoverse 2 dataset. Num. Cycles is the number of cycles predicted in the Argoverse 2
validation set.

5.5.4 Induced Interaction Graph Performance

Table 5.5 evaluates the interaction graph performance of an interaction graph predictor that
generates predictions by using the same heuristic on the predicted joint trajectories as is
used on the ground-truth future trajectories to generate the ground-truth interaction labels.
Namely, we train a non-factorized baseline model that outputs K = 1 joint predictions
and use these joint predictions to derive interaction labels following the heuristic labeling
scheme proposed in Section 4.3.1. We call these interaction graph predictions the induced
interaction graph predictions, as they are induced from the corresponding joint predictions.

Table 5.5 compares the induced interaction graph predictor against an interaction graph
predictor trained with and without focal loss on the Argoverse 2 dataset. The induced
interaction graph predictor performs similarly to the interaction graph predictor without
focal loss, indicating that the focal loss biases the predictor to overpredict edges.

5.6 Ablation Studies

5.6.1 Sparse vs. Dense Interaction Graphs

Table 5.6 uses the INTERACTION dataset to ablate the design choice of representing
the interaction graph sparsely with only the strongest pairwise interactions as edges in the
graph. We compare FJMP against a variant of FJMP that uses a different labeling heuristic
for the interaction graph, resulting in denser interaction graphs. Namely, FJMP (Dense)
uses the M2I [49] heuristic: for each pair of agents, an interaction is defined to exist if any
pair of future trajectory coordinates in the future trajectory horizon is within a threshold
Euclidean distance of each other, where the threshold is taken to be the sum of the lengths
of the two agents. The influencer-reactor relationship is determined by who reaches the

34

Model minFDE minADE SMR Prop. Edges Inf. Time (s)

Non-Factorized 0.643 0.199 0.088 - 0.010
FJMP (Dense) 0.623 0.193 0.081 0.180 0.062

FJMP 0.626 0.193 0.083 0.045 0.038

Table 5.6: Comparison of sparse vs. dense interaction graphs on the INTERACTION
validation set. The FJMP model is trained and evaluated using the ground-truth sparse
interaction graphs, and FJMP (Dense) is trained and evaluated using dense ground-truth
interaction graphs attained via the M2I [49] labeling heuristic. Prop. Edges measures
the proportion of agent pairs connected in the ground-truth training interaction graphs.
Inf. Time is the inference time per validation scene on 1 NVIDIA Tesla V100 GPU.

conflict point first. We found that the M2I heuristic often adds several unnecessary edges,
especially in congested scenes—as exemplified in Figure 5.1b. We train and evaluate the
FJMP models in Table 5.6 using the ground-truth interaction graphs to precisely compare
the different labeling heuristics. The results show that the dense (M2I) interaction graph
improves very slightly over the sparse interaction graph; however, we retain most of the
improvement over the non-factorized baseline with the sparse interaction graph, which
indicates that modeling only the strongest interactions is sufficient to see most of the
improvement with joint factorization. Moreover, the sparse interactions contain 75% fewer
edges than the dense interaction graph, which accelerates inference by nearly 2x.

Figure 5.1 illustrates the ground-truth interaction graph of a congested scene according
to the FJMP and M2I heuristics, respectively. We observe that the M2I heuristic adds
several superfluous edges, which would lead to unnecessary additional computation for the
factorized decoder.

5.6.2 Proposal Decoder and Teacher Forcing Ablation Study

Table 5.7 conducts an ablation study on Argoverse 2 where we analyze the effect of using
the auxiliary proposal decoder and teacher forcing of the influencer’s future trajectories
during training. The results indicate that both the auxiliary proposal decoder and teacher
forcing is critical for allowing the model to reason appropriately about the influencer-
reactor future dynamics. Notably, without the proposal decoder (rows 2 and 3 in Table
5.7), FJMP performs similarly to the non-factorized baseline, which we hypothesize is be-
cause the LaneGCN-encoded features do not contain the necessary future context to reason
appropriately about the future interactions. Teacher forcing also provides an additional

35

�� �� �� �� � �� �� ��

��

�

�

�

��

��

��

��

��

(a) Interaction graph generated with
FJMP labeling heuristic.

�� �� �� �� � �� �� ��

��

�

�

�

��

��

��

��

��

(b) Interaction graph generated with
M2I labeling heuristic.

Figure 5.1: Comparison of FJMP and M2I labeling heuristics on a congested scene from
the INTERACTION dataset. The ground-truth pasts are indicated in yellow and the
ground-truth futures are indicated in green. Lane boundaries are depicted as grey lines.
Each red arrow points from an influencer agent to its corresponding reactor agent. We
note that two agents at the bottom-right of the scene are on the shoulder of the lane.

performance benefit by removing the spurious noise in the predicted influencer trajectories,
so that the model better learns the proper influencer-reactor dynamics during training. In
Table 5.8, we repeat the FJMP ablation study conducted in Table 5.7 on the INTERAC-
TION dataset. The results are consistent with Argoverse 2, showing that both the proposal
decoder and teacher forcing are critical for performance.

