
Enhancing Recommender Systems
with Causal Inference Methodologies

by

Huiqing Huang

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Data Science

Waterloo, Ontario, Canada, 2023

© Huiqing Huang 2023



Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

In the current era of data deluge, recommender systems (RSs) are widely recognized
as one of the most effective tools for information filtering. However, traditional RSs are
founded on associational relationships among variables rather than causality, meaning they
are unable to determine which factors actually affect user preference. In addition, the
algorithm of conventional RS continues to recommend similar items to users, resulting in
user aesthetic fatigue and ultimately the loss of customer sources. Moreover, the generation
of recommendations could be biased by the confounding effect, leading to inaccurate results.
To tackle this series of challenges, causal inference for recommender systems (CI for RSs)
has emerged as a new area of study. In this paper, we present four different propensity score
estimation methods, namely hierarchical Poisson factorization (HPF), logistic regression,
non-negative matrix factorization (NMF), and neural networks (NNs), and five causal effect
estimation methods, namely linear regression, inverse probability weighting (IPW), zero-
inflated Poisson (ZIP) regression, zero-inflated Negative Binomial (ZINB) regression, and
doubly robust (DR) estimation. Additionally, we propose a new algorithm for parameter
estimation based on the concept of alternating gradient descent (AGD). Regarding the
study’s reliability and precision, it will be evaluated on two distinct categories of datasets.
Our research demonstrates that the causal RS can correctly infer causality from user and
item characteristics to the final rating with an accuracy of 96%. Moreover, according to the
de-confounded and de-biased recommendations, ratings can be increased by an average of
1.6 points (out of 4) for the Yahoo! R3 dataset and 1.2 points (out of 2) for the Restaurant
and Consumer data.

iii



Acknowledgements

First, I would like to express my deep gratitude to my supervisor, Dr. Yeying Zhu, for
her constant support and guidance throughout the duration of this research endeavour.
Her profound expertise and perceptive perspectives were indispensable to the creation and
completion of this work.

Dr. Liqun Diao and Dr. Alex Stringer have my sincere appreciation. Their willingness
to engage with my research and provide constructive feedback during the reading of my
thesis and participation in my defense contributed substantially to the improvement and
precision of my research.

I am indebted to my family for their unending encouragement and support. Throughout
the difficult phases of this research voyage, their confidence in my abilities and unwavering
patience have been my inspiration.

Last but not least, I would like to express my gratitude to all those who have contributed
to this research in one way or another, particularly Jinglan and Bob, who provided sta-
tistical and mathematical support, and their inspirations were essential to the completion
of this study. I am sincerely appreciative of your support and encouragement throughout
this research process.

iv



Dedication

This is dedicated to my family for their unending love and support.

v



Table of Contents

Author’s Declaration ii

Abstract iii

Acknowledgements iv

Dedication v

List of Figures viii

List of Tables ix

1 Introduction 1

1.1 Recommender Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Causal Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Causal Inference for Recommender Systems . . . . . . . . . . . . . . . . . 5

1.3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.3 About this paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Data 9

2.1 About the Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Data Issue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

vi



3 Methodologies 12

3.1 Propensity Scores Estimation Methods . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.2 Non-Negative Matrix Factorization . . . . . . . . . . . . . . . . . . 13

3.1.3 Hierarchical Poisson Factorization . . . . . . . . . . . . . . . . . . . 14

3.1.4 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Causal Effect Estimation Methods . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.2 Zero-Inflated Poisson Regression . . . . . . . . . . . . . . . . . . . . 18

3.2.3 Zero-Inflated Negative Binomial Regression . . . . . . . . . . . . . . 20

3.2.4 Inverse Probability Weighting . . . . . . . . . . . . . . . . . . . . . 20

3.2.5 Doubly Robust Estimation . . . . . . . . . . . . . . . . . . . . . . . 21

4 Data Analysis 22

4.1 Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Method Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Conclusion, Limitation, and Future Direction 29

5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2 Limitation and Future Direction . . . . . . . . . . . . . . . . . . . . . . . . 30

References 31

vii



List of Figures

1.1 Three types of DAGs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Two types of adjustments . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1 Neural Network for Propensity Score Estimation . . . . . . . . . . . . . . . 17

viii



List of Tables

4.1 Accuracy and Mean Squared Error for Exposure Model . . . . . . . . . . . 26

4.2 Accuracy and Mean Squared Error for Outcome Model . . . . . . . . . . . 27

4.3 Average Treatment Effect and Standard Error . . . . . . . . . . . . . . . . 28

ix



Chapter 1

Introduction

1.1 Recommender Systems

People are surrounded by immense amounts of information, whether essential or not, as a
result of the proliferation of digital content, and the quantity is increasing exponentially
every day, resulting in data overload. Furthermore, users must independently determine
what information they need, which is a time-consuming and unreliable process that relies
on human judgment. Tapestry [Goldberg et al., 1992], the first recommender system, was
introduced in 1992 in an effort to save consumers’ time and assist them in locating pertinent
and high-quality content more efficiently. Tapestry’s concept is to enable users to annotate
documents and messages with various tags so that they can use these annotations to filter
the information. This technique is also known as collaborative filtering because the tags
of users (i.e., collaborators) can be used to assist others in filtering information.

In addition to filtering the data, RSs have been designed to make recommendations
based on the users’ interests and preferences (Schafer et al., 1999), thereby enhancing the
users’ experience by displaying what they believe the users will find enthralling. This
feature is beneficial to e-commerce [Schafer et al., 1999] because it can increase users’
engagement and retention, therefore catalyzing the behaviour flow (from viewing content
to completing purchases). It can also aid users in discovering new products in which they
may be interested but have not found on their own, thus increasing the companies’ revenue
and profitability. Since the introduction of the first commercial RS [Goldberg et al., 1992],
a growing number of platforms, including Netflix [Gomez-Uribe and Hunt, 2016], YouTube
[Davidson et al., 2010], and Amazon [Linden et al., 2003], have incorporated RSs into their
commercial mechanisms.
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Since the end of the 1990s, algorithms to improve RSs have been modified, and seven
main types can be briefly categorized: collaborative filtering [Goldberg et al., 1992],
content-based filtering [Van Meteren and Van Someren, 2000], hybrid filtering [Thorat
et al., 2015], knowledge-based filtering [Burke, 2000], demographic-based filtering [Paz-
zani, 1999], association rule learning [Garćıa et al., 2009], and deep learning-based RSs
[Zhang et al., 2019], with countless algorithms in total. All of these algorithms, however,
have fatal defects, such as Bias, Low Diversity, and Low Interpretability.

