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Abstract

High-definition (HD) maps of building rooftops or footprints are important for urban
application and disaster management. Rapid creation of such HD maps through rooftop
delineation at the city scale using high-resolution satellite and aerial images with deep
leaning methods has become feasible and draw much attention. In the context of rooftop
delineation, the end-to-end Deep Convolutional Neural Networks (DCNNs) have demon-
strated remarkable performance in accurately delineating rooftops from aerial imagery.
However, several challenges still exist in this task, which are addressed in this thesis.
These challenges include: (1) the generalization issues of models when test data differ from
training data, (2) the scale-variance issues in rooftop delineation, and (3) the high cost of
annotating accurate rooftop boundaries.

To address the challenges mentioned above, this thesis proposes three novel deep
learning-based methods. Firstly, a super-resolution network named Momentum and Spatial-
Channel Attention Residual Feature Aggregation Network (MSCA-RFANet) is proposed
to tackle the generalization issue. The proposed super-resolution network shows better
performance compared to its baseline and other state-of-the-art methods. In addition,
data composition with MSCA-RFANet shows high performance on dealing with the gener-
alization issues. Secondly, an end-to-end rooftop delineation network named Higher Res-
olution Network with Dynamic Scale Training (HigherNet-DST) is developed to mitigate
the scale-variance issue. The experimental results on publicly available building datasets
demonstrate that HigherNet-DST achieves competitive performance in rooftop delineation,
particularly excelling in accurately delineating small buildings. Lastly, a weakly supervised
deep learning network named Box2Boundary is developed to reduce the annotation cost.
The experimental results show that Box2Boundary with post processing is effective in deal-
ing with the cost annotation issues with decent performance. Consequently, the research
with these three sub-topics and the three resulting papers are thought to hold potential
implications for various practical applications.
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Chapter 1

Introduction

1.1 Background and Motivations

Buildings, as one of the key elements in urban areas, have been used as an indicator for the
urban change detection. Since urbanization developed rapidly in recent years, automatic
building mapping has drawn much attention [20, 157]. Specifically, building rooftop or foot-
print maps play key roles in several municipal applications, such as urban planning and
management, urban cadastral management, geo-databased updating, population estima-
tion, infrastructure development and smart city construction [165, 122, 51]. The population
density maps generated by population estimation with rooftops or building footprints can
further be used in epidemic or pandemic control, as illustrated in malaria control studies
[41]. In addition, building maps are also important to homeowners, local authorities, and
insurance companies in natural hazard management and damage estimation [134, 144].
For example, accurate building maps are required to estimate damage and assess the risk
brought by earthquakes, storms and other geological disasters [128, 160]. In such emergent
events, building maps should be obtained effectively and efficiently at any cost once these
disasters occur [160]. For these applications, the remote sensing imagery-based, especially
the aerial imagery-based, methods provide promising solutions.

Detailed building information is required for the aforementioned applications. Accord-
ing to the Nyquist–Shannon sampling theorem, the sampling frequency, i.e., the inverse of
the ground sampling distance (GSD), must be higher or equal to twice the highest spatial
frequency of the signal [38]. Take rooftop delineation as an example, to extract 0.3 m wide
eaves, a spatial resolution of 0.15 m or higher one is required. In the literature, submetre
aerial images are commonly used in rooftop delineation. As for methods used for this
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task, they can be categorized into (1) manual annotation, (2) hand-crafted feature-based
methods, and (3) deep learning (DL)-based methods [111]. Manual annotation is notori-
ous for being time-consuming and labor-intensive. In hand-crafted feature-based methods,
spectral information, geometric information and/or height information are collected based
on expert knowledge to delineate rooftops. Hypotheses about the geometric features of the
building are employed to simplify the delineation process. Obviously, expert knowledge is
required, and these methods can only be used in certain limited situations. In contrast,
deep learning-based methods can learn features directly from data, achieving higher levels
of accuracy and speed. While these methods require significant computational resources,
advancements in computing technology are mitigating this issue. Consequently, the Deep
Convolutional Neural Networks (DCNN) dominated in computer vision tasks [76] have
been successfully applied in remote sensing and rooftop delineation.

Despite recent advances, the generalization ability of models to data outside the training
set remains a challenge. Applying certain methods such as regularization in model training
can alleviate the problem to some extent. Another way is to construct a dataset with a
wide variety of characteristics and distributions [78]. In addition, the models may not
perform as expected in datasets which have different spatial resolutions with the training
data. For rooftop delineation, given the wide application of high spatial resolution imagery
[11] and the abundance of public building datasets released in the past decade [125, 109,
103, 66, 148, 124, 51], composing these datasets to overcome generalization errors can be
a more promising solution. Since these datasets have varying spatial resolutions, ranging
from 5 cm (the ISPRS Vaihingen and Potsdam Datasets [125]) to 1 m (the Massachusetts
Building Dataset [109]), as well as different spectral bands, it is necessary to perform
spatial resolution enhancement and band selection in order to process and compose these
datasets. For the band selection, one can preserve the most discriminative and commonly
used combinations of Red, Green, and Blue (RGB) bands[22]. For the spatial resolution
integration, powerful methods are required to process different datasets used in rooftop
delineation.

Due to the availability of a large volume of aerial imagery with building annotations,
DCNN-based rooftop delineation methods have achieved high accuracy by partially ad-
dressing the scale-variance issue, the intra-class variation issue, and the inter-class simi-
larity [134]. However, the occlusion issue and blurred rooftop boundary still exist in the
extraction results [98, 133]. The end-to-end DCNN for rooftop delineation has drawn much
attention recently. These methods were initially introduced to directly generate vectorized
building maps from remote sensing imagery without any or with simple post-processing
[90]. In addition, by directly outputting vectorized results with building corners, the
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occlusion and blurred boundaries are relieved significantly. Nonetheless, scale1-variance
problems still exist in practice. Specifically, rooftop delineation gives poor performance on
small buildings compared to large and medium sized buildings. Therefore, advanced build-
ing delineation methods are required to improve the overall performance by addressing
scale-variance issues on small buildings.

The quality and data volume required in rooftop delineation bring high cost in data
annotation. As a result, costly annotation inhibits the use of DL-based rooftop delin-
eation methods in practice [178]. Deep learning methods, including weakly supervised
learning, semi-supervised learning, and self-supervised learning, can be used to liberate
this constraint from traditional full supervised DL, using weak annotations, limited an-
notations, and image representation learning, respectively [120]. For rooftop delineation,
weakly supervised learning is widely used given its flexibility, although current research
mainly employs weakly supervised semantic segmentation instead of instance segmenta-
tion. However, weakly supervised instance segmentation methods are more suitable for
rooftop delineation as individual rooftop can be extracted. In computer vision, weakly
supervised instance segmentation methods have been well explored. Therefore, advanced
weakly supervised instance segmentation methods are achievable, which are required for
weakly supervised rooftop delineation.

In summary, this thesis focuses on three challenges in rooftop delineation for the rapid
creation of High-Definition (HD) maps.

(1) Generalization issues regarding differences in training and test data in terms of spa-
tial resolution and image characteristics. DL-based rooftop delineation methods have poor
performance when test data differ from training data. Data composition is a promising way
to overcome the issue. In the same geo-location, spatial resolution and spectral resolution
are the most different characteristics. Compared to spectral differences, spatial resolution
differences require better methods.

(2) Scale-variance issues in rooftop delineation when building sizes vary extremely.
Current DCNN methods are typically robust against scale variance issues. However, poor
performance on small objects cannot be fully addressed. In cases with many small build-
ings, scale-variance has a severe negative impact on objectives and total performance.
Therefore, scale-variance issues must be addressed.

(3) Costly annotation hinders the widespread use of DL-based methods for rooftop
delineation. The high performance of DL-based methods heavily relies on the high quality

1The term ”scale-variance” is commonly employed to characterize the issue addressed in this thesis and
is used in preference to other alternatives. In this context, ’scale’ refers to the size of objects, distinct from
its geographical meaning.
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and large volume of well annotated training data. But the annotation work is labor-
intensive and expensive. How to fully exploit the potential of deep learning and reduce the
annotation cost should be the key focus in rooftop delineation.

1.2 Objectives

To deploy DL-based methods for rooftop delineation, the challenges mentioned above need
to be carefully addressed. Specifically, in this thesis, several DL-based methods are pro-
posed to tackle generalization issues, scale variance issues and costly annotation issues in
rooftop delineation, respectively (as shown in Figure 1.1).

DCNN based Rooftop Delineation

Generalization Issues

Scale-Variance Issues

Building Data Composition

Rooftop Delineation with Dynamic Scale Training

Weakly Supervised Rooftop Delineation

DCNN

Costly Annotation Issues

Figure 1.1: Logic flow of the thesis

(1) In order to address the generalization issues, it is necessary to compose diverse
datasets with varying characteristics for model training. To achieve this, the integration
of publicly available building datasets with varying spatial resolutions necessitates the
utilization of advanced deep learning-based super-resolution techniques.

(2) In order to address the scale-variance issues in rooftop delineation and improve the
extraction of small buildings, it is essential to develop a new method that can effectively
mitigate the scale-variance issue and enhance the performance of rooftop delineation.
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(3) To overcome the costly annotation issues, it is crucial to employ weak supervision
targets for rooftop delineation while striving for high performance. Therefore, it is im-
perative to reassess weakly supervised rooftop delineation techniques and introduce novel
methods that offer improved performance.

1.3 Thesis Structure

This thesis consists of six chapters. Figure 1.2 shows the structure of the thesis.

Thesis Structure DCNN-based Building Footprint Extraction

Research Related to Dealing with 

Generalization Issues

Research Related to Dealing with Scale-

Variance

Research Related to Overcome Costly 

Annotation
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Rooftop Delineation: An Overview

Building Dataset Composition

Rooftop Delineation with Dynamic Scale 

Training

Weakly Supervised Rooftop Delineation

Conclusions and Recommendations

Figure 1.2: Structure of the thesis

Chapter 1 introduces the background and the motivation, as well as the objectives, of
the thesis. Three challenges in the deployment of DL-based rooftop delineation in practice
are placed as the focus.

Chapter 2 briefly reviews the publicly available building datasets, the applications of
deep learning in rooftop delineation, the methods used for dealing with generalization
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issues, scale variance issues and costly annotation issues in literature.

Chapter 3 introduces the data composition with the Momentum Spatial Channel At-
tention Residual Feature Aggregation Network (MSCA-RFANet). With extensive exper-
iments, the impact of super-resolution on rooftop delineation is well explored, and the
new method shows the state-of-the-art performance in super-resolution compared to base-
lines. Better performance in super-resolution results in more positive impact on rooftop
delineation.

Chapter 4 describes the method used for dealing with the scale variance issue in end-to-
end manner rooftop delineation with the Higher Resolution Network with Dynamic Scale
Training (HigherNet-DST) method. The extensive experiments demonstrate its superior
performance compared to other state-of-the-art methods.

Chapter 5 details box-supervised rooftop delineation with the Box2Boundary method.
Extensive experiments show the superiority of the Box2Boundary surpassing all other
weakly supervised methods with competitive performance compared to fully supervised
rooftop delineation methods.

Chapter 6 concludes the thesis and indicates the potential future research directions.
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Chapter 2

Rooftop Delineation: An Overview

2.1 Publicly Available Building Datasets

With the advancement of imaging technologies, there is increasing accessibility to high spa-
tial resolution satellite and aerial images. Consequently, several publicly available building
datasets have been released in recent years.

(1) The Vaihingen and Potsdam datasets, released by the International Society for Pho-
togrammetry and Remote Sensing (ISPRS) [125], are two relatively small building datasets.
These datasets consist of six classes, including impervious surfaces, buildings, low vegeta-
tion, trees, cars, and clutter. The Vaihingen dataset comprises 33 images, offering a spatial
resolution of 0.09 m/pixel. It encompasses spectral bands of Red, Green, Blue, and Near
Infrared, with an image size of approximately 2,500×2,500 pixels. On the other hand, the
Potsdam dataset consists of 38 images with a spatial resolution of 0.05 m/pixel, matching
the spectral resolution of the Vaihingen dataset. The image size for the Potsdam dataset
is approximately 6,000×6,000 pixels. Furthermore, both datasets include corresponding
Digital Surface Model (DSM) data alongside the image data. These datasets are notable
for having the highest spatial resolution among existing datasets, despite covering only a
5 km2 area.

(2) The Massachusetts building dataset [109] consists of 151 aerial images with a spatial
resolution of 1 m/pixel. These images, featuring RGB bands and a size of 1,500×1,500
pixels, are classified into building and non-building categories. This dataset covers approx-
imately 340 km2 in the Boston area. It is split into training (137 images), validation (4
images), and testing (10 images) sets. According to the author, the dataset demonstrates
high accuracy, with an average omission of building classification of less than 5
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(3) The Inria building dataset [103] also has building and non-building classes. It
contains aerial images covering 810 km2 of 10 cities in the USA and Austria. The training
set and the testing set evenly take 360 images with a spatial resolution of 0.3 m/pixel and
RGB bands. The dataset aims at exploring the generalizability ability of convolutional
neural networks, so adjacent images are split into training and testing sets.

(4) The WHU (Wuhan University) building dataset [66] encompasses both an aerial
image dataset and a satellite image dataset for building extraction. The aerial image
dataset consists of 8,189 tiles, each with a spatial resolution of 0.3 m/pixel. These tiles are
captured in RGB bands and possess dimensions of 512×512 pixels. This dataset covers an
extensive area of 450 km2 in Christchurch, New Zealand. The satellite image dataset is
divided into two distinct sets. The first set includes 204 images from 6 cities worldwide,
with spatial resolutions ranging from 0.3 m/pixel to 2.5 m/pixel. Each image in this set
has a size of 512×512 pixels. The second satellite image dataset comprises 17,388 tiles from
6 adjacent images. These tiles have a spatial resolution of 0.45 m/pixel and dimensions of
512×512 pixels. The coverage area for this dataset extends over 860 km2 in East Asia. It
is worth noting that these two satellite image datasets employ different sensors, resulting
in varying spectral resolutions.

(5) The SpaceNet building dataset [148] was released via two SpaceNet challenges for
building detection. For this dataset, five cities from various regions were selected as areas
of interest: Las Vegas, USA; Paris, France; Rio de Janeiro, Brazil; Shanghai, China; and
Khartoum, Sudan. WorldView-2 and WorldView-3 images were used, which were cropped
into smaller patches with dimensions of 650×650 pixels. These image patches collectively
cover a total area of 5,555 km2 across different continents.

(6) The AIRS (Aerial Imagery for Roof Segmentation) dataset [21] was constructed
using the same aerial images as the WHU building dataset, where the original spatial
resolution of images (0.075 m/pixel) is preserved.

(7) The Semcity Toulouse dataset [124] is made based on WorldView-2 imagery for
building instance segmentation, which covers 50 km2 area of Toulouse, France. The satellite
images in the dataset are classified into 8 classes, namely impervious surface, building,
pervious surface, high vegetation, car, water, sport venue and void. These images have a
spatial resolution of 0.5 m/pixel for the panchromatic band and 2 m/pixel for the other
bands. Each image is split into 16 tiles. Eventually, the panchromatic band has a size of
3,504×3,452 pixels and other bands have a size of 876×863 pixels.

(8) The Waterloo Building Dataset, released in 2022, covers an area of 205.83 km2 in the
Kitchener-Waterloo region of Ontario, Canada [51]. This dataset was specifically developed
for semantic segmentation, focusing on rooftop delineation. It comprises 242 aerial images,
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each with a size of 8,350×8,350 pixels and a spatial resolution of 0.12 m/pixel. Manually
labelled binary masks for rooftop are provided for all images. Both images and binary
masks were cropped to small patches of size 512×512 pixels. Then patches with geometric
distortion were removed. Finally, 42,147, 6,887, and 18,945 pairs of images and masks were
assigned into training, validation and test subsets, respectively.

Table 2.1: Publicly available building datasets

Dataset Location Spectral Bands Classes
Coverage
(km2)

Pixel Size
(m/pixel)

ISPRS
Vaihingen/
Postdam

Vaihingen
and Potsdam,
Germany

NIR, R, G, B,
DSM

6 land-cover
classes

1.4/3.4 0.05/0.09

Massachusetts
Massachusetts,

USA
R, G, B

Building and
non-building

340 1

WHU (aerial)
Christchurch,
New Zealand

R, G, B
Building and
non-building

457 0.3

Inria
10 regions in
the USA and

Austria
R, G, B

Building and
non-building

810 0.3

SpaceNet
4 cities

around the
world

WorldView-3 8
bands

Building, road
and

background
5555 0.3/0.5

AIRS
Christchurch,
New Zealand

R, G, B
Building and
non-building

457 0.075

ISPRS
Semcity
Toulouse

Toulouse,
France

WorldView-2 8
bands

8 land-cover
classes

50 0.5

Waterloo
Kitchener-
Waterloo,
Canada

R, G, B
Building and
non-building

205.83 0.12

In addition to the previously discussed datasets (as summarized in Table 2.1), there are
several other building datasets available. These include datasets created for the DeepGlobe
Building Extraction Challenge [33], the Open Cities AI Challenge [50], and the Crowd-AI
Mapping Challenge [110]. The DeepGlobe building dataset is based on the SpaceNet
dataset and focuses on annotating building footprints instead of rooftops. The dataset
for the Open Cities AI Challenge consists of building footprints from 10 cities in Africa
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but is known for having inconsistent annotation accuracy. The dataset for the Crowd-AI
Mapping Challenge comprises over 40,000 tiles of RGB images, each with a size of 300×300
pixels. However, the buildings are homogeneous in the dataset, making them easier to be
segmented from the background when compared with other datasets [124].

2.2 Rooftop Delineation

In this section, existing rooftop delineation methods are comprehensively reviewed. The
initial approach, manual editing, involves visual interpretation and the subsequent gen-
eration of polygons. In the realm of hand-crafted feature-based methods, features are
meticulously crafted through expert knowledge to encapsulate pertinent information cru-
cial for distinguishing various classes or categories within the image. These methods were
the dominant paradigm before the advent of DCNN-based methods in rooftop delineation.
Thus, this section will focus on the review of hand-crafted feature-based methods and
DCNN-based methods.

2.2.1 Hand-crafted Feature-based Rooftop Delineation

In hand-crafted feature-based methods, spectral information, geometric information, and/or
height information are collected based on expert knowledge to facilitate rooftop delineation.

The pioneering approaches employed geometric details, including edge, line, and corner
information [62, 64], as well as shadow information [94, 108], which are fundamental for
building extraction. Additionally, some methods integrated spectral information for build-
ing mapping [131, 81]. These methods are classified into three categories: classification
strategies-based methods, active contour-based methods, and graph-based methods[113].

Classification Strategies-Based Methods: In the domain of spectral feature meth-
ods, two notable approaches stand out. Zhang[185] employed Iterative Self-Organizing
Data Analysis Techniques (ISODATA) clustering on merged Thematic Mapper-Satellite
Pour l’Observation de la Terre (TM-SPOT) data for preliminary building extraction, fol-
lowed by gray value co-occurrence matrix filtering to eliminate non-building entities. Sub-
sequent refinement involved additional ISODATA clustering and manual editing. The
complexities of the method hindered its efficiency. Lee et al. [81] combined supervised (ex-
traction and classification of homogeneous, ECHO) and unsupervised (ISODATA) methods
for building extraction from IKONOS-2 images, yielding a modest 64.4% pixel accuracy
due to supervised classification limitations.
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Regarding geometric feature-based methods, Inglada [63] integrated geometric invari-
ants and Fourier-Mellin descriptors, achieving a robust pixel accuracy of 92.93% using
Support Vector Machines (SVM). Successful application, however, required precise cen-
tering of the target objects. Widely adopted, morphological features were employed for
non-building entity filtration by Aytekin et al. [5] and Lefèvre et al. [85]. Huang and
Zhang [60, 61] introduced morphological building index (MBI) and morphological shadow
index (MSI), while morphological spatial pattern (MSPA) improved the classification of
preliminary MBI results. Nevertheless, multi-stage methodologies introduced uncertainty
and lower accuracy [181].

Concurrently, other strategies encompass diverse features and classification techniques.
Integrating spectral and spatial information through a fuzzy pixel-based classifier using
pan-sharpened multispectral IKONOS-2 images facilitated urban land cover classification.
Enhanced by object-based classification, incorporating shape, spectral, and contextual
traits, this approach demonstrated high performance, yet encountered challenges in effec-
tively distinguishing between buildings and other impervious surfaces[131]. Conversely,
the Fuzzy Stacked Generalization(FSG) method achieved a pixel accuracy of 84% in de-
tecting building regions from a single QuickBird image, relying on a two-layer hierarchical
ensemble learning model. The assumption of the method is the statistical stability of the
training and testing data, which is hard to control in practice[130]. Another avenue in-
volved an adaptive fuzzy-genetic algorithm for building detection in IKONOS-2 images,
with efficacy dependent on parameter tuning[139]. Meanwhile, a novel Conditional Ran-
dom Field (CRF) formulation aimed to extract building rooftops, yet pre-segmentation,
non-building filtration, and CRF-based segmentation introduced uncertainty, limiting fea-
sibility and accuracy[86]. Novel indices, Edge Regularity Indices (ERI) and Shadow Line
Indices (SLI), proposed by Chen et al.[22], demonstrated value in building footprint ex-
traction, validated by Adaboost, Random Forest (RF), and SVM classifiers.

Active Contour-Based Methods: Active contours, also known as snakes [69], have
found widespread application in image processing for boundary localization. These con-
tours seek to locate object boundaries by minimizing an energy function comprising ex-
ternal and internal energy terms. The total energy is the sum of these components: the
external energy (image energy) pertains to image characteristics that guide contours to-
wards object boundaries, while the internal energy (shape energy) contributes to boundary
smoothness [1]. Cao and Yang [12] proposed a Chan-Vese model for building extraction,
primarily targeting man-made regions rather than individual buildings. Extending this,
Karantzalos and Paragios[68] incorporated prior shape knowledge into active contours to
effectively extract buildings from high and very high spatial resolution (HSR/VHSR) im-
ages. Ahmadi et al. [2] initialized their snake models using sampled data from buildings
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and background, achieving commendable performance in VHSR aerial image analysis. No-
tably, precise knowledge of building and background classes is essential for optimal results.