5.6.3 Non-Factorized Baseline Ablation Study

In Table 5.9, we perform an ablation study on the various components of the non-factorized
baseline model on the INTERACTION dataset. First, we ablate using a one-hot encoding
for multiple futures (One-hot Encoding) compared with using separate decoder weights for
each joint future modality (Separate Weights), as is done in LaneGCN [34]. The one-hot
encoding method significantly improves performance; this is because when using separate
weights, the winner-takes-all training process quickly converges to one future joint modality,
and thus the other decoders’ weights never receive gradients for updating their weights. As
a result, the collision rate (SCR) significantly improves when using the one-hot encoding
method. Next, we ablate using the default hyperparameter configuration for LaneGCN
compared with the FJMP hyperparameter configuration. Namely, LaneGCN trains for 36
epochs with a batch size of 128, with the learning rate decreasing by a factor of 10 at epoch
32. FJMP trains for 50 epochs with a batch size of 64, with the learning rate decreasing by

36

Model Prop? TF? minFDE minADE iminFDE iminADE

Non-Factorized ✗ ✗ 1.995 0.825 3.302 1.309
FJMP ✗ ✗ 2.004 0.829 3.274 1.304
FJMP ✗ ✓ 2.001 0.827 3.300 1.312
FJMP ✓ ✗ 1.987 0.820 3.255 1.293
FJMP ✓ ✓ 1.963 0.812 3.204 1.273

Table 5.7: Ablation study of FJMP on Argoverse 2 validation set, All setting. Prop?
denotes whether we include the proposal decoder during training. TF? denotes whether
we teacher-force the influencer trajectories during training.

Model Prop? TF? minFDE minADE iminFDE iminADE

Non-Factorized ✗ ✗ 0.643 0.199 0.688 0.210
FJMP ✗ ✗ 0.647 0.200 0.690 0.212
FJMP ✗ ✓ 0.644 0.200 0.688 0.212
FJMP ✓ ✗ 0.636 0.197 0.677 0.208
FJMP ✓ ✓ 0.630 0.194 0.671 0.206

Table 5.8: Ablation study of FJMP on the INTERACTION validation set. Prop? denotes
whether we include the proposal decoder during training. TF? denotes whether we teacher-
force the influencer trajectories during training.

a factor of 5 at epochs 40 and 48. The FJMP hyperparameter configuration significantly
improves performance over the LaneGCN hyperparameter configuration. Finally, we ablate
using the modified LaneGCN feature encoder (FJMP) consisting of a GRU for processing
agent trajectories instead of LaneGCN’s proposed ActorNet module, 2 MapNet layers
instead of 4, and the A2L and L2L blocks removed. These modifications yield further
improvements in validation performance.

5.6.4 DAG Acyclicity Loss

Table 5.10 compares FJMP against a variant of FJMP where the interaction graph pre-
dictor is trained with the DAG acyclicity loss defined in Section 4.3.3 on the Argoverse
2 dataset. We use a DAG acyclicity loss coefficient λDAG = 0.1. Recall that there are 2
cycles in the ground-truth interaction graphs in the Argoverse 2 validation set. We can see
that the DAG acyclicity loss reduces the number of predicted cycles from 114 to 6, which
indicates that the DAG acyclicity loss helps in preventing FJMP from overpredicting cy-

37

Model Multiple Futures Method Hyperparameter Configuration Feature Encoder minFDE minADE SMR SCR

LaneGCN [34] Separate Weights LaneGCN LaneGCN 0.935 0.300 0.223 0.233
- One-hot Encoding LaneGCN LaneGCN 0.807 0.264 0.142 0.010
- One-hot Encoding FJMP LaneGCN 0.713 0.227 0.113 0.006
Non-Factorized Baseline One-hot Encoding FJMP FJMP 0.643 0.199 0.088 0.004

Table 5.9: Ablation study of the Non-Factorized Baseline model on the INTERACTION
validation set. Multiple Futures Method denotes the method used to attain multiple
joint futures. Hyperparameter Configuration denotes the hyperparameter settings for
batch size, learning rate/step, and the number of training epochs. Feature Encoder de-
notes whether we use the LaneGCN feature encoder (LaneGCN) or the simplified LaneGCN
feature encoder with fewer components (FJMP).

Model DAG Loss λDAG Num. Cycles no-interaction Acc. m-influences-n Acc. n-influences-m Acc.

FJMP ✗ - 114 0.990 0.847 0.859
FJMP ✓ 0.1 6 0.990 0.849 0.853

Table 5.10: Ablation study that compares the effect of the DAG acyclicity loss on the
Argoverse 2 dataset. Num. Cycles is the number of cycles predicted in the Argoverse 2
validation set.

cles. Moreover, the edge-type accuracies are almost identical to those in FJMP. Table
5.11 additionally compares FJMP against the variant with the DAG acyclicity loss on the
downstream joint prediction performance on the Argoverse 2 dataset. The results show
that the DAG loss variant performs only marginally worse in joint prediction performance,
indicating that the DAG loss is an effective way to reduce the number of predicted cycles
without considerably impacting the performance of the joint predictor. We note that the
DAG loss was a recently added design to FJMP, and thus is not included in the default
FJMP architecture.

