
Versatile Deep Learning Forecasting
Application with Metamorphic

Quality Assurance

by

Islam Nasr

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2023

© Islam Nasr 2023



Author’s Declaration

I hereby declare that this thesis consists of material I authored: see Statement of Contri-
bution included in the thesis. This is a true copy of the thesis, including any required final
revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Statement of Contribution

The following publications have resulted from the work presented in the thesis:

1. I. Nasr, L. Nassar and F. Karray, ”Transfer Learning Framework for Forecasting
Fresh Produce Yield and Price,” 2022 International Joint Conference on Neural Net-
works (IJCNN), Padua, Italy, 2022, pp. 1-8.

2. I. Nasr, L. Nassar and F. Karray, ”Enhancing Fresh Produce Yield Forecasting Using
Vegetation Indices from Satellite Images,” 2022 IEEE International Conference on
Systems, Man, and Cybernetics (SMC), Prague, Czech Republic, 2022, pp. 2863-
2868.

3. I. Nasr, L.Nassar, F.Karray, “Enhanced Deep Learning Satellite-based Model for
Yield Forecasting and Quality Assurance Using Metamorphic Testing”, 2023 Interna-
tional Joint Conference on Neural Networks (IJCNN), Queensland, Australia, 2023.

4. I. Nasr, L. Nassar, and F. Karray. A Study of the Interactive Role of Metamorphic
Testing and Machine Learning in the Quality Assurance of a Deep Learning Fore-
casting Application. International Journal of Information Technology (BJIT), 2023
(in press).

5. Y. Abdelkareem, I. Nasr, L. Nassar and F. Karray, ”COVID-19 Self-Test Guidance
System For Swab Collection Using Deep Learning,” 2022 IEEE International Confer-
ence on Systems, Man, and Cybernetics (SMC), Prague, Czech Republic, 2022, pp.
2350-2357.

iii



Abstract

Accurate estimates of fresh produce (FP) yields and prices are crucial for having fair
bidding prices by retailers along with informed asking prices by farmers, leading to the
best prices for customers. To have accurate estimates, the state-of-the-art deep learning
(DL) models for forecasting FP yields and prices, including both station-based and satellite-
based models, are improved in this thesis by providing a new deep learning model structure.
The scope of this work covers forecasting a horizon of 5 weeks ahead for the fresh produce
yields and prices. The proposed structure is built using an ensemble of Attention Deep
Feedforward Neural Network with Gated Recurrent Units (ADGRU) and Deep Feedforward
Neural Network with embedded GRU units (DFNNGRU); (DFNNGRU-ADGRU ENS).
The station-based version of the ensemble is trained and tested using as input the soil
moisture and temperature parameters retrieved from land stations. This station-based
ensemble model is found to outperform the literature model by 24% improvement in the
AGM score for yield forecasting and 37.5% for price forecasting.

For the satellite-based model, the best satellite image preprocessing technique must
be found to represent the images with less data for efficiency. Therefore, a preprocessing
approach based on averaging is proposed and implemented then compared with the lit-
erature approach, which is based on histograms, where the proposed approach improves
performance by 20%. The proposed Deep Feed Forward Neural Network with Embedded
Gated Recurrent Units (DFNNGRU) ensembled with Attention Deep GRUs (ADGRU)
is then tested against well-performing models of Stacked-AutoEncoder (SAE) ensembled
with Convolution Neural Networks with Long-short term memory (CNNLSTM), where the
proposed model is found to outperform the literature model by 12.5%.

In addition, interpolation techniques are used to estimate the missing VIs values due
to the low frequency of capturing the satellite images by Landsat. A comparative analysis
is conducted to choose the most effective technique, which is found to be Cubic Spline
interpolation. The effect of adding the VIs as input parameters on the forecasting perfor-
mance of the deep learning model is assessed and the most effective VIs are selected. One
VI, which is the Normalized Difference Vegetation Index (NDVI), proves to be the most
effective index in forecasting yield with an enhancement of 12.5% in AGM score.

A novel transfer learning (TL) framework is proposed for better generalizability. Af-
ter finding the best DL forecasting model, a TL framework is proposed to enhance that
model generalization to other FPs by using FP similarity, clustering, and TL techniques
customized to fit the problem in hand. Furthermore, the similarity algorithms found in
literature are improved by considering the time series features rather than the absolute
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values of their points. In addition, the FPs are clustered using a hierarchical clustering
technique utilizing the complete linkage of a dendrogram to automate the process of finding
the similarity thresholds and avoid setting them arbitrarily. Finally, the transfer learning
is applied by freezing some layers of the proposed ensemble model and fine-tuning the rest
leading to significant improvement in AGM compared to the best literature model.

Finally, a forecasting application is implemented to facilitate the use of the proposed
models by the end users through a friendly interface. For testing the quality of the applica-
tion deployed code and models, metamorphic testing is applied to assess the effectiveness
of the machine learning models while machine learning is used to automatically detect the
main metamorphic relations in the software code. The interactive role played by meta-
morphic testing and machine learning is investigated through the quality assurance of the
forecasting application. The datasets used to train and test the deep learning forecast-
ing models as well as the forecasting models are verified using metamorphic tests and the
metamorphic relations in the generalization code are automatically detected using Support
Vector Machine (SVM) models. Testing has revealed the unmatched requirements that are
fixed to bring forward a valid application with sound data, effective models, and valid
generalization code.
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Chapter 1

Introduction

Fresh produce prices are increasing drastically, where it is reported that for 2023, an
increase of 10-13% is encountered in the prices of fresh produce in Canada [1], although a
regular inflation is encountered all over the world, many stores are increasing the prices with
rates higher than the inflation. The main factor that should affect the fresh produce price
level is the yield level. Hence, having an accurate forecasting model for fresh produce yield
and price leads to fair market prices for consumers. It does not only protect the farmers
from the devaluation of their produce by retailers but also helps retailers in having informed
bidding prices. Hence, finding a highly accurate and reliable forecasting framework with
consistent quality is an essential task.

1.1 Motivation

Throughout the years, researchers have been tackling the forecasting of crop parameters as
yield and price using a variety of approaches. Previous research is made in the domain of
crop yield and price forecasting using soil and weather parameters retrieved from station
recorded data and satellite data [2]. The use of vegetation indices is also highlighted
by multiple researchers to be effective in agricultural fields for crop yield detection and
prediction [3, 4]. Using the soil and weather parameters provides good insights on their own,
same as using the vegetation indices alone, for yield predictions. However, combining both
types of parameters has been neglected despite its potential for improving the forecasts.

Additionally, multiple authors, such as in [5, 6], have proven that applying transfer
learning to deep learning models provides improved results and faster training over training
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a new model especially when not enough data instances are available. There are two
prerequisites for effective transfer learning: having a complete dataset to train the base
model and a good similarity module to assure that the transfer learning is applied among
similar datasets; the base and target datasets. However, the scarcity of complete datasets
increases the need for a good imputation technique. Finally, all machine learning (ML)
models are gauged by error scores that are dataset dependent. Therefore, having more
general standards as guidelines to assess the soundness of the model and the datasets used
to create it is essential for its quality assurance.

1.2 Challenges

The main target of this work is to provide an application that provides highly effective
forecasting of fresh produce yield and price with transfer learning techniques to enable
the generalization of forecasting to unknown fresh produce provided by the application
users. The first encountered challenge is the lack of datasets for fresh produce, where
the availability of daily datasets is very limited. The second challenge faced is designing
a model that is capable of forecasting the output parameters with competing scores, in
addition to being able to apply transfer learning to unknown fresh produce to the model
in a way that enables the transfer learning model to perform better than a model trained
solely on the second fresh produce, where the challenge encountered in the transfer learning
is not only in the application of transfer learning but also in finding a similarity method
that could determine similar fresh produce time series effectively. The last challenge is to
ensure the quality of the developed model, this is since machine learning techniques quality
is not thoroughly tested; it is evaluated using just test scores.

1.3 Proposed Solution

Different deep learning models are proposed in literature to tackle the fresh produce at-
tributes forecasting using both station-based parameters and satellite-based parameters
[2, 5, 7, 8]. Additionally, transfer learning has gained a lot of interest in this domain by
many researchers who apply it to either save learning time or to improve model results
[5, 9].

The work in this thesis focuses on improving deep learning forecasting models to en-
hance the performance of the literature models in [5, 7]. First, the data preprocessing is
improved by introducing an imputation model and comparing it with literature imputation
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models in [11] to find the best model for enhancing the imputation effectiveness. Second,
a new forecasting model is proposed with both station and satellite-based models where
satellite vegetation indices are utilized to improve the forecasting.

For the generalization, a similarity module is proposed to enable transfer learning which
is essential for efficiently getting forecasting models for new crops. Finally, a quality as-
surance framework is proposed to assure that the quality of the proposed model is not
only assessed using defined data, but also assured based on more comprehensive meta-
morphic tests. Those tests assure the presence of metamorphic relations that act as high-
performance constraints independent of the test data.

Finally, an application combining all proposed models is implemented to enable utiliza-
tion of the proposed solution by end users.

1.4 Contributions

The main contributions of this thesis are summarized as follows:

• A deep learning model architecture is proposed; DFNN-ADGRU ENS, for forecasting
fresh produce yield and price with enhanced results on previous literature model [7].

• The forecasting using satellite images is enhanced by:

1. Adding the NDVI input parameter.

2. Applying an ensemble imputation method for missing data with ¿50% miss-
ing, consisting of an ensemble method proposed in [11] and linear interpolation
technique based on the nature of the missing data for the NDVI.

3. Reducing the overhead costs of satellite images preprocessing by using average
preprocessing rather than histograms.

• Contributions for the generalization of the model:

1. A clustering module for time series by using clustering techniques and similarity
between time series to group together similar time series.

2. Proposing a transfer learning framework [10] which consists of the clustering
module with the transfer learning model structure to apply transfer learning to
fresh produce time series.
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• Quality assurance module is proposed with metamorphic relations and metamorphic
tests that are applied to assure the quality of proposed deep learning model.

• An application with similarity, forecasting and imputation modules is designed, im-
plemented and tested.

1.5 Organization of the Document

The rest of this thesis is organized as follows: Chapter 2 covers the background and
literature review for: datasets preprocessing and imputation, deep learning models and
the quality assurance. In Chapter 3, the proposed solution is presented. In Chapter 4,
the conducted experiments are illustrated with the reported results and their analysis.
In Chapter 5, the application is presented with sample results. Lastly, in Chapter 6 the
conclusion is provided along with the planned future research directions.
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Chapter 2

Background and Literature Review

In this chapter, the background on the datasets utilized in this work is provided in Section
2.1: the tabular data is covered in subsection 2.1.1 while the retrieved satellite data is illus-
trated in subsection 2.1.2. In Section 2.2, an overview of the literature data preprocessing
techniques is presented including imputation methods in subsection and the data prepro-
cessing methods for the data fed into the deep learning models in subsection 2.2.2. Deep
Learning is discussed in Section 2.3; well-established artificial neural network layers and
literature models of time series forecasting are elaborated in subsection 2.3.1, and subsec-
tion 2.3.2 describes the evaluation metrics used in the performance evaluation of the deep
learning models. The transfer learning topic is discussed in Section 2.4 where the similarity
techniques are covered in subsection 2.4.1 and the transfer learning etablished frameworks
are discussed in subsection 2.4.2. Finally, the literature machine learning quality assurance
models are explored in Section 2.5.

2.1 Datasets

This section will cover the main sources of data used throughout the thesis, the two main
sources of data are tabular data for station-based forecasting discussed in subsection 2.1.1,
and satellite images for satellite-based forecasting discussed in subsection 2.1.2 with an
overview of different vegetation indices that can be retrieved from satellite images.
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2.1.1 Tabular Station Based Data

The utilized datasets contain the data for the input parameters as weather and soil datasets
along with their corresponding output datasets such as the fresh produce yields and prices.
The data for California, Santa Maria soil and weather parameters is downloaded from the
National Oceanic and Atmospheric Administration site [12], whereas the data for yields
and prices of the three considered fresh produce, which are strawberry, blueberry, and
raspberry, is obtained from California Strawberry Commission Website [13].

Due to the scarcity of real datasets and the need for a higher number of datasets to
evaluate different aspects of the system, additional yield datasets are synthesized using
a weighted average of the yields of each pair of the three FP real datasets. The pairs
of weights for the synthesized datasets range from (0.1,0.9) to (0.9,0.1) with (+0.1, -0.1)
change when synthesizing a new dataset such that both weights add up to 1. Three
unordered pairs with unique nonidentical elements can result from using the 3 real FPs.
Further, having 9 possible combinations of each distinct pair results in an additional 27
synthesized datasets hence a total of 30 datasets with the real data. The synthesized
datasets are named by the initials of their pairs of fresh produce, FPa and FPb, used
in generating them followed by the weight of the FPa and a letter showing their binary
similarity where S means that FPb is similar to FPa andD if dissimilar; no need to mention
the weight of FPb since it can be implicitly deduced by subtracting the FPa weight from
1. For example, a synthesized dataset SB.7S is generated using the weighted average of
strawberry and blueberry yields with weights (0.7,0.3) and the binary similarity shows
that they are similar, and RB.6D is generated using the weighted average of raspberry
and blueberry yields with weights (0.6, 0.4) and the binary similarity shows that they are
dissimilar.