Bias: There are various types of biases, including selection bias, exposure bias, popu-
larity bias, conformity bias, and position bias [Xu et al., 2023b]. Selection bias, also known
as missing not at random (MNAR) data, indicates that feedback cannot accurately reflect
the items’ quality due to user selections. Popularity bias occurs because RSs prefer to rec-
ommend high-rating products [Wei et al., 2021]. Exposure bias is caused by the fact that
consumers are not exposed to products randomly, as they are typically shown alongside
comparable products based on the classic RSs procedure. Consequently, diverse product
categories are not recommended. Conformity bias refers to the tendency of individuals to
adopt the behavior of others, even if it contradicts their own. Position bias is a result of
people tending to choose the items in a prominent position when presented with a rec-
ommendation list. These biases will impair the outcomes of the RSs [Xu et al., 2023b],
diminishing customer satisfaction and company revenue.

Low Diversity: RSs generate recommendations based on correlations or association-
based algorithms; therefore, they will recommend comparable items based on what users
have expressed an interest in. In conjunction with the influence of popularity bias, the
scenario of displaying similar products will continue to deteriorate, ultimately resulting in
customers losing interest and abandoning the platform.

Low interpretability: Since RSs do not examine the causal relationship between
user activity and item preferences [Yao et al., 2021], we do not know if promoting the
present item will enhance a user’s experience. Instead, we only know that there are certain
connections between the item and the user’s happiness, and it is possible that another
unidentified factor affects the user’s experience [Sato, 2021]. If we can identify this cause,
we can recommend what the user actually enjoys, thereby increasing the user’s satisfaction.
In order to investigate the causal relationship and make objective recommendations, causal
inference is necessary.
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1.2 Causal Inference

Causal inference (CI) is a statistical and machine-learning technique that aims to estab-
lish the causal relationship among variables, and it plays a crucial role in numerous fields,
including statistics, epidemiology, economics, and social science [Imbens and Rubin, 2015].
There are two widely-used causal frameworks: structural causal models (SCMs) and Ru-
bin’s causal models (RCMs).

SCMs [Pearl, 2009b] can convert causality between variables into a causal graph, define
structural functions, infer causality, and assess the causal effect of interventions or coun-
terfactuals. Typically, a causal graph is represented by a directed acyclic graph (DAG),
and Figure 1.1 illustrates three types of graphs. Suppose we have two variables X and
Y ; according to the Chain structure, X influences Y via a mediator Z. Variable Z in the
Fork structure simultaneously influences variables X and Y ; this is known as a confounder.
Unobserved Z can result in a miscalculation of the correlation between X and Y due to
the confounding effect, which can introduce bias into the standard RSs [Xu et al., 2023a].
Given the preceding example from Low Interpretability, RS would incorrectly assert
that X and Y have a causal relationship, when in fact, Z is the true common cause of
X and Y . In the last structure, the Collider structure, both X and Y affect the collider
variable Z, resulting in a collision effect; hence, X and Y are now connected despite being
marginally independent [Zhu et al., 2023].

Figure 1.1: Three types of DAGs

Once we have a DAG and its corresponding structural functions, we can estimate the
causal effects of interventions or counterfactuals. In both SCMs and RCMs, intervention
and counterfactuals are fundamental concepts. Intervention is how we will intervene in a
treatment variable X with a do-calculus, do(X=x) [Pearl, 2009b]. In Figure 1.1-Fork, for
instance, if we execute a do-operation on variable X, i.e., assign X the value x, the path
from Z to X will be eliminated, allowing us to determine the causality between Z and
Y . Counterfactual, as its name suggests, is the opposite of a factual; it is the result of
assigning a different value to a treatment variable from what is observed in actuality.
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RCMs or Potential Outcome Framework [Rubin, 1974] is a well-known CI framework
that is logically comparable to SCMs [Pearl, 2009a], while it can estimate the causal effect
without sketching a causal DAG. RCM requires the notion of potential outcomes, which
can be denoted as Y t

i , the value of outcome variable Y if individual i receives treatment
T with value t. In the case of a binary treatment, we are interested in estimating the
individual treatment effect (ITE) Y 1

i - Y 0
i . However, measuring ITE is impractical due

to the fact that only one treatment can be administered to a person, resulting in the
observation of only one potential outcome. Therefore, researchers extended ITE into an
average treatment effect (ATE), expressed as E[Y 1

i − Y 0
i ], and then the causal effect could

be estimated.

Yet, the prerequisite for correctly estimating causal impact is a randomized experiment,
in which individuals are randomly assigned to various treatments such that there are no
confounders. Unfortunately, this is not typical in the real world, and we must discover a way
to de-confound. In the ideal situation in which we observe every confounding variable, we
can intervene with do-operation by assigning the same value to each confounding variable
for everyone, resulting in identical characteristics for all individuals. After the intervention,
there is no difference between people, so we can randomly designate them to the control
or treatment group. This method is referred to as Backdoor Adjustment [Pearl, 2009b]
(Figure 1.2-Left).

Nevertheless, there are a tremendous number of variables in our lives, and most of the
time we cannot observe all confounders [Xu et al., 2023a]. Here, Frontdoor Adjustment can
be of assistance (Figure 1.2-Right). Frontdoor Adjustment states that if we can identify a
collection of variables Z such that all paths from X to Y pass through Z and there is no
unblocked backdoor path between Z and Y , we can infer the causality from X to Y and
eliminate unobserved confounding variables [Pearl, 1995].

In an observational study where the treatment is not randomized, we can mimic a
randomized experiment by estimating propensity scores using the confounding variables.
Then, based on the propensity scores, the distribution of the observed covariates will be
similar between treated and untreated objects [Austin, 2011]. Given observed covariates
or confounders, the propensity score represents the probability that an individual will
receive the treatment [Rosenbaum and Rubin, 1983]. “Evidence of residual bias in the
propensity score is evidence of prospective bias in estimated treatment effects”, Rosenbaum
and Rubin [1983] thereby establishing the propensity score as an essential component of
causal inference. In addition to combining the information of a vector of covariates into
a scalar number, the propensity score estimation method is also a dimension reduction
technique. After obtaining the propensity score e(X), the causal effect can be estimated
using inverse probability weighting (IPW) [Hirano et al., 2003], which gives a weight 1

e(X)
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Left: All confounding variables have been
accounted for; the backdoor between X and
Y has been closed off, and the effect of X on
Y can be estimated.