Graph-Based Methods: Markov Random Fields (MRF) have been employed to
cluster line segments, generating preliminary shapes that are then input into active con-
tour models to generate final results[75]. Katartzis and Sahli [70] employed MRFs to
define dependencies among building hypotheses, validated through stochastic optimiza-
tion, achieving accurate estimates but within certain hypotheses. Izadi and Saeedi [65]
adopted graph-based searching to identify building rooftop hypotheses based on lines and
intersections, which is effective only for flat roofs. Cui et al. [30] translated building corners
and edges into graph vertices and edges. The accuracy of building extraction depended
on the initial segmentation quality identifying building locations. Ok [113] presented a
two-level graph partitioning framework, refining shadow detection, yet exhibiting unsta-
ble performance. Despite its efficiency compared to prior work, this method struggles to
differentiate low-contrast buildings from the background.These methods, however, rely on
specific hypotheses and are limited to extracting buildings with certain shapes or charac-
teristics.

Numerous studies have utilized data-fusion techniques to enhance building extraction
by integrating diverse sources like Light Detection And Ranging (LiDAR) data, Synthetic
Aperture Radar (SAR) data, hyper-spectral data, existing Geographic Information System
(GIS) building layers, and predefined models. These supplementary sources validate results
and offer extra information such as building heights[113]. For example, LiDAR data espe-
cially for height information, are widely employed in building extraction[4, 43, 82, 138, 141],
often combined with spectral and geometric data to boost accuracy for building extraction.
However, the availability of free LiDAR datasets is limited.

In summary, hand-crafted methods are developed based on certain hypotheses about
the geometric features of buildings or developed for certain environments. Consequently,
those methods can only be used in certain scenarios. In addition, techniques used in those
methods, such as classification methods and multi-stage processing framework, also limit
the accuracy of these methods. Therefore, to develop a CNN-based building footprints
extraction method has been drawing much attention because of its high performance.

2.2.2 DCNN-based Rooftop Delineation

Due to its performance in computer vision tasks, deep learning has been widely used in
remote sensing applications [197]. To the best of my knowledge, the earliest applications of
using DCNN in rooftop delineation can be traced back to the studies conducted by Mnih
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[109] and Shu [134]. In their research, the Convolutional Neural Network (CNN) was used
to extract features, with fully connected layers for features flattening, for pixel-level image
classification and rooftop delineation. However, this kind of method has low efficiency with
limited input sizes.

With the proposal of Fully Convolutional Networks (FCN) [101] and the U-Net [123],
pixel-wise image classification, also known as semantic segmentation, has grown rapidly
with a large number of new methods invented yearly. In the context of rooftop delineation
from remote sensing imagery, various advanced deep learning techniques have been applied,
ranging from the ConvNet [175] to the Capsule Feature Pyramid Network (CapsFPN) [174],
and the Coarse-to-fine Boundary Refinement Network (CBR-Net) [45]. While these state-
of-the-art methods can extract accurate building masks, additional post-processing is still
necessary to generate vectorized building polygons, which are essential for creating building
maps.

In order to generate vectorized rooftop boundaries from aerial images, an intuitive
way is to regularize the polygons converted from building masks extracted by the DCNN-
based methods. The regularization can be conducted separately. For example, Zhao et al.
[187] employed the Mask Region based Convolutional Neural Networks (R-CNN) first for
instance segmentation and instance masks generation. Instance masks were then converted
to polygons using the Douglas-Peucker algorithm and the Minimum Description Length
(MDL) optimization with generated hypotheses [187]. Regularization methods, such as
the ACM [69], also known as snake, which can be embedded into DCNN architectures and
generate polygons in an end-to-end manner. In this direction, Marcos et al. [106] proposed
the Deep Structured Active Contours (DSAC), which combined deep learning and the
ACM for image segmentation. Gur et al. [48] proposed an end-to-end trainable ACM via
differentiable rendering. Similarly, Hatamizadeh et al. [49] proposed the Trainable Deep
Active Contour (TDAC) model to directly delineate building polygons from aerial images.
Cheng et al. [26] combined the active ray network with deep leaning and proposed the
Deep Active Ray Network (DARNet).

Concurrently, another family of algorithms has been developed to generate regular
rooftop polygons. The most representative method of which is the PolyMapper [90],
which utilizes the Convolutional Long-Short Term Memory (ConvLSTM) to predict the
sequence of vertices of building boundaries from CNN features. Zhao et al. [189] improved
upon the PolyMapper by replacing ConvLSTM with Convolutional Gated Recurrent Unit
(ConvGRU) and decorating the original backbone with Global Context Block (GCB) and
Boundary Refinement Block (BRB). Recently, Girard et al. [44] proposed the frame field
learning for rooftop delineation by introducing the frame field targets to optimize mod-
els. Zorzi et al. [199] proposed the PolyWorld by employing the Graph Neural Network
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(GNN) and a sophisticatedly designed loss function. Xu et al. [166] proposed the Hier-
archical Supervisions (HiSup) learning scheme with hierarchical building representations,
including the low-level convex and concave building vertices, the mid-level Attraction Field
Maps (AFM) for line segments and the high-level regional masks of buildings. These three
methods have demonstrated high performance in building extraction and represent the
state-of-the-art approaches.

2.3 Generalization Issues

Data composition is an intuitive method for tackling generalization issues. It involves
constructing large datasets using different sub-datasets, which enriches the training data
with different characteristics. However, challenges may arise during the integration process
for rooftop delineation, particularly when dealing with varying spatial resolutions. In such
cases, super-resolution techniques can be employed as an effective solution.

2.3.1 Super-Resolution

Super-resolution methods are commonly categorized into two groups: the joint image
super-resolution [107] and the Single Image Super-Resolution (SISR) [170]. The former
is usually applied to hyperspectral imagery. It utilizes spectral information from Low Res-
olution (LR) hyperspectral imagery and spatial information from multispectral imagery
[183]. The SISR methods directly process a LR image and output a high resolution (HR)
image, which are flexible and easy to use. The pre-trained SISR models can be easily
applied to new images. Therefore, the SISR methods are more suitable for composing
building datasets.

The first DCNN-based SISR method, proposed by Dong et al. [35], surpassed conven-
tional SISR methods and spurred rapid development in this field. To improve the accuracy
of SISR, networks became increasingly deeper. Notable advancements in this direction
include the Very Deep Super-Resolution (VDSR) [71], the Deeply Recursive Convolutional
Network (DRCN) [72], the Residual Encoder-Decoder Networks (RED-Net) [105], and
the Deep Recursive Residual Network (DRRN) [142]. With the development of new DL
techniques such as the transposed convolution and the dense block, the Laplacian Pyra-
mid Super-Resolution Network (LapSRN) [77], the Dense Network for Super-Resolution
(SRDenseNet) [146], the Super-Resolution Generative Adversarial Network (SRGAN) [80],
the Enhanced Deep Super-Resolution network (EDSR) and the Multi-scale Deep Super-
Resolution system (MDSR) [91] were proposed.
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In recent years, the attention mechanisms have become widely used in DCNNs, and
recent DCNN-based SISR methods have adopted this innovation. Examples of such meth-
ods include the Residual Channel Attention Network [184], the Second-order Attention
Network [32], and the Residual Feature Aggregation Network [95]. The RCAN and the
SAN apply the channel attention, whereas the RFANet uses the spatial attention. The
Efficient Sub-Pixel Convolutional Neural Network (ESPCN) [132], one of the classic SISR
networks, is used as an up-sampling module in those three methods.

2.3.2 Data Composition

In computer vision, there are two types of data mixing: single-domain data mixing and
cross-domain data mixing [78]. In single-domain data mixing, datasets with a similar pur-
pose are mixed, such as combining various driving datasets. On the other hand, Lambert et
al. [78] performed cross-domain data mixing by merging datasets from multiple domains for
semantic segmentation. They presented the MSeg dataset, which included the MicroSoft®

Common Objects in COntext (MS COCO) dataset, the ADE20K dataset, the Mapillary
dataset, the India Driving Dataset (IDD), the Berkeley DeepDrive dataset (BDD), the
Cityscapes dataset, and the SUN RGB-D dataset. Their experiments showed that training
a model on the MSeg dataset resulted in greater robustness compared to training on a
single dataset or mixing datasets from a single domain. For rooftop delineation, the Inria
Building Dataset [103] was released to address generalization issues. Therefore, the split
was carefully made to ensure that no adjacent images existed in the training or testing
dataset. However, the dataset is limited to only two countries. In rooftop delineation, it is
important to consider generalization issues on a global scale, covering both the Northern
and Southern hemispheres and most continents.

2.4 Scale-Variance Issues

2.4.1 Scale-Variance Issues in Computer Vision

In georeferenced and non-georeferenced remote sensed images, a balanced distribution with
regard to object scale cannot be guaranteed. This leads to significant variability in perfor-
mance in common image processing tasks among different scales, which is known as scale
variation[23]. In addition, scale variation also limits the overall performance. Compared
to large scale and middle scale objects, small scale objects contribute less to the total loss
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[93, 23]. This results in less supervision during training and lower performance at smaller
scale objects. Therefore, small scale objects should be focused when alleviating scale vari-
ance problems in deep learning. In literature, data preparation and model optimization
are the focus when dealing with scale variance.

Data preparation adjusts data distribution before model training or optimizing. Meth-
ods such as resampling [23] and image pyramid [98] are intuitive. However, as tested in
Chen et al. [23], resampling hurts model performance at other scales. The image pyramid
is a robust technique, but arbitrarily selected scales may not be suitable for overcom-
ing scale variance. Other image pyramid type methods, such as the SNIP [135] and the
SNIPER [136], increase inference burden. In contrast, the collage style data augmenta-
tion, as adopted in Bochkovskiy et al. [8], Zhou et al. [193] and Chen et al. [23], has been
effective in handling scale variance and has shown high performance.

Feature pyramid and dilation-based methods are model optimization-based methods
[23]. In feature pyramid style methods, different scales of feature maps are learned and ag-
gregated. The Feature Pyramid Network (FPN) [92] is the most representative method in
this category. The High-Resolution Network (HRNet) [140] aggregates feature maps from
four different scales in each stage of each branch (or scale). The HRNet has shown high
performance in feature representation. By refining HRNet, the HigherHRNet was proposed
in Cheng et al. [25], which showed better performance in feature representation, especially
for small objects. The dilation-based methods, such as the Deformable Convolution Net-
works (DCN) [31] and the Trident Networks (TridentNet) [89], can generate scale-sensitive
feature representations with high resolution but suffer from storage issues. Therefore, using
the HigherHRNet as the backbone is more useful compared to other optimization-based
methods in dealing with scale-variance issues.

2.4.2 Scale-Variance Issues in Rooftop Delineation

The main obstacles that make rooftop delineation challenging include scale variation, com-
plex architectures, and diverse appearances [98, 174, 196, 46, 97]. Despite the use of
auxiliary data as input, the issue of scale variance cannot be effectively overcome [89].
Following the taxonomy of methods for dealing with scale variance in natural images, the
methods used for rooftop delineation can also be classified into model optimization and
data preparation.

In literature, model optimization methods are commonly used. For example, Liu et al.
[98] proposed a multiscale U-shaped CNN building instance extraction framework with edge
constraint (EMU-CNN). The EMU-CNN consists of a multiscale fusion U-shaped network
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(MFUN), a region proposal network (RPN) and an edge-constrained multitask network
(ECMN). The MFUN module collects feature information from input images with three
different spatial resolution and fuses the features for a U-shaped deconvolution network.
The method showed good rooftop delineation performance on both large scale and small
scale buildings. A similar method with sole input was proposed by Zhu et al. [196]. In
their work, a multiple attending path neural network (MAP-Net) was proposed, in which
the spatial location-preserved multi-scale features were learned by a multi-parallel path
taking a sole image as input. The learned multi-scale features enabled the method to be
able to extract exact building edges and recognize small building. In addition, Zhu et
al. [196] proposed the deep-supervision convolutional neural network (DS-Net) for rooftop
delineation also with multi-scale feature learning. Three stages including encoder, decoder
and deep supervision, make up the DS-Net. The experiments showed the high performance
of the DS-Net in depicting the boundary of small building. Furthermore, in recent research,
Liu et al. [97] proposed an end-to-end Multi-Scale Geoscience Network (MS-GeoNet).
Various embedding modules and loss functions were explored and applied in the network
for better performance in rooftop delineation. Specifically, with the CoordConv module,
the method performed well on small building extraction. In addition, Wu et al. [163]
proposed a topography-aware loss (TAL) for better performance on rooftop delineation
in semantic segmentation-based methods. Combining multi-scale feature learning by the
HRNet, TAL not only showed better performance on regular size building but also on small
size building reporting its high performance on dealing with scale variation issues. Overall,
multi-scale feature learning is the basis of methods in the model optimization category.

Regarding data preparation-based methods, there is only one study [98]. Images with
three different spatial resolution were taken as input in the EMU-CNN bringing multi-
scale features and resulting in better performance in rooftop delineation especially for
small buildings.

In summary, inspired by Liu et al. [98], combining model optimization and data prepa-
ration seems to be effective in dealing with scale variance issues in rooftop delineation.

2.5 Costly Annotation Issues

2.5.1 Weakly Supervised Leaning in Rooftop Delineation

In weakly supervised learning, weak supervision signals, such as image tags and bounding
boxes, are used to reduce annotation costs [178]. Weakly supervised semantic segmenta-
tion [3, 14, 126, 195], weakly supervised object detection [184, 171, 27, 149] and weakly
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supervised instance segmentation [194, 198, 172, 178] are well explored in computer vision
and remote sensing field in recent years.

For rooftop delineation, weakly supervised semantic segmentation is widely used. In
weakly supervised semantic segmentation, pseudo labels generation is the focus of the
research. With the pseudo labels, rooftop delineation can be conducted using fully super-
vised methods. Among different types of weak supervision signals, image-level annotation
(image tag) is the most widely used [9, 40, 169, 180]. Based on a ratio of building pixels
to all pixels within the patch, image patches can be tagged as building or non-building.
These image-level annotations are used as supervision targets to generate pseudo masks for
semantic segmentation model training. Optimizing or completing the pseudo masks has
become a significant research focus in weakly supervised semantic segmentation for rooftop
delineation. Decent results were reported in these studies. However, instance segmenta-
tion may be more suitable for rooftop delineation as it can generate individual rooftop
boundaries.

To the best of my knowledge, there are few studies on building instance segmenta-
tion using weakly supervised learning. In contrast, in computer vision, weakly supervised
instance segmentation has shown promising performance. Similar to weakly supervised
semantic segmentation, the generation of pseudo masks is also the key focus in weakly su-
pervised instance segmentation. To achieve high accuracy, bounding boxes are commonly
used to generate pseudo masks in weakly supervised instance segmentation [178].

2.5.2 Box Supervised Instance Segmentation

Box supervised instance segmentation can be categorized into two types: multi-stage meth-
ods and methods with unified frameworks. For multi-stage methods, pseudo masks gen-
eration and instance segmentation are implemented separately. For example, in the Box-
supervised Class-Agnostic object Segmentation (BoxCaSeg) [155], a multi-task learning
model is first used to generate pseudo masks followed by pseudo masks refinement and
instance segmentation. Specifically, the multi-task learning models take fine annotated
salient images and box-supervised images as input, with the fine annotated salient im-
ages providing precise object localization guidance for the box-supervised images. A novel
merged and dropped strategy is applied to refine the masks generated by the multi-task
learning model. Instance segmentation is then performed using Mask R-CNN, which takes
the input images and proxy masks as training data. Unlike the class agnostic mask gen-
erator in BoxCaSeg, the Bounding Box Attribution Map (BBAM) approach utilizes high-
level information from the behavior of trained object detectors to identify the smallest area
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within an image where the object detector yields nearly identical results to those obtained
from the entire image [84]. The BBAM is comprised of these regions, which determine the
target object’s bounding box and effectively act as a substitute for ground-truth data in
weakly supervised instance segmentation. After refinement, the BBAM can serve as the
pseudo masks for either semantic segmentation or instance segmentation. Although this
kind of method can achieve high performance, the multiple steps involved in the training
pipeline and the need to tune numerous hyperparameters make them quite complex.

Weakly supervised instance segmentation with a unified framework focuses on the pixel
affinity. Hsu et al. [58] proposed a Multiple Instance Learning (MIL) [56] loss based on
Mask R-CNN, which replaces the original segmentation loss. This MIL-based method
primarily employs the bounding box tightness prior, where all columns or rows that con-
tain at least one object pixel are considered positive bags, and the remaining columns or
rows are considered negative bags. In Mask R-CNN, the bags generated for each region
proposal enable the generation of classification probabilities by max-pooling pixel classifi-
cation probabilities. The bag classification loss can then be backpropagated to optimize
the pixel classifier and enhance the accuracy of instance segmentation. Based on an anchor
free instance segmentation method, BoxInst was proposed as a powerful weakly supervised
instance segmentation with only box annotation [145]. The innovation of the BoxInst is
the redesignation of the loss function. They added a surrogate term and a pairwise loss
to the original instance segmentation loss. The first one aims at minimizing the discrep-
ancy between the projection of the predicted masks and the ground truth bounding boxes.
The pairwise loss employs a loss function that utilizes the prior knowledge that adjacent
pixels with similar color values are more probable to belong to the same object category
label. DiscoBox is a self-ensembling framework with guidance from a structured teacher
network and box supervision. The teacher network models the pairwise pixels relation-
ship both within and across the bounding boxes. Optimizing the teacher network would
refine the object masks and generate dense correspondences between objects sharing the
same class label. The former one will be taken as pseudo label for task network training
and the latter one will help the dense contrastive learning by providing correspondence
pairs either for negative pairs or positive pairs [79]. These approaches establish a pair-
wise affinity connection among neighboring pixel pairs, either partially or across all pairs.
However, this oversimplifies the assumption that pixels or colour pairs sharing similarity
should have the same label. Consequently, these methods are vulnerable to objects with
similar appearances or complex backgrounds, leading to subpar performance in instance
segmentation.

The current state-of-the-art method in box supervised instance segmentation, Box2Mask,
is a level-set based approach, evolving objects’ boundary in an end-to-end manner [88].
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Both input images and their deep features are employed for boundary evolution. In addi-
tion, a local consistency module, which relies on a kernel that measures the affinity between
pixels, is proposed and utilized to extract information about the local context and spatial
relationships. Therefore, Box2Mask can be a good start point to develop a box-supervised
rooftop delineation method.

2.5.3 Chapter Summary

This chapter presents a summary of publicly available building datasets and DCNN-based
methods for rooftop delineation. Then the related work to deal with generalization is-
sues, the scale-variance issues and costly annotation issues are reviewed. For generaliza-
tion issues, data composition with image processing based on SISR methods is identified
as a promising solution. For scale-variance issues, a powerful end-to-end rooftop delin-
eation method with dynamic scale training and higher resolution network is recognized as
a promising method. For costly annotation issues, box-supervised instance segmentation
is found to be the most suitable method for weakly supervised rooftop delineation. In the
following three chapters, these methods and solutions will be detailed.
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Chapter 3

Building Datasets Composition2

3.1 Introduction

DCNN-based SISR methods have undergone significant development alongside deep learn-
ing techniques, exhibiting remarkable advancements in sophistication and performance.
Notable progress has been made from the introduction of the Super-Resolution CNN (SR-
CNN) [35] to more recent methods like RFANet [95]. In the field of SISR, state-of-the-art
techniques such as the RCAN [184], the SAN [32], and the RFANet have emerged, with
each achieving exceptional performance on different datasets. Super-resolution techniques
have proven to be a promising approach for data composition, and these state-of-the-art
methods serve as a solid foundation. In this chapter, two main objectives are focused
on. The first objective is to examine super-resolution and dataset composition for the
improvement of rooftop delineation. Specifically, a comparative study is conducted to ex-
plore the performance of the same DL-based rooftop delineation model on thfe original
datasets, the super-resolved datasets, and the composited dataset. The second objective is
to benchmark the newly developed MSCA-RFANet, which incorporates the advantages of
the RFANet, the residual channel attention mechanism, and share-source skip connection.
A comparative study is conducted with four other DL-based methods as well as bicubic
interpolation. The objectives of this chapter include:

(1) exploring and examining the effects of super-resolution and data composition on
rooftop delineation,

2The content of the chapter has been published on International Journal of Applied Earth Observation
and Geoinformation with the paper entitled “Super-resolving and composing building dataset using a
momentum spatial-channel attention residual feature aggregation network”.
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(2) and presenting a new SISR method, namely the MSCA-RFANet, and benchmarking
it against the state-of-art SISR methods.

3.2 Datasets and Methods

3.2.1 Datasets

Data used for training SISR methods

The aerial images selected for training and testing the SISR methods are from two sources:
the Southwestern Ontario Orthophotography Project 2010 (SWOOP 2010)3 and aerial im-
ages 4 covering the Kitchener-Waterloo area. Specifically, aerial images from the Brant,
Bruce, Chatham-Kent, Dufferin, Elgin, and Kitchener-Waterloo areas in Ontario are in-
cluded in the dataset, with counts of 1,127, 4,910, 2,582, 1,478, 750, and 274, respec-
tively. Specifically, 1,127, 4,910, 2,582, 1,478, 750 and 274 aerial images from Brant,
Bruce, Chatham-Kent, Dufferin, Elgin, and Kitchener-Waterloo area in Ontario, Canada
(as shown in Figure 3.15 and Table 3.1), respectively, are selected from the SWOOP 2010
Dataset and the Regional Municipality of Waterloo. Aerial images from the SWOOP
dataset have a spatial resolution of 0.2 m/pixel with RGB bands. Each image has dimen-
sions of 5,000 × 5,000 pixels and covers 1 km2 area. Aerial images covering the Kitchener-
Waterloo area have a spatial resolution of 0.12 m/pixel and s size of 8,350×8,350 pixels.
Images from the SWOOP 2010 and the Kitchener-Waterloo area are resized and cropped
into small patches with a size of 256×256 pixels as High Resolution (HR) (0.25 m) images
and processed further to a size of 64×64 pixels as Low Resolution (LR) (1 m) images. In
the rest of the chapter, this dataset is noted as the SWOOP 2010 Dataset. Consequently,
a total of 1,708,032, 284,672, and 854,272 pairs of patches are prepared for the training,
validation, and testing of the SISR networks, respectively.

Datasets for rooftop delineation

In this section, three datasets for rooftop delineation and data composition are selected: the
Massachusetts Building Dataset, the WHU Building Dataset, and the Waterloo Building

3Produced by the Ontario Ministry of Natural Resources under License with the Ontario Ministry of
Natural Resources © Queen’s Printer for Ontario, 2010-2011.

