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Abstract

This dissertation includes two essays on applications of management science methods to

modelling service systems and developing novel improvements to sports team ranking sys-

tems. The first essay proposes a novel approach to modelling changes in business procedures

that have neither explicitly positive nor explicitly negative effects on operational perfor-

mance, but are changes to operating rules; we call these procedure changes Operational

Protocol Modifications (OPMs). Our approach is to model these OPMs via distributional

censoring. Using the scenario of a technical support employee at a SaaS firm, we model

changes in OPMs as censoring effects on the distributions of both service quality and ser-

vice time. We demonstrate the nonlinear effects OPMs can have on the optimal service

contract and the employer’s (principal’s) expected utility in hiring the technical support

employee (agent), under certain distributional assumptions. This modelling approach arms

operations management analysts with a new tool to better capture the impact of OPMs

and their non-linear impacts on operational performance.

The second essay proposes a number of additions to both static and dynamic network

ranking models for professional soccer teams. We introduce ways to incorporate relevant

home/away game status and goal difference information. Further, we introduce a collection

of methods to measure the competitive similarity between teams, which we then integrate

into the ranking systems. We demonstrate, using a large collection of data on five of the

top European professional soccer leagues, that our methods produce superior empirical

performance when compared to comparable approaches. Importantly, our work is the

first to integrate the competitive similarity notion directly into network ranking models,

providing the first direct link between two related bodies of literature.
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Chapter 1

Introduction

Underpinning the management science discipline is an appreciation for the rigourous appli-

cation of mathematical models and methods that suit the problem at hand. The problem

domains addressed by management scientists are incredibly varied, ranging from highly

technical mathematical work to deploying real-time analytics systems in a variety of oper-

ations contexts. As such, the methods deployed by a management scientist may be diverse.

This dissertation demonstrates this methodological diversity by using tools from game the-

ory/mechanism design, optimization, probability theory, statistics, and network science in

its two essays.

The focus of both essays is the introduction of novel methodologies. The first essay,

which is independent from the second, introduces distributional censoring as an approach

to modelling certain changes in business operation procedures and explores its use in a

mechanism design context. The second essay presents a collection of techniques for incor-

porating additional information into network ranking models for professional soccer teams.

We present an overview of each essay:
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• Essay One: Distributional Censoring and Optimal Service Contracts

We consider a customer service scenario wherein an employer seeks to hire an em-

ployee to complete a customer service request. After establishing the game dynamics

and solving for the optimal set of contracts, we consider how these optimal contracts

change under various changes in operating conditions. Our main contribution is in

modelling changes in business operating rules or procedures, which we call Oper-

ational Protocol Modifications (OPMs), as instances of distributional censoring on

the distributions of service quality and service time. We round out our analysis by

modelling training and knowledge enhancement initiatives as first-order stochastic

dominant shifts in the distributions of service quality and service time.

• Essay Two: Approaches for Incorporating Additional Information into Network

Ranking Models

Network ranking models are an alternative to statistically-driven approaches that use

the notion of direct and indirect wins and losses to rank sports players and teams.

We introduce a collection of methods to incorporate additional information into these

models. As a smaller contribution, we introduce ways to incorporate both home/away

status and goal difference into network ranking models. Our main contribution is

the introduction of techniques that incorporate information from the time series of

rankings to develop similarity metrics between teams, which we use to tune the

ranking models. We test our approaches on a large sample of data from five of the

top European soccer leagues and demonstrate their superior empirical performance.

While the two essays of this dissertation cover a variety of domains and methodologies,

at their core, they are related to something fundamental to management science: compari-

son. A key component of management science is to compare two or more objects, as this is
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the basis for implementing operational improvement decisions and policies. For example,

we compare the rewards earned by making various decisions whenever we find the optimal

solution to an optimization problem. Each essay of this dissertation explores comparison

in a different way. The first essay uses distributional censoring and stochastic dominance

to compare how the service system performs under different OPMs and training levels.

The second essay is entirely concerned with comparing team performance to better assess

which team has the highest capability. Both works highlight the importance methodology

plays in making comparisons and the roles these comparisons play in arriving at optimal

system performance.

The remainder of this dissertation proceeds as follows. Essay One is found in Chapter

2. Essay Two is found in Chapter 3. We conclude the dissertation in Chapter 4.
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Chapter 2

Distributional Censoring and

Optimal Service Contracts

2.1 Introduction

Given the numerous upheavals brought about due to the COVID-19 pandemic, the old

adage of change being the only constant may resonate now more than ever. Change comes

in many forms, and it may be experienced passively or implemented by management. The

latter is the focus of this work. As management scientists, we focus on devising ways to

improve businesses, be these improvements through operations, personnel, or technology.

We propose adjustments to standard operating procedures, often with the goal of maximiz-

ing some objective subject to constrained resources. However, these proposals may have

non-obvious impacts via the organization’s employment structures. Specifically, there is

an important interplay between operating procedures and a firm’s incentive contracts.

Before proceeding, we clarify our terminology around changes to business procedures.
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We use the term Operational Protocol Modifications (OPMs) to refer to any proposed

or implemented change in standard operating procedures or rules at a firm. Given that

these operational changes are rule-based, it is non-obvious if they will benefit or harm firm

performance. This is in contrast to employee training and knowledge enhancement which,

ceteris paribus, is almost universally assumed to be a performance enhancing initiative.

The motivating example of our work stems from an industry partnership with a Software-

as-a-Service (SaaS) firm. We use insights gained from studying their operations as the basis

for structuring our mathematical model and mechanism design problem. Namely, we con-

sider a contracting game in which an employer (principal) seeks to hire an employee (agent)

to complete the technical support requests of the firm’s clients. We assume there is a degree

of asymmetric information in this game; namely, the agent observes the difficulty of the

support request while the principal can only discover this information after a costly audit.

We propose an optimal contract that maximizes the principal’s utility with respect to the

agent’s generated service quality and service time; the contract incentivizes the agent to

exert the optimal effort level for both the agent and the principal. This mechanism design

problem then serves as the foundation for our modelling and methodological contributions.

The contributions of our work are twofold. Firstly, we introduce distributional censoring

as a rigourous and intuitive way to model OPMs. Censoring naturally captures how these

rule changes restrict the range of outcomes on service outputs, like how providing a service

agent with a checklist or script can impose a new minimum on service time. Secondly,

we connect OPMs and censoring to mechanism design via our aforementioned contracting

game. We show that, under certain distributional assumptions, the censoring brought

about by OPMs yields nonlinear responses in the principal’s optimal utility. These results

imply that managers should think carefully about the expected impact of their OPMs;

the incentive structures of the organization will ultimately be a key determinant in their
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efficacy.

To round out our analysis, we explore the effects of training and knowledge enhancement

initiatives and conduct a brief sensitivity analysis of our model’s key parameters. We model

training and knowledge enhancement as instances of first-order stochastic dominant shifts

in the distributions of service quality and service time. We show that these initiatives,

when modelled this way, yield monotonic improvements in the principal’s optimal utility.

Our subsequent sensitivity analysis highlights the importance of the agent’s cost of effort

and suggests that the principal may benefit from any efforts that, over time, reduce this

cost.

The rest of the paper proceeds as follows. Section 2.3 discusses related work and

specifies our contributions to the literature. Section 2.4 details the service contract game,

our model parameters, wage and utility functions, and the mathematical program we use

to find the optimal contract. Section 2.5 presents our optimal solution and a numerical

example highlighting an optimal contract. Section 2.6 presents our analysis on the impacts

of OPMs, training and knowledge enhancements, and our sensitivity analysis. Section

2.7 discusses factors that may arise in implementing our contracts and OPMs in practice.

Section 2.8 concludes.

2.2 Theoretical Background

2.2.1 Game Theory

The content in this section and Section 2.2.2 roughly follow explanations from Rasmusen

(2006), which contains greater detail. Game theory is the study of interactions amongst

strategic agents (players). We concern ourselves with game theory that uses mathematical
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models to describe and analyse these interactions. The key difference between decision

theory and game theory is that game-theoretic models treat all players as strategic; each

chooses a strategy based on the available information and the anticipated responses by

other players. This is typically framed as the various agents each solving an optimization

or optimal control problem which inherently depends on the strategies of the other agents

in some way.

We now formalize these notions and introduce some necessary terminology. The key

elements to any game under consideration are the players, actions, payoffs, and information.

Collectively, these elements form the rules of the game. We describe each in turn:

• Players: Players of the game are the strategic agents interacting in the game.

• Actions: These are the sets of actions each agent can take as they proceed through

the game. Note: the collection of actions an agent can take is called the action

set. Action sets may differ across players and across time. Actions are distinct from

strategies. Strategies are information-contingent sets of actions that dictate which

action to take based on the observed information. For example, an action may be

something like “take an umbrella to work”, while a strategy is “if the weather forecast

calls for rain, take an umbrella to work, otherwise do not take an umbrella”. Note:

a strategy must cover all states of information, hence the use of the “otherwise” in

the above example. A strategy profile is a vector where each component contains

a strategy for the corresponding player. For example, in an n-player game, we can

write the strategy vector s, where component si is the strategy for player i.

• Payoffs: Payoffs are the results of the game. Once all players choose their strategies

and the game proceeds, the results are realized and each player receives their payoff.

Payoffs can be positive or negative, where negative payoffs represent a loss (typically
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in terms of utility, though other explicit units can be used). It is important to mention

that payoffs are tied to strategies, and a key component of game-theoretic modelling

is to determine expected payoffs from a strategy. This is where the optimization or

control comes into play, wherein a player attempts to maximize their expected payoff.

• Information: Information is what each player knows about the game as well as

the state of the world, including the actions of other players and payoffs. Crucially,

each player has their own information set which may be different from other players’

information sets. Further, these information sets may change during the course of

the game, and information may or may not be relevant to the decision at hand.

Beyond the players of interest in a game, we sometimes define a pseudo-player whose

actions serve a mechanical purpose in a game. Most notably, we often declare Nature as a

pseudo-player who takes random actions at certain points in a game.

Often, the goal of a game-theoretic analysis is to investigate some form of equilibrium

of the game. While there are a variety of equilibrium concepts, in general, an equilibrium

consists of a strategy profile s∗, where each component is the optimal strategy of the

corresponding player. The game theorist is interested in determining what equilibria will

arise based on the rules of the game. If we have modelled our game after a real-world

scenario, these equilibria can then provide insights into that scenario.

2.2.2 Principal-Agent Modelling and Mechanism Design

Principal-agent modelling is a tool used to model game-theoretic scenarios. Specifically, it

is often used to pose mechanism design problems. Before discussing the principal agent

model, we briefly introduce mechanism design. Mechanism design is perhaps best thought
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of as the inverse of classical game theory. In game theory, we treat the rules of the game as

fixed and determine and analyze the equilibria that arise from those rules. In mechanism

design, we treat the rules of the game as variable, wherein we propose rules to optimize

some sort of mechanism-designer-relevant objective.

To elaborate, it helps if we consider a specific scenario. Consider an employer who

seeks to hire an employee to complete a task for the business. This employer drafts up

and offers a contract (or menu of contracts) to the potential employee. If the potential

employee deems the contract beneficial, they accept the contract and perform the task;

otherwise the potential employee rejects the contract and the game ends. In this scenario,

the employer is the principal and the potential employee is the agent. In general, we

call the individual proposing the contract and offering compensation via the contract the

principal; the individual who is in the position to accept the contract and get paid for their

performance is the agent. The contract is the mechanism.

Information plays a crucial role in mechanism design. The following classifications of

information are useful:

• Perfect: Information is perfect if each information set is a singleton, meaning that

the player knows which state of the world they are in and what moves the other

players have taken before they take their action.

• Certain: Information is certain when Nature does not move after any player moves.

In essence, this means that the consequences of a player’s actions are not subject to

randomness if information is certain.

• Symmetric: Information is symmetric when no player has information that differs

from other players when they move. As one may imagine, scenarios of asymmetric

information are common and often the focus of mechanism design problems.
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• Complete: Information is complete when Nature does not move first, or Nature’s

initial move is observed by every player.

Mechanism design is often concerned with games wherein information either is or be-

comes asymmetric at some point. Two common scenarios are those of moral hazard and

adverse selection:

• Moral Hazard: These games feature symmetric information at the time a contract

is offered and accepted, but the agent then takes a hidden action after the contract

is accepted. Information is complete.

• Adverse Selection: These games feature incomplete information as Nature chooses

the agent’s type (for example, a high or low ability worker) as the first move of the

game, which the principal cannot observe. The principal then offers a contract.

As one can see by the definitions of moral hazard and adverse selection, these scenarios are

not uncommon in the workplace and other contract-driven environments. Using mechanism

design, we attempt to elicit the agent’s private information (their hidden actions or type)

through the contract’s features; this is typically called auditing. It is important to note

that we may never be able to observe certain components of the game. For example, it

may be impossible to observe the effort an agent exerts in the game. We may only be

able to observe, say, an output of the agent’s effort that is correlated with effort, but the

mapping from effort space to output space may not be a bijection.

With some terminology introduced, we now introduce the typical mathematical form

these models take on. Note: this is by no means a comprehensive treatise on all forms such

models can take, but it parallels the form we use later. Consider the general scenario of a

principal hiring an agent to complete some task. Nature is a pseudo-player in this game.
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Let S be a random variable for the state of the world, the probability distribution of which

is known by both the principal and the agent. Suppose only the agent gets to view the

state of the world after the contract is accepted. Let w(ρ) be a wage contract, which is a

function of the output of the agent completing the task, ρ(x), where ρ is a function of the

agent’s effort x. The principal offers the wage contract to the agent. If the agent accepts

the contract, the agent proceeds to complete the task by exerting effort x; if the agent

rejects the contract, the game ends. Let the principal’s utility function be U(ρ, w(ρ)); we

see that it is a function of the agent’s output and the wage paid to the agent. Typically,

the principal’s utility increases as a function of ρ and decreases as a function of w. Let

the agent’s utility function be V (w(ρ), x). As one may expect, the agent’s utility typically

increases in terms of w and decreases in terms of x. Given that neither the principal nor

the agent get to view the state of the world prior to agreeing to the contract, we use

expected utilities in the decision-making process. Assume both the principal and the agent

are risk-neutral (this means they want to maximize the expected utility). To participate

in the contract, the agent most likely has a reserve utility V̄ , which the expected utility of

the contract must meet or exceed.

We now present the standard optimization model facing the principal offering the con-

tract, which emulates the formulation in Chapter 7 of Rasmusen (2006):

max
w

E[U(ρ(x∗), w(ρ(x∗)))] (2.1)

subject to: x∗ = argmax
x

E[V (w(ρ), x)]; (2.2)

E[V (w(ρ(x∗)), x)] ≥ V̄ ; (2.3)

0 ≤ x ≤ 1. (2.4)

Examining (2.1)−(2.4), we see the following. The principal seeks to maximize their ex-
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pected utility by choosing the contract w. In (2.2), we see that one of the constraints of

the principal’s problem is that the agent maximizes their own expected utility by exerting

effort, given the contract the principal selects. Constraint (2.3) indicates that the agent’s

expected utility must meet or exceed their reserve utility V̄ . Finally, (2.4) indicates that

the agent’s effort is bounded between 0 and 1. Note: a more specific model will likely have

sign restrictions on the coefficients of terms included in the wage contract. In solving the

optimization problem (if a solution exists) the principal finds the optimal contract or menu

of contracts that maximize their expected utility.

2.2.3 Distributional Censoring and Stochastic Dominance

Underpinning our contributions is the notion of censoring a probability distribution. Con-

sider a random variable X with distribution F with infinite support on the real line R.

This random variable, upon realization, can take on any value in R. Now, suppose we

define a new random variable X̂ as follows:

X̂ = max{0, X}. (2.5)

In (2.5), we see that if X realizes a value above or equal to zero, X̂ = X. However, if X

realizes a value less than zero, X̂ > X as X̂ is forced to take the value 0. In this way, some

potential realizations of X are not available to X̂; we call this censoring. It is possible to

censor the other tail of the distribution as well, so the upperbound becomes constrained.

Indeed, the most general case is that both tails of the distribution are censored.

The other probability-related notion we use in our work is the notion of first-order

stochastic dominance. Consider X again, and we now consider a random variable X̃ such
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that X ≤st X̃, where the stochastic order ≤st is defined as:

P{X > z} ≤ P{X̃ > z}, z ∈ (−∞,∞). (2.6)

Examining (2.6), we see that, for any value z, the probability to the right of z under the

graph of the distribution of X will be less than or equal to that of X̃. An equivalent

condition, which helps convey the intuitive usefulness of first-order stochastic dominance,

is:

Ef(X) ≤ Ef(X̃), (2.7)

for all increasing functions f such that the expectations exist.

2.3 Literature Review

Our work most closely relates to existing work on principal-agent modeling, auditing, linear

contracts, and stochastic comparison.

Our work contributes to the extensive literature on principal-agent modelling; specifi-

cally, we augment the contract theory literature concerning moral hazard with hidden ac-

tions. Due to the size of this body of literature, we refer to Bolton and Dewatripont (2004)

and Laffont and Martimort (2009) for comprehensive discussions. Our model formulation

is relatively standard insofar that we establish a bilevel program that the principal solves

to find the optimal contract. In our solution, we make use of the first-order approach dis-

cussed in Rogerson (1985) to simplify the agent’s embedded optimization problem, which

allows us to solve an equivalent but more tractable problem. Similar to Bénabou and Tirole
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(2016) and Helm and Wirl (2020), we model the agent as having a quadratic disutility of

effort; intuitively, factors such as fatigue and stress contribute to this growing disutility.

Typically, the principal uses an audit action or observation of monitors to gain access to

information that is, otherwise, solely known to the agent. The auditing and monitoring lit-

erature is extensive, considering scenarios including government regulation of firms (Baron

and Besanko (1984)), games of tax reporting and evasion (Reinganum and Wilde (1985),

Reinganum and Wilde (1986), Graetz et al. (1986), Border and Sobel (1987)), and audits

to investigate managerial actions (Kofman and Lawarree (1993)). The type of auditing

mechanism is also the subject of study. Classic work by Townsend (1979) focuses on de-

terministic auditing commitments, while subsequent work (Reinganum and Wilde (1985),

Mookherjee and Png (1989)) examine threshold policies and random audits. The type of

auditing commitment is another area of consideration. Khalil (1997) considers when the

principal cannot commit to an audit policy. Khalil and Lawarree (2001) show how the

principal can benefit from choosing what performance metrics to monitor ex-post. H.-C.

Chen and Liu (2008) examine optimal incentive contracts under imperfect auditing under

both no-commitment and commitment schemes; they find certain classic contracts (those

of Baron and Besanko (1984)) fail under the commitment case under imperfect auditing

schemes. More recently, Barbos (2019) studies dynamic contracting under moral hazard

in an infinitely repeated game where contracts are implemented with random monitoring

technology. M. Chen et al. (2020) investigate a setting where a principal induces effort

from an agent to reduce the arrival rate of a Poisson process of adverse events; this setting

models effort as unobservable unless the principal engages in costly monitoring. Hoffmann

et al. (2021) investigate how to design incentives for an agent who engages in activities

that produce a time-delayed signal that can be observed and contracted on.

We deploy a classic random auditing scheme wherein the principal precommits to the
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probability of auditing the agent’s work. Somewhat differently from existing work, we

focus the audit on task difficulty; we assume that the principal cannot observe it without

auditing. We also introduce two terms to our contract design corresponding to this auditing

element. They account for the reported task difficulty and the need to compensate or

punish the agent depending on the result of an audit. We find that by establishing a

condition relating these terms, we can remove any incentive to misreport (which is in line

with the Revelation Principle).

We propose an additively separable wage contract with mostly linear terms, so our work

relates closely to existing findings about linear contracts. Holmstrom and Milgrom (1987)

find that a linear function is the optimal incentive scheme over time for an agent with

constant absolute risk aversion. Diamond (1998) examines contracts in which outcomes

depend on managers’ choices as well as efforts and finds that, if the control space of the

agent has full dimensionality, the optimal contract converges to a linear payoff as the

cost of effort shrinks. More recent work on linear contracts has incorporated a focus on

robustness, which is a key feature of Carroll (2015), Yu and Kong (2020), Garrett (2021).

While our proposed contract does have a mostly linear form, we do incorporate implicit

nonlinearity. Specifically, (as can be seen in the agent’s expected utility function (2.16)),

we have two terms that compensate the agent based on the expected values of service

quality and service time. These expectations are modelled as functions of the agent’s

exerted effort level. As such, it is easy to incorporate nonlinear expectations depending on

the distributional choice.

In Section 2.6 we consider how business process modifications impact the optimal con-

tract design. We model training and knowledge enhancements as first-order stochastic

dominant shifts on the distributions of service quality and service time. For a thorough

discussion on stochastic dominance viewed through the lens of majorization, see Mar-
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shall et al. (2011). Stole (1993) provides an useful tutorial on standard approaches to

incorporating first-order stochastic dominance in principal-agent models. Rogerson (1985)

identifies sufficient conditions (the monotone likelihood ratio condition and the convexity

of the distribution function condition) for the first-order approach to be valid in solving

principal-agent problems; in the work he highlights the equivalence of those conditions

with first-order stochastic dominance.

Moving beyond standard first-order stochastic dominance considerations, we explore

the effects of OPMs. To capture these non-trivial effects, while also corresponding well

to real-world operating environments, we model these operational changes as instances of

censoring our service quality and service time distributions. To our knowledge, our work

is the first instance of modelling operational changes in this way.

2.4 The Model of Interest

In this Section, we outline the various components of our model. In Section 2.4.1, we

describe how the principal, agent, and Nature interact. In Section 2.4.2, we define our

distributions for service time, service quality, and task difficulty. In Section 2.4.3, we

define the agent’s wage function and the principal and agent’s profit functions; we also

declare certain simplifying assumptions. In Section 2.4.4, we state the final version of our

mathematical program.

2.4.1 Dynamics

In the game we examine, the principal is the employer, and the agent is the employee.

The principal wants to hire an agent to handle technical support requests. As such, the
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principal offers a contract to the agent that pays them a wage after they complete the

support request. The agent can accept or reject the contract; if the agent rejects the

contract, the game concludes. If the agent accepts the contract, the game continues, and

Nature, a pseudo-player, chooses the difficulty of the support request and delivers the

request to the agent (e.g., via email). The agent observes the difficulty of the request and

chooses an effort level to exert to resolve it. Once the request is resolved, it generates two

outputs that all players observe: service quality and service time.

This observation is possible in practice via modern Customer Relationship Management

(CRM) technologies. According to Deloitte, CRM tools allow full observation of a customer

interaction, from the initial point of contact through the final resolution and followup cus-

tomer satisfaction surveys (Micallef (2018)). Such observation even encompasses different

modes of communication, allowing firms to be contacted via one medium and seamlessly

address the customer via another, with all of these interactions being tracked and logged in

an electronic system. After completing the support request, the agent records the difficulty

of said request. Notably, the agent can strategically misrepresent task difficulty and record

a value that is different from the one Nature assigned. The principal may, at a cost to

himself, audit the agent’s recorded difficulty. We assume that the principal has perfect

accuracy in assessing difficulty via the audit.

The game concludes once the principal either decides not to audit or decides to and

completes an audit. Note: we model the audit as a pre-committed probability of auditing

the agent’s reported difficulty. We choose to model auditing this way as we make the

implicit assumption that the principal is busy with their own work and can only afford to

allocate a fraction of their time to auditing the agent’s work; the pre-committed probability

corresponds nicely with this notion.

Figure 2.1 displays the precise timeline of events described above. We note that the
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focus of our research is not the game but, rather, the design of the principal’s optimal

contract. Section 2.4.2 defines our model parameters and distributions.

Figure 2.1: Timeline of Events

2.4.2 Parameters and Distributions

With the general dynamics explained, we now precisely define our model parameters and

distributions. We introduce, in turn, the difficulty level of support requests, the agent’s

action choices, the auditing parameters, service quality, and service time.

1. Difficulty Level of a Support Request LetD be the difficulty level of a support request,

which is a random variable with Prob{D = 1} = 1 − Prob{D = 0} = p, where 0

denotes a non-difficult support request, and 1 denotes a difficult support request. To

exclude the uninteresting case where all support requests are non-difficult, we assume
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that p > 0. We assume that both the principal and the agent know Nature’s prior

distribution of D.

2. Agent Action Choices The agent completes the support request by exerting effort x,

where x ∈ [0, 1]. The agent records dr ∈ {0, 1} after completing the support request.

Both x and dr are the agent’s decision variables.

3. Auditing Parameters The principal precommits to auditing with probability a. If

the principal audits, a cost of ca > 0 is incurred.

With the initial set of parameters defined, we next define service quality and service

time. However, we need to clarify the units of both service metrics before proceeding.

We assume that both service quality and service time are generated stochastically and

influenced by the agent’s effort x and task difficulty D. Notably, in real-world operations,

service quality will likely be on a different scale and of different units than service time.

For example, service quality can be evaluated on a rating from 0 to 100 percent, while

service time is evaluated in minutes. To ensure service quality and service time achieve the

same units in the utility functions, we assume that the distributions of service quality and

service time map via bijection to utility values the principal receives from realized values

of service quality and service time. As such, the utility values of service quality and service

time are distributed stochastically, but in utility space. For convenience, we will refer to

these utilities as service quality and service time for the remainder of the paper.

4. Service Quality Let service quality S be a random variable. The distribution of S

depends on the agent’s effort level x and the support request difficulty D. We assume

that 0 ≤ S ≤ M , as this corresponds to a bounded interval of service quality. Note

that higher levels of service quality are superior, from the principal’s perspective.
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Further, we assume that if effort x = 0, service quality automatically realizes a value

of zero.

5. Service Time Let the random variable T denote service time. Similar to service

quality S, the distribution of T depends on the agent’s effort level x and the support

request difficulty D. We assume 0 ≤ T ≤M , whereM is a constant. We assume that

the upperbound on the real-world service time process is finite. This corresponds to

a service time threshold; namely, once service time reaches a pre-ordained maximum

tolerable level, an intervention occurs. The request is removed from the agent’s

purview to be expedited by another employee. Further, we assume that if effort

x = 0, service time automatically realizes a value of M .

Before concluding this section, we briefly clarify the observability of various elements of

the game, from the perspective of the principal and the agent. Both the principal and the

agent observe the realizations of S and T . The agent observes support request difficulty

D; the principal only observes D if an audit occurs. The agent observes their effort x; the

principal does not observe x.

2.4.3 Wage and Utility Functions

We assume that the wage contract is proportional to service quality s, service time t,

recorded support request difficulty dr, and the realized difficulty d. As such, the proposed

wage contract w has the following form:

w(s, t, dr, d, a) = αs− βt+ γdr − δa(dr − d), (2.8)
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where coefficients {α, β, γ, δ} are in fact the principal’s decision variables that are explained

in Table 2.1.

Variable Purpose
α A reward for service quality
β A penalty for service completion time
γ A reward for reported difficulty
δ A misreporting penalty

Table 2.1: Wage contract decision variables

The objective of this paper - contract design - is to choose the best {α, β, γ, δ} for the

principal. We note that the linear form of (2.8) is well-supported in the literature (see

Carroll (2015)).

Note: in the following, we take expectations with respect to D in both the principal

and the agent’s expected utility functions. We do this as these functions are considered

from the perspective of the principal. Recall that the principal can only view the task

difficulty D with certainty after an ex-post audit. As such, the principal anticipates the

agent’s choice of effort based on the expectation of the difficulty state, D. The principal

designs the contract (selects {α, β, γ, δ}) based on this expectation.

We consider risk-neutral agents. We assume that the utility of the agent is the wage

less the costs associated with the effort x. For chosen x, the agent’s expected utility is:

UA(x) = ED

[
w(S, T, dr, D, a)− kx2

]
; (2.9)

= ED

[
αS − βT + γdr − δa(dr − d)− kx2

]
; (2.10)

= α∆S(x) + β∆T (x) + ED

[
γdr − δa(dr − d)− kx2

]
, (2.11)
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where

∆S(x) = ED

[
E[S | D]

]
; (2.12)

∆T (x) = −ED

[
E[T | D]

]
(2.13)

are the expected service quality and expected service time for chosen effort x, respectively,

kx2 is the disutility of effort, and k is a constant. The choice of kx2 is supported in the

literature, as seen in Bénabou and Tirole (2016) and Helm and Wirl (2020). This form

implies that an agent generates more disutility per unit of effort the closer their exertion is

to their maximal effort capacity. Note: ∆T (x) is negative since the length of service time

contributes negatively to the utility of both the agent and the principal. We make this

choice with regards to ∆T (x) so we can present the contract in an additive form later.

We assume that the utility of the principal is proportional to service quality and service

time less the disutility of expected auditing cost and expected wage payment. Thus, the

expected utility of the principal is given by

UP (x) = c1∆S(x) + c2∆T (x)− aca − w(∆S(x),∆T (x), dr, d, a), (2.14)

where c1 and c2 are nonnegative and real-valued scalar parameters that sum to 1. We have

c1 and c2 sum to 1 to reflect the priority the principal assigns to service quality and service

time (i.e. as one grows in importance, the other naturally declines in importance).

Using the explicit expression of the wage equation given in (2.8), the utility functions
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of the principal and the agent are given by

UP = (c1 − α)∆S(x) + (c2 − β)∆T (x)− aca − δap− (γ − δa)dr; (2.15)

UA = α∆S(x) + β∆T (x) + δap− kx2 + (γ − δa)dr, (2.16)

respectively, as functions of the exerted effort x.

It is important to note that despite the linear utility form, both the principal and

agent’s expected utility functions are nonlinear in the agent’s effort level x, and this effort

level drives the service outputs S and T . Given that we are working in units of utility, not

wealth, explicitly, the linear form does correspond well to work using additively separable

utilities like Grossman and Hart (1983).

In Section 2.4.4, we use (2.15) and (2.16) in a bilevel mathematical program to design a

contract that maximizes the principal’s expected utility. To solve our optimization problem,

we make the following tractability assumption:

Based on practical, real-world considerations (similar to the agent’s quadratic disutility

of effort), exerting higher levels of effort elicits higher incidence of factors that interfere

with productive outputs (e.g., stress, strain, fatigue). These factors become more acute

as effort level increases, so it is natural to consider outputs (e.g., service quality and the

additive inverse of service time) increasing with effort, but at a decreasing rate. Therefore,

we make the following assumption about expected service quality and service time:

Assumption 2.4.0.1. We assume that ∆S(x) and ∆T (x) are monotone increasing and

concave in x. Let ∆
(1)
S (x) and ∆

(1)
T (x) denote the first derivatives of ∆S(x) and ∆T (x)

respectively with respect to x. We assume in the following that ∆
(1)
S (0) > 0 and ∆

(1)
T (0) > 0.

We note that ∆
(1)
S (x),∆

(1)
T (x) ≥ 0 due to Assumption (2.4.0.1). The positivity assump-
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tions on ∆
(1)
S (0) and ∆

(1)
T (0) imply that any effort makes a difference in the system at

the effort boundary (i.e., x = 0). Assumption 2.4.0.1 is well-justified from an economic

perspective. With an effort level of x = 0, service quality is automatically 0, and service

time is M . As such, any chosen effort greater than x = 0 has performance-enhancing

implications.

2.4.4 Mathematical Programs

The principal faces the problem of designing a contract by choosing {α, β, γ, δ}. This

problem can be modelled as the following optimization problem, which is often called a

Pareto-Optimization Problem (POP0):

max
α,β,δ,γ

UP ; (2.17a)

s.t. x, dr ∈ argmax
x,dr

UA; (2.17b)

UA ≥ 0; (2.17c)

α, β, δ, γ ≥ 0; 0 ≤ x ≤ 1; dr ∈ {0, 1}. (2.17d)

This formulation is standard, and is similar to Holmstrom (1979), Rogerson (1985), and

other subsequent work. We see in (2.17a) that the principal maximizes UP by choosing

contract decision variables α, β, γ, and δ. In (2.17b), the agent chooses effort x and reports

difficulty dr to maximize their own utility, given the contract the principal has chosen. The

agent has a reserve utility of 0, as shown in (2.17c), so the agent’s expected utility must

meet or exceed this for the agent to be willing to participate in the principal’s contract.

We see in (2.17d) that all decision variables have bounds according to their purpose in the

contract or conventional interpretation.
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The constraint set (2.17b) is the element that makes this optimization problem chal-

lenging. The following observation simplifies the above optimization problem by removing

one decision variable. Specifically, it provides a condition that, given our contract form,

ensures we have an incentive compatible contract. We know, via the Revelation Principle,

that we need only focus on direct mechanisms (incentive compatible contracts), but the

motivating managerial scenario implies we must show how the employer can arrive at such

a contract.

The observation is:

Observation 2.4.1. The principal can induce the agent to tell the true difficulty level by

setting γ = δa.