Right: Not all confounders can be observed;
instead, observe certain covariates Z such
that no backdoor paths between X and Z
and every backdoor path between Z and Y
are blocked by X, then the effect of X on Y
can still be estimated.

Figure 1.2: Two types of adjustments

for a subject in the treatment group and 1
1−e(X)

for a subject in the control group.

1.3 Causal Inference for Recommender Systems

1.3.1 Background

In CI for RSs, we aim to determine whether a user will like the item we recommend; in
other words, if we present this product to a customer, will he or she like it? The question
may appear congruent with the concept of conventional RS; however, let us consider the
following example.

Assume Lisa is a movie enthusiast. In her rating history, she has given positive ratings
to dozens of comedies but only two action films; these are the only two action movies she
has watched so far, whereas she has watched a significant amount of comedies. One of
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the possible explanations is that it is difficult for her to have access to action films in her
region. The traditional RSs will unquestionably introduce her to comedic films, but due to
a lack of knowledge, they may overlook action films. Nonetheless, a causal RS can extract
this insignificant characteristic from a large dataset. Hence, in contrast to a conventional
RS, we attempt to show consumers an item that piques their attention, but only after we
reveal it. Based on Lisa’s past behaviour, we can assume that if we show her action movies,
she will enjoy them, leading to a good score. If CI can demonstrate the aforementioned
theory and expose Lisa to more action films, then, in comparison to a traditional RS, ours
can accommodate user preferences more effectively.

In a causal RS, the treatment variable is whether we should expose an item to a user
or not, and the outcome variable is the item’s rating. Conducting a randomized trial
in this context is prohibitively expensive and infeasible since we are unable to randomly
display products to clients, as this would have a negative impact on the user experience
and platform utility. Consequently, causal effects can only be estimated through the use
of observational data. However, numerous biases will be produced due to the obscurity of
the treatment assignment mechanism, as discussed in Bias. Therefore, we must de-bias or
de-confound the observed data before determining the causal effect, and there are several
techniques have been proposed for accomplishing unbiased learning for CI in RS.

1.3.2 Literature Review

CI for RSs has been investigated in order to evaluate biased data objectively. Typically,
researchers use a two-phase learning strategy, wherein they first fit a model to estimate a
propensity score and then use an unbiased estimator to estimate the causal effect [Li et al.,
2022, Liang et al., 2016, Schnabel et al., 2016, Wang et al., 2020]. Schnabel et al. [2016]
focuses on proposing an empirical risk minimization (ERM) to address selection bias, i.e.,
for a visited item, the user prefers to rate it if they like it; otherwise, they will not provide
feedback, resulting in the data MNAR problem. This will not be the case in this study,
as we presume that users will continue to provide ratings as long as they are exposed
to the items. Sato et al. [2020] is similar to Schnabel et al. [2016], which also addresses
selection bias and conducts ERM by the unbiased estimator, while using gradient descent
to update the unbiased learning, as we will do in our study. However, Sato et al. [2020]
used stochastic gradient descent (SGD), whereas we implemented a new algorithm based
on the concept of alternating gradient descent (AGD).

Unlike Liang et al. [2016], Wang et al. [2020], Li et al. [2022] emphasized the absence of
data. As previously discussed, users have limited access to items, resulting in missing data.
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In addition, due to data biases such as popularity bias and exposure bias, individuals can
only view a subset of items, leading to data MNAR. In order to overcome this issue, Li et al.
[2022] introduces the imputation model. Moreover, instead of pre-selecting and training an
algorithm, the authors choose to simultaneously update the propensity, imputation, and
outcome models.

Liang et al. [2016] and Wang et al. [2020] are the closest to our research, and both
studies fit hierarchical Poisson factorization (HPF) as an exposure model and concentrate
on exposure bias, as explained in this article. In the meantime, Liang et al. [2016] attempts
to adapt the exposure data to a popularity model. After obtaining the propensity score
from the exposure model, the former uses non-negative matrix factorization (NMF) to
estimate the causal effect, whereas the latter uses a linear regression model for the task.
Combining the concepts of linear regression and NMF, we instead use the NMF as the
exposure model. We will continue to use linear regression as the outcome model, but we will
incorporate the proposed AGD algorithm to enhance computing efficiency. Nevertheless,
rather than declaring the causal effect by indicating how much the rating will grow, both
publications only demonstrate an improvement in rating prediction accuracy.

There are also a number of review articles on CI for RSs [Gao et al., 2022, Xu et al.,
2023b, Zhu et al., 2023]; each of these articles comprehensively explained the concept of
CI for RSs and introduced all potential types of bias and their associated remedies, which
can be evaluated in the future.

1.3.3 About this paper

This study attempts to answer the question, “What is the rating difference if a user was
exposed to an item v.s. if a user was not exposed to an item.” using music rating data
from the Yahoo! R3 dataset [Marlin, 2008, Marlin and Zemel, 2009] and Restaurant &
Consumer Data from the UC Irvine Machine Learning (UCI ML) Repository’s [Medelln
and Serna, 2012]. Both are observational data; as previously mentioned, observational
data lack of randomization in the mechanism for treatment assignment; in this study, we
will focus on exposure bias. Similar to Li et al. [2022], we will also include MNAR in the
study; however, we will treat missing data as zero and transform the missing data problem
into a sparse data problem [Wang et al., 2020].

There will be two learning phases. To de-confound an exposure model, we will initially
investigate four distinct algorithms: HPF, logistic regression, NMF, and neural networks
(NNs). In order to analyze the causal effect, five additional outcome models will be fitted:

7



linear regression, IPW, zero-inflated Poisson (ZIP) regression, zero-inflated Negative Bino-
mial (ZINB) regression, and doubly robust (DR) estimation. Even though DR estimation
and NNs are common causal inference techniques, they have not yet been implemented for
recommender systems. To estimate the parameters when estimating the causal effect, we
will also provide a new algorithm based on the concept of AGD. Furthermore, different
from the existing papers, in order to better illustrate the causal effect, we will not only
present rating prediction accuracy, mean square(d) error (MSE), and standard error (SE)
of the estimators, but also estimate by how much the average rating will increase as a
result of the application of ATE, demonstrating the advantage of de-biased learning.

Chapter 2 will provide additional information about the datasets, while Chapter 3 will
clarify the research assumptions and methodologies. In Chapter 4, we will describe the
study process and interpret the findings. And finally, in Chapter 5, we will present a
conclusion, limitation, and future direction.
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Chapter 2

Data

2.1 About the Data

In this investigation, we will utilize two distinct datasets: music rating data (Dataset I)
and restaurant rating data (Dataset II). Furthermore, to better apply an advanced de-
confounded method, a NN model, we will expand Dataset II into Dataset III.