4Those aerial images were used for constructing the Waterloo building dataset.
5Administrative areas shapefiles and SWOOP extent area shapefile are downloaded from

http://www.diva-gis.org/gdata, and https://rb.gy/ti5y4, respectively.
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Figure 3.1: Geographical distribution map of SWOOP data

Table 3.1: Images used for SISR

Area No. Images Image size (pixels) Pixel size (m/pixel)

Brant 1,127 5,000×5,000 0.20

Bruce 4,910 5,000×5,000 0.20

Chatham-Kent 2,582 5,000×5,000 0.20

Dufferin 1,478 5,000×5,000 0.20

Elgin 750 5,000×5,000 0.20

Waterloo 274 8,350×8,350 0.12
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Table 3.2: Datasets for rooftop delineation

Dataset No. Images Image size (pixels) Pixel size (m/pixel)

Waterloo Building Dataset

Training 42,147 512×512 0.12

Validation 6,887 512×512 0.12

Test 20,768 512×512 0.12

WHU Building Dataset

Training 4,736 512×512 0.30

Validation 1,036 512×512 0.30

Test 2,416 512×512 0.30

Massachusetts Building Dataset

Training 137 1,500×1,500 1.00

Validation 4 1,500×1,500 1.00

Test 10 1,500×1,500 1.00

Dataset. As mentioned in Section 2.1, it should be noted that most public building datasets
have a spatial resolution of 0.3 m/pixel. Therefore, the selected datasets will be unified to
this spatial resolution. The Massachusetts Building Dataset is selected as a relatively low
spatial resolution dataset, while the other two datasets are selected for the data composition
purpose. In addition, these three datasets are also utilized to examine the generalizability
of trained models. The details of the three building datasets are listed in Table 3.2.

3.2.2 Methods

This section describes the proposed SISR method MSCA-RFANet, the rooftop delineation
method and the evaluation metrics.

MSCA-RFANet

The state-of-the-art SISR deep learning methods typically have three parts [95]: the head
part, the trunk part (base modules) and the reconstruction part (as shown in Figure 3.2).
They are responsible for shallow feature extraction, deep feature extraction and image re-
construction, respectively. The MSCA-RFANet builds upon the powerful RFANet, which
is considered the most recent and effective method in the SISR field. It preserves the
core architecture of RFANet, particularly its RFA module. For the head and reconstruc-
tion parts, a standard convolution layer and the ESPCN are utilized for shallow feature
extraction and image reconstruction, respectively. Consequently, the modifications and
innovations primarily focus on the trunk part of RFANet.
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In the trunk part, inspired by recent work [19, 162, 188, 186], the Channel Attention
(CA) block is added after the Enhanced Spatial Attention (ESA) block resulting in a
spatial-channel attention block (SCA block). In this way, the network could focus on both
informative regions and features. The modified RFA module is named RFA+ in the rest
of the thesis. Each RFA+ module is skip connected to the previous one with a momentum
term. Share-source skip connection would relieve the deep model training and benefit the
information flow, which was also used in the shared source residual group of SAN [32].
With the RFA+ module, the overall architecture becomes deeper and larger. To accelerate
model training, the momentum scheme [129] is adopted in the trunk part to connect RFA+
modules. The difference between skip connection with and without the momentum term
is described as follows:

Normal skip connection (ResNet):

xn+1 = xn + f(xn, θn) (3.1)

Skip connection with the momentum term (Momentum ResNet):{
vn+1 = γvn + (1− γ)f(xn, θn)

xn+1 = xn + vn+1

(3.2)

where xn represents the convolutional layer generated feature. f(xn, θn) stands for the
convolution block in Residual Network (ResNet)[54], in which θn represent the learnable
parameters in each block. γ is a constant value between 0 and 1. vn is the momentum at
layer n. The initial momentum can be 0 or pre-defined function. As described by Sander
et al. [129], the Momentum ResNet can achieve comparable accuracy to ResNet in image
classification while requiring a smaller memory footprint. Additionally, it offers advantages
in transfer learning [129]. To mitigate the issue of gradient vanishing caused by the deep
architecture, a batch normalization layer is incorporated after each skip connection.

HRNet v2

In rooftop delineation, both semantic and instance segmentation methods have been widely
used [11, 124]. In this section, rather than focusing on comparing various sophisticated
rooftop delineation methods, the HRNet v2 [140], a powerful network proposed recently is
adopted for rooftop delineation. This network is designed to maintain high-resolution rep-
resentations by preserving four levels of features with different spatial resolutions, which are
subsequently concatenated in four stages. With the exception of the first stage, these stages
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Figure 3.2: Architecture of the proposed MSCA-RFANet (modified from [95])

consist of repeated modularized multi-resolution blocks that incorporate multi-resolution
group convolution and multi-resolution convolution. Detailed information about the archi-
tecture can be found in Sun et al. [140].

3.2.3 Evaluation Metrics

To evaluate super-resolution performance, the Mean Square Error (MSE), the Root Mean
Square Error (RMSE), the Peak Signal-to-Noise Ratio (PSNR) and the Structural Simi-
larity Index Measure (SSIM) are calculated respectively by:

MSE =
1

N

N∑
n=1

(ĝi − gi)
2 (3.3)

RMSE =
√
MSE (3.4)

PSNR = 20 log10

(
L

RMSE

)
(3.5)

SSIM =
(2µĝµg + C1)(2σĝσg + C2)

(µ2
ĝ + µ2

g + C1)(σ2
ĝ + σ2

g + C2)
(3.6)
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where ĝ and g refer to the super-resolved images and the corresponding ground truth high
spatial resolution images,respectively. N is the total number of pixels in the images, and
i indexes individual pixels which ranges from i = 1 to i = N . L in the PSNR calculation
denotes the maximum possible pixel value based on the bit depth of the images. For
example, if images are normalized into 0 to 1, L will be 1. For images with an unsigned
int 8 bits depth, L is 255. µĝ and µg are the mean values of all pixels in the super-resolved
images and the ground truth high spatial resolution images, respectively. Similarly, σĝ and
σg represent the unbiased standard deviations.

To evaluate the accuracy of segmentation results, several metrics are used, including
Overall Accuracy (OA), Intersection over Union (IoU), mean IoU (mIoU), precision, recall,
and F1 score. OA indicates the proportion of correctly classified pixels. mIoU represents
the average IoU calculated between the negative and positive classes. F1 score is the
harmonic mean of precision and recall, which provides a balanced measure of performance.
Detailed formulas for calculating these metrics are provided in Appendix A1.

Table 3.3: The head part of the MSCA-RFANet

Layer types No. Filters Size Strides Output size

Input - - - h×w×3

Convolutional layer 3 1×1 1 h×w×3

Convolutional layer 64 3×3 1 h×w×64

Table 3.4: CA modules in the trunk part of the MSCA-RFANet

Layer types No. Filters Size Strides Output size

Residual CA - - - h×w×64

Global pooling - - - 1×1×64

Convolutional layer 4 3×3 1 1×1×4

ReLU - - - 1×1×4

Convolutional layer 64 3×3 1 1×1×64

Sigmoid - - - 1×1×64

Multiply: × = Residual CA - - - h×w×64
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Table 3.5: ESA modules in the trunk part of the MSCA-RFANet

Layer types No. Filters Size Strides Output size

Convolutional layer 64 3×3 1 h×w×64

ReLU - - - h×w×64

Convolutional layer 64 3×3 1 h×w×64

Residual ESA1 - - - h×w×64

Convolutional layer 16 1×1 1 h×w×16

Residual ESA2 - - - h×w×16

Convolutional layer 16 3×3 2 h/2×w/2×16

Maxpooling - 8×8 2 h/4×w/4×16

Convolutional layer 16 3×3 1 h/4×w/4×16

Convolutional layer 16 3×3 1 h/4×w/4×16

Convolutional layer 16 3×3 1 h/4×w/4×16

Upsampling - 4×4 - h×w×16

Add: +=Residual ESA2 - - - h×w×16

Convolutional layer 64 1×1 1 h×w×64

Sigmoid - - - h×w×64

Multiply: × = Residual ESA1 - - - h×w×64

Table 3.6: Reconstruction part of the MSCA-RFANet

Layer types No. Filters Size Strides Output size

Convolutional Layer 64 3×3 1 h×w×64

Convolutional Layer 256 3×3 1 h×w×256

Depth to space - - - 2h×2w×64

Covnolutional layer 256 3×3 1 2h×2w×256

Depth to space - - - 4h×4w×64

Convolutional Layer 64 3×3 1 4h×4w×64

Convolutional Layer 3 3×3 1 4h×4w×3
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3.2.4 Implementation Detail

Following the configuration of RFANet, the number of RFA+modules is set as 30 in MSCA-
RFANet. The configurations of the head part and the reconstruction part are detailed in
Tables 3.3 and 3.6. The configurations of the ESA and CA modules are detailed in Tables
3.5 and 3.4. The ESA and CA blocks are connected to construct the RFA+ module as
presented in bottom left of Figure 3.2. A total of 30 RFA+ modules are connected using
the share-source skip connection approach [32] with a momentum term initialized to 0.
The initial learning rate is set to 5e-5 and is halved every 2e5 iterations. In addition, the
Adam optimizer is used with the Mean Absolute Error (MAE) as the loss function. In the
training of both SISR models, the maximum number of epochs and the batch size are set
as 20 epochs and 16. In the context of the remote sensing, all images are directly input
to the network and evaluated in RGB color space rather than YCBCr color space which is
commonly used in the computer vision field.

For the training of building extraction models, the Adam optimizer is utilized for its
high performance, instead of the Stochastic gradient descent (SGD) which is used in the
original paper [140]. The learning rate is set to a constant value of 1e-4. The Jaccard
loss [7] is used as the loss function to address binary class imbalance. It is important to
note that for fair comparison, all HRNet v2 models discussed in the following sections are
trained using an equal number of iterations. Specifically, in the training of each HRNet
v2, the batch size is set as 8 and the models are iterated 5,400 times per epoch for a total
of 100 epochs.

In this chapter, all experiments are implemented on a single Nvidia® GeForce RTX
3090 GPU and CUDA 11.2.

3.3 Experimental Results and Analysis

3.3.1 Evaluation of Super-resolution Methods

To visually compare the performance of MSCA-RFANet with other super-resolution meth-
ods used in the experiments, three image patches are selected from the SWOOP 2010
Dataset. As shown in Figure 3.3, the images from the first row to the last row are: the
low-resolution images with a pixel size of 1 m/pixel, the high-resolution images with a pixel
size of 0.25 m/pixel, the bicubic interpolated images, the RCAN super-resolved images, the
SAN super-resolved images, the RFANet super-resolved images and the MSCA-RFANet
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Figure 3.3: Examples of super-resolution
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super-resolved images, denoted as “LR images”, “HR images”, “BI images”, “RCAN im-
ages”, “SAN images”, “RFANet images”, and “MSCA-RFANet images” in the first column
of Figure 3.3. As shown in the figure, bicubic interpolation can generate high-resolution
images but features in the images are blurred. The CNN-based super-resolution methods
can generate high-resolution buildings and roads, but they also blur trees in the first and
last columns. From the figure, it is hard to distinguish the differences between the CNN-
based super-resolution methods. Therefore, the quantitative evaluation is conducted in the
next section.

In this section, the performance of MSCA-RFANet is evaluated by super-resolving
the SWOOP 2010 Dataset and the down sampled WHU Building Dataset generated by
bicubically interpolating all images in the original WHU Building Dataset to a spatial
resolution of 1.2 m/pixel. In addition, the RCAN [184], the SAN [32] and the RFANet [95]
are trained on the SWOOP 2010 Dataset as baselines, and their performance is tested on
the SWOOP 2010 Dataset (Table 3.76) and the WHU Building Dataset (Table 3.8). In
these tables, “BI” refers to the bicubic interpolation. RCAN, SAN, RFANet and MSCA-
RFANet represent four DCNN based SISR methods. In addition, the SCA-RFANet denotes
the method which only applies the SCA block on top of RFANet. The performance of SCA-
RFANet is provided here to explore the contribution of the SCA block and the share-source
skip connection between RFA+ modules by comparing it to RFANet and MSCA-RFANet.

Table 3.7: Performance of SISR models (tested on the SWOOP 2010 Dataset)

Models MSE RMSE PSNR (dB) SSIM No. Parameters GFLOPs

BI 43.05 6.33 29.13 0.69 0 0

RCAN 38.04 5.91 30.41 0.73 16,406,409 135.14

SAN 37.47 5.87 30.51 0.74 15,936,553 179.36

RFANet 36.94 5.81 30.66 0.75 10,692,489 87.76

SCA-RFANet 36.89 5.81 30.68 0.75 11,245,449 87.83

MSCA-RFANet 36.64 5.79 30.72 0.75 11,245,449 87.84

As shown in Tables 3.7 and 3.8, all DL-based SISR methods significantly outperform
bicubic interpolation in terms of all metrics. As shown in Table 3.7, on the SWOOP
2010 Dataset, MSCA-RFANet outperforms the other state-of-the-art methods. Specifically,
MSCA-RFANet achieves a PSNR value of 30.72 dB, exceeding those of RCAN, SAN,

6In Tables 3.7 and 3.8, 1 GFLOPs represents 1 billion Floating Point Operations.

31



Table 3.8: Performance of SISR models (tested on the WHU Building Dataset)

Models MSE RMSE PSNR (dB) SSIM No. Parameters GFLOPs

BI 76.54 8.73 19.39 0.44 0 0

RCAN 69.10 8.29 20.36 0.50 16,406,409 540.54

SAN - - - - - -

RFANet 69.42 8.31 20.35 0.50 10,692,489 351.06

SCA-RFANet 68.88 8.27 20.42 0.50 11,245,449 351.31

MSCA-RFANet 68.97 8.28 20.38 0.50 11,245,449 351.37

RFANet by 0.31 dB, 0.21 dB and 0.06 dB, respectively. On the WHU Building Dataset
(Table 3.8), MSCA-RFANet achieves a PSNR value of 20.01 dB, which is higher than
those of RCAN and RFANet by 0.02 dB and 0.03 dB, respectively. Because RFANet,
SCA-RFANet and MSCA-RFANet have similar performance, the SSIM score is the same
up to two decimal places in Tables 3.7 and 3.8. The evaluation scores of the SAN model
are omitted because with the limited computational resource the SAN could not process
the down sampled WHU Building Dataset while other methods could. In Tables 3.7 and
3.8, the RMSE values are not equal to the squared MSE values. This is because MSE and
RMSE are calculated as averaged values across all images, rather than computing RMSE
as the square root of MSE.

By examining the performance of SCA-RFANet in Tables 3.7 and 3.8, the positive
contribution of using both spatial attention (ESA) and CA or SCA block in SISR can be
observed. For instance, the PSNR value of SCA-RFANet on the WHU Building Dataset
has increased from 20.35 dB to 20.42 dB. The contribution of the share-source skip con-
nection between RFA+ modules needs further investigation because the share-source skip
connection shows a positive effect on the spatial resolution enhancement of the SWOOP
2010 Dataset but a negative effect on that of the WHU Building Dataset. Overall, the
MSCA-RFANet achieves superior performance in the conducted experiments.

3.3.2 Impact of SISR on Rooftop Delineation

Semantic models trained on single building dataset

For ease of comparison, the evaluation metrics of the extraction results from the two
experiments are arranged according to the training dataset in Tables 3.9 and 3.10. It is
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worth noting that for the images in the Massachusetts Building Dataset, SISR methods
are used to process the images and bicubic interpolation is used to process the ground
truth masks. The interpolated ground truth masks accurately depict the locations and
shapes of the buildings, as shown in Figure 3.4. For the Waterloo Building Dataset, the
bicubic interpolation is used to down sample both the images and the ground truth masks
as shown in Figure 3.5.
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(c) (d) (a) (b) 

Figure 3.4: Examples of the super-resolved Massachusetts Building Dataset. (a-b) An
original image and the matched original mask (1 m/pixel); (c-d) The matched super-
resolved image and the interpolated mask (0.3 m/pixel).
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Figure 3.5: Examples of the processed Waterloo Building Dataset. (a-b) An original image
and the matched original mask (0.12 m/pixel); (c-d) The matched interpolated image and
the interpolated mask (0.3 m/pixel).

As shown in Table 3.9, two trends can be observed based on OA, mIoU, and F1 score.
Firstly, the evaluation metrics tend to be higher when the test set is more similar to the
training set in terms of data distribution and spatial resolution. Secondly, the quality
of extraction results generally improves after super-resolution. However, there are cases
where a significant discrepancy between the test set and training set in spatial resolution
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and data statistics can affect the results. This can be observed in the models trained on
the original Massachusetts Building Dataset (with the spatial resolution of 1 m/pixel).
For example, the model trained on the original Waterloo Building Dataset obtains its
highest mIoU of 87.12% on the same dataset but achieves its lowest mIoU of 43.31% on
the original Massachusetts Building Dataset. This model achieves its second highest mIoU
of 69.31% on the bicubically interpolated Waterloo Building Dataset. In addition, the
model exhibits a higher mIoU when applied to the super-resolved Massachusetts Building
Dataset compared to both the bicubically interpolated and original Massachusetts Building
Dataset. Precisely, the mIoU value increases from 43.31% to 45.46% and 48.00% after
performing interpolation and super-resolution on the Massachusetts Building Dataset.

Same trends could also be found in the extraction results on the test sets using models
trained on the interpolated Waterloo Building Dataset (Table 3.9), the WHU Building
Dataset (Table 3.9), the bicubically interpolated Massachusetts Building Dataset (Table
3.10), the super-resolved Massachusetts Building Dataset (Table 3.10) and the original
Massachusetts Building Dataset (Table 3.10). One interesting thing is that the HRNet v2
model trained on the interpolated Waterloo Building Dataset performs poorly on the WHU
Building Dataset. This could be attributed to the presence of different building types in
the WHU dataset and minor interpolation errors that affect the model’s performance.

The proposed MSCA-RFANet is expected to outperform RFANet in all scenarios.
Super-resolving the training set using MSCA-RFANet produce significantly better results
when tested on test sets that differ from the training set in terms of resolution (the original
Massachusetts Building Dataset) or building distribution (the WHU Building Dataset).
However, as indicated by the results in Tables 3.97 and 3.10, it is evident that super-
resolving the test set with RFANet yields slightly improved results. This can be attributed
to the fact that training on MSCA-RFANet enhances the model’s ability to handle signif-
icant distribution shifts between the training and test datasets. However, using RFANet
on the test set effectively mitigates minor distribution shifts that might exist between the
test set and the training set. This effect is also observable in training sets D and E, as
shown in Table 3.11 in the subsequent section.

Semantic models trained on composed building dataset

The effect of SISR on dataset composition for rooftop delineation is evaluated in this
section. The HRNet v2 model is trained on the combination of the Waterloo Building

7In Tables 3.9,3.10, 3.11 and 3.12, the Waterloo Building Dataset, the WHU Building Dataset and the
Massachusetts Building Dataset are noted as “Waterloo”,” WHU” and “Massachusetts”. Bicubic interpo-
lation, super-resolution using RFANet and MSCA-RFANet are noted as BI, RFA, and new, respectively.

34



Table 3.9: Performance of rooftop delineation results using models trained on the Waterloo
Building Dataset and the WHU Building Dataset (in %)

Training data
(pixel Size
(m/pixel))

Test Data (pixel size (m/pixel)) OA IoU mIoU Precision Recall F1 score

Waterloo
(0.12)

Waterloo (0.12) 97.78 76.63 87.12 92.48 81.72 86.77

Waterloo (BI: 0.3) 94.67 44.18 69.31 79.07 50.03 61.29

WHU (0.3) 89.54 18.62 53.95 58.04 21.52 31.39

Massachusetts (BI: 0.3) 73.08 19.75 45.46 32.45 33.55 32.99

Massachusetts (RFA: 0.3) 74.31 23.95 48.00 36.58 40.97 38.65

Massachusetts (new:0.3) 74.18 23.63 47.78 36.24 40.44 38.22

Massachusetts (1) 80.71 6.14 43.31 40.66 6.75 11.58

Waterloo
(BI: 0.3)

Waterloo (0.12) 79.21 25.49 51.55 27.25 79.79 40.62

Waterloo (BI: 0.3) 83.99 30.55 56.66 32.50 83.57 46.80

WHU (0.3) 50.26 15.76 30.46 16.26 83.61 27.23

Massachusetts (BI: 0.3) 73.49 21.01 46.25 33.80 35.70 34.73

Massachusetts (RFA: 0.3) 75.48 29.37 51.04 40.53 51.62 45.41

Massachusetts (new:0.3) 75.09 28.65 50.48 39.75 50.65 44.54

Massachusetts (1) 76.97 11.44 43.85 28.95 15.90 20.52

WHU
(0.3)

Waterloo (0.12) 88.63 15.30 51.85 31.29 23.05 26.55

Waterloo (BI: 0.3) 87.37 18.93 52.96 29.21 34.99 31.84

WHU (0.3) 95.22 67.74 81.21 73.09 90.26 80.77

Massachusetts (BI: 0.3) 75.68 6.56 40.91 21.40 8.65 12.32

Massachusetts (RFA: 0.3) 75.75 21.66 47.83 37.44 33.94 35.61

Massachusetts (new:0.3) 75.81 21.83 47.94 37.63 34.21 35.83

Massachusetts (1) 80.15 17.98 48.61 44.20 23.26 30.48
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Table 3.10: Performance of rooftop delineation results using models trained on the Mas-
sachusetts Building Dataset (in %)

Training data
(pixel size
(m/pixel))

Test data (pixel size (m/pixel)) OA IoU mIoU Precision Recall F1 score

Massachusetts
(BI: 0.3)

Waterloo (0.12) 65.13 10.74 37.17 12.21 47.04 19.39

Waterloo (BI: 0.3) 75.39 12.96 43.71 15.58 43.45 22.94

WHU (0.3) 77.37 23.52 49.60 27.38 62.53 38.08

Massachusetts (BI: 0.3) 81.48 44.88 61.54 52.14 76.32 61.95

Massachusetts (RFA: 0.3) 80.98 45.20 61.32 51.19 79.45 62.26

Massachusetts (new:0.3) 79.89 43.95 60.04 49.43 79.86 61.06

Massachusetts (1) 52.03 24.76 33.90 25.95 84.38 39.69

Massachusetts
(RFA: 0.3)

Waterloo (0.12) 68.82 9.61 38.68 11.48 37.21 17.54

Waterloo (BI: 0.3) 76.83 11.21 43.67 14.21 34.70 20.16

WHU (0.3) 77.61 19.45 47.89 24.49 48.59 32.57

Massachusetts (BI: 0.3) 81.75 42.83 60.85 52.91 69.21 59.97

Massachusetts (RFA: 0.3) 84.57 49.49 65.66 58.34 76.54 66.21

Massachusetts (new:0.3) 83.81 48.34 64.63 56.67 76.67 65.17

Massachusetts (1) 53.51 23.29 34.58 25.20 75.47 37.79

Massachusetts
(new: 0.3)

Waterloo (0.12) 64.06 10.17 36.35 11.57 45.66 18.46

Waterloo (BI: 0.3) 74.23 10.25 41.85 12.67 34.90 18.59

WHU (0.3) 82.48 15.18 48.55 24.76 28.18 26.36

Massachusetts (BI: 0.3) 78.08 38.52 56.55 46.34 69.56 55.62

Massachusetts (RFA: 0.3) 80.69 44.40 60.79 50.73 78.07 61.50

Massachusetts (new:0.3) 79.60 43.11 59.49 48.97 78.29 60.25

Massachusetts (1) 64.92 20.77 41.07 26.45 49.16 34.40

Massachusetts
(1)

Waterloo (0.12) 80.29 4.81 42.45 7.79 11.18 9.19

Waterloo (BI: 0.3) 82.22 5.09 43.57 8.48 11.32 9.69

WHU (0.3) 87.68 21.09 54.18 42.34 29.59 34.84

Massachusetts (BI: 0.3) 79.85 8.94 44.19 45.45 10.01 16.41

Massachusetts (RFA: 0.3) 81.78 21.28 51.06 59.23 24.93 35.10

Massachusetts (new:0.3) 81.55 20.86 50.73 57.69 24.62 34.51

Massachusetts (1) 87.46 47.68 66.76 68.49 61.08 64.57
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Dataset, the WHU Building Dataset and Massachusetts Dataset. In training set A, all three
datasets are combined using the original datasets. In training set B, the Massachusetts
Building Dataset is bicubically interpolated to 0.3 m/pixel. In training set C, the Waterloo
Building Dataset and the Massachusetts Building Dataset are bicubically interpolated to
0.3 m/pixel. In training set D, the Waterloo Building Dataset and the Massachusetts
Building Dataset are processed to 0.3 m/pixel using bicubic interpolation and RFANet. In
training set E, the Waterloo Building Dataset and the Massachusetts Building Dataset are
processed to 0.3 m/pixel using bicubic interpolation and MSCA-RFANet.