Model DAG Loss λDAG minFDE minADE iminFDE iminADE

FJMP ✗ - 1.963 0.812 3.204 1.273
FJMP ✓ 0.1 1.967 0.814 3.234 1.289

Table 5.11: Ablation study that compares the effect of the DAG acyclicity loss on the
downstream joint prediction performance on the Argoverse 2 dataset.

38

5.7 Qualitative Evaluation

5.7.1 INTERACTION

Figure 5.2 shows qualitative results of FJMP on various scenes in the INTERACTION
dataset, with all K = 6 scene-level modalities visualized. We emphasize FJMP’s ability
to produce accurate and scene-consistent predictions for scenes with a large number of
interacting agents.

5.7.2 Argoverse 2

In this section, we show qualitative results on scenes in the Argoverse 2 validation set
where we show side-by-side comparisons between FJMP and the Non-Factorized Baseline.
In Figure 5.3 and Figure 5.4, for each row, the left panel shows the non-factorized baseline
predictions, the middle panel shows FJMP predictions, and the right panel shows the
predicted DAG. We visualize only the best scene-level modality to avoid clutter. In Figure
5.3, we show examples where FJMP reasons properly in scenes with interactive pass-
yield behaviours. In contrast, the non-factorized baseline incorrectly predicts conservative
behaviour where the yielding vehicle avoids the passing vehicle’s trajectory. In Figure 5.4,
we show qualitative examples where FJMP correctly identifies chains of leader-follower
interactions, which in turn leads to more accurate leader-follower predictions than the
non-factorized baseline.

5.7.3 Failure Cases

In Figure 5.5, we illustrate two failure cases of the FJMP model on the Argoverse 2 dataset.
In both cases, an erroneous influencer future prediction negatively biases the downstream
reactor prediction.

39

Figure 5.2: Qualitative examples of FJMP on agent-dense scenes in the INTERACTION
dataset.

40

0

1

2

Baseline FJMP Predicted DAG

Baseline FJMP Predicted DAG

Baseline FJMP Predicted DAG

0

1

1

0

Baseline FJMP Predicted DAG

2

0

1

Figure 5.3: Qualitative examples of left-turn interactive scenes in the Argoverse 2 validation
set. All predicted DAGs match the ground-truth DAG. In all scenes, FJMP correctly
identifies the passing vehicle as the influencer and the left-turning vehicle as the reactor.
The Non-Factorized baseline consistently predicts overly conservative behaviour that avoids
the influencer trajectory. In contrast, FJMP consistently captures the proper left-turn
behaviour.

41

0

2

1

Baseline FJMP Predicted DAG

Baseline FJMP Predicted DAG

Baseline FJMP Predicted DAG

0

1

1 1

1

0

Baseline FJMP Predicted DAG

2

0

1

Figure 5.4: Qualitative examples of leader-follower interactive scenes in the Argoverse 2
validation set. Predicted DAGs are shown on the right, where true positive edges are
indicated in solid black and true negative edges are shown in dotted black. In all of the
above scenes, FJMP correctly predicts chains of influencer-reactor relationships. In the first
row, the non-factorized baseline predicts conservative behaviour for the trailing vehicle. In
contrast, FJMP predicts proper leader-follower behaviour for the trailing vehicle (leaf node
in the DAG). In the second and third rows, the right-turn mode of the trailing vehicle is
missed by the non-factorized baseline, whereas FJMP correctly identifies the right-turn
mode due to correctly identifying the leader-follower interaction. In the last row, the non-
factorized baseline predicts scene-incompliant behaviour for the trailing vehicle whereas
FJMP predicts proper leader-follower dynamics reflecting the predicted DAG.

42

0

1

FJMP Predicted DAG

FJMP Predicted DAG

0

1

0

1

Figure 5.5: Qualitative examples of failure cases of the FJMP model. All predicted DAGs
match the ground truth. In both rows, the interaction graph is correctly predicted; however,
the influencer trajectory is erroneously predicted, which negatively biases the reactor’s
prediction to follow the influencer.

43

Chapter 6

Conclusion

6.1 Conclusion

In this thesis, we propose FJMP, a factorized joint motion prediction framework for multi-
agent interactive driving scenarios. FJMP models the future scene interaction dynamics as
a sparse directed acyclic interaction graph, which enables efficient factorized joint predic-
tion. We demonstrate clear performance improvements with our factorized design on the
Argoverse 2 and INTERACTION datasets and perform state-of-the-art on the challenging
multi-agent INTERACTION benchmark.

6.2 Limitations and Future Work

The proposed framework adopts a heuristic labeling scheme to determine the ground-truth
interaction graph. We observe a performance-efficiency tradeoff with a denser interaction
graph; however, there may exist better heuristics for classifying future interactions that
retain most of the sparsity of the interaction graph without trading off performance. Fur-
thermore, long chains of leader-follower behaviour in congested traffic may require costly
sequential processing with our method. Finding mechanisms to prune the interaction graph
to best trade-off performance and efficiency is a direction we plan to explore in future work.