Dataset I [Marlin, 2008, Marlin and Zemel, 2009] is a large-scale dataset of song ratings
acquired from the Yahoo! R3 website; it contains 1000 users, 15400 songs, and 365704
rating records. However, to cut down the computing cost, we will randomly reduce the
number of users and the number of songs to 10% of the original. Following the reduction,
Dataset I consists of 100 users, 1540 songs, and 2828 rating records.

Dataset II is a dataset obtained from a prototype recommender system downloaded
from the UCI ML Repository. There are 138 users, 130 restaurants, and 1161 ratings on
this site. Besides, there are 21 variables to characterize a user, such as personality and
dress preferences, and 26 variables to describe each restaurant, such as open hours and
location. In order to facilitate causality analysis and better match the user preferences
with the restaurant attributes, after carefully reviewing the data, we will only preserve 7
user features and 8 restaurant features. There are 7 standard variables in both datasets:
id, smoke (user: whether is a smoker; restaurant: whether there is a smoking area), alcohol
(user: whether will drink alcohol or not; restaurant: whether will provide alcohol or not),
cuisine type, parking (user: transportation type; restaurant: whether there is a parking
lot), payment types, and price (user: budget level; restaurant: price level); and the restau-
rant contains an additional feature to describe whether it will provide other services or
not. Except for id, all of the attributes listed above are categorical.
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Dataset III is an expanded version of Dataset II; it comprises all features from the
users and restaurant datasets, interactions (except for id) between them, rating scores,
and exposure status, for a total of 59 features with 13800 rows. Then, we randomly
divided Dataset III into a 7:3 training and testing dataset.

2.2 Data Issue

When reviewing data, we discover that there are two data issues. First, there exists missing
data. When data are missing, we will lose some information about the item, resulting in
biased and erroneous conclusions, which further erodes statistical power and affects the
validity and applicability of the research. If we assert causation based on biased data,
the causal RSs will be wrong, proposing unsatisfactory products and creating consumer
attrition. Hence, missing data is a pressing issue that must be prioritized in CI for RSs.

Since Dataset I only contains user id, song id, and rating, it is a simple dataset; there-
fore, we are not concerned about data loss. Although the number of rated cells in a
user-item rating matrix is less than 2%, we consider this to be another data problem,
Sparse Data. However, data loss occurs in user and restaurant information in Dataset II:
for user data, out of 138 users, there are 3 missing values for the smoke variable, 7 miss-
ing values for the transportation and the budget variables, and 5 missing values for the
payment variable; for restaurant data, out of 130 restaurants, there are 45 missing values
for the cuisine variable and 16 missing values again for the payment variable. Multiple
imputations (MI) will be used to address the issue; specifics will be detailed in Section 4.1.
Again, we will treat absent rating data in Dataset II as a problem involving sparse data.

After imputing the datasets, CI can be applied to determine the causal relationship.
First, we will estimate the propensity score by fitting an exposure model, and then we will
investigate the causal effect based on the de-confounded data. One of the traditional tech-
niques for estimating propensity scores is logistic regression. Besides, because our exposure
variable is binary, we can apply NMF by merely assuming a linear relationship between
the exposure data and the user and item characteristics. However, when attempting to
calculate the propensity scores, we must also consider the issue of Sparse Data.

Based on the concept of classic RSs, comparable things will continue to appear, making
it impossible for a user to view all products. And since only a small fraction of items can
be interacted with, few ratings will be recorded. To better distinguish whether a user has
already listened to a song or visited a restaurant, we assume that un-visited items have a
rating of 0 and visited items have a rating beginning with 0, resulting in a large number
of 0s in the user-item rating matrix, which we refer to as Sparse Data [Gao et al., 2022].
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A vast number of zeros will have a significant impact on the results, raising concerns
about inefficient processing and inaccurate statistical analysis. Fortunately, HPF can al-
leviate this issue by extracting sparse factors and downplaying the significance of zero. In
addition, we will employ NNs to investigate the undetected interaction between users and
objects.

After estimating the propensity score, we can use it to examine the causal influence
by fitting the outcome model to the data. IPW is a standard estimation approach for
causal effects. In addition, we will experiment with linear regression based on the concept
of Wang et al. [2020]. Recall that customers can only view a subset of products; since we
believe un-visited items have a rating of 0, we suffer from the Sparse Data problem once
more. We will apply ZIP regression and ZINB regression to overcome this hurdle.
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Chapter 3

Methodologies

The followings are the assumptions and notations that will be applied throughout the
study:

Assumption 1 (Stable Unit Treatment Value Assumption, SUTVA) : There is
no communication between users, indicating that they are independent of one another.

Assumption 2 (Positivity) : Each subject has a positive chance of being allocated to
either the treatment group or the control group so that the treatment effect can be estimated.

Assumption 3 : If a user has never seen an item, we presume the rating will be 0; other-
wise, the item may have a rating other than zero. For Datset 1, ratings can be {0,1,2,3,4};
for Dataset II and Dataset III, ratings can be {0,1,2}.

Notation: Consider that there are n users and m items, where a is the exposure data
matrix with dimension n×m, and Y is the rating matrix (dimension n×m for Dataset I
and Dataset II, and (n ×m) x 1 for Dataset III). Then, for u={1,...,n} and i={1,...,m},
aui represents whether user u is exposed to item i, and yui or yui(aui) represents the rating
that item i receives from user u.

The following notations will be introduced for Dataset II and Dataset III only due
to the fact that the restaurant dataset contains more information than the Yahoo! R3
dataset. Given that each user u possesses k features and each item i possesses l features:
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θ is a user information matrix extracted from Dataset II with dimension n × k. µ is an
item information matrix extracted from Dataset II with dimension m× l. M is a matrix
containing all user information and restaurant information with dimension (n×m)× ((k−
1) × (l − 1) + k + l), which contains the rating, the user and restaurant information,
the interactions between them except the id feature, and the exposure status, and it is
extracted from Dataset III with the exception of the exposure column and rating column.

3.1 Propensity Scores Estimation Methods

In this section, we will describe the estimation methods for the propensity scores that
will be used in this study, including logistic regression, non-negative matrix factorization,
hierarchical Poisson factorization, and neural networks. In addition to defining the models
and their coefficients, we will explain why these models will be applied.