In addition to the previously mentioned trends, the performance improvement caused
by dataset composition is noticeable. For example, OA on the original Waterloo Building
Dataset test set increases from 88.63% of the model trained on the WHU Building Dataset
(Table 3.9) to 94.36% of the model trained on the training set A (Table 3.11), although it
is lower than the 97.78% achieved by the model trained on the original Waterloo Building
Dataset where both training and test sets are split from the same dataset (Table 3.9).
In other words, by simply composing datasets, the generalizability of the trained model
is improved significantly. By super-resolving the Massachusetts Building Dataset using
DCNN based methods in the composed dataset, this improvement becomes more obvious.
Across all composed training sets, the evaluation scores increase for different test sets,
except for the original Massachusetts Building Dataset, which exhibits a large spatial
resolution difference. However, this discrepancy is mitigated through the use of SISR
super-resolution (or bicubic super-resolution to a lesser degree) to process the test set.
For instance, when training on any composed datasets and applying super resolution as a
preprocessing step, the model achieves a high degree of generalizability. Super-resolving the
test set using RFANet yields the best results. Nonetheless, super-resolving the training set
using MSCA-RFANet enhances the model’s generalizability and yields even better results.

3.3.3 Impact Visualization

In this section, the generalization errors, and the impact of super-resolution, and combining
super-resolution and data composition on rooftop delineation are visualized in Figures
3.6,3.7, and 3.8, respectively.

Figure 3.6 tabulates, from the first to the last row, the samples of super-resolved images
from the Massachusetts Building Dataset and the matched ground truth mask, extraction
results generated by models trained on the Waterloo Building Dataset with spatial resolu-
tion of 0.12 m/pixel and 0.3 m/pixel, the WHU Building Dataset and the Massachusetts
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Table 3.11: Performance of rooftop delineation results using models trained on the Mas-
sachusetts Building Dataset (in %)
Training Data
(pixel size
(m/pixel))

Test Data (pixel size (m/pixel)) OA IoU mIoU Precision Recall F1 score

A

Waterloo (0.12) 94.36 58.21 76.04 63.14 88.16 73.58
Waterloo (BI: 0.3) 92.72 43.11 67.70 55.84 65.40 60.25

WHU (0.3) 94.76 65.06 79.63 71.62 87.67 78.84
Massachusetts (BI: 0.3) 81.25 12.58 46.66 61.44 13.66 22.35
Massachusetts (RFA: 0.3) 84.92 34.96 59.28 70.25 41.04 51.81
Massachusetts (new:0.3) 84.76 33.98 58.72 70.18 39.72 50.73

Massachusetts (1) 88.17 51.93 69.19 68.42 68.29 68.36

B

Waterloo (0.12) 79.97 21.48 50.14 24.82 61.46 35.36
Waterloo (BI: 0.3) 87.11 27.55 57.00 34.37 58.13 43.20

WHU (0.3) 93.46 59.62 76.20 65.61 86.73 74.71
Massachusetts (BI: 0.3) 78.71 41.12 58.06 47.54 75.25 58.27
Massachusetts (RFA: 0.3) 79.27 41.68 58.67 48.39 75.03 58.84
Massachusetts (new:0.3) 78.30 40.70 57.60 46.93 75.41 57.85

Massachusetts (1) 77.89 23.14 49.72 39.82 35.58 37.58

C

Waterloo (0.12) 81.65 24.65 52.56 27.99 67.35 39.55
Waterloo (BI: 0.3) 89.19 37.56 63.00 42.26 77.15 54.61

WHU (0.3) 93.93 61.47 77.37 67.67 87.03 76.14
Massachusetts (BI: 0.3) 82.57 43.77 61.80 54.68 68.68 60.89
Massachusetts (RFA: 0.3) 82.97 45.48 62.81 55.29 71.95 62.53
Massachusetts (new:0.3) 82.71 45.09 62.47 54.74 71.90 62.16

Massachusetts (1) 80.87 15.93 48.04 47.21 19.38 27.48

D

Waterloo (0.12) 92.02 40.79 66.17 54.61 61.71 57.95
Waterloo (BI: 0.3) 96.04 62.12 78.94 76.22 77.05 76.63

WHU (0.3) 95.45 68.14 81.55 75.54 87.43 81.05
Massachusetts (BI: 0.3) 84.67 42.04 62.39 62.39 56.31 59.20
Massachusetts (RFA: 0.3) 87.67 52.92 69.30 68.29 70.15 69.21
Massachusetts (new:0.3) 87.32 52.09 68.69 67.27 69.78 68.50

Massachusetts (1) 81.54 14.51 47.73 52.06 26.75 25.34

E

Waterloo (0.12) 92.78 41.41 66.90 59.96 57.25 58.57
Waterloo (BI: 0.3) 94.83 56.27 75.36 66.25 78.88 72.01

WHU (0.3) 94.16 61.80 77.68 69.43 84.91 76.39
Massachusetts (BI: 0.3) 86.35 40.98 62.95 73.77 47.97 58.14
Massachusetts (RFA: 0.3) 88.32 54.21 70.33 70.63 69.99 70.31
Massachusetts (new:0.3) 88.25 54.00 70.18 70.41 69.85 70.13

Massachusetts (1) 82.79 16.29 49.24 64.32 17.91 28.02
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Building Dataset. As shown in the red boxes, among these models, the model trained on
the bicubically interpolated Waterloo Building Dataset shows higher performance than that
trained on the original Waterloo Building Dataset; the model trained on the WHU Build-
ing Dataset shows the poorest performance; and the model trained on the Massachusetts
Building Dataset shows the highest performance. In the last row, the trained model shows
high performance on the DCNN super-resolved images, with slightly higher performance
coming from the MSCA-RFANet super-resolved image. Therefore, it can be concluded
from Figure 3.6 with the previously mentioned findings: the more similar the test set is
to the training set with respect to data distribution and spatial resolution, the higher the
model scored on the evaluation metrics.

Figure 3.7 tabulates, from the first to the last row, the samples of super-resolved images
from the Massachusetts Building Dataset and the matched ground truth mask, extrac-
tion results generated by models trained on the original, the bicubically interpolated, the
RFANet super-resolved, and the MSCA-RFANet super-resolved Massachusetts Building
Dataset respectively. As shown in the red boxes, among these models, models trained on
the super-resolved datasets show better performance than those trained on the original
and bicubically interpolated datasets. The performance difference between two models
trained on super-resolved data is marginal. Similarly, in the last row, the model shows
high performance on CNN super-resolved images with marginal difference. The results
confirm the second finding that after super-resolution the quality of extraction results can
be improved.

Figure 3.8 displays, from the first to the last row, the samples of super-resolved images
from the Massachusetts Building Dataset and the matched ground truth mask, extraction
results generated by models trained on the original Massachusetts Building Dataset, train-
ing sets A, B, C, D and E. As shown in the red boxes, the model trained on the set E shows
best performance among all models. CNN super-resolved images as test data exhibit better
performance compared to bicubically interpolated images. The visualization results align
with the previous findings. The extraction results in the last two row confirm the positive
impact of combining super-resolution and data composition on rooftop delineation.

3.3.4 Test on “Unknown” Data

To further test the impact of super-resolution and data composition on rooftop delineation,
the trained models from previous experiments, as well as the model trained specifically on
the Inria Building Dataset, are compared on the Inria Building Dataset. As its test set
is not released, the training set is split into training and test sets with a ratio of 7:3. As
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Figure 3.6: Visualization of generalization errors and extraction results using models
trained on different building datasets
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Figure 3.7: Visualization of the impact of super-resolution on rooftop delineation
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Figure 3.8: Visualization of the impact of data composition and super-resolution on rooftop
delineation
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shown in Table 3.12, the results confirm that the more similar the test set is to the training
set with respect to data distribution and spatial resolution, the higher the model scores
on the evaluation metrics. The performance of models trained on training sets C, D, and
E further validates the second finding, indicating that the quality of extraction results
generally improves after super-resolution. The higher performance of models trained on
training sets A and B can be attributed to the larger volume of data used for training.
Notably, the model trained on training set E achieves the best performance, highlighting
the superior results achieved by combining super-resolution and data composition when
constructing the training dataset for rooftop delineation.

Table 3.12: Test on ”unknown” Inria Building Dataset (in %)

Training Data (pixel size (m/pixel)) OA IoU mIoU Precision Recall F1 score

The Inria Building Dataset (0.3) 92.35 59.49 75.44 74.01 75.20 74.60

Waterloo (0.12) 86.18 15.90 50.85 63.53 17.49 27.43

Waterloo (0.3) 83.24 34.39 58.01 45.29 58.83 51.18

WHU (0.3) 82.06 26.70 53.76 40.65 43.75 42.15

Massachusetts (BI: 0.3) 83.92 30.27 56.49 46.19 46.76 46.47

Massachusetts (RFA: 0.3) 83.91 25.18 54.09 45.19 36.26 40.23

Massachusetts (new: 0.3) 83.14 25.04 53.59 42.70 37.70 40.04

Massachusetts (1) 86.19 12.35 49.13 70.31 13.03 21.99

A 88.11 36.24 61.74 64.52 45.26 53.20

B 86.13 33.38 59.24 54.15 46.53 50.05

C 86.41 32.99 59.21 55.57 44.81 49.61

D 87.60 33.14 59.96 62.93 41.19 49.79

E 88.78 39.93 63.90 66.53 49.97 57.07

3.4 Discussion

3.4.1 Accuracy Improvement

The key modules in RCAN and SAN play crucial roles in performance improvement. In
RCAN, long skip connection (LSC), short skip connection and CA are key strategies, which
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were explored in spatial resolution enhancement of Set 5 dataset [184]. LSC, which fuses
features from the head and trunk parts via pixel-wise addition, contributed to a 0.32 dB
increase in PSNR. Short skip connection, which fuses features from the input and output
of each module, contributed to a 0.36 dB increase in PSNR. The CA block contributed to a
0.07 dB increase in PSNR. Short skip connection was inherited in SAN and RFANet; LSC
was inherited in RFANet and upgraded to share-source residual group (SSRG) in SAN;
CA was embedded in the SCA blocks of the MSCA-RFANet. Therefore, both of these key
modules were studied in the MSCA-RFANet.

In SAN, the region-level non-local module (RL-NL), the SSRG and the Second-Order
Channel Attention (SOCA) are key modules. These modules have been extensively studied
for spatial resolution enhancement on the Set 5 dataset [32]. By considering feature inter-
dependencies, SOCA outperformed the First Order Channel Attention (FOCA) and was
adopted in SAN. However, the implementation of SOCA required the matrix calculation
of a large-sized covariance matrix, which limited the size of input images and affected the
performance of SISR [32]. Therefore, the SOCA module was not adopted in the MSCA-
RFANet, even though it provided a 0.16 dB increase in PSNR according to Dai et al.
[32]. The share-source skip connection in the SSRG, which represents the skip connection
between each basic module (RFA+ module in the MSCA-RFANet), resulted in a 0.07 dB
increase in PSNR, as reported by Dai et al. [32] and discussed in the previous section.
This skip connection was subsequently incorporated into the MSCA-RFANet. The RL-NL
modules in SAN evenly split the input features into the top left, top right, bottom left, and
bottom right parts. Subsequently, non-local modules are applied to each part, enabling
the computation of long-range dependencies in the images. Adding an RL-NL module
before and after the trunk part of SAN increased the PSNR value by 0.04 dB and 0.06 dB,
respectively. RL-NL modules have the potential to further enhance the performance of the
MSCA-RFANet. Considering the superior performance of the Global Context (GC) module
in recent work [13] compared to the non-local module, this section tests the former rather
than the latter. Figure 3.9 shows the difference in architecture between the NL module and

Table 3.13: Effect of GC blocks on the performance of MSCA-RFANet

Datasets Models MSE RMSE PSNR (dB) SSIM

SWOOP
MSCA-RFANet 36.64 5.79 30.72 0.75

+GC block 36.70 5.79 30.70 0.75

WHU
MSCA-RFANet 68.97 8.28 20.38 0.50

+GC block 71.01 8.40 20.01 0.47
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the GC module. The detailed information about the GC module can be found in Cao et
al. [13]. The effect of the GC module on the performance of MSCA-RFANet is provided in
Table 3.13. The model with GC block before and after the trunk part of MSCA-RFANet
is denoted as “+ GC block”. As shown in Table 3.13, the super-resolution performance is
decreased after adding GC blocks for both datasets. For example, the PSNR value of super-
resolution performance on the WHU Building Dataset is significantly decreased from 20.38
dB to 20.01 dB after adding GC blocks to MSCA-RFANet. The experiment’s result shows
the detrimental effect of GC blocks on the performance of MSCA-RFANet. In the end,
the combination of key modules from RCAN, SAN, and RFANet used in MSCA-RFANetis
can be confirmed as the optimal combination. To further improve the SISR performance,
powerful networks, such as the capsule network [127] and the transformer networks [36]
should be considered.
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Figure 3.9: NL module(left) and GC module(right)

3.4.2 Computational Efficiency Improvement

In this section, RFANet is taken as an example to explore the performance of low-precision
training and separable convolution methods on accelerating SISR methods. Low-precision
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training employs the fact that current Graphic Processing Units (GPUs) (such as Nvidia®

V100) perform low precision floating point operations much faster than full precision float-
ing point operations [55]. Separable convolution defines a convolution group with fewer
parameters compared to standard convolution, resulting in computational efficiency [28].
After thorough exploration, the most promising acceleration method is applied to RFANet
to assess its super-resolution performance on the SWOOP 2010 Dataset

Table 3.14: Time consumed for model training in first epoch

Models Time consumed (mins)

Original model 806

Separable convolution 3645

Mixed precision 525

As shown in Table 3.14, the low-precision training (Mixed precision) is identified as a
viable acceleration method. The low speed of model training with the separable convolution
is unexpected. Theoretically, reducing the number of trainable parameters would boost the
speed of model training. The low training speed using the separable convolution is probably
caused by a non-optimized network implementation in the deep learning framework [119],
which could not make full use of GPU capacity.

Table 3.15: Performance of super-resolution with low-precision training

Models MSE RMSE PSNR (dB) SSIM

RFANet 36.94 5.81 30.66 0.75

+ low-precision training 39.47 6.06 30.03 0.72

Following the initial exploration, the low-precision training is employed in RFANet
training to explore its impact on the super-resolution performance. Table 3.15 denotes
RFANet with and without low-precision training as “+low-precision training” and “RFANet”.
As shown in Table 3.15, by applying low-precision training, the PSNR value of RFANet
significantly drops from 30.66 dB to 30.03 dB. Although the PSNR value is still higher than
that of bicubically interpolated images, it is unacceptable given its low accuracy compared
to DL-based SISR methods in this chapter and low speed compared to bicubic interpola-
tion method. In other words, the speed gain brought by low-precision training could not
make up for the accuracy loss.
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3.5 Chapter Summary

In this chapter, data composition is proposed to overcome the generalization errors and im-
prove the accuracy in rooftop delineation. A new super-resolution method is proposed for
super-resolving different datasets with different spatial resolution based on state-of-the-art
methods, namely MSCA-RFANet. The impact of super-resolution and data composition
on rooftop delineation is examined then. In the comparative study of different SISR meth-
ods, MSCA-RFANet shows higher performance on both the SWOOP 2010 Dataset and the
WHU Building Dataset compared to bicubic interpolation, RCAN, SAN and RFANet. In
the super-resolution impact examination, the experimental results show that using super-
resolution to match spatial resolution across datasets resulted in higher performance of
rooftop delineation. In addition, data composition achieves a positive impact on rooftop
delineation, resulting in higher generalizability of trained models. By unifying the spatial
resolution of different datasets, and training on the composed dataset, significant improve-
ments are achieved in building extraction performance. For rooftop delineation, not only
can MSCA-RFANet be used to compose the training set by unifying candidate training
datasets to a single spatial resolution, but also as a preprocessing step during testing or de-
ployment to up-sample input images to the spatial resolution used during training. Doing
so would, according to the results, greatly alleviate the generalization error in the practi-
cal application of rooftop delineation models. When super-resolving the test set, despite
being the better SISR network as demonstrated by the super-resolution metrics, using the
MSCA-RFANet yields slightly inferior building extraction results compared to the RFANet
it is based on, with around 0.1% to 1.1% OA difference. However, when super-resolving
the training set (e.g., the Massachusetts Building Dataset from 1 m/pixel to 0.3 m/pixel),
MSCA-RFANet produces better building extraction results compared to RFANet when ap-
plied to test sets that significantly differ from the training set in terms of spatial resolution
(11.4% OA improvement on the 1 m/pixel Massachusetts Building Dataset) or building
distribution (4.87% OA improvement on the WHU Building Dataset). In general, both
methods outperform other SISR models, whether applied to the training or the test set. It
probably is caused by how the two SISR models affected the distribution shift across the
training and test sets, which needs to be investigated further.

Among the currently available building datasets, it is essential to consider building
datasets with a variety of building types to overcome generalization errors. Additionally,
the availability of data should also be taken into consideration. The results indicate that,
in general, when training on a composite dataset that combines different training sets, the
model exhibits increased robustness in out-of-distribution testing on an unknown dataset
(the Inria Building Dataset).

47



Chapter 4

Rooftop Delineation with Dynamic
Scale Training8

4.1 Introduction

The end-to-end DCNN-based building extraction has drawn much attention recently. These
methods were first introduced to directly generate vectorized building maps from remote
sensing images without any post-processing [90]. In recent research, the extraction re-
sults became more accurate with sharp and regularized rooftop boundaries by employing
advanced techniques, such as the ConvGRU [189] and the GNN [199], and by supervis-
ing model training with new targets, such as vertices [90, 189, 199, 166], frame field [44],
attraction field maps [166], and permutation matrices [199]. In addition, by directly out-
putting vectorized rooftops with corners, the problems caused by occlusion and blurred
rooftop boundaries have been significantly reduced. Nonetheless, scale-variance problems
still exist.

In this Chapter, a new method is developed to overcome the scale-variance issue in
an end-to-end manner for automated delineation of rooftops in aerial imagery. The new
method incorporates a Dynamic Scale Training (DST) strategy and employs a scale-aware
higher resolution network (HigherNet) as backbone, as well as the higher resolution super-
vision targets. The objectives of this chapter are as follows:

8The content of the chapter has been submitted to IEEE Transactions on Geoscience and Remote
Sensing with a paper entitled “HigherNet-DST: Higher resolution network with dynamic scale training for
rooftop delineation from aerial images”.
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(1) introducing a new powerful end-to-end rooftop delineation model,

(2) mitigating scale-variance issues in rooftop delineation without additional computa-
tional resource overhead by employing the DST strategy,

(3) and presenting the extensive experiments which are conducted on four publicly
available datasets and show the competitive performance of the proposed method.

4.2 Datasets and Methods

Scale-variation, especially in datasets with a low proportion of small objects, inhibits the
total performance of rooftop delineation. A new method is developed based on the HiSup
[166] to alleviate scale variance issues. Specifically, the DST strategy is applied in model
optimization; the original High-Resolution Network (HRNet) v2 is replaced with the scale
aware HigherHRNet [25]; and the high-resolution supervision target is adopted instead of
down sampled targets in Xu et al. [166] without introducing new trainable parameters.

4.2.1 Building Datasets Preparation

To extensively evaluate the performance of the proposed network, and test its robustness,
four widely used public building datasets are selected in this chapter. These datasets are
the AICrowd Building Dataset [110], the Inria Building Dataset [103], the WHU Building
Dataset [66] and the Waterloo Building Dataset [51]. They consist of RGB bands but differ
in terms of the spatial resolution and cover various geographic locations.

AICrowd Building Dataset was firstly used in the AICrowd (previously CrowdAI) map-
ping challenge [110]. The satellite images have a spatial resolution of 0.3 m/pixel. Anno-
tation files were provided in MS COCO format [93]. All images were cropped to 300×300
pixels. Because of the missing of testing dataset, following previous work [90, 44, 199, 166],
the training dataset and validation dataset are used for model training and testing, respec-
tively. The training dataset is composed of 280,741 images, and the validation dataset
contains 60,317 images [110].