2.1.2 Satellite Based Data

Satellite Images: The use of satellite data has been emerging in many fields, this is due to
having numerous satellites covering vast geographic areas and the availability of this data
for free. The data from satellites is used in fields of earth observations such as predicting
rains and earthquakes [14] [15], in addition to many other fields including poverty and
vegetation cover predictions [16] [17]. The global coverage of satellite images makes them
useful for extracting information which can be utilized in many applications such as using
surface reflectance in forecasting fresh produce yield [18]. Many satellites are available for
researchers who can freely access them using Google Earth Engine (GEE) [19]. The most
frequently used satellites in the previously mentioned domains are Moderate Resolution

6



Imaging Spectroradiometer or MODIS, Landsat, Sentinel, and NASA USDA. The criteria
for selecting the most effective satellite mainly depend on the spatial resolution of the
satellite, the availability of images during the required date intervals and the frequency of
taking images.

MODIS satellite provides a spatial resolution of 250m, 500m and 1km [19], which makes
each pixel in the image carry many details, hence it is the best for pixel-based tasks as
in [18]. The main advantage of MODIS satellite is its high frequency in taking images
compared to the other satellites; images are taken every three days for the same location.
On the other hand, Landsat satellites provide images with spatial resolution of 30m which
are taken every eight days for the same location [20]. There are two versions of Sentinel
satellites, Sentinel-1 and 2, Sentinel-2 satellite is more popular for having images captured
in recent dates with better spatial resolution than Sentinel-1 [19] hence, it is more suitable
for applications where old data is not needed. In addition, Sentinel-2 provides images
with the lowest spatial resolution of 10-20m; the images are taken every 7 days for the
same location [20]. NASA USDA provides a daily image of global soil moisture with
spatial resolution of 10 km coverage. Landsat has many different versions of satellites
ranging from Landsat-1 to Landsat-9, where the most relevant satellites to the dates under
consideration are Landsat-7 launched in 1999 and Landsat-8 launched in 2013. Lastly,
Sentinel satellite has two identical satellites which are Sentinel-2B and Sentinel-2A launched
in March 2017 and June 2015 respectively [21]. Figure 2.1 shows images retrieved from
Landsat-8, Sentinel-2B, and Google Earth satellites used during the retrieval of NDVI.

The remarkable contribution of using parameters retrieved from satellite data in fresh
produce yield forecasting is highlighted by J. You et al. in [22] where annual soybean
yields are predicted using satellite images of surface reflectance and temperature. In [18],
the authors utilize the Soil Moisture and Soil Temperature, from NASA USDA and MODIS
Satellites in [23] and [24], as input parameters to deep learning yield forecasting models
by obtaining the average of Surface and Subsurface Soil moisture, and the average of Day
and Night Temperatures.

Vegetation Indices: One of the applications where using satellite data proved to be most
effective is the agriculture field of remote sensing which provides useful insights for vegeta-
tions. The vegetation index is a spatial transformation of two or more bands to enhance the
contribution of vegetation properties retrieved from satellite images [26]. The vegetation
indices maximize the sensitivity to vegetation characteristics retrieved [25]. There are six
main vegetation indices used in literature for crop yield prediction and detection [26, 27]:

1. Enhanced Vegetation Index (EVI) which is used in vegetation monitoring, vegetation
estimation and health of crop detection. It is calculated using the Near Infrared
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Figure 2.1: Images samples for farms in Santa Maria Valley from three Satellites

(NIR), red, and blue bands [28] as in (2.1).

EV I = 2.5 ∗ NIR−RED

NIR + 6 ∗RED − 7.5 ∗BLUE + 1
(2.1)

2. Normalized Difference Phenology Index (NDPI) which is used for removing the im-
pact of snow and bare soil, by replacing the red band with the addition of the Short-
Wave InfraRed (SWIR) to the red band and reducing the vegetation indices model
saturation to the vegetation biomass which increases precision in the high biomass
area [28]. NDPI is calculated as in (2.2).

NDPI =
NIR− (0.74 ∗RED + 0.26 ∗ SWIR1)

NIR + (0.74 ∗RED + 0.26 ∗ SWIR1)
(2.2)

3. Normalized Difference Vegetation Index (NDVI) which has the same usage of EVI
in vegetation monitoring, estimation of crop health and detection of crops. NDVI
differs from EVI by removing the impact of the blue bands [28]. NDVI is calculated
as in (2.3).

NDV I =
NIR−RED

NIR +RED
(2.3)
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4. Soil Adjusted Vegetation Index (SAVI) is used in minimizing the influence of spectral
vegetation indices involving red and near infrared bands [28]. It is calculated as in
(2.4).

SAV I = 1.5 ∗ NIR−RED

NIR +RED + 0.5
(2.4)

5. Normalized Difference Water Index (NDWI) is used in monitoring the change in the
water content in the plants leaves [28]. NDWI is calculated as in (2.5).

NDWI =
NIR− SWIR1

NIR + SWIR1
(2.5)

There are two short wave infrared (SWIR) bands denoted as SWIR1 and SWIR2.
SWIR bands can penetrate thin clouds and smoke more than visible bands, SWIR1
helps discriminate between dry and wet soils whereas SWIR2 is used for getting the
geological features of the soil and determining its minerals [29].

6. Tillage Index (NDTI) is used in distinguishing the non-photosynthesis vegetation
biomass from the green vegetation biomass [14]. NDTI is calculated as in (2.6).

NDTI =
SWIR1− SWIR2

SWIR1 + SWIR2
(2.6)

All vegetation indices mentioned above can be calculated using satellite bands from the
three satellites mentioned previously the criteria for selecting the most appropriate satel-
lite to use for calculating these bands mainly depends on the required spatial resolution,
availability of images in the required dates and frequency of taking the images.

2.2 Preprocessing and Data Imputation

The data used in developing machine learning models are usually preprocessed as the raw
data might not be suitable for direct utilization. Therefore, techniques for estimating
data samples are necessary in case of having missing samples. The major techniques for
dealing with missing data are discussed in subsection 2.2.1, which are categorized into two
types: the statistical interpolation approaches and deep learning imputation approaches.
In addition, an overview of the preprocessing techniques for station-based and satellite-
based data is given in subsection 2.2.2.
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2.2.1 Missing Data Imputation

This section will give an overview of the statistical data interpolation techniques, in addi-
tion to the established deep learning approaches for missing data imputation.

Statistical Interpolation Approaches: The main goal of the statistical procedures
applied on datasets is making an efficient and valid inference, about the population of
interest, using less samples. Recovering missing values is tackled by many statistical tech-
niques ranging from simple filling methods, such as those estimating the missing values
with the mean of the available ones or replicating the previously available value right before
the missing set until the first successive value appears, to more complex and effective im-
putation techniques, such as those deploying deep learning techniques. Authors in many
domains provide techniques for imputing the time series missing values using statistical
models [30] [31], while others have proposed deep learning models for more accurate impu-
tation especially in cases where there are missing chunks of successive data [32]. Despite
the effective performance of the deep learning techniques, they are not as efficient as the
simple ones. The deep learning model has higher creation and operating costs, which
might not be justified especially if the missing values are randomly distributed rather than
successively occurring in the form of chunks. Therefore, in this section a brief overview
is provided for four simple interpolation techniques which are the Linear, Bessel, Cubic
Spline, and One-way Spline Interpolation techniques [33].

1. Linear Interpolation: Finding values using the linear interpolation technique is based
on using linear polynomials to build new points in an interval containing missing
values among known data points [34]. As in [35], linear interpolation is calculated
by finding f(x) which is the value of the dependent variable, as in (2.7).

f(x) = f(x0) +
f(x1)− f(x0)

x1 − x0

∗ (x− x0) (2.7)

Where x0 and x1 are known values of the independent variable x. Linear inter-
polation is preferred for its simplicity and speed. However, despite its acceptable
accuracy when used with closely spaced datasets [36], it is the least accurate among
the discussed interpolation methods [36].

2. Bessel Interpolation: Interpolation of missing values using the Bessel method is based
on the Fourier Transform, specifically focusing on retrieving time-series periodogram,
spectral density estimate [37], using the moving window of Kaiser-Bessel [24]. It is
calculated as in (2.8) and (2.9).

p =
x− x0

h
(2.8)
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y0+y1
2

+ (p− 0.5) ∗ δ(y0) + p(p−1)
2!
∗ δ(y−1)2+δ(y0)2

2
+ ... (2.9)

The main advantage of using Bessel interpolation is that it usually offers better
estimates tending to be closer to the points of the time series available and dampening
the effect periodic gap affecting the interpolation methods [38]. Despite its suitability
for non-linear trends, it requires a lot of computational power [39].

3. Cubic Spline Interpolation: The Cubic Spline interpolation technique is a piecewise
polynomial which reduces to a cubic polynomial in each subinterval. Cubic Spline
consists of two continuous derivatives, where at every interior point the function
values, first and second derivatives all fit together [40]. The Cubic Spline (S(x)) is
calculated as in (2.10) and by satisfying the following conditions:

• S(x) should be a subset of C2[a,b] (C is a cubic function, and a,b are two different
datapoints.)

• On each sub-interval [xi−1,xi], S(x) is polynomial of degree 3, where i=1,2,..,n
and C is a cubic function.

• yi is the interpolated feature over interval xi

S(xi) = yii ∀i (2.10)

Although the conditions seem complex, Cubic Spline is preferred for its calculation
simplicity, numerical stability, and smoothness of the interpolated curve, however it
has a drawback of being sensitive to the accuracy of the given data [41].

4. One-way Spline Interpolation: One-way Spline is a more constrained version of the
Bessel interpolation, if the source data is monotonic, only increasing or decreasing, it
will always produce monotonic results. However, if the source data is non-monotonic
the results won’t necessarily be monotonic, yet it always produces a well-constraint
curve with the fewest possible overshoots and oscillations [42]. Its main advantage
is overcoming many oscillations between datapoints hence successfully capturing the
overall signal shape.

Deep Learning Imputation Approaches: Conventional nondeep machine learning ap-
proaches are ineffective in capturing the temporal variations in multivariate time series
[43]. Hence, utilizing deep learning (DL) models for missing data imputation has gained
vast research attention in the past few years. Over time the DL imputation models went
from simple DL models such as RNN in [44, 45] to ones with customized compound DL
models such as those in [46, 47].

Missing data falls into one of three categories [48]:
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1. Missing Completely at Random (MCAR) which shows that a missing value in a
feature is unaffected by any other features in the dataset, where the reason for missing
has nothing to do with the data values.

2. Missing at Random (MAR) which explains the event when a value is missing due to
other values of other features.

3. Missing Not at Random (MNAR) explains the event where there is a relationship
between the propensity of a value to be missing and its values.

DL models proposed in [11] were developed to handle two types of missing, MCAR and
MAR. Where MAR is usually handled due to the needed task of daily-available datasets,
and the dataset sources are not as frequent as the needed data.

Authors in [11] proposed two techniques to recover missing data. The first technique
is more suited for recovering data that is randomly missing, where a Voting Regressor
Ensemble is applied to ensemble the top two performing DL imputation models found:
LSTM-Deep GRU and Residual GRU, by averaging the regression results of those com-
ponent models. A recommendation framework of the top two performing DL imputation
models to be ensembled for various time series types is found in [11].

The second technique is more suited to recover chunks of missing data. Chunk missing
data is usually addressed as MNAR, as the missing of a huge chunk of the data would
have a factor for missingness which is not directly captured by the data. Hence, a transfer
learning model proposed in [11]; built of 4-layers of LSTM, is used where the knowledge
from the base model is transferred to impute the missing values in the target dataset using
the target model [52].

A hybrid model combining the chunks and random method as proposed in [11] is utilized
by combining the Ensemble and Transfer Learning models where it classifies the missing
values into either missing random or chunks; the Ensemble model is used for the random
missing imputation and the Transfer Learning for the chunks.

2.2.2 Dataset Preprocessing

In this section, the preprocessing applied to the datasets in Section 2.1 is discussed for
both station-based and satellite-based data.

Station-Based Data Preprocessing: For the output parameters, due to the missing
values in the FP yield and price datasets, imputation is applied using the deep learning
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technique proposed in [11]. For the input parameters, it is noticed that the utilized dataset
in subsection 2.1.1. contains a high number of parameters hence it is essential to extract
the most effective ones for efficiency. Yet, deciding the most effective parameters is a
challenging task therefore a Random Forest regressor is trained and feature importance is
extracted to automate the feature selection [53]. The soil moisture and temperature are
found to have the highest influence on the yield. On the other hand, the importance of
considering the date as an input parameter in seasonal time series forecasting is discussed
in [54]. Hence, the Day of Year (DoY), in the range [1-365], is extracted from the dates,
then two cyclic features are produced by calculating the sine and cosine of the DoY. The
calculated features are added to the dataset and the feature selection method is reapplied.
It is found that the calculated cyclic features highly influence the yield. Therefore, it is
decided to consider the calculated cyclic features along with the soil moisture and tem-
perature as input parameters to the DL models. A lag of 20 weeks of soil moisture and
temperature is used to forecast 5 weeks ahead yield and price; this lag is recommended in
[7]. This increases the total number of the soil moisture and temperature parameters to
280, therefore a Principal Component Analysis (PCA) is applied to obtain the minimum
parameter set with the maximum proportion of variance, which is 92%, that resulted in a
set 34 parameters. After adding the two cyclic parameters, the sine and cosine of the DoY,
to that set a total of 36 parameters are considered as input. The dataset is then divided
into train and test sets, the first 80% of the time series are used for training and the last
20% for testing.