One critical limitation of FJMP is that the joint predictions often lack multimodality
and diversity. This issue stems from the fact that while the joint future trajectory distri-
bution is inherently multimodal, FJMP only predicts a single interaction DAG. In future

44

work, we would like to explore predicting multiple interaction DAGs for conditioning mul-
tiple predicted joint futures. We expect that introducing diversity in the set of predicted
interaction DAGs will lead to improved diversity and multimodality in the predicted joint
trajectories.

Another interesting future direction is to assess FJMP’s ability to perform interven-
tional predictions at inference time by intervening on the predicted interaction graph by
modifying the edges in the predicted interaction DAG and observing the effect in the down-
stream factorized predictions. These interventional queries may be useful for downstream
planning to inform the AV system of possible “what-if” scenarios at runtime.

Finally, an interesting direction for future work is extending FJMP for use in AV plan-
ning and simulation. Our experiments have demonstrated that factorization enhances the
prediction of interactive agents. We believe that a factorized design could prove valuable
in generating safe and interaction-aware planned trajectories in closed-loop AV systems,
especially in challenging interactive scenarios like merging and intersections.

45

References

[1] Yutong Ban, Xiao Li, Guy Rosman, Igor Gilitschenski, Ozanan R. Meireles, Sertac
Karaman, and Daniela Rus. A deep concept graph network for interaction-aware
trajectory prediction. In Proceedings of the International Conference on Robotics and
Automation (ICRA), 2022.

[2] Prarthana Bhattacharyya, Chengjie Huang, and Krzysztof Czarnecki. SSL-Lanes:
Self-supervised learning for motion forecasting in autonomous driving. In Proceedings
of the Conference on Robot Learning (CoRL), 2022.

[3] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin Liong, Qiang
Xu, Anush Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes:
A multimodal dataset for autonomous driving. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

[4] Sergio Casas, Cole Gulino, Renjie Liao, and Raquel Urtasun. Spagnn: Spatially-
aware graph neural networks for relational behavior forecasting from sensor data. In
Proceedings of the International Conference on Robotics and Automation (ICRA),
2020.

[5] Sergio Casas, Cole Gulino, Simon Suo, Katie Luo, Renjie Liao, and Raquel Urtasun.
Implicit latent variable model for scene-consistent motion forecasting. In Proceedings
of the European Conference on Computer Vision (ECCV), 2020.

[6] Ming-Fang Chang, John Lambert, Patsorn Sangkloy, Jagjeet Singh, Slawomir Bak,
Andrew Hartnett, De Wang, Peter Carr, Simon Lucey, Deva Ramanan, and James
Hays. Argoverse: 3d tracking and forecasting with rich maps. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

46

[7] Yuxiao Chen, Boris Ivanovic, and Marco Pavone. Scept: Scene-consistent, policy-
based trajectory predictions for planning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2022.

[8] Alexander Cui, Sergio Casas, Abbas Sadat, Renjie Liao, and Raquel Urtasun. Lookout:
Diverse multi-future prediction and planning for self-driving. In Proceedings of the
IEEE/CVF IEEE/CVF International Conference on Computer Vision (ICCV), pages
16087–16096, 2021.

[9] Alexander Cui, Sergio Casas, Kelvin Wong, Simon Suo, and Raquel Urtasun.
Gorela: Go relative for viewpoint-invariant motion forecasting. arXiv preprint
arXiv:2211.02545, 2022.

[10] Nachiket Deo, Eric M. Wolff, and Oscar Beijbom. Multimodal trajectory predic-
tion conditioned on lane-graph traversals. In Proceedings of the Conference on Robot
Learning (CoRL), 2021.

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
pre-training of deep bidirectional transformers for language understanding. In Jill
Burstein, Christy Doran, and Thamar Solorio, editors, Proceedings of the Conference
of the North American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies (NACCL-HLT), 2019.

[12] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words:
Transformers for image recognition at scale. In Proceedings of the International Con-
ference on Learning Representations (ICLR), 2021.

[13] Scott Ettinger, Shuyang Cheng, Benjamin Caine, Chenxi Liu, Hang Zhao, Sabeek
Pradhan, Yuning Chai, Ben Sapp, Charles R. Qi, Yin Zhou, Zoey Yang, Aurelien
Chouard, Pei Sun, Jiquan Ngiam, Vijay Vasudevan, Alexander McCauley, Jonathon
Shlens, and Dragomir Anguelov. Large scale interactive motion forecasting for au-
tonomous driving : The waymo open motion dataset. In Proceedings of the IEEE/CVF
IEEE/CVF International Conference on Computer Vision (ICCV), 2021.

[14] Jiyang Gao, Chen Sun, Hang Zhao, Yi Shen, Dragomir Anguelov, Congcong Li, and
Cordelia Schmid. Vectornet: Encoding HD maps and agent dynamics from vectorized
representation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2020.

47

[15] Thomas Gilles, Stefano Sabatini, Dzmitry Tsishkou, Bogdan Stanciulescu, and Fabien
Moutarde. HOME: heatmap output for future motion estimation. In Proceedings of
the IEEE International Intelligent Transportation Systems Conference (ITSC), 2021.