In contrast to the MS COCO format annotations in the AICrowd Building Dataset, the
Inria Building Dataset, the WHU Building Dataset, and the Waterloo Building Dataset
only have binary masks as annotations in their original datasets. Therefore, a polygoniza-
tion step is required to convert these annotations into the MS COCO format for model
training. Additionally, since the Inria Building Dataset does not include test data, the first
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five images of each city in the dataset are typically used for model evaluation [44, 199, 166].
The WHU Building Dataset is selected for ablation and comparative studies due to its
smaller data volume compared to the other datasets.

4.2.2 Hierarchical Supervision Learning for Rooftop Delineation

To mitigate the performance gap between mask prediction and polygon extraction caused
by mask reversibility, the Hierarchical Supervision (HiSup) learning was proposed in Xu et
al. [166]. Specifically, after feature extraction by backbone, four branches were attached for
mask prediction, attraction field map prediction (used for line segmentation) [167], vertex
location prediction and offset prediction [166]. In their experiments, the HiSup showed the
highest performance on the AICrowd Building Dataset [110] and a competitive performance
on the Inria Building Dataset [103] against other methods, achieving the state-of-the-art
performance in learning-based rooftop delineation. Therefore, the HiSup is taken as the
basis for developing the new method in this chapter.
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Figure 4.1: Architecture of the scale-aware HigherHRNet (modified from Cheng et al.[25])
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Figure 4.2: Architecture of the object extraction branch (modified from Xu et al.[166])

4.2.3 Scale-aware HigherHRNet (HigherNet)

HRNet v2 has shown excellent performance in feature extraction and representation using
multi-level features with repeated information exchange in each stage [140]. However,
in the final stage of HRNet v2, the highest resolution of features is 1/4 of the input.
Information loss and scale variance suppresses the performance of HRNet v2. Cheng et al.
[25] proposed the scale-aware HigherHRNet by adding a scale-aware module on top of the
HRNet v2. The scale-aware module is mainly composed of a deconvolutional module and
4 residual blocks (or “Basic Blocks”) [54]. To save computational resources, two features
with different spatial resolution are down sampled to 128×128 pixels and concatenated,
which is similar to the output size of HRNet in HiSup. The architecture of the scale aware
HigherHRNet is shown in Figure 4.1. The “feature” in Figure 4.1 is used in the extraction
branch as shown in Figure 4.2. The “output” in Figure 4.1 is the predicted vertex offset
which will be used in the final polygon generation as described in Xu et al. [166].
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4.2.4 Dynamic Scale Training

DST (Stitcher) overcomes scale-variance by collaging images and supervision targets which
is guided by dynamic feedback [23]. Specifically, the feedback is the proportion of loss con-
tribution of small objects against that of all objects. For instance, if Lsmall/L <= τ , in
next iteration, k images are randomly selected from next batch of data to create a new
image. In the inequality, Lsmall and L represent losses calculated on small objects and
all objects in each batch. In addition, τ and k are two hyper parameters representing
the threshold for “Stitcher” and the number of images used for creating the collage, re-
spectively. The collected images and supervision targets are down sampled and stitched
together, as shown in Figure 4.3. If the ratio is larger than τ , the model is trained with
the usual pipeline in the next iteration.

Small objects’ loss ratio < 0.1

Yes

No

HigherNet-DST

HigherNet-DST

Vertices AFM Building mask

Figure 4.3: Principle of Dynamic Scale Training in HigherNet-DST
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4.2.5 High-resolution Supervision Targets

As discussed in Chapter 2, using higher resolution input [23] can, to some extent, overcome
scale variance. However, this approach brings an overwhelming computational burden. In
the HiSup [166], the models were trained with lower resolution targets (1/4 of input res-
olution), which significantly reduced the memory cost in model training and deployment.
However, lower-resolution supervision targets also cause information loss and poor per-
formance, especially for small objects. To balance the memory cost and performance, in
HigherNet-DST, high resolution supervision targets are applied, which have the same res-
olution as the input. There are two reasons why the high-resolution supervision targets
are adopted instead of low-resolution one as in Xu et al. [166]. (1) High-resolution super-
vision targets have more detailed information compared to low-resolution ones [102]. Such
detailed information is helpful for small object detection [25]. (2) When supervised with
up sampled targets, the model is trained to consider the up-sampling process including
both advantages and potential errors and can learn to take advantages or deal with these
accordingly. The boundary delineation part of the method is depicted in Figure 4.2.

In this method, the Mask-and-Vertices Attraction [166], which was used in HiSup, is
employed for polygons construction. Predicted vertices and masks are taken as input to
initialize polygons. Local Non-Maximum Suppression (NMS) is applied to sparse vertices.
Refined vertices with the aid of predicted offset vectors is used to simplify initialized poly-
gons by removing redundant vertices and low confidence vertices from initialized polygons.
Adjacent edges in each polygon are further merged if they are almost paralleled.

4.2.6 Evaluation Metrics

The object levels evaluation metrics proposed in Lin et al. [93] are widely used in instance
segmentation and object detection in computer vision and remote sensing applications.
In the literature, Average Precision (AP), Average Recall (AR), AP50 and AP75 were
used to evaluate different methods on the AICrowd Building Dataset. To deal with the
scale variance in this chapter, in addition to these metrics, AP-Small (APs), AP-Medium
(APm), AP-Large (APL), AR-Small (ARs), AR-Medium (ARm) and AR-Large (ARL) are
also applied. Small, Medium and Large size denote 32×32 pixels9, between 32×32 pixels
and 96×96 pixels, and larger than 96×96 pixels, respectively.

9The choice to use pixels instead of meters as the unit of measurement is rooted in the fact that deep
learning models focus on input image pixel values and do not inherently account for the physical dimensions
of objects. This allows us to align the measurement with the way these models process and analyze data.
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In this chapter, the MS COCO criterion is utilized to define small, medium and large
size. Small buildings, under this criterion, exhibited poorer performance compared to
medium and large building objects in existing rooftop delineation research. These methods
include the Mask R-CNN-based method [110], the PANet [96], the PolyMapper [90], the
PolyWorld [199] and the HiSup [166]. Additionally, considering the proportion of small
buildings over the total number of buildings is indispensable, improving the accuracy of
delineating small building objects is expected to enhance the overall accuracy.

Following Xu et al. [166], the restricted metricAP boundary [24] is also adopted. AP boundary

is average precision calculated based on boundary IoU [166] instead of mask IoU in Lin et
al. [93]. The boundary IoU is calculated as:

BoundaryIoU(C, Ĉ) =
|(Cd ∩ C) ∩ (Ĉ ∩ Ĉd)|
|(Cd ∩ C) ∩ (Ĉ ∩ Ĉd)|

(4.1)

where C and Ĉ are ground truth building mask and predicted building mask. Cd and Ĉd

represent pixels within distance d from building boundaries. In this chapter, the parameter
d is set to 0.02. For the comparative study on the Inria Building Dataset, IoU and OA are
employed to evaluate the extraction results.

4.2.7 Implementation Details

In the training phase, the cross-entropy loss is used for mask prediction, and vertex location
prediction. The L1 loss is used for line segment prediction, and offset prediction. For
hyperparameters setting, the initial learning rate, the weight decay, the max epoch and
the batch size are set to 1e-4, 1e-4, 100 and 16 respectively. After the first 25 epochs, the
learning rate is divided by 10. In all experiments including DST, the parameters of τ and k
are set to 0.1 and 4, following Chen et al. [23]. For the ablation study and the comparative
study with different backbones, the batch size is set to 7 due to the memory limitation
with large backbones. Pytorch 1.7 and an Nvidia® RTX 3090 GPU are employed to train
the networks. To train the HigherNet-DST on the AICrowd Building Dataset, 2 Nvidia®

RTX 3090 GPUs with the same parameter settings are used.
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4.3 Experimental Results and Analysis

4.3.1 Results on the AICrowd Building Dataset

As introduced at the beginning of Section 4.2.1, the AICrowd Building Dataset was released
in 2018 for rooftop delineation. In this chapter, for comparison, the extraction results
generated by PolyWorld [199], HiSup [166] and HigherNet-DST are visualized in Figure
4.4.

   

   

   

PolyWorld

HiSup

HigherNet-DST

Figure 4.4: Building polygon delineation results on the AICrowd Building Dataset (from
top to bottom: selected examples from PolyWorld, HiSup and HigherNet-DST, respec-
tively)
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As shown in the figure, the performance on extracting medium and large-sized building
objects shows limited differences among the methods. However, on small objects, such as
objects in the top right of the first column and the bottom middle of the second column,
the proposed method outperforms PolyWorld and HiSup. In the last column, the perfor-
mance on objects on the left side, the proposed method surpasses HiSup but is inferior to
PolyWorld.

Table 4.1 provides quantitative evaluation results of HigherNet-DST and other state-
of-the-art methods on the AICrowd Building Dataset. HigherNet-DST shows competitive
performance compared to other state-of-the-art methods but is inferior to that of Li et al.
[87] and HiSup [166]. Specifically, it achieves 68.5% of AP, which is competitive compared
to other methods but lower than 73.8% and 79.4% of AP reported by Li et al. [87] and
HiSup, respectively. This result is probably caused by dataset interpolation which may
have resulted in uncertainty and is harmful to the performance. Further experiments are
required to find the reason with more data and more computational resources.

Table 4.1: Evaluation results on the AICrowd Building Dataset

Methods AP AP50 AP75 APs APm APL AR ARs ARm ARL AP boundary

Mask RCNN[53, 110] 41.9 67.5 48.8 12.4 58.1 51.9 47.6 18.1 65.2 63.3 15.4

PANet[96] 50.7 73.9 62.6 19.8 68.5 65.8 54.4 21.8 73.5 75.0 -

PolyMapper[90] 55.7 86.0 65.1 30.7 68.5 58.4 62.1 39.4 75.6 75.4 22.6

FFL[44] 67.0 92.1 75.6 - - - 73.2 - - - 34.4

Li et al[87] 73.8 92.0 81.9 - - - 72.6 - - - -

PolyWorld[199] 63.3 88.6 70.5 37.2 83.6 87.7 75.4 52.5 88.7 95.2 50.0

HiSup[166] 79.4 92.7 85.3 55.4 92.0 96.5 81.5 60.1 94.1 97.8 66.5

*HigherNet-DST10 68.5 88.4 77.5 41.9 82.6 88.8 71.3 46.6 85.6 91.7 48.0

4.3.2 Results on the Inria Building Dataset

In recent work [44, 199, 166], the Inria Building Dataset was also used to test the per-
formance of new methods in rooftop delineation and specifically to test generalizability.
In this section, to visually evaluate rooftop delineation performance on the Inria Building
Dataset, the qualitative results are tabulated in Figure 4.5. In the first row, extraction
results generated by the HiSup model released by Xu et al. [166] are presented. In the
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second row, extraction results generated by HigherNet-DST are presented. As shown in the
first two columns of Figure 4.5, HigherNet-DST detects more building objects with accu-
rate boundaries than HiSup. It excels in extracting small building objects, outperforming
HiSup. In the last column, the extraction performance on large objects is depicted. Both
methods show high performance, but unexpected lines appear, which may be caused by
errors in the junctions ordering when generating final polygons. In addition, HigherNet-
DST achieves better performance in the qualitative results in Figure 4.5 by checking the
yard detection. The yard of the middle bottom building is detected by HigherNet-DST but
missed by HiSup, which further proves the superior performance of the proposed method
when extracting small objects.

   

   

HiSup

HigherNet-DST

Figure 4.5: Building polygon delineation results on the Inria Building Dataset (top: results
from HiSup, bottom: results from HigherNet-DST)

To quantitatively evaluate two models, IoU and OA (pixel/overall accuracy) following
Xu et al. [166] and object level metrics mentioned in the previous section are employed. As
shown in Tables 4.2 and 4.3, HigherNet-DST achieves the highest values on both pixel level
metrics and object level metrics except for APL. This demonstrates the high performance
of the models in image segmentation and boundary delineation. Specifically, the model
obtains an AP of 38.4%, which is 9.4% higher than that of HiSup. The value of ARL is
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increased by more than 20% with HigherNet-DST model. And the values of AP50, AP75,
APm, AR, ARs, ARm are also increased by more than 10% with HigherNet-DST. The
experiment confirms the success of the proposal.

Table 4.2: Evaluation results on the Inria Building Dataset-object level

Methods AP AP50 AP75 APs APm APL AR ARs ARm ARL AP boundary

HiSup[166] 29.0 50.0 29.8 17.8 41.6 49.8 34.0 21.5 45.7 59.2 24.2

*HigherNet-DST 38.4 64.2 40.8 26.8 52.2 40.2 46.1 34.0 58.1 59.6 34.0

Table 4.3: Evaluation results on the Inria Building Dataset-pixel level (in %)

Methods IoU Accuracy

FFL[44] 74.8 96.0

HiSup11[166] 80.7 97.0

*HigherNet-DST 82.6 97.4

4.3.3 Results on the WHU Building Dataset

The WHU Building dataset was released with binary building masks [66]. To the best of my
knowledge, the dataset has never been used in polygon delineation in literature. Therefore,
in this chapter, binary building masks are first converted to polygon annotations in the MS
COCO format. To test the performance of the method on building polygon delineation,
PolyMapper [90] and HiSup [166] are selected for the comparative study.

As shown in Figure 4.6, the results from the HiSup and the HigherNet-DST are more
accurate than those from the PolyMapper. Specifically, incomplete polygons or omitted
polygons in the outputs of PolyMapper are completed and detected in the outputs of
HiSup and HigherNet-DST. Improvement can be found in small objects. Small objects in
the outputs of HiSup, especially in the first and last columns, have incomplete polygons,
which are fixed when using the proposed new method. The visualization results confirm
the evaluation results discussed above.

As shown in Table 4.4, the method achieves the best performance when compared
to the PolyMapper and the HiSup. Specifically, the method obtains an AP of 60.1%,
compared to 51.4% for PolyMapper and 58.3% for HiSup. The method obtains an AR

58



   

   

   

PolyMapper

HiSup

HigherNet-DST

Figure 4.6: Rooftop delineation results on the WHU Building Dataset obtained using the
PolyMapper, the HiSup and the HigherNet-DST (from top to bottom)

Table 4.4: Evaluation results on the WHU Building Dataset

Methods AP AP50 AP75 APs APm APL AR ARs ARm ARL AP boundary

PolyMapper[90] 51.4 77.6 58.4 41.6 66.2 36.1 60.5 49.9 76.4 63.0 -

HiSup[166] 58.3 80.4 65.8 43.7 76.0 75.3 63.2 47.8 81.0 84.0 56.7

*HigherNet-DST 60.1 82.8 69.0 46.2 77.1 74.9 63.6 49.3 80.2 80.7 58.5
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of 63.6%, compared to 60.5% for Polymapper and 63.2% for HiSup. For small objects,
the method obtains an APs of 46.2%, compared to 41.6% for PolyMapper and 43.7% for
HiSup. Although the ARs value of the proposed method is lower than PolyMapper, it is
higher than that of HiSup. The performance on large objects drops, but the AP and AR
increase. Therefore, with this experiment, it confirms the success of the proposal in terms
of dealing with poor performance caused by small objects.

4.3.4 Results on the Waterloo Building Dataset

To test the method’s robustness regarding different spatial resolutions, the Waterloo Build-
ing Dataset is down sampled to 0.3 m/pixel to test the performance. In this experiment,
PolyMapper and HiSup are employed for a comparative study. By considering time lim-
itation, PolyMapper in the comparative study on the 0.12 m/pixel dataset is omitted.

   

   

HiSup

HigherNet-DST

Figure 4.7: Rooftop delineation results on the Waterloo Building Dataset (top: results
from HiSup, bottom: results from HigherNet-DST)

Figures 4.7 and 4.8 present the visualization results. Specifically, Figure 4.7 provides
results predicted by HiSup on the 0.12 m/pixel Waterloo Building Dataset, followed by

60



Table 4.5: Evaluation results on the Waterloo Building Dataset (in %)

Pixel Size Methods AP AP50 AP75 APs APm APL AR ARs ARm ARL AP boundary

0.12 m/pixel
*HiSup 66.9 82.7 74.1 30.5 75.5 84.0 70.8 36.5 78.3 88.9 52.5

*HigherNet-DST 66.5 82.5 74.0 31.5 76.2 82.8 70.8 37.4 78.7 87.4 51.0

0.30 m/pixel

PolyMapper 38.4 64.0 40.8 29.0 50.6 34.4 51.5 39.8 66.6 60.1 -

*HiSup 42.8 62.3 47.7 30.7 56.1 70.7 48.0 33.3 61.0 78.2 40.2

*HigherNet-DST 51.5 73.2 59.6 37.3 66.8 64.4 55.4 39.5 70.2 70.3 49.0
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Figure 4.8: Rooftop delineation results on the Waterloo Building Dataset (top: results
from HiSup, bottom: results from HigherNet-DST)
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extraction results generated by HigherNet-DST on the same dataset. In Figure 4.8, results
predicted by PolyMapper, HiSup and HigherNet-DST on the 0.3 m/pixel Waterloo Build-
ing Dataset are visualized. As shown in Figure 4.7, two methods can delineate building
polygons with similar performance, but HigherNet-DST has high sensitivity when dis-
tinguishing rooftops from building walls. In addition, HigherNet-DST can extract small
objects with higher performance, as shown in the third example in Figure 4.7. As shown
in Figure 4.8, building polygons become more complete and accurate going from top to
bottom. In addition, as shown in the second and last column, compared to HiSup, the
advantage of the proposed method is apparent when segmenting buildings which are very
close. It can also be attributed to the high performance when delineating small objects.

Table 4.5 provides quantitative evaluation results. HigherNet-DST has similar perfor-
mance to HiSup on the 0.12 m/pixel dataset, and higher performance when delineating
small and medium objects. On the 0.3 m/pixel dataset, HigherNet-DST achieves an AP
of 51.5% and an AR of 55.4%. The values of AP50 and AP75 increased by more than 10%.
By outperforming the previous state-of-the-art, these results demonstrate the effectiveness
of the proposed method.

4.4 Discussion

4.4.1 Ablation Study

This section explores the effectiveness of each component of HigherNet-DST compared to
the baseline. Specifically, on the WHU Building Dataset, HiSup is taken as the baseline to
test the performance of automatic mixed precision, DST, the Higher Resolution Network,
high spatial resolution supervision targets and the extra semantic segmentation branch (as
shown in Figure 4.9). The extra semantic segmentation branch here refers to the branch
with a semantic segmentation head taking the feature from backbone. In Table 4.6, their
performance on the WHU Building Dataset is presented and denoted as “+amp”, “+DST”,
“+HigherNet”, “*HigherNet-DST”, and “+extra branch”, respectively. In addition, the
performance of HigherNet-DST trained with full precision is provided and denoted as
“HigherNet-DST”.

As shown in Table 4.6, by adding DST, replacing High Resolution Network (HRNet
v2) with the Higher Resolution Network, using higher spatial resolution supervision tar-
gets and adding extra semantic segmentation branch on the backbone, the delineation
performance increased gradually. The increased performance confirms the effectiveness of
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Figure 4.9: Architecture of the object extraction branch with the extra semantic segmen-
tation branch

Table 4.6: Ablation study conducted on the WHU Building Dataset (in %)

Methods AP AP50 AP75 APs APm APL AR ARs ARm ARL AP boundary

HiSup 59.1 80.6 67.2 43.8 77.0 77.5 63.4 47.7 81.5 83.2 57.5

+amp 58.3 80.4 65.8 43.7 76.0 75.3 63.2 47.8 81.0 84.0 56.7

+DST 59.4 80.6 67.1 44.4 77.4 77.6 63.7 48.3 81.6 83.3 57.6

+HigherNet 59.6 80.7 67.4 44.9 77.4 76.1 64.0 48.7 81.8 82.8 58.0

*HigherNet-DST 60.1 82.8 69.0 46.2 77.1 74.9 63.6 49.3 80.2 80.7 58.5

+extra branch 60.2 82.8 69.1 46.3 77.5 74.0 63.8 49.2 80.6 80.2 58.5

HigherNet-DST 61.4 83.8 70.9 47.3 78.1 75.2 64.8 50.6 81.3 81.1 59.6
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each modification. It is worth noting that with the extra semantic segmentation branch,
HigherNet-DST can be improved further. However, the increase is marginal compared to
the increase of computational burden. Therefore, it is not included in HigherNet-DST.

4.4.2 MS Training/Testing

To further show the superior performance of the DST in rooftop delineation, this section
compares the DST with multi-scale training and testing, which are commonly used to deal
with scale-variance issues. The baseline architecture in this section is HiSup with auto
mixed precision.

Multi-scale training

×4

BottleNeck block Batch normalization

Activation ReLU

Conv 1×1

Conv 3×3

Up sampling

Down sampling

c Concatenation

c

Figure 4.10: Feature extraction part of multi-scale training
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Following Liu et al. [98], three scales, including 256×256 pixels, 512×512 pixels, and
1024×1024 pixels, are used for multi-scale training and testing. Specifically, in the training
phase, input images are resized to three scales and then passed through a combination of
convolution layers and batch normalization layers. The features generated by three scales
are concatenated and used as the input of the first stage in the backbone (as shown in
Figure 4.10). For multi-scale testing, input images are resized to three scales (2×, 1×,
and 0.5×) before flowing into the deep network. In Table 4.7, the HiSup, the HiSup with
auto mixed precision, the HiSup with auto mixed precision and multi-scale training, and
the HiSup with auto mixed precision and the DST as “HiSup”, “+amp”, “+multi scale
training”, and “+DST”. Multi-scale testing with different spatial resolution inputs is noted
by the side length of the input. The performance of the output combination from different
scales input and noted as “combination”.