Satellite Based Data Preprocessing: The input and output parameters are extracted
from two data sources from 2011 till 2019 covering Santa Maria, California: The first data
source is the satellite-based input data of soil parameters, with soil surface and subsurface
moisture parameters retrieved from MODIS Soil Moisture satellite [19] with frequency of
one reading every 3 days, and soil day and night temperature retrieved from MODIS Land
Surface Temperature satellite [18] with daily frequency. A mask of the relevant area for
satellite data is attained using the coordinates of the required county and applied. Two
main approaches for satellite data preprocessing are investigated for handling the input
datasets and their effectiveness is compared. A new parameter, retrieved from Landsat
satellites is preprocessed, and added to the other preprocessed parameters. This parameter
is called Normalized Difference Vegetation Index (NDVI) which is retrieved weekly or
biweekly; hence it is imputed to have daily values. The second data source is the tabular
yield output values, containing the daily values of strawberry yield, detailed in subsection
2.1.1. An imputation technique is applied to handle the randomly missing data in all
retrieved datasets.

1. Preprocessing using Histograms: Due to the huge size of images, an approach is
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utilized based on the histogram approach introduced in [5] and applied for the models.
The frequency counts of pixel values are considered to represent the images assuming
that the images hold the property of permutation invariance, where the location
of the pixel does not contain relevant information. Calculated histograms are then
normalized and combined in a 3D matrix, with dimensions of (time window, bands,
bin) which are set to (140, 4, 32); 140 is the best forecasting window as found in [2],
4 is the number of features and 32 is the count of bins.

2. Preprocessing using Averaging: Another preprocessing approach is proposed where
each satellite image is represented with a single daily average of the parameter image
pixels. This value is found by: First, averaging all pixels in each daily satellite image
of the parameter; the image covers the region of interest. Second, rescaling and using
the average value as a representative of that parameter on one single day [55]. This
approach is considered due to the huge processing and memory power needed by the
first approach of histograms.

2.3 Deep Learning

In this section, the major types of neural networks used in time series forecasting are
discussed and plotted in subsection 2.3.1. In addition to that, the major evaluation metrics
used in forecasting the models for time series forecasting is recorded in subsection 2.3.2.

2.3.1 Artificial Neural Networks

Deep learning is deployed in the field of time series forecasting as it provides prominent
results compared to those achieved by the traditional machine learning algorithms [6].
The deep learning models try to resemble the behavior of neurons in the human brain
by using deep neural networks [56]. The main type of artificial neural networks used
for handling data sequences to recognize patterns related to spatial information is the
recurrent neural networks. The three main recurrent neural network subtypes are Long-
Short-Term Memory (LSTMs), Recurrent Neural Network (RNNs), and Gated Recurrent
Units (GRUs). RNNs are used to remember information from previous inputs, however
they usually struggle with long-term dependencies [6]. The LSTM units are useful for
capturing long-term dependencies with a forget gate to decide when to stop remembering
past inputs. The GRU units are proposed to improve on the LSTM cells by having simpler
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structure with equal immunity to the vanishing gradient [6]. The structures of the recurrent
neural network subtypes are visible in Figure 2.2 .

Figure 2.2: Recurrent Neural Network Subtypes Structure

Using simple models of recurrent neural networks is not proven to be very effective
in time series forecasting. Hence, more complex models are deployed to achieve higher
effectiveness. In [2], the authors used a voting ensemble; which is simply averaging results
of multiple models, to ensemble a CNN-LSTM model, a combination of convolutional
neural networks and long short-term memory units, with a SeriesNet-GRU model, which
is a combination of SeriesNet and Gated Recurrent Units. The resulting ensemble is used
to forecast fresh produce yield and price. In [7], deep learning models are deployed to
forecast the houses electricity load in a residential area; they proposed a novel DNN-CAE
2 model to enhance the work in [57]. A review of the proposed deep learning models for
electricity forecasting is presented in [58] where the authors described simple DL models,
such as RNNs, DFFNNs, LSTMs, GRUs, along with compound ones, such as LSTM-
dense, LSTM-FFNN, and GRU-ANN. The Deep Feedforward Neural Networks (DFFNN)
are normal feed forward networks which are composed of dense layers; the reason for naming
it deep is that they contain more than 3 dense layers. In addition, the attention layers
have gained the interest of researchers because they make the model focus on important
features in the input signals as illustrated in [59].

2.3.2 Evaluation Metrics

Four evaluation metrics are used in analyzing the performance of the deployed DL models:
First, the Mean Absolute Error (MAE) which is the mean of individual prediction errors
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over all instances of the test set [60]. Second, the Root Mean Squared Error (RMSE); which
is the mean of squared prediction errors over all instances in the test set [60]. Third, the R-
Squared Score (R2) which represents the percentage of variation in the dependent variable
explained by variation in the independent variables [61]. Lastly, the Aggregated Measure
(AGM) combines all previous methods by averaging the two error measures, RMSE and
MAE, then scaling them by (1-R2) [62].

2.4 Transfer Learning

This section covers the importance of transfer learning techniques, where the application of
transfer learning requires similarity techniques to categorize whether a dataset is suitable
for applying transfer learning or not. Therefore, similarity techniques are discussed in
subsection 2.4.1 followed by the established transfer learning techniques in subsection 2.4.2.

2.4.1 Similarity and Clustering Techniques

Finding the similarity among time series is an essential task for applying transfer learning.
Many researchers tackled the similarity task in different ways. In [63], the authors divided
the utilized distance measures into four categories: shape-based, edit-based, feature-based,
and structure-based. For the shape-based measure of the derivative-dynamic time warping
(D-DTW) the distances between first derivative of the time series are calculated. The au-
thors proved that the D-DTW outperforms the other three measures. However, calculating
the first derivative of daily changing time-series fails to give good intuition of the signals
especially with fluctuating time series. In [64], the dynamic multi-perspective similarity
measure is proposed based on giving weights, such that more recent dates have higher
weights, then measuring DTW with embedded Canberra distance. The proposed measure
is computationally expensive, and weighting based on closer dates ignores long term depen-
dencies. Moreover, the similarity measure in [65] is based on local extrema by computing
DTW distances between extremums of different time-series which gives huge enhancement
in terms of computing power. Yet, this measure would be more applicable to smooth time
series which are not fluctuating daily. The authors in [66] proposed an adaptive feature-
based dynamic time warping (AFDBTW) which is based on aligning two sequences based
on their points’ local and global features rather than values or derivatives. This method is
found to outperform both classical and derivative methods. The local features at point an
are based on its predecessor and successor points; an−1 and an+1. Conversely, the global
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features are based on all preceding and succeeding values to an; a1 to n−1 and an+1 to m where
m is the time series length.

In [67], the authors proposed a framework for determining the similarities between pairs
of fresh produce. The authors proposed a method for finding the similarity based on output
parameters and another based on input parameters. By utilizing time series decomposition,
the proposed framework achieved good results with the tested datasets. However, a major
drawback of the proposed framework is setting the thresholds arbitrarily based on trial
and error and giving lower similarity percentage based on the difference in lag time; for
each one-month lag, the similarity percentage of one feature drops by 5%. This would
affect the results while the main target is to have time series with similar behavior rather
than having a penalty for the lag difference. In [68], transfer learning is applied to find
electrical consumption forecasting models for houses with similar consumption time series.
The authors used a combination of Euclidean, Cosine and DTW distances to decide the
similarity among those electrical consumption time series. Their main concern is how to
find the house with electrical consumption that is most similar to all surrounding houses,
which is the centermost house, to apply transfer learning from its forecasting Base model
to get Target models for all surrounding houses. That centermost house is selected based
on the smallest cumulative distance to other houses.

The discussed similarity methods are usually utilized in grouping data into clusters,
which are groups of similar elements. In [68], only one centermost house is found but a
similar approach could be applied if multiple centers should be identified through clustering
techniques. Clustering techniques are divided into hierarchical, partitional, grid, density
based and model-based techniques [69]. In the hierarchical techniques, the clusters are
formed by iteratively dividing or joining clusters together until reaching the one single
cluster or element. The hierarchical techniques are further divided into 3 groups. The
single linkage clustering, where the distance between clusters A and B is decided by the
minimum distance between any two elements a and b where a ∈ A and b ∈ B. Conversely,
the complete linkage clustering considers the maximum distance between any two elements
a and b where a ∈ A and b ∈ B. Finally, the average linkage, where the average distance
is considered instead. Partitioning clustering is assigning data into clusters, without a
hierarchical structure, using a distance measure; the most common example is the k-
means clustering using the Euclidean distance. The data is classified into k-random non-
deterministic clusters with means that change every iteration based on the initial centers
and the chosen k. A more deterministic clustering algorithm is proposed in [70] and
improved in [71] which is the K-Medoids. Medoid means that the chosen center is a
representative object from the cluster rather than a calculated mean of its points as in the
K-means algorithm; for the same data with same K, the same representative objects can
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be found. The K-medoids can be preferred over the K-means if the user needs to deploy
a distance measure other than the Euclidean distance. However, the number of clusters
(K), still can’t be automatically decided; hence K needs to be arbitrarily decided before
clustering.

2.4.2 Established Frameworks

The deep learning techniques require a huge set of training and testing datasets which re-
quire expensive resources and incur high computational costs [9]. Hence, transfer learning
became a popular topic in time-series forecasting due to the experiments conducted on its
effect in [72]. It improved the results in many computers vision tasks as in [73], natural
language processing (NLP) tasks with the most common example of Bidirectional Encoder
Representations from Transformers (BERT) [74], forecasting time series of power, electric-
ity and crop yields and prices [2], [68], [9], as well as imputation tasks [75]. Generally, in
transfer learning a Base model is trained to learn the features of a large dataset, then the
same model is retrained or finetuned using a Target dataset to perform a similar or new
task [76]. Based on [76], transfer learning can be divided into two main categories: Data
and Model based. In the Model based category, the most used technique is a Parameter
Control Strategy which is Parameter sharing. Parameter sharing is implemented either by
sharing layers through freezing some while finetuning others, or finetuning all the layers
[76]. Transfer learning is mainly improving the results due to having less dependency on
data and labels, but it usually suffers from negative transfer performance deterioration of
new model or overfitting.

Frameworks are proposed with most of the transfer learning applications, one example
in image processing and object detection is GAIA [73]. GAIA is used in object detection
where new images are taken as input with powerful pretraining weights based on huge
datasets fitting many fields, and the model is then retrained on the new images. Another
framework is proposed in [74] for BERT, where BERT model is trained on unlabeled data,
then the model is fine-tuned using labeled data for an NLP task. An imputation framework
using transfer learning is proposed in [75] where a Base model is trained with the most
similar sequence to the missing data, then transfer learning is applied using fine-tuning to
calculate the missing values. In time series forecasting, transfer learning is applied in a
variety of ways: In [9], fine-tuning of the Base models, of multiple time series, is applied to
get the Target models. In [68], the centermost home is found, and a Base model is created
to forecast its power consumption then the model is fine-tuned to get the Target models
for forecasting the surrounding houses’ consumption. In [2], a fresh produce is chosen to
train the Base model. The Target model is then found using transfer learning from that
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Base model by freezing some of its layers and retraining the rest with less epochs using
similar fresh produce time series.

2.5 Quality Assurance

The verification of any piece of code requires comparing the code’s expected and actual
outputs [77]. This type of verification is challenging, incomprehensive and sometimes
impossible, hence metamorphic testing (MT) is introduced [78]. Metamorphic testing uses
sets of relations between the input and output that must be satisfied, these relations are
referred to as Metamorphic Relations (MRs) as in [79] and [80]. Quality assurance using
MRs is tested in several domains including testing machine Learning models [81, 82, 83],
and in testing regular software code in [84]. The testing of ML models is usually done
by a left alone dataset called the test set, which tests the model’s performance level using
performance measures [85]. A main key challenge facing ML models is the absence of test
oracles as pointed out in [86]. Hence, this necessitates the use of MRs for assuring the
quality of the designed ML models.

MRs are the generalization of any relation type; equalities, inequalities, periodicity,
convergence, and many other relations, in general metamorphic relations represent the
concepts of program invariants. However, the main difference between invariants and
metamorphic relations is that invariants must hold for every execution, but the MR is the
relation holding between different executions [77].

The literature work tackling quality assurance of machine learning algorithms using
metamorphic testing is covered in subsection 2.4.1. In subsection 2.4.2, the role machine
learning algorithms play in predicting metamorphic relations in software code is discussed
along with its importance for quality assurance.