[16] Thomas Gilles, Stefano Sabatini, Dzmitry Tsishkou, Bogdan Stanciulescu, and Fabien
Moutarde. GOHOME: graph-oriented heatmap output for future motion estimation.
In Proceedings of the International Conference on Robotics and Automation (ICRA),
2022.

[17] Thomas Gilles, Stefano Sabatini, Dzmitry Tsishkou, Bogdan Stanciulescu, and Fabien
Moutarde. THOMAS: trajectory heatmap output with learned multi-agent sampling.
In International Conference on Learning Representations (ICLR), 2022.

[18] Roger Girgis, Florian Golemo, Felipe Codevilla, Martin Weiss, Jim Aldon D’Souza,
Samira Ebrahimi Kahou, Felix Heide, and Christopher Pal. Latent variable sequential
set transformers for joint multi-agent motion prediction. In International Conference
on Learning Representations (ICLR), 2022.

[19] Junru Gu, Chen Sun, and Hang Zhao. Densetnt: End-to-end trajectory prediction
from dense goal sets. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, (ICCV), 2021.

[20] Zhiyu Huang, Haochen Liu, and Chen Lv. Gameformer: Game-theoretic modeling
and learning of transformer-based interactive prediction and planning for autonomous
driving. arXiv preprint arXiv:2303.05760, 2023.

[21] Zhiyu Huang, Xiaoyu Mo, and Chen Lv. Multi-modal motion prediction with
transformer-based neural network for autonomous driving. In Proceedings of the In-
ternational Conference on Robotics and Automation (ICRA), 2022.

[22] Xiaosong Jia, Liting Sun, Hang Zhao, Masayoshi Tomizuka, and Wei Zhan. Multi-
agent trajectory prediction by combining egocentric and allocentric views. In Proceed-
ings of the Conference on Robot Learning (CoRL), 2021.

[23] Xiaosong Jia, Penghao Wu, Li Chen, Hongyang Li, Yu Liu, and Junchi Yan. HDGT:
heterogeneous driving graph transformer for multi-agent trajectory prediction via
scene encoding. arXiv preprint arXiv:2205.09753, 2022.

[24] Donald B. Johnson. Finding all the elementary circuits of a directed graph. SIAM J.
Comput., 4(1):77–84, 1975.

48

[25] Siddhesh Khandelwal, William Qi, Jagjeet Singh, Andrew Hartnett, and Deva
Ramanan. What-if motion prediction for autonomous driving. arXiv preprint
arXiv:2008.10587, 2020.

[26] Byeoungdo Kim, SeongHyeon Park, Seokhwan Lee, Elbek Khoshimjonov, Dongsuk
Kum, Junsoo Kim, Jeong Soo Kim, and JunWon Choi. Lapred: Lane-aware prediction
of multi-modal future trajectories of dynamic agents. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2021.

[27] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
In Proceedings of the International Conference on Learning Representations (ICLR),
2015.

[28] Sumit Kumar, Yiming Gu, Jerrick Hoang, Galen Clark Haynes, and Micol Marchetti-
Bowick. Interaction-based trajectory prediction over a hybrid traffic graph. In Pro-
ceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2021.

[29] Yen-Ling Kuo, Xin Huang, Andrei Barbu, Stephen G. McGill, Boris Katz, John J.
Leonard, and Guy Rosman. Trajectory prediction with linguistic representations.
In Proceedings of the International Conference on Robotics and Automation (ICRA),
2022.

[30] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based
learning applied to document recognition. Proc. IEEE, 86(11):2278–2324, 1998.

[31] Donsuk Lee, Yiming Gu, Jerrick Hoang, and Micol Marchetti-Bowick. Joint interac-
tion and trajectory prediction for autonomous driving using graph neural networks.
arXiv preprint arXiv:1912.07882, 2019.

[32] Ding Li, Qichao Zhang, Shuai Lu, Yifeng Pan, and Dongbin Zhao. Conditional goal-
oriented trajectory prediction for interacting vehicles with vectorized representation.
arXiv preprint arXiv:2210.15449, 2022.

[33] Jiachen Li, Fan Yang, Hengbo Ma, Srikanth Malla, Masayoshi Tomizuka, and Chiho
Choi. RAIN: reinforced hybrid attention inference network for motion forecasting. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, (ICCV),
2021.

49

[34] Ming Liang, Bin Yang, Rui Hu, Yun Chen, Renjie Liao, Song Feng, and Raquel
Urtasun. Learning lane graph representations for motion forecasting. In Proceedings
of the European Conference on Computer Vision (ECCV), 2020.

[35] Yicheng Liu, Jinghuai Zhang, Liangji Fang, Qinhong Jiang, and Bolei Zhou. Multi-
modal motion prediction with stacked transformers. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2021.

[36] Yongkang Liu, Xuewei Qi, Emrah Akin Sisbot, and Kentaro Oguchi. Multi-agent
trajectory prediction with graph attention isomorphism neural network. In Proceedings
of the IEEE Intelligent Vehicles Symposium (IV), 2022.