Table 4.7: Performance of MS training and testing on the WHU Building Dataset (in %)

Methods AP AP50 AP75 APs APm APL AR ARs ARm ARL AP boundary

HiSup 59.1 80.6 67.2 43.8 77.0 77.5 63.4 47.7 81.5 83.2 57.5

+amp 58.3 80.4 65.8 43.7 76.0 75.3 63.2 47.8 81.0 84.0 56.7

+MS training

1024 41.0 63.9 46.2 29.8 55.4 56.5 46.3 33.5 61.0 64.4 38.9

512 58.8 80.7 67.1 43.6 76.7 77.7 63.1 47.5 81.0 83.7 57.0

256 28.6 56.5 26.0 9.9 48.9 66.9 32.2 12.3 54.5 74.7 26.3

Combination 35.3 45.6 40.6 31.0 57.0 43.3 61.3 42.1 83.4 88.1 34.1

+DST

1024 38.8 60.9 43.2 29.4 52.1 46.7 44.1 32.7 57.4 54.5 37.0

512 59.4 80.6 67.1 44.4 77.4 77.6 63.7 48.3 81.6 83.3 57.6

256 30.0 58.4 28.4 10.6 51.1 67.3 33.2 12.9 56.1 73.3 27.9

Combination 37.2 47.8 42.5 31.8 60.0 46.7 61.8 42.8 83.6 87.4 36.0

As shown in Table 4.7, multi-scale training with the 512×512 pixels size input indeed
improves the whole performance while the improvement is less than that brought by em-
ploying the DST. For example, by applying multi-scale training with the input size of
512×512 pixels, the AP value is increased from 58.3% to 58.8%. However, by applying the
DST with the 512×512 pixels size input, the AP value is increased from 58.3% to 59.4%.
In addition, employing the multi-scale training consumes more computational resources
than applying DST. Therefore, the multi-scale training is not effective compared to the
DST in rooftop delineation. As for multi-scale testing, Table 4.7 shows that using both
models with the input size of 512×512 pixels gives the best performance, which indicates
that multi-scale testing has a negative impact on rooftop delineation.
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4.4.3 Results with Different Backbones

Recently, the Vision Transformer based backbones show high performance in many com-
puter vision benchmarks compared to CNNs. Therefore, the performance of state-of-the-
art Transformer based backbones for building polygon delineation are also tested using the
WHU Building Dataset. Specifically, the Pyramid Vision Transformer (PVT) v2 [154], Se-
quencer [143] and the High-Resolution vision Transformer (HRFormer) [177] were tested.

Table 4.8: Evaluation results on different backbones of HiSup on WHU Building Dataset
(in %)

Backbone AP AP50 AP75 APs APm APL AR ARs ARm ARL AP boundary

HRNet v2 59.1 80.6 67.2 43.8 77.0 77.5 63.4 47.7 81.5 83.2 57.5

*HRNet v2 58.3 80.4 65.8 43.7 76.0 75.3 63.2 47.8 81.0 84.0 56.7

PV Tv2 b0 50.2 75.4 56.9 34.3 69.2 65.2 54.2 37.6 73.5 72.6 48.0

PV Tv2 b1 52.6 75.6 59.9 37.4 71.3 66.7 56.7 40.5 75.5 73.7 50.7

PV Tv2 b2 53.2 76.7 60.2 37.7 72.0 68.3 57.3 41.0 76.1 75.4 51.3

PV Tv2 b3 53.4 76.7 61.1 37.8 72.0 69.1 57.4 41.1 76.4 75.6 51.5

PV Tv2 b4 54.8 77.8 62.4 39.0 73.5 71.4 58.7 42.4 77.6 77.6 52.9

PV Tv2 b5 54.8 78.7 62.2 39.1 73.2 71.6 59.0 42.9 77.6 77.3 52.9

PV Tv2 b4 + FPN 53.4 77.6 60.3 37.6 72.2 69.9 57.4 41.0 76.4 75.2 51.3

PV Tv2 b5 + FPN 55.1 78.6 62.2 39.4 73.6 72.5 59.1 42.9 77.7 78.1 53.1

Sequencer small 53.9 77.5 61.2 38.4 73.0 65.9 58.1 41.7 77.1 76.5 52.1

Sequencer medium 54.1 77.6 61.1 38.4 73.0 69.4 58.3 41.9 77.1 77.0 52.3

∗Sequencer large 54.2 77.7 61.3 38.3 73.1 69.7 58.2 41.7 77.3 75.9 52.3

∗HRFormer small 55.3 78.8 63.2 39.6 73.9 72.2 59.3 43.0 78.1 79.1 53.5

∗HRFormer base 56.0 79.6 63.4 40.5 74.6 73.9 60.0 43.9 78.6 80.5 54.3

∗HRSeq medium 54.2 78.3 61.7 39.0 72.7 69.5 58.6 42.7 77.0 75.6 52.1

∗HRSeq large 55.3 79.4 62.9 39.6 74.0 71.2 59.5 43.3 78.4 77.4 53.4

∗HRNetv2 2block 57.4 79.4 64.9 42.5 75.6 76.3 62.0 46.3 80.2 82.6 55.8

∗HRNetv2 1block 56.3 79.5 63.9 41.0 74.9 72.9 60.8 44.9 79.3 79.1 54.5

∗HRFormer base 1block 57.3 80.5 65.2 42.0 75.6 73.6 61.5 45.6 79.7 80.2 55.6

+dense connection 55.8 79.6 63.2 40.4 74.2 72.4 60.0 44.0 78.4 79.1 54.0

∗HRSeq medium 1block 55.8 78.6 63.9 40.6 74.2 71.6 60.0 44.0 78.4 78.0 53.7
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The PVT v2 is comprised of four stages of vision transformer with a linear complex-
ity attention layer, overlapping patch embedding and convolutional feed-forward network.
The official implementation is embedded into HiSup and all six versions of PVT v2 are
used in this experiment. In Table 4.8, they are denoted as “PV Tv2 b0”, “PV Tv2 b1”,
“PV Tv2 b2”, “PV Tv2 b3”, “PV Tv2 b4” and “PV Tv2 b5”. FPN is also tested after
“PV Tv2 b4” and “PV Tv2 b5”, denoted as “PV Tv2 b5+FPN” and “PV Tv2 b4+FPN”.

In Sequencer, Long Short-Term Memory (LSTM) instead of self-attention is used to
model long range dependencies. Sequencer is also embedded into HRNet v2 as the coun-
terpart of HRFormer. In the HRFormer, vision transformer block is used to replace CNN
block in HRNet v2. The official implementation of Sequencer and HRFormer are em-
ployed in this chapter. Small and medium versions of Sequencer as backbones of HiSup
are tested. They are denoted as “Sequencer small”, and “Sequencer medium”. By ap-
plying automatic mixed precision in model training, large version of Sequencer, small
and base versions of HRFormer as the backbone of HiSup are tested and named them as
“∗Sequencer large”, “∗HRFormer small” and “∗HRFormer base”, respectively. In ad-
dition, medium and large versions of Sequencer are employed in HRNet v2 as basic blocks
for this experiment and named as “∗HRSeq medium” and “∗HRSeq large” in Table 4.8.
By reducing the number of blocks in each stage and branch of HRFormer and HRNet
v2, new backbones are made and named as “*HRNetv2 2block”, “∗HRNetv2 1block”,
“∗HRFormer base 1block”, “∗HRSeq medium 1block”. Because of limited computa-
tional resources, “∗HRSeq large 1block” is omitted. Furthermore, dense connection scheme
is also tested on top of “∗HRFormer base 1block” and named it “+dense connection”.

As shown in Table 4.8, among different backbones, the original HRNet v2 obtains
the best performance. Among different PVT v2 variations, larger backbones show better
performance. Interestingly, adding the FPN does not result in a performance increase as
expected. The best performance among different HRFormer based backbones comes from
“HRFormer base”. However, it is still inferior to the HRNet v2 based model. HRFormer
and Sequencer based “HRSeq” include 2 blocks in each stage and each branch. By reducing
the block number to one and reducing the number of HRNet v2 modules from 4 to 1, the
HRFormer “HRFormer base 1block” starts to surpass “∗HRNetv2 1block” and becomes
comparable to the “∗HRNetv2 2block” backbone of HiSup. An attempt was made to
improve “∗HRFormer base 1block” by applying dense connections to each branch, which
resulted in lower performance. “∗HRSeq medium 1block” still shows poor performance
compared to its counterparts. As described in Raghu et al. [121], increasing the size of the
transformer network does not result in better performance in these circumstances, which
is contrary to CNNs.
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4.5 Chapter Summary

In this chapter, a new deep learning network named HigherNet-DST for rooftop delineation
is proposed. By applying the DST, adopting the scale-aware Higher-Resolution Network,
and using higher resolution supervision targets based on HiSup, the method can relieve
the scale-variance issue and improve the performance of building boundaries delineation.

By conducting an extensive comparative study, HigherNet-DST showed competitive
performance on the AICrowd Building Dataset and better performance on the Inria Build-
ing Dataset, the WHU Building Dataset and the Waterloo Building Dataset compared to
other state-of-the-art methods. The ablation study further shows the effectiveness of each
module of the proposed method. Experiments on the AICrowd Building Dataset show the
competitive performance of HigherNet-DST with an AP of 68.5%. On the Inria Build-
ing Dataset, with an IoU of 82.6% and accuracy of 97.4%, HigherNet-DST achieves the
best pixel classification performance among all benchmarked methods. In terms of rooftop
delineation, it has 9.4%-27.2% higher values on all object level metrics, except for ARL,
compared to HiSup, the previous state-of-the-art method. On the WHU Building Dataset,
it achieves 60.1% of AP, 82.8% of AP50, 69.0% of AP75, 46.2% of APs, 77.1% of APm, 63.6%
of AR and 58.5% of APboundary, respectively, which are higher than those of PolyMapper
and HiSup, while other metrics are also competitive. On the 0.3 m/pixel Waterloo Building
Dataset, it surpasses HiSup by 6.2%-11.9% on all metrics except for APL and ARL. On the
original Waterloo Building Dataset, it shows competitive performance compared to HiSup
while better performance on small and medium size objects. The experiments show the
effectiveness of the new network in dealing with scale variance issues, especially excelling
at the small building’s regime, which are long-standing problems in rooftop delineation.
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Chapter 5

Weakly Supervised Rooftop
Delineation12

5.1 Introduction

Different annotations have been applied in weakly supervised rooftop delineation. Among
these, image tags are widely used as weak annotations [9, 40, 169, 180]. Rules, such as a
certain ratio of building pixels to all pixels or the existence of building objects within per
image patch, are employed to assign positive image tags or image-level labels to images
for weakly supervised rooftop delineation. In literature, however, there is little research in
weakly supervised instance segmentation methods for rooftop delineation, which may be
more suitable for rooftop delineation as it can generate individual rooftop boundaries. In
contrast, in computer vision, weakly supervised instance segmentation methods are well
explored. Among different annotation types, box-supervised instance segmentation has
attracted much attention in recent research. As reported in Li et al. [88], annotating an
object with a bounding box takes around 11 times less time than that with a polygon on
average (79.2 seconds for a polygon and 7 seconds for a bounding box), significantly alle-
viating the labeling cost in instance segmentation. Recent research, such as the DiscoBox
[79], the BoxInst [145], and the Box2Mask [88], have achieved high performance in box-
supervised instance segmentation, which are competitive with respect to fully supervised
instance segmentation methods.

12The content of the chapter has been submitted to IEEE Transactions on Geoscience and Remote
Sensing with the paper entitled “Box2Boundary: Delineation of building boundaries with box supervision”
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This chapter introduces a novel weakly supervised method called Box2Boundary, which
is inspired by the current state-of-the-art approach, Box2Mask. Specifically, the Box2Mask
is refined by replacing the official backbone with the latest powerful backbone for feature
extraction and adding a dynamic scale training strategy [23] to deal with scale variance
issues for rooftop delineation. For feature learning, the InternImage [153] is employed as
the backbone. To refine the generated building masks, the regularization method proposed
in Wei et al. [158] is adopted as the post-processing step in the proposed method. The
objectives of this chapter are as follows:

(1) presenting a new box-supervised instance segmentation method for rooftop delin-
eation, and

(2) conducting the extensive experiments on the publicly available dataset and showing
the competitive performance of the new method.

5.2 Datasets and Methods

5.2.1 Dataset Preparation

In literature, the WHU Building dataset is widely used in weakly supervised rooftop
delineation [157, 16]. Therefore, in this chapter, it is used to evaluate the proposed
Box2Boundary and other methods in the comparative study and the ablation study. Its
training, validation and testing splits have 4736, 1036, and 2416 tiles with the size of
512×512 pixels and the spatial resolution of 0.3 m/pixel in RGB bands as described in sec-
tions 2.1, 3.2 and 4.2. For box-supervised rooftop delineation, in the training and testing
phases, only box annotations are used, which are generated based on ground truth building
masks in this chapter. The instance masks of buildings are used only for evaluation.

5.2.2 Box2Mask

Box2Mask combines a level-set evolution model with deep learning to achieve accurate
mask prediction using only bounding box supervision. The method utilizes input images
and generated features for level-set evolution. In addition, a local consistency module based
on a pixel affinity kernel is used to mine the local context and spatial relations. The instance
masks are iteratively optimized within their bounding boxes by minimizing the level-set
energy. Li et al. [88] conducted experiments on box supervised instance segmentation with
ResNet [54] and Shifted Windows (Swin) transformer [99] based Box2Mask. With Swin
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transformer, the transformer based Box2Mask gave significantly better performance. In
both CNN-based and transformer-based Box2Mask, three components make up the model,
including an instance-aware decoder, the box-level matching assignment and the level-set
evolution, as shown in Figure 5.1.
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Feature sets
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Figure 5.1: Architecture of Box2Boundary for rooftop delineation

Instance-Aware Decoder (IAD) consists of a pixel-decoder and a kernel-learning
module. The kernel-learning module captures distinctive attributes of individual instances,
such as intensity, appearance, shape, and location. With these attributes, the IAD module
can generate instance-aware mask maps corresponding to objects in the input images. The
CNN-based IAD utilizes dynamic convolution with learned kernels from a kernel learning
network, along with unified mask features aggregated from multi-scale features extracted
by the Feature Pyramid Network (FPN). In the Transformer-based IAD, instance-aware
kernel vectors are learned from a transformer decoder, encoding instance-wise features.
Instead of convolutional layers, a multi-scale deformable attention transformer is utilized
as the pixel decoder to generate long-range feature maps. The final instance-aware mask
maps are generated by multiplying the learned vectors with the feature maps.

Box-level Matching Assignment assigns labels to generated instance-aware mask
maps. For the CNN-based method, each location of the image has a correspondent instance-
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aware mask map. If the location falls into the center region of any ground truth bounding
boxes, the mask map is assigned as positive; otherwise, it is assigned as negative. The center
region of bounding boxes is designed, using a scale factor, to ensure each bounding box
has on average 3 matched mask maps. For the Transformer-based method, the assignment
is finished by using a matching cost calculated as follow:

Cost = 2 · CostCls + 5 · CostLoc (5.1)

CostLoc = Pdice(maskpx, box
p
x) + Pdice(maskpy, box

p
y) (5.2)

where maskpx, maskpy, box
p
x, and boxpy represent the coordinate projections of the masks

and the boxes on the x and y axes, respectively. The 1-D dice coefficient measurement,
represented by ”dice,” is employed. Here, P denotes projection. The cross-entropy loss
is utilized to calculate the category cost. In the transformer-based method, the box level
assignment is performed by assigning each bounding box to each mask using this scheme
[88].

Level-set Evolution model is a mathematical framework used in image processing
and computer vision to represent and evolve curves and surfaces in a continuous manner.
As mentioned previously, both input images and deep features, generated from unified
features in the IAD module, are utilized to evolve the instance contours initialized from
instance mask maps. In addition, in each step, an initial contour is generated by using
a box projection function as the projection defined location loss in box-level matching
assignment. As a result, the contour for each object is optimized in each step and its
accuracy is improved gradually. To further exploit the pixel affinity with the neighborhood,
an affinity kernel function is defined with 8-way local neighbors. After 10 iterations, a
robust level-set is obtained with local affinity consistency.

5.2.3 InternImage

The backbone plays a key role in feature extraction for various computer vision tasks. In
this section, the InternImage model, depicted at the bottom of Figure 5.1, is taken as the
feature extractor. The InternImage model is composed of a stem block, and four basic
blocks separated by three down-sampling blocks. To enhance its capabilities, the model
utilizes Deformable Convolutional Networks (DCN) v3. As a core operator proposed in
Li et al. [88], the DCN v3 is good at capturing long-range dependencies and adaptive
spatial aggregation compared to conventional CNNs. With the inductive bias inherited
from convolutions, DCN v3 demonstrates efficiency in terms of training speed and data
utilization compared to attention-based operators. Furthermore, its sparse sampling nature
enables computational and memory efficiency, along with ease of optimization.
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5.2.4 Dynamic Scale Training

The dynamic scale training strategy, proposed by Chen et al. [23], has been demonstrated
to be effective in addressing the challenges of small object detection, thereby improving
detection performance. Given that rooftops exhibit variations in object sizes and scale, this
strategy is employed to enhance the accuracy of box-supervised instance segmentation.

Box2Boundary

Yes

No

Small objects’ 

loss ratio < 0.1

Box2Boundary

Figure 5.2: DST strategy in Box2Boundary for rooftop delineation

The principle behind the strategy is straightforward: if the ratio of small objects’ loss
to the total loss is smaller than a threshold, k images and their targets are collaged in next
iteration. This process is illustrated in Figure 5.2. In this chapter, the threshold is set to
0.1 and the value of k is set to 4 following the empirical setting introduced by Chen et al.
[23].

5.2.5 Post-processing

Although the building masks generated by the refined Box2Mask are accurate, the bound-
aries are irregular. In addition, the vectorized building boundaries are the required ulti-
mate data. Therefore, a post-processing step needs to be conducted. In this chapter, two
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algorithms [158] are employed to process each instance mask. Firstly, extremely small poly-
gons, over-sharp angle edges, over-smooth edges and extremely short edges are removed
after vectorizing the instance masks generated in previous steps. Secondly, the longest
edge that constitutes the remaining edge is identified, and its direction is included in the
main direction list. Then, other edges are traversed, and their directions are added to the
main direction list based on an angle threshold between their directions and the directions
already present in the list. Using this list and the angle adjustments, short and long edges
are appropriately modified. Parallel edges are merged, resulting in the construction of the
final polygons.

5.2.6 Evaluation Metrics

In weakly supervised rooftop delineation, the performance is commonly evaluated using
metrics such as IoU, Precision, Recall, F1 score, and OA [16, 40, 169, 178]. These metrics
are widely employed to assess the performance of different methods. Additionally, to facil-
itate comparison with other instance segmentation-based methods, object-level metrics, as
used in the MS COCO [93] challenge, are also utilized to evaluate the extraction of rooftop
delineation in this section.

5.2.7 Implementation Details

Following the Box2Mask, the level-set energy function is taken as the objective function
in the proposed method. In addition, the cross-entropy loss is adopted to calculate the
category loss, the dice coefficient-based projection loss is adopted as the bounding box
detection loss and the differentiable level-set energy function is adopted as the mask seg-
mentation loss. The weighted sum of these losses with a ratio of 2:5:1 is taken as the
total loss for backpropagation. or the classification loss, a weight ratio of 10:1 is assigned
to positive objects and negative objects, respectively. Data preparation involves dynamic
scale training, random flipping, and large-scale jittering augmentation. The optimizer used
for model training is AdamW, with an initial learning rate set to 2e-4 and weight decay
set to 0.05. The models are trained for 200k iterations. The learning rate is decreased
by a factor of 10 at iteration 160k and again at iteration 180K. The batch size and the
input image size are set to 4 and 512×512 pixels. Unless stated otherwise, all backbones in
this chapter are pretrained on ImageNet-1k, and all deep learning models share the same
optimizer, the same learning rate and learning rate schedule, and the same number of total
training iterations. All experiments in this section are conducted with Pytorch 1.10.0 and
CUDA 11.8 on windows 11 with an Nvidia®RTX 3090 GPU.
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5.3 Experimental Results and Analysis

5.3.1 Instance Level Extraction

In the comparative study, several methods are considered for instance segmentation. For
fully supervised instance segmentation, the methods used include PolyMapper [90], HiSup
[166], and HigherNet-DST (presented in Chapter 4) (as shown in Figure 4.6). For box
supervised instance segmentation, methods from the computer vision field such as DiscoBox
[79], BoxInst [145], and Box2Mask [88] are adopted. The qualitative evaluation results are
provided in Figure 5.3, while the quantitative evaluation results are tabulated in Table 5.1.

Table 5.1: Instance segmentation results with the WHU Building Dataset (in %)

Methods Supervision AP AP50 AP75 APs APm APL AR ARs ARm ARL

PolyMapper Mask 51.4 77.6 58.4 41.6 66.2 36.1 60.5 49.9 76.4 63.0

*HiSup Mask 58.3 80.4 65.8 43.7 76.0 75.3 63.2 47.8 81.0 84.0

*HigherNet-DST Mask 60.1 82.8 69.0 46.2 77.1 74.9 63.6 49.3 80.2 80.7

DiscoBox Box 26.7 72.9 6.8 15.1 42.0 55.0 35.9 23.0 50.4 65.2

BoxInst Box 37.4 79.0 29.9 21.7 52.7 69.8 44.8 30.1 61.2 79.8

Box2Mask Box 46.7 83.5 49.2 29.3 64.4 70.9 50.8 35.0 68.8 75.4

Box2Boundary Box 48.7 84.9 52.4 31.3 66.1 73.3 52.3 36.7 70.2 78.2

Figures 4.6 and 5.3, provides results generated by PolyMapper, HiSup, HigherNet-
DST, DiscoBox, BoxInst, Box2Mask, Box2Boundary. As shown in Figure 4.6, mask su-
pervised methods achieved better performance with accurate building boundaries, while
box supervised methods can also detect building objects accurately and generate almost
accurate building outlines. As discussed in section 4.3.4, among mask supervised meth-
ods, HigherNet-DST achieves the highest performance specifically on small objects in the
first and last columns. Regarding the box supervised methods, there is a progression of
increasingly accurate building boundaries from DiscoBox to the proposed Box2Boundary,
with tighter and more regular outlines. Taking the first column as an example, DiscoBox
and BoxInst cannot distinguish building pixels from neighboring pixels, resulting in larger
masks that fully cover building objects. In contrast, Box2Mask and Box2Boundary classify
building pixels and their neighborhood accurately but may generate incomplete building
masks from some building objects. The difference between Box2Mask and Box2Boundary
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Figure 5.3: Qualitative evaluation results of instance level rooftop delineation
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is marginal in the first two columns but becomes more obvious in the last column. In the
last column, Box2Boundary shows higher performance in delineating close buildings. Over-
all, by visually examining rooftop delineation results of the three examples, box supervised
methods give competitive results with Box2Boundary demonstrating the best performance.