3.1.1 Logistic Regression

Logistic regression is one of the classical methods to estimate propensity scores, and its
formula can be written as follows:

logit{e(X)} = XTβ, (3.1)

where for the Yahoo! R3 dataset, X represents the estimated propensity score with di-
mension n×m that is calculated by HPF, which will be explained later. For the restaurant
dataset, X represents M (as explained in Notation) that contains all user and restaurant
information. β is the coefficient matrix. After fitting a logistic regression and obtain β̂ by
maximum likelihood estimation, we can estimate ê(X) by:

ê(X) = expit{XT β̂}.

3.1.2 Non-Negative Matrix Factorization

If we presume that there is a linear relationship between exposure and user and item
characteristics, then the relationship can be expressed as:

a = θ × β × µT + ϵ, ϵ ∼ N(0,Σ), (3.2)
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where θ and µ correspond to a n×k user features matrix and a m× l item features matrix,
respectively. With a is an exposure matrix with n×m dimensions, β is a coefficient matrix
with k × l dimensions.

The fundamental concept of matrix factorization (MF) is to infer user patterns and
item patterns from the rating record, i.e., to decompose the rating matrix into a user
matrix and an item matrix [Koren et al., 2009]. Therefore, given a user matrix and an
item matrix, we should be able to derive a matrix that represents the user’s preference for
the item. From the preceding, we can deduce that a consists of a user matrix θ, an item
matrix µ, an interaction matrix β, and some error terms ϵ. Even though a is a binary
matrix, if a regression is performed on it, â should be a matrix with float numbers, and it
can be considered as a preference matrix: the larger the number, the greater the likelihood
that a user will like an item, and we should expose it. The linear regression problem can
therefore be transformed into an MF problem:

a =⇒ θ × β × µT (3.3)

To obtain β, we can perform a matrix transformation on it. Since θ and µ are full rank
matrices, we can perform a left inverse transformation on θ and right inverse transformation
on µT , then we can estimate β:

β̂ = θ−1 × a× (µT )−1,

where θ−1 is a k × n matrix, (µT )−1 is an m× l matrix, and β̂ is a k × l matrix.

Given β̂, e(X), i.e., â, can be easily estimated:

ê(X) = â = Ê[a|θ,µ] = θ × β̂ × µT .

In this study, since a, θ, and µ are all non-negative matrices, β̂ and ê(X) will also be
non-negative; hence, we are employing non-negative matrix factorization (NMF) [Lee and
Seung, 1999] for estimation.

3.1.3 Hierarchical Poisson Factorization

Hierarchical Poisson factorization (HPF) (or Poisson factorization (PF) in short) [Gopalan
et al., 2015] is an extension of NMF which is a technique that models count data as a
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product of two matrices, while it can model more complex data structures, and its formula
is as follows [Wang et al., 2020]:

aui|πu,λi ∼ Poi(πuλi
T ), ∀u, i, (3.4)

where πu represents the personal characteristic for user u and λi represents the item at-
tributes for item i. Since Dataset I does not contain any information regarding users or
songs, the features of them will be generated at random using a Gamma distribution, fol-

lowing πu
iid∼ Gam(c1, c2) and λi

iid∼ Gam(c3, c4). To simplify, researchers [Wang et al.,
2020, Liang et al., 2016] typically assign πu and λi the same number of features, h; con-
sequently, πu and λi are both h× 1 vectors, leading π will be a n×h user feature matrix,
and λ will be a m× h song feature matrix.

Once we fit the HPF model and estimate the value of πu,λi for u=1,...,n and i=1,...,m,
we can create a substitute confounder â [Wang and Blei, 2019], i.e., ê(X):

ê(X) = â = Ê[πuλi
T |a],

where â is a n×m matrix.

3.1.4 Neural Networks

Other than using regression, researchers explore more innovative methods to adapt to
more complex data structures [Westreich et al., 2010]. Considering the data complexity
and computational efficiency in this study, we choose neural networks (NNs) as another
estimation method (Figure 3.1) for the estimation of propensity scores. NN is a machine
learning algorithm, and it aims to imitate how the human brain works [Clothiaux and
Bachmann, 1994]. It consists of a large number of interconnected nodes, known as neurons,
organized into layers. There are three types of layers: input layer, for receiving input;
output layer, for returning results; and hidden layer, all layers that exist between the input
and output layers.

The value of each unit in a layer except the input layer will consist of the units from
the last layer. Therefore, after the input layer catches the input, we will apply activation
functions to generate the input for the first neuron in the next layer, where each unit in
the input layer will be assigned different weights, and we will repeat this step until we
calculate all neurons for the next layer. Then we will follow the same procedure until we
reach the output layer, which will return the final result for the model.
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From Figure 3.1, we can see that there are three layers for our model with only one
hidden layer. We will first pass all possible covariates as the input, which means the
number of neurons in the input layer equals the number of covariates; then, we will use an
activation function on them to create the neurons in the hidden layer. After that, we will
apply another activation function to generate the unit in the output layer, which will be
returned as a final result of the model, i.e, the predicted propensity score when given user
and restaurant characteristics.

zi = w0i + w1ix1 + w2ix2 + ...+ wnixn, ∀i ∈ {1, ..., k} (3.5)

ê(X) = w′
0 + w′

1z1 + w′
2z2 + ...+ w′

kzk (3.6)

3.2 Causal Effect Estimation Methods

In this section, we will explain the models we use to estimate causal effects, such as lin-
ear regression, zero-inflated Poisson regression, zero-inflated Negative Binomial regression,
inverse probability weighting, and doubly robust estimation; not only the detailed expla-
nation of the principle but also the clarification of how we will adjust the models to suit
the data better.

3.2.1 Linear Regression

In linear regression, ATE can be easily demonstrated as:

Y = ATE × a+ γ × e(X) + ϵ, ϵ ∼ N(0,Σ), (3.7)

where Y is the rating matrix; a is the exposure matrix; and γ is the scalar adjustment of
e(X), or, how much the propensity score will contribute to the ratings.

To align with Dataset I, the model will be reformulated as the following [Wang et al.,
2020]:

yui(aui) = θu
Tβi × aui + γu × e(X)ui + ϵui, ϵui ∼ N(0, σ2), (3.8)

where γu has the same definition as γ in (3.7), but it’s a user-specific coefficient, so different
users have a different adjustment value; e(X)ui is the propensity score for user u to item
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Figure 3.1: Neural Network for Propensity Score Estimation
Xi, ∀i = {1, ..., n}: represents the covariates as the inputs of the model

Zi, ∀i = {1, ..., k}: represents the neurons in Hidden layer, k ̸= n
ê(X): represents the estimated propensity score

w1i, or w
primei: represents the weight of the neurons

i; θu
Tβi is the product representing an expected ITE that is specific to every combination

of every user u and every item i.