2.5.1 Metamorphic Testing of Machine Learning

In [86], authors pointed out three key challenges faced in testing machine learning systems:
The absence of test oracles that provide correctness degree of the model’s output. The
large input space of machine learning models, where a high volume of diverse application
field data is fed into the model. Finally, the high cost of white-box testing. For the absence
of test oracles and cost of white-box testing: the metamorphic testing eliminates the need
for such test oracles in [81, 82, 83] by finding suitable metamorphic relations that must
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hold in the tested machine learning models and assuring that those relations are fulfilled
by those models.

The authors in [78] utilized metamorphic relations and tested it using metamorphic
testing. One of their metamorphic relations states that transforming the model’s input
should not affect the output, which is verified using a metamorphic test that starts by
transforming the data input D using a transformation function T then comparing the
results of the trained models’ output, where one model is trained on D and the other on
T(D). It is found that both models give the same output for input X and T(X). On the
other hand, an efficient white-box technique with test constraints is introduced by the
authors to achieve code coverage, where they developed test cases to verify the model by
using prior domain knowledge and analyzing the problem. Finally, the authors compared
the results of those test cases with the results of running the developed metamorphic tests
where they found that metamorphic testing reveals more flaws in the tested model than
the white-box test cases. Hence, it is found that the metamorphic testing is an effective
verification technique in the machine learning field.

2.5.2 Finding Metamorphic Relations using Machine Learning

Despite the high effectiveness of using metamorphic testing for machine learning models,
automating the software testing process is important to eliminate the need for domain
experts to evaluate each piece of software code. In addition, deciding the metamorphic
relations that need to be tested can be an expensive process. Therefore, researchers have
developed multiple techniques that utilize the control flow graphs (CFG), which are first
introduced in [87], and applied methods for extracting features from those graphs. Those
features are labelled with the main metamorphic relations and used to train machine
learning models which are then used to automatically identify whether those relations
hold or not in any unseen code. In [88], the authors utilized a random walk algorithm
to extract the features from node features. Authors in [89] proposed a similar approach
for extracting features from the CFG nodes by explicitly extracting node features and
adding path features which maintain the code sequence. In [80], the authors automated
the extraction of the features by generating a directed CFG and applied a graph kernel
algorithm to find the similarity between graphs. The output of the algorithm is then
normalized and passed as features to a support vector machine (SVM) classifiers with
proper labels for the metamorphic relations.
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Chapter 3

The Proposed Solution

In this section, the details of the main aspects of the proposed solution, for handling
the task of fresh produce forecasting, are presented. First, the deployed data imputation
model is discussed in Section 3.1. The proposed deep learning forecasting model, which
is deployed to enhance the fresh produce yield forecasting, is explained in Section 3.2.
The proposed transfer learning framework, for generalizing the forecasting DL model to
other fresh produce using transfer learning, is detailed in Section 3.3. Finally, the quality
assurance techniques used to assure the quality of the deployed model and similarity code
are discussed in Section 3.4.

3.1 Imputation Model

It is essential to have an accurate reliable imputation technique due to the scarcity of
having datasets with daily samples along with the high possibility that even available
daily datasets have many missing values. The problem of missing data imputation is
handled previously in [11], where the authors proposed an ensemble imputation model for
random missing data and a transfer learning model for cases of missing chunks of data,
as explained in subsection 2.2.1. However, a major drawback of the ensemble model is
that it works only if the missing values are <50% of the data, and it is found that the
random missing is exceeding 50% while the chunks of missing values are less than 50% of
the data. Hence, the transfer learning is applied for the missing chunks and the ensemble
is replaced by an interpolation technique discussed in subsection 2.2.1 which is found to be
effective. It is found that NDVI attribute enhances the performance of the deep learning
forecasting model. The deployed imputation technique is based on using the cubic spline
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interpolation for interpolating random missing values in the NDVI dataset retrieved from
Landsat Satellite [19]; where the readings are taken every 3 days with many missing values
in the middle resulting in multiple chunks. This suggests combining the interpolation
method with the proposed chunk imputation transfer learning technique proposed in [11]
where the base dataset in this case is the NDVI dataset retrieved from MODIS Satellite [19]
which is available daily. Despite the high frequency of MODIS, Landsat is still preferable
due to its high spatial resolution compared to MODIS.

3.2 Forecasting Models

Different forecasting models are proposed in this work and tested, a simple GRU in addition
to several compound models. The first compound model is the ACNNGRU which consists
of multiple convolutional layers for capturing the essential information from the input
features, an attention layer, and two GRU layers to capture the time-dependent information
with 20 units each. The second compound model is the ADGRU which contains multiple
time-distributed dense layers, 3 stacked GRU layers with 20 units each and an attention
layer. Having multiple dense layers is inspired by the DFFNN structure in [2] to capture
the relationship between the independent variables. The last compound model is the
DFFNNGRU which consists of 3 consecutive blocks; each block has a time-distributed
dense layer followed by a GRU layer with 20 units. The 3 blocks are followed by a flatten
and a dense layer. The DFFNNGRU model is used to take advantage of the DFFNN
networks in capturing time relevant information from the GRU layer. The models proposed
are then combined by a voting ensemble which averages the forecasted output obtained
from its component models. This results into 4 ensembles: GRU-DFFNNGRU, GRU-
ACNNGRU, ACNNGRU-DFFNNGRU, and DFFNNGRU-ADGRU. Further, the effect of
adding the best performing model in the literature; ATT-CNN-LSTM for station-based
data and SAE-CNNLSTM for satellite-based data in [2], to the simple and compound
models is tested. The best-found model as highlighted in multiple papers [10, 55, 90] is
the DFFNNGRU-ADGRU ensemble which found to outperform literature models and all
other proposed model ensembles, the model structure is visible in Figure 3.1.

3.3 Transfer Learning

This section provides an overview of the similarity techniques used to identify which time
series are similar to each other, which is then utilized in clustering datasets into different
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Figure 3.1: The ADGRU-DFFNNGRU model structure resulting from the ensemble of
ADGRU and DFFNNGRU using averaging

clusters using hierarchical clustering approach. In addition to covering the transfer learning
technique applied to the said model in Section 3.2. to be able to apply the model on similar
datasets.

3.3.1 Clustering and Similarity Solution

To enable grouping the datasets into clusters, which is useful in the transfer learning frame-
work, the similarity among the time series must be determined. The similarity method
introduced in [2] is utilized to measure the yield similarity among FPs. However, rather
than finding the similarity between the time series, the Z-score is calculated instead based
on the method in [3]. The Z-score shows the distribution of the values which enables the
similarity measure to capture the similarity in the behavior of the time series rather than
the similarity based on the exact values of their points. Therefore, the calculated Z-score is
used in the utilized similarity measure to get the local features (L) and global (G) features
of each point in the time series. The local and global features of the calculated Z-scores (z)
are calculated as in (3.1) and (3.2) where each feature is represented by a vector of shape
(2, n), where n is the size of the time series. Using these features, a distance measure is
calculated as proposed in [2] using (3). Then DTW is used, where DTW mainly overcomes
the problem of alignment between two time series X1..N , Y1..M creating a distance matrix
D which is NxM [29] resulting in the optimal warping pass DTW calculation using the D
matrix as in (4).

Lyi = {[zi − zi−1], [zi − zi+1]} (3.1)
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Gyi = {[(
i−1∑
x=0

zx)/i], [(
n∑

x=i

zx)/(n− i)]} (3.2)

Where Z is the z-score, n is the length of the time series, Lyi is the local features for a
point i in time series y and Gyi represents global features for a point i in the time series
y.The distance between two points (d), point i in time series ta and point j in time series
tb is calculated in (3.3).

d(tai, tbj) = |Lai − Lbj|+ |Gai −Gbj| (3.3)

The cumulative DTW distance between two time series, Distance(ta,tb) is calculated by
building up the D matrix using (3.4) where i falls in the range [0, N ] and j falls in the
range [0,M ], then returning the distance result as the value at the last cell of the matrix
which can be referenced as D(N,M).

D(i, j) = d(tai, tbj) +min[D(i− 1, j − 1), D(i− 1, j), D(i, j − 1)] (3.4)

The measured distances among the time-series are used to group the FPs into clusters.
Hierarchical clustering is used for that purpose where a dendrogram is built based on the
complete linkage explained in subsection 2.4.1. Beside finding the possible clusters, the
dendrogram helps in deciding the similarity threshold based on the hierarchical clustering
method which gives allowable range for the clustering threshold to avoid setting it arbi-
trarily based on trial and error as in [3]. Due to using the Z-score, the distance values
range from 0-1. Hence, the percentage similarity (PSim) between two FP time series ta
and tb is calculated using (3.5), and based on the chosen threshold, the binary similarity
is deduced using (3.6).

PSim(ta, tb) = (1−Distance(ta, tb)) ∗ 100] (3.5)

BSim(ta, tb) =

{
0, if PSim < ST

1, if PSim ≥ ST

whereST = (1− CT ) ∗ 100
(3.6)

Where ta and tb are the two FP time series, PSim and BSim are the percentage and binary
similarity between them, ST and CT are the similarity and clustering thresholds and the
clustering threshold is based on the distance measure.
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3.3.2 Proposed Framework

The transfer learning is applied from an existing Base model (FPBM) that is trained using
a base fresh produce (FPB) to get a new target model (FPTM) for a new target fresh
produce (FPT ); the FPB represents the cluster of FPs that is most similar to FPT . The
Transfer learning is applied by freezing some layers of the FPBM then fine-tuning the rest
of the layers using the FPT data. The framework for the transfer learning is illustrated in
Figure 3.2.

To find the most similar FPB to each new fresh produce FPT , the similarity check is
applied as explained in subsection 3.3.1 between that FPT and the representative FPB in
each of the n clusters, (FPBa), for a from 1 to n, using the hierarchical clustering algorithm
explained in subsection 2.4.1. The FPBa with the least distance to FPT is chosen. The Base
DL model of the chosen Base FP (FPBMa) is loaded from the FP Base Models database
and the transfer learning is applied to create a new model for the target FP (FPTMa). The
FPTMa is saved in the FP Target Models database to be used for forecasting the FPT yield.
If a similar FPB to FPT can’t be found, FPT is assigned a new cluster and a new Base
model FPBM(n+1) is created from scratch using FPT data and saved in the base models
database and used for FPT yield forecasting. Periodic re-clustering is needed which should
take place when the total number of single element clusters is exceeding the average size
of all other clusters.

Figure 3.2: The proposed transfer learning framework application [FPT : new Target Fresh
Produce, FPB: Base Fresh Produce, BM: Base Model, TM: Target Model]
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3.4 Quality Assurance

In this section, the proposed quality assurance framework for the application is discussed.
The section is divided into two subsections: The first covers the quality assurance of the
deep learning model, which is further divided into two sections, one for the quality of the
deployed data and the other for the quality of the created model. The second section covers
the automatic detection of MRs in software code using machine learning SVM model.

3.4.1 DL Model Quality Assurance Using Metamorphic Tests

The quality assurance of the deep learning models and the utilized data is not a straightfor-
ward task. Fewer mechanisms are available for testing the effectiveness of a deep learning
model compared to those deployed in software testing. To verify the quality of a DL model
and the data used in training, domain experts can define a set of constraints or properties
for the data and model then verify the presence of such properties. Hence, metamorphic
relations are proposed to define the data properties and model behavior expected by do-
main experts which can be verified by metamorphic tests (MTs). To ensure the quality
of the proposed DL model and its data, in this section the metamorphic relations are de-
signed based on the relations established by domain experts as those in [81, 82, 83]. Due
to the similarity between the domain of the proposed work and the work in [81, 82, 83],
the metamorphic relations in [81, 82, 83] are utilized after modifying them to fit the tested
application beside introducing other new MRs. For consistency, all the relations designed
for data verification and model quality assurance are studies and classified under the main
categories of metamorphic relations identified in [91] as: Permutative (P), Additive (A),
Multiplicative (M), Invertive (IV), Inclusive (I) and Exclusive (E). In addition to two in-
troduced relations: Bounds (B) and Sustainable (S). Finally, proper metamorphic tests are
designed to verify the presence of each data and model metamorphic relation.

Data Metamorphic Relations: To assess the quality of the utilized data, a correlation
analysis is conducted. Correlation calculations must share known behaviors to facilitate
finding metamorphic relations that must be held for the data to be valid. These relations
are based on the main categories of metamorphic relations listed above. In this section,
nine data metamorphic relations (DMRs) are formally defined for the data deployed by the
tested DL model. Those DMRs are classified under four of the main categories of MRs:
Permutative, Invertive, Additive, and Multiplicative, in addition to the two categories of
Bounds and Sustainable relations. Nine data metamorphic tests (DMTs) are designed to
verify each of the defined relations.
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1. Bounds metamorphic relation: If the applied function is bounded, the result must
not fall out of the identified boundary. The bounds DMR and DMT are as follows:

• DMR1-B: When calculating the correlation coefficient matrix C for a dataset
with n features as in (3.7).

∀i, j ≤ n =⇒ −1 ≤ ci,j ≤ +1 (3.7)

DMT1-B: Calculate the correlation coefficient matrix for the dataset then loop
over all elements of the matrix to ensure that each value is bounded between -1
and +1.

2. Permutative metamorphic relations: show that a change or permutation in the order
of the data does not affect the output. The permutative DMRs and DMTs are as
follows:

• DMR2-P: Changing the location of a feature with respect to the other features
should not affect its correlation coefficient with the rest of the features; as defined
in (3.8).