5.3.2 Pixel Level Extraction

Although instance segmentation is arguably more suitable for rooftop delineation, there
have been numerous studies on semantic segmentation methods. Therefore, to compare
with these methods, the evaluation results of both fully supervised and weakly supervised
semantic segmentation methods, along with the proposed Box2Boundary, are tabulated in
Figure 5.3 and Table 5.2 using abbreviated names. Firstly, the fully supervised semantic
segmentation methods including the U-Net [123], the DeepLab v3+ [18] and the Deep
Dual-Resolution Networks (DDRNet) [57] are selected for the comparison. Binary building
masks are used in these methods as supervision targets.

Secondly, weakly supervised semantic segmentation with image level annotations, in-
cluding the Explicit Pseudo-pixel Supervision (EPS) [83], the Class Activation Maps
(CAM) [192] based method, a weakly supervised building segmentation method that
combines the Superpixel Pooling and Multi-scale Feature fusion structures (SPMF-Net)
[17], a self-supervised equivariant attention mechanism (SEAM) [156], the Weakly Super-
vised Feature-fusion NETwork (WSF-NET) [42], a weakly supervised network integrating
MultiScale Generation and Superpixel Refinement (MSG-SR-Net) [168] and the Pixelwise
Affinity Network (PANet) [169], the AdvCAM [83] and the Adversarial Climbing Gated
Convolution (ACGC) [40] are selected for the comparison purpose.

Furthermore, weakly supervised methods with scribble annotations, including theWeakly-
supervised Salient Object Detection (WSOD) [179], the Uncertainty Reduction and Self-
Supervision (URSS) [115], the ScRoadExtractor [159] and the Structure-Aware Weakly
Supervised Network (SAWSN) [16] are collected for the comparison.

Finally, to compare the proposed method Box2Boundary with existing box supervised
methods,DiscoBox, BoxInst and Box2Mask are also included here by converting generated
instance masks to binary masks. In addition, the weakly supervised semantic segmentation
with the Background-Aware pooling and Noise-Aware loss (BANA) and the method with a
multiscale feature retrieval (MFR), a pseudo-mask generation and correction (PGC) mod-
ules (MFR-PGC-Net) are collected from remote sensing field for the comparative study.The
results for fully supervised methods and weakly supervised methods with image level an-
notations and scribble annotations are cited from [169] and Chen et al. [16]. Furthermore,
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Table 5.2: Semantic segmentation results with the WHU Building Dataset (in %)

Methods Supervision Precision Recall F1 score OA IoU

U-Net Mask 95.11 93.83 94.47 - 89.51

DeepLab v3+ Mask 94.04 93.42 93.73 - 88.20

DDRNet Mask 94.72 94.68 94.70 - 89.93

EPS Image tag 60.06 47.44 53.01 - 36.06

CAM Image tag - - 59.66 84.67 42.50

SPMF-Net Image tag - - 53.23 85.60 36.26

SEAM Image tag - - 68.82 89.74 52.47

WSF-Net Image tag - - 62.24 88.99 45.18

MSG-SR-Net Image tag - - 68.98 91.80 52.64

PANet Image tag - - 74.59 93.68 59.48

AdvCAM Image tag 79.13 62.98 70.14 - 54.01

ACGC Image tag 77.86 66.70 71.85 - 56.06

WSOD Scribble 88.25 89.42 88.83 - 79.90

URSS Scribble 88.04 93.01 90.46 - 82.58

ScRoadExtractor Scribble 67.30 79.88 73.05 - 57.55

SAWSN Scribble 92.00 92.45 92.22 - 85.57

BANA Box 87.24 85.21 86.22 - 75.77

MFR-PGC-Net Box 85.03 89.07 87.00 - 76.99

DiscoBox Box 76.21 95.55 84.79 96.19 73.60

BoxInst Box 85.43 93.51 89.29 97.50 80.66

Box2Mask Box 91.92 86.00 88.86 97.60 79.96

Box2Boundary Box 92.05 87.48 89.71 97.77 81.34
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Figure 5.4: Qualitative evaluation results of pixel level rooftop delineation
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this chapter collects results of AdvCAM, ACGC, BANA and MFR-PGC-Net from Zheng
et al. [190].

Similarly, to evaluate the results of pixel level extraction, the qualitative evaluation
results are provided in Figure 5.4. However, only box supervised methods are evaluated
in the qualitative evaluation section. There are three reasons for this decision: (1) fully
supervised, image tag supervised, and scribble supervised methods are not the focus in
this thesis; (2) several methods do not have open-sourced code; and (3) several methods
are hard to re-implement.

In Figure 5.4, the ground truth and extraction results from DiscoBox, BoxInst, Box2Mask
and Box2Boundary are given from the top to the bottom row, respectively. As analyzed
previously, DiscoBox and BoxInst give larger masks for building objects. In addition, Dis-
coBox and BoxInst miss the extraction of several small building objects in all three columns.
As shown in the red boxes in Figure 5.4, Box2Mask and Box2Boundary show better per-
formance compared to DiscoBox and BoxInst. In the second column, the building located
in the middle top of the second example is missed in DiscoBox, BoxInst and Box2Mask
based extraction. The successful extraction of the object by Box2Boundary confirms its
superiority compared to other methods. Overall, Box2Boundary exhibits slightly better
performance than Box2Mask and significantly outperforms DiscoBox and BoxInst.

To evaluate their performance quantitatively, Table 5.2 compares the fully supervised,
the image tag supervised, the scribble supervised, and the box supervised methods as
mentioned previously. As expected, fully supervised methods give the best performance.
Scribble supervised and box supervised methods give similar performance, which is worse
than that of mask supervised methods but better than that of image tag supervised meth-
ods. Based on the experiment results, it is promising that with higher performance deep
learning models more accurate results can be achieved.

5.4 Post-processing

As shown in Figures 5.3 and 5.4, Box2Boundary can extract building boundaries accu-
rately, but the boundaries are irregular which need to be refined further. By applying the
method proposed in Wei et al.[158], the results generated by Box2Boundary are regularized
and presented in this subsection. In the post-processing method, the key parameter is a
threshold, epsilon, used in the Douglas–Peucker (DP) algorithm for removing redundant
vertices. Specifically, given a line with multiple vertices, if the max length of all interval
points to the line connecting the first and last vertices is smaller than the threshold, all
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interval vertices are removed. If not, the point corresponding to the max length will be
the starting point or the ending point for the next iteration. For each line, the iteration
continues till no vertex can be removed. In Figure 5.5, a fictitious example is presented to
illustrate DP algorithm. As shown in the figure, if the max length dmax is smaller than
the threshold, epsilon, the vertices including B, C, D, E, and F can be removed. If not,
the line will be split into two lines, from A to C and from C to G. And the vertex C will
be preserved for the final polyline. The next iteration starts from line A to C or line C to
G. The threshold, epsilon, is set to 6 by default, which means 6 pixels.

A
B D F

G

C

Edmax

Figure 5.5: An example of the Douglas-Peucker (DP) algorithm

Table 5.3: Performance of Box2Boundary with different thresholds in post-processing (in
%)

Methods AP AP50 AP75 APs APm APL AR ARs ARm ARL

Box2boundary 48.7 84.9 52.4 31.3 66.1 73.3 52.3 36.7 70.2 78.2

Episilon=1 47.5 82.3 51.5 32.6 64.6 58.6 52.3 37.3 69.6 71.4

Episilon=3 47.2 82.3 51.0 32.5 64.4 54.0 52.2 37.3 69.4 68.8

Episilon=6 46.8 82.1 50.0 32.4 63.8 52.4 51.9 37.1 69.0 68.1

By simplifying polygons, the accuracy of rooftop delineation results will inevitably
decrease, but more aesthetically pleasing rooftop delineations can be generated. Table
5.3 shows the decreased performance when applying post-processing and increasing the
threshold. Figure 5.6 visualizes the post-processing results with different thresholds based
on the outputs generated by Box2Boundary. Specifically, from top to bottom, the figure
presents the rooftop delineation results without post-processing, with post-processing using
thresholds of 1, 3 and 6, respectively. As shown in Figure 5.6, by post-processing extraction
results, the building boundaries become more regular. However, increasing the threshold
epsilon exacerbates the shifting issue. For instance, in the first example, the top right
building exhibits a more regular boundary with increased threshold, but the bottom right
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Figure 5.6: Qualitative evaluation results of Box2Boundary with different thresholds in
post-processing
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part of the building is excluded from the rooftop. Another example can be found in the
top left of the second example close to the image boundary. The regular but inaccurate
rooftop boundary is generated by increasing the threshold. The issue can be found in
all three examples and all the extraction results. As manually checking and editing is
inevitable, it is preferable to obtain aesthetically pleasing and easily editable results [134].
Therefore, the default epsilon value 6 is recommended to ease the manually editing work
in practice.

5.5 Discussion

5.5.1 Ablation Study

As mentioned, Box2Boundary is developed on top of Box2Mask by replacing the back-
bone and applying DST in model training. To test the effectiveness of each modification,
Box2Mask, Box2Mask with the tiny InternImage, and Box2Boundary are evaluated in
this section. As shown in Table 5.4, the performance improvement from Box2Mask to
Box2Boundary mainly comes from the backbone replacement, although applying DST also
helps the improvement. For example, in terms of the AP value, the backbone replacement
brings 1.8% increment, and the DST strategy improves the value by 0.2%. Applying DST
may lead to a decrease in AR metrics except ARL, but it helps the improvement in general.
Therefore, both modifications in this chapter are effective regarding box supervised rooftop
delineation.

Table 5.4: The ablation study of Box2Boundary in rooftop delineation (in %)

Methods AP AP50 AP75 APs APm APL AR ARs ARm ARL

Box2Mask 46.7 83.5 49.2 29.3 64.4 70.9 50.8 35.0 68.8 75.4

+tiny InternImage 48.5 84.0 52.3 31.3 66.0 71.2 52.7 37.3 70.4 77.2

Box2boundary 48.7 84.9 52.4 31.3 66.1 73.3 52.3 36.7 70.2 78.2
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5.5.2 Other Techniques Tried

Pretrain Models or Not

In computer vision, it is common to initialize the weights of deep learning models us-
ing pretrained networks trained on standard image datasets for general object tasks. For
example, in this section, all backbones are pretrained on ImageNet 1K. In contrast, in
rooftop delineation, deep learning models are generally trained from scratch. In Table 5.5,
the performance difference between using pretrained models and training from scratch is
explored. Specifically, Box2Mask with a tiny Swin transformer is applied as the baseline.
The table indicates whether the model is ”with pretrained” or ”without pretrained”, de-
noting whether the weights were initialized using a pretrained network or trained from
scratch. The learning curves including training loss, bounding box mAP and mask mAP
of validation dataset along iteration steps are provided in Figure 5.7.

Table 5.5: Performance of Box2Mask using pretrained weights (in %)

Methods AP AP50 AP75 APs APm APL AR ARs ARm ARL

With pretrained 46.7 83.5 49.2 29.3 64.4 70.9 50.8 35.0 68.8 75.4

Without pretrained 45.5 82.9 47.2 28.3 62.6 64.9 49.5 34.2 67.0 70.3
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Figure 5.7: Learning curves with and without pretrained weights

As shown in Table 5.5, the utilization of a pretrained backbone resulted in a notable
improvement in rooftop delineation performance. This positive impact of pretrained model
weights on model training is further confirmed by the learning curves presented in Figure

84



5.7. Although there are initially different trends in bounding box AP and mask AP for
the validation dataset, the positive impact becomes evident as the training progresses. In
conclusion, the use of pretrained model weights is beneficial for effective model training.

Different Feature Extractors

The selection of a proper backbone for feature extraction is crucial for improving perfor-
mance in Box2Boundary. This section evaluates the performance of a small InternImage
and the state-of-the-art backbone, tiny ConvNeXt v2 [161]. With its simple convolutional
architecture, ConvNeXt v2 demonstrates competitive performance compared to Vision
Transformer-based methods in the computer vision field. Given limited computational
resources, only tiny ConvNeXt is considered here. The performance comparison includes
Box2Mask as the baseline with a tiny Swin transformer, followed by Box2Mask with small
InternImage, tiny InternImage, and tiny ConvNeXt v2. Table 5.6 tabulates the perfor-
mance of Box2Mask with different backbones.

Table 5.6: Performance of Box2Mask with different backbones (in %)

Methods AP AP50 AP75 APs APm APL AR ARs ARm ARL

Tiny Swin 46.7 83.5 49.2 29.3 64.4 70.9 50.8 35.0 68.8 75.4

Small InternImage 45.5 81.9 48.0 28.2 63.0 70.9 49.7 34.0 67.7 76.8

Tiny InternImage 48.5 84.0 52.3 31.3 66.0 71.2 52.7 37.3 70.4 77.2

Tiny ConvNext v2 47.4 84.7 50.3 29.8 64.8 72.1 51.3 35.6 69.2 76.0

In Table 5.6, it can be observed that Box2Mask with tiny InternImage achieves the
best performance, followed by tiny ConvNeXt v2, while small InternImage yields the low-
est performance. Interestingly, the underperformance of small InternImage compared to
tiny InternImage is unexpected. One possible explanation is that a larger feature extractor
may overfit to a box supervised instance segmentation. Specifically, the memory consump-
tion for the models as follows: tiny Swin transformer-17,434 MB, tiny InternImage-19,776
MB, small InternImage-21,780 MB, and tiny ConvNeXt v2-19,947 MB. The performance
differences align with the memory consumption except for the tiny Swin transformer, which
is understandable since it lacks certain recently developed techniques in deep learning. The
variation in performance can be attributed to overfitting using different backbones.
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Overfitting Issues

As discussed earlier, the overfitting issue probably is hindering the performance of box
supervised instance segmentation. To address this issue, Liu et al. [100] proposed early
dropout and late dropout techniques to mitigate underfitting and overfitting. Specifically,
for underfitting models, dropout is applied only in the first 1000 iterations and disabled
afterward, while for overfitting models, dropout is enabled only in the last 10% of itera-
tions. Both strategies have been shown to be effective in their experiments. In addition to
the early dropout and the late dropout, in this section, the impact of dropouts is further
explored by making the dropout rate trainable in all dropout layers. In this section, the
aim is to enhance box supervised rooftop delineation by testing these dropout strategies
on Box2Mask with tiny InternImage as the baseline. Table 5.7 presents the evaluation and
comparison of normal training and training with different dropout strategies. Among the
various strategies, training with late dropout achieves performance comparable to normal
training. This suggests that the tiny InternImage-based method indeed suffers from overfit-
ting, and further fine-tuning of the training schedule is necessary for improved performance.

Table 5.7: Performance of Box2Mask with different dropout strategies (in %)

Methods AP AP50 AP75 APs APm APL AR ARs ARm ARL

Normal 48.5 84.0 52.3 31.3 66.0 71.2 52.7 37.3 70.4 77.2

Early Dropout 47.6 83.9 51.0 30.6 64.7 71.7 51.7 36.3 69.3 76.3

Late Dropout 48.3 84.9 51.8 31.2 65.8 71.8 52.1 36.6 69.9 77.0

Trainable Dropout 48.0 84.7 51.5 30.4 65.7 73.7 51.7 35.9 69.8 78.1

Multi to Single Module for Scale-Variance Issue

As discussed in Chapters 2 and 4, scale-variance issues exist in rooftop delineation and
impede performance. Various methods, including data preparation and model optimization
techniques, have been employed to address these scale-variance issues, as discussed in
Section 2.2. In this section, the recently developed model optimization method Multi to
Single Module (M2S) [47] is embedded into Box2Mask with tiny InternImage to evaluate
its performance on dealing with scale-variance issues.

There are two modules in M2S: the Cross-scale Feature Aggregation (CFA) and the
Dual Relationship Module (DRM), which consider spatial and channel relationships. In
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the CFA modules, every three adjacent features from the backbone output are taken as
input to generate fused features. The fused features are taken as input for next level feature
fusion. Finally, high, middle, and low-level features are created from a “V” shape CFA
modules combo, which will be sent to DRM. In Box2Mask with tiny InternImage, four
features (C1, C2, C3, and C4) are generated from the backbone. C2, C3, and C4 are used
to create the high-level feature through a CFA module, while C1, C2, and the high-level
feature are used to generate the middle-level feature in another CFA module. C1 serves
as the low-level feature. The three level features and the decoded feature using C4 are
then passed through the DRM. Afterward, the four features are integrated into a single
output feature, which replaces the decoded feature in the original Box2Mask with tiny
InternImage. This integration is expected to enhance small object extraction and overall
performance. However, as indicated in Table 5.8, incorporating M2S results in a decline in
rooftop delineation performance. This poor performance is likely due to severe overfitting
caused by the addition of the M2S module, which consumes 20,496MB of memory in each
iteration. This experiment confirms previous findings. Therefore, when aiming to enhance
the performance of Box2Mask or Box2Boundary, it is advisable to avoid increasing the
model complexity.

Table 5.8: Performance of Box2Mask with tiny InternImage using M2S module (in %)

Methods AP AP50 AP75 APs APm APL AR ARs ARm ARL

Original 48.5 84.0 52.3 31.3 66.0 71.2 52.7 37.3 70.4 77.2

M2S 45.7 82.6 48.0 28.8 62.7 68.3 49.8 34.5 67.3 73.3

5.6 Chapter Summary

In this chapter, the costly annotation issue in rooftop delineation is taken as the core
topic. Based on Box2Mask, a box supervised instance segmentation in computer vision,
Box2Boundary is proposed for box supervised rooftop delineation. Box2Boundary im-
proves upon Box2Mask by replacing the backbone with tiny InternImage and incorpo-
rating DST to handle scale-variance issues. By conducting an experiment on the WHU
Building Dataset, Box2Boundary achieves promising performance compared to fully su-
pervised methods, shows competitive performance compared to scribble-based methods,
and surpasses image-tag supervised, and other box supervised rooftop delineation meth-
ods. Specifically, on the WHU Building Dataset, Box2Boundary surpasses its baseline

87



Box2Mask by 2% and 1.5% in terms of AP and AR, showing its superiority. It also shows
significant improvement compared to BoxInst and DiscoBox in terms of all instance level
metrics. In semantic segmentation-based methods, box supervised methods show promising
performance compared to other methods using different supervision targets. Specifically,
box supervised methods show promising performance compared to fully supervised meth-
ods. They also show significantly better performance compared to image tag supervised
methods. To refine the rooftop delineation results, the post-processing proposed by Wei
et al. [158] is employed in this chapter. However, it is observed that while post-processing
effectively regularizes the rooftop shape, it adversely affects the accuracy score of the ex-
traction.

In the discussion section, the success of the Box2Boundary proposal is confirmed
through the ablation study, which demonstrates improved performance compared to its
baseline, Box2Mask. The effectiveness of using a pretrained backbone is also validated
as a helpful factor for rooftop delineation. Specifically, employing a pretrained tiny Swin
transformer enhances the performance of Box2Mask compared to training from scratch.
Different backbones are also tested for better performance. The results show that the tiny
InternImage yields superior feature extraction and rooftop delineation. The experiments
also highlight the presence of overfitting issues that hinder performance improvement in
rooftop delineation. To address these issues, various dropout strategies are tested, which
confirm the presence of overfitting in Box2Mask with the tiny InternImage backbone.
Finally, to deal with scale variance issues, the M2S module is also tested as a model op-
timization method. However, it is observed that incorporating the M2S module leads to
a decrease in performance for box supervised methods. Consequently, the experiments
demonstrate that Box2Boundary, featuring a pretrained InternImage backbone, DST, and
post-processing, is the most effective method and pipeline for box supervised rooftop de-
lineation compared to other weakly supervised methods.
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Chapter 6

Conclusions and Recommendations

6.1 Conclusions

Rooftop delineation plays a crucial role in various applications such as urban planning
and management, cadastral management, urban geo-database update and smart city con-
struction. It is also important for disaster management, epidemic control, population
estimation and damage assessment. Leveraging remote sensing imagery, particularly aerial
imagery, DL-based methods offer an efficient approach for generating HD building maps.
However, automated rooftop delineation faces challenges related to generalization issues,
scale-variance issues, and the costly annotation issues. Different geo-locations and spatial
resolutions in images introduce variations in building characteristics, leading to reduced
performance in DL-based extraction methods. Scale-variance issues, common in com-
puter vision tasks, pose a specific challenge in accurately extracting rooftops, especially
for smaller structures. DL methods heavily rely on extensive, high-quality training data,
which necessitates labor-intensive and expensive human labeling efforts. To address these
challenges, this thesis proposes three corresponding methods.

To address generalization issues, a data composition approach using the SISR method
MSCA-RFANet is proposed. By employing high-performance SISR methods to process
datasets with varying spatial resolutions and combining the processed datasets, positive
results are achieved in mitigating generalization issues. The proposed MSCA-RFANet
builds upon RFANet and introduces a dual attention scheme using SCA blocks in the
trunk part. To enhance model training and improve performance, a momentum scheme
is adopted for the skip connection between the basic modules of MSCA-RFANet. The
proposed SISR method demonstrates superior performance in SISR. By employing the
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proposed SISR method for data composition, better performance is achieved in addressing
generalization issues for rooftop delineation. Experimental results on the Waterloo Building
Dataset, the WHU Building Dataset, and the Massachusetts Building Dataset reveal the
positive impact of the proposed SISR method in improving the performance of rooftop
delineation by integrating the spatial resolution of different datasets. The proposed data
composition with MSCA-RFANet shows better performance on rooftop delineation using
unseen data as test data. Consequently, it can be concluded that the data composition
with MSCA-RFANet is effective in dealing with generalization issues

To address scale-variance issues, HigherNet-DST is proposed. Building upon the HiSup
method, which is a state-of-the-art end-to-end rooftop delineation approach, HigherNet-
DST introduces scale-aware HigherNet and DST techniques to address the challenges posed
by scale-variance. Notably, HigherNet-DST leverages high spatial resolution supervision
targets instead of low spatial resolution ones to capture more detailed features and improve
performance. By incorporating these innovative modifications, HigherNet-DST achieves
impressive results in rooftop delineation. It outperforms other state-of-the-art methods,
particularly in accurately delineating small objects, as demonstrated on publicly available
building datasets. As a result, HigherNet-DST is regarded as an effective method for
practical rooftop delineation, showcasing its potential in real-world applications.