γu,θu, and βi are approximated via maximizing a posterior (MAP) estimation in inves-
tigation [Wang et al., 2020]. Alternatively, we propose a new algorithm based on the idea
of alternating gradient descent (AGD) [Jain et al., 2013]. AGD is an iterative optimization
procedure that can alternatively update several parameters simultaneously. Compared
with standard gradient descent (SGD), AGD can provide better convergence properties,
especially in high-dimensional problems, resulting in more compatible solutions than MAP
as θu and βi can be multi-dimensional, and it can save more computational workload.
Furthermore, instead of updating parameters by a given learning rate value, we will pro-
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vide a list of learning rates, and the algorithm will decide the one that will optimize the
accuracy the best during each iteration after the comparison.

We first convert Y = θTβ × a + γ × e(X) + ϵ, ϵ ∼ N(0,Σ) into an optimization
problem:

min
θu,βi,γu

n∑
u=1

m∑
i=1

||yui(aui)− θu
Tβi × aui − γu × e(X)ui||2,

and we can derive the updated function for each parameter from it. Then at iteration t:

θu
(t) ← θu

(t−1) − lr × 2×
m∑
i=1

(yui(aui)− θu
(t−1)Tβi

(t−1) × aui − γ(t−1)
u ×

e(X)ui) · (−aui × βi
(t−1)),

(3.9)

βi
(t) ← βi

(t−1) − lr × 2×
n∑

u=1

(yui(aui)− θu
(t)Tβi

(t−1) × aui − γ(t−1)
u ×

e(X)ui) · (−aui × θu
(t)T ),

(3.10)

γ(t)
u ← γ(t−1)

u − lr × 2×
m∑
i=1

(yui(aui)− (−e(X)ui)× (θu
(t)Tβi

(t))× aui−

γ(t−1)
u × e(X)ui),

(3.11)

where e(X)ui represents the propensity score for the user u and item i pair, and lr repre-
sents the learning rate; pseudocode is demonstrated in Algorithm 1.

3.2.2 Zero-Inflated Poisson Regression

As we informed previously, exposure data will mainly consist of 0, meaning the rating data
will also include a high proportion of 0, which may impact the causal effect analysis. To
better predict a user’s rating when he or she is exposed to an item, researchers introduced
zero-inflated Poisson (ZIP) regression [Lambert, 1992], which can manage the situation
that we have more 0 than expected. ZIP contains two steps: Step 1 is to distinguish
always 0 (i.e., an item that should not be exposed to a user) and not-always 0 (i.e., an
item that should be exposed to a user) from data that are 0 by a logistic regression. Then
in Step 2 we can consider data that are not-always 0 and not 0 as a new dataset, and we
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Algorithm 1 Alternating Gradient Descent
Input: None
Output: User latent factors θ1:U , item latent factors β1:I , and adjustment factors

γ1:U

Fit the outcome model to compute the rating
Randomly initialize θ1:U ,β1:I ,γ1:U

LEARNING RATE = [1e-2, 1e-3, 1e-4]
while not converged do
for lr ∈ LEARNING RATE do
for u← 1 to U do
Update user factor θ

(t)
lr,u (3.9)

end for
end for
compare θ

(t)
lr for each lr, choose the one reaches the best approximation as θ(t)

for lr ∈ LEARNING RATE do
for i← 1 to I do
Update item factor β

(t)
lr,i (3.10)

end for
end for
compare β

(t)
lr for each lr, choose the one reaches the best approximation as β(t)

for lr ∈ LEARNING RATE do
for u← 1 to U do
Update scale factor γ

(t)
lr,u (3.11)

end for
end for
compare γ

(t)
lr for each lr, choose the one reaches the best approximation as γ(t)

end while
return θ1:U ,β1:I ,γ1:U
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assume it follows a Poisson distribution since the higher the rating, we should expect the
smaller the count, and we can write it as [Hall, 2000]:

Yui =

{
0, with probability pui + (1− pui)× e−λui

k, with probability (1− pui)× e−λuiλk
ui

k!

,

where pui is the probability that user u gives item i a rating of 0 (i.e., will not show item
i to user u); λui is a parameter for the Poisson distribution; k is a score that user u will
rate item i.

3.2.3 Zero-Inflated Negative Binomial Regression

Zero-inflated Negative Binomial (ZINB) regression is slightly different from ZIP: it consid-
ers that each observation has a probability of occurring or not occurring. In our study, it
means each item has a probability of exposing or not exposing to a user; and if we should
expose the item, it will approximate a Negative Binomial (NB) distribution [Yusuf et al.,
2017]:

Yui

{
= 0, with probability pui

∼ NB(λui, k), with probability (1− pui)
,

where pui is the probability that an item i will expose to user u; λui is a parameter for
the NB distribution; k is the sparse factor or the over-dispersion parameter for the NB
distribution.

3.2.4 Inverse Probability Weighting

Inverse probability weighting (IPW) [Robins et al., 2000] is an approach to de-bias, more
specifically, to adjust the selection bias in observational studies, and aims to assign different
weights to different subjects. After calculating the propensity score e(X), IPW will assign

1
e(X)

as the weight for the treatment group (i.e., users who are exposed to the item) and
1

1−e(X)
as the weight for the control group (i.e., users those are not exposed to the item)

[Hernan and Robins, 2023, Chesnaye et al., 2021], then ATE can be evaluated by:

ÂTE =
1

n
×

n∑
i=1

[ai × Yi

ê(X i)
− (1− ai)× Yi

1− ê(X i)

]
, (3.12)

20



where Yi is the observed outcome of treatment ai, and ê(X i) is the corresponding estimated
propensity score.

3.2.5 Doubly Robust Estimation

In observational studies, treatments are not randomly assigned; to simulate a randomized
trial so that we can infer causality, researchers typically estimate propensity scores and
then investigate causal relationships based on these scores. This procedure is heavily
reliant on the accuracy of the propensity score estimation method and the causal effect
evaluation method; to correctly determine the causal effect, the underlying assumptions of
these algorithms must be precise. Nonetheless, the doubly robust (DR) estimator [Robins
et al., 1994] can correctly estimate causal effects if either of the two model assumptions
holds, but not both, making it a flexible and reliable statistical method for estimating
ATE. DR incorporates the models for the outcome variable and the exposure variable, and
it can be written as follows [Funk et al., 2011]:

ÂTE =
1

n
×

n∑
i=1

[ai × Yi − (ai − ê(X i))× m̂1(X i)

ê(X i)

− (1− ai)× Yi − (ai − ê(X i))× m̂0(X i)

1− ê(X i)

]
,

(3.13)

where Yi is the observed outcome for subject i of treatment ai; X i is the vector of covariates;
ê(.) is the estimator of propensity score; and m̂t(.) is the estimator of the outcome model
for treatment group t = 1 and control group t = 0, respectively.