We justify this Observation as follows.

If γ > δa in (2.16), the agent gains expected utility γ − δa by reporting dr = 1; if

γ < δa, the agent avoids losing expected utility γ − δa by reporting dr = 0. By setting

γ = δa, the agent has no incentive to report one difficulty level over the other. In the

meantime, this equality has no negative effect on the expected utility of the principal

UP (x). Consequently, the principal sets γ = δa and induces the agent to tell the true

difficulty level.

We now have an incentive compatible contract, insofar as task difficulty is concerned.

However, simply setting γ = δa does not guarantee the agent will exert an effort level that

maximizes the principal’s expected utility. To do that, we must find the optimal set of

other contract decision variables. As such, we proceed with solving the bilevel program

stated in (2.17a)-(2.17d).
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Substituting γ = δa into (2.15) and (2.16), the updated UP and UA are:

UP = (c1 − α)∆S(x) + (c2 − β)∆T (x)− aca − δap, (2.18)

UA = α∆S(x) + β∆T (x) + δap− kx2. (2.19)

Using the updated values of UP and UA, the original optimization problem (POP0) is

rewritten as (POPI); mathematical program (2.20):

max
α,β,δ

UP = (c1 − α)∆S(x) + (c2 − β)∆T (x)− aca − δap; (2.20a)

s.t. x ∈ argmax
x

UA = α∆S(x) + β∆T (x) + δap− kx2; (2.20b)

α∆S(x) + β∆T (x) + δap− kx2 ≥ 0; (2.20c)

α, β, δ ≥ 0; 0 ≤ x ≤ 1. (2.20d)

Note that we have reduced our set of decision variables from {α, β, δ, x, γ, dr}, to {α, β, δ, x}.

To solve the optimization problem, we consider three cases according to the value of

x: i) x = 0; ii) x = 1; and iii) 0 < x < 1. For cases i) and ii), the value of x is fixed and

(POPI) becomes a standard optimization problem. For case iii), since UA(x) is assumed

to be differentiable in x, then (POPI) becomes (POPII); mathematical program (2.21):

max
α,β,δ,x

UP = (c1 − α)∆S(x) + (c2 − β)∆T (x)− aca − δap; (2.21a)

s.t.
∂UA(x)

∂x
= α∆

(1)
S (x) + β∆

(1)
T (x)− 2kx = 0; (2.21b)

α∆S(x) + β∆T (x) + δap− kx2 ≥ 0; (2.21c)

α, β, δ ≥ 0; 0 < x < 1. (2.21d)
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Without conditions, (POPII) is not equivalent to (POPI). Under Assumption 2.4.0.1, the

agent’s expected utility function is concave; this condition ensures equivalence between

(POPI) and (POPII). Solving (POPII) generates two candidate solutions for (POPI); if

an optimal solution to (POPI) exists with x ∈ (0, 1), it will be one of the two candidates

generated from (POPII). We present the candidate solutions generated by cases i), ii), and

iii) in Section 2.5.

It is worth providing a construction of probability density functions and distributions

that satisfy Assumption 2.4.0.1, given its importance. Let Φ(s, x, d) and ϕ(s, x, d) de-

note the probability distribution and the probability density function of S, respectively,

parameterized by x and d (where d is a realization of D). Let Ψ(t, x, d) and ψ(t, x, d)

denote the probability distribution and the probability density function of T , respectively,

parameterized by x and d. Let ϕ and ψ be twice continuously differentiable in x.

As is standard in the literature (e.g. Rogerson (1985), Stole (1993), and Marshall et al.

(2011)), we make some assumptions on how S and T are influenced by changes in effort

x and difficulty d. Let service quality S stochastically increase when x increases; this

increase takes the form Φx(s, x, d) < 0, where Φx(·) is the partial derivative with respect

to x. Let service time T stochastically decrease when x increases; this decrease takes the

form Ψx(t, x, d) > 0, where Ψx(·) is the partial derivative respect to x In other words, the

agent’s effort produces a first-order stochastic dominant shift on the support of S and T .

Increases in d produce a stochastic dominant shift in the form Φ(s, x, 0) ≤ Φ(s, x, 1) on

the support of s and x and a stochastic dominant shift in the form Ψ(t, x, 0) ≥ Ψ(t, x, 1)

on the support of t and x. Finally, a strong condition that guarantees Assumption 2.4.0.1

holds is if ϕ′′, ψ′′ ≤ 0, where ϕ′′, and ψ′′ are the second partial derivatives with respect to

x. Such a construction guarantees the subsequent optimization analysis will hold, though

we do not claim it is the only such construction; it is merely a representative example.
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2.5 Optimization Analysis

Consider the cases i), ii), and iii) identified at the end of Subsection 2.4.4. We find the

optimal solution to (POPI), which leads to the following Theorem:

Theorem 2.5.1. Consider the four solutions {(α(1) = 0, β(1), δ(1), x(1)), (α(2) = 0, β(2), δ(2), x(2)),

(α(3), β(3) = 0, δ(3), x(3)), (α(4), β(4), δ(4), x(4))}, given in equations (2.22), (2.23), (2.24), and

(2.25). The one that maximizes UP is the optimal solution of (PIPO).

In Appendix A.1, we prove Theorem 2.5.1. Here, we display our four candidate solutions

with brief descriptions of their salient features. We put the details of our optimization

approach in Appendix A.1.

Candidate 1: Case with x = 0.

α∗ = α(1) = 0;

β∗ = β(1) = min
0<x≤1

{
kx2

∆T (x)−∆T (0)

}
;

δ∗ = δ(1) = −β
(1)∆T (0)

ap
;

x∗ = x(1) = 0;

UA∗ = UA(1) = 0;

UP∗ = UP (1) = c1∆S(0) + c2∆T (0)− aca.

(2.22)

This candidate is one of our boundary cases where x = 0.
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Candidate 2: Case with x = 1.

α∗ = α(2) = 0;

β∗ = β(2) ≥ max
0≤x<1

{
k(1− x2)

∆T (1)−∆T (x)

}
;

δ∗ = δ(2) =
k − β(1)∆T (1)

ap
;

x∗ = x(2) = 1;

UA∗ = UA(2) = 0;

UP∗ = UP (2) = c1∆S(1) + c2∆T (1)− aca − k.

(2.23)

Another boundary case, here x = 1. We note that this candidate defines a lowerbound

for β(1) but no upperbound; δ(1) scales off β(1) to accommodate this, ensuring the agent’s

participation constraint is satisfied.
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Candidate 3: Case with 0 < x < 1, δ = 0.

α∗ = α(3) = ξ(x(3))
2kx(3)

∆
(1)
S (x(3))

;

β∗ = β(3) =
(
1− ξ(x(3))

) 2kx(3)

∆
(1)
T (x(3))

;

δ∗ = δ(3) = 0;

x∗ = x(3) = argmax
0<x<1: 2∆S(x)≥x∆

(1)
S (x)

F3(x);

F3(x) =

(
c1 −

ξ(x)2kx

∆
(1)
S (x)

)
∆S(x) +

(
c2 −

(
1− ξ(x)

) 2kx

∆
(1)
T (x)

)
∆T (x);

UA∗ = UA(3) = α(3)∆S(x
(3)) + β(3)∆T (x

(3))− k(x(3))2;

UP∗ = UP (3) =
(
c1 − α(3)

)
∆S(x

(3)) +
(
c2 − β(3)

)
∆T (x

(3))− aca;

ξ(x) =
x− 2 ∆T (x)

∆
(1)
T (x)

2

(
∆S(x)

∆
(1)
S (x)

− ∆T (x)

∆
(1)
T (x)

) ;

0 ≤ ξ(x) ≤ 1.

(2.24)

This candidate is more elaborate than the previous two. While the full derivation is reserved

for Appendix A.1, we briefly describe why it has this structure. This candidate assumes

that δ(3) = 0. Further, this candidate results from applying the first-order approach,

wherein (2.21b) must be satisfied. Examining this constraint, we note that setting either

α or β to zero establish endpoints for a line segment of points that satisfy this condition.

However, not all of these points satisfy the participation constraint (2.21c). As such, we

find that the optimal solution is at a convex combination of the two end points; that

weighting is determined by ξ(x).
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Candidate 4: Case with 0 < x < 1, δ > 0.

α∗ = α(4) = 0;

β∗ = β(4) =
2kx(4)

∆
(1)
T (x(4))

;

δ∗ = δ(4) =
1

ap

(
k
(
x(4)
)2 − 2kx(4)

∆
(1)
T (x(4))

∆T (x
(4))

)
;

x∗ = x(4) = argmax
0<x<1

{c1∆S(x) + c2∆T (x)− aca − kx2};

UA∗ = UA(4) = 0;

UP∗ = UP (4) = c1∆S(x
(4)) + c2∆T (x

(4))− aca − k(x(4))2.

(2.25)

This candidate results from setting δ to satisfy the participation constraint while the first

order condition is also satisfied. Given how δ is set, we find that the principal’s utility is

invariant to the choice of α and β, provided we choose a feasible solution. As such, we

choose the endpoint of the feasible set to represent this candidate.

The four candidates for the optimal solution indicate that there is an optimal solution

with either α = 0 or β = 0. This is intuitive since the utility functions for both the

principal and the agent are linear in α and β. In practice, this implies that the principal

will design a system that either promotes the quality of service or reduces the service time,

but not both.

Further, we note that α, β, and δ are not symmetric. When α > 0, in Candidate 3,

the agent is rewarded for service quality directly. Candidates 1, 2, and 4 set α = 0 and

have β > 0; given that β is a punishment term, we see that δ must, simultaneously, be

positive to ensure the agent receives nonnegative utility and participates in the contract.

In Appendix 2.5, we provide some useful conditions for comparing the various candidate
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optimal solutions.

We now present a straightforward numerical example to demonstrate an optimal solu-

tion.

Variable (d = 0) (d = 1)
S 5 · Beta(3x, 2) 5 · Beta(2.5x, 2)
T Trunc. Expon.(1 + x) on [0, 5] Trunc. Expon.(1 + 0.5x) on [0, 5]

Table 2.2: Example Distributions

We purposefully use both the Beta distribution and the Truncated Exponential distri-

bution in this and subsequent examples. We use the Beta distribution for service quality as

one often thinks of service quality as having a bound of excellence, typically from 0 to 100

percent, which is reflected nicely in the Beta distribution’s bounded support. Normally, we

would default to the classic Exponential distribution for modelling time. However, in this

service scenario, we posit that it is extremely unrealistic to allow for unlimited service time.

As such, we believe a truncated exponential distribution better reflects the real operating

scenario.

a ca p c1 k
0.3 1 0.3 0.5 1.5

Table 2.3: Example Parameters

Using our formulae from our candidate solutions, we arrive at the following:
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Variable or Utility Candidate 1 Candidate 2 Candidate 3 Candidate 4
α 0 0 0.4512 0
β 0.022857 12.5512 0.8026 3.6340
δ 0.0229 93.2307 0 32.4969
x 0 1 0.482 0.482
UA 0 0 0 0
UP −0.7818 −0.6076 0.0138 0.0138

Table 2.4: Example Candidate Values

We see from Table 2.4 that both Candidate 3 and Candidate 4 are optimal for this

example. This pattern holds with other examples, implying that the optimal contract is

not unique.

2.6 Business Process Modifications

We now examine several business process modifications which influence the parameters of

the game. In Section 2.6.1, we investigate the impact on our candidate optimal contracts

after OPMs induce various censoring effects on S and T . In Section 2.6.2, we consider how

our candidate optimal contracts are impacted by various types of training and employee

knowledge enhancements eliciting first-order stochastic dominant shifts in the distributions

of S and T . In Section 2.6.3, we investigate how changes in the business context, both

inside and outside the firm, can influence the other model parameters; this investigation is

in the form of a sensitivity analysis.
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2.6.1 Operational Protocol Modifications (OPMs)

To reiterate, by OPMs, we mean modifications in the standard operating procedures of the

firm. Below are two examples of such modifications:

• Implementing a service script: Agents can be provided with a script or checklist for

what to cover in a service call. Such a script can include components like a reminder

for a friendly introductory statement, confirming the software version and account

number, and a flowchart for common issue resolution.

• Deploying chatbots: Prior to the customer interacting with an agent, they could

be forced to first supply problem information to a chatbot designed to elicit salient

problem details from them.

The mixed efficacy of these two examples is well-documented in the literature. Durgin

et al. (2014) note that checklists and job aids (like a service script) are generally seen as

positive, but Kaufman (2015) notes that if service is too standardized, customers can be

left feeling “cold” from the interaction. Similarly, Schanke et al. (2022) note that chatbots

need to be carefully designed to ensure customers have both effective and enjoyable service

experiences; Castillo et al. (2021) find that customers report feeling annoyed and frustrated

when the co-created service of using a chatbot fails to meet their expectations. In sum,

these operational protocol changes, in comparison to the training and knowledge resource

enhancements of Section 2.6.2, are less likely to lead to universal improvements in service

quality and service time.

2.6.1.1 Service Quality

We now explore the impact of OPMs on service quality S through a censoring perspective.

Suppose that the principal has instituted some or all of the OPMs mentioned in Section
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2.6.1. Let Ŝ be the post-protocol-change random variable for service quality. We assume

that the protocol changes have produced a censoring effect on service quality such that:

Ŝ = max{τL,min{τH , S}}; (2.26)

for τL, τH ∈ [0,M ], where τL ≤ τH . The interpretation of (2.26) is such that if a realization

of S falls outside the interval [τL, τH ], it automatically takes the value of τL or τH (whichever

is closer). If S generates a realization within [τL, τH ], then the realization occurs as in the

non-censored case.

Note that one-directional censoring (where τL = 0 or τH =M but not both) is a special

case of (2.26). We assume that the values of τL and τH are not dependent on x nor d. This

follows from the real-world inspiration for such protocol modifications; given the structural

nature, they are defined exogenous to the model.

To elaborate on the economic meaning of these parameters, τL and τH are best thought

of as restrictions imposed on service quality imposed by some operational rule-change.

For example, if the manager provides an employee with a plan for conflict resolution that

covers various potential issues, the lowerbound of service quality may increase (τL), but

if the plan is adhered to in a robotic nature or if it stifles creativity, the upperbound of

service quality may simultaneously decline (τH). Depending on the proposed operational

change, the effects may be stronger on one bound, or it may leave one bound unaffected.

We reconsider the example from Section 2.5. We first present the general case where

τL and τH change simultaneously. Note that service time is modelled as a Beta distributed

random variable that is multiplied by M . As such, we simply vary τL and τH between

0 and 1, though they are multiplied in the computation by M . To best-represent this

simultaneous change, we refer to Figure 2.2.
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Figure 2.2: UP for various values of τL and τH

We make the following observations.

Observation 2.6.1. For fixed τL, U
P increases as a concave function of τH .

Observation 2.6.2. For fixed τH , U
P increases as a convex function of τL.

Next, we present a special case demonstrating how our solutions change as the value of

τL changes from 0 to 1 while τH is fixed at 1:
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τL α∗ β∗ δ∗ x∗ UA UP

0 0 3.6571 32.6787 0.484 0 0.1070
0.1 0 3.4633 31.1466 0.467 0 0.1226
0.2 0 3.0394 27.7419 0.428 0 0.1746
0.5 0 1.3198 12.9795 0.233 0 0.6096
0.9 0 0.5533 5.6953 0.113 0 1.5504

Table 2.5: Post-operational-change optimal solutions for different τL

Observation 2.6.3. UP improves monotonically as τL tends to 1 from the left.

Observation 2.6.4. As τL increases, β∗, δ∗, and x∗ all decrease.

We note that there exist corresponding contracts to Candidate 3 for the optimal con-

tracts in Table 2.5.

Here, we present how our solutions change as τH changes from 1 to 0 while τL remains

fixed at 0:

τH α∗ β∗ δ∗ x∗ UA UP

1.0 0 3.6571 32.6787 0.484 0 0.1070
0.9 0 3.5311 31.6840 0.473 0 0.0801
0.4 0 2.4605 22.9606 0.370 0 −0.2104
0.2 0.5614 0.3623 0 0.282 0 −0.04546
0.1 0.6962 0.2197 0 0.326 0 −0.6046

Table 2.6: Post-operational-change optimal solutions for different τH

Observation 2.6.5. UP decreases monotonically as τH decreases.

Observation 2.6.6. As τH decreases, β∗, δ∗, and x∗ all decrease.

Observation 2.6.7. As τH decreases, for contracts with α, α increases.

We note that in the above examples, Candidate 4 is always optimal (though Candidate

3 is optimal simultaneously). As such, we use the formula of the principal’s optimal utility
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in Candidate 4 to derive the following property, which provides insight into how τL and τH

affect the princpal’s utility (the proof of which is in Appendix A.4):

Property 2.6.7.1. The principal’s optimal utility increases convexly as τL increases and

increases concavely as τH increases.

The proof of Property 2.6.7.1 is in Appendix A.4.3, along with analytical formulae of

the associated derivatives.

2.6.1.2 Service Time

We now explore the impact of OPMs on service time T . Let T̂ be the post-protocol-change

random variable for service time. We assume that the protocol changes have produced a

censoring effect on service time such that:

T̂ = max{ΥL,min{ΥH , T}}; (2.27)

for ΥL,ΥH ∈ [0,M ], where ΥL ≤ ΥH . Equation (2.27) has a similar interpretation to

(2.26). If a realization of T falls outside the interval [ΥL,ΥH ], it automatically takes the

value of ΥL or ΥH (whichever is closer). If T generates a realization within [ΥL,ΥH ], then

the realization occurs as in the non-censored case.

Note that one-directional censoring (where ΥL = 0 or ΥH = M but not both) is a

special case of (2.27). We assume that the values of ΥL and ΥH are not dependent on

x nor d. This makes intuitive sense; for example, if a service script takes two minutes to

complete, minimum, this should not change depending on the effort or task difficulty.

We reconsider the example from Section 2.5. We first present how our solutions change

as both ΥL and ΥH change simultaneously. To best-represent this simultaneous change,
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we refer to Figure 2.3.

Figure 2.3: UP for various values of τL and τH

Observation 2.6.8. When holding ΥH fixed, UP as a function of ΥL is concave decreasing.

Observation 2.6.9. When holding ΥL fixed, UP as a function of ΥH is convex increasing.

In Table 2.7 we present a special case of how our solutions change as ΥL goes from 0

to 4.9 while ΥH remains fixed:
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ΥL α∗ β∗ δ∗ x∗ UA UP

0 0 3.6687 32.7697 0.485 0 0.0465
0.1 0 3.6929 33.2365 0.484 0 0.0432
1.1 0 6.6187 95.7649 0.467 0 −0.2232
2.1 0 18.0494 432.0483 0.454 0 −0.6645
3.1 0 67.5353 2335.4606 0.449 0 −1.1498
4.1 0 475.7598 21681.9626 0.448 0 −1.6463
4.9 0 53215.0222 2.8972× 106 0.447 0 −2.0458

Table 2.7: Post-operational-change optimal solutions for different ΥL

Observation 2.6.10. Increasing ΥL causes UP to decrease monotonically.

Observation 2.6.11. As ΥL increases, β∗ and δ∗ increase.

Observation 2.6.12. As ΥL increases, x∗ decreases but not markedly.

In Table 2.8 we present how our solutions change as ΥH goes from 1 to 0:

ΥH α∗ β∗ δ∗ x∗ UA UP

5 0 3.6687 32.7697 0.485 0 0.0465
4.9 0 3.6689 32.7711 0.485 0 0.0465
3.9 0 3.6955 32.9208 0.484 0 0.0473
2.9 0 3.8855 34.0413 0.483 0 0.0516
1.9 0 4.6112 37.7731 0.476 0 0.0702
0.9 0 9.0729 55.2891 0.462 0 0.147
0.1 0 349.2698 365.7991 0.448 0 0.3575

Table 2.8: Post-operational-change optimal solutions for different ΥH

Observation 2.6.13. Decreasing ΥH causes UP to improve monotonically, in a noticeably

convex fashion.

Observation 2.6.14. Decreasing ΥH causes β∗ and δ∗ to increase.

Observation 2.6.15. Decreasing ΥH causes x to decrease monotonically.
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We note that in the above examples, Candidate 4 is always optimal (though Candidate

3 is optimal simultaneously). As such, we use the formula of the principal’s optimal utility

in Candidate 4 to derive the following property, which provides insight into how ΥL and

ΥH affect the princpal’s utility (the proof of which is in Appendix A.4):

Property 2.6.15.1. The principal’s optimal utility decreases concavely as ΥL increases

and decreases convexly as ΥH increases.

The proof of Property 2.6.15.1 is in Appendix A.4.3, along with analytical formulae of

the associated derivatives.

2.6.1.3 Managerial Implications

The main takeaway from this work is that managers now have a tool (distributional cen-

soring) to use that can explicitly connect OPMs and the incentive contracts within (and

potentially without) the firm. Accurately modelling the connection between operational

change and incentives is important. With a game-theoretic mindset, managers can better

anticipate how their OPMs not only modify or restrict the behaviour of their employees,

but managers can also use this information to adjust the incentive mechanisms in light

of the anticipated modifications. As we noted above, under censoring effects, the values

of the principal’s decision variables in the optimal contract can change quite markedly.

Without an adequate modelling tool, the principal may misjudge how to adjust the agent’s

contract, leading to rent extraction or the agent rejecting the contract.

Further, adopting a contract-focused view may enhance ideation phase of the opera-

tional improvement workflow. Specifically, an operations management team that considers

the way contracts influence internal and external response to OPMs will be able to better

forecast if the proposed modifications will help the firm reach its goals. These improved
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forecasts can then be used to discard ideas earlier before wasting excessive time and re-

sources exploring their feasibility.

Realizing that OPMs can be viewed through this censoring lens can enhance an opera-

tions analyst’s efforts. Consider an analyst generating a set of potential OPMs from which

a manager will choose to implement. An analyst who can properly forecast how τL, τH , ΥL,

and ΥH impact operations will be able to augment and refine existing cost-benefit analysis

approaches. This, in turn, will help the manager make a more-informed, and likely more

impactful, decision.

2.6.2 Training and Knowledge Enhancements

In this Section, we provide a contrast to OPMs by considering training and knowledge

base enhancements. Employee training and knowledge base enhancements are, perhaps,

the most obvious business process modifications. Training is a natural component of the

onboarding process for junior to midlevel positions, provided the employee has not moved

laterally into a similar role as a previous employment engagement (in which case, training

may not be necessary). Butcher et al. (2009) note that the literature on employee training

indicates that firm size is highly correlated with the investment in training and willingness

to train employees. As firms move away from the survival phase of small operations to the

growth phase, staffing needs increase, as does the focus on human resource management.

Also, as firms feel more financially secure, they tend to have more bandwidth for such

training investments.

Below are a few examples of training:

• Cordiality training: By cordiality, we mean that how pleasant the employee is when

interacting with customers.
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• Resiliency training: By resiliency, we mean how resilient the employee is to provoca-

tion or other belligerent behaviour on the part of the customer.

• Service speed training: This type of training could be conducted via timed, simulated

service requests after which the agent is evaluated.

• Language training: A somewhat nonobvious form of training is that of language

fluency and dialect, at least after the agent is hired. Subsidized language courses and

vocal coaching are two examples of how this service component could be enhanced.

Aside from training, a firm can enhance internal knowledge resources available to agents.

These resources go beyond the software manual for the software product that the firm sells.

As an example, service employees can collaboratively build a shared knowledge resource

that details solutions for common customer requests.

2.6.2.1 Service Quality

We now explore the impact of training and knowledge enhancement on service quality S

through the lens of stochastic comparison. Suppose that the principal has instituted some

or all of the training and knowledge system modifications mentioned in Section 2.6.2. Let

S̃ be the post-training random variable for service quality. We assume that the training

has produced a first-order stochastic dominant shift on service quality such that S ≤st S̃,

where the stochastic order ≤st is defined as:

P{S > z} ≤ P{S̃ > z}, 0 ≤ z ≤ 1. (2.28)

We reconsider the example from Section 2.5. We model post-training service quality

changes by introducing a new parameter θ. We use θ to define the distribution of S̃ in the

following way:
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S̃ (d = 0) S̃ (d = 1)
5 · Beta(3θx, 2) 5 · Beta(2.5θx, 2)

Table 2.9: Post-Training Service Quality Distribution

We can think of θ as an agent-specific performance metric, like innate ability or pro-

ductive capacity, which is enhanced by training (better training yields larger values of

θ).

We now precisely define first-order stochastic dominant shifts in the Beta distribution.

Suppose that X and Y are random variables. If Y stochastically dominates X in the

first-order sense, this is equivalent to the following condition from Marshall et al. (2011):

Ef(X) ≤ Ef(Y ), (2.29)

for all increasing functions f such that the expectations exist. Next, we recall (see N. L.

Johnson et al. (1995)) that the expectation of a Beta(a, b)-distributed random variable Z

is:

E[Z] =
a

a+ b
. (2.30)

Substituting S̃ (and its parameters) for Z, we have:

E[S̃] = (1− p)
3θx

3θx+ 2
+ p

2.5θx

2.5θx+ 2
. (2.31)

We see that (2.31) is an increasing function of θ. As such, increasing θ yields a first-

order stochastic dominant shift in S̃. All other model parameters are unchanged from

Section 2.5.
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We see the results of varying θ in Table 2.10:

θ α∗ β∗ δ∗ x∗ UA UP

1 0 3.6340 32.4969 0.482 0 0.0138
2.5 0 3.5538 31.8639 0.475 0 0.5748
5 0 3.0605 27.9128 0.430 0 0.9400
7.5 0 2.7225 25.1446 0.397 0 1.1125
10 0 2.4890 23.1997 0.373 0 1.2160

Table 2.10: Post-training optimal solutions for different service quality S̃

Examining Table 2.10, we make the following observations.

Observation 2.6.16. UP improves as θ increases.

Observation 2.6.17. Optimal effort x∗ and contract variables β∗ and δ∗ decrease as θ

increases.

2.6.2.2 Service Time

We now explore the impact of training and knowledge enhancement on service quality T

through the lens of stochastic comparison. Let T̃ be the post-training random variable for

service quality. We assume that the training has produced a first-order stochastic dominant

shift on service quality such that:

T̃ ≤st T. (2.32)

We consider the impact of improved service time on the setting described in the example

from Section 2.5. We model post-training service time changes by introducing a new

parameter θ. We use θ to define the distribution of T̃ in the following way:
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T̃ (d = 0) T̃ (d = 1)
Trunc. Expon.(1 + θx) on [0, 5] Trunc. Expon.(1 + 0.5θx) on [0, 5]

Table 2.11: Post-Training Service Time Distribution

Similar to with service quality, θ reflects innate ability or productive capacity, which

grows through training.

We now define first-order stochastic dominant shifts on the truncated exponential distri-

bution. First, we once again concentrate on the expectation condition (2.29) from Marshall

et al. (2011). Next, we recall (see Al-Athari (2008)) that the expectation of a Truncated

Exponential(λ, b) distributed random variable Z, where λ is the usual Exponential distri-

bution parameter and b is the upperbound truncation point, is:

E[Z] =
1

λ
− b

eλb − 1
. (2.33)

Considering T̃ as defined in Table 2.11, we note that our expectation is the probability-

weighted average of the expectations in each difficulty state. In particular, when d = 0,

λ = 1 + θx and when d = 1, λ = 1 + 0.5θx. Further, b = M in both states. Substituting

T̃ (and its parameters) for Z, λ, and b in (2.33), we have:

E[T̃ ] = (1− p)

[
1

1 + θx
− M

e(1+θx)M − 1

]
+ p

[
1

1 + 0.5θx
− M

e(1+0.5θx)M − 1

]
. (2.34)

We see that (2.34) is a decreasing function of θ. As such, increasing θ yields a first-order

stochastic dominant shift in T̃ . All other model parameters are unchanged.

We see the results of varying θ in Table 2.12:
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θ α∗ β∗ δ∗ x∗ UA UP

1 0 3.6340 32.4969 0.482 0 0.0138
2.5 0 13.5687 55.7461 0.454 0 0.1983
5 0 46.0975 98.5695 0.447 0 0.2790
7.5 0 98.1281 141.7190 0.445 0 0.3085
10 0 170.0277 185.3524 0.445 0 0.3238

Table 2.12: Post-training optimal solutions for different service time T̃

Examining Table 2.12, we make the following observations.

Observation 2.6.18. UP improves as θ increases.

Observation 2.6.19. β∗ and δ∗ increase as θ increases.

Observation 2.6.20. x∗ decreases as θ increases.

2.6.2.3 Managerial Implications

The benefits of employee training and knowledge enhancements are somewhat obvious,

though still important. However, it is important to note that firm willingness to invest in

training, especially for small firms, is mixed. Thomson and Gray (1999) find that growth-

oriented small firms tend to have positive views on training activity. Vinten (2000), simi-

larly, finds that firms that undertake more training investments view training as beneficial

and important to success. Conversely, S. Johnson (2002) finds that, especially for training

activities, small business owners see business improvement measures as an act of faith.

Patton and Marlow (2002) document a chronic fear of staff mobility in small firms leads

to owners and managers viewing these activities as wasteful.

What the above indicates is that attitudes towards training tend to carry some momen-

tum; namely, firms appear initially skeptical in such process modifications. However, once
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investments are made, there is a documented tendency to believe in the efficacy of such

process improvements. Our analysis in Sections 2.6.2.1 and 2.6.2.2 demonstrates potential

positive results of training, which may encourage firms to reconsider their choice to avoid

training investments.

2.6.3 Changing Business Context

Any firm can experience changes that modify the context of that business. Some relevant

examples for our setting include:

• Market position: The firm’s value proposition may change; namely, the firm may

choose to emphasize more service quality or service time. As such, service priorities

could change, which may induce a change in c1 and c2.

• Managerial role: The principal’s responsibilities at the firm could change. This could

affect their ability to audit the agent, impacting a.

• Customer mix: The SaaS firm could experience a shift in customer mix (e.g., they

develop a new software product to sell to a different type of firm). This could impact

the probability p of receiving a difficult support request.

• Agent factors: The agent could experience changes either within themselves or out-

side the work environment that impact the disutility they get from exerting effort

(e.g., if they have to suddenly start acting as a caregiver at home, they may want to

save effort exerted at work). These changes could impact k.

We conducted sensitivity analysis on each of the above-mentioned parameters. Changing

c1, c2, a, and p all yield linear changes in the principal’s optimal utility. Specifically,

increasing c1 (thus, decreasing c2) yields a linear increase in the principal’s optimal utility,

which makes some intuitive sense as the principal gains more from service quality, the
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positive service output. Increasing a and p each yield decreases in the principal’s optimal

utility; this makes sense as auditing more often increases expected auditing costs, and

increasing the probability of a difficult support request increases the probability of worse

service outcomes. The parameter k is the only one that yields nonlinear utility responses;

as such, we focus on it.

We display how UP changes with respect to k in Figure 2.4.

Figure 2.4: Optimal UP as a function of k

Observation 2.6.21. Increasing k is associated with monotone, convex decreases in UP .

We also show how optimal x changes in response to changes to k in Figure 2.5.
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Figure 2.5: Optimal x as a function of k

Observation 2.6.22. Initially, x is unchanged as k increases, only for small values of k.

Thereafter, x decreases monotonically with k

This makes intuitive sense; if the cost of effort is extremely low for an agent, exerting

maximal effort is optimal.

2.6.3.1 Managerial Implications

Of the changing elements of the business context, it is worth noting that k is the most

interesting and produces the most noticeable effects on the principal’s utility. Further, the
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contract structure changes for small values of k as we shift from Candidate 2 to Candidate

3 and Candidate 4 being optimal.

We see in Figure 2.4 that improving the agent’s outside-of-work circumstances may

lead to utility benefits for the principal, given a sufficiently large change in k. However,

modifying the agent’s disutility of exerting effort is not necessarily an easy task. Earlier, we

gave the example that an employee may have a high disutility of effort because they need to

reserve energy for a caregiving role off the job. This may serve to explain why employers

provide things like childcare benefits and paid time off for parental leave. Further, the

potency of k in impacting the principal’s utility implies that spending time getting to

know one’s employees may be materially beneficial. Specifically, with better knowledge

of an employee’s outside-of-work circumstances, a principal may be better able to provide

support that materially benefits both parties.

2.7 Practical Considerations

As with any theoretical model inspired by a real-world scenario, it is important to clearly

lay out the limitations and assumptions and how these may be affected in a real-world

scenario. In particular, we point out scenarios in which our model may need adjustment.