For a dataset with n input features set {x1, x2, . . . , xn} and
correlation coefficient matrix C, ∀i, j ∈ [1, n], C[xi, xj] should

not change across the n! permutations of the feature set. (3.8)

DMT2-P: Calculate the correlation coefficient matrix of a dataset with n fea-
tures. Change the order of the features then recalculate the correlation coeffi-
cient matric. The correlation coefficient between any two features should remain
the same regardless of their new order.

• DMR3-P: Changing the order of the data-points should not affect the correlation
coefficient between the attributes; as defined in 3.9.

For a dataset with n rows {y1, y2, . . . , yn} and a correlation

coefficient matrix C, C should remain the same for all the

n! row permutations of the dataset. (3.9)

DMT3-P: For a dataset with n rows, calculate the correlation coefficient of
the dataset. Shuffle the rows randomly using a random permutation technique
then recalculate the correlation coefficient matrix. Compare the two matrices’
elements, they should be identical.
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• DMR4-P: Two identical features must have a correlation coefficient of 1; as
defined in (3.10).

For a set of n input features {x1, x2, x3, . . . , xn},∀i ∈ [1, n],

duplicating any feature xi results in a new set of input

features with correlation coefficient matrix C such that:

C[xi, xi−duplicate] = 1 (3.10)

DMT4-P: select any feature from a dataset with n features, duplicate that fea-
ture then calculate the correlation coefficient between the selected feature and
its duplicate. The calculated correlation should always be equal to the maximum
correlation coefficient of 1.

3. Invertive metamorphic relations: explain the effect of inverting some or all of the
inputs. The invertive DMR and DMT are as follows:

• DMR5-IV: Any two opposite features should lead to a correlation coefficient of
-1; as defined in (3.11).

For a set of n input features {x1, x2, x3, . . . , xn},∀i ∈ [1, n],

duplicating the feature xi and multiplying the duplicate by

-1, to get − x′
i , should result in a new correlation coefficient

matrix of the new set of input features with C[xi,−x′
i] = −1 (3.11)

DMT5-IV: Having a dataset with n features, duplicate a random feature and add
the feature’s inverse to the dataset by multiplying its values by -1. Calculate the
correlation coefficient which should result in the maximum negative correlation
coefficient of -1 between the chosen feature and its inverted duplicate.

4. Additive metamorphic relations: show that adding or subtracting a constant should
not influence the results. The additive DMR and DMT are as follows:

• DMR6-A: Linear Scaling of feature values by addition doesn’t affect its corre-
lation; as defined in (3.12).

For a set of n input features {x1, x2, x3, . . . , xn},∀i, j ∈ [1, n],

scaling feature xi by adding a constant value b to all its values

to get − xi + b, should result in an identical coefficient matrix

C to the one without scaling.i.e. C[xi, xj] = C[xi + b, xj] (3.12)
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DMT6-A: Select any of the dataset features. Introduce a new feature through
scaling the selected one by adding a constant value to all its values.

Compare the correlation coefficient of the selected feature before scaling and any
other feature in the dataset with the correlation after scaling. Both correlations
should be equal.

5. Multiplicative metamorphic relations: show that multiplying or dividing a constant
should not influence the results. The multiplicative DMR and DMT are as follows:

• DMR7-M: Linear Scaling of feature values by multiplication leads to the same
correlation; as defined in (3.13).

For a set of n input features {x1, x2, x3, . . . , xn},∀i, j ∈ [1, n],

scaling feature xi by multiplying all its values by a constant

value b to get − xi ∗ b, should result in an identical coefficient

matrix C to the one without scaling.i.e. C[xi, xj] = C[xi ∗ b, xj] (3.13)

DMT7-M: Select any of the dataset features. Introduce a new feature through
scaling the selected one by multiplying a constant value to all its values. Com-
pare the correlation coefficient of the selected feature before scaling and any
other feature in the dataset with the correlation after scaling. Both correlations
should be equal.

6. Sustainable metamorphic relations: show that if an input causes an error, this error
must be handled correctly with a proper technique. The sustainable DMRs and
DMTs are as follows:

• DMR8-S: Introducing a new feature with variance of 0 should result in an error
message.
The correlation coefficient uses standard deviation in its calculation, hence a
data with variance 0 causes a zero division, which needs to be properly handled
by the application.

DMT8-S: The correlation coefficient function can be used to calculate a corre-
lation between a zero-variance attribute and another attribute, this should be
handled without crashing and an appropriate message should be shown such as
“Math Error: Division by zero”.

• DMR9-S: Outliers could significantly alter the results therefore they should first
be removed before calculating those results.
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DMT9-S: Introduce a new data-point which is a clear outlier and compare the
correlation coefficient before and after introducing the outlier. Both correlations
should be equal.

Model Metamorphic Relations: To verify the effectiveness and quality of a DL model,
metamorphic relations are designed by domain experts to verify the model quality as in
[92]. In this section, the learning model metamorphic relations are formally defined along
with their metamorphic tests which are designed to verify each of the defined relations.
The test is then evaluated based on the Score Percentage Change (SPC) which is the
percentage change in the evaluation scores of the original model, i.e. oldScore, and the
model after performing the test, i.e. newScore, as defined in (3.14).

SPC =
∥oldScore− newScore∥

oldScore
∗ 100 (3.14)

1. Permutative LMRs and LMTs:

• LMR1-P: Changing the order of features in models’ input should not affect the
forecasting scores; as defined in (3.15).

For a set of n input features {x1, x2, x3, . . . , xn}, the

forecasting score should not change across the n!

permutations of the feature set. (3.15)

LMT1-P: Train the model with the dataset then records the model performance
scores. Create a new dataset by reordering the features of the original dataset
then construct a new model trained on the new data. Test the new model
and record the forecasting scores. Compare the scores of the two models. The
differences should be insignificant as that caused by variance in initialization.

• LMR2-P: Changing the location of datapoints in models’ input should not affect
the forecasting scores; as defined in (3.16).

For a dataset with n rows {y1, y2, . . . , yn}, the forecasting

scores should remain the same for all the n! row

permutations of the dataset. (3.16)

LMT2-P: Train a model on a dataset and record the performance scores. Create
a new dataset by shuffling the entries of the first dataset. Train and test a new
model using the new dataset and record forecasting scores. The performance
scores of both models should be approximately equal.
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• LMR3-P: Time steps should be considered in order.

If time-steps are not considered in order, the order in which the data has been
input to the model could affect the performance.

LMT3-P: Train a model and record its forecasting scores. Shuffle the training
and validation data then retrain the model and record the new scores. The
performance scores should remain the same before and after shuffling.

2. Additive LMRs and LMTs:

• LMR4-A: Scaling a feature in training and validation by adding or subtracting
a constant must not affect the scores; as defined in (3.17).

For a training or validation set of n input features {x1, x2, x3, . . . , xn},
∀i ∈ [1, n], scaling feature xi by adding or subtracting a constant

value b to all its values to get xib should not affect the forecasting

performance scores. (3.17)

LMT4-A: Get a random feature from the dataset, then add a constant to all its
values. Train the model and measure the performance score. The performance
scores before and after adding the constant values to that attribute should re-
main the same.

• LMR5-A: Scaling a feature in validation by adding or subtracting a constant
must have a huge impact on the performance score; as defined in (3.18).

For a validation set of n input features {x1, x2, x3, . . . , xn},∀i ∈
[1, n], scaling feature xi by adding or subtracting a constant value

b to all its values to get xib should have a high impact on the

forecasting performance scores. (3.18)

LMT5-A: Select a random feature from the validation dataset then add a con-
stant to all inputs of this feature. Compare the forecasting results before and
after scaling the validation dataset, the scores after scaling should have a high
percentage change SPC >10% compared to the ones before scaling.

3. Multiplicative LMRs and LMTs:
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• LMR6-M: Scaling a feature in training and validation by multiplying/dividing
a constant must not affect the scores; as defined in (3.19).

For a training or validation set of n input features {x1, x2, x3, . . . , xn},
∀i ∈ [1, n], scaling feature xi by multiplying or dividing a constant

value b to all its values to get xi ∗ /b should not affect the forecasting

performance scores. (3.19)

LMT6-M: Get a random feature from the dataset, then multiply a constant
by all inputs of this feature. Train the model and measure the performance
score, the score before scaling should not significantly differ from the score after
scaling.

• LMR7-M: Scaling a feature in the validation dataset by multiplying or dividing
a constant must have a huge impact on the model performance score as defined
in (3.20).

For a validation set of n input features {x1, x2, x3, . . . , xn},∀i ∈
[1, n], scaling feature xi by multiplying or dividing a constant

value b to all its values to get xi ∗ /b should have a high impact

on the forecasting performance scores. (3.20)

LMT7-M: Select a feature from the validation dataset then multiply all inputs
of this feature by a constant. Compare the forecasting results before and after
scaling the validation dataset by calculating the SPC; the scores after scaling
should highly vary from those before scaling with SPC >10%.

4. Inclusive LMRs and LMTs: shows the effect of adding new elements and assuring
the input size fed to the model.

• LMR8-I: All training data should be included in the generation of a sequence
otherwise the effectiveness of the trained model is not guaranteed as defined in
(3.21).

For a dataset with n rows {x1, x2, x3, . . . , xn}, time-steps value t

and future days to forecast d, the final size of the dataset

should be n− t− d entries. (3.21)
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LMT8a-I: truncate the dataset to have exactly the length of time-steps + future
days to forecast; a single input record with correct dimensions. The model
should train on this single input.

LMT8b-I: truncate the dataset to have length less than time-steps + future days
to forecast; the data now has incorrect dimensions. Try to train the model. A
suitable error message should be displayed such as “Incompatible dimensions”.

• LMR9-I: Assuring that right amount of data is used for validation.

Having a dataset with n entries, with time-steps value t and future days to
forecast d, the model can be able to forecast if n ≥ t+ d.

LMT9a-I: Validation set is truncated to have exactly the length of time-steps +
future days to forecast, the model should be able to forecast the result.

LMT9b-I: Validation set is truncated to have length less than time-steps +
future days to forecast, the model must give suitable error message such as
“Incompatible dimensions”.

• LMR10-I: Inclusion of informative attributes should enhance the model perfor-
mance.

A model should perform better when adding more informative attributes with
low correlation to the rest of the model attributes.

LMT10-I: Train a model with a subset of attributes, add a low correlated at-
tribute with the model attributes, and highly correlated with output. The model
performance scores should improve.

• LMR11-I: The model’s performance should not enhance if a highly correlated
attribute with the model’s attributes is added.

LMT11-I: Train a model with a set of attributes. Add a highly correlated
attribute with one or more of the attributes used in training the first model.
Compare the new model’s performance score to the old model, no significant
enhancement should be recognized.

5. Exclusive LMRs and LMTs: shows the effect of removing elements and informative
attribute to the model.

• LMR12-E: Introducing training data with range 0 should be handled by the
application.

LMT12-E: Set a data attribute to a constant value to have a range of 0, despite
the fact that the model training should not be affected, no useful information
is gained from such attributes.

Hence, this should result in having low model performance scores.

33



• LMR13-E: Introducing validation data with range 0 should result in an error.

LMT13-E: Set the validation attribute to 0, the model should be able to train
correctly but validation scores should result in an error therefore an error mes-
sage should be issued such as “Validation data cannot be constant”.

3.4.2 Automatic Detection of MRs in Software Code using ML

Automatic detection of metamorphic relations is investigated by researchers, an effective
machine learning Support Vector Machine (SVM) model is found and used in [80, 93]
to automatically detect metamorphic relations. The code is first translated into Control
Flow Graphs (CFGs), which is a graph that can be used to represent the software code
using nodes and edges as connectors. The CFG is analyzed using graph kernels, which
are functions used to measure the similarity between pairs of graphs that are used in
classification [94]. The similarity between the two graphs is calculated by a Random Walk
Kernel [95], which corresponds to the atomic operation execution in the program. The
similarity score is then normalized, and the kernel then maps the CFGs into a feature
space.

After calculating the similarity score, the feature-based content of the CFGs is manually
labelled by experts using three metamorphic relation labels: permutative, additive and
inclusive. To enable the model to identify whether a metamorphic relation is valid or not,
for each metamorphic relation a model is trained. To improve the models’ performance the
dataset must be enlarged by applying and testing the four types of mutants suggested in
[80]: logically equivalent mutants of atomic operations, non-logically equivalent mutants of
atomic operations, equivalent mutant of varying loop logic, and logically equivalent dead
code mutants.

The data is then fed into an SVM classifier which is tested before and after mutations.
The classification accuracy is found to depend on the type of mutant used. The Non-
logically equivalent mutants (M2) degrade the accuracy; hence they are not considered in
the experiment.

The detection of metamorphic relations is usually done by domain specialists, meta-
morphic relation is detected based on the method in [80] using machine learning. This
automatic detection of MRs is achieved by having a huge dataset of software codes which
are translated into Control Flow Graphs (CFGs) [87]. The CFGs are then translated into
features by using graph kernels. The features retrieved from the CFGs are then fed into
a support vector machine (SVM) model, which identifies whether a certain metamorphic
relation exists or not. To assure the accuracy of the data fed to the SVM model, the codes
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are labelled manually, with a yes/no flag reflecting whether the input metamorphic relation
exists or not in the code. To increase the size of the training dataset, mutation operators
are applied on the software codes, and the models are retrained.