However, this investigation will interpret the ATE based on the estimated exposure
coefficient value rather than the above equation. A linear regression will be utilized as the
outcome model, which can be expressed as follows:

Y = β0 + ATE × a+ β ×X + ϵ, ϵ ∼ N(0,Σ), (3.14)

where β0 is the intercept value; ATE is the coefficient of exposure matrix a indicating the
average rating change when the exposure increases from 0 to 1; β is the coefficient vector
representing how the covariates can affect the final rating; and X is a matrix containing
all covariates information, which is M mentioned in Notations. The above model will be
fitted with the propensity score-based weights. We will assign weight 1

e(X)
to the treatment

group and weight 1
1−e(X)

to the control group, in which e(X) can be estimated by NMF,

logistic regression, and NNs; and again, we will conduct 99% quantile trim on weights to
prevent outlier effect.
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Chapter 4

Data Analysis

4.1 Data Processing

As discussed in Section 2, the restaurant dataset contains missing data, which can lead
to biased estimates and decreased statistical power, as well as an inability to accurately
depict the relationship among user characteristics, restaurant characteristics, and ratings,
thereby preventing the inference of causality. Therefore, this obstacle must be eliminated
prior to the implementation of CI.

Before addressing the missing data issue, it is necessary to identify the type of missing
data. There are three different types: missing completely at random (MCAR), missing at
random (MAR), and missing not at random (MNAR). In this study, we simply assume
that the probability of missingness is dependent on the observed variables and conclude
that it is a MAR type [Rubin, 1976].

After identifying the type of missing data, the issue can be resolved in one of two ways:
either by removing incomplete records or by replacing them with new values. Since the
absent data for each feature could be contained in a separate row, deleting all rows simul-
taneously would result in a greater data loss than would otherwise be the case. In addition,
there is a data gap of at least 1

3
for the cuisine variable in the restaurant information. If

the relevant rows are eliminated immediately, the data will be reduced to less than 2
3
of

its original size, jeopardizing the accuracy and dependability of this study. As a result,
imputation will be used to address the issue of missing data so that as much data as feasible
is preserved.

In this investigation, MI [Schafer, 1999] will be used to fill in the missing values. This
will result in the production of multiple plausible imputations for the missing value, which

22



will be analyzed and combined to produce estimates that account as precisely as possible
for the uncertainty associated with the missing data. As Dataset II is the foundation for
Dataset III, it is unnecessary to revisit the issue of missing data for Dataset III. Now that
the datasets are complete, we can investigate the causality.

4.2 Method Application

A randomized trial is necessary for establishing causality because it allows for the random
presentation of treatments to participants. However, this is expensive in terms of RSs in
general, and we can only conduct observational studies. Therefore, we must eliminate any
bias from the observed data so that each user has the same probability of receiving the
treatment, also known as propensity scores.

Logistic regression, one of the conventional methods for estimating propensity scores,
can simply restrict the output to values between 0 and 1. In addition, assuming there is
a linear relationship between the exposure data and the user and item information, the
coefficient can be reformulated as a combination of exposure data, user characteristics, and
item characteristics. According to the structure of Dataset II, all explanatory variables are
presented in metrics, indicating that the estimated coefficient is also a matrix that can be
decomposed into multiple other matrices. Therefore, NMF will be utilized to calculate the
propensity scores.

Since the exposure data is binary, it is straightforward to assume the exposure variable
follows a Bernoulli distribution. However, when applied to sparse data, the zeros will have a
substantial impact on the estimates. On the other hand, few rating data are available, and
insufficient data will also result in a squandering of computer resources and a reduction
in precision. Due to the aforementioned issues, the Bernoulli distribution will not be
considered. However, this issue can be resolved by HPF’s capabilities, which include the
ability to detect sparse patterns and minimize the impact of zero.

Wang et al. [2020] uses HPF to construct a substitute confounder by estimating the
user and item attributes, and then uses Backdoor Adjustment to compute the causal effect
on the de-confounded data. This method is effective for evaluating the causal effects of the
majority of methodologies; though, its application to IPW will result in complications. In
IPW, a weight of 1

e(X)
will be allocated to the treatment group, and 1

1−e(X)
will be assigned

to the control group; examining the estimated values of the substitute confounder reveals
numbers greater than 1, resulting in a negative weight for the control group. To ensure that
the propensity scores remain strictly within the range of 0 to 1, the true propensity scores
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must be calculated using substitute confounders that are generated by HPF. In order to
expedite the process, logistic regression will be utilized once more.

In addition, a NN model, designated [Westreich et al., 2010] capable of identifying latent
patterns in complex data, will be implemented. This model will aid in documenting the
relationships between users and objects in order to recommend products that match the
preferences of users. According to the definition of a NN model, all conceivable covariates
must be included in its input. In addition, unlike other propensity score estimation methods
that can pass user information, restaurant information, and user-restaurant rating matrix
separately, a NN can only be furnished with a single dataset, so a new dataset containing all
of the information is requisite. Consequently, Dataset III is constructed to accommodate
this circumstance.

After de-confounding the data and calculating the propensity scores, it is possible to
estimate the causal effect. IPW is a conventional method for determining causal effects.
Nonetheless, since the weight is related to the reciprocal of the propensity scores, if the
value is too large or too small, one divided by the probability will result in an excessive
number, which can have a disproportionate impact on the estimated treatment effect.
To minimize the effect of these outlier observations, we will perform weight trimming by
setting the 99% quantile as the upper limit. Linear regression will also be tested based on
the study of Wang et al. [2020]. Wang et al. [2020] attempts to calculate the coefficients
using the MAP estimation procedure prior to fitting the outcome model. In this study,
however, we introduce a new algorithm inspired by AGD that will modify each variable one
at a time using an alternating learning rate. This means that instead of providing a single
value for the learning rate, a list of prospective values will be given, and the algorithm will
determine which one optimizes accuracy the best before updating the variable accordingly.
After the first variable has been modified, the second variable will be computed based
on the amended one. Since this algorithm is implemented specifically for estimating the
coefficients of linear regression, complete details are provided in subsubsection 3.2.1.