We note that our model and the dynamics therein were constructed with a specific

service scenario in mind. In particular, we model a service employee working for a SaaS

firm. This type of service can typically be done remotely and is supported by electronic

documentation tools, like a support ticketing system. In this scenario, auditing is relatively

seamless in that it can be completed by accessing relevant service information via the

electronic system, though it still costs time. Further, in our model, we have assumed

perfect auditing accuracy, as this best-reflects the level of expertise at our industry partner.
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Not all service environments operate in this fashion. Firstly, many service operations are

not completed virtually; some examples include pest control, security system maintenance,

and automotive repair. As such, the ability to audit completed work may be more costly,

and potentially more difficult. In some cases, auditing may even be destructive to the

original work; an example of this could be examining wiring done by an electrician after

the walls have already been resealed. Such auditing environments may impose additional

costs on the principal or force them to use costly real-time monitoring methods to avoid

having work redone ex-post.

Beyond just the difficulty of conducting an audit, it may be the case that the principal

does not have the requisite expertise to actually validate or invalidate the agent’s work.

A homeowner, for example, may not be able to accurately scrutinize the work done by

a contractor during a renovation, aside from determining if they like the aesthetics or

not. From a modelling perspective, this would require a re-interpretation of the auditing

component of our contracts. The easiest addition would be to add a probability of correct

assessment to the model, which would come into play if an audit occurred; this would end

up increasing the effective cost of the audit.

Another limitation of our model is that it only considers a single period. Some service

scenarios are multi-period or involve additional decision points. For example, a mechanic

may inspect a vehicle that was initially brought in for a single issue and find multiple

issues, opening up the option for the principal to negotiate a price after information is

revealed. These scenarios would likely need to be framed as a multi-period, sequential

game. Notably, these scenarios wherein information is revealed by the agent who has

more expertise (e.g., the mechanic) than the principal would likely benefit from including

reputation in some fashion, to gauge the trustworthiness of the information.

While not relevant to our target service scenario, it is worth mentioning other ways in
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which compensation can be computed in practice. Many services operate on a fixed-price

model, though there is also the “cost +” model that can be common in general contracting.

The fixed price model is reasonably amenable to a static model. The “cost +” model, in

which price is based on the cost plus some margin, can be problematic in practice and

would likely require a dynamic model. In particular, this pricing approach can often be

leveraged by the agent to collect an informational rent, especially when information is only

revealed partway through the task. In a home renovation, for example, information may

be revealed during the renovation after some walls are demolished. This information could

be that more work needs to be done on the house than expected. With a destroyed wall,

many homeowners feel compelled to do the extra work and pay for it, which may or may

not be truly necessary. This also gives the agent more bargaining power, which adds an

additional difficulty into the modelling.

2.8 Conclusion

Change and turmoil are constant features of dynamic business environments, and these

disruptive forces can often spur management to implement a variety of adjustments to the

business process. One likely candidate for such adjustments is the introduction of new

operating rules and procedures, the Operational Protocol Modifications (OPMs) that are

the main subject of this work. Specifically, we have introduced distributional censoring as

a method for modelling these OPMs. We frame the use of this new tool in the context

of a mechanism design scenario wherein an employer seeks to hire an employee to handle

customer service requests. By connecting OPMs to mechanism design via distributional

censoring, we aim to provide managers and operations analysts an intuitive yet rigourous

approach to forecast the impact of OPMs on service performance and the efficacy of current
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compensation contracts.

To round out our operational modification analysis, we model instances of training as

a form of first-order stochastic dominant shifts on the distributions of service quality and

service time. We also highlight how the disutility the agent receives from exerting effort

has a noticeable effect on the principal’s optimal utility; namely, the more disutility the

agent generates, the less utility the principal can expect.

This work has a few noteworthy limitations. First, we only consider one utility function

and contract form: an additively separable form. Secondly, we only pursue a numerical

investigation of the first-order stochastic dominance effects. Finally, one could argue that

we should compare multiple forms of stochastic dominance in the modelling of training

effects.

We aim to pursue a few vectors of inquiry for future work in this area; some of these

stem directly from the aforementioned limitations. Generalizing our model by relaxing our

assumptions will entail a different optimization approach. So far, we have begun investi-

gating the effects of relaxing the monotonicity of expected service quality and service time

with respect to effort x. Another extension worth mentioning is changing the style of cen-

soring. So far, we have only discussed the impact of censoring the tails of the distributions.

It could be that some operational process modifications induce censoring across non-tail

intervals of the distributional support. At first consideration, these censoring effects likely

would arise from structural elements of the service process, at least with regards to service

time.
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Chapter 3

Approaches for Incorporating

Additional Information into Network

Ranking Models

3.1 Introduction

Professional sports present a captivating duality. For the casual spectator, they yield

hours of wholesome entertainment. For the management scientist, they offer up a myriad

of fascinating problems to explore and research. Perhaps the most fundamental of these

problems is to evaluate the teams of a given sports league and rank them. However,

what appears to be a simple exercise is anything but; the approaches to this problem are

numerous.

The focus of our work is one subset of these team ranking methodologies: network

models. These models treat teams as nodes in a network and games between teams as
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vertices, and we consider these models in the context of professional European soccer

teams. Unlike other methods, network ranking models eschew probabilistic assumptions

in favour of an intuitive and mathematically straightforward concept. This concept is that

of an indirect win or loss. Put simply, a team earns an indirect win if a team they have

beaten defeats another team. An indirect loss is earned similarly if a team that was lost

to in the past loses to another team. The network ranking model appeals to a common

conversation among sports fans, who typically use these indirect wins and losses to justify

why their favourite team is better or more likely to win in a head-to-head confrontation.

Broadly, network models can be classified into two types: static and dynamic. What

separates the two is that dynamic models incorporate discount factors, so older games

have less influence on current rankings. Additionally, the computational approach of static

models relies on convergence, so the model parameters have to lie in a narrower range.

This issue is not present in dynamic models, at least not the type we examine in our work.

The main contribution of our work is twofold. Firstly, we provide methods to incorpo-

rate additional match information into both static and dynamic network ranking models.

The information we focus on is home/away and goal difference information. Secondly,

we introduce multiple ways to use the time series of team rankings to produce similarity

metrics between teams. We then incorporate this similarity information into static and

dynamic network models. This last point is especially important as our work connects

two streams of literature that have long-acknowledged each other but have yet to find a

methodological intersection.

To elaborate on this last point somewhat, there exist two heretofore related but un-

connected streams of literature: network ranking models and analysis of competitivity

graphs. The former seek to use network models to rank various entities. The latter form

graphs (called competitivity graphs) where ranked entities are nodes and weighted edges
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are constructed between the nodes based on how many times the entities swap relative

positions in sequential rankings. The weight of the edges corresponds to how many times

the entities swap positions, where each position swap is called a competition. Prior to

our work, the information generated from these competitivity graphs was used largely in a

descriptive sense; it was used to describe how competitive sports leagues are. However, our

work actually takes this information and uses it to refine the way network ranking models

rank teams.

After introducing our methodological additions, we evaluate the models’ performance

using data from five of the most popular professional men’s soccer leagues: the English

Premier League, the Spanish La Liga, the German Bundesliga, the Italian Serie A, and

the French Ligue 1. After demonstrating our models’ superior empirical performance, we

note that the type of model that performs best is league dependent. We then conduct

sensitivity analysis on a subset of the methods and provide guidance on optimal parameter

choice.

The rest of this chapter proceeds as follows. Section 3.2 explains the relevant theoretical

background to support the rest of the chapter; this includes explanations of extant ranking

methods. Section 3.3 explains our work’s connection to other work in the ranking methods

literature. Section 3.4 describes the data used in our analysis. Section 3.5 explains our

aforementioned additions to both static and dynamic ranking models. Section 3.6 reports

our results and analysis of the performance of our empirical testing. Section 3.7 contains

our discussion of the results. Section 3.8 concludes.
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3.2 Theoretical Background

This section serves to give the reader the requisite theoretical background and familiarity

with sports ranking systems in order to make this work self-contained. This will also make

the explanations of our additions to the network ranking models more efficient. Section

3.2.1 provides a very brief explanation ranking and ranking systems. Section 3.2.2 describes

the standard way teams are ranked in professional soccer leagues, which we call the league

point approach. Section 3.2.3 explains the Elo ranking system, which was formulated

originally by Arpad Elo to rank chess players but has since been adopted by a wide variety

of competitions and sports. Section 3.2.4 introduces the paired comparison approach, with

particular attention paid to the Bradley-Terry method. Section 3.2.5 arms the reader with

the requisite background on both the static Park and Newman (2005) and dynamic Motegi

and Masuda (2012) network ranking models.

3.2.1 Ranking Primer

The goal of a ranking system is to compare a collection of items and be able to sort them

according to some system-designer-specified metric. In the case of sports ranking systems,

this metric is usually, broadly defined, ability or capability. We cannot directly view the

ability of any team, so ranking systems use estimates of ability. These estimates are then

used to rank teams, with more capable teams ranking higher. Note: in a ranking system,

a lower numerical rank is deemed better. As such, in a 20-team soccer league, the best

rank is 1 and the worst rank is 20.

The main factor that distinguishes different ranking systems is how they compute esti-

mates of team capability. As we show in subsequent sections, all of the systems are based

off of the number of wins, losses, and ties teams accumulate throughout a season. Some
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systems incorporate additional information, like which teams were played when these wins,

losses, and ties were accumulated. We now proceed to describe the systems used in this

work, either as bases of comparison or theoretical foundations for our contributions.

3.2.2 League Points Approach

The league points approach to ranking is straightforward. In professional soccer leagues,

there are three potential outcomes to any game: win, loss, or tie. To generate the table of

team performance that decides who wins the league, leagues assign point values to each of

these results. A win provides a team 3 points, a loss provides 0 points, and a tie provides

1 point.

To rank teams via a league point system, we simply total the league points each team

in the league has accrued by time t and rank them according to their total league points,

with more points being better.

3.2.3 Elo Approach

This approach was proposed by Arpad Elo and implemented by the United States Chess

Federation in 1960, and Elo described his work in detail in Elo (1978). The Elo approach

assigns each team a value in points; the higher a team’s point total, the higher their rank.

To accomplish this, the method initially assigns each team the same point value; it then

updates these values using the result of each game. After each game, only the point totals

of the two teams involved in the game are adjusted. Notably, these point adjustments take

into account the pre-match difference in point totals between the two competing teams.

A team with a large point total will not earn many points by defeating a team with a
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significantly lower total, but the larger-totaled team will lose many points if they lose such

a game.

The Elo model is relatively simple, insofar as the mathematics of its construction. We

reproduce a description of the standard Elo model adapted from Wunderlich and Memmert

(2018). Note that this model considers home and away effects, with the home team denoted

by superscript H and the away team denoted by superscript A.

The original Elo approach estimates the win probability according to the following

equations, where At denotes the point total of the away team at the start of ranking

period t and Ht denotes the point total of the home team at the start of ranking period t:

ηH =
1

1 + c(At−Ht−ω)/d
(3.1)

ηA = 1− ηH , (3.2)

where ω is a measure of the home advantage (in Elo-points), while c and d are freely

selectable parameters that influence the scale of the rating. A common parameter choice

is ω = 80, c = 100, and d = 400; these come from the original application in the United

States Chess Federation. These win probabilities factor into the point total adjustments,

as shown below.

After the match, the actual result aH for the home team is observed; aH = 1 if the

home team wins, aH = 0.5 in case of a draw and aH = 0 if the home team loses. As such,

the result for the away team is aA = 1 − aH and the ratings for both teams are adjusted
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as follows:

Ht+1 = Ht + k(aH − EH) (3.3)

At+1 = At + k(aA − EA), (3.4)

where k is an adjustment factor that is chosen via calibration.

To perform an Elo ranking over an entire season, we simply compute adjustments as

outlined in (3.1)−(3.4) for each match in the season, in sequence. We then rank the teams

based on their final Elo point totals, ranking from largest to smallest.

For our testing, we use the following parameter values (following Wunderlich and Mem-

mert (2018)):

• ω = 80;

• c = 100;

• d = 400;

• k = 0.5;

• initialized point value = 50.

3.2.4 Paired Comparison Approach

Paired comparison models are typically called Bradley-Terry models after the seminal work

Bradley and Terry (1952). As the name suggests, a paired comparison model focuses on

interactions between pairs of entities; in our case, matches between pairs of soccer teams.

The model assumes that each team i has an unobservable ability parameter γi that we

attempt to estimate from the data on match outcomes. These ability parameters, once

estimated, form the basis for our team ranking. Namely, we rank the teams in descending
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order, with larger ability parameters being superior.

Proceeding to specifics, we reproduce the representation from Hunter (2004). Let γi > 0

be the ability of team i. The Bradley-Terry model without ties assumes the following:

P(individual i beats individual j) =
γi

γi + γj
. (3.5)

As we see from (3.5), this model makes a probabilistic assumption of how team abilities

are related. In this way, it is somewhat similar to the Elo model. A key assumption of this

model is the following:

Assumption 3.2.0.1. In every possible partition of the individuals into two non-overlapping,

nonempty subsets, some individual in the second set beats some individual in the first set

at least once.

For a model with ties, we use the following to denote such a result probability:

P(i ties j) =
θ
√
γiγj

γi + γj + θ
√
γiγj

, (3.6)

where θ > 0 is the constant of proportionality if the probability of a tie is proportional to

the geometric mean of the probabilities of a win by either individual. This construction

yields the following ratios for the probabilities:

P(i beats j) : P(j beats i) : P(i ties j) = γi : γj : θ
√
γiγj. (3.7)

Examining (3.5) and (3.6) suggests that we use maximum-likelihood estimation to

estimate all γi and θ.

The likelihood function, which we seek to maximize via our choice of γis and θ, for the
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model with ties is:

L(γ) =
m∏
i=1

m∏
j=1

(
γi

γi + γj + θ
√
γiγj

)wij

·
m∏
i=1

m∏
j=1,j<i

(
θ
√
γiγj

γi + γj + θ
√
γiγj

)dij

, (3.8)

where wij denotes the number of times individual i has beaten individual j (we assume

wii = 0 by convention) and dij is the number of times team i and team j draw in the

measurement period. Taking the logarithm yields:

ℓ(γ) =
m∑
i=1

m∑
j=1

[wij ln(γi)− wij ln(γi + γj + θ
√
γiγj)]

+
m∑
i=1

m∑
j=1,j<i

[dij ln(θ
√
γiγj)− dij ln(γi + γj + θ

√
γiγj)].

(3.9)

Simplifying further yields:

ℓ(γ) =
m∑
i=1

m∑
j=1

[wij ln(γi)− wij ln(γi + γj + θ
√
γiγj)]

+
m∑
i=1

m∑
j=1,j<i

[
dij ln(θ) +

dij
2

ln(γi) +
dij
2

ln(γj)− dij ln(γi + γj + θ
√
γiγj)

]
.

(3.10)

We impose the constraint on the abilities such that
∑m

i=1 γi = 1. We then use any standard

maximum-likelihood estimation solver to compute estimates for the γis and θ. We then

rank the teams according to the estimated γis, with larger γis being superior.

3.2.5 Network Model Approach

This section provides the necessary background on both static and dynamic network rank-

ing models. Section 3.2.5.1 describes the static network ranking model introduced in Park
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and Newman (2005). Section 3.2.5.2 explains the dynamic network ranking model intro-

duced in Motegi and Masuda (2012). Section 3.2.5.3 provides a brief summary of the key

modelling and implementation benefits provided by network ranking models as a whole.

3.2.5.1 Park and Newman (2005) Static Model

Network ranking models take a different approach to ranking teams than the league point

and Elo models. As explained in Section 3.1, network models do not make assumptions

about teams’ relative abilities and how these abilities influence the probability of victory.

Instead, network models are inspired by a sport spectator’s natural intuition regarding

direct and indirect wins.

The classic network sports ranking model is described in Park and Newman (2005).

Before presenting the mathematics, we briefly describe how the method works. The net-

work is visualized with nodes being teams and edges pointing from winning teams to losing

teams in any given match.

A

B C

A

B C

A

B C

Figure 3.1: Basic Network Model Structure

In Figure 3.1, we display a brief example. In this league, there are three teams: A,

B, and C. Let each set of nodes, moving from left to right, represent a gameweek. In

gameweek 1, A defeats B. In gameweek 2, B defeats C. We now would be curious if A
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or C would win the next gameweek’s match. Given that A has defeated B and that B

has defeated C, a network model would assume that A has an advantage over C in the

upcoming match, since A defeated B who defeated C.

Using the match history of a league, the method computes both a win score and loss

score per team in the league. These win scores and loss scores are computed by tallying

the number of direct and discounted indirect wins and losses, respectively, that each team

has earned throughout the season. The indirect wins and losses typically range from 0.1 to

0.3 of a direct win or loss, with the discount compounding per degree of indirection. Once

all teams have win and loss scores computed, we compute the difference between these

scores, which is called the total score. These total scores then form the basis for ranking,

with higher total scores being superior.

We proceed with the mathematics, starting with adjacency matrix A, which is an n×n

real matrix, where n is the number of teams, with element Aij equal to the number of

times team j has beaten team i (usually 0 or 1, but occasionally 2). The number of direct

wins for a team can be written as:

direct wins for team i =
n∑

j=1

Aji. (3.11)

We see that (3.11) makes sense as each column i holds the wins against the teams in each

row j. The number of indirect wins at distance 2 (A beats B beats C) can be written as:

indirect wins at distance 2 for team i =
n∑

j=1

n∑
k=1

AkjAji. (3.12)

Note: in the above, we can sum from 1 through n inclusive because the diagonal of the

matrix will be zeros (since no team plays itself). We explain (3.12) as follows. In computing
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indirect wins by team i, we first select opponent j. If no wins were scored against this

team, we have a multiplicative factor of 0, if one win, 1, and so on. We then take this

multiplicative factor and multiply it by the direct win score of team j, who plays against

opponents indexed by k. Note, we don’t skip any indices; we include wins scored against

i, since these will be balanced out by a loss score.

The type of computation illustrated in (3.12) is extended to all directed path lengths

available in the network. We discount indirect wins over direct ones by a constant factor

α for every level of indirection, so that an indirect win two steps removed is discounted by

α, an indirect win three steps removed by α2, and so forth. The parameter α is the only

free parameter in the ranking scheme.

The totalwin score wi of a team i is the sum of direct and indirect wins at all distances,

with discounting. It is expressed as follows:

wi =
n∑

j=1

Aji + α
n∑

j=1

n∑
k=1

AkjAji + α2

n∑
j=1

n∑
k=1

n∑
h=1

AhkAkjAji + · · · . (3.13)

We factor by combining all the sums across j, yielding:

=
n∑

j=1

(
1 + α

n∑
k=1

Akj + α2

n∑
k=1

n∑
h=1

AhkAkj + · · ·

)
Aji. (3.14)

We notice that the second and subsequent terms in the inner sum are the components of

wj multiplied by α, which leads to a more compact expression:

=
n∑

j=1

(1 + αwj)Aji (3.15)
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If we let kouti denote the out-degree of vertex i in the network (the number of edges

leading away from vertex i), we can restate (3.15) as follows:

= kouti + α

n∑
j=1

AT
ijwj. (3.16)

Using a similar logic, we can construct the loss score li:

li =
n∑

j=1

Aij + α
n∑

j=1

n∑
k=1

AijAjk + α2

n∑
j=1

n∑
k=1

n∑
h=1

AijAjkAkh + · · · . (3.17)

We combine the various sums over j, yielding:

=
n∑

j=1

Aij

(
1 + α

n∑
k=1

Ajk + α2

n∑
k=1

n∑
h=1

AjkAkh + · · ·

)
. (3.18)

We note that we can rewrite this in a more compact form using lj:

=
n∑

j=1

Aij(1 + αlj). (3.19)

Let kini be the in-degree of vertex i (the number of edges leading to vertex i). Then we

can rewrite (3.19) as follows:

= kini + α
n∑

j=1

Aijlj. (3.20)

The total score for a team is the difference si = wi − li. Teams are ranked on the basis

of their total score. Notably, a win against a strong team rewards a team heavily, and a

loss against a weak team punishes a team heavily.
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We can rearrange (3.16) and (3.20) using vector notation. We set the following:

w =
[
w1 w2 · · · wn

]
, (3.21)

l =
[
l1 l2 · · · ln

]
, (3.22)

kout =
[
kout1 kout2 · · · koutn

]
, (3.23)

kin =
[
kin1 kin2 · · · kinn

]
. (3.24)

We can now write (3.16) and (3.20) as

w = kout + αAT ·w (3.25)

l = kin + αA · l. (3.26)

We rearrange (3.25) and (3.26) as follows. First, we subtract αAT ·w from both sides

of (3.25) and αA · l from both sides of (3.26), yielding:

w − αAT ·w = kout (3.27)

l− αA · l = kin. (3.28)

Factoring out the common vector on each lefthand side, we have:

(I − αAT )w = kout (3.29)

(I − αA)l = kin. (3.30)
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We then take the matrix inverse of the matrices on each lefthand side and premultiply

both sides of both equations by them, yielding:

w = (I − αAT )−1 · kout (3.31)

l = (I − αA)−1 · kin. (3.32)

Now we deal with the parameter α. Firstly, we note that larger values of α place more

weight on indirect wins relative to direct wins, while smaller values place more weight on

direct wins.

Park and Newman (2005) note there are, in general, limits on the values α can take,

claiming that it is straightforward to show that the series in (3.16) and (3.20) converge

only if α < λ−1
max, where λmax is the largest eigenvalue of the adjacency matrix A. If the

network is acyclic, then the largest eigenvalue is zero, which imparts no limit on the value

of α. The authors find this has never happened in the data they observe, with the normal

upperbound value on α being between 0.2 and 0.3.

The authors find empirical performance works well setting α = 0.8λ−1
max, but they note

that this is for retrodictive performance, since it requires knowing the full schedule.

We re-compute α based on the adjacency matrix at each epoch of the ranking period to

best-reflect the information available. We use the following to determine α for our testing:

α =

0.2 λmax = 0

0.8λ−1
max otherwise.

(3.33)

This is the same choice of α as used originally in Park and Newman (2005) and will ensure

convergence and good baseline performance.
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3.2.5.2 Motegi and Masuda (2012) Dynamic Model

The dynamic network ranking model was introduced by Motegi and Masuda (2012). What

follows is an explanation of this model. Specifically, this model extends the win-lose score

of Park and Newman (2005) dynamically.

The logic behind the modification is as follows. The original, static network model does

not account for changes in team strength throughout the ranking period. For example, if

team i defeated team j early in the ranking period when team j was weak, they are subse-

quently entitled to a portion of all future wins of team j. However, if team j subsequently

became rather strong, the win that team i gained over team j, and the indirect wins they

accrue because of this win, do not properly reflect the value of the win, since team i won

when team j was weak.

To proceed, two assumptions are made.

Assumption 3.2.0.2. The increment of the win score of team i through i’s win against

team j depends on j’s win score at that moment. It does not explicitly depend on j’s score

in the past or future.

Assumption 3.2.0.3. Each team’s win and lose scores decay exponentially in time.

Let At be our win-lose adjacency matrix for the game that occurs at time t (1 ≤ t ≤

tmax). The original work sets t to a resolution of one day, though that work examined

tennis, which revolves around tournament play over a short number of days. For our

application in professional soccer, we consider t with a resolution of one match week.

If team j wins against team i at time t, we set the (i, j) element of the matrix At to

be 1 (note: total wins in a gameweek can then be found by summing the rows). All other
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elements of At are set to 0. We continue to populate the matrix At for all other games

played in the period t before doing any subsequent computations.

We define the dynamic win score at time t in vector form, denoted by wt as follows:

wt = W⊤
t 1, (3.34)

where W⊤
t is defined as follows:

Wt = At + e−β(t−(t−1))
∑

mn∈{0,1}

αmnA(t−1)A
mn
t

+ e−β(t−(t−2))
∑

mn−1,mn∈{0,1}

αmn−1+mnA(t−2)A
mn−1

(t−1)A
mn
t

+ · · ·+ e−β(t−1)
∑

m2,...,mn∈{0,1}

α
∑n

i=2 miA1A
m2
t2 · · ·Amn

t .

(3.35)

We now provide an interpretation to (3.35). Firstly, α is the same as the original term

in Park and Newman (2005); it is the weight of an indirect win. However, it should be

noted that, unlike in that static method, α is fixed at the start of the ranking procedure

(as opposed to being scaled off the eigenvalues of adjacency matrix At). While not stated

in explicitly in Motegi and Masuda (2012), α will be too large if scaled as in the classic,

static method, since At is reset each period (leading to α values around 1.5, at least in our

testing). In line with Motegi and Masuda (2012), α ∈ (0, 0.2] is chosen, and our precise

parameter choice is indicated whenever we present specific numerical examples.

Next, β, where β is a nonnegative real number, is the decay rate of the score. The first

term in (3.35), At is the effect of the direct win at time t. The second term, being a sum,

consists of two contributions to the win score. Firstly, for mn = 0, the quantity inside the

summation represents a direct win at time (t − 1), which is decayed by e−β(t−(t−1)). For
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mn = 1, the quantity represents the indirect wins. The (i, j) element of Atn−1At is positive

if and only if player j wins against a player k at time t and k wins against i at time (t−1).

Player j gains e−β(t−tn−1) · α win score from this, assuming only one win was earned by k

over i at time (t− 1).

Now we consider the third term, which covers four different cases. For mn−1 = mn = 0,

the quantity inside the summation represents the direct win at tn−2, which is decayed by

e−β(t−(t−2)). For mn−1 = 0 and mn = 1, the quantity inside the summation represents the

indirect win based on the games at (t − 2) and t, resulting in additional e−β(t−tn−2) · α

decayed indirect win. For mn−1 = 1 and mn = 0, the quantity inside the summation

represents the indirect win based on games played at (t − 2) and (t − 1) which becomes

an additional e−β(t−tn−2) · α decayed win. The final case is mn−1 = 1 and mn = 1. This

represents the second-degree indirect wins in period (t− 2) resulting from indirect wins in

period (t− 1) due to wins in period t. These indirect wins are decayed by the usual factor

of e−β(t−tn−2) and then weighted by α2 since they are second-degree. The j column of the

third term (the result of the sum of the four cases) accounts for the effect of j’s direct and

indirect wins at time (t− 2).

More simply, what the approach does is allow teams to accrue discounted indirect wins

and losses from teams they win or lose to, but only those wins and losses that happened

before the win or loss result to that team. For example, consider teams A, B, and C. In

the first period, A defeats B. In the second period, B defeats C. In the third period, C

defeats A. In the static system, the win scores will all be the same since A gets credit

for B’s subsequent win over C, and B gets credit for C’s subsequent win over A. In the

dynamic model, A no longer gets any credit for B’s win over C, since that did not occur

by the time A defeated B, nor does B get credit for C’s win over A, for the same reason.

Now we reconsider (3.35) with the aim of finding an update equation. Namely, we seek
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to represent Wt in terms of W(t−1). With some factoring, we find the following:

Wt =At + e−β(t−tn−1)

[
A(t−1)+

e−β((t−1)−(t−2))
∑

mn−1∈{0,1}

αmn−1A(t−2)A
mn−1

(t−1) + · · ·

+ e−β((t−1)−(t−2))
∑

m2,...,mn−1

α
∑n−1

i=2 miA1A
m2
t2 · · ·Amn−1

(t−1)

]

·
∑

mn∈{0,1}

αmnAmn
t

(3.36)

= At + e−β(t−tn−1)W(t−1)(I + αAt). (3.37)

From (3.34) and (3.37) we get the following update equation for the dynamic win score:

wt =

A
⊤
1 1, n = 1

A⊤
t 1+ e−β(t−(t−1))

(
I + αA⊤

tn

)
w(t−1), n > 1.

(3.38)

Noting that our matrices of win-lose scores contain the necessary information we need

to compute lose scores by simply transposing the matrices in (3.38), we obtain the update

equation for our loss score lt as follows:

lt =

A11, n = 1

At1+ e−β(t−(t−1))
(
I + αAtn

)
l(t−1), n > 1.

(3.39)
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The dynamic win-lose score at time t, denoted by st is given by

st = wt − lt. (3.40)

3.2.5.3 Benefits of Network Models

Before proceeding, we highlight a pair of benefits of network ranking models. The first,

and most obvious, is that they are relatively simple to compute, relying largely on linear

algebraic tools and making no probabilistic assumptions. The second, and ostensibly more

important, is that these methods allow us to easily incorporate multiple leagues into a

ranking model, provided at least one team from each league plays each other. In pro-

fessional soccer, this is an attractive feature, as every year there are large, multi-league,

European club soccer championships. Specifically, both the UEFA Champions League and

Europa League are annual spectacles that allow European soccer fans to see how their

favourite teams fare against the best teams from other countries’ leagues.

As a concrete example, it is possible for, say, Arsenal F.C. of the English Premier

League to play Bayern Munich of the German Bundesliga. With such a game having

occurred, we could then rank all of the English Premier League teams against the German

Bundesliga Teams in a seamless fashion. These ranking results could then be used for a

variety of purposes, including participating in betting markets, improving player transfer

pricing models, and enhancing projections of club season performance for promotion and

relegation concerns.
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3.3 Literature Review

Our work most-closely relates to existing work on network ranking models and competi-

tivity graphs, and we use both Elo models and paired comparison models as comparable

models for our empirical tests.

Our work contributes to the literature on network ranking models for sports. Specif-

ically, we introduce numerous approaches to including additional information into these

models. Such models were first proposed for use in ranking sports teams by Park and

Newman (2005), who deploy a static network model on collegiate football. In this appli-

cation, the authors found it performed comparable to a composite measure involving both

statistical approaches and expert opinions. Radicchi (2011) introduces an alternative form

of a static network model based on the PageRank algorithm called the “prestige score”

and applies it to professional tennis data, where it is effective in matching the ATP tennis

rankings. Motegi and Masuda (2012) introduce a dynamic version of the Park and New-

man (2005) model and also introduce a dynamic version of the Radicchi (2011) prestige

score. Both dynamic methods outperform their static counterparts when applied to pro-

fessional tennis data. More recently, Abernethy (2018) examines both static and dynamic

network ranking models and compares their predictive performance to FIFA’s own system

in international soccer. A key feature of the work is the addition of an adjustment for the

importance of games based on the game type, with, for example, World Cup game wins

being worth 4 wins in friendly matches. Similar to Abernethy (2018), we introduce ways

to incorporate home/away and goal difference information individually and in combination

to both static and dynamic network ranking models. As an example of another sport ap-

plication of these types of models, Kim and Jeon (2019) apply a PageRank-based network

ranking algorithm for ranking taekwondo athletes as an alternative to the current Olympic
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system. The applicability of PageRank-based network ranking algorithms was called into

question by Zhou et al. (2020), who use a variety of sports leagues to show that the base

PageRank method does not perform well when there is highly random data. However,

they introduce adjustments akin to the prestige score in Radicchi (2011), which improves

the results significantly; the main benefit they cite is the separation of the team’s ability

into win and loss scores. Other application areas include ranking baseball teams (Hyo-jun

et al. (2021)), ranking sports team managers (Erkol and Radicchi (2021)), and analyzing

social media traffic (Ahmad et al. (2021)).

While the static and dynamic network models form the basis for our approaches, the

inspiration for our main methodological contribution comes from the literature on com-

petitivity graphs. Criado et al. (2013) introduce the notion of a competitivity graph and

teams “competing” across rankings by interchanging relative positions across consecutive

rankings. See Section 3.5.3 for a formal definition. In brief, teams are defined as competing

if they swap relative rank positions in sequential gameweeks. A competitivity graph is a

graph drawn by connecting teams, the nodes, if they compete, with the weight of the edge

connecting them being determined by the number of times they compete. We use this com-

petition notion to define several similarity metrics for teams, which we then use to scale our

network ranking approaches. Criado et al. (2014) then extend this notion of competition

to what they call ‘eventual’ competition, wherein teams eventually compete if they can

be connected by a sequence of competitions (for example, if team i competes with team j

and team j competes with team k, we say that team i and team k eventually compete).

Pedroche et al. (2014) extend this work on competitivity graphs to incorporate rankings

with ties, where ties defined via a threshold of closeness between teams and define a mul-

tiplex network (a multilayered competitivity graph) using different types of competition.

Criado et al. (2016) extend the PageRank algorithm to these multiplex networks and apply
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them to analyze subway networks. Pedroche and Conejero (2020) extend the framework of

competitivity graphs to handle and compare incomplete rankings of teams. Tuesta et al.

(2020) combine both competitivity network techniques and Data Envelopment Analysis to

develop benchmarks for university ranking indicators; the goal of the work was to identify

a set of universities that compete with any selected from the incumbent ranking providers.

To our knowledge, ours is the first work to directly integrate the competition concept

from the competitivity graph literature into network ranking models. While these two

literature streams have cited each other, it was only due to both using network techniques.

Our work provides the first explicit connection and integration of both techniques.