After the models are ready, they are used to detect whether certain MRs are available
in the generalization code or not, applying the same procedure explained above to the
generalization code. After extracting the features, the CFGs of different codes are fed into
three different types of metamorphic relation detection models: Additive, Permutative
and Inclusive relations. To ensure best practice, the highest performing model out of each
type is used and before running the models, the software code is labelled according to the
expected metamorphic relations which should exist in that code; as illustrated in Figure3.3.

Figure 3.3: Automatic detection of metamorphic relations in software codes using SVMs
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Chapter 4

Experiments and Found Results

The conducted experiments along with their found results are summarized and discussed
in this section. In Section 4.1, the experiments carried out for finding the best impu-
tation method for estimating the missing values are illustrated and their found results
are discussed. In Section 4.2, the experiments focus on improving the forecasting model:
subsection 4.2.1 concentrates on finding the best yield and price forecasting models us-
ing station-based data while subsection 4.4.2 considers finding the best forecasting models
using station-based data, assesses the data preprocessing methods and the satellite data
parameters used in training the model by measuring the effect on the model’s forecasting
performance. In Section 4.3, the transfer learning techniques are tested and evaluated by
applying them to the best-found model to enable the generalization of the model to sim-
ilar datasets. In Section 4.3, the proposed quality assurance techniques, for assuring the
quality of the data and model, are tested and the found results are analyzed.

4.1 Finding the Best Statistical Imputation Model

In this experiment, the effect of imputing the vegetation indices (VIs) parameters using
the statistical imputation approaches on the forecasting performance is explored; the VI
parameters are added to the soil moisture and temperature input parameters. Based on
[28], the three major vegetation indices that have the most impact on forecasting yield are
NDVI, NDTI, and EVI. Those three vegetation indices are appended to the soil moisture
and temperature parameters dataset in [2], as in subsection 2.1.1. Hence, the resulting
dataset includes five input features: soil moisture, soil temperature, NDVI, NDTI and
EVI, which are mapped to the yield output parameter.
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Since the dataset contains a huge number of missing values, interpolation is essential
for estimating those missing values to improve the training of the forecasting models. Four
statistical interpolation techniques are tested and evaluated by assessing their effect on
enhancing the forecasting performance: the lower the resulting aggregated error measure
(AGM) the higher the performance and the better the interpolation technique.

The interpolation techniques are assessed by using the vegetation indices interpolated
by each technique along with the soil moisture and temperature parameters in training the
DL forecasting model as input parameters. The best interpolation model is the one that
leads to the best forecasting performance or the lowest AGM.

The Exact Replication is tried first as a base method to compare its performance to the
considered four interpolation methods by calculating the percentage change in performance
caused by each method. The Vegetation Indices dataset is then fed to an interpolation
method, outputting all the features interpolated depending on the type of interpolation
used from the 4 interpolation techniques explained in subsection 2.1.2- Statistical Ap-
proaches. Four interpolation methods are tested and their impact on the forecasting per-
formance is evaluated and compared to the simple Exact Replication method. The Exact
Replication technique is applied to the VIs before using them as input parameters to the
ensemble of the deep learning models. The resulting forecasting AGM score is found to be
9.81 which is compared to the other four interpolation methods as follows:

1. The Linear interpolation technique is applied to the vegetation indices before using
them to forecast the yield. This achieves an AGM score of 9.94 showing a close
performance to the replication method with 1.4% degraded performance.

2. The Bessel interpolation technique is then applied which reduces the AGM score to
8.04 showing an improvement of 18% over the replication method.

3. The One-Way Spline method achieves an AGM score of 5.77 showing a 42% perfor-
mance enhancement compared to the replication method.

4. The Cubic Spline interpolation technique further reduces the AGM score to 5.53,
showing an improvement of 44% to the replication method.

To manually verify and confirm the found results, the performance of applying the in-
terpolation techniques on the NDVI parameter is visually assessed as well. As evident
from Figure 4.1: The yellow line representing the NDVI values after applying the Exact
Replication technique is not smooth and contains either sudden vertical shifts in values or
straight horizontal segments due to having many repetitive values, which reflects very bad
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performance. The red line represents the NDVI values after linear interpolation. The only
difference between the linear and replication lines is that the linear technique connects the
two consecutive points by straight lines, which could result in a smoother signal, however
the results are peaking only at known points, which also explains having the worst perfor-
mance. The lines representing the three remaining interpolation techniques, Bessel, Cubic
Spline and One-Way Spline, are very close to each other. However, the Cubic Spline blue
line has more curved edges in undetermined points like on the point between 23rd and
30th of November, having more concise parabolas is behind getting the best performance.
The Bessel (Green) and One-Way (Gray) lines are overlapping, however, a closer look at
Figure 4.1 reveals that the values resulting from deploying the One-Way Spline method
are smoother near the known points which justifies its higher performance.

The results of the conducted experiments across the 3 main vegetation indices prove
that the top two forecasting performances are achieved when using the Cubic Spline and
One-Way Spline interpolation techniques.

Figure 4.1: NDVI values across three months estimated using replication and four other
interpolations methods
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4.2 Finding the Best Forecasting Model

This section is divided into two subsections: one covers the experiments conducted to find
the best forecasting model for fresh produce yield and price using station-based data, while
the other explores the use of satellite-based data in forecasting.

4.2.1 Forecasting Using Station Based Data

The main target of this group of experiments is to find the best model for forecasting
the yield and price in Santa Maria. The inputs to the models are the soil, yield and
price datasets discussed in subsection 2.1.1 after deploying the preprocessing elaborated
in subsection 2.2.2. The output is 5 weeks ahead of the yield or price. To evaluate the
performance of the forecasting models proposed in subsection 2.3, the evaluation metrics
stated in subsection 2.3.2 are used where the target is reducing the AGM score without
degrading the R2 score.

1. Yield Forecasting: Different combinations of models are tested and compared to the
literature model in [2]. First, the model in [2] is modified by replacing the LSTM
layers with GRU layers resulting in the ACNNGRU model. It is found that this
model improves the AGM score by 0.47 while degrading the R2 score by 1%. This
shows the higher effectiveness of the GRU in this task compared to the LSTM. Then,
novel ADGRU and DFFNNGRU models are proposed, both showing same R2 scores
as the ACNNGRU, but the ADGRU is found to reduce the performance leading to an
AGM score higher by 0.02 compared to the ACNNGRU. However, the DFFNNGRU
slightly improves the AGM by 0.02. Finally, a simple GRU model is tested, which
degrades the R2, and AGM scores compared to the model in [2], these results are
reported in Table 4.1.

The proposed models are further improved by introducing the ensemble which com-
bines different models together using the average prediction method explained in
subsection 2.2.2, Satellite Based Data Preprocessing where a representative average
is used to represent each satellite image available. Due to the simplicity of the GRU
model, the effect of ensembling it with other models is explored. In addition, the
ATT-CNN-LSTM model ensembling is investigated as well because of its high per-
formance as reported in many literature works. The results of the ensembles are
visible in Table 4.1. Clearly the ensemble of the proposed DFFNNGRU with AD-
GRU, or DFFNNGRU-ADGRU, gives the best results improving the R2 score from
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Table 4.1: Results of simple, compound and ensembled FP yield forecasting models.
Simple Compound Ensemble Best in Literature

ACNN DFFNN ATT-CNN-LSTM GRU ACNNGRU DFFNNGRU ATT-CNN-LSTM
Evaluation GRU - ADGRU - ACNN DFFNN DFFNN ACNN DFFNN SeriesNet
Metric GRU GRU -GRU ADGRU GRU -GRU -GRU -GRU -GRU ADGRU -GRU

MAE 36.76 36.25 35.14 36.52 35.81 33.96 33.83 35.23 34.62 33.98 34.46 33.54 40.70
RMSE 53.31 51.57 51.88 51.47 52.02 50.14 49.87 50.74 50.32 49.54 51.47 48.09 58.8

R2 0.83 0.84 0.84 0.84 0.84 0.85 0.85 0.85 0.85 0.85 0.85 0.86 0.85
AGM 7.70 7.03 7.05 7.01 7.15 6.36 6.26 6.66 6.47 6.17 6.13 5.68 7.5

Table 4.2: Results of simple, compound and ensembled FP price forecasting models.
Simple Compound Ensemble Best in Literature

ACNN DFFNN ATT-CNN-LSTM GRU ACNNGRU DFFNNGRU ATT-CNN-LSTM
Evaluation GRU - ADGRU - ACNN DFFNN DFFNN ACNN DFFNN SeriesNet
Metric GRU GRU -GRU ADGRU GRU -GRU -GRU -GRU -GRU ADGRU -GRU

MAE 0.2 0.21 0.19 0.22 0.2 0.2 0.19 0.2 0.2 0.19 0.2 0.2 0.23
RMSE 0.25 0.25 0.24 0.28 0.25 0.24 0.25 0.24 0.25 0.24 0.25 0.24 0.29

R2 0.75 0.75 0.78 0.7 0.76 0.77 0.76 0.77 0.75 0.77 0.75 0.77 0.68
AGM 0.06 0.06 0.05 0.07 0.05 0.05 0.05 0.05 0.06 0.05 0.06 0.05 0.08

previous literature by (1%) and reducing the AGM score by 1.82 which is about 24%
improvement compared to the ensembled models in [2].

2. Price Forecasting: For forecasting the price of strawberry in Santa Maria, the com-
binations of models mentioned above are utilized for price forecasting. The results of
the simple and compound models all prove enhancement of price forecasting results
as shown in Table 4.2. It is found that the ensemble of DFFNNGRU ADGRU im-
proves the AGM by 37.5% and the R2 score by 9% compared to the literature model.
However, forecasting the price can be affected by other economic factors, not only
the environmental ones which affect the reliability of the forecasting model. Hence, it
is important to consider the performance of the chosen model in both yield and price
forecasting applications. Therefore, despite having more than one price forecasting
model with the same AGM, the DFFNNGRU ADGRU ensemble is preferred for its
high-performance persistence across both yield and price forecasting applications.

4.2.2 Forecasting Using Satellite Based Data

Three experiments are conducted to improve the satellite-based forecasting: The first
experiment determines which data preprocessing technique is more effective whether the
prelagged histograms method proposed in [18] or the averaging method utilized in [90]. The
second experiment provides a comparison between the proposed model and the literature
model of SAE-CNNLSTM ENS, and determines the best model based on the AGM scores.
The third experiment determines whether the addition of the satellite NDVI input attribute
improves the best-found model’s performance as claimed by [55] or not. The Percentage
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Table 4.3: Comparison of the two preprocessing techniques by training the best literature
satellite model once with satellite parameters’ histograms and another with their averages
then evaluating the forecasting performance using assessment measures.
Assessment Training with Satellite Parameters’ Histograms Training with Satellite Parameters’ Averages
Measures CNN-LSTM SAE CNNLSTM-SAE ENS CNN-LSTM SAE CNNLSTM-SAE ENS

R2 0.8 0.81 0.83 0.86 0.8 0.85
MAE 38.3 40.6 36.83 35.31 42.14 36.18
RMSE 56.69 55.1 52.9 49.34 59.57 51.84
AGM 9.48 9.01 7.8 5.94 10.4 6.82

Improvement (PI) in models’ performance based on AGM is calculated as in (4.1).

PI =
|Scorea − Scoreb|

max(Scorea, Scoreb)
× 100 (4.1)

1. Finding the Best Data Preprocessing Method: For this experiment two data pre-
processing techniques are utilized; one is using histograms to represent the satellite
images and the other uses pixels averaging. The comparison is done using the SAE-
CNNLSTM ENS, which is trained once using the histograms of the input parameters,
and another using the averages where each parameter is represented by the average
of the satellite image pixels of the area under investigation. The forecasting perfor-
mance assessment measures are used to compare the two models as in [18]; the found
results are presented in Table 4.3.

The results show that even though histograms should give better results, as they
preserve more spatial information, the model trained using the satellite parameters’
average is found to perform better than the model trained using their histograms
by an AGM percentage improvement of 12.5%. Moreover, calculating the satellite
parameters’ averages is more efficient than finding the histograms as it reduces the
processing time.

2. Finding the Best Forecasting Model: In this experiment the two DL models in of
CNN-LSTM-SAE Ens and DFFNNGRU-ADGRU Ens are compared using the same
training and test sets. The models’ performance is evaluated based on the AGM
scores. Based on the found results in Table 4.4, the proposed satellite model DFNN-
ADGRU ENS is found to outperform the literature CNN-LSTM-SAE Ens by a PI
of 20%. This shows that the proposed model would be more effective in forecasting
fresh produce yield.