To alleviate the costly annotation issues, box-supervised instance segmentation meth-
ods from computer vision tasks are innovatively introduced in rooftop delineation. For
better performance, after examining state-of-the-art methods in box supervised meth-
ods, Box2Boundary is proposed for rooftop delineation with box supervision. State-of-
the-art box supervised instance segmentation methods, including DiscoBox, BoxInst, and
Box2Mask, are examined, and based on the best-performing method, Box2Mask, several
enhancements are made. Firstly, the backbone of Box2Mask is replaced with the Intern-
Image, which enhances feature extraction in deep learning. Additionally, to overcome the
challenge of scale-variance, DST is incorporated into the Box2Boundary framework. Since
the generated results may have irregular shapes, post-processing methods are implemented
to refine and regularize the rooftop boundaries. With only box annotations, Box2Boundary
shows promising performance compared to fully supervised methods, competitive perfor-
mance compared to scribble supervised methods which require similar effort for generating
training data, better performance compared to image tag supervised methods. With post-
processing, the performance of Box2Boundary is inevitably decreased, but the generated
rooftop boundaries become regular and easy to be refined. Overall, it can be concluded
that the proposed Box2Boundary can alleviate the costly annotation issues with decent
performance.

In conclusion, this doctoral thesis proposes three innovative solutions for addressing key
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challenges in deep learning-based rooftop delineation: generalization issues, scale-variance
issues, and costly annotation. Through extensive experiments, the effectiveness of each so-
lution is demonstrated. Extensive experiments in this thesis prove the effectiveness of data
composition with MSCA-RFANet in dealing with generalization issues in terms of different
spatial resolutions and geo-locations. The experiments also show the high performance of
HigherNet-DST in rooftop delineation, especially in delineating small buildings, compared
to other state-of-the-art methods. The experiments on weakly supervised methods confirm
the potential of using box supervised method for rooftop delineation with descent perfor-
mance. All in all, these methods can facilitate automated and accurate rooftop delineation
and improve the practical applicability of deep learning-based rooftop delineation.

6.2 Contributions

DL based rooftop delineation methods are widely used recently. However, generalization
issues, scale variance issues and costly annotation issues still impede their practical use.
In this thesis, the innovatively proposed methods provide feasible solutions for these chal-
lenges. Therefore, this thesis has three contributions:

(1) A novel SISR method, MSCA-RFANet, is proposed, which can be combined with
data composition to overcome generalization errors in rooftop delineation when training
data and test data have different spatial resolutions and characteristics. The proposed dual
attention block, known as the SCA block, effectively captures both channel information and
spatial details, enhancing the model’s ability to focus on relevant features. Additionally,
the introduction of a momentum scheme facilitates training and enables the network to
be deeper. Experiments show the effectiveness of the proposed method and the data
composition solution on dealing with generalization issues. On the Inria Building Dataset,
the solution achieves high performance with an OA of 88.78% and an IoU of 39.93%. These
results are promising when compared to extraction results obtained from in-distribution
datasets and demonstrate superior performance compared to models trained on single
datasets or simple mixed datasets.

(2) A high-performance end-to-end rooftop delineation method, HigherNet-DST, is pro-
posed, which can generate accurate and regular building boundaries. By leveraging the
scale-aware HigherNet, high spatial resolution supervision targets, and DST, the method
excels in delineating small buildings while maintaining overall performance. Experimen-
tal results demonstrate the competitive performance of HigherNet-DST on the AICrowd
Building Dataset, achieving an average precision (AP) of 68.5%. Moreover, the method ex-
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hibits substantial improvement compared to its baseline, HiSup, on other building datasets
and outperforms PolyMapper in terms of performance.

(3) Box2Boundary is proposed to alleviate costly annotation issues in DL based rooftop
delineation. While box supervised instance segmentation methods have shown excellent
performance in computer vision tasks, their potential in rooftop delineation remains unex-
plored. To fully take advantage of DL techniques, box supervised instance segmentation
is introduced into rooftop delineation. By utilizing InternImage as a superior feature ex-
tractor instead of the one used in Box2Mask, Box2Boundary shows better performance
in rooftop delineation. Further enhancement is achieved by incorporating DST into the
framework. Box2Boundary with an AP value of 48.7% on the WHU Building Dataset
achieves a competitive performance compared to PolyMapper, a fully supervised rooftop
delineation method. This result surpasses the performance of its baseline and other box
supervised methods. By comparing with other semantic segmentation-based rooftop de-
lineation methods, Box2Boundary shows promising performance with an IoU of 81.34%
compared to fully supervised methods. Notably, it outperforms image tag methods sig-
nificantly and shows superiority over several scribble supervised methods while remaining
competitive with other state-of-the-art methods. Although post-processing affects its per-
formance, it leads to aesthetically pleasing building boundaries that are easier to refine.
Therefore, Box2Boundary is an effective method capable of achieving decent performance
in rooftop delineation using only box annotations.

6.3 Recommendations for Future Research

In this thesis, three challenges in rooftop delineation have been addressed. The proposed
solutions have provided alleviation to some extent, although there is still potential for
further performance improvement. Additionally, it is important to recognize that there
are other challenges in rooftop delineation that require urgent attention. The following
recommendations are suggested for future research:

Worldwide data composition: in the thesis, data composition has been proven
effective for dealing with generalization issues. However, when evaluated on the Inria
Building Dataset, there is still a noticeable performance gap in handling generalization
challenges. The relatively poor performance of the models trained on the composited data
can be attributed to the limited representation of building characteristics within the Inria
Building Dataset. This dataset consists of aerial images captured in the USA and Austin,
exhibiting diverse illumination conditions and distinct building characteristics. Given the

92



constraints of computational resources, this thesis focused on utilizing the Waterloo Build-
ing Dataset, the WHU Building Dataset, and the Massachusetts Building Dataset for data
composition. While collecting training data specifically from the USA and Austin could
potentially improve performance on the Inria Building Dataset, it is also important to con-
sider the development of a more comprehensive dataset that encompasses diverse building
types and global locations. Constructing such a dataset would enable training a rooftop
delineation model capable of accurately delineating rooftops worldwide. In other words, it
is beneficial to construct a dataset that supports training a rooftop delineation model with
the ability to extract various types of buildings, akin to the Segment Anything Model [74]
with respect to segmenting any objects in natural scenes.

Constructing a model with global generalizability requires the construction of a diverse
training dataset comprising images from various regions worldwide. Utilizing the WHU
Building Dataset and the SpaceNet Building Dataset as the foundation for a composite
dataset is a promising solution. These datasets encompass aerial images obtained from
Oceania, North America, Europe, Africa, and South America, providing a good represen-
tation of spatial variability. However, it is evident that the dataset volume would still be
substantial, even without incorporating aerial images from Asia. One interesting area for
future research is exploring effective strategies for creating training data that can enhance
the model’s generalizability. This involves considering how to maximize the dataset’s diver-
sity while managing its size and complexity. Techniques such as data augmentation, trans-
fer learning, and domain adaptation could be employed to augment the existing dataset and
simulate a more comprehensive global representation. Moreover, incorporating additional
datasets from underrepresented regions, such as Asia, would further improve the model’s
ability to generalize across diverse geographies. Finding efficient ways to generate effective
training data, considering factors like data volume, diversity, and representativeness, is an
important avenue for further investigation. By addressing these challenges, researchers can
advance the development of models with enhanced generalizability for rooftop delineation
across a global scale.

Improve computational efficiency: for better performance, as discussed above,
more training data are required, which extends the training time. For instance, training
HigherNet-DST on the AICrowd Building Dataset using 2 Nvidia®RTX 3090 GPUs, even
with the utilization of auto mixed precision, typically requires approximately three weeks.
As model architectures become more complex to achieve better performance, training times
are further prolonged. Therefore, it is essential to explore research directions that aim
to accelerate model training while maintaining high performance in rooftop delineation.
Given limited computational resources, there are several promising solutions to address
this challenge. Firstly, developing or redesigning learning rate schedule strategies can help
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optimize the training process and potentially reduce training time. Secondly, leveraging
transfer learning techniques, such as using pretrained models as initializations, can enable
faster convergence and more efficient training. Additionally, exploring knowledge distil-
lation methods, which involve transferring knowledge from a larger, pretrained model to
a smaller one, can lead to faster training while preserving performance. Efforts should
be made to further investigate these strategies and explore other potential techniques to
improve the computational efficiency of rooftop delineation models. By finding effective
ways to accelerate model training without compromising performance, researchers can en-
hance the practical applicability of deep learning-based rooftop delineation in real-world
scenarios.

Reduce the manual editing for post-processing: in instance segmentation or
semantic segmentation-based methods, manual editing is often necessary to generate the
final building maps. While hypothesis-based methods like Wei et al. [158], and learning-
based methods such as those proposed by Zorzi and Fraundorfer [201] and Zori et al. [200]
have demonstrated their effectiveness, there is a need for improved methods to minimize
the extent of manual editing and ultimately reduce or eliminate human intervention in the
map generation process.

Extraction from off-nadir imagery: in building footprints or rooftops mapping,
it is commonly assumed that images are ortho-imagery or ortho-rectified, implying that
the rooftops in the images align precisely with the building footprints or have minimal
deviations. However, this is not true in general. The issue for high buildings is more
obvious and severe. Recent studies [150, 166] and the proposed HigherNet-DST have
introduced offset prediction as one of the tasks in rooftop delineation, resulting in noticeable
performance improvements. However, there are still gaps that need to be addressed in order
to further enhance the performance, particularly when dealing with off-nadir imagery.

3D building reconstruction: 3D building models present more comprehensive infor-
mation compared to rooftops or building footprints in the previously mentioned applica-
tions. Previous research has explored various approaches for generating height information
from single-view imagery with shadow information and other auxiliary data [116, 104], or
by utilizing multi-view imagery to create stereo pair imagery and employing photogram-
metry methods for 3D building model generation [173]. However, these methods often re-
quire specialized expertise and may rely on digital surface models (DSMs) or DSM-derived
datasets to estimate height information. With the development of LiDAR technology,
LiDAR data have become more accessible, providing effective data for 3D building re-
construction. LiDAR can be used to generate DSMs or normalized DSMs (nDSMs) for
image-based reconstruction methods. It can also be directly used to generate 3D building
models with rich spectral information. To address noise and data inconsistency issues in
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LiDAR data, the fusion of images and LiDAR data has been explored for 3D building
model reconstruction [152]. Research focusing on fully leveraging LiDAR data for more
accurate and comprehensive 3D building model reconstruction holds significant interest
and potential utility.
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Dánel Sánchez-Tarragó, Sarah Vluymans, Francisco Herrera, Sebastián Ventura,
Rafael Bello, et al. Multiple instance learning. Springer, 2016.

[57] Yuanduo Hong, Huihui Pan, Weichao Sun, and Yisong Jia. Deep dual-resolution
networks for real-time and accurate semantic segmentation of road scenes. arXiv
preprint arXiv:2101.06085, 2021.

[58] Cheng-Chun Hsu, Kuang-Jui Hsu, Chung-Chi Tsai, Yen-Yu Lin, and Yung-Yu
Chuang. Weakly supervised instance segmentation using the bounding box tight-
ness prior. Proceedings of the 33th International Conference on Neural Information
Processing Systems (NeurIPS), 32, 2019.

[59] Jianfeng Huang, Xinchang Zhang, Qinchuan Xin, Ying Sun, and Pengcheng Zhang.
Automatic building extraction from high-resolution aerial images and LiDAR data
using gated residual refinement network. ISPRS Journal of Photogrammetry and
Remote Sensing, 151:91–105, 2019.

[60] Xin Huang and Liangpei Zhang. Morphological building/shadow index for building
extraction from high-resolution imagery over urban areas. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, 5(1):161–172, 2011.

[61] Xin Huang and Liangpei Zhang. A multidirectional and multiscale morphological
index for automatic building extraction from multispectral geoeye-1 imagery. Pho-
togrammetric Engineering & Remote Sensing, 77(7):721–732, 2011.

[62] Andres Huertas and Ramakant Nevatia. Detecting buildings in aerial images. Com-
puter Vision, Graphics, and Image Processing, 41(2):131–152, 1988.

[63] Jordi Inglada. Automatic recognition of man-made objects in high resolution optical
remote sensing images by SVM classification of geometric image features. ISPRS
Journal of Photogrammetry and Remote Sensing, 62(3):236–248, 2007.

102



[64] R Bruce Irvin and David M McKeown. Methods for exploiting the relationship be-
tween buildings and their shadows in aerial imagery. IEEE Transactions on Systems,
Man, and Cybernetics, 19(6):1564–1575, 1989.

[65] Mohammad Izadi and Parvaneh Saeedi. Three-dimensional polygonal building model
estimation from single satellite images. IEEE Transactions on Geoscience and Re-
mote Sensing, 50(6):2254–2272, 2011.

[66] Shunping Ji, Shiqing Wei, and Meng Lu. Fully convolutional networks for multi-
source building extraction from an open aerial and satellite imagery data set. IEEE
Transactions on Geoscience and Remote Sensing, 57(1):574–586, 2018.

[67] Brian Johnson and Zhixiao Xie. Classifying a high resolution image of an urban
area using super-object information. ISPRS Journal of Photogrammetry and Remote
Sensing, 83:40–49, 2013.

[68] Konstantinos Karantzalos and Nikos Paragios. Recognition-driven two-dimensional
competing priors toward automatic and accurate building detection. IEEE Transac-
tions on Geoscience and Remote Sensing, 47(1):133–144, 2008.

[69] Michael Kass, Andrew Witkin, and Demetri Terzopoulos. Snakes: Active contour
models. International Journal of Computer Vision, 1(4):321–331, 1988.

[70] Antonis Katartzis and Hichem Sahli. A stochastic framework for the identification
of building rooftops using a single remote sensing image. IEEE Transactions on
Geoscience and Remote Sensing, 46(1):259–271, 2007.

[71] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Accurate image super-resolution
using very deep convolutional networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 1646–1654, 2016.

[72] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Deeply-recursive convolutional
network for image super-resolution. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 1637–1645, 2016.

[73] Taejung Kim and Jan-Peter Muller. Development of a graph-based approach for
building detection. Image and Vision Computing, 17(1):3–14, 1999.

[74] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura
Gustafson, Tete Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr
Dollár, and Ross B. Girshick. Segment anything. arXiv preprint arXiv:2304.02643,
2023.

103



[75] Santhana Krishnamachari and Rama Chellappa. Delineating buildings by grouping
lines with mrfs. IEEE Transactions on Image Processing, 5(1):164–168, 1996.

[76] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification
with deep convolutional neural networks. Communications of the ACM, 60:84 – 90,
2012.

[77] Wei-Sheng Lai, Jia-Bin Huang, Narendra Ahuja, and Ming-Hsuan Yang. Deep lapla-
cian pyramid networks for fast and accurate super-resolution. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 624–
632, 2017.

[78] John Lambert, Zhuang Liu, Ozan Sener, James Hays, and Vladlen Koltun. MSeg:
A composite dataset for multi-domain semantic segmentation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages
2879–2888, 2020.

[79] Shiyi Lan, Zhiding Yu, Christopher Choy, Subhashree Radhakrishnan, Guilin Liu,
Yuke Zhu, Larry S Davis, and Anima Anandkumar. DiscoBox: Weakly supervised
instance segmentation and semantic correspondence from box supervision. In Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision (ICCV),
pages 3406–3416, 2021.

[80] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunningham,
Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang,
and Wenzhe Shi. Photo-realistic single image super-resolution using a generative
adversarial network. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 4681–4690, 2017.

[81] D Scott Lee, Jie Shan, and James S Bethel. Class-guided building extraction from
Ikonos imagery. Photogrammetric Engineering & Remote Sensing, 69(2):143–150,
2003.

[82] Dong Hyuk Lee, Kyoung Mu Lee, and Sang Uk Lee. Fusion of lidar and imagery
for reliable building extraction. Photogrammetric Engineering & Remote Sensing,
74(2):215–225, 2008.

[83] Jungbeom Lee, Eunji Kim, and Sungroh Yoon. Anti-adversarially manipulated at-
tributions for weakly and semi-supervised semantic segmentation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 4071–4080, 2021.

104



[84] Jungbeom Lee, Jihun Yi, Chaehun Shin, and Sungroh Yoon. BBAM: Bounding box
attribution map for weakly supervised semantic and instance segmentation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 2643–2652, 2021.

[85] Sébastien Lefèvre, Jonathan Weber, and David Sheeren. Automatic building extrac-
tion in VHR images using advanced morphological operators. In 2007 Urban Remote
Sensing Joint Event, pages 1–5. IEEE, 2007.

[86] Er Li, John Femiani, Shibiao Xu, Xiaopeng Zhang, and Peter Wonka. Robust rooftop
extraction from visible band images using higher order CRF. IEEE Transactions on
Geoscience and Remote Sensing, 53(8):4483–4495, 2015.

[87] Weijia Li, Wenqian Zhao, Huaping Zhong, Conghui He, and Dahua Lin. Joint
semantic-geometric learning for polygonal building segmentation. In Proceedings
of the AAAI Conference on Artificial Intelligence (AAAI), pages 1958–1965, 2021.

[88] Wentong Li, Wenyu Liu, Jianke Zhu, Miaomiao Cui, Risheng Yu, Xiansheng Hua,
and Lei Zhang. Box2Mask: Box-supervised instance segmentation via level-set evo-
lution. arXiv preprint arXiv:2212.01579, 2022.

[89] Yanghao Li, Yuntao Chen, Naiyan Wang, and Zhaoxiang Zhang. Scale-aware tri-
dent networks for object detection. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), pages 6054–6063, 2019.
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Appendix A

Evaluation Metrics used for
Evaluating Deep Learning Models

A.1 Pixel-level Metrics

The metrics derived from the confusion matrix may not be suitable for evaluating rooftop
delineation methods using high spatial and very high spatial resolution imagery [134]. Pre-
vious studies have commonly used metrics such as IoU, mIoU, Precision, Recall, F1-score,
and accuracy to evaluate the performance of rooftop delineation methods. Specifically, IoU
represents the percentage of the overlap between ground truth and the prediction output.
mIoU represents the average of positive objects IoU and negative objects IoU. Precision
indicates how many predicted positive objects are correct compared to all predicted pos-
itive objects. Recall shows how many positive objects are predicted accurately compared
to all positive objects from the ground truth. F1 score or F1 measure is the harmonic
mean of precision and recall. The accuracy or average accuracy calculates the percentage
of correctly classified pixels or other objects in all images. All these metrics are defined as
follows.

IoU =
TP

TP + FP + FN
(A.1)

mIoU =
1

2

(
TP

TP + FP + FN
+

TN

TN + FP + FN

)
(A.2)

Precision =
TP

TP + FP
(A.3)
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Recall =
TP

TP + FN
(A.4)

F1 =
2TP

2TP + FP + FN
(A.5)

Pixel (Overall)Accuracy =
TP + TN

TP + FP + TN + FN
(A.6)

where, TP indicates true positive, denoting a correct prediction of the positive class (pres-
ence of building); FP refers to False Positive which occurs when the model predicts positive
class as negative class; FN stands for false negative (FN) in which the model classified posi-
tive class into negative class; and TN represents true negative in which the model predicted
the negative class correctly in the output.

A.2 Object-level Metrics

The currently used object-level metrics were originally designed to evaluate methods for
object detection and instance segmentation using the MS COCO dataset [93]. These
metrics include Average Precision (AP) and Average Recall (AR) calculated at different
IoU thresholds and for different object sizes. The subscripts following “AP” or “AR”
indicate the averaged AP or AR value at specific IoU thresholds, such as 0.50, 0.55, 0.60,
0.65, 0.70, 0.75, 0.80, 0.85, 0.90 and 0.95. For example, AP75 and AP50 represent the AP
value at IoU thresholds of 0.75 and 0.50, respectively. The metrics are further divided into
categories based on the size of the objects: AP-Small (APs), AP-Medium (APm), AP-Large
(APL), AR-Small (ARs), AR-Medium (ARm) and AR-Large (ARL). These categories
represent the average AP or AR values for small, medium and large-sized buildings, defined
based on their pixel sizes, with small buildings being smaller than 32×32 pixels, medium
buildings between 32×32 and 96×96, and large buildings larger than 96×96 pixels. To
illustrate the calculation of AP75, a fictitious example is provided below.

With an IoU threshold of 0.75, 10 masks are detected for 6 objects. These masks can
be sorted based on the predicted scores, ranging from the highest score to the lowest score.
By varying the classification score threshold, the precision and recall can be recalculated
at the object level, as shown in Table A.1. During the calculation, the predicted masks
that overlap with the ground truth by more than 75% (IoU > 0.75) and have classification
scores higher than the threshold are considered as “building”, while the rest are labeled
as “Other”. Based on the values in Table A.1, the precision-recall curve can be plotted as
shown in Figure A.1.
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Table A.1: Precision and recall along with different prediction scores

Scores Rank Ground Truth Precision Recall

1 Building 1.00 0.17

2 Building 0.50 0.17

3 Building 0.67 0.33

4 Building 0.75 0.50

5 Building 0.60 0.50

6 Building 0.50 0.50

7 Building 0.57 0.67

8 Building 0.63 0.83

9 Building 0.67 1.00

10 Other 0.60 1.00
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Figure A.1: The precision-recall curve of the fictious example
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AP75 is calculated as the area under to the precision-recall curve. In the experiment,
the equations used by the Pascal Visual Object Classes (VOC) 2010 [39] is adopted, which
can be calculated as follows:

AP =
∑

1≤i≤n

(ri − ri−1) · pi (A.7)

where ri and pi are recall and precision values under a certain classification score. r1,rn is
the smallest and the largest recall value. If two precision values match one recall value, the
larger precision will be preserved for the curve. In the example, AP75 = (1−0.83)×0.67+
(0.83−0.67)×0.63+(0.67−0.50)×0.57+(0.5−0.333)×0.75+(0.33−0.17)×0.67 = 0.55.
The AP values with other IoU thresholds can be calculated in the same way.
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Junior, and Jonathan Li. Fusion of hyperspectral-multispectral images joining spatial-
spectral dual-dictionary and structured sparse low-rank representation. International Jour-
nal of Applied Earth Observation and Geoinformation, 104:102570, 2021.

Nan Chen, Lichun Sui, Biao Zhang, Hongjie He, José Marcato Junior, and Jonathan Li.
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Appendix C

Waiver of Copyright

Elsevier, as the publisher of the two manuscripts fully or partly adopted in Chapter 2,
Chapter 3 and Chapter 4 allow the reuse of published papers in the thesis without formal
permissions. Thus, the waivers of copyright from Elsevier are achieved by the following
statement:

Policy Regarding Thesis/Dissertation Reuse in Elsevier Copyright: “Authors can use their
articles, in full or in part, for a wide range of scholarly, non-commercial purposes in a thesis
or dissertation (provided that this is not to be published commercially).”
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