While our work does not directly modify Elo ranking approaches, we do use a version

of the Elo model as a comparable method in our empirical performance tests. As such,

we briefly summarize some work in this literature. Originally formulated by Arpad Elo in

Elo (1978), the system was originally used for ranking chess players. For a comprehensive

coverage of how Elo is applied in sports like football, rugby, and soccer, Stefani and Pollard

(2007) is a comprehensive reference. Elo methods are used as components in other analytics

systems. For example, Hvattum and Arntzen (2010) use Elo models to develop metrics that

are then incorporated in multinomial logistic regression models for ranking professional

soccer teams. As another application, Yang et al. (2014) use Elo models as part of a

pricing model for digital goods in online games. The Elo approach has been compared

to betting odds, in terms of predictive accuracy, as shown in Wunderlich and Memmert

(2018), where the authors then integrate betting odds information into the Elo model to

improve forecasting accuracy. We feature a comparison of our proposed methods to betting

odds, in terms of predictive accuracy, and we document some (unsuccessful) attempts to

beat the odds.

The final class of methods we mention here are paired comparison models, like those of
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the Bradley-Terry model originally introduced in Bradley and Terry (1952). This model

was expanded to include ties in Davidson (1970) and this is the approach we deploy in our

comparisons. Many additions have been made to these models. Dynamic paired compari-

son models for tennis were explored in Glickman (1999), which includes an algorithm that

allows for variability in the parameter estimates as a function of time. Further building

on these models, Knorr-Held (2000) introduces an extension that has close connections to

nonparametric smoothing methods; this model is applied to German Bundesliga data from

1996-1997 and American National Basketball Association data from 1996-1997. Different

temporal dependence structures are explored in Cattelan et al. (2013), who use exponen-

tially weighted moving average processes to model the dependence of team abilities on

historical home and away results. An alternative to the dynamic Bradley-Terry model is

proposed in Baker and McHale (2014) in which the parameter variation is deterministic,

not stochastic. Tutz and Schauberger (2014) propose a general paired comparison model

that allows for the use of additional information; as an application, they are able to show

their model uses the budget of the various teams in the German Bundesliga to enhance

ranking performance. While not the focus of our work, the literature on paired comparison

models does highlight that dynamic models are often used in sports applications. This

reinforces our choice to explore both static and dynamic approaches.

3.4 Data Description

This section describes salient features of our data. All datasets discussed below were ac-

quired from worldfootball.net, a comprehensive resource for international and professional

soccer data (“worldfoolball.net” (2021)). The datasets on the English Premier League,

German Bundesliga, and French Ligue 1 contain data for the 2000/2001−2017/2018 sea-
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sons. The dataset on the Spanish La Liga contains data for the 2000/2001−2015/2016

seasons. The dataset on the Italian Serie A contains data for the 2005/2006−2017/2018

seasons. The omitted seasons are due to data quality issues (missing data and duplicates).

We only include seasons for which we have all the games.

In Table 3.1, we list the number of games of each type as well as the number of goals

scored in each league for the whole dataset. In Table 3.2 we include the same figures in

percentage terms, to facilitate easier comparison.

League Games Home
Wins

Draws Away
Wins

Total
Goals

Home
Goals

Away
Goals

Goals
per
Game

England 6,840 3,176 1,751 1,913 18,179 10,448 7,731 2.66
Spain 6,080 2,926 1,494 1,660 16,378 9,557 6,821 2.69
Germany 5,508 2,577 1,358 1,573 15,803 9,055 6,748 2.88
Italy 4,940 2,287 1,303 1,350 13,018 7,441 5,577 2.64
France 6,692 3,092 1,909 1,691 18,013 10,395 7,618 2.69

Table 3.1: Per-League Total Number of Games and Goals

League Home
Wins

Draws Away
Wins

Home
Goals

Away
Goals

England 46.43% 25.60% 27.97% 57.47% 42.53%
Spain 48.13% 24.57% 27.30% 58.35% 41.65%
Germany 46.79% 24.66% 28.56% 57.30% 42.70%
Italy 46.30% 26.38% 27.33% 57.16% 42.84%
France 46.20% 28.53% 25.27% 57.71% 42.29%

Table 3.2: Per-League Game and Goal Percentages

Examining the summarized data in Tables 3.1 and 3.2 yields some interesting observa-

tions. First, we should note that the German league only has 18 teams, hence the lower

overall number of games and goals. The French Ligue 1 had 18 teams in the 2000/2001

and 2001/2002 seasons, which is why it has fewer games than the English Premier League.
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The Spanish La Liga has the highest percentage of home wins and home goals. In-

terestingly, German Bundesliga football fans are also treated to the most average goals

per game. Both the Italian Serie A and the French Ligue 1 have markedly more draws in

percentage terms (and in absolute terms for France) than the other leagues. This higher

incidence of ties will influence the performance of the ranking methods considered, as most,

if not all the methods, either struggle to predict ties (network models) or over-weight ties

(Bradley-Terry). This is discussed more thoroughly in Section 3.6.5.

3.5 New Network Ranking Methods

This section describes all of the additions we make to both the Park and Newman (2005)

static network model and the Motegi and Masuda (2012) dynamic network model. Sec-

tion 3.5.1 explains how we incorporate home/away information into the network ranking

models. Section 3.5.2 describes our approach to including goal difference information into

the network ranking models. Section 3.5.3 formally introduces the ranking position inter-

change form of competition from Criado et al. (2013), which we use in the ensuing sections.

Section 3.5.4 explains our first approach using the competition concept from Criado et al.

(2013), which we call the Direct Similarity Approach. Section 3.5.5 presents an alternative

formulation to the Direct Similarity Approach, which we call the Mean-Based Direct Sim-

ilarity Approach, that modifies the approach based on an average. Section 3.5.6 explains

our second approach using the competition concept from Criado et al. (2013), which we

call the Matched Set Similarity Approach. Section 3.5.7 presents an alternative formu-

lation to the Matched Set Similarity Approach, which we call the Mean-Based Matched

Set Similarity Approach, that modifies the approach based on an average. Section 3.5.8

explains our third and final approach using the competition concept from Criado et al.
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(2013), which we call the Unmatched Set Similarity Approach. Section 3.5.9 presents

an alternative formulation to the Unmatched Set Similarity Approach, which we call the

Mean-Based Unmatched Set Similarity Approach, that modifies the approach based on an

average. Section 3.5.10 lists the various combinations of features we examine, the explana-

tions of which are relegated to Appendix B.2. Section 3.5.11 briefly compares the various

similarity measures and highlights what they emphasize.

3.5.1 Home/Away Effects

We note that the network ranking models we discuss were originally developed for sports

other than soccer. In particular, the Park and Newman (2005) model was initially tested

on collegiate football in the U.S.A., and the Motegi and Masuda (2012) model was initially

tested on professional tennis data. Tennis does not have the same notion of a home or

away game as soccer, since games are played in a series of tournaments in various hosting

countries and venues; a player does not have a home stadium. It should be noted that

tennis players do receive additional encouragement from their countrymen, but this is a

different phenomenon. However, in sports that do have this distinction, this home/away

status is valuable information. It is common wisdom to assume that there is an inherent

advantage to being the home team in a professional soccer game, which is supported by the

data presented in Section 3.4. As such, home wins and losses should be treated differently

than away wins and losses. Here, we introduce a way to incorporate this information in

network models.

To better elucidate our approach, we deploy a running example. Consider a soccer

league with four teams: A, B, C, and D. Suppose that in the first gameweek team A plays

team B at A’s home stadium and team C plays team D at team D’s home stadium. As
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such, both teams B and team C are playing away. Now, suppose that team B wins against

team A and team C ties team D.

In the Park and Newman (2005) static model, our adjacency matrix for this gameweek

is the following (where the rows and columns correspond to the teams in alphabetical

order):

A =


0 1 0 0

0 0 0 0

0 0 0 0.5

0 0 0.5 0

 . (3.41)

For the Motegi and Masuda (2012) model, we simply index the adjacency matrix by

time forming A1, in which case A1 = A from (3.41), at least in the first period (we recall that

the static model uses a single adjacency matrix constructed iteratively each gameweek).

The most straightforward approach to accounting for differences in home and away

wins is to construct our adjacency matrix A as in (3.41), but instead of adding 1 for an

away win and 0.5 for an away tie, we introduce a parameter kA > 1 and add kA and 0.5kA

instead. To demonstrate, our modified adjacency matrix is as follows:

A =


0 kA 0 0

0 0 0 0

0 0 0 0.5

0 0 0.5kA 0

 . (3.42)

For the dynamic model, At = A from (3.42). This approach implies that home losses and

home ties are worse than away losses and away ties, which also holds with conventional
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wisdom.

For our base case testing, we use a value of kA = 1.3 (we explore more parameter values

for a subset of methods in Section 3.6.4).

3.5.2 Goal/Difference Effects

Another element to consider in a professional soccer game is the goal difference. Specifically,

while any given game has three outcome possibilities (i.e. home win, draw, away win),

there is nuance in home and away wins. For example, if team i defeats team j with a final

scoreline of 1 − 0, we may believe that the game is a relatively close contest. However, if

team i defeats team j with a final scoreline of 4 − 0, we may believe that team i handily

defeated team j. Given that we are ranking teams, the difference in team ability implied

by the scoreline is valuable information to include in our ranking model.

We return to our running example with four teams: A, B, C, and D. Suppose that in

the first gameweek team A plays team B and team C plays team D. Now, suppose that

team B wins against team A with a scoreline of 4 − 2 and team C ties team D. For the

game between teams A and B, the goal difference is 2.

We can incorporate this information into the adjacency matrix in a similar fashion as

our home-away information. We introduce a parameter, kD > 1; whenever team i scores a

win against team j we add

(kD)
d−1

to the jith element of A, where d is the goal difference. As such, instead of the adjacency
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matrix in (3.41), we use the following:

A =


0 k1D 0 0

0 0 0 0

0 0 0 0.5

0 0 0.5 0

 . (3.43)

For the dynamic model, At = A in (3.43). The only difference in the static and dynamic

approaches, as far as adjacency matrices are concerned, is that the static model constructs

a cumulative adjacency matrix over the gameweeks, where the dynamic model constructs

a new adjacency matrix per gameweek (which are subsequently discounted as the ranking

period proceeds). Notice that this does not affect the treatment of ties. This has the effect

of making non-close losses more penalizing as well, which is ideal, since such games indicate

a more noticeable ability gap between the two teams.

For our testing, we use a value of kD = 1.3. We consider other values for this parameter

in Section 3.6.4.

We note that it is is possible to combine both home/away and goal difference informa-

tion. We explain how to do this in Appendix B.2.

3.5.3 Ranking Crossings as Competition

So far, we consider two adjustments to the basic static and dynamic network ranking

models, and both adjustments focus on the type of match, be it location or result. Next,

we turn our attention to α. The base model we have considered thus far assumes that

indirect wins and losses are accrued because an indirect win or loss would reflect a similar

result if the indirectly connected teams faced off in direct confrontation. Reflecting the
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strength of this assumption, both the static and dynamic network approach use a common

α for all teams, which treats all indirect wins and losses the same, in terms of attribution.

However, this assumption is predicated on the teams being closely matched or competitive

with one another. If the teams are not similar or competitive, then the assumption is

called into question; it may be the case that the direct confrontation is less likely to go as

predicted by the indirect confrontations.

To weaken this assumption, we propose scaling α according to how similar the two

teams under consideration are. As indirect wins and losses pass through the network, each

team acts as a filter, where the attribution of indirect wins and losses will increase or

decrease according to how similar the teams are along each edge in the network. We posit

that this will better-reflect the relationship between direct and indirect confrontations and

will yield superior accuracy.

Consulting the literature, Criado et al. (2013) provide a convenient and intuitive metric.

To understand their metric, first consider two vectors of team rankings, one for game week

t, and one for game week t + 1, which we denote by rt and rt+1 respectively, where the

row number is the rank of the team in that row. Criado et al. (2013) define two teams

as competing if they exchange relative positions from ranking rt to rt+1. As a specific

example, if team A was ranked better than team B in ranking rt and then team B was

ranked better than team A in ranking rt+1, we say A and B competed one time, and

they are thereby mutual competitors. Note: the metric requires that competition happen

between consecutive rankings, so if the above example occurred between rankings rt and

rt+2, it would not count as an instance of competition. This notion is intuitively appealing,

since we would expect teams that are closer in terms of capability to oscillate above and

below one another in a ranking, while teams that are very different would settle in different

regions of the ranking list.
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It is important to note that to measure competition in this fashion, we must have a

minimum of two rankings. If we have only one ranking, there is no opportunity to have

teams cross each other. As such, for the first two gameweeks, our proposed approaches

reduce to either the static Park and Newman (2005) model or the dynamic Motegi and

Masuda (2012) model, if they are static or dynamic models respectively. This allows our

approaches to be applied to leagues that, for example, have only two gameweeks. We

call these first two ranking periods our calibration period, which allows us to generate

potential instances of competition. Starting in the third ranking period, we implement our

new approaches.

For use in later sections, let Ct be a matrix where the ijth entry is the number of times

teams i and j have crossed in the rankings from periods 1 through t − 1 inclusive. This

matrix is, therefore, computed before we rank the teams based on results in period t.

3.5.4 Direct Similarity Approach

Our first similarity approach is a relatively simple one. Specifically, we consider the normal-

ized number of competitions that occur between every pair of teams. We call this approach

the Direct Similarity Approach to contrast it with our subsequent methods, which consider

more complicated, indirect measures of similarity.

Common to both the static and dynamic model variants of the Direct Similarity Ap-

proach is the creation of a matrix that stores the pairwise similarity metrics. Recall that,

at time t, the greatest potential number of rank crossings (competition instances) is t− 1.

We form a matrix Dt where each component dtij is equal to:

dtij =
Ct

ij

t− 1
. (3.44)
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We now need to scale this matrix, since, as pointed out in Park and Newman (2005),

the sums composing the win and loss scores do not converge in the static model if the

discount factor is larger than α. As such, we must scale Dt appropriately. To preserve the

relative strength of the similarity metric, we first divide all elements of Dt by the maximum

element of this matrix. Given that Dt is a nonnegative matrix, this division normalizes the

entries between 0 and 1. We then multiply the matrix by α, which then scales α according

to the relative strength of the similarity metric.

Formally, we denote the maximum element of Dt as Dt
max. We then let γDt

max = α, so

γ = α
Dt

max
is the desired factor. Let D̃t = γDt.

This matrix is used in both the static model of Section 3.5.4.1 and the dynamic model

of Section 3.5.4.2

3.5.4.1 Static Model

We use the matrix D̃t to adjust the static model of Park and Newman (2005). We compute

the adjusted win score as:

wt+1
i =

n∑
j=1

Aji +
n∑

j=1

n∑
k=1

AkjD̃
t
jiAji

+
n∑

j=1

n∑
k=1

n∑
h=1

AhkD̃
t
kjAkjD̃

t
jiAji + · · · .

(3.45)

Note: we have removed α, as we use multiple degrees of similarity as a discount factor.

We see from the form of (3.45), we scale indirect wins according to how competitive all

the teams in the degree of indirection are.
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We propose a similar scheme for losses:

lt+1
i =

n∑
j=1

Aij +
n∑

j=1

n∑
k=1

AijD̃
t
i,jAjk

+
n∑

j=1

n∑
k=1

n∑
h=1

AijD̃
ijAjkD̃

t
j,kAkh + · · · .

(3.46)

In the same fashion as the Park and Newman (2005) static network ranking model, we

then compute the score via:

sti = wt
i − lti. (3.47)

We then rank the teams according to the scores.

3.5.4.2 Dynamic Model

We use the matrix D̃t to adjust the dynamic model of Motegi and Masuda (2012). In the

following, note that ◦ denotes the Hadamard product, which is the element-wise matrix

product. We define the dynamic win score at time t in vector form, denoted by wt as

follows:

wt = W⊤
t 1, (3.48)
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where W⊤
t is defined as follows:

Wt = At + e−β(t−(t−1))
∑

mn∈{0,1}

A(t−1)(D̃
t ◦ At)

mn

+ e−β(t−(t−2))
∑

mn−1,mn∈{0,1}

A(t−2)(D̃
t−1 ◦ A(t−1))

mn−1(S̃t ◦ At)
mn

+ · · ·+ e−β(t−1)
∑

m2,...,mn∈{0,1}

A1(D̃
2 ◦ A2)

m2 · · · (D̃t ◦ At)
mn .

(3.49)

The lose score is defined analagously:

lt = Lt1, (3.50)

where Lt is defined as follows:

Lt = A⊤
t + e−β(t−(t−1))

∑
mn∈{0,1}

A⊤
(t−1)(D̃

t ◦ A⊤
t )

mn

+ e−β(t−(t−2))
∑

mn−1,mn∈{0,1}

A⊤
(t−2)(D̃

t−1 ◦ A⊤
(t−1))

mn−1(D̃t ◦ A⊤
t )

mn

+ · · ·+ e−β(t−1)
∑

m2,...,mn∈{0,1}

A⊤
1 (D̃

2 ◦ A⊤
2 )

m2 · · · (D̃t ◦ A⊤
t )

mn .

(3.51)

Our total score is defined as:

st = wt − lt. (3.52)

3.5.4.2.1 Implementation Details To implement this algorithm, we could attempt

to compute the Wt and Lt matrices at each iteration using the above formulae. However,

when implementing this approach, the number of terms to consider grows at an exponential
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rate, leading to computational issues. As such, it is useful to form an update equation, as

the original dynamic model used.

Note: for implementation purposes, we would be unable to compute Dt when t < 3, as

we need at least two ranking periods to measure competitions. However, if we set D2 = I

(meaning the similarity effects are not used for the first two periods, since they cannot be),

where I is the identity matrix, then the following update equations hold:

wt =

A
⊤
1 1, t = 1

A⊤
t 1+ e−β

(
I + (D̃t ◦ A⊤

t )
)
w(t−1), t > 1.

(3.53)

lt =

A11, t = 1

At1+ e−β
(
I + (D̃t ◦ At)

)
l(t−1), t > 1.

(3.54)

Using (3.53) and (3.54) allows for much faster computation.

3.5.5 Mean-Based Direct Similarity Approach

We propose an alternative formulation of the Direct Similarity Approach. Note that the

denominator of (3.44) grows as t increases. If a league reaches a state of relative sta-

bility early in the ranking period, it could be that minimal competitions occur over the

remaining gameweeks. This may cause the average Direct Similarity to decrease over time.

To investigate what happens when the denominator scales with the average number of

competitions, we change the denominator.

Given that Ct is symmetric, all of the direct competition information is contained in

either the the upper or lower triangular portion of the matrix. As such, we define the
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following as a metric of average pairwise competition at epoch t:

d̄t =

∑n
i=1

∑n
j≥iC

t
ij

(
∑n

k=1 k)− n
(3.55)

where the numerator is the sum of the elements in the upper triangular portion of the

matrix Ct and the denominator is the number of elements in the upper triangular portion

minus the number of diagonal elements. We can simplify this to:

d̄t =

∑n−1
i=1

∑n
j≥i+1C

t
ij∑n−1

k=1 k
. (3.56)

Next, we create our similarity metric matrix D̄t, which is defined as:

D̄t =
1

d̄t
Ct. (3.57)

In Section 3.5.5.1, we demonstrate how we use the matrix D̄t to modify the static Park

and Newman (2005) model. In Section 3.5.5.2, we use D̄t to modify the dynamic Motegi

and Masuda (2012) model.

3.5.5.1 Static Model

Here we use D̄t to modify the static Park and Newman (2005) model. We can use this

matrix exactly the same as we do our original Direct Similarity Approach matrix, but like

that approach, we have to normalize the matrix according to the value of α, otherwise the

win and lose scores will not converge. We take the maximum element of D̄t, which we

denote as D̄t
max. We then let γD̄t

max = α, so γ = α
D̄t

max
is the desired factor. Let ˜̄Dt = γD̄t.

The computations are the same as in Section 3.5.4.1.
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3.5.5.2 Dynamic Model

Here we use D̄t to modify the dynamic Motegi and Masuda (2012) model. Unlike the

static Mean-Based Direct Similarity Approach, the dynamic model for Mean-Based Direct

Similarity will no longer feature normalization. We used normalization for the static models

largely out of computational necessity. The dynamic models have finitely many terms, so

convergence is not an issue. We choose to not use normalization so we can emphasize any

benefit or detriment of the adaptive denominator. As such, we define the following matrix,

which we use analogously to the matrix D̃t in Section 3.5.4.2:

D̄t
α = αD̄t. (3.58)

3.5.6 Matched Set Similarity Approach

So far, we consider direct similarity, as measured by the number of times teams compete

across rankings. However, it is possible to define metrics of indirect similarity. In particular,

if we wish to determine how similar two teams are to one another, one natural basis of

comparison to consider is the set of teams both teams compete with. Here, we take

inspiration from the notion proposed in Criado et al. (2014) of eventual competition,

where two teams i and j eventually compete if they can be connected by a sequence of

competing teams (e.g. i competes with x, x competes with y, and y competes with j).

To use this idea in a similarity metric, we take the number of common teams they

compete with and enumerate them. Let I tij(k) be the set of teams that both teams i and

j compete with k times by epoch t. We call this the “matched” approach as both team i

and team j compete with each team in the set k times. The cardinality of this set, denoted

by |I tij(k)| is, therefore, the number of teams that both i and j compete with precisely k
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times by epoch t. Note that we treat k strictly; a team that i and j both compete with k

times by epoch t is only used once in this computation; it is not counted again when we

consider, say, k − 1 competitions.

Let n be the number of teams we are ranking. We define a similarity index between

teams based on this notion of competition as follows:

mt
ij =

∑t−1
k=1 k · |I tij(k)|

(t− 1) · (n− 1)
, (3.59)

where the numerator computes the number of mutual competitors per number of com-

petitions k and the denominator denotes the maximum possible number of competitions

multiplied by the maximum number of competitors. We can collect all of these scores into

a matrix, which we denote as M t. As noted earlier, convergence can be an issue. As such,

we can scale the entries ofM t with respect to α. Specifically, at every epoch, we recompute

α using our adjacency matrix, then we compute M t. We find the maximum entry of M t,

which we denote M t
max. We then find γt = α/M t

max. We define our adjusted similarity

score matrix as:

M̃ t = γtM
t. (3.60)

In Section 3.5.6.1, we show how we use this matrix to adjust the Park and Newman (2005)

static ranking model. In Section 3.5.6.2, we show how we use this matrix to adjust the

Motegi and Masuda (2012) dynamic ranking model.
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3.5.6.1 Static Model

In a similar fashion to our Direct Similarity Approach, we now use the M̃ t matrix to adjust

the Park and Newman (2005) static ranking model. We compute our win score as follows:

wt+1
i =

n∑
j=1

Aji +
n∑

j=1

n∑
k=1

AkjM̃
t
jiAji

+
n∑

j=1

n∑
k=1

n∑
h=1

AhkM̃
t
k,jAkjM̃

t
j,iAji + · · · .

(3.61)

We define a lose score similarly:

lt+1
i =

n∑
j=1

Aij +
n∑

j=1

n∑
k=1

AijM̃
t
ijAjk

+
n∑

j=1

n∑
k=1

n∑
h=1

AijM̃
t
ijAjkM̃

t
jkAkh + · · · .

(3.62)

We then compute the total score as follows:

st+1
i = wt+1

i − lt+1
i . (3.63)

We then use this total score to rank the teams.
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3.5.6.2 Dynamic Model

We now introduce a dynamic approach to our Matched Set Similarity approach of Section

3.5.6.1. We define the win score as follows:

wt = W⊤
t 1, (3.64)

where W⊤
t is defined as follows:

Wt = At + e−β(t−(t−1))
∑

mn∈{0,1}

A(t−1)(M̃
t ◦ At)

mn

+ e−β(t−(t−2))
∑

mn−1,mn∈{0,1}

A(t−2)(M̃
t−1 ◦ A(t−1))

mn−1(M̃ t ◦ At)
mn

+ · · ·+ e−β(t−1)
∑

m2,...,mn∈{0,1}

A1(M̃
2 ◦ A2)

m2 · · · (M̃ t ◦ At)
mn .

(3.65)

The lose score is defined analagously:

lt = Lt1, (3.66)

where Lt is defined as follows:

Lt = A⊤
t + e−β(t−(t−1))

∑
mn∈{0,1}

A⊤
(t−1)(M̃

t ◦ A⊤
t )

mn

+ e−β(t−(t−2))
∑

mn−1,mn∈{0,1}

A⊤
(t−2)(M̃

t−1 ◦ A⊤
(t−1))

mn−1(M̃ t ◦ A⊤
t )

mn

+ · · ·+ e−β(t−1)
∑

m2,...,mn∈{0,1}

A⊤
1 (M̃

2 ◦ A⊤
2 )

m2 · · · (M̃ t ◦ A⊤
t )

mn .

(3.67)
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Our total score is defined as:

st = wt − lt. (3.68)

3.5.6.2.1 Implementation Details Similar to the Direct Similarity Approach, we

introduce update equations to allow for faster computation. We allow M2 = I, where I is

the identity matrix; the following update equations then hold:

wt =

A
⊤
1 1, t = 1

A⊤
t 1+ e−β

(
I + (M̃ t ◦ A⊤

t )
)
w(t−1), t > 1.

(3.69)

lt =

A11, t = 1

At1+ e−β
(
I + (M̃ t ◦ At)

)
l(t−1), t > 1.

(3.70)

Using (3.69) and (3.70) allows for much faster computation.

3.5.7 Mean-Based Matched Set Similarity Approach

Similar to Section 3.5.5, we consider an alternative formulation to our Matched Set Sim-

ilarity approach. Specifically, we introduce a new denominator that is not explicitly tied

to the gameweek t. The numerator is the same as in Section 3.5.5.

Let n be the number of teams we are ranking. We can compute an average of matched

set pairwise competitions via:

m̄t =

∑n−1
i=1

∑n
j≥i+1

∑t−1
k=1 k · |I tij(k)|∑n−1

i=1 i
. (3.71)
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The numerator in (3.71) computes the sum of the number teams each pair of teams both

compete with k times, multiplied by k, where k goes from 1 through t− 1 inclusive. The

denominator in (3.71) is the number of pairs of teams. We then define the matrix M̄ t,

where each entry mij is defined as:

mij =

∑t−1
k=1 k · |I tij(k)|

m̄t
. (3.72)

In Section 3.5.7.1, we briefly explain how this alternative matrix M̄ t is used in the static

model. In Section 3.5.7.2, we describe the dynamic model.

3.5.7.1 Static Model

As noted before, the static model requires normalization to ensure convergence. We take

the maximum element of M̄ t, which we denote as M̄ t
max. We then let γM̄ t

max = α, so

γ = α
M̄t

max
is the desired factor. Let ˜̄M t = γM̄ t. The computations are the same as in

Section 3.5.6.1.

3.5.7.2 Dynamic Model

Similar to the Mean-Based Direct Similarity Approach, convergence is no longer a concern,

since the method relies on a finite number of terms. As such, we define the following matrix,

which we use analogously to the matrix M̃ t in Section 3.5.6.2:

M̄ t
α = αM̄ t. (3.73)
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3.5.8 Unmatched Set Similarity Approach

We now consider a relaxed version of the Matched Set Similarity Approach of Section

3.5.6. In particular, we note that we can relax the requirement that both teams i and j

have competed with the common team k times in the computation. Instead, we sum the

number of times i and j compete with each team in the set of common competitors, then

normalize this sum. Let Iij be an index set denoting the teams that both i and j compete

with. We define our unmatched similarity metric (where “unmatched” is used since, in

this case, we do not care if teams i and j have competed with a team the same number of

times) as:

utij =

∑
k∈Iij Cki +

∑
k∈Iij Ckj

2|Iij|(t− 1)
if |Iij| > 0, (3.74)

= 0 if |Iij| = 0. (3.75)

We collect all of these scores into a matrix, which we denote as U t. To handle conver-

gence concerns, we scale the entries of U t with respect to α. Specifically, at every epoch,

we recompute α using our adjacency matrix, then we compute U t. We find the maximum

entry of U t, which we denote U t
max. We then find γt = α/U t

max. We define our adjusted

similarity score matrix as:

Ũ t = γtU
t. (3.76)

In Section 3.5.8.1 we show how Ũ t is used in the static model. In Section 3.5.8.2 we show

how Ũ t is used in the dynamic model.
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3.5.8.1 Static Model

Using Ũ t, we compute our win score as follows:

wt+1
i =

n∑
j=1

Aji +
n∑

j=1

n∑
k=1

AkjŨ
t
jiAji

+
n∑

j=1

n∑
k=1

n∑
h=1

AhkŨ
t
kjAkjŨ

t
jiAji + · · · .

(3.77)

We define a lose score similarly:

lt+1
i =

n∑
j=1

Aij +
n∑

j=1

n∑
k=1

AijŨ
t
ijAjk

+
n∑

j=1

n∑
k=1

n∑
h=1

AijŨ
t
ijAjkŨ

t
jkAkh + · · · .

(3.78)

We then compute the total score as follows:

st+1
i = wt+1

i − lt+1
i . (3.79)

We then use this total score to rank the teams.

3.5.8.2 Dynamic Model

Here we introduce a dynamic version of our Unmatched Set Similarity approach of Section

3.5.8.1. Our win score is as follows:

wt = W⊤
t 1, (3.80)
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where W⊤
t is defined as follows:

Wt = At + e−β(t−(t−1))
∑

mn∈{0,1}

A(t−1)(Ũ
t ◦ At)

mn

+ e−β(t−(t−2))
∑

mn−1,mn∈{0,1}

A(t−2)(Ũ
t−1 ◦ A(t−1))

mn−1(Ũ t ◦ At)
mn

+ · · ·+ e−β(t−1)
∑

m2,...,mn∈{0,1}

A1(Ũ
2 ◦ A2)

m2 · · · (Ũ t ◦ At)
mn .

(3.81)

The lose score is defined analogously:

lt = Lt1, (3.82)

where Lt is defined as follows:

Lt = A⊤
t + e−β(t−(t−1))

∑
mn∈{0,1}

A⊤
(t−1)(Ũ

t ◦ A⊤
t )

mn

+ e−β(t−(t−2))
∑

mn−1,mn∈{0,1}

A⊤
(t−2)(Ũ

t−1 ◦ A⊤
(t−1))

mn−1(Ũ t ◦ A⊤
t )

mn

+ · · ·+ e−β(t−1)
∑

m2,...,mn∈{0,1}

A⊤
1 (Ũ

2 ◦ A⊤
2 )

m2 · · · (Ũ t ◦ A⊤
t )

mn .

(3.83)

Our total score is defined as:

st = wt − lt. (3.84)
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3.5.8.2.1 Implementation Details Once again, if we allow U2 = I, where I is the

identity matrix, then we can use the following update equations:

wt =

A
⊤
1 1, t = 1

A⊤
t 1+ e−β

(
I + (Ũ t ◦ A⊤

t )
)
w(t−1), t > 1.

(3.85)

lt =

A11, t = 1

At1+ e−β
(
I + (Ũ t ◦ At)

)
l(t−1), t > 1.

(3.86)

Using (3.85) and (3.86) allows for much faster computation.

3.5.9 Mean-Based Unmatched Set Similarity Approach

Similar to the Mean-Based Direct Similarity and Mean-Based Matched Set Similarity meth-

ods, we also provide an alternative formulation for the Unmatched Set Similarity Approach.

We can compute an average of unmatched set pairwise competitions via:

ūt =

∑n−1
i=1

∑n
j≥i+1(

∑
k∈Iij Cki +

∑
k∈Iij Ckj)∑n−1

i=1 i
. (3.87)

The numerator in (3.87) computes the sum of competitions each pair of teams have with

teams in their set of mutual competitors Iij. The denominator in (3.87) is the number of

pairs of teams.

We then define the matrix Ū t, where each entry uij is defined as:

uij =

∑
k∈Iij Cki +

∑
k∈Iij Ckj

ūt
. (3.88)
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In Section 3.5.9.1 we describe how Ū t is used in the static model. In Section 3.5.9.2 we

explain how Ū t is used in the dynamic model.

3.5.9.1 Static Model

To handle convergence concerns, we scale the entries of Ū t with respect to α. Specifically,

at every epoch, we recompute α using our adjacency matrix, then we compute Ū t. We find

the maximum entry of Ū t, which we denote Ū t
max. We then find γt = α/Ū t

max. We define

our adjusted similarity score matrix as:

˜̄U t = γtŪ
t. (3.89)

The computations are the same as in Section 3.5.8.1.

3.5.9.2 Dynamic Model

Convergence is no longer a concern, since the method relies on a finite number of terms.

As such, we define the following matrix, which we use analogously to the matrix Ũ t in

Section 3.5.8.2:

Ū t
α = αŪ t. (3.90)

3.5.10 Combination Methods

We consider the above approaches in isolation, but we also consider them in combination.