3. Enhancing the Input Parameters Set: In [55], the authors eliminated PCA dimension-
ality reduction; where informative features is extracted to better represent the data
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Table 4.4: Performance Comparison of CNN-LSTM-SAE Ens vs DFNNGRU-ADGRU Ens
when trained on satellite parameters averages.
Assessment Best Satellite Literature Model Proposed Satellite Ensemble Model
Measures CNN-LSTM SAE CNNLSTM-SAE ENS DFNNGRU ADGRU DFNNGRU-ADGRU ENS

R2 0.86 0.80 0.85 0.86 0.84 0.86
MAE 35.31 42.14 36.18 33.31 36.23 32.05
RMSE 49.34 59.57 51.84 49.75 52.06 48.42
AGM 5.94 10.40 6.82 5.92 6.89 5.45

Table 4.5: Performance Comparison of DFNNGRU-ADGRU Ens. with and without the
addition of the NDVI parameter

Assessment With NDVI Without NDVI
Measures DFNNGRU ADGRU ENS DFNNGRU ADGRU ENS

R2 0.85 0.86 0.87 0.86 0.84 0.86
MAE 34.92 33.42 32.05 33.31 36.23 32.05
RMSE 51.39 49.37 48.12 49.75 52.06 48.42
AGM 6.57 5.81 5.35 5.92 6.89 5.45

[96], as it is found to have negligible effect, authors also found that adding the NDVI
satellite parameter as input helps in improving the forecasting model’s performance,
hence the effectiveness of adding the NDVI parameter as input to train the best
found model, DFNNGRU-ADGRU ENS, is tested in this experiment. The ensemble
is trained by adding NDVI to the input features, leading to feature dimensions of 140
days by 3 features rather than 2 features, and the model is evaluated on the same
test set with the same date range as the previous experiment. Table 4.5 shows the
forecasting performance after NDVI addition where a slight performance improve-
ment of 2% in the AGM PI is noticed. This suggests adding the NDVI especially
that this addition doesn’t affect the training time.

4.3 Finding the Best Transfer Learning Method

The transfer learning is applied using the best performing ensemble model of ADGRU and
DFFNNGRU, or ADGRU DFFNNGRU found in subsection 4.2.1, as the Base model. The
Base model blue layers in Figure 3.1 are frozen while the rest of the layers are finetuned
using FPT data which takes 1 to 2 epochs to converge leading to fast efficient training.
The models are applied by creating a Base model for strawberry (FPB1) and another for
blueberry (FPB2) then using the framework proposed in subsection 3.3.2, the input to the
framework is the yield of a new fresh produce which is raspberry as FPT . The similarity
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check is applied to find the similarity between raspberry and strawberry then between
raspberry and blueberry yield time series.

The similarity check can result in the most straightforward case of finding one similar
Base FPB to the FPT which is happening in this case where it is found that the PSim
of raspberry with strawberry is 76% and 62% with blueberry. Hence, based on the BSim
with 70% ST, it can be deduced that raspberry is similar to strawberry and dissimilar
to blueberry. Therefore, the strawberry is chosen as the FPB and the strawberry Base
model FPBM is loaded and deployed in the transfer learning for creating a new Target
model for raspberry. The Target model is saved in FP Target Models database to be used
in forecasting raspberry yield. The other two scenarios that can occur after applying the
similarity check are: First, finding more than one similar Base model, in this case the
closest one with the highest percentage similarity to FPT is chosen as FPB. Second, not
finding any similar FPB, in this case a new cluster is created with the FPT as its FPB.
A new FPBM for that FPB is found by training using the new fresh produce yield data.
The resulting new Base model FPBM is added to the Base models database. In Table 4.6,
the performance of the proposed Target model is compared to the literature model trained
using strawberry data and finetuned using raspberry data as well as a model trained using
only strawberry data and another trained using only raspberry data without any TL. The
assessment of the obtained transfer learning results is essential for verifying the proposed
transfer learning method, and models.

First, the target model is compared to using the strawberry base model for forecasting
raspberry yield. As expected, the strawberry model could not predict the raspberry yield
with high accuracy. Secondly, the TL model is compared to the original raspberry model
trained using the raspberry data without TL. A noticeable improvement of 4% in R2 and
14% in AGM is evident in Table 4.6. When the TL model results are compared to the
literature transfer learning model in [2], a noticeable improvement of 1.5% in R2 and 2.2%
in AGM is found.

The results in Table 4.6 prove the effectiveness of the proposed transfer learning tech-
nique in transferring the learned features of the Base model to the Target model.

4.4 Quality Assurance

In this section, the designed metamorphic tests in the proposed solution described in
Section 3.4 are implemented and assigned specific test cases for testing and verifying the
effectiveness of the tested deep learning model proposed in Section 3.2 along with the
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Table 4.6: Raspberry yield forecasting using proposed TL model compared to the model
without TL, the model trained only on strawberry and the literature model.

Evaluation Strawberry Raspberry Model Raspberry Model Literature
Metric Model (No TL) (TL) Model

MAE 91.56 26.16 24.73 24.14
RMSE 141.66 34.96 33.28 31.77

R2 -3.73 0.71 0.74 0.724
AGM 551.87 8.81 7.58 7.71

dataset utilized in its training, discussed in subsection 2.1.1. The test cases are executed
to assure the quality of the DL model along with its data, then the found results are
reported and discussed. Finally, the quality of the software code is tested using the SVM-
ML technique, which uncovers the underlying MRs (Permutative, Additive, and Inclusive)
in the code as discussed in subsection 3.4.2.

4.4.1 Data and Model Assessment with Metamorphic Tests

Two types of assessment are conducted for the quality assurance using metamorphic tests.

Data Assessment: The 9 DMTs, designed in subsection 3.4.1 to assess the correlation
based DMRs, are implemented and specific test cases are articulated then executed for
each. The 9 DMTs, the tested datasets and details of the conducted experiments are
summarized in Table 4.7 with the found results and the taken corrective actions.

Model Assessment: To assess and verify the deep machine learning model, the meta-
morphic relations (LMRs) designed in subsection 3.4.2 are tested using the designed meta-
morphic tests (LMTs). Those metamorphic tests and the data used in them are listed in
Table 4.8 along with their outcome. The found results verify that all the metamorphic
relations are fulfilled, which proves the validity of the proposed model.

4.4.2 Quality Assurance of Software Code

To test the generalization code in subsection 3.3.1 and validate it, the nondeep-ML SVM
model is used as illustrated in Figure 3.3, where 3 different models are trained for the de-
tection of additive, permutative and inclusive metamorphic relations. Then these models
are tested on the four methods of the generalization code explained in subsection 3.3.2:
GlobalFeaturesMethod, LocalFeaturesMethod, DistanceBetweenPointsMethod, and Simi-
larityDTWMethod. Each method is then translated into its equivalent CFG; a sample
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Table 4.7: Experiments and results of Metamorphic Tests on the data
MT Utilized Dataset Experiments & Outcome & Results

(DS) Expected Results (ER) Corrective Actions

DMT1
-B

All DS
Parameters

1- The correlation coefficient matrix is calculated
2- Matrix elements are checked to find whether or not the
values lie within the bounds
ER: Correlation values bounded in [-1,1]

Correlation
values are
bounded in

[-1,+1]

DMR1-B
Fulfilled

DMT2
-P All DS

Parameters
1- The correlation coefficient matrix is calculated
2- The correlation is recalculated after shifting the soil
moisture parameter with the surface temperature
ER: Correlation remains the same

Correlation
values remain the

same after
shifting columns

DMR2-P
Fulfilled

DMT3
-P

All DS Rows

1- The correlation coefficient matrix is calculated
2- The data rows are shuffled randomly by getting a
permutation of indices of the rows and arranging them
accordingly
3- A new correlation matrix is calculated and compared to
the first one
ER: Correlation remains the same

Correlation
values remain the

same after
shuffling rows

DMR3-P
Fulfilled

DMT4
-P

Soil Moisture
1- The soil moisture attribute is duplicated, and the copy is
named as soil moisture 2
2- The correlation coefficient between the copy and the
original attribute is computed
ER: Correlation should be 1

Correlation
between Soil

Moisture and its
duplicate is 1

DMR4-P
Fulfilled

DMT5
-IV

Soil Temperature
1- The soil temperature attribute is duplicated
The duplicate values are multiplied by -1 and named the soil
temperature inverse
2- The correlation coefficient between the copy and the
original attribute is computed
ER: Correlation should be -1

Correlation
between Soil

Temperature and
its inverse is -1

DMR5-IV
Fulfilled

DMT6
-A

Soil Moisture

1- The correlation coefficient matrix is calculated
2- The soil moisture parameter is modified by adding 10 to
all its entries
3- The correlation coefficient matrix is recalculated
4- All correlations between the dataset attributes and the
original soil moisture parameter are compared to the
correlations between the same set of attributes and the scaled
new soil moisture parameter
ER: Correlation remains the same

Correlation
between all

attributes and
scaled Soil

Moisture remain
the same

DMR6-A
Fulfilled

DMT7
-M

Soil Moisture

1- The correlation coefficient matrix is calculated
2- The soil moisture parameter is modified by multiplying its
entries by 10
3- The correlation coefficient matrix is recalculated
4- All correlations between the dataset attributes and the
original soil moisture parameter are compared to the
correlations between the same set of attributes and the new
soil moisture parameter
ER: Correlation remains the same

Correlation
between all

attributes and
scaled Soil

Moisture remain
the same

DMR7-M
Fulfilled

DMT8
-S All DS

Parameters &
Temp Att of

constant value
100

1. A new attribute named Temp Att is introduced with a
value of 100 for all entries
2. The correlation coefficient matrix is calculated
ER: Correlation is 0

Correlation
between all

attributes and
Temp Att is 0

DMR8-S
Fulfilled

DMT9
-S

All DS
Parameters with
row 100 scaled to

MAX*100

1- The values in entry with index 100 in the dataset values to
maximum value of each attribute *100
2- The correlation coefficient is calculated and compared
where it should not affect our model
ER: Correlation remains the same

Correlation changed,
DMR9-S Not-Fulfilled,

Corrective Action: outlier
detection method is
added, and outliers

removed, then DMR9-S is
fulfilled

DMR9-S
Fulfilled
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Table 4.8: Experiments and results of the Metamorphic Tests on the forecasting model

MT DS Params
Expected Output
After Applied Test

Found Outcome Result

LMT1-P SM - ST SPC < 10
SPC < 10: (MAE =2.4,
RMSE= 0.1, R2 =0.0)

LMR1-P
Fulfilled

LMT2-P SM - ST SPC < 10
SPC < 10: (MAE 0.0, RMSE=
0.5, R2 =0.0)

LMR2-P
Fulfilled

LMT3-P SM - ST SPC < 10
SPC < 10: (MAE 0.0, RMSE=
0.5, R2 =0.0)

LMR3-P
Fulfilled

LMT4-A SM - ST SPC < 10
SPC < 10: (MAE 1.3, RMSE=
1.1, R2 =0.0)

LMR4-A
Fulfilled

LMT5-A SM - ST SPC > 10
SPC > 10:
(MAE 163.0, RMSE= 196.1, R2

=5121.6)

LMR5-A
Fulfilled

LMT6-M SM - ST SPC < 10
SPC < 10: (MAE 1.1, RMSE=
1.1, R2 =0.1)

LMR6-M
Fulfilled

LMT7-M SM - ST SPC > 10
SPC > 10:
(MAE 128.1, RMSE= 182.1, R2

=591.9)

LMR7-M
Fulfilled

LMT8a-I SM - ST
Model is able to
train

The model is trained
LMR8-I
Semi-
Fulfilled

LMT8b-I SM - ST Error
Message: “Incompatible
dimensions”

LMR8-I
Fulfilled

LMT9a-I SM - ST
Model is able to
forecast

The model can forecast
LMR9-I
Semi-
Fulfilled

LMT9b-I SM - ST Error
Message: “Incompatible
dimensions”

LMR9-I
Fulfilled

LMT10-I
SM, SM -
ST

SPC > 10
SPC > 10:
(MAE= 7.1, RMSE= 54.0, R2

=40.3)

LMR10-I
Fulfilled

LMT11-I
SM - ST -
SurfaceT

SPC < 10
SPC < 10:
(MAE= 2.0, RMSE= 1.7, R2

=1.0)

LMR11-I
Fulfilled

LMT12-
E

SM - Const
=10

SPC > 10
SPC > 10:
(MAE= 34.2, RMSE= 35.0, R2

=40.3)

LMR12-E
Fulfilled

LMT13-
E

SM - ST Error
Message: “Validation data
cannot be constant”

LMR13-E
Fulfilled
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transition for the GlobalFeatureMethod to its equivalent CFG is illustrated in Algorithm
1 and Figure 4.2. Each of the four translated methods is labelled manually with three
labels +/-PMR, +/-AMR and +/- IMR where positive means that the code fulfils the MR
while negative means the MR is not fulfilled by the code. Finally, each equivalent CFG is
fed into the three SVM models for detecting the metamorphic relations as illustrated in
Figure3.3. The results are recorded in Table 4.9.

Algorithm 1 Global Features Pseudo-code

1: procedure GlobalFeaturesMethod(r0,r1)
▷ r0← Array of feature inputs
▷ r1← length of r0

2: f0← new array[r1,2]
3: for i < r1− 1 do
4: f1← sum(r0,0,i-1)
5: f2← sum(r0,i,r1)
6: f0[i, 0]← f1/(i-1)
7: f0[i, 1]← f2/(r1-i)
8: end for

return f0
9: end procedure

Table 4.9: Results of automatic detection of the metamorphic relations in the generalization
code.