[37] Wenjie Luo, Cheol Park, Andre Cornman, Benjamin Sapp, and Dragomir Anguelov.
JFP: joint future prediction with interactive multi-agent modeling for autonomous
driving. In Proceedings of the Conference on Robot Learning (CoRL), 2022.

[38] Osama Makansi, Özgün Çiçek, Yassine Marrakchi, and Thomas Brox. On exposing
the challenging long tail in future prediction of traffic actors. In Proceedings of the
IEEE/CVF IEEE/CVF International Conference on Computer Vision (ICCV), 2021.

[39] Xiaoyu Mo, Yang Xing, and Chen Lv. Recog: A deep learning framework with
heterogeneous graph for interaction-aware trajectory prediction. arXiv preprint
arXiv:2012.05032, 2020.

[40] Sriram Narayanan, Ramin Moslemi, Francesco Pittaluga, Buyu Liu, and Manmohan
Chandraker. Divide-and-conquer for lane-aware diverse trajectory prediction. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2021.

[41] Nigamaa Nayakanti, Rami Al-Rfou, Aurick Zhou, Kratarth Goel, Khaled S. Refaat,
and Benjamin Sapp. Wayformer: Motion forecasting via simple & efficient attention
networks. arXiv preprint arXiv:2207.05844, 2022.

[42] Jiquan Ngiam, Benjamin Caine, Vijay Vasudevan, Zhengdong Zhang, Hao-Tien Lewis
Chiang, Jeffrey Ling, Rebecca Roelofs, Alex Bewley, Chenxi Liu, Ashish Venugopal,
David Weiss, Benjamin Sapp, Zhifeng Chen, and Jonathon Shlens. Scene transformer:
A unified multi-task model for behavior prediction and planning. In Proceedings of
the International Conference on Learning Representations (ICLR), 2021.

[43] Seong Hyeon Park, Gyubok Lee, Jimin Seo, Manoj Bhat, Minseok Kang, Jonathan
Francis, Ashwin R. Jadhav, Paul Pu Liang, and Louis-Philippe Morency. Diverse

50

and admissible trajectory forecasting through multimodal context understanding. In
Proceedings of the European Conference on Computer Vision (ECCV), 2020.

[44] Nicholas Rhinehart, Rowan McAllister, Kris Kitani, and Sergey Levine. PRECOG:
prediction conditioned on goals in visual multi-agent settings. In Proceedings of the
IEEE/CVF IEEE/CVF International Conference on Computer Vision (ICCV), 2019.

[45] Luke Rowe, Martin Ethier, Eli-Henry Dykhne, and Krzysztof Czarnecki. FJMP: fac-
torized joint multi-agent motion prediction over learned directed acyclic interaction
graphs. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2023.

[46] Shaoshuai Shi, Li Jiang, Dengxin Dai, and Bernt Schiele. Motion transformer with
global intention localization and local movement refinement. In Advances in Neural
Information Processing Systems (NeurIPS), 2022.

[47] Shaoshuai Shi, Li Jiang, Dengxin Dai, and Bernt Schiele. MTR++: multi-agent mo-
tion prediction with symmetric scene modeling and guided intention querying. arXiv
preprint arXiv:2306.17770, 2023.

[48] Haoran Song, Di Luan, Wenchao Ding, Michael Yu Wang, and Qifeng Chen. Learn-
ing to predict vehicle trajectories with model-based planning. In Proceedings of the
Conference on Robot Learning (CoRL), 2021.

[49] Qiao Sun, Xin Huang, Junru Gu, Brian C. Williams, and Hang Zhao. M2I: from
factored marginal trajectory prediction to interactive prediction. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022.

[50] Bohan Tang, Yiqi Zhong, Ulrich Neumann, Gang Wang, Siheng Chen, and Ya Zhang.
Collaborative uncertainty in multi-agent trajectory forecasting. In Advances in Neural
Information Processing Systems (NeurIPS), 2021.

[51] Veronika Thost and Jie Chen. Directed acyclic graph neural networks. In Proceedings
of the International Conference on Learning Representations (ICLR), 2021.

[52] Ekaterina I. Tolstaya, Reza Mahjourian, Carlton Downey, Balakrishnan Varadarajan,
Benjamin Sapp, and Dragomir Anguelov. Identifying driver interactions via condi-
tional behavior prediction. In Proceedings of the International Conference on Robotics
and Automation (ICRA), 2021.

51

[53] Balakrishnan Varadarajan, Ahmed Hefny, Avikalp Srivastava, Khaled S. Refaat, Niga-
maa Nayakanti, Andre Cornman, Kan Chen, Bertrand Douillard, Chi-Pang Lam,
Dragomir Anguelov, and Benjamin Sapp. Multipath++: Efficient information fusion
and trajectory aggregation for behavior prediction. In Proceedings of the International
Conference on Robotics and Automation (ICRA), 2022.

[54] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances
in Neural Information Processing Systems (NeurIPS), 2017.