Specifically, we consider the following combination methods in both static and dynamic

form:
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1. Home/Away + Goal Difference

2. Home/Away + Direct Similarity

3. Home/Away + Matched Set Similarity

4. Home/Away + Unmatched Set Similarity

5. Home/Away + Mean-Based Direct Similarity

6. Home/Away + Mean-Based Matched Set Similarity

7. Home/Away + Mean-Based Unmatched Set Similarity

8. Goal Difference + Direct Similarity

9. Goal Difference + Matched Set Similarity

10. Goal Difference + Unmatched Set Similarity

11. Goal Difference + Mean-Based Direct Similarity

12. Goal Difference + Mean-Based Matched Set Similarity

13. Goal Difference + Mean-Based Unmatched Set Similarity

14. Home/Away + Goal Difference + Direct Similarity

15. Home/Away + Goal Difference + Matched Set Similarity

16. Home/Away + Goal Difference + Unmatched Set Similarity

17. Home/Away + Goal Difference + Mean-Based Direct Similarity

18. Home/Away + Goal Difference + Mean-Based Matched Set Similarity

19. Home/Away + Goal Difference + Mean-Based Unmatched Set Similarity.

The details of these approaches are included in Appendix B.2.

3.5.11 Similarity Approach Comparison

With all of the formulae presented, it is useful to briefly compare what each similarity

approach emphasizes. Note: the following also holds for the Mean-Based versions. Direct
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Similarity is the most straightforward; it simply tracks the number of times teams cross in

successive ranking periods, scaling indirect wins and losses based on this. Both Matched

and Unmatched Set Similarity are concerned, instead, with how many crossings teams tally

with a set of mutual competitors. We examine a normalized similarity score between teams

that share common opponents.

On this last statement is where the Matched and Unmatched Set Similarity differ

somewhat. The Matched Set Similarity can be thought of as our most strict similarity

approach; in a league where teams play each other, albeit at different times, only teams

that have played another team the same number of times up to a specific point in the

season will count. However, in the Umatched Set Similarity, we allow for teams that have

not played the same number of times to determine the similarity score.

3.6 Performance Results and Analysis

Section 3.6.1 explains our chosen performance metric for evaluating our ranking methods.

Section 3.6.2 presents and discusses the performance of the various ranking methods, both

static and dynamic. Section 3.6.3 contains our rank correlation analysis, which we use

to see if performance discrepancies for our dynamic models in particular leagues can be

explained. Section 3.6.4 contains our sensitivity analysis, in which we examine the impact

of our model parameters on a subset of our ranking models. Section 3.6.5 uses composite

betting odds as a final basis of comparison for our methods.
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3.6.1 Performance Metric

We use a simple predictive accuracy metric for evaluating the performance of our ranking

methods. For a given dataset under consideration, we step forward iteratively gameweek-

by-gameweek generating new rankings after accounting for the matches played in the game-

week. We then use these rankings to predict the results of the matches in the subsequent

gameweek.

For a match between team i and team j, if the rank of team i is lower than team j

(where a lower rank is superior, as the best ranked team is ranked 1), then the system

predicts that team i will win. If the ranks are tied, the system predicts a tie. If the rank

of team i is higher than team j, then the system predicts team j will win. To compute

predictive accuracy, we use the following formula:

predictive accuracy =
number of correct predictions

number of predictions made
× 100%. (3.91)

It should be noted that there exist specific edge cases when a prediction is non-standard.

In all the leagues under consideration, there exists a promotion/relegation system. Namely,

at the start of a new season, some teams leave the league and teams enter the league to

replace them. In the English Premier League, for example, the bottom three teams are

relegated and leave the league after the season, joining the English Football League (the

league below the Premier League). Three teams then join the Premier League from the

English Football League. Such promotion and relegation can cause the ranking system to

make a prediction about a team it has yet to see against a team it has ranked before, or

two unranked teams.

If the ranking system encounters a team it has not yet ranked, the following occurs:
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• If both teams are unranked, the prediction is always a tie.

• If only one team is unranked, the ranked team is predicted to win.

One may wonder why we choose predictive accuracy. Predictive accuracy, when calcu-

lated as shown in (3.91), can be interpreted as showing how well a given ranking model

captures the information from match performance. In theory, if a ranking model more

readily captures information and translates this information to rankings, the ranking-based

prediction should better reflect the real ability of the teams, which, in turn, should lead to

better predictions about future matches.

It should also be noted that this metric, or similar analogues of it, have been used in

both Motegi and Masuda (2012) and Abernethy (2018). However, unlike those works, we

do not remove tied games from our dataset. We choose to do so as this allows for direct

comparison with betting odds in Section 3.6.5, as betting odds make predictions on all

three potential match results.

For the remainder of this section, we compute average predictive accuracy from models

deployed on four-season chunks of data. For example, one chunk is the 2000/2001 season

through (and including) the 2003/2004 season of the English Premier League. The next

chunk is the 2001/2002 season through (and including) the 2004/2005 season. We create

chunks for all available data in each of our leagues. For each of these chunks, we compute

the predictive accuracy of each method. To compute the averages, we simply average the

predictive accuracy over all chunks. The total number of chunks differs per league, based

on the data availability mentioned in Section 3.4.
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3.6.2 Ranking Method Performance Comparison

In Section 3.6.2.1 we examine our static models. In Section 3.6.2.2 we consider our dynamic

models. Note: in this section we focus on average performance for concision, but in

Appendix B.3 we include the line plots demonstrating per-data-chunk performance for

each league. Those figures, in general, support the conclusions demonstrated below.

3.6.2.1 Static Models

To begin, Table 3.3 presents both preexisting ranking methods and our home/away and

goal difference network models of Sections 3.5.1 and 3.5.2 along with associated estimated

standard errors. The standard error is computed as the sample standard deviation divided

by the square root of the sample size; in this case, the sample size is the number of starting

years we use for rolling data windows.

The Static Network model is the Park and Newman (2005) model. Note that the Static

Network (α = 0) column is the same as the Park and Newman (2005) static ranking model,

but we fix α = 0, meaning that the method does not use any indirect wins or losses. Further,

the HA + GD column is a combination of the home/away and goal difference approaches.
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League League
Points

Elo Bradley-
Terry

Static
Network

Static
Network
(α = 0)

Home
/Away
(HA)

Goal
Differ-
ence
(GD)

HA +
GD

England 49.11%
(0.41%)

39.68%
(0.77%)

38.18%
(0.60%)

48.62%
(0.45%)

25.40%
(0.35%)

49.08%
(0.46%)

49.16%
(0.45%)

49.25%
(0.44%)

Spain 46.49%
(0.70%)

40.24%
(0.68%)

34.67%
(1.00%)

46.20%
(0.67%)

28.87%
(0.37%)

46.51%
(0.73%)

46.84%
(0.68%)

46.83%
(0.69%)

Germany 46.92%
(0.32%)

39.73%
(0.41%)

34.92%
(0.67%)

46.43%
(0.29%)

28.06%
(0.24%)

46.93%
(0.24%)

46.78%
(0.29%)

46.87%
(0.31%)

Italy 47.68%
(0.73%)

38.25%
(1.19%)

36.20%
(0.77%)

47.27%
(0.68%)

26.05%
(0.61%)

47.54%
(0.64%)

47.56%
(0.63%)

47.54%
(0.64%)

France 43.50%
(0.59%)

36.62%
(0.38%)

33.38%
(0.55%)

43.05%
(0.52%)

27.56%
(0.26%)

43.49%
(0.51%)

43.66%
(0.57%)

43.77%
(0.54%)

Table 3.3: Existing Approaches, Home/Away, and Goal Difference Predictive Accuracy
Average of 4-season Rolling Windows

Examining Table 3.3, we immediately see the role α plays in the network models; when

α = 0, the model performs rather poorly. Further, this validates the usefulness of the

indirect wins and losses concept, as the Static Network model performs markedly better

when α is allowed to be as intended. We note that both the Elo and Bradley-Terry models

only marginally outperform random guessing; as such, we will not consider them in the

remaining tables and figures. Turning our attention to our new methods, we see that

the Home/Away, Goal Difference, and HA + GD combination all outperform the Static

Network model. This follows our intuition; including additional, useful information should

yield better results.

Next, we consider the League Points approach, which outperforms the Static Network

approach. This, unto itself, is somewhat interesting, as it shows that the relatively simple

system that is in place already does a reasonably good job of capturing the strengths of

the teams. We note, however, that four of the five leagues considered (all except Italy)
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has at least one network approach (either Home/Away, Goal Difference, or HA + GD)

that outperforms the League Points approach. This is important, as the League Points

approach is locally valid, but it doesn’t provide a well-defined way to incorporate teams

from multiple leagues into the system. In contrast, the network model approach allows for

multiple leagues to be added seamlessly, provided there is at least match between teams

from the included leagues.

Next, in Table 3.4, we compare the Park and Newman (2005) model with our similarity

approaches from Sections 3.5.4.1, 3.5.6.1, 3.5.8.1, 3.5.5.1, 3.5.7.1, and 3.5.9.1.

League Static
Network

Direct
Similarity
(DS)

Mean-
Based
Direct
Simi-
larity
(MBDS)

Matched
Set Sim-
ilarity
(MSS)

Mean-
Based
Matched
Set Sim-
ilarity
(MBMSS)

Unmatched
Set Sim-
ilarity
(USS)

Mean-
Based Un-
matched
Set Sim-
ilarity
(MBUSS)

England 48.62%
(0.45%)

48.94%
(0.44%)

48.94%
(0.44%)

48.77%
(0.47%)

48.77%
(0.47%)

48.83%
(0.46%)

48.80%
(0.46%)

Spain 46.20%
(0.67%)

46.38%
(0.67%)

46.38%
(0.67%)

46.31%
(0.66%)

46.31%
(0.66%)

46.40%
(0.69%)

46.37%
(0.68%)

Germany 46.43%
(0.29%)

46.67%
(0.26%)

46.67%
(0.26%)

46.84%
(0.25%)

46.84%
(0.25%)

46.72%
(0.28%)

46.60%
(0.27%)

Italy 47.27%
(0.68%)

47.27%
(0.65%)

47.27%
(0.65%)

47.19%
(0.69%)

47.19%
(0.69%)

47.25%
(0.69%)

47.12%
(0.62%)

France 43.05%
(0.52%)

43.40%
(0.51%)

43.38%
(0.51%)

43.51%
(0.49%)

43.51%
(0.49%)

43.27%
(0.50%)

43.38%
(0.51%)

Table 3.4: Original Static Network vs Similarity Approaches Predictive Accuracy Average
of 4-season Rolling Windows

Examining Table 3.4, we see that all of our similarity approaches outperform the Park

and Newman (2005) Static Network model except for in the Italian Serie A, of which

only the Direct Similarity (DS) and Mean-Based Direct Similarity (MBDS) match the
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performance. As one might expect, many of the mean-based methods produce very similar

results to their non-mean-based counterparts. This is partially due to the normalization we

introduce, which is required for the algorithms to converge, and diminishes the difference

between the two classes of algorithms. In Section 3.6.2.2 covering our dynamic model

results, we see that the dynamic versions, which are non-normalized, are more distinct in

terms of performance.

Interestingly, the best-performing similarity approach changes per league. For the En-

glish Premier League and Italian Serie A, Direct Similarity and Mean-Based Direct Simi-

larity were the most accurate. For the Spanish La Liga, Unmatched Set Similarity (USS)

was the most accurate. For the German Bundesliga and the French Ligue 1, the Matched

Set Similarity (MSS) and Mean-Based Matched Set Similarity (MBMSS) were the best-

performing approaches. This suggests that for practical use, the similarity metric should

vary depending on the league of interest.

Next, in Table 3.5 we consider a set of combination approaches incorporating home/away

and similarity information, with our home/away approach of Section 3.5.1 serving as our

basis of comparison.
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League HA HA + DS HA +
MBDS

HA +
MSS

HA +
MBMSS

HA + USS HA +
MBUSS

England 49.08%
(0.46%)

48.94%
(0.45%)

48.94%
(0.45%)

48.96%
(0.45%)

48.96%
(0.45%)

49.00%
(0.45%)

48.76%
(0.41%)

Spain 46.51%
(0.73%)

46.50%
(0.73%)

46.50%
(0.73%)

46.55%
(0.73%)

46.55%
(0.73%)

46.50%
(0.72%)

46.60%
(0.67%)

Germany 46.93%
(0.24%)

46.69%
(0.28%)

46.69%
(0.28%)

46.87%
(0.26%)

46.87%
(0.26%)

46.75%
(0.25%)

46.63%
(0.26%)

Italy 47.54%
(0.64%)

47.34%
(0.70%)

47.34%
(0.70%)

47.38%
(0.67%)

47.38%
(0.67%)

47.47%
(0.63%)

47.23%
(0.65%)

France 43.39%
(0.51%)

43.50%
(0.53%)

43.50%
(0.53%)

43.62%
(0.50%)

43.62%
(0.50%)

43.56%
(0.48%)

43.54%
(0.52%)

Table 3.5: Original Static Network + Home/Away vs Similarity Approaches + Home/Away
Predictive Accuracy Average of 4-season Rolling Windows

A cursory examination of Table 3.5 indicates that there are somewhat mixed results

to combining home/away and similarity approaches. For the English Premier League, the

German Bundesliga, and the Italian Serie A, performance is superior when no similarity

information is incorporated. For the Spanish La Liga, three approaches, the Matched Set

Similarity, Mean-Based Matched Set Similarity, and Mean-Based Unmatched Set Similarity

all demonstrate superior performance. The French Ligue 1 is the apparent outlier for

this comparison, as all similarity approaches outperform the regular static network model

with home/away information. These observations further support our conclusion that the

network model choice in implementation should be league-dependent.

Next, in Table 3.6, we compare the Park and Newman (2005) model with goal differ-

ence information of Section 3.5.2 with combination approaches that use both similarity

approaches and goal difference information.
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League GD GD + DS GD +
MBDS

GD +
MSS

GD +
MBMSS

GD + USS GD +
MBUSS

England 49.16%
(0.45%)

49.09%
(0.46%)

49.09%
(0.46%)

49.20%
(0.44%)

49.20%
(0.44%)

49.16%
(0.43%)

48.96%
(0.42%)

Spain 46.84%
(0.68%)

46.76%
(0.67%)

46.76%
(0.67%)

46.76%
(0.62%)

46.76%
(0.62%)

46.79%
(0.71%)

46.56%
(0.68%)

Germany 46.78%
(0.29%)

46.82%
(0.33%)

46.82%
(0.33%)

47.01%
(0.27%)

47.01%
(0.27%)

46.93%
(0.29%)

46.69%
(0.31%)

Italy 47.56%
(0.63%)

47.42%
(0.65%)

47.24%
(0.65%)

47.61%
(0.61%)

47.61%
(0.61%)

47.49%
(0.59%)

47.23%
(0.57%)

France 43.66%
(0.57%)

43.79%
(0.52%)

43.79%
(0.52%)

43.68%
(0.53%)

43.68%
(0.53%)

43.64%
(0.53%)

43.57%
(0.49%)

Table 3.6: Original Static Network + Goal Difference vs Similarity Approaches + Goal
Difference Predictive Accuracy Average of 4-season Rolling Windows

In Table 3.6, we see that all leagues except the Spanish La Liga have a similarity-

based approach that exhibits superior performance to the comparable non-similarity-based

approach. In particular, for England, Germany, and Italy, the Matched Set Similarity and

Mean-Based Matched Set Similarity Approaches demonstrated the strongest performance.

For France’s Ligue 1, the Direct Similarity and Mean-Based Direct Similarity were the

best-performing approaches. Interestingly, for all leagues, the Mean-Based Unmatched Set

Similarity was the worst performing approach; this method may be muting the effect of

goal difference information in some fashion.

Our final performance table for our static model results, Table 3.7 presents the Park

and Newman (2005) model with both home/away and goal difference information as the

basis of comparison with the similarity approaches combined with home/away and goal

difference information.
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League HA +
GD

HA + GD
+ DS

HA +
GD +
MBDS

HA +
GD +
MSS

HA +
GD +
MBMSS

HA + GD
+ USS

HA + GD
+ MBUSS

England 49.25%
(0.44%)

49.14%
(0.42%)

49.14%
(0.42%)

49.13%
(0.44%)

49.13%
(0.44%)

49.24%
(0.45%)

48.99%
(0.39%)

Spain 46.83%
(0.69%)

46.77%
(0.67%)

46.67%
(0.67%)

46.77%
(0.67%)

46.77%
(0.67%)

46.77%
(0.73%)

46.56%
(0.71%)

Germany 46.87%
(0.31%)

46.97%
(0.30%)

46.97%
(0.30%)

46.87%
(0.29%)

46.87%
(0.29%)

47.05%
(0.29%)

46.80%
(0.29%)

Italy 47.54%
(0.64%)

47.55%
(0.59%)

47.55%
(0.59%)

47.63%
(0.63%)

47.63%
(0.63%)

47.51%
(0.62%)

47.28%
(0.59%)

France 43.77%
(0.54%)

43.76%
(0.54%)

43.76%
(0.54%)

43.89%
(0.54%)

43.89%
(0.54%)

43.67%
(0.54%)

43.68%
(0.50%)

Table 3.7: Original Static Network + Home/Away + Goal Difference vs Similarity Ap-
proaches + Home/Away + Goal Difference Predictive Accuracy Average of 4-season Rolling
Windows

Table 3.7 further supports the notion that the league choice and method are interlinked.

For both the English Premier League and Spanish La Liga, simply including home/away

and goal difference information into the Park and Newman (2005) model generates the best

performance. For the German Bundesliga, the Unmatched Set Similarity with home/away

and goal difference information is the clear winner. For both the Italian Serie A and French

Ligue 1, the Matched Set Similarity and Mean-Based Set Similarity approaches yielded the

best results in this comparison.

Across all the static network methods tested on the data used in this study, these are

the best methods per league and the corresponding predictive accuracy achieved:

• England: (49.25%) HA + GD

• Spain: (46.84%) GD

• Germany: (47.05%) USS + HA + GD

• Italy: (47.63%) MSS + HA + GD and MBMSS + HA + GD
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• France: (43.89%) MSS + HA + GD and MBMSS + HA + GD.

The key result to note from this is that the best method is different per league. It should

be noted that these methods are not guaranteed to be the best for future performance.

While we demonstrate it more thoroughly in Section 3.6.3, we note that the additional

information methods (any with home/away and goal difference effects), have the effect of

increasing the total score difference between teams. As shown by the above list, all leagues

benefit from the inclusion of one or both types of this information.

We also note that the similarity models, in general, reduce the average total score differ-

ence amongst the teams, since they scale the effect of indirect wins and losses downwards.

We note that different similarity approaches are superior for predicting different leagues.

This may imply that certain underlying relationships are more important. For example, in

both Italy and France, the Matched Set Similarity and Mean-Based Matched Set Similarity

approaches performed best. This suggests that, given the strict nature of these approaches,

only a few pairwise relationships are most important for driving the attribution of indirect

wins and losses. Such differences are good motivation for future work.

3.6.2.2 Dynamic Models

To begin, Table 3.8 presents both preexisting ranking methods and our home/away and goal

difference network models of Sections 3.5.1 and 3.5.2. Specifically, the Dynamic Network

model is the Motegi and Masuda (2012) model.
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League League
Points

Elo Bradley-
Terry

Dynamic
Network

HA GD HA +
GD

England 49.11%
(0.41%)

39.68%
(0.77%)

38.18%
(0.60%)

48.42%
(0.37%)

48.44%
(0.38%)

48.98%
(0.40%)

48.78%
(0.43%)

Spain 46.49%
(0.70%)

40.24%
(0.68%)

34.67%
(1.00%)

45.95%
(0.79%)

46.10%
(0.82%)

46.40%
(0.83%)

46.43%
(0.84%)

Germany 46.92%
(0.32%)

39.73%
(0.41%)

34.92%
(0.67%)

46.23%
(0.31%)

46.41%
(0.27%)

46.74%
(0.26%)

46.84%
(0.26%)

Italy 47.68%
(0.73%)

38.25%
(1.19%)

36.20%
(0.77%)

46.62%
(0.51%)

46.84%
(0.59%)

46.94%
(0.57%)

47.09%
(0.54%)

France 43.50%
(0.59%)

36.62%
(0.38%)

33.38%
(0.55%)

41.92%
(0.65%)

42.21%
(0.60%)

42.65%
(0.52%)

42.88%
(0.55%)

Table 3.8: Existing Approaches, Home/Away, and Goal Difference Predictive Accuracy
Average of 4-season Rolling Windows

First, we note that including home/away and goal difference information immedi-

ately improves the dynamic model noticeably in all leagues. Secondly, unlike the static

model cases, none of the dynamic network models outperform the League Points approach.

However, it should be noted that the dynamic network model, when incorporating both

home/away and goal/difference information, has four parameters (kA, kD, α, and β). In

our results display, we simply used comparable parameters to the static models. However,

in Section 3.6.4.2 we examine a subset of the methods and explore how predictive accuracy

changes when these parameters are modified.

Next, in Table 3.9, we compare the Motegi and Masuda (2012) model with our similarity

approaches from Sections 3.5.4.2, 3.5.6.2, 3.5.8.2, 3.5.5.2, 3.5.7.2, and 3.5.9.2.
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League Dynamic
Network

Direct
Similarity
(DS)

Mean-
Based
Direct
Simi-
larity
(MBDS)

Matched
Set Sim-
ilarity
(MSS)

Mean-
Based
Matched
Set Sim-
ilarity
(MBMSS)

Unmatched
Set Sim-
ilarity
(USS)

Mean-
Based Un-
matched
Set Sim-
ilarity
(MBUSS)

England 48.42%
(0.37%)

48.50%
(0.36%)

46.67%
(0.43%)

48.46%
(0.36%)

48.45%
(0.39%)

48.58%
(0.38%)

48.53%
(0.37%)

Spain 45.95%
(0.79%)

45.43%
(0.79%)

44.37%
(0.59%)

45.57%
(0.79%)

45.51%
(0.82%)

45.57%
(0.79%)

45.58%
(0.78%)

Germany 46.23%
(0.31%)

46.37%
(0.28%)

45.19%
(0.33%)

46.43%
(0.28%)

46.32%
(0.29%)

46.42%
(0.28%)

46.49%
(0.26%)

Italy 46.62%
(0.51%)

47.16%
(0.48%)

44.90%
(0.59%)

47.22%
(0.50%)

47.13%
(0.53%)

47.13%
(0.47%)

47.29%
(0.50%)

France 41.92%
(0.65%)

41.83%
(0.60%)

41.27%
(0.55%)

41.90%
(0.59%)

42.05%
(0.59%)

41.88%
(0.59%)

41.81%
(0.62%)

Table 3.9: Original Dynamic Network vs Similarity Approaches Predictive Accuracy Av-
erage of 4-season Rolling Windows

The first thing we note from Table 3.9 is that the Mean-Based Direct Similarity no-

ticeably underperforms the other approaches here. Note that unlike the static network

models, for the mean-based dynamic approaches we do not normalize the similarity matri-

ces, so performance differences are more pronounced. This suggests that the scaling in the

Mean-Based Direct Similarity approach is potentially over-weighting some relationships

and under-weighting others. For the remainder of this section, we omit this method and

its variants for concision.

Continuing our examination of Table 3.9, we see that all leagues except the Spanish

La Liga have at least one similarity approach that exhibits superior performance to the

standard dynamic model. For the English Premier League, German Bundesliga, and Italian

Serie A, all similarity approaches except the Mean-Based Direct Similarity outperform the

standard dynamic model. In particular, the Italian Serie A exhibts the largest performance
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gains.

Next, in Table 3.10 we consider a set of combination approaches incorporating home/away

and similarity information, with our home/away approach of Section 3.5.1 serving as our

basis of comparison.

League HA HA + DS HA +
MSS

HA +
MBMSS

HA +
USS

HA +
MBUSS

England 48.44%
(0.38%)

48.74%
(0.37%)

48.80%
(0.36%)

48.71%
(0.36%)

48.82%
(0.38%)

48.81%
(0.35%)

Spain 46.10%
(0.82%)

45.75%
(0.78%)

45.88%
(0.77%)

45.87%
(0.84%)

45.85%
(0.82%)

45.83%
(0.78%)

Germany 46.41%
(0.27%)

46.64%
(0.29%)

46.68%
(0.29%)

46.63%
(0.30%)

46.69%
(0.29%)

46.72%
(0.27%)

Italy 46.84%
(0.59%)

47.48%
(0.49%)

47.56%
(0.50%)

47.25%
(0.47%)

47.54%
(0.47%)

47.64%
(0.48%)

France 42.21%
(0.60%)

42.28%
(0.54%)

42.27%
(0.57%)

42.31%
(0.55%)

42.18%
(0.57%)

42.35%
(0.57%)

Table 3.10: Original Dynamic Network + Home/Away vs Similarity Approaches +
Home/Away Predictive Accuracy Average of 4-season Rolling Windows

Examining Table 3.10, we first notice that, for the Spanish La Liga, the Motegi and

Masuda (2012) model with home/away information is superior to the similarity approaches

incorporating home/away information. However, for all the other leagues considered, the

similarity methods outperform, sometimes markedly, except for the French Ligue 1 and

the Unmatched Set Similarity approach. It is worth noting again that the Italian Serie A

seems to respond the most, in the dynamic model context, to the addition of similarity

information.

Next, in Table 3.11, we compare the Motegi and Masuda (2012) model with goal dif-

ference information of Section 3.5.2 with combination approaches that use both similarity

approaches and goal difference information.
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League GD GD + DS GD +
MSS

GD +
MBMSS

GD +
USS

GD +
MBUSS

England 48.98%
(0.40%)

49.05%
(0.31%)

48.99%
(0.32%)

48.92%
(0.34%)

49.03%
(0.32%)

49.03%
(0.32%)

Spain 46.40%
(0.83%)

46.21%
(0.78%)

46.30%
(0.80%)

46.27%
(0.79%)

46.30%
(0.80%)

46.33%
(0.79%)

Germany 46.74%
(0.26%)

46.84%
(0.25%)

46.90%
(0.23%)

47.04%
(0.24%)

46.93%
(0.24%)

46.83%
(0.24%)

Italy 46.94%
(0.57%)

47.63%
(0.61%)

47.55%
(0.62%)

47.72%
(0.61%)

47.59%
(0.57%)

47.63%
(0.60%)

France 42.65%
(0.52%)

42.63%
(0.57%)

42.65%
(0.58%)

42.55%
(0.57%)

42.64%
(0.56%)

42.63%
(0.58%)

Table 3.11: Original Dynamic Network + Goal Difference vs Similarity Approaches + Goal
Difference Predictive Accuracy Average of 4-season Rolling Windows

In Table 3.11, we see that the Spanish La Liga continues to exhibit underperformance in

similarity approaches, when compared to the comparable dynamic network model without

similarity information. In light of the consistent underperformance, we examine rank cor-

relations in Section 3.6.3. Conversely, all similarity approaches outperform in the German

Bundesliga and Italian Serie A under similar comparison. The English Premier League

and French Ligue 1 demonstrate mixed performance, with the former exhibiting some

approaches outperforming and underperfoming while the latter only manages to match

the Motegi and Masuda (2012) model with goal difference information in one instance,

underperfoming in the others.

Our final performance table for our dynamic model results, Table 3.12 presents the

Motegi and Masuda (2012) model with both home/away and goal difference information

as the basis of comparison with the similarity approaches combined with home/away and

goal difference information.
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League HA +
GD

HA + GD
+ DS

HA +
GD +
MSS

HA +
GD +
MBMSS

HA +
GD +
USS

HA + GD
+ MBUSS

England 48.78%
(0.43%)

49.09%
(0.32%)

49.18%
(0.32%)

49.12%
(0.33%)

49.20%
(0.33%)

49.12%
(0.33%)

Spain 46.43%
(0.84%)

46.58%
(0.80%)

46.60%
(0.80%)

46.55%
(0.82%)

46.64%
(0.81%)

46.55%
(0.82%)

Germany 46.84%
(0.26%)

47.06%
(0.25%)

47.13%
(0.22%)

47.02%
(0.25%)

47.12%
(0.21%)

47.02%
(0.25%)

Italy 47.09%
(0.54%)

47.88%
(0.59%)

47.84%
(0.61%)

47.75%
(0.64%)

47.94%
(0.58%)

47.75%
(0.64%)

France 42.88%
(0.55%)

43.01%
(0.59%)

43.03%
(0.59%)

42.90%
(0.60%)

42.90%
(0.60%)

42.90%
(0.60%)

Table 3.12: Original Dynamic Network + Home/Away + Goal Difference vs Similarity
Approaches + Home/Away + Goal Difference Predictive Accuracy Average of 4-season
Rolling Windows

Table 3.12 reveals that when compared to the Motegi and Masuda (2012) method

with home/away and goal difference information, all the remaining similarity approaches

outperform. Perhaps most-notably, while the individual home/away and goal difference

comparisons showed that similarity approaches were underperfoming for the Spanish La

Liga, here they all outperform. The Italian Serie A demonstrates the largest response to

adding similarity information in the dynamic models, and this is consistent across all the

dynamic models we have examined.

Across all the dynamic network methods tested on the data used in this study, these

are the best methods per league and the corresponding predictive accuracy achieved:

• England: (49.20%) USS + HA + GD

• Spain: (46.64%) USS + HA + GD

• Germany: (47.13%) MSS + HA + GD

• Italy: (47.94%) USS + HA + GD
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• France: (43.03%) MSS + HA + GD.

As noted with the static models, these models are not guaranteed to be the best-

performing on future data.

3.6.3 Rank Correlation Analysis

In this section, we examine rank correlation of our dynamic network models to see if any

noteworthy patterns emerge that may help explain the performance on the Spanish La

Liga data. We focus on the various similarity metric approaches, as those are where the

performance discrepancies arose. Section 3.6.3.1 describes the method we use for computing

rank correlation. Section 3.6.3.2 contains our correlation data analysis.

3.6.3.1 Spearman Rank Correlation

Our chosen rank correlation metric is the Spearman rank correlation. This metric computes

correlation between two vectors of rankings. In our application, we consider two vectors of

rankings, corresponding to two sequential ranking periods, rt and rt+1. Let these vectors

be of length n. Let the ith component of each vector be the rank of team i. To compute

the Spearman rank correlation, we use the following formula:

rs = 1− 6
∑n

i=1 d
2
i

n(n2 − 1)
, (3.92)

where d2i = (rt+1,i − rt,i)
2. To compute the average Spearman rank correlation for our

testing, for each 4-year data chunk, per ranking method, we compute the sequential rank

correlations, gameweek to gameweek. After we have all these correlations for a data chunk,
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we average them. We then average over all chunks to get our overall average rank correla-

tion, per method.

Note that higher rank correlation implies that ranks change less often, on average, be-

tween gameweeks. A higher rank correlation average is an indicator that the league settles

into its final standing sooner, which is an indication that the league is less competitive.

3.6.3.2 Data Analysis

In Table 3.13, we present the average rank correlation of the Motegi and Masuda (2012)

dynamic network approach and our basic similarity metric approaches.

League Dynamic
Network

Direct
Similarity
(DS)

Mean-
Based
Direct
Simi-
larity
(MBDS)

Matched
Set Sim-
ilarity
(MSS)

Mean-
Based
Matched
Set Sim-
ilarity
(MBMSS)

Unmatched
Set Sim-
ilarity
(USS)

Mean-
Based Un-
matched
Set Sim-
ilarity
(MBUSS)

England 93.86% 92.88% 93.80% 92.85% 92.83% 92.88% 92.90%
Spain 92.42% 90.65% 92.96% 90.74% 90.77% 90.67% 90.75%
Germany 92.72% 91.31% 93.06% 91.30% 91.28% 91.27% 91.28%
Italy 93.84% 92.42% 93.57% 92.46% 92.42% 92.43% 92.45%
France 92.41% 90.73% 92.87% 90.74% 90.71% 90.77% 90.74%

Table 3.13: Original Dynamic Network vs Similarity Approaches Spearman Rank Corre-
lation Average of 4-season Rolling Windows

Examining Table 3.13, we see that Spain, for most of the approaches, features noticeably

lower average rank correlation than the other leagues. This suggests that, at least for these

methods, the teams continue to move throughout the rankings more so than the other

leagues.

121



In Table 3.14, we consider the average rank correlation when home/away information

is added.