Tested
Code

Permutative Additive Inclusive
Model M1 M3 M4 Model Original DS Model M1 M3
P-SVM Expected A-SVM Expected I-SVM Expected
O/P O/P O/P O/P O/P O/P

Global Features -PMR -PMR +AMR +AMR +IMR +IMR
Local Features -PMR -PMR +AMR +AMR +IMR +IMR

DistanceBetweenPoints +PMR +PMR -AMR -AMR +IMR +IMR
SimilarityDTW -PMR -PMR -AMR -AMR +IMR +IMR
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Figure 4.2: CFG created for the global features Algorithm 1
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Chapter 5

Web Application

This thesis focuses on building a quality assured framework that enables the yield and
price of fresh produce forecasting. The work in Chapters 3 and 4 covers the fresh produce
deep learning forecasting model, the required preprocessing before the model training,
the data sources and the quality assurance of the model and data. Finally, a transfer
learning module is proposed to enable the generalization of the deep learning model to
other fresh produce in different geographical locations. To facilitate the ease of deployment
of the proposed framework by end users, a Fresh Produce Forecasting web application is
developed for forecasting the yield and price using the input parameters of soil moisture and
temperature, in addition to the NDVI for the satellite-based forecasting. The framework
is developed using ReactJS for the front-end client-side development, and Flask for the
backend server-side tasks.

The main objective of this application is to enable users to use the best-found deep
learning models to forecast the yield and price of any fresh produce given the fresh pro-
duce yield. In addition, the application has an imputation module with an imputation
method for estimating high rates of missing data that can be greater than 50%. Finally,
the application embeds a similarity module, which enables the user to find binary and
percentage similarity between any two time series.

In this chapter, subsection 5.1 covers the similarity module with sample use cases. The
imputation module features are highlighted in subsection 5.2 with use cases, and subsection
5.3 the forecasting module with sample use cases from scratch training and transfer learning
with a visualization of how the transfer learning framework introduced in 3.3.2 is executing.
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5.1 Similarity Module

The similarity module is used to find the similarity between two time series, the similarity
technique embedded in this module is explained thoroughly in subsection 3.3.1. In the
similarity module, three similarity options are available; measuring the similarity among
model inputs, measuring the similarity between model outputs, and measuring the simi-
larity between models based on both, their inputs and outputs, with the relation between
inputs and outputs considered.

The similarity module asks the user to input the required type of similarity, upload
two CSV files for the time series, and select the parameters used in testing the similarity
of both files. Once the parameters are selected, a button becomes visible for the user to
calculate the similarity. The similarity technique expects as an input two time series and
returns the binary and percentage similarity.

Two use cases are presented for the similarity module: the first is for two presumably
similar time series, and the second is for two presumably non-similar time series. The use
cases and their results are reported in subsection 5.1.1 and 5.1.2 respectively.

5.1.1 Case 1: Similar Time Series

In this use case, the similarity type being tested is input-output. Two files are uploaded
which are presumably similar, one file is for Strawberry fresh produce which is retrieved
from Santa Maria County, and the other file is for Raspberry fresh produce which is
retrieved from Santa Maria County as well. The chosen columns to find the similarity are:
Temperature (K), Moisture (mm) for input parameters, and the output parameters are
called Strawberry and Raspberry for each file respectively representing the fresh produce
yield. The similarity is computed, and the results of this use case are visible in Figure 5.1.

5.1.2 Case 2: Dissimilar Time Series

In this use case, the similarity type being tested is input-output. Two files are uploaded
which are presumably dissimilar, one file is for the strawberry fresh produce which is
retrieved from Santa Maria County, and the other file is for blueberry fresh produce which is
retrieved from Ventura County. The chosen columns to find the similarity are: Temperature
(K), Moisture (mm) for input parameters, and the output parameters representing the
yield are called Strawberry and Blueberry respectively for each file. Then the similarity is
computed. The results of executing this use case are visible in Figure 5.2.
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Figure 5.1: Similarity module use case of two similar time series

Figure 5.2: Similarity module use case of two dissimilar time series
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5.2 Imputation Module

The imputation module is used to surpass the limitation of having missing values in time
series which can affect the forecasting performance especially for daily time series. The
imputation module uses established deep learning imputation techniques, with the addition
of an interpolation technique that is found to be effective with time series with high rate
of missing values that can exceed 50% as discussed in Section 3.1.

A sample imputation use case is presented here where the user is asked to: input the
file that has the missing data then select the column representing the parameter that
needs imputation; selecting a second column is required for the TL imputation. When
done, a suitable imputation technique is applied based on the type of the dataset along
with the nature and number of missing values. In this use case, the input dataset is the
NDVI retrieved from Landsat Satellite with missing percentage greater than 50%, including
random missing data and missing chunks. Hence, the interpolation is expected to run
with transfer learning. Therefore, the NDVI parameter retrieved from MODIS Satellite is
uploaded by the user as a base dataset. The results of the imputation are visible in Figure
5.3.

5.3 Forecasting Module

The forecasting module is used to enable the end user to forecast the fresh produce yield
and price. The forecasting model is generalized based on the transfer learning framework
shown in Figure 3.2, and this is implemented by embedding a database. The database
consists of three tables: Fresh Produce Table, Model Table, and County Table. The
County Table is predefined to have 229 counties which are all the available counties in US
Census Counties retrieved from GEE [19]. The Entity Relationship Diagram (ERD) of the
database is visible in Figure 5.4.

The forecasting module allows the user to: select the output intended to forecast
whether yield or price, select the model type whether forecasting using Station based
data, Satellite based data, or the combination of both defined as Hybrid, select the fresh
produce name if available or enter new fresh produce, and select the state and county
where the forecast should occur. One of the following cases occurs:

1. If there are no models yet in the system, then the models can be trained from scratch
by asking the user to: upload a file containing the output parameter, and if the model
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Figure 5.3: Imputation module result, the first plot shows the plot with missing values
blue line in the 0, and in the second plot the result after imputation is shown where the
orange dots are the imputed values
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Figure 5.4: Database tables and fields ERD diagram

type is selected as station or hybrid then the station based input parameters for the
selected fresh produce and its location are also needed as parameters in the file.

2. If there is a readily available model for the entered fresh produce and county, the
user is asked to input the forecasting dates.

3. If the model is not available but there are other models for other fresh produce in
the system then one of the following cases is considered:

• Fresh produce found in the same location, the user is asked to input a file
containing the yield of the new fresh produce and similarity is computed based
on the similarity between the input parameters and yield of the fresh produces.

• Fresh produces data is in different location, the user is asked to input a file
having the yield of the new fresh produce, the input parameters are retrieved
using satellite data, and then compared to find a similar time series from the
available time series of base models.

If two fresh produces are found similar finding a base model (BM) trained for the
already available from produce FPB, transfer learning is applied. If no similar fresh
produces found, then model is trained from scratch as a base model alone.

Three use cases are articulated for the forecasting module and discussed in subsections
5.3.1, 5.3.2 and 5.3.3.
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5.3.1 Case 1: Forecasting without Available Models

In use case 1 the Hybrid model is selected, and it is assumed that no fresh produce is
yet available in the system, hence the user enters the name of the fresh produce; which
is Strawberry in this case. The Strawberry Santa Maria input parameters and yield are
uploaded by the user, and two models are trained in the background. The reflection of
this use case on the database is visible in Figure 5.5, where the blue rows are the newly
created database entries of the Strawberry fresh produce, and the two models created for
station and satellite forecasting. Finally, the user enters the forecasting dates; the result
of forecasting after training is visible in Figure 5.6.

Figure 5.5: Database table entrees after adding a new fresh produce and creating a hybrid
model.

5.3.2 Case 2: Forecasting Similar Fresh Produce

In case 2 the Station forecasting model is used for Raspberry in Santa Maria, which is found
to be similar to Strawberry Santa Maria. The user input: the yield data for Raspberry,
where similarity is computed and Raspberry is clustered with Strawberry Santa Maria as
its base model as visible in Figure 5.7, where Raspberry Model with ID 3 has base model
Strawberry with ID 1. Then the transfer learning process from Strawberry Santa Maria
to Raspberry is applied then the yield is forested for the entered dates. The forecasting
results are visible in Figure 5.8.

55



Figure 5.6: Result of use case 1 forecasting strawberry yield
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Figure 5.7: Database table entrees after adding raspberry and applying transfer learning
from strawberry station model

5.3.3 Case 3: Forecasting Dissimilar Fresh Produce

In case 3 the Hybrid forecasting model is used for estimating the yield of Blueberry in
Ventura, which is found to be not similar to any of the available base models (assuming
one model is available for Strawberry Santa Maria). The user input the yield data for
Blueberry, the input parameters for Ventura are retrieved from satellite data, then the
similarity is computed between Blueberry Ventura and Strawberry Santa Maria, which are
found to be not similar. Hence, a new model named Blueberry Ventura is trained from
scratch and labelled as a BM as visible in Figure 5.9 where the entry for Blueberry models
has BaseID of N/A, and then used for forecasting the required dates as visible in Figure
5.10.
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Figure 5.8: Result of use case 2 forecasting raspberry yield
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Figure 5.9: Database table entrees after adding the blueberry and training the models from
scratch
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Figure 5.10: Result of use case 3 forecasting of blueberry yield
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Chapter 6

Conclusion and Future Work

Accurate estimates of fresh produce yields and prices are crucial for having fair bidding
prices by retailers along with informed asking prices by farmers, leading to the best prices
for customers, hence the ability to forecast fresh produce accurately is presented in this
thesis.

This work started by discussing the contributions to time series forecasting available
in literature. This is followed by a proper background covering: The use of station and
satellite-based data for FP yield and price forecasting. The available data preprocessing
approaches and the deployed imputation techniques from literature for estimating the
missing values found in datasets retrieved from those two sources. The available highly
performing deep learning forecasting models. The time series similarity and clustering
techniques. Finally, the transfer learning and quality assurance techniques for machine
learning models.

A deep learning model for fresh produce forecasting is proposed in this work , where the
proposed model of DFNNGRU-ADGRU Ens is found to outperform the literature yield
forecasting models in [2]: by 24% AGM enhancement over the CNN-LSTM Ens Station
based forecasting model and 20% over the SAE-CNNLSTM Ens satellite-based model for
yield forecasting. An enhancement of 38% is found for the station-based model price
forecasting. Additionally, an efficient preprocessing technique is introduced for satellite
data representing each satellite image with the overall average of its pixels is found to
have 12.5% improvement in AGM compared to finding the prelagged histogram which
is recommended in [18]. The deployed interpolation technique, cubic spline, is found to
improve the forecasting AGM by 44% compared to replication method. Finally, adding
the vegetation index parameter NDVI improves the AGM up to 12.5%. However, the
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NDVI is found to have a high rate of missing values that can cause a problem for the daily
forecasting, therefore an interpolation technique is tailored and proposed to estimate those
NDVI missing values. All the forecasting models are trained on forecasting 5 weeks ahead,
however this work could be extended to other duration by changing the lag based on the
best lag found using statistical methods.

The generalization is achieved through proposing and applying a transfer learning
framework to the found deep learning model to facilitate its utilization with different FPs
in various locations. First, a similarity technique is applied to find the percentage similarity
among time series and clustering them accordingly. The similarity technique is compared
with the input similarity model proposed in [67]. The results are found to be accurate with
the advantage of being faster and discarding the arbitrarily decided thresholds.

The best combination of freezing, finetuning and retraining model layers is then decided
to apply the transfer learning, where an AGM percentage improvement of 14% is found
over retraining the model from scratch. Finally, a quality assurance method is proposed
and applied to the DFNNGRU-ADGRU Ens model and the data used in training where
metamorphic relations and tests relevant to the problem in hand are articulated and applied
successfully. The quality assurance of the found model is done using metamorphic testing;
11 metamorphic relations with their corresponding tests are designed and executed. The
results of all metamorphic tests are found to match the expected results therefore all the
metamorphic relations are fulfilled by the model which assures the high quality of the
model.

An application is successfully built using Flask backend and react front-end to allow
users to have friendly access to the built modules: The preprocessing tab which includes the
imputation and similarity modules. The deep learning models for fresh produce forecasting
are covered under the forecasting tab along with the transfer learning framework.

Future work should consider: exploring the effect of transformers on time series forecast-
ing as it is gaining popularity and researchers attention. Additionally, the comparison of
creating a 1 week forecasting model with a 5 weeks ahead forecasting needs to be tested for
the same expected output dates, then compared with using PCA as a reduction technique
to achieve the same dimensions for different lags, based on the horizon, and comparing
the results. Furthermore, improving the satellite image forecasting model by enabling it
to extract the yield of any FP when given the fresh produce planting location as input
from the user instead of relying on the user external sources like station-based data to get
the yield. Finding a reliable imputation technique suitable for datasets with large missing
data ratios that can exceed 50%. Testing the effect of using metamorphic tests in other
domains different from time series forecasting. Adding a method of finding the closest
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weather station to enable the automatic loading of available station data rather than tak-
ing it as an input from the user. Finally, enhancing the Google Earth Engine satellite
images deployment by using batch tasks to retrieve the images rather than running all in
one task, which will help in faster image retrieval, in addition to paralleling the satellite
tasks on server so that all images are obtained at once.
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