[55] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò,
and Yoshua Bengio. Graph attention networks. In Proceedings of the International
Conference on Learning Representations (ICLR), 2018.

[56] Jingke Wang, Tengju Ye, Ziqing Gu, and Junbo Chen. LTP: lane-based trajectory
prediction for autonomous driving. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2022.

[57] Wenshuo Wang, Letian Wang, Chengyuan Zhang, Changliu Liu, and Lijun Sun. Social
interactions for autonomous driving: A review and perspectives. Foundations and
Trends in Robotics, 10(3-4):198–376, 2022.

[58] Benjamin Wilson, William Qi, Tanmay Agarwal, John Lambert, Jagjeet Singh, Sid-
dhesh Khandelwal, Bowen Pan, Ratnesh Kumar, Andrew Hartnett, Jhony Kaesemodel
Pontes, Deva Ramanan, Peter Carr, and James Hays. Argoverse 2: Next generation
datasets for self-driving perception and forecasting. In Proceedings of the Neural In-
formation Processing Systems Track on Datasets and Benchmarks 1, 2021.

[59] David Wu and Yunnan Wu. Air2 for interaction prediction. arXiv preprint
arXiv:2111.08184, 2021.

[60] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
Philip S. Yu. A comprehensive survey on graph neural networks. IEEE Transac-
tions on Neural Networks and Learning Systems, 32(1):4–24, 2021.

[61] Maosheng Ye, Tongyi Cao, and Qifeng Chen. TPCN: temporal point cloud networks
for motion forecasting. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2021.

52

[62] Maosheng Ye, Jiamiao Xu, Xunnong Xu, Tongyi Cao, and Qifeng Chen. DCMS:
motion forecasting with dual consistency and multi-pseudo-target supervision. arXiv
preprint arXiv:2204.05859, 2022.

[63] Wenyuan Zeng, Ming Liang, Renjie Liao, and Raquel Urtasun. Lanercnn: Distributed
representations for graph-centric motion forecasting. In IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), 2021.

[64] Wei Zhan, Liting Sun, Di Wang, Haojie Shi, Aubrey Clausse, Maximilian Naumann,
Julius Kümmerle, Hendrik Königshof, Christoph Stiller, Arnaud de La Fortelle, and
Masayoshi Tomizuka. INTERACTION dataset: An international, adversarial and
cooperative motion dataset in interactive driving scenarios with semantic maps. arXiv
preprint arXiv:1910.03088, 2019.

[65] Xun Zheng, Bryon Aragam, Pradeep Ravikumar, and Eric P. Xing. Dags with NO
TEARS: continuous optimization for structure learning. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), 2018.

[66] Zikang Zhou, Zihao Wen, Jianping Wang, Yung-Hui Li, and Yu-Kai Huang. Qcnext: A
next-generation framework for joint multi-agent trajectory prediction. arXiv preprint
arXiv:2306.10508, 2023.

[67] Zikang Zhou, Luyao Ye, Jianping Wang, Kui Wu, and Kejie Lu. Hivt: Hierarchical
vector transformer for multi-agent motion prediction. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2022.

[68] Dekai Zhu, Guangyao Zhai, Yan Di, Fabian Manhardt, Hendrik Berkemeyer, Tuan
Tran, Nassir Navab, Federico Tombari, and Benjamin Busam. IPCC-TP: utilizing
incremental pearson correlation coefficient for joint multi-agent trajectory prediction.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2023.

53

APPENDICES

54

Appendix A

Additional Evaluation Details

A.1 Miss Rate

For both Argoverse 2 and INTERACTION, we use the definition of a miss used in the IN-
TERACTION dataset: a prediction is considered a “miss” if the longitudinal or latitudinal
distance between the prediction and ground-truth endpoint is larger than their correspond-
ing thresholds, where the latitudinal threshold is ϵlat := 1m and the longitudinal threshold
is:

ϵlong :=

1, if v ≤ 1.4m/s

1 + v−1.4
11−1.4

, if 1.4m/s ≤ v ≤ 11m/s

2, otherwise,

(A.1)

where v is the ground-truth velocity at the final timestep. We note that Argoverse 2
officially defines a miss as a prediction whose endpoint is more than 2m from the ground-
truth endpoint; however, we report all miss rate numbers in Section 5.2 using the miss rate
definition in INTERACTION as it is a more robust measure of miss rate that takes into
account the agent’s velocity. For completeness, we report miss rate numbers for Argoverse
2 using the Argoverse 2 definition of a miss in Table A.1.

A.2 Collision Checker

To construct the interaction labels as described in Section 4.3.1, a collision checker is used
to identify collisions between all pairs of timesteps in the future trajectories. We use the

55

Actors Evaluated Model SMRArgoverse2

Scored Non-Factorized 0.264
FJMP 0.259
∆ 0.005

All Non-Factorized 0.259
FJMP 0.257
∆ 0.002

Table A.1: Non-Factorized Baseline vs. FJMP performance on Argoverse 2 SMR metric
on the Argoverse 2 validation set. ∆ denotes the difference in performance between FJMP
and the Non-Factorized baseline.

collision checker provided with the INTERACTION dataset. At each timestep, the collision
checker defines each agent by a list of circles, and two agents are defined as colliding if the
Euclidean distance between any two circles’ origins of the given two agents is lower than
the following threshold:

ϵC :=
wi + wj√

3.8
, (A.2)

where wi, wj are the widths of agents i, j.