League HA HA + DS HA +
MSS

HA +
MBMSS

HA +
USS

HA +
MBUSS

England 94.23% 93.87% 93.01% 92.98% 93.01% 93.02%
Spain 92.70% 90.91% 90.94% 90.93% 90.91% 90.93%
Germany 92.85% 91.43% 91.42% 91.51% 91.44% 91.38%
Italy 94.04% 92.59% 92.63% 92.54% 92.64% 92.60%
France 92.81% 91.00% 90.98% 90.97% 91.08% 91.01%

Table 3.14: Original Dynamic Network + Home/Away vs Similarity Approaches +
Home/Away Spearman Rank Correlation Average of 4-season Rolling Windows

A similar pattern emerges in Table 3.14, with Spain having a noticeably lower rank

correlation. Interestingly, we should note that the lower rank correlation is not necessarily

associated with worse performance. Specifically, Italy, of which all the similarity approaches

yield noticeable performance improvements, demonstrates lower rank correlation for the

similarity approaches. This suggests that what is occurring with Spain could be league-

specific.

In Table 3.15, we examine the average rank correlation of the dynamic network ap-

proaches with goal difference information.

League GD GD + DS GD +
MSS

GD +
MBMSS

GD +
USS

GD +
MBUSS

England 94.42% 93.39% 93.38% 93.38% 93.39% 93.36%
Spain 93.01% 91.29% 91.30% 91.37% 91.32% 91.30%
Germany 93.16% 91.83% 91.82% 91.91% 91.84% 91.81%
Italy 94.21% 92.80% 92.91% 92.88% 92.89% 92.85%
France 92.64% 90.98% 90.84% 91.04% 91.05% 90.96%

Table 3.15: Original Dynamic Network + Goal Difference vs Similarity Approaches + Goal
Difference Spearman Rank Correlation Average of 4-season Rolling Windows
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Examining Table 3.15, we see that it is no longer evident that Spain has a markedly

lower average rank correlation than the other leagues. Conversely, it is apparent that

England has the highest rank correlation consistently. This could partially be explained

by the influence of the large clubs in the English Premier League that have had historically

strong multi-season performances (Manchester United is the canonical example).

In Table 3.16, we examine the dynamic network ranking models that include both

home/away and goal difference information.

League HA +
GD

HA + GD
+ DS

HA +
GD +
MSS

HA +
GD +
MBMSS

HA +
GD +
USS

HA + GD
+ MBUSS

England 94.47% 93.54% 93.51% 93.53% 93.54% 93.53%
Spain 92.98% 91.52% 91.57% 91.55% 91.47% 91.55%
Germany 93.12% 92.08% 92.08% 92.11% 92.03% 92.11%
Italy 94.21% 93.05% 93.04% 93.01% 93.08% 93.01%
France 92.81% 91.38% 91.33% 91.37% 91.41% 91.37%

Table 3.16: Original Dynamic Network + Home/Away + Goal Difference vs Similarity
Approaches + Home/Away + Goal Difference Spearman Rank Correlation Average of 4-
season Rolling Windows

In Table 3.16, we again see that performance and rank correlation are not necessarily

associated. Further, after examining all the tables in this section, it is worth noting that,

on average, incorporating similarity information decreases rank correlation. This is some-

what intriguing as the inclusion of additional information related to home/away and goal

difference information seems to increase rank correlation.

There are explanations for both phenomena. The home/away and goal difference infor-

mation, in essence, cause teams to have greater differences in total score. This means that

any differences in rank are effectively larger. As such, it is more difficult for those ranks

to change per gameweek, leading to higher rank correlation. The similarity information
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has the opposite effect. Specifically, the similarity information will reduce the influence

of teams that do not exchange positions with other teams as often; this is likely to occur

to both the best and worst teams. Additionally, the influence of teams that exchange

positions more often, likely those in the middle, will grow. As such, the teams are all

closer together, in terms of total score, which leads to easier rank changes and more rank

oscillations. This drives average rank correlation downwards. Overall, both of these effects

combine and their influence on the rank correlation is league-dependent.

3.6.4 Sensitivity Analysis

In Section 3.6.4.1 we examine the sensitivity of our top performing static model to param-

eter changes. In Section 3.6.4.2 we examine the sensitivity of our top performing dynamic

model to parameter changes.

3.6.4.1 Static Model

Recall that our top performing static model was the Park and Newman (2005) static

network ranking model using both home/away and goal difference information using data

from the English Premier League. In Figure 3.2, we plot average predictive accuracy as

a function of kA and kD, our parameters for home/away and goal difference information

respectively.
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Figure 3.2: Average Predictive Accuracy as a function of kA and kD

Examining Figure 3.2, we can clearly see a parabolic shape induced by changes in

the goal difference parameter kD. It appears that an ideal value for this parameter is

approximately 1.6. The home/away parameter kA, conversely, appears to produce a near-

monotonic increase in average predictive accuracy as it grows. From this particular sensi-

tivity analysis, the combination of parameters that yielded the highest average predictive

accuracy is kA = 1.6, kD = 1.6 with an average predictive accuracy of 49.52%.
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3.6.4.2 Dynamic Model

Recall that our top-performing dynamic model was the Unmatched Set Similarity Approach

with home/away and goal difference information using data from the English Premier

league. In Figure 3.3, we present average predictive accuracy of this method as a function

of kA and kD, keeping α = 0.2 and β = 0.1 from our overall empirical testing.

Figure 3.3: Average Predictive Accuracy as a function of kA and kD; α = 0.2, β = 0.1

Figure 3.3 suggests that kD induces a similar parabolic shape to the static case, though

for higher values of kA, higher values of kD are favourable. For this particular sensitivity

analysis, the optimal parameter combination is kA = 2.0 and kD = 1.6, with an average

predictive accuracy of 49.45%.
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In Figure 3.4, we use the highest-performing parameterization from the previous sensi-

tivity analysis (kA = 2.0 and kD = 1.6) and plot average predictive accuracy as a function

of α and β.

Figure 3.4: Average Predictive Accuracy as a function of α and β; kA = 2 and kD = 1.6

Note that, for easier viewing, the axes in Figure 3.4 increase towards the centre of the

image. This figure clearly shows that increasing α and β, at least for these values of kA

and kD, produces notable decreases in average predictive accuracy. For this particular

sensitivity analysis, the optimal parameter combination is α = 0.1 and β = 0, with an

average predictive accuracy of 49.76%.
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3.6.5 Betting Odds Comparison

As a final basis of comparison, we acquire data from website Football-Data.co.uk, which

contains comprehensive betting odds data for all the leagues considered in our study

(“Football-Data.co.uk” (2023)). Betting odds can be considered the approach to beat,

since if one can consistently outperform the betting odds, a profit can be made. We pro-

vide the comparison to show that there still exists a gap, in terms of performance, between

our approaches and the betting odds. However, we do so while acknowledging that bet-

ting odds are set through a complicated process; not only to bookmakers use complicated

ensemble models to predict game outcomes, but they incorporate the current betting pool

into their evaluations.

To compute the predictive accuracy of the betting odds, we simply assume that the

betting odds predict the result with the most likely odds (for example, in a decimal betting

odds system, the outcome with the lowest odds is the one with the largest estimated

probability of occurring). We then compare this predicted result to the actual result; if

the predicted result matches the actual result, a correct prediction is recorded; otherwise,

an erroneous prediction is recorded. The predictive accuracy is then computed as

Betting Odds Predictive Accuracy =
correct predictions

total number of matches
× 100%. (3.93)

The per year predictive accuracy is shown in Figure 3.5.
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Figure 3.5: Per Season Betting Odds Predictive Accuracy

The average per-league predictive accuracy is shown in Table 3.17.

England Spain Germany Italy France
53.42% 53.42% 51.54% 53.97% 50.22%

Table 3.17: Average Betting Odds Predictive Accuracy Per Country

Examining Figure 3.5, we can see that the betting odds predictive accuracy can oscillate

rather widely year-over-year. However, the average predictive accuracies in Table 3.17 do

indicate that their performance, on average, outpaces our proposed methods. As alluded

to earlier, the chief performance superiority of the betting odds is in predicting ties.

Consider, for example, our highest-performing static network approach: the Park and
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Newman (2005) model featuring both home/away and goal difference information used

in ranking the English Premier League. The total predictive accuracy for this model is

49.25%. However, the method predicts 63.76% of home wins and 70.21% of away wins

correctly. Unfortunately, the method predicts 0.07% of draws correctly. The reason for

this is largely due to the chosen predictive scheme. Namely, we only predict a tie if teams

have the same rank. However, teams only have the same rank if they have the same total

score, which is an extremely rare occurrence partially driven by the fact that the method

relies on convergence rather than a closed form.

We have attempted several approaches to improve our methods’ predictive accuracy,

all of which are detailed in Appendix B.4. So far, there appears to be a challenging

tradeoff wherein any gains made in predicting ties are overshadowed by losses in accuracy

in predicting home and away wins. However, this challenge is something we plan to address

in future research, which we make reference to in Section 3.8.

3.7 Discussion

In Section 3.7.1 we discuss the main takeaways from our methodology. In Section 3.7.2 we

consider the managerial implications of our results.

3.7.1 Methodological Considerations

As demonstrated in Section 3.6, we see that our additions to both static and dynamic

network ranking models show superior performance in terms of predictive accuracy than

the approaches they are based on. As mentioned earlier, the methodology choice does

matter for optimal results, as one similarity metric is not optimal for all leagues. Further,
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our sensitivity analyses reveals that parameter choice matters, as both the home/away

parameter kA and the goal difference parameter kD produce noticeable changes in the

performance of methods using these parameters.

One key takeaway from our work is that there is valuable, performance-enhancing infor-

mation contained within the time-series of rankings. Specifically, competition information,

using the Criado et al. (2013) definition, is useful for scaling the influence of the α param-

eter in network ranking models, in terms of enhancing prediction accuracy. Further, by

incorporating this information, we are able to treat teams heterogeneously, which opens

up future inquiries. For example, we note that Set Similarity methods do particularly well

in the Italian Serie A; this points to a potential hidden structure to uncover in terms of

how the teams are similar or dissimilar with each other.

It remains to be be seen whether our results here generalize to wider samples of teams.

To our knowledge, our work has considered the largest sample of professional soccer games

in the ranking literature to date. We leave it for future work to investigate whether these

results hold for larger networks. However, using the network ranking models developed

here, we can add more leagues without much difficulty, provided we include cross-league

competitions like the UEFA Champions League.

It should also be noted that the best methods as indicated from our testing are not

guaranteed to be the best for future performance. When actually implementing these

models for predictive purposes, it would likely be best to combine this model with a sort of

meta-model that predicts which network model will do best for the upcoming gameweek.

This is beyond the scope of this work, but potentially a subject for future study.
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3.7.2 Managerial Implications

Beyond methodological considerations, how can firms use our results? Firstly, the methods

we introduce yield greater predictive accuracy than existing, comparable approaches. As

such, team managers, sports analysts, and betting odds bookmakers who use ranking

models as part of their analytics suite will likely benefit from incorporating our approaches

into their systems.

Secondly, as briefly mentioned earlier, our similarity metrics provide a useful basis

through which to examine team interrelationships in professional soccer. The type of

similarity that leads to the best performance in terms of predictive accuracy could be an

indication of a particular relationship, in terms of performance, among the teams of a given

league. For example, these types of similarity could help uncover incidents of match fixing

if, say, the rankings appear to be fluctuating more or less than expected and similarity

values diverge from projections.

Finally, our methods introduced here can be modified for other network model domains.

One such domain that has become relevant in recent years is the modelling of epidemics

via networks. Infection networks are typically arranged where nodes are individuals and

edges are drawn between nodes pointing in the direction of infection. Applying network

ranking models to these networks allows us to rank those individuals who are the most

prevalent spreaders of the infection. Depending on the particular question being studied,

the modeller may wish to encode additional information into the model; our approaches

to home/away and goal/difference information can be modified for this purpose. Further,

studying rank crossings via similarity metrics like those we introduce in this work could

be used to categorize various types of individuals in the network and help predict which

individuals have the highest potential of becoming highly infectious individuals.
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3.8 Conclusion

Ultimately, sports enthusiasts watch and analyze sports as part of a grand spectacle of

comparison. The base component of these comparisons is an assessment of the strength

of the athletes and teams in the competition, and this is most commonly estimated via

ranking methodologies. We introduce augmentations to both the static Park and Newman

(2005) and dynamic Motegi and Masuda (2012) network ranking models that incorpo-

rate additional information. Further, our work provides the first integration of the rank

competition concept of Criado et al. (2013) directly into network ranking models. We

demonstrate that these additions yield superior empirical performance by using data on

five of the most popular European men’s professional soccer teams.

Our results highlight that the best-performing model differs between leagues. As such,

model choice should be carefully considered for practical implementation. Further, our

sensitivity analyses indicate that parameter choices for incorporating home/away and goal

difference information have a material effect on performance.

As with any work, ours has limitations. Firstly, our performance conclusions are based

off of a specific set of data, though for the leagues covered, this does represent the full

population of data for the years used. It remains to be seen if our performance improve-

ments hold for leagues in other countries or continents. A second limitation is that our

work concerns only one sport; we cannot extrapolate these results to, say, professional

basketball without testing. Thirdly, our approaches only consider one form of similarity

and fixed parameters throughout the testing procedure; it could be the case that varying

these components each period could lead to superior performance not demonstrated here.

This work presents many future vectors of inquiry, some of which we mention here

briefly. One of the most natural follow-up studies would be to work on developing a method
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to consistently beat the betting odds, using our ranking approaches as a basis. Our initial

thinking is that some sort of ensemble approach could be useful, though balancing efficacy

with model parsimony would be a meaningful part of the challenge. Another avenue to

pursue would be using the efficacy of the additional information we introduce here as a basis

to pursue further econometric analyses. For example, if we find home/away information

to be useful, especially in certain years, we could use this as a basis to investigate factors

that may have influenced the importance of this information. One potential idea that

comes to mind is that some countries may experience marked weather disparities when

comparing their northernmost and southernmost points; home/away information might

be indicative of more noteworthy weather differentials (as teams play in weather they are

less-accustomed to).
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Chapter 4

Conclusion

Management science provides organizations of all sizes with approaches to enhance oper-

ational efficiency and efficacy. Chief among these approaches is the modelling of systems

using mathematics to capture salient features, from which we can derive insights otherwise

unobtainable. Models will differ significantly depending on the problem at hand, as they

should, since the model must be well-suited to the problem. However, a common goal from

the modelling exercise is to incorporate new features or information to better-represent the

system than existing approaches.

In this dissertation, both essays focus on introducing new approaches to modelling their

problems of interest. The first essay uses distributional censoring to capture the effects of

Operational Protocol Modifications (OPMs) on the service process and the associated em-

ployment contracts. The second essay proposes ways to incorporate useful soccer-relevant

information like home/away status and goal difference into network ranking models. Fur-

ther, and more significantly, it ties two streams of literature together by incorporating

similarity metrics based on rank crossings directly into these network ranking models. No-

135



tably, while both essays deploy different techniques to address distinct problem domains,

they are unified through the overarching concept of comparison. Be it between different

system states or competing entities, the notion of comparison is fundamental to manage-

ment science.

While generating a model is interesting, as management scientists, we are most-concerned

with how our models impact our understanding of management and operational practice.

Both of our essays contribute insights as follows:

• The first essay provides operations management analysts a useful tool − distribu-

tional censoring − to use in analyzing service systems. As demonstrated by this

essay, the effects on expected employer utility are nonlinear in nature, so any pro-

posed changes to OPMs should consider both the current system state as well as the

state imposed by the changes.

• The second essay provides any user of network ranking models with a collection of

tools to enhance these models. Team managers, league policymakers, and sports bet-

ting bookmakers can all use these tools to better-understand the relative positioning

of teams in their league(s) of interest. Further, our approaches are somewhat general,

insofar as similar approaches could be used to incorporate other useful information.

As demonstrated by this dissertation, management science is well-situated to continue

providing insights to managers and stakeholders of various organizations. As it relates to

our work here, there are many potential future vectors of inquiry. We plan on further

generalizing our modelling in the first essay to incorporate more general contract forms

and alternative forms of censoring. As for the second essay, the most-evident extension is

to more-seriously explore the problem of predicting ties and upsets in professional soccer,

using our network ranking models as a base input.
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Criado, R., Garćıa, E., Pedroche, F., & Romance, M. (2013). A new method for comparing

rankings through complex networks: Model and analysis of competitiveness of major

european soccer leagues. Chaos: An Interdisciplinary Journal of Nonlinear Science,

23 (4), 043114. https://doi.org/10.1063/1.4826446

138

https://doi.org/10.1063/1.4826446


Davidson, R. R. (1970). On extending the bradley-terry model to accommodate ties in

paired comparison experiments. Journal of the American Statistical Association,

65 (329), 317–328.

Diamond, P. (1998). Managerial incentives: On the near linearity of optimal compensation.

Journal of Political Economy, 106 (5), 931–957.

Durgin, A., Mahoney, A., Cox, C., Weetjens, B. J., & Poling, A. (2014). Using Task Clar-

ification and Feedback Training to Improve Staff Performance in an East African

Nongovernmental Organization. Journal of Organizational Behavior Management,

34, 122–143.

Elo, A. (1978). The Rating of Chessplayers, Past and Present. Arco Publishing Inc.
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Appendix A

Contract Theory Proofs

A.1 Solutions of the Optimization Problem (POPI)

We prove the solutions given in Subsection 2.5. We note that the solutions are obtained

under Assumption 2.4.0.1 (i.e., ∆S(x) and ∆T (x) are monotone increasing and concave in

x, for 0 ≤ x ≤ 1). First, we state a property that will be used repeatedly in the solution

process.

Proposition A.1.0.1. We have UP +UA = c1∆S(x)+c2∆T (x)−aca−kx2, for 0 ≤ x ≤ 1.

According to Subsection 2.5, we consider three cases: i) x = 0; ii) x = 1; and iii)

0 < x < 1 to find the optimal solution for (POPI). We find solutions that maximize the

objective function UP for each case. Those optimal solutions are called candidates and one

of them is the optimal solution for (POPI).
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First, we consider x = 0. The best solution for this case can be found by solving

max
α,β,δ

{(c1 − α)∆S(0) + (c2 − β)∆T (0)− aca − δap}

s.t. max
0≤x≤1

{
α∆S(x) + β∆T (x) + δap− kx2

}
≤ α∆S(0) + β∆T (0) + δap;

α∆S(0) + β∆T (0) + δap ≥ 0;

α, β, δ ≥ 0.

(A.1)

By Proposition A.1.0.1, for this case, maximizing UP is equivalent to finding {α, β, δ} to

minimize UA. The optimization problem (A.1) is equivalent to

min
α,β,δ

{
UA = α∆S(0) + β∆T (0) + δap

}
s.t. α(∆S(x)−∆S(0)) + β(∆T (x)−∆T (0)) ≤ kx2, 0 ≤ x ≤ 1;

UA = α∆S(0) + β∆T (0) + δap ≥ 0;

α, β, δ ≥ 0.

(A.2)

It is easy to see that δ should be small, as long as UA ≥ 0. Since we can always choose δ

to ensure UA ≥ 0, we further consider optimization problem

min
α,β

{α∆S(0) + β∆T (0)}

s.t. α(∆S(x)−∆S(0)) + β(∆T (x)−∆T (0)) ≤ kx2, 0 ≤ x ≤ 1;

α, β ≥ 0.

(A.3)

Proposition A.1.0.2. If (α(1), β(1)) is an optimal solution of (A.3), then (α(1), β(1), δ(1))

is an optimal solution of (A.2), where δ(1) = max
{
0,−α(1)∆S(0)+β(1)∆T (0)

ap

}
.

Proof. If (α(1), β(1)) is an optimal solution of (A.3) and α(1)∆S(0) + β(1)∆T (0) ≤ 0, then
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we must have α(1)∆S(0) + β(1)∆T (0) + δ(1)ap = 0, which implies that (α(1), β(1), δ(1)) is

an optimal solution of (A.2). If α(1)∆S(0) + β(1)∆T (0) > 0, we choose δ(1) = 0. Then

(α(1), β(1), 0) must be an optimal solution to (A.2). Otherwise, there exists {α̂, β̂, δ̂} that

is a better solution to (A.2). As a result, we must have

α̂∆S(0) + β̂∆T (0) + δ̂ap < α(1)∆S(0) + β(1)∆T (0) + δ(1)ap, (A.4)

which leads to α̂∆S(0) + β̂∆T (0) ≤ α̂∆S(0) + β̂∆T (0) + δ̂ap < α(1)∆S(0) + β(1)∆T (0).

Since {α̂, β̂} is also a feasible solution to (A.3), the last inequality contradicts the fact that

{α(1), β(1)} is the optimal solution to (A.3). This completes the proof.

For (A.3), there are always nonnegative (α, β) such that the constraint holds for any x.

On the other hand, the objective function is minimized if α is as small as possible, since

∆S(0) ≥ 0, and β is as large as possible, since ∆T (0) ≤ 0. The first constraint in (A.3)

becomes

β ≤ kx2 − α(∆S(x)−∆S(0))

∆T (x)−∆T (0)
≤ kx2

∆T (x)−∆T (0)
, for 0 < x ≤ 1. (A.5)

The above equation holds and its right-hand-side is positive since both ∆S(x) and ∆T (x)

are strictly increasing. Thus, there is an optimal solution to the above optimization prob-

lem: α(1) = 0 and β(1) = min0<x≤1

{
kx2

∆T (x)−∆T (0)

}
. Then solution (α(1), β(1), δ(1), x(1)) is a
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candidate for the optimal solution of the original problem (P):

α(1) = 0;

β(1) = min
0<x≤1

{
kx2

∆T (x)−∆T (0)

}
;

δ(1) = −β
(1)∆T (0)

ap
;

x(1) = 0;

UA(1) = 0;

UP (1) = c1∆S(0) + c2∆T (0)− aca.

(A.6)

Note that the optimal solution to (A.1) may be not unique. For example, if ∆S(0) = 0

and ∆T (0) = −M , then we have another optimal solution: α = min0<x≤1 {kx2/(∆S(x)−∆S(0))}

and β = δ = 0.

Second, we consider x = 1. The best solution for this case can be found by solving

max
α,β,δ

{(c1 − α)∆S(1) + (c2 − β)∆T (1)− aca − δap}

s.t. max
0≤x≤1

{
α∆S(x) + β∆T (x) + δap− kx2

}
≤ α∆S(1) + β∆T (1) + δap− k;

α∆S(1) + β∆T (1) + δap− k ≥ 0;

α, β, δ ≥ 0.

(A.7)
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By Proposition A.1.0.1, (A.7) is equivalent to

min
α,β,δ

{α∆S(1) + β∆T (1) + δap− k}

s.t. α(∆S(x)−∆S(1)) + β(∆T (x)−∆T (1)) ≤ kx2 − k, 0 ≤ x ≤ 1;

α∆S(1) + β∆T (1) + δap− k ≥ 0;

α, β, δ ≥ 0.

(A.8)

Similar to the case with x = 0, we introduce a new optimization problem

min
α,β

{α∆S(1) + β∆T (1)}

s.t. α(∆S(1)−∆S(x)) + β(∆T (1)−∆T (x)) ≥ k − kx2, 0 ≤ x ≤ 1;

α, β ≥ 0.

(A.9)

Proposition A.1.0.3. If (α(2), β(2)) is an optimal solution of (A.9), then (α(2), β(2), δ(2))

is an optimal solution of (A.2), where δ(2) = max
{
0,−α(2)∆S(1)+β(2)∆T (1)−k

ap

}
.

For a given x, there are always {α, β} such that the constraint in (A.9) holds. On the

other hand, the objective function is minimized if α is as small as possible, since ∆S(1) > 0,

and β is as large as possible, since ∆T (1) < 0. Thus, there is an optimal solution to the

above optimization problem (A.9): α(2) = 0, β(2) ≥ max0≤x<1

{
k(1−x2)

∆T (1)−∆T (x)

}
, x(2) = 1,

and δ(2) = k−β(2)∆T (1)
ap

> 0. The solution (α(2), β(2), δ(2), x(2)) is a candidate for the optimal

solution of the original problem (P). The original objective function corresponding to the

solution is c1∆S(1)+ c2∆T (1)− aca. Consequently, a candidate for the optimal solution of
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(P) is

α(2) = 0;

β(2) ≥ max
0≤x<1

{
k(1− x2)

∆T (1)−∆T (x)

}
;

δ(2) =
k − β(2)∆T (1)

ap
;

x(2) = 1;

UA(2) = 0;

UP (2) = c1∆S(1) + c2∆T (1)− aca − k.

(A.10)

Now, we consider the case 0 < x < 1. By applying the first order condition, the above

optimization problem can be equivalent to

max
α,β,δ,x

{(c1 − α)∆S(x) + (c2 − β)∆T (x)− aca − δap}

s.t. α∆
(1)
S (x) + β∆

(1)
T (x) = 2kx;

α∆S(x) + β∆T (x) + δap− kx2 ≥ 0;

α, β, δ ≥ 0, 0 < x < 1.

(A.11)

We choose δ = max0≤x≤1

{
0, kx

2−α∆S(x)−β∆T (x)
ap

}
to ensure that the second constraint holds
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and the objective function is maximized. Then, (A.11) becomes, for δ = 0,

max
α,β,x

{(c1 − α)∆S(x) + (c2 − β)∆T (x)}

s.t. α∆
(1)
S (x) + β∆

(1)
T (x) = 2kx;

α∆S(x) + β∆T (x)− kx2 ≥ 0;

α, β ≥ 0, 0 < x < 1,

(A.12)

or, for δ > 0,

max
α,β,x

{c1∆S(x) + c2∆T (x)− kx2}

s.t. α∆
(1)
S (x) + β∆

(1)
T (x) = 2kx;

α∆S(x) + β∆T (x)− kx2 < 0;

α, β ≥ 0, 0 < x < 1.

(A.13)

For (A.12), given 0 < x < 1, the constraint α∆
(1)
S (x)+β∆

(1)
T (x) = 2kx implies that the

feasible (α, β) is contained in the line segment

Lx =

{
(α, β) = ξ

(
2kx

∆
(1)
S (x)

, 0

)
+ (1− ξ)

(
0,

2kx

∆
(1)
T (x)

)
: 0 ≤ ξ ≤ 1

}
. (A.14)

Note that both ∆
(1)
S (x) and ∆

(1)
T (x) are positive due to Assumption 2.4.0.1. However, not

all (α, β) in Lx are feasible solutions. Using the constraint α∆S(x) + β∆T (x) − kx2 ≥ 0,
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the set of feasible (α, β) is obtained as, if 2∆S(x) ≥ x∆
(1)
S (x),

Lx0 =


(
ξ

2kx

∆
(1)
S (x)

, (1− ξ)
2kx

∆
(1)
T (x)

)
: ξ(x) =

x− 2 ∆T (x)

∆
(1)
T (x)

2

(
∆S(x)

∆
(1)
S (x)

− ∆T (x)

∆
(1)
T (x)

) ≤ ξ ≤ 1

 . (A.15)

We note that the condition 2∆S(x) ≥ x∆
(1)
S (x) arises from setting β = 0; if the condition

is satisfied it implies that the endpoint of the line segment where α ≥ 0, β = 0 is in the

feasible set. This naturally raises the question: what happens if 2∆S(x) < x∆
(1)
S (x)? We

show that this contradicts our participation constraint. Suppose 2∆S(x) < x∆
(1)
S (x), and

recall that we have already assumed that δ = 0. We consider our agent’s participation

constraint:

α∆S(x) + β∆T (x) ≥ kx2. (A.16)

Next, we substitute in the maximum feasible value of α, 2kx

∆
(1)
S (x)

while setting β = 0:

2kx

∆
(1)
S (x)

∆S(x) ≥ kx2. (A.17)

Next, divide both sides by kx and multiply both sides by ∆
(1)
S (x):

2∆S(x) ≥ x∆
(1)
S (x). (A.18)

Thus, given that our supposition directly contradicts our participation constraint, we see

that (A.18) must hold for feasibility. This means that the maximum feasible value of α

must be in the feasible set.
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With the reasoning behind 2∆S(x) ≥ x∆
(1)
S (x) explained, we now proceed to explain

the lowerbound weighting ξ(x). First, we restate the agent’s participation constraint’s

left-hand side as a weighting between the maximum feasible values of α and β:

ξ
2kx

∆
(1)
S (x)

∆S(x) + (1− ξ)
2kx

∆
(1)
T (x)

∆T (x) ≥ kx2. (A.19)

We distribute 2kx

∆
(1)
T (x)

∆T (x) on the left hand side, yielding:

ξ
2kx

∆
(1)
S (x)

∆S(x) +
2kx

∆
(1)
T (x)

∆T (x)− ξ
2kx

∆
(1)
T (x)

∆T (x) ≥ kx2. (A.20)

We isolate for ξ. We subtract 2kx

∆
(1)
T (x)

∆T (x) from both sides of (A.20):

ξ

[
2kx

∆
(1)
S (x)

∆S(x)−
2kx

∆
(1)
T (x)

∆T (x)

]
≥ kx2 − 2kx

∆
(1)
T (x)

∆T (x). (A.21)

Dividing both sides by 2kx

∆
(1)
S (x)

∆S(x)− 2kx

∆
(1)
T (x)

∆T (x) yields:

ξ ≥
x− 2∆T (x)

∆
(1)
T (x)

2

[
∆S(x)

∆
(1)
S (x)

− ∆T (x)

∆
(1)
T (x)

] = ξ. (A.22)

The mapping (c1 − α, c2 − β) transforms Lx0 into the following line segment:

LPx0 =

{
(c1 − α, c2 − β) =

(
c1 −

ξ2kx

∆
(1)
S (x)

, c2 −
(1− ξ)2kx

∆
(1)
T (x)

)
, ξ(x) ≤ ξ ≤ 1

}
. (A.23)

Then the maximum of the linear objective function (c1 −α)∆S(x) + (c2 − β)∆T (x) should
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be achieved at the end point of the line segment LPx0 for which β is as large as possible,

i.e., α = ξ(x)2kx/∆
(1)
S (x) and β = (1− ξ(x))2kx/∆

(1)
T (x). Consequently, we obtain

max
α,β,x

{(c1 − α)∆S(x) + (c2 − β)∆T (x)}

= max
x

{(
c1 − ξ(x)

2kx

∆
(1)
S (x)

)
∆S(x) +

(
c2 − (1− ξ(x))

2kx

∆
(1)
T (x)

)
∆T (x)

}
.

(A.24)

Let x(3) be a point that the above function is maximized. Let α(3) = ξ(x(3)) 2kx(3)

∆
(1)
S (x(3))

,

β(3) = (1 − ξ(x(3))) 2kx(3)

∆
(1)
T (x(3))

, δ(3) = 0. If 2∆S(x
(3)) ≥ x(3)∆

(1)
S (x(3)), the following solution

is optimal to (A.12).

α(3) = ξ(x(3))
2kx(3)

∆
(1)
S (x(3))

;

β(3) =
(
1− ξ(x(3))

) 2kx(3)

∆
(1)
T (x(3))

;

δ(3) = 0;

x(3) = argmax
0<x<1: 2∆S(x)≥x∆

(1)
S (x)

F3(x);

F3(x) =

(
c1 −

ξ(x)2kx

∆
(1)
S (x)

)
∆S(x) +

(
c2 −

(
1− ξ(x)

) 2kx

∆
(1)
T (x)

)
∆T (x);

UA(3) = α(3)∆S(x
(3)) + β(3)∆T (x

(3))− k(x(3))2;

UP (3) =
(
c1 − α(3)

)
∆S(x

(3)) +
(
c2 − β(3)

)
∆T (x

(3))− aca.

(A.25)

Proposition A.1.0.4. Solution (A.25), if it exists, is optimal to optimization problem

(A.12).

Now we consider when solution (A.25) exists, but is not an optimal solution to opti-

mization problem (A.12). Suppose that {α̂, β̂, x̂} is the optimal soluiton to (A.12). Once

154



x = x̂ is given, then we can follow the above steps to show that x̂ maximizes function F2(x)

under the two constraints in (A.12). Consequently, we must have x̂ = x(3). Then α̂ = α(3)

and β̂ = β(3). This completes the proof.

Next, we consider the optimal solution to (A.13). For this case, for any given x, the

set of feasible solutions contains at least one pair of (α, β): α = 0 and β = 2kx/∆
(1)
T (x).

In fact, the following set of (α, β) are all optimal solutions:

Lx+ =


(
ξ

2kx

∆
(1)
S (x)

, (1− ξ)
2kx

∆
(1)
T (x)

)
: 0 ≤ ξ ≤ ξ̂(x) = max

1,
x− 2 ∆T (x)

∆
(1)
T (x)

2

(
∆S(x)

∆
(1)
S (x)

− ∆T (x)

∆
(1)
T (x)

)

 .

(A.26)

Let x(4) be maximizing the objective function of (A.13): c1∆S(x)+c2∆T (x)−aca−kx2.

Then the following solution is optimal to (A.13).