A.3 Constant Velocity Model

In Section 5.3, we identify the kinematically complex interactive agents in the datasets
by filtering for agents that attain at least dm in FDE with a constant velocity model.
An interactive agent is defined as an agent with at least one incident edge in the ground-
truth interaction graph, where ϵI = 2.5 s, as is explained in Section 5.3. In this section, we
describe the constant velocity model in more detail. The constant velocity model computes
the average velocity over the observed timesteps and unrolls a future trajectory using the
calculated constant velocity. Namely, the average velocity is calculated as:

vavg =
1

Tobs

∑
t∈[Tobs]

vt, (A.3)

where vt is the ground-truth velocity at timestep t. Using the constant velocity model,
we calculate the agent-level FDE of all interactive agents in the INTERACTION and
Argoverse 2 validation sets, respectively, where the FDE distributions are plotted in Figure
A.1. We observe that a large proportion of the interactive agents have low FDE with a

56

0 20 40 60 80 100
FDEs

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Pr
op

or
tio

n

Histogram
0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

INTERACTION
Empirical CDF

(a)

0 20 40 60 80 100
FDEs

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Pr
op

or
tio

n

Histogram
0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

Argoverse 2
Empirical CDF

(b)

Figure A.1: Histogram of FDEs on interacting agents in (a) the INTERACTION dataset,
and (b) the Argoverse 2 dataset. The left y-axis corresponds to the histogram and the
right y-axis corresponds to the empirical cumulative distribution function (CDF).

57

Dataset d Count

INTERACTION 0 50967
(112994) 3 21077

5 13069

Argoverse 2 0 37065
(248719) 3 29421

5 26140

Table A.2: Number of interactive agents in the INTERACTION and Argoverse 2 datasets
that attain at least dm in FDE with a constant velocity model. In parentheses, we include
the total number of evaluated agents (interactive + non-interactive) in the respective val-
idation sets.

Dataset Edge Type Edge Type Proportion

INTERACTION no-interaction 0.955
m-influences-n 0.037
n-influences-m 0.008

Argoverse 2 no-interaction 0.973
m-influences-n 0.015
n-influences-m 0.013

Table A.3: Edge type proportions in the INTERACTION and Argoverse 2 training set
interaction graphs with the FJMP labeling heuristic.

constant velocity model, especially in the INTERACTION dataset. By filtering out these
kinematically simple agents, as is done in Section 5.5, we can assess the model’s joint
prediction performance on agents that are both interactive and kinematically complex.
In Table A.2, we report the number of interactive agents in the INTERACTION and
Argoverse 2 validation sets that attain at least dm in FDE, for d = 0, 3, 5. We note that
d = 0 corresponds to the number of interactive agents in the respective validation sets.

A.4 Ground-truth Interaction Graph Statistics

Table A.3 reports the proportion of no-interaction, m-influences-n, and n-influences-m
edges in the INTERACTION and Argoverse 2 training sets. Due to the severe class imbal-
ance, we employ a focal loss when training the interaction graph predictor, as explained in
Section 4.3.1.

58

	Author's Declaration
	Abstract
	Acknowledgements
	Dedication
	List of Figures
	List of Tables
	Introduction
	Background
	Multi-Agent Motion Prediction
	Why Joint Prediction?

	Graph Neural Networks
	Graph Theory Basics
	Neural Message Passing
	Directed Acyclic Graph Neural Network (DAGNN)

	Related Work
	Motion Prediction in Driving Scenarios
	Interaction Modeling for Motion Prediction
	Joint Motion Prediction

	Method
	Preliminaries
	Proposed Joint Factorization
	Input Preprocessing

	Feature Encoder
	LaneGCN Encoder
	Auxiliary Proposal Decoder

	DAG Predictor
	Interaction Graph Predictor
	Dagification
	Acyclicity Loss

	Factorized Joint Trajectory Decoder
	Multiple Futures

	Training Details
	Inference

	Experiments
	Datasets
	Implementation Details
	INTERACTION
	Argoverse 2

	Evaluation Metrics
	Methods under Comparison
	Non-Factorized Baseline

	Results
	Joint Prediction Results
	Interaction Graph Predictor Results
	Ground-truth Interaction Graph Predictor Performance
	Induced Interaction Graph Performance

	Ablation Studies
	Sparse vs. Dense Interaction Graphs
	Proposal Decoder and Teacher Forcing Ablation Study
	Non-Factorized Baseline Ablation Study
	DAG Acyclicity Loss

	Qualitative Evaluation
	INTERACTION
	Argoverse 2
	Failure Cases

	Conclusion
	Conclusion
	Limitations and Future Work

	References
	APPENDICES
	Additional Evaluation Details
	Miss Rate
	Collision Checker
	Constant Velocity Model
	Ground-truth Interaction Graph Statistics