α(4) = 0;

β(4) =
2kx(4)

∆
(1)
T (x(4))

;

δ(4) =
1

ap

(
k
(
x(4)
)2 − 2kx(4)

∆
(1)
T (x(4))

∆T (x
(4))

)
;

x(4) = argmax
0<x<1

{c1∆S(x) + c2∆T (x)− aca − kx2};

UA(4) = 0;

UP (4) = c1∆S(x
(4)) + c2∆T (x

(4))− aca − k(x(4))2.

(A.27)

Proposition A.1.0.5. Solution (A.27) is optimal to optimization problem (A.13).

Finally, we summarize the solutions to find the optimal solution to (PIPO).
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Theorem A.1.1. Consider the four solutions {(α(1) = 0, β(1), δ(1), x(1)), (α(2) = 0, β(2), δ(2), x(2)),

(α(3), β(3) = 0, δ(3), x(3)), (α(4), β(4), δ(4), x(4))}, given in equations (A.6), (A.10), (A.25),

and (A.27). The one that maximizes UP is the optimal solution of (PIPO).

A.2 Candidate Comparison Conditions

With our solution candidates displayed, we now present conditions that compare Candidate

3 with the other solutions candidates. We focus on Candidate 3 as it is the only candidate

wherein α > 0. The proofs of these conditions are presented in Appendix A.3.

Proposition A.2.0.1. If (A.28) does not hold, then Candidate 3 is not an optimal solu-

tion:

2kx(3)

∆
(1)
S (x(3))

≥ k(x(3))2

∆S(x(3))
. (A.28)

If (A.29) holds, then Candidate 3 a superior solution to Candidate 1:

c2M ≥
( 2kx(3)

∆
(1)
S (x(3))

− c1

)
∆S(x

(3))− c2∆T (x
(3)) (A.29)

If (A.30) holds, then Candidate 3 a superior solution to Candidate 2:

k ≥ c1

(
∆S(1)−∆S(x

(3))
)
+ c2

(
∆T (1)−∆T (x

(3))
)
+

2kx(3)

∆
(1)
S (x(3))

∆S(x
(3)) ≥ 0. (A.30)
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If (A.31) holds, then Candidate 3 a superior solution to Candidate 4:

(
c1 −

2kx(3)

∆
(1)
S (x(3))

)
∆S(x

(3)) + c2∆T (x
(3)) ≥ c1∆S(x

(4)) + c2∆T (x
(4))− k(x(4))2. (A.31)

Of these conditions, (A.28) is perhaps the most useful. Namely, if one evaluates both

sides of the inequality for values of x in (0, 1), it provides a useful approximation of which

x could be optimal, and which need not be considered. This could lead to a more efficient

evaluation of F2(x), if a smaller range of x can be considered. It could also outright remove

Candidate 3 from consideration prior to computing each candidate solution.

Conditions (A.29) and (A.30) can be computed similarly to condition (A.28), before

any optimization takes place. Namely, as the value of x changes from 0 to 1, we can see

which of conditions (A.29) and (A.30) are satisfied. If condition (A.29) is not satisfied,

it indicates that the more complicated structure of Candidate 3 is too expensive for the

given effort level x, so the zero effort level is preferred. If condition (A.29) is not satisfied,

it implies that the principal can more-profitably extract more effort from the agent, but

they must use a more complicated contract.

Condition (A.31) requires a more expensive computation to check (since we have to

check all pairs of x). However, if one candidate uniformly dominates the other (either

Candidate 3 or 4), then one can be eliminated from consideration.

A.3 Proofs of Candidate Comparison Conditions

Below we restate the various components of Proposition A.2.0.1 and prove each in turn.

Proposition A.2.0.1 first condition: If (A.32) does not hold, then Candidate 3 is
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not an optimal solution:

2kx(3)

∆
(1)
S (x(3))

≥ k(x(3))2

∆S(x(3))
. (A.32)

Proof. To begin, we know that based on arguments in Section A.1, this candidate is only

valid if k(x(3))2 − α∆S(x
(3)) − β∆T (x

(3)) ≤ 0. In (2.24), β∗ = 0. As such, the following

holds:

k(x(3))2 − α∆S(x
(3)) ≤ 0. (A.33)

Adding α∆S(x
(3)) to both sides of (A.33) and dividing both sides by ∆S(x

(3)) (which, by

assumption, is positive), yields:

α ≥ k(x(3))2

∆S(x(3))
. (A.34)

Further, we know that, via the line-segment argument in A.1, the candidate optimal α

takes on the value:

α =
2kx(3)

∆
(1)
S (x(3))

. (A.35)

Substituting (A.35) in (A.34) yields:

2kx(3)

∆
(1)
S (x(3))

≥ k(x(3))2

∆S(x(3))
. (A.36)

Thus, we arrive at our result.

Proposition A.2.0.1 second condition: If (A.37) holds, then Candidate 3 a superior
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solution to Candidate 1:

c2M ≥
( 2kx(3)

∆
(1)
S (x(3))

− c1

)
∆S(x

(3))− c2∆T (x
(3)). (A.37)

Proof. We consider how Candidate 3 compares with Candidate 1. Suppose (2.24) is opti-

mal. This implies the following:

(
c1 −

2kx(3)

∆
(1)
S (x(3))

)
∆S(x

(3)) + c2∆T (x
(3))− aca ≥ c1∆S(0) + c2∆T (0)− aca. (A.38)

Recalling that ∆T (0) = −M and ∆S(0) = 0 we see the following:

(
c1 −

2kx(3)

∆
(1)
S (x(3))

)
∆S(x

(3)) + c2∆T (x
(3))− aca ≥ −c2M − aca. (A.39)

We subtract −c2M − aca from both sides of (A.39), yielding:

(
c1 −

2kx(3)

∆
(1)
S (x(3))

)
∆S(x

(3)) + c2∆T (x
(3)) + c2M ≥ 0. (A.40)

Subtracting all terms except c2M from both sides of (A.40) yields:

c2M ≥
( 2kx(3)

∆
(1)
S (x(3))

− c1

)
∆S(x

(3))− c2∆T (x
(3)). (A.41)

This concludes the proof.

Proposition A.2.0.1 third condition: If (A.42) holds, then Candidate 3 a superior
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solution to Candidate 2:

k ≥ c1

(
∆S(1)−∆S(x

(3))
)
+ c2

(
∆T (1)−∆T (x

(3))
)
+

2kx(3)

∆
(1)
S (x(3))

∆S(x
(3)) ≥ 0. (A.42)

Proof. We consider how Candidate 3 compares with the Candidate 2. Suppose (2.24) is

optimal. This implies the following:

(
c1 −

2kx(3)

∆
(1)
S (x(3))

)
∆S(x

(3)) + c2∆T (x
(3))− aca ≥ c1∆S(1) + c2∆T (1)− aca − k. (A.43)

If we subtract the right hand side of (A.43) from both sides it yields:

c1

(
∆S(x

(3))−∆S(1)
)
− 2kx(3)

∆
(1)
S (x(3))

∆S(x
(3)) + c2

(
∆T (x

(3))−∆T (1)
)
+ k ≥ 0. (A.44)

We have assumed that both ∆S(x) and ∆T (x) are concave in x and that both are improving

in x monotonically. As such, the following must hold:

∆S(x
(3))−∆S(1) ≤ 0; (A.45)

∆T (x
(3))−∆T (1) ≤ 0. (A.46)

With (A.45), we see that the only positive term in (A.44) is 1. Thus, we have the following

necessary condition for a solution with α > 0 to be optimal:

k ≥ c1

(
∆S(1)−∆S(x

(3))
)
+ c2

(
∆T (1)−∆T (x

(3))
)
+

2kx(3)

∆
(1)
S (x(3))

∆S(x
(3)) ≥ 0. (A.47)

This concludes the proof.

Proposition A.2.0.1 fourth condition: If (A.48) holds, then Candidate 3 a superior
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solution to Candidate 4:

(
c1 −

2kx(3)

∆
(1)
S (x(3))

)
∆S(x

(3)) + c2∆T (x
(3)) ≥ c1∆S(x

(4)) + c2∆T (x
(4))− k(x(4))2. (A.48)

Proof. We consider how Candidate 3 compares with Candidate 4. Suppose (2.24) is opti-

mal. This implies the following:

(
c1 −

2kx(3)

∆
(1)
S (x(3))

)
∆S(x

(3)) + c2∆T (x
(3))− aca ≥ c1∆S(x

(4)) + c2∆T (x
(4))− aca − k(x(4))2.

(A.49)

Cancelling aca from both sides of (A.49) leaves us with:

(
c1 −

2kx(3)

∆
(1)
S (x(3))

)
∆S(x

(3)) + c2∆T (x
(3)) ≥ c1∆S(x

(4)) + c2∆T (x
(4))− k(x(4))2.

(A.50)

This concludes the proof.

A.4 Operational Protocol Modification Proofs

In proving Properties 2.6.7.1 and 2.6.15.1, we first establish some necessary quantities in

Appendices A.4.1 and A.4.2. We then proceed to derive the Properties in Appendix A.4.3.

A.4.1 ∆Ŝ(x)

Let Ŝ be a random variable denoting service quality. Let Ŝ be distributed according to a

censored beta distribution with parameters Ax,d and Bd, with censoring points 0 ≤ τL ≤
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τH ≤ M . Note that Ax,d is dependent on x, the agent’s effort decision variable. Let the

difficulty states be d = 0 for the non-difficult state and d = 1 for the difficult state. Let the

parameters Ax,0 and B0 be for the non-difficult state, and Ax,1 and B1 be for the difficult

state.

We can express the expectation E[Ŝ] = ∆Ŝ(x) as:

∆Ŝ(x) =

= p

[
MτL

∫ τL

0

∫∞
0
tAx,1+B1−1e−tdt∫∞

0
tAx,1−1e−tdt

∫∞
0
tB1−1e−tdt

sAx,1−1(1− s)B1−1ds

+M

∫ τH

τL

∫∞
0
tAx,1+B1−1e−tdt∫∞

0
tAx,1−1e−tdt

∫∞
0
tB1−1e−tdt

sAx,1(1− s)B1−1ds

+MτH

∫ 1

τH

∫∞
0
tAx,1+B1−1e−tdt∫∞

0
tAx,1−1e−tdt

∫∞
0
tB1−1e−tdt

sAx,1−1(1− s)B−1ds

]

+ (1− p)

[
MτL

∫ τL

0

∫∞
0
tAx,0+B0−1e−tdt∫∞

0
tAx,0−1e−tdt

∫∞
0
tB0−1e−tdt

sAx,0−1(1− s)B0−1ds

+M

∫ τH

τL

∫∞
0
tAx,0+B0−1e−tdt∫∞

0
tAx,0−1e−tdt

∫∞
0
tB0−1e−tdt

sAx,0(1− s)B0−1ds

+MτH

∫ 1

τH

∫∞
0
tAx,0+B0−1e−tdt∫∞

0
tAx,0−1e−tdt

∫∞
0
tB0−1e−tdt

sAx,0−1(1− s)B0−1ds

]
.

(A.51)

A.4.2 ∆T̂ (x)

Let T̂ be a random variable denoting service time. Let T̂ be distributed according to a

censored, truncated exponential distribution with parameter λx,d, with censoring points

0 ≤ ΥL ≤ ΥH ≤M . Let the difficulty states be d = 0 for the non-difficult state and d = 1

for the difficult state. Let the parameter λx,0 be for the non-difficult state, and λx,1 be for

the difficult state.
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We can express the expectation E[T̂ ] as

E[T̂ ] =

p · 1

1− e−λx,1M

[
ΥL −ΥHe

−λx,1M +
e−λx,1ΥL − e−λx,1ΥH

λx,1

]

+(1− p) · 1

1− e−λx,0M

[
ΥL −ΥHe

−λx,0M +
e−λx,0ΥL − e−λx,0ΥH

λx,0

]
.

(A.52)

Let λx be a function of x (effort impacts the rate). Let ∆T̂ (x) = −E[T̂ ]. Now we write

∆T̂ (x) as follows:

∆T̂ (x) =

−p · 1

1− e−λx,1M

[
ΥL −ΥHe

−λx,1M +
e−λx,1ΥL − e−λx,1ΥH

λx,1

]

−(1− p) · 1

1− e−λx,0M

[
ΥL −ΥHe

−λx,0M +
e−λx,0ΥL − e−λx,0ΥH

λx,0

]
.

. (A.53)

A.4.3 Property Derivations

We begin by restating Candidate 4:

α(4) = 0;

β(4) =
2kx(4)

∆
(1)
T (x(4))

;

δ(4) =
1

ap

(
k
(
x(4)
)2 − 2kx(4)

∆
(1)
T (x(4))

∆T (x
(4))

)
;

x(4) = argmax
0<x<1

{c1∆S(x) + c2∆T (x)− aca − kx2};

UA(3) = 0;

UP (3) = c1∆S(x
(4)) + c2∆T (x

(4))− aca − k(x(4))2.

(A.54)
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A.4.3.1 Ŝ Censoring

In the solution, x is determined first. As such, we reconsider the function x is chosen to

maximize, which is the principal’s utility function:

UP = c1∆Ŝ(x) + c2∆T (x)− aca − kx2. (A.55)

Now we consider this with the expression for ∆Ŝ(x):

= c1p

[
MτL

∫ τL

0

∫∞
0
tAx,1+B1−1e−tdt∫∞

0
tAx,1−1e−tdt

∫∞
0
tB1−1e−tdt

sAx,1−1(1− s)B1−1dx

+M

∫ τH

τL

∫∞
0
tAx,1+B1−1e−tdt∫∞

0
tAx,1−1e−tdt

∫∞
0
tB1−1e−tdt

sAx,1(1− s)B1−1dx

+MτH

∫ 1

τH

∫∞
0
tAx,1+B1−1e−tdt∫∞

0
tAx,1−1e−tdt

∫∞
0
tB1−1e−tdt

sAx,1−1(1− s)B−1dx

]

+ c1(1− p)

[
MτL

∫ τL

0

∫∞
0
tAx,0+B0−1e−tdt∫∞

0
tAx,0−1e−tdt

∫∞
0
tB0−1e−tdt

sAx,0−1(1− s)B0−1dx

+M

∫ τH

τL

∫∞
0
tAx,0+B0−1e−tdt∫∞

0
tAx,0−1e−tdt

∫∞
0
tB0−1e−tdt

sAx,0(1− s)B0−1dx

+MτH

∫ 1

τH

∫∞
0
tAx,0+B0−1e−tdt∫∞

0
tAx,0−1e−tdt

∫∞
0
tB0−1e−tdt

sAx,0−1(1− s)B0−1dx

]
+ c2∆T (x)− aca − kx2.

(A.56)

We investigate derivatives of (A.56) with respect to the censoring parameters τL and τH .

Derivatives with respect to τL
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We state this first derivative ∂UP (x∗)/∂τL as:

∂UP (x∗)

∂τL
=

∂

∂τL
c1p

[
MτL

∫ τL

0

∫∞
0
tAx,1+B1−1e−tdt∫∞

0
tAx,1−1e−tdt

∫∞
0
tB1−1e−tdt

sAx,1−1(1− s)B1−1ds

+M

∫ τH

τL

∫∞
0
tAx,1+B1−1e−tdt∫∞

0
tAx,1−1e−tdt

∫∞
0
tB1−1e−tdt

sAx,1(1− s)B1−1ds

+MτH

∫ 1

τH

∫∞
0
tAx,1+B1−1e−tdt∫∞

0
tAx,1−1e−tdt

∫∞
0
tB1−1e−tdt

sAx,1−1(1− s)B−1ds

]

+
∂

∂τL
c1(1− p)

[
MτL

∫ τL

0

∫∞
0
tAx,0+B0−1e−tdt∫∞

0
tAx,0−1e−tdt

∫∞
0
tB0−1e−tdt

sAx,0−1(1− s)B0−1ds

+M

∫ τH

τL

∫∞
0
tAx,0+B0−1e−tdt∫∞

0
tAx,0−1e−tdt

∫∞
0
tB0−1e−tdt

sAx,0(1− s)B0−1ds

+MτH

∫ 1

τH

∫∞
0
tAx,0+B0−1e−tdt∫∞

0
tAx,0−1e−tdt

∫∞
0
tB0−1e−tdt

sAx,0−1(1− s)B0−1ds

]
.

(A.57)

We note that we can drop any terms in (A.57) that do not contain τL:

∂UP (x∗)

∂τL
=

∂

∂τL
c1p

[
MτL

∫ τL

0

∫∞
0
tAx,1+B1−1e−tdt∫∞

0
tAx,1−1e−tdt

∫∞
0
tB1−1e−tdt

sAx,1−1(1− s)B1−1ds

+M

∫ τH

τL

∫∞
0
tAx,1+B1−1e−tdt∫∞

0
tAx,1−1e−tdt

∫∞
0
tB1−1e−tdt

sAx,1(1− s)B1−1ds

]

+
∂

∂τL
c1(1− p)

[
MτL

∫ τL

0

∫∞
0
tAx,0+B0−1e−tdt∫∞

0
tAx,0−1e−tdt

∫∞
0
tB0−1e−tdt

sAx,0−1(1− s)B0−1ds

+M

∫ τH

τL

∫∞
0
tAx,0+B0−1e−tdt∫∞

0
tAx,0−1e−tdt

∫∞
0
tB0−1e−tdt

sAx,0(1− s)B0−1ds

]
.

(A.58)
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Taking the derivatives (using the second Fundamental Theorem of Calculus and the

product rule for differentiation), we obtain the following:

∂UP (x∗)

∂τL
= c1p

[
M

∫ τL

0

∫∞
0
tAx,1+B1−1e−tdt∫∞

0
tAx,1−1e−tdt

∫∞
0
tB1−1e−tdt

sAx,1−1(1− s)B1−1ds

+MτL

∫∞
0
tAx,1+B1−1e−tdt∫∞

0
tAx,1−1e−tdt

∫∞
0
tB1−1e−tdt

τ
Ax,1−1
L (1− τL)

B1−1

−M

∫∞
0
tAx,1+B1−1e−tdt∫∞

0
tAx,1−1e−tdt

∫∞
0
tB1−1e−tdt

τ
Ax,1

L (1− τL)
B1−1

]

+ c1(1− p)

[
M

∫ τL

0

∫∞
0
tAx,0+B0−1e−tdt∫∞

0
tAx,0−1e−tdt

∫∞
0
tB0−1e−tdt

sAx,0−1(1− s)B0−1ds

+MτL

∫∞
0
tAx,0+B0−1e−tdt∫∞

0
tAx,0−1e−tdt

∫∞
0
tB0−1e−tdt

τ
Ax,0−1
L (1− τL)

B0−1

−M

∫∞
0
tAx,0+B0−1e−tdt∫∞

0
tAx,0−1e−tdt

∫∞
0
tB0−1e−tdt

τ
Ax,0

L (1− τL)
B0−1

]
.

(A.59)

In simplifying, we note that the second and third terms in each pair of brackets cancel,

leading to the following:

∂UP (x∗)

∂τL
= c1pM

∫ τL

0

∫∞
0
tAx,1+B1−1e−tdt∫∞

0
tAx,1−1e−tdt

∫∞
0
tB1−1e−tdt

sAx,1−1(1− s)B1−1ds

+ c1(1− p)M

∫ τL

0

∫∞
0
tAx,0+B0−1e−tdt∫∞

0
tAx,0−1e−tdt

∫∞
0
tB0−1e−tdt

sAx,0−1(1− s)B0−1ds.

(A.60)

Now we determine the sign of (A.60). We note that the coefficients c1pM and c1(1−p)M

are nonnegative by definition (c1 is the only term that is nonnegative, not positive). Next,
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we consider the fractions resulting from the gamma functions:

Γ(Ax,1 +B1)

Γ(Ax,1)Γ(B1)
=

∫∞
0
tAx,1+B1−1e−tdt∫∞

0
tAx,1−1e−tdt

∫∞
0
tB1−1e−tdt

; (A.61)

Γ(Ax,0 +B0)

Γ(Ax,0)Γ(B0)
=

∫∞
0
tAx,0+B0−1e−tdt∫∞

0
tAx,0−1e−tdt

∫∞
0
tB0−1e−tdt

. (A.62)

Given that the integrations in (A.61) and (A.62) are over nonnegative ranges, the numer-

ators and denominators of both fractions are positive. As such, (A.61) and (A.62) are

positve. We now consider the remaining portions of (A.60):

∫ τL

0

sAx,1−1(1− s)B1−1ds (A.63)∫ τL

0

sAx,0−1(1− s)B0−1ds. (A.64)

We see that (A.63) and (A.64) are positive based on the integration ranges.

We observe that all the portions of (A.60) are positive or nonnegative, so (A.60) is

nonnegative. As such, increasing τL will increase the principal’s expected utility, which

aligns with our intuitive understanding of the distribution of service quality.

Now we consider the second derivative with respect to τL. We begin by restating the

derivative of the principal’s utility function with respect to τL.

∂UP (x∗)

∂τL
= c1pM

∫ τL

0

∫∞
0
tAx,1+B1−1e−tdt∫∞

0
tAx,1−1e−tdt

∫∞
0
tB1−1e−tdt

sAx,1−1(1− s)B1−1ds

+ c1(1− p)M

∫ τL

0

∫∞
0
tAx,0+B0−1e−tdt∫∞

0
tAx,0−1e−tdt

∫∞
0
tB0−1e−tdt

sAx,0−1(1− s)B0−1ds.

(A.65)

Taking the derivative with respect to τL (once again using the second Fundamental
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Theorem) yields:

∂2UP (x∗)

∂τ 2L
= c1pM

∫∞
0
tAx,1+B1−1e−tdt∫∞

0
tAx,1−1e−tdt

∫∞
0
tB1−1e−tdt

τ
Ax,1−1
L (1− τL)

B1−1

+ c1(1− p)M

∫∞
0
tAx,0+B0−1e−tdt∫∞

0
tAx,0−1e−tdt

∫∞
0
tB0−1e−tdt

τ
Ax,0−1
L (1− τL)

B0−1.

(A.66)

By similar arguments to our discussion of the sign of ∂UP (x∗)/∂τL, we can see that

(A.66) is nonnegative. As such, increasing τL yields a convex, increasing response in

UP (x∗).

Derivatives with respect to τH We state this first derivative ∂UP (x∗)/∂τH as:

∂UP (x∗)

∂τH
=

∂

∂τH
c1p

[
MτL

∫ τL

0

∫∞
0
tAx,1+B1−1e−tdt∫∞

0
tAx,1−1e−tdt

∫∞
0
tB1−1e−tdt

sAx,1−1(1− s)B1−1ds

+M

∫ τH

τL

∫∞
0
tAx,1+B1−1e−tdt∫∞

0
tAx,1−1e−tdt

∫∞
0
tB1−1e−tdt

sAx,1(1− s)B1−1ds

+MτH

∫ 1

τH

∫∞
0
tAx,1+B1−1e−tdt∫∞

0
tAx,1−1e−tdt

∫∞
0
tB1−1e−tdt

sAx,1−1(1− s)B−1ds

]

+
∂

∂τH
c1(1− p)

[
MτL

∫ τL

0

∫∞
0
tAx,0+B0−1e−tdt∫∞

0
tAx,0−1e−tdt

∫∞
0
tB0−1e−tdt

sAx,0−1(1− s)B0−1ds

+M

∫ τH

τL

∫∞
0
tAx,0+B0−1e−tdt∫∞

0
tAx,0−1e−tdt

∫∞
0
tB0−1e−tdt

sAx,0(1− s)B0−1ds

+MτH

∫ 1

τH

∫∞
0
tAx,0+B0−1e−tdt∫∞

0
tAx,0−1e−tdt

∫∞
0
tB0−1e−tdt

sAx,0−1(1− s)B0−1ds

]
.

(A.67)
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We note that we can drop any terms in (A.67) that do not contain τH :

∂UP (x∗)

∂τH
=

∂

∂τH
c1p

[
M

∫ τH

τL

∫∞
0
tAx,1+B1−1e−tdt∫∞

0
tAx,1−1e−tdt

∫∞
0
tB1−1e−tdt

sAx,1(1− s)B1−1ds

+MτH

∫ 1

τH

∫∞
0
tAx,1+B1−1e−tdt∫∞

0
tAx,1−1e−tdt

∫∞
0
tB1−1e−tdt

sAx,1−1(1− s)B−1ds

]

+
∂

∂τH
c1(1− p)

[
M

∫ τH

τL

∫∞
0
tAx,0+B0−1e−tdt∫∞

0
tAx,0−1e−tdt

∫∞
0
tB0−1e−tdt

sAx,0(1− s)B0−1ds

+MτH

∫ 1

τH

∫∞
0
tAx,0+B0−1e−tdt∫∞

0
tAx,0−1e−tdt

∫∞
0
tB0−1e−tdt

sAx,0−1(1− s)B0−1ds

]
.

(A.68)

Invoking the product rule and the second Fundamental Theorem yields:

∂UP (x∗)

∂τH
= c1p

[
M

∫∞
0
tAx,1+B1−1e−tdt∫∞

0
tAx,1−1e−tdt

∫∞
0
tB1−1e−tdt

τ
Ax,1

H (1− τH)
B1−1

+M

∫ 1

τH

∫∞
0
tAx,1+B1−1e−tdt∫∞

0
tAx,1−1e−tdt

∫∞
0
tB1−1e−tdt

sAx,1−1(1− s)B−1ds

−MτH

∫∞
0
tAx,1+B1−1e−tdt∫∞

0
tAx,1−1e−tdt

∫∞
0
tB1−1e−tdt

τ
Ax,1−1
H (1− τH)

B1−1

]

+ c1(1− p)

[
M

∫∞
0
tAx,0+B0−1e−tdt∫∞

0
tAx,0−1e−tdt

∫∞
0
tB0−1e−tdt

τ
Ax,0

H (1− τH)
B0−1

+M

∫ 1

τH

∫∞
0
tAx,0+B0−1e−tdt∫∞

0
tAx,0−1e−tdt

∫∞
0
tB0−1e−tdt

sAx,0−1(1− s)B0−1ds

−MτH

∫∞
0
tAx,0+B0−1e−tdt∫∞

0
tAx,0−1e−tdt

∫∞
0
tB0−1e−tdt

τ
Ax,0−1
H (1− τH)

B0−1

]
.

(A.69)
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Cancelling terms in (A.69) yields:

∂UP (x∗)

∂τH
= c1pM

∫ 1

τH

∫∞
0
tAx,1+B1−1e−tdt∫∞

0
tAx,1−1e−tdt

∫∞
0
tB1−1e−tdt

sAx,1−1(1− s)B−1ds

+ c1(1− p)M

∫ 1

τH

∫∞
0
tAx,0+B0−1e−tdt∫∞

0
tAx,0−1e−tdt

∫∞
0
tB0−1e−tdt

sAx,0−1(1− s)B0−1ds.

(A.70)

By similar arguments to τL, we see that (A.70) is nonnegative. As such, increasing the

upperbound τH on service quality improves the principal’s expected utility, which confirms

our intuition.

We now compute the second derivative of UP (x∗) with respect fo τH . Once again

invoking the second Fundamental Theorem yields:

∂2UP (x∗)

∂τ 2H
= −c1pM

∫∞
0
tAx,1+B1−1e−tdt∫∞

0
tAx,1−1e−tdt

∫∞
0
tB1−1e−tdt

τ
Ax,1−1
H (1− τH)

B−1

− c1(1− p)M

∫∞
0
tAx,0+B0−1e−tdt∫∞

0
tAx,0−1e−tdt

∫∞
0
tB0−1e−tdt

τ
Ax,0−1
H (1− τH)

B0−1.

(A.71)

We note that both terms in (A.71) are nonpositive based on previous arguments, so in-

creasing τH yields concave increases in UP (x∗) and confirms our numerical results.

A.4.3.2 T̂ Censoring

We again reconsider the principal’s expected utility; this time where service time T̂ is

censored. We restate the principal’s expected utility as:

UP = c1∆S(x) + c2∆T̂ (x)− aca − kx2. (A.72)

170



Now we consider this with the expression for ∆T̂ (x):

c1∆S(x)− p · c2
1− e−λx,1M

[
ΥL −ΥHe

−λx,1M +
e−λx,1ΥL − e−λx,1ΥH

λx,1

]

− (1− p) · c2
1− e−λx,0M

[
ΥL −ΥHe

−λx,0M +
e−λx,0ΥL − e−λx,0ΥH

λx,0

]
− aca − kx2.

(A.73)

We investigate the derivatives of (A.73) with respect to ΥL and ΥH .

Derivatives with respect to ΥL

First, we consider derivatives with respect to ΥL:

∂UP (x∗)

∂ΥL

=
−pc2

1− e−λx,1M

+

(pc2λx,1e
−λx,1ΥL + 0)(λx,1(1− e−λx,1M))

− (−pc2e−λx,1ΥL + pc2e
−λx,1ΥH )(0)

(λx,1(1− e−λx,1M))2

+
(p− 1)c2

1− e−λx,0M

+

((1− p)c2λx,0e
−λx,0ΥL + 0)(λx,0(1− e−λx,0M))

− ((p− 1)c2e
−λx,0ΥL + (1− p)c2e

−λx,0ΥH )(0)

(λx,0(1− e−λx,0M))2
.

(A.74)

Simplifying yields:

=
−pc2

1− e−λx,1M
+
pc2e

−λx,1ΥL

1− e−λx,1M

+
(p− 1)c2

1− e−λx,0M
+

(1− p)c2e
−λx,0ΥL

1− e−λx,0M
.

(A.75)
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We place the two components over common denominators:

=
−pc2 + pc2e

−λx,1ΥL

1− e−λx,1M

+
−(1− p)c2 + (1− p)c2e

−λx,0ΥL

1− e−λx,0M
.

(A.76)

Further simplifying yields:

∂UP (x∗)

∂ΥL

= −pc2
1− e−λx,1ΥL

1− e−λx,1M
− (1− p)c2

1− e−λx,0ΥL

1− e−λx,0M
. (A.77)

Consider the first fraction:

1− e−λx,1ΥL

1− e−λx,1M
. (A.78)

The pre-multiplication by −pc2 implies that this term is nonpositive in (A.77). A similar

argument implies the second fraction is similar in (A.77). Expanding the second term, we

have:

−c2
1− e−λx,0ΥL

1− e−λx,0M
+ pc2

1− e−λx,0ΥL

1− e−λx,0M
. (A.79)

As 0 < p ≤ 1 by assumption, we see that this term is nonpositive.

Therefore, (A.77) is nonpositive.
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We now consider the second derivative with respect to ΥL:

∂2UP (x∗)

∂Υ2
L

=
(−pc2λx,1e−λx,1ΥL)(1− e−λx,1M)− (−pc2 + pc2e

−λx,1ΥL)(0)

(1− e−λx,1M)2

+

(−c2λx,0e−λx,0ΥL + pc2λx,0e
−λx,0ΥL)(1− e−λx,0M)

− (−c2 + pc2 + c2e
−λx,0ΥL − pc2e

−λx,0ΥL)(0)

(1− e−λx,0M)2

(A.80)

Simplifying yields:

=
−pc2λx,1e−λx,1ΥL

1− e−λx,1M
+

−c2λx,0e−λx,0ΥL + pc2λx,0e
−λx,0ΥL

1− e−λx,0M
. (A.81)

Inspecting (A.81) we see that the first fraction is nonpositive. We also see that the

numerator of the second fraction is nonpositive as it is (p − 1)c2λx,0e
−λx,0ΥL , and by as-

sumption 0 < p ≤ 1. As such, the whole expression is nonpositive. This means that

increases in ΥL yield concave decreases in the principal’s expected utility.

Derivatives with respect to ΥH

We first restate the principal’s optimal utility function:

c1∆S(x)− p · c2
1− e−λx,1M

[
ΥL −ΥHe

−λx,1M +
e−λx,1ΥL − e−λx,1ΥH

λx,1

]

− (1− p) · c2
1− e−λx,0M

[
ΥL −ΥHe

−λx,0M +
e−λx,0ΥL − e−λx,0ΥH

λx,0

]
− aca − kx2.

(A.82)

When we take the derivative of (A.82) with respect to ΥH , we only need to consider

173



certain terms. As such, we restate the derivative as follows:

∂UP (x∗)

∂ΥH

=
∂

∂ΥH

pc2ΥHe
−λx,1M

1− e−λx,1M
+

∂

∂ΥH

pc2e
−λx,1ΥH

λx,1(1− e−λx,1M)

+
∂

∂ΥH

(1− p)c2ΥHe
−λx,0M

1− e−λx,0M
+

∂

∂ΥH

(1− p)c2e
−λx,0ΥH

λx,0(1− e−λx,0M)

(A.83)

We now compute the derivative:

=
pc2e

−λx,1M(1− e−λx,1M)

(1− e−λx,1M)2
+

−pc2λx,1e−λx,1ΥH (λx,1(1− e−λx,1M)

(λx,1(1− e−λx,1M))2

+
(1− p)c2e

−λx,0M(1− e−λx,0M)

(1− e−λx,0M)2
+

−(1− p)c2λx,0e
−λx,0ΥH (λx,0(1− e−λx,0M))

(λx,0(1− e−λx,0M))2
.

(A.84)

Simplifying yields:

=
pc2(e

−λx,1M − e−λx,1ΥH )

1− e−λx,1M
+

(1− p)c2(e
−λx,0M − e−λx,0ΥH )

1− e−λx,0M
. (A.85)

We note that λx,1M > λx,1ΥH and λx,0M > λx,0ΥH . As such, the numerators of both

fractions are nonpositive, so the derivative is nonpositive. This makes sense, as increasing

the upperbound of service time should, intuitively, worsen the principal’s expected utility.

Now we pursue the second derivative. We distribute the coefficients across the numer-

ator of each fraction in (A.85). We then isolate the terms that contain ΥH .

∂UP (x∗)

∂ΥH

=
pc2e

−λx,1M

1− e−λx,1M
− pc2e

−λx,1ΥH

1− e−λx,1M

+
(1− p)c2e

−λx,0M

1− e−λx,0M
− (1− p)c2e

−λx,0ΥH

1− e−λx,0M
.

(A.86)
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We now take the first partial derivative of (A.86) with respect to ΥH :

∂2UP (x∗)

∂Υ2
H

=
(pc2λx,1e

−λx,1ΥH )(1− e−λx,1M)

(1− e−λx,1M)2

+
((1− p)c2λx,0e

−λx,0ΥH )(1− e−λx,0M)

(1− e−λx,0M)2
.

(A.87)

Simplifying (A.87) yields:

∂2UP (x∗)

∂Υ2
H

=
pc2λx,1e

−λx,1ΥH

1− e−λx,1M
+

(1− p)c2λx,0e
−λx,0ΥH

1− e−λx,0M
. (A.88)

By inspection, we see that both fractions in (A.88) are nonegative. This implies that

increasing ΥH yields a convex decreasing response in UP .
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Appendix B

Soccer Ranking Appendices

B.1 Notation

In this Appendix, we present a table of our notation.
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Table B.1: Notation for Network Ranking Models
A Cumulative adjacency matrix for static model
At Adjacency matrix for gameweek t for dynamic model
kA Adjustment coefficient for home/away status
kD Adjustment coefficient for goal difference status

D̃t Normalized Direct Similarity Approach matrix
˜̄Dt Normalized Mean-Based Direct Similarity Approach

matrix for static model
D̄t

α α-scaled Mean-Based Direct Similarity Approach matrix
for dynamic model

M̃ t Normalized Matched Set Similarity Approach matrix
˜̄M t Normalized Mean-Based Matched Set Similarity Ap-

proach matrix for static model
M̄ t

α α-scaled Mean-Based Matched Set Similarity Approach
matrix for dynamic model

Ũ t Normalized Unmatched Set Similarity Approach matrix
˜̄U t Normalized Mean-Based Unmatched Set Similarity Ap-

proach matrix for static model
Ū t
α α-scaled Mean-Based Unmatched Set Similarity Ap-

proach matrix for dynamic model
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B.2 Combination Method Explanations

As mentioned in Section 3.5.10, we consider the following combination methods in both

static and dynamic form:

1. Home/Away + Goal Difference

2. Home/Away + Direct Similarity

3. Home/Away + Matched Set Similarity

4. Home/Away + Unmatched Set Similarity

5. Home/Away + Mean-Based Direct Similarity

6. Home/Away + Mean-Based Matched Set Similarity

7. Home/Away + Mean-Based Unmatched Set Similarity

8. Goal Difference + Direct Similarity

9. Goal Difference + Matched Set Similarity

10. Goal Difference + Unmatched Set Similarity

11. Goal Difference + Mean-Based Direct Similarity

12. Goal Difference + Mean-Based Matched Set Similarity

13. Goal Difference + Mean-Based Unmatched Set Similarity

14. Home/Away + Goal Difference + Direct Similarity

15. Home/Away + Goal Difference + Matched Set Similarity

16. Home/Away + Goal Difference + Unmatched Set Similarity

17. Home/Away + Goal Difference + Mean-Based Direct Similarity

18. Home/Away + Goal Difference + Mean-Based Matched Set Similarity

19. Home/Away + Goal Difference + Mean-Based Unmatched Set Similarity.

We now explain each in turn.

178



B.2.1 Home/Away + Goal Difference

This approach is simply a combination of the approaches in Sections 3.5.1 and 3.5.2. The

implementation is as follows:

• For away wins by team i over team j, we add kA(k
d−1
D ) to Aji.

• For away ties by team i over team j, we add 0.5kA to Aji.

• For home wins by by team i over team j, we add (kd−1
D ) to Aji.

• For home ties by team i over team j, we add 0.5 to Aji.

For our testing, we set kA = kD = 1.3.

B.2.2 Static Home/Away + Direct Similarity

This approach is a combination of the approaches in Sections 3.5.1 and 3.5.4.1. Specifically,

we prepare the adjacency matrix with the home/away modifications and then use this

matrix in our static Direct Similarity Approach.

B.2.3 Dynamic Home/Away + Direct Similarity

This approach is a combination of the approaches in Sections 3.5.1 and 3.5.4.2. Specifically,

we prepare the adjacency matrix with the home/away modifications and then use this

matrix in our dynamic Direct Similarity Approach.

B.2.4 Static Home/Away + Matched Set Similarity

This approach is a combination of the approaches in Sections 3.5.1 and 3.5.6.1. Specifically,

we prepare the adjacency matrix with the home/away modifications and then use this
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matrix in our static Matched Set Similarity Approach.

B.2.5 Dynamic Home/Away + Matched Set Similarity

This approach is a combination of the approaches in Sections 3.5.1 and 3.5.6.2. Specifically,

we prepare the adjacency matrix with the home/away modifications and then use this

matrix in our dynamic Matched Set Similarity Approach.

B.2.6 Static Home/Away + Unmatched Set Similarity

This approach is a combination of the approaches in Sections 3.5.1 and 3.5.8.1. Specifically,

we prepare the adjacency matrix with the home/away modifications and then use this

matrix in our static Unmatched Set Similarity Approach.

B.2.7 Dynamic Home/Away + Unmatched Set Similarity

This approach is a combination of the approaches in Sections 3.5.1 and 3.5.8.2. Specifically,

we prepare the adjacency matrix with the home/away modifications and then use this

matrix in our dynamic Unmatched Set Similarity Approach.

B.2.8 Static Home/Away + Mean-Based Direct Similarity

This approach is a combination of the approaches in Sections 3.5.1 and 3.5.5.1. Specifically,

we prepare the adjacency matrix with the home/away modifications and then use this

matrix in our static Mean-Based Direct Similarity Approach.

180



B.2.9 Dynamic Home/Away + Mean-Based Direct Similarity

This approach is a combination of the approaches in Sections 3.5.1 and 3.5.5.2. Specifically,

we prepare the adjacency matrix with the home/away modifications and then use this

matrix in our dynamic Mean-Based Direct Similarity Approach.

B.2.10 Static Home/Away + Mean-Based Matched Set Similar-

ity

This approach is a combination of the approaches in Sections 3.5.1 and 3.5.7.1. Specifically,

we prepare the adjacency matrix with the home/away modifications and then use this

matrix in our static Mean-Based Matched Set Similarity Approach.

B.2.11 Dynamic Home/Away + Mean-Based Matched Set Sim-

ilarity

This approach is a combination of the approaches in Sections 3.5.1 and 3.5.7.2. Specifically,

we prepare the adjacency matrix with the home/away modifications and then use this

matrix in our dynamic Mean-Based Matched Set Similarity Approach.

B.2.12 Static Home/Away + Mean-Based Unmatched Set Sim-

ilarity

This approach is a combination of the approaches in Sections 3.5.1 and 3.5.9.1. Specifically,

we prepare the adjacency matrix with the home/away modifications and then use this

matrix in our static Mean-Based Unmatched Set Similarity Approach.
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B.2.13 Dynamic Home/Away + Mean-Based Unmatched Set

Similarity

This approach is a combination of the approaches in Sections 3.5.1 and 3.5.9.2. Specifically,

we prepare the adjacency matrix with the home/away modifications and then use this

matrix in our dynamic Mean-Based Unmatched Set Similarity Approach.

B.2.14 Static Goal Difference + Direct Similarity

This approach is a combination of the approaches in Sections 3.5.2 and 3.5.4.1. Specifically,

we prepare the adjacency matrix with the goal difference modifications and then use this

matrix in our static Direct Similarity Approach.

B.2.15 Dynamic Goal Difference + Direct Similarity

This approach is a combination of the approaches in Sections 3.5.2 and 3.5.4.2. Specifically,

we prepare the adjacency matrix with the goal difference modifications and then use this

matrix in our dynamic Direct Similarity Approach.

B.2.16 Static Goal Difference + Matched Set Similarity

This approach is a combination of the approaches in Sections 3.5.2 and 3.5.6.1. Specifically,

we prepare the adjacency matrix with the goal difference modifications and then use this

matrix in our static Matched Set Similarity Approach.
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B.2.17 Dynamic Goal Difference + Matched Set Similarity

This approach is a combination of the approaches in Sections 3.5.2 and 3.5.6.2. Specifically,

we prepare the adjacency matrix with the goal difference modifications and then use this

matrix in our dynamic Matched Set Similarity Approach.

B.2.18 Static Goal Difference + Unmatched Set Similarity

This approach is a combination of the approaches in Sections 3.5.2 and 3.5.8.1. Specifically,

we prepare the adjacency matrix with the goal difference modifications and then use this

matrix in our static Unmatched Set Similarity Approach.

B.2.19 Dynamic Goal Difference + Unmatched Set Similarity

This approach is a combination of the approaches in Sections 3.5.2 and 3.5.8.2. Specifically,

we prepare the adjacency matrix with the goal difference modifications and then use this

matrix in our dynamic Unmatched Set Similarity Approach.

B.2.20 Static Goal Difference + Mean-Based Direct Similarity

This approach is a combination of the approaches in Sections 3.5.2 and 3.5.5.1. Specifically,

we prepare the adjacency matrix with the goal difference modifications and then use this

matrix in our static Mean-Based Direct Similarity Approach.
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B.2.21 Dynamic Goal Difference + Mean-Based Direct Similar-

ity

This approach is a combination of the approaches in Sections 3.5.2 and 3.5.5.2. Specifically,

we prepare the adjacency matrix with the goal difference modifications and then use this

matrix in our dynamic Mean-Based Direct Similarity Approach.

B.2.22 Static Goal Difference + Mean-Based Matched Set Sim-

ilarity

This approach is a combination of the approaches in Sections 3.5.2 and 3.5.7.1. Specifically,

we prepare the adjacency matrix with the goal difference modifications and then use this

matrix in our static Mean-Based Matched Set Similarity Approach.

B.2.23 Dynamic Goal Difference + Mean-Based Matched Set

Similarity

This approach is a combination of the approaches in Sections 3.5.2 and 3.5.7.2. Specifically,

we prepare the adjacency matrix with the goal difference modifications and then use this

matrix in our dynamic Mean-Based Matched Set Similarity Approach.

B.2.24 Static Goal Difference + Mean-Based Unmatched Set

Similarity

This approach is a combination of the approaches in Sections 3.5.2 and 3.5.9.1. Specifically,

we prepare the adjacency matrix with the goal difference modifications and then use this

184



matrix in our static Mean-Based Unmatched Set Similarity Approach.

B.2.25 Dynamic Goal Difference + Mean-Based Unmatched Set

Similarity

This approach is a combination of the approaches in Sections 3.5.2 and 3.5.9.2. Specifically,

we prepare the adjacency matrix with the goal difference modifications and then use this

matrix in our dynamic Mean-Based Unmatched Set Similarity Approach.

B.2.26 Static Home/Away + Goal Difference + Direct Similarity

This approach is a combination of the approaches in Sections B.2.1 and 3.5.4.1. Specifically,

we prepare the adjacency matrix with the home/away and goal difference modifications

and then use this matrix in our static Direct Similarity Approach.

B.2.27 Dynamic Home/Away + Goal Difference + Direct Simi-

larity

This approach is a combination of the approaches in Sections B.2.1 and 3.5.4.2. Specifically,

we prepare the adjacency matrix with the home/away and goal difference modifications

and then use this matrix in our dynamic Direct Similarity Approach.
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B.2.28 Static Home/Away + Goal Difference + Matched Set

Similarity

This approach is a combination of the approaches in Sections B.2.1 and 3.5.6.1. Specifically,

we prepare the adjacency matrix with the home/away and goal difference modifications

and then use this matrix in our static Matched Set Similarity Approach.

B.2.29 Dynamic Home/Away + Goal Difference + Matched Set

Similarity

This approach is a combination of the approaches in Sections B.2.1 and 3.5.6.2. Specifically,

we prepare the adjacency matrix with the home/away and goal difference modifications

and then use this matrix in our dynamic Matched Set Similarity Approach.

B.2.30 Static Home/Away + Goal Difference + Unmatched Set

Similarity

This approach is a combination of the approaches in Sections B.2.1 and 3.5.8.1. Specifically,

we prepare the adjacency matrix with the home/away and goal difference modifications

and then use this matrix in our static Unmatched Set Similarity Approach.

B.2.31 Dynamic Home/Away + Goal Difference + Unmatched

Set Similarity

This approach is a combination of the approaches in Sections B.2.1 and 3.5.8.2. Specifically,

we prepare the adjacency matrix with the home/away and goal difference modifications
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and then use this matrix in our dynamic Unmatched Set Similarity Approach.

B.2.32 Static Home/Away + Goal Difference + Mean-Based Di-

rect Similarity

This approach is a combination of the approaches in Sections B.2.1 and 3.5.5.1. Specifically,

we prepare the adjacency matrix with the home/away and goal difference modifications

and then use this matrix in our static Mean-Based Direct Similarity Approach.

B.2.33 Dynamic Home/Away + Goal Difference + Mean-Based

Direct Similarity

This approach is a combination of the approaches in Sections B.2.1 and 3.5.5.2. Specifically,

we prepare the adjacency matrix with the home/away and goal difference modifications

and then use this matrix in our dynamic Mean-Based Direct Similarity Approach.

B.2.34 Static Home/Away + Goal Difference + Mean-Based

Matched Set Similarity

This approach is a combination of the approaches in Sections B.2.1 and 3.5.7.1. Specifically,

we prepare the adjacency matrix with the home/away and goal difference modifications

and then use this matrix in our static Mean-Based Matched Set Similarity Approach.
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B.2.35 Dynamic Home/Away + Goal Difference + Mean-Based

Matched Set Similarity

This approach is a combination of the approaches in Sections B.2.1 and 3.5.7.2. Specifically,

we prepare the adjacency matrix with the home/away and goal difference modifications

and then use this matrix in our dynamic Mean-Based Matched Set Similarity Approach.

B.2.36 Static Home/Away + Goal Difference + Mean-Based Un-

matched Set Similarity

This approach is a combination of the approaches in Sections B.2.1 and 3.5.9.1. Specifically,

we prepare the adjacency matrix with the home/away and goal difference modifications

and then use this matrix in our static Mean-Based Unmatched Set Similarity Approach.

B.2.37 Dynamic Home/Away + Goal Difference + Mean-Based

Unmatched Set Similarity

This approach is a combination of the approaches in Sections B.2.1 and 3.5.9.2. Specifically,

we prepare the adjacency matrix with the home/away and goal difference modifications

and then use this matrix in our dynamic Mean-Based Unmatched Set Similarity Approach.

B.3 Additional Performance Figures

This section contains additional figures related to our ranking model performance. We

separate them by approach (static and dynamic) and league.
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B.3.1 Static Approaches

This section contains the line plots for the static network approaches for 4 year rolling

windows starting with the number indicated on the x-axis.

B.3.1.1 England

Figure B.1: English Premier League 4-Year Rolling Predictive Accuracy: Static
Home/Away, Goal/Difference, and Home/Away + Goal Difference Approaches
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Figure B.2: English Premier League 4-Year Rolling Predictive Accuracy: Static Similarity
Approaches
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Figure B.3: English Premier League 4-Year Rolling Predictive Accuracy: Static
Home/Away Similarity Approaches
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Figure B.4: English Premier League 4-Year Rolling Predictive Accuracy: Static Goal
Difference Similarity Approaches
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Figure B.5: English Premier League 4-Year Rolling Predictive Accuracy: Static
Home/Away Goal Difference Similarity Approaches
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B.3.1.2 Spain

Figure B.6: Spanish La Liga 4-Year Rolling Predictive Accuracy: Static Home/Away,
Goal/Difference, and Home/Away + Goal Difference Approaches
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Figure B.7: Spanish La Liga 4-Year Rolling Predictive Accuracy: Static Similarity Ap-
proaches

195



Figure B.8: Spanish La Liga 4-Year Rolling Predictive Accuracy: Static Home/Away
Similarity Approaches
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Figure B.9: Spanish La Liga 4-Year Rolling Predictive Accuracy: Static Goal Difference
Similarity Approaches
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Figure B.10: Spanish La Liga 4-Year Rolling Predictive Accuracy: Static Home/Away
Goal Difference Similarity Approaches
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B.3.1.3 Germany

Figure B.11: German Bundesliga 4-Year Rolling Predictive Accuracy: Static Home/Away,
Goal/Difference, and Home/Away + Goal Difference Approaches
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Figure B.12: German Bundesliga 4-Year Rolling Predictive Accuracy: Static Similarity
Approaches
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Figure B.13: German Bundesliga 4-Year Rolling Predictive Accuracy: Static Home/Away
Similarity Approaches
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Figure B.14: German Bundesliga 4-Year Rolling Predictive Accuracy: Static Goal Differ-
ence Similarity Approaches
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Figure B.15: German Bundesliga 4-Year Rolling Predictive Accuracy: Static Home/Away
Goal Difference Similarity Approaches
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B.3.1.4 Italy

Figure B.16: Italian Serie A 4-Year Rolling Predictive Accuracy: Static Home/Away,
Goal/Difference, and Home/Away + Goal Difference Approaches
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Figure B.17: Italian Serie A 4-Year Rolling Predictive Accuracy: Static Similarity Ap-
proaches
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Figure B.18: Italian Serie A 4-Year Rolling Predictive Accuracy: Static Home/Away Sim-
ilarity Approaches
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Figure B.19: Italian Serie A 4-Year Rolling Predictive Accuracy: Static Goal Difference
Similarity Approaches
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Figure B.20: Italian Serie A 4-Year Rolling Predictive Accuracy: Static Home/Away Goal
Difference Similarity Approaches
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B.3.1.5 France

Figure B.21: French Ligue 1 4-Year Rolling Predictive Accuracy: Static Home/Away,
Goal/Difference, and Home/Away + Goal Difference Approaches
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Figure B.22: French Ligue 1 4-Year Rolling Predictive Accuracy: Static Similarity Ap-
proaches
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Figure B.23: French Ligue 1 4-Year Rolling Predictive Accuracy: Static Home/Away Sim-
ilarity Approaches
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Figure B.24: French Ligue 1 4-Year Rolling Predictive Accuracy: Static Goal Difference
Similarity Approaches
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Figure B.25: French Ligue 1 4-Year Rolling Predictive Accuracy: Static Home/Away Goal
Difference Similarity Approaches

B.3.2 Dynamic Approaches

This section contains the line plots for the dynamic network approaches for 4 year rolling

windows starting with the number indicated on the x-axis.

213



B.3.2.1 England

Figure B.26: English Premier League 4-Year Rolling Predictive Accuracy: Dynamic
Home/Away, Goal/Difference, and Home/Away + Goal Difference Approaches
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Figure B.27: English Premier League 4-Year Rolling Predictive Accuracy: Dynamic Simi-
larity Approaches
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Figure B.28: English Premier League 4-Year Rolling Predictive Accuracy: Dynamic
Home/Away Similarity Approaches
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Figure B.29: English Premier League 4-Year Rolling Predictive Accuracy: Dynamic Goal
Difference Similarity Approaches
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Figure B.30: English Premier League 4-Year Rolling Predictive Accuracy: Dynamic
Home/Away Goal Difference Similarity Approaches
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B.3.2.2 Spain

Figure B.31: Spanish La Liga 4-Year Rolling Predictive Accuracy: Dynamic Home/Away,
Goal/Difference, and Home/Away + Goal Difference Approaches
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Figure B.32: Spanish La Liga 4-Year Rolling Predictive Accuracy: Dynamic Similarity
Approaches
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Figure B.33: Spanish La Liga 4-Year Rolling Predictive Accuracy: Dynamic Home/Away
Similarity Approaches
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Figure B.34: Spanish La Liga 4-Year Rolling Predictive Accuracy: Dynamic Goal Differ-
ence Similarity Approaches
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Figure B.35: Spanish La Liga 4-Year Rolling Predictive Accuracy: Dynamic Home/Away
Goal Difference Similarity Approaches
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B.3.2.3 Germany

Figure B.36: German Bundesliga 4-Year Rolling Predictive Accuracy: Dynamic
Home/Away, Goal/Difference, and Home/Away + Goal Difference Approaches
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Figure B.37: German Bundesliga 4-Year Rolling Predictive Accuracy: Dynamic Similarity
Approaches
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Figure B.38: German Bundesliga 4-Year Rolling Predictive Accuracy: Dynamic
Home/Away Similarity Approaches
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Figure B.39: German Bundesliga 4-Year Rolling Predictive Accuracy: Dynamic Goal Dif-
ference Similarity Approaches
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Figure B.40: German Bundesliga 4-Year Rolling Predictive Accuracy: Dynamic
Home/Away Goal Difference Similarity Approaches
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B.3.2.4 Italy

Figure B.41: Italian Serie A 4-Year Rolling Predictive Accuracy: Dynamic Home/Away,
Goal/Difference, and Home/Away + Goal Difference Approaches
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Figure B.42: Italian Serie A 4-Year Rolling Predictive Accuracy: Dynamic Similarity
Approaches
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Figure B.43: Italian Serie A 4-Year Rolling Predictive Accuracy: Dynamic Home/Away
Similarity Approaches
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Figure B.44: Italian Serie A 4-Year Rolling Predictive Accuracy: Dynamic Goal Difference
Similarity Approaches
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Figure B.45: Italian Serie A 4-Year Rolling Predictive Accuracy: Dynamic Home/Away
Goal Difference Similarity Approaches
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B.3.2.5 France

Figure B.46: French Ligue 1 4-Year Rolling Predictive Accuracy: Dynamic Home/Away,
Goal/Difference, and Home/Away + Goal Difference Approaches
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Figure B.47: French Ligue 1 4-Year Rolling Predictive Accuracy: Dynamic Similarity
Approaches
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Figure B.48: French Ligue 1 4-Year Rolling Predictive Accuracy: Dynamic Home/Away
Similarity Approaches
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Figure B.49: French Ligue 1 4-Year Rolling Predictive Accuracy: Dynamic Goal Difference
Similarity Approaches
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Figure B.50: French Ligue 1 4-Year Rolling Predictive Accuracy: Dynamic Home/Away
Goal Difference Similarity Approaches

B.4 Attempts to Beat Betting Odds

This appendix explains the attempts we made to modify the prediction algorithm in order

to better-capture ties and, in one case, upsets. Section B.4.1 describes an approach that

treats match result predictions differently if teams are within k ranks of each other. Section

B.4.2 explains an approach that treats match result predictions differently if teams are

within k standard deviations in terms of total score (the number from which the ranks are

derived). Section B.4.3 introduces an approach that predicts a random result in accordance

with the empirical probabilities of home wins, draws, and away wins for teams that are

within k standard deviations in terms of total score. Section B.4.4 details an approach that
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predicts ties for teams that have similarity metric values beyond a threshold. Section B.4.5

catalogues two attempts at using machine learning to build classification systems for the

match results; Section B.4.5.3 uses a logistic regression model and B.4.5.4 uses a support

vector machine.

B.4.1 Tie Prediction Within k Ranks

This approach deploys a simple heuristic in an attempt to generate tie predictions. At

each gameweek, if two teams have ranks i and j, if |i − j| > k, where k is a user-chosen

parameter, we predict that the team with the lower, better rank will win, regardless of

home/away status. However, if the ranks are such that |i − j| ≤ k, we use the following

logic:

• If the home team is the better-ranked team, we predict a home win.

• If the away team is the better-ranked team, we predict a tie.

Essentially, what this heuristic supposes is that part of the benefit of being the better-

ranked team is mitigated by home-field advantage, which softens the prediction of an away

team win to a draw.

B.4.2 Tie Prediction Within k Total Score Standard Deviations

This approach is similar to that of Section B.4.1. However, instead of using ranks, we use

the total score. Given that the total scores will grow as we proceed through any ranking

window, we use the standard deviation of the total scores at each gameweek as a metric.

Specifically, we use k standard deviations, where k is a user-defined parameter; let d̂s be

the standard deviation of the total scores in the given gameweek. Let si and sj be the
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total scores of teams i and j respectively in our given gameweek. The heuristic operates as

follows. If |si−sj| > kd̂s, we predict that the better-ranked team will win. If |si−sj| ≤ kd̂s,

then our prediction uses the following logic:

• If the home team is the better-ranked team, we predict a home win.

• If the away team is the better-ranked team, we predict a tie.

B.4.3 Randomized Result Prediction Within k Total Score Stan-

dard Deviations

This approach is similar to B.4.2 and uses the same standard deviation threshold. However,

the prediction logic changes when |si − sj| ≤ kd̂s. Namely, we predict the outcome using

a random draw. Specifically, we use the following probabilities:

• home win: 0.50

• draw: 0.25

• away win: 0.25.

B.4.4 Similarity-Based Tie Prediction

For this approach, we compute and use one of our similarity metrics (Direct Similarity,

Matched Set Similarity, Unmatched Set Similarity, Mean-Based Direct Similarity, Mean-

Based Matched Similarity, or Mean-Based Unmatched Set Similarity) for the ranking win-

dow up to the gameweek in question. We then compute both the mean similarity x̄ and

standard deviation of the similarities d̂s. Let the similarity of teams i and j be xij.

We then proceed to do the following for match result predictions. If xij < x̄+ kd̂s, we

predict that the better-ranked team will win. If xij ≥ x̄ + kd̂s, we predict that the teams
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will draw. The logic behind this approach is that teams with higher similarity should, on

average, be closer to each other in terms of ability, so they are more likely to tie.

B.4.5 Machine Learning Approaches to Predicting Ties, Upsets,

and Non-Upsets

B.4.5.1 Training and Prediction Approach

Before discussing the variables in Section B.4.5.2 and the models in sections B.4.5.3 and

B.4.5.4, we first discuss how the machine learning model is trained and used for prediction.

It does not make sense to train the machine learning models when there is insufficient

data. As such, we use our regular predictive accuracy for the first N gameweeks, where N

is the number of features we use in our machine learning models. We use this as a heuristic

because this means we have roughly 10 games in the training dataset per feature, as we

average 10 games per gameweek.

To predict game outcomes in gameweek t+ 1, we train our machine learning model on

all game data from time period 1 through t inclusive. We know that ties and upsets are

relatively infrequent phenomena, so we use all the available data for training so as to give

ourselves the best chance of finding useful patterns in our explanatory variables. Once

our models are trained, we use our explanatory variable values for the upcoming games

of gameweek t + 1 in our trained model to make predictions. We then compare these

predictions with the realizations to compute our accuracy.
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B.4.5.2 Model Variables

Both models in this section use the same set of dependent and independent variables. As

such, we discuss those here. First, we mention our dependent variable: match outcome,

which we denote as yi for observation i. Match outcome has three categories: ties, upsets,

and non-upsets. We define upsets as matches where the worse-ranked team wins. Non-

upsets are games where the better-ranked team wins. For our models, we use the following

to denote each of these outcomes:

• tie: 0

• upset: 1

• non-upset: 2.

We choose to use these classes because ranking systems, on average, tend to be good at

predicting non-upsets, but they struggle with ties and upsets, since these defy the ordering

proposed by the ranking system.

The dependent variables used for training and testing are explained below. Note that

some variables are indexed by the time of the observation, which we denote as ti, while

some are indexed by the latest time period in the training dataset, which we denote as t.

• rank difference: a variable that equals home rank− away rank at the time ti; note

that the sign of this variable indicates whether the home team is better-ranked.

• total score difference: a variable that equals home total score−away total score at

time ti.

• (total score difference)2: squared total score difference at time t.

• mean − based direct similarity: the Mean-Based Direct Similarity of the teams in

the match at time t; this means we use our latest similarity metric for each pair

of teams. Note that we do this because the latest similarity value best-reflects how
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competitive the teams are, but this value only gets revealed over many gameweeks.

Further, for clarification, this does not introduce look-ahead bias because we retrain

our machine learning models before each gameweek.

• mean − based matched set similarity: The Mean-Based Matched Set Similarity of

the teams in the match at time t.

• mean−based unmatched set similarity: The Mean-Based Unmatched Set Similarity

of the teams in the match at time t.

• quantileij: dummy variables indicating which quantile the home team, i and the

away team, j are located in the rankings at time ti. If we have q quantiles, we leave

out the quantileqq dummy variable (both teams being in the worst quantile, rank-

wise). This variable is included as we might suspect that there are certain structural

properties to ties and upsets, where it might be more likely for, say, an upset to occur

when teams play and are separated by more than one quantile.

• team name: we arrange our set of teams alphabetically and create dummy variables

for each except the first; this is to capture if certain teams have greater or lesser

tendencies to tie or have upsets.

• ∆total score: For both the home and away team, we include proportional changes

in total score, the number of which is determined by parameter p. For example, if

we set p = 3, we include the proportional changes in total score generated in going

from period ti−3 to ti−2, from period ti−2 to ti−1, and from period ti−1 to ti.

B.4.5.3 Logistic Regression

Using Myers et al. (2010), we briefly outline our approach to the logistic regression model.

We have three categories for prediction: ties, upsets, and non-upsets. These categories

are changed to numerical values, where yi = 0 for ties, yi = 1 for upsets, and yi = 2 for
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non-upsets. We collect all of the variables in Section B.4.5.2 into a matrix X, where row

Xi represents the collection of features associated with observation i. We then use the

following equations to define our model:

P(yi = 0) =
1

1 +
∑2

j=1 exp
[
Xiβ

(j)
] ; (B.1)

P(yi = 1) =
exp

[
Xiβ

(1)
]

1 +
∑2

j=1 exp
[
Xiβ

(j)
] ; (B.2)

P(yi = 2) =
exp

[
Xiβ

(2)
]

1 +
∑2

j=1 exp
[
Xiβ

(j)
] , (B.3)

where β(j) denotes the parameter vector for class j. Note that we have only two category

vectors, since we only need the probability of two classes to compute the probability of the

third class. We compare each response category to the baseline, producing logits:

ln
P(yi = 1)

P(yi = 0)
= Xiβ

(1); (B.4)

ln
P(yi = 2)

P(yi = 0)
= Xiβ

(2). (B.5)

We use conventional maximum likelihood estimation to estimate the parameters.

B.4.5.4 Support Vector Machine

One approach to using support vector machines in the context of multiple class prediction

is to build binary classifiers between all classes, then the classification of a new data point

is done via a winner-takes-all strategy. Namely, the class that obtains the highest score

via an output function is the one to which the new point is assigned. We briefly describe
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the linear support vector machine framework.

Let (x1, y1), . . . , (xn, yn) be our data points, where the xi are the feature vectors and

yi are our target variables. For the sake of this explanation, yi can take on two values, one

per class: -1 or 1. The goal of a support vector machine is to find the maximum-margin

hyperplane that best divides the xi where yi is one class from the xi where yi is the other

class. A hyperplane can be written as the set of points x satisfying:

wTx− b = 0. (B.6)

where w is the normal vector to the hyperplane and the parameter b
∥w∥ determines the

offset of the hyperplane from the origin along the normal vector w.

If the classes are linearly separable, we can cast this as the following optimization

problem:

min
w,b

∥w∥2; (B.7)

subject to yi(w
txi − b) ≥ 1 ∀i ∈ {1, . . . , n}. (B.8)

We solve this optimization problem for w and b.

If the training data is not linearly separable, we use what is called a soft-margin ap-

proach, which includes a loss penalty in case points lie on the incorrect side of the hyper-

plane. One example of this loss is the hinge loss function:

max
(
0, 1− yi(w

txi − b)
)
. (B.9)
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Through some adjustments, our optimization problem then becomes:

min
w,b,γ

∥w∥2 + C

n∑
i=1

γi; (B.10)

subject to yi(w
txi − b) ≥ 1− γi, γi ≥ 0 ∀i ∈ {1, . . . , n}, (B.11)

where C is a parameter for tuning the penalty imposed by the loss function.
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