Given that our outcome data will also include a considerable number of zeros, the
issue of sparse data resurfaces. As a solution, we will utilize ZIP and ZINB, which are
appropriate for situations involving an excessive number of zeros. They can distinguish
between always 0 and not-always 0; this means that in the current rating record, for those
ratings that are zero, ZIP and ZINB can determine which user-item interaction has the
potential to have a rating greater than zero (items that should be exposed to users, i.e.,
users will like the items) and which user-item interaction will always be zero (items that
should not be exposed to users, i.e., users will not be interested in the items).

Due to the fact that the precision of the exposure model, also known as the estima-
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tion methods for propensity scores, will affect the precision of the outcome model, also
known as the causal effect estimation methods, which means that incorrectly estimat-
ing the propensity score will damage the causal effect conclusion, DR estimation will be
applied to mitigate bias and enhance the effectiveness of estimating treatment effects in
observational studies.

Because of the disparity between the two datasets, HPF and logistic regression applied
on HPF (Logit-HPF) will be tested on the music dataset, whereas NMF, logistic regression
(Logit), and NN will be tested on the other. All of the causal effect estimation methods
will be applied to both datasets, with the exception of DR, which will be tested only on the
restaurant dataset due to the lack of additional information. Furthermore, recall that both
HPF and Logit-HPF will yield estimated propensity scores for Dataset I, and the objective
of executing a logistic regression, which is a uniquely parameterized propensity function,
on the substitute confounder is to obtain values that are between 0 and 1. According to the
definition of Assumption 3 in Imai and Van Dyk [2004], the results from HPF and Logit-
HPF are logically equivalent; consequently, causal effect estimation methodologies can be
applied to either propensity score result and conclude the same causality. To expedite the
process, IPW will be only evaluated using the propensity scores generated by Logit-HPF,
while the remaining algorithms will be evaluated using the substitute confounder generated
by HPF.

4.3 Results

This section will present the results and evaluate each algorithm’s performance. In the
‘Dataset’ column of the following tables, ‘Music’ corresponds to Dataset I. However, for
‘Restaurant’, if the exposure model is NMF, Dataset II is used because NMF decomposes
the rating matrix into a user info matrix and an item info matrix, whereas Dataset II
consists of both matrices; otherwise, Dataset III is used, which contains all information in
a single matrix. All values shown in the table will be rounded to four digits.

The accuracy and MSE for each estimation method of the propensity score are displayed
in Table 4.1. To compute the accuracy, we will first round the estimated propensity score
to obtain the predicted exposure status, followed by the comparison of the predicted status
with the actual status. Mean square(d) error (MSE) is a traditional method for evaluating
the efficacy of a model. It is computed by averaging the squared differences between the
predicted values and the actual values, which are the estimated propensity score and the
true exposure; a lower MSE indicates that the predicted values are closer to the actual
values, thereby demonstrating a more reliable model. For the ‘Music’ data, HPF can
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Dataset Method Accuracy MSE

Music
HPF 96.5182% 0.0371

Logit-HPF 98.5221% 0.0146

Restaurant
NMF 93.5284% 0.0604
Logit 93.7384% 0.0592
NN 93.7386% 0.0587

Table 4.1: Accuracy and Mean Squared Error for Exposure Model

HPF stands for hierarchical Poisson factorization, Logit for logistic regression, Logit-HPF for implementing
Logit after HPF, NMF for non-negative matrix factorization, and NN for neural network.

attain an accuracy of 96.5%. As previously discussed, HPF attempts to discover the latent
attributes of users and items from the rating record in order to make future predictions and
recommendations. However, the inner product of users and items features may be greater
than 1, leading to a negative weight in IPW. To solve this issue, we will apply a logistic
regression on the substitute confounder generated by HPF to obtain the propensity scores
that are strictly between 0 and 1, denoted in the table as ‘Logit-HPF’, which can accomplish
approximately 3% better accuracy and higher stability with lower MSE. For ‘Restaurant’,
NMF achieves the lowest accuracy, while NN achieves the highest, because NMF can only
conduct simple matrix calculations, whereas NN can discover hidden patterns and then
predict the probability. Despite having the highest accuracy, NN also achieves the lowest
MSE, indicating that it is closest to the actual value than other models, and it is the most
accurate predictor of the outcome.

Accuracy and MSE are reported for each causal effect estimation algorithm in Table 4.2,
and the corresponding average treatment effect and SE are described in Table 4.3. Similar
to the evaluation of exposure models, the actual ratings are categorical with five levels,
whereas the predicted ratings are continuous, then the accuracy will be determined by
comparing the rounded predictions with the actual ones. In order to calculate the MSE,
we will again just simply average the squared errors between the predictions and the true
value. In Table 4.3, for ‘Music’, the predicted ratings generated by IPW based on the
estimated propensity score produced by ‘Logit-HPF’ still provide the highest accuracy,
up to 98.4%; however, the precision for each outcome model does not differ significantly,
while others provide only half the MSE as compared to IPW’s. A possible explanation is
that, HPF and logistic regression are two propensity score estimation approaches that are
employed sequentially to process the estimated propensity score ’Logit-HPF’ that will be
utilized to assess the causal effect. To attain a higher accuracy during the second propensity
score calculation, the logistic regression may capture more patterns, even those that are
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Dataset Exposure Model Outcome Model Accuracy MSE

Music
HPF

Linear 98.3766% 0.0472
ZIP 98.3788% 0.0469
ZINB 98.3788% 0.0469

Logit-HPF IPW 98.4827% 0.1626

Restaurant

NMF
DR 96.0981% 0.0422

Non-DR 96.0981% 0.0363

Logit
DR 96.1724% 0.0458

Non-DR 96.0981% 0.0363

NN
DR 96.0981% 0.0448

Non-DR 96.0981% 0.0363

Table 4.2: Accuracy and Mean Squared Error for Outcome Model

DR stands for doubly robust estimation, and Non-DR refers to all other methods besides DR, such as
linear regression, inverse probability weighting, zero-inflated Poisson regression, and zero-inflated Negative
Binomial regression.

not necessary. Table 1 shows that this was indeed the case. Recall that a propensity score
estimation is also a dimension reduction strategy because it may combine multiple features
into a single scalar number, which will inevitably fit on the extraneous patterns, resulting
in overfitting. Since we round the predictions first and then compare them with the actual
ratings, this will not be a big problem when we try to determine the accuracy. However,
the error continues to aggregate when we calculate MSE, which will directly compare the
predictions and the actual ratings, resulting in a high MSE while high accuracy as well.

For ‘Restaurant’, all ‘Non-DR’ methods, i.e., linear regression, IPW, ZIP, and ZINB,
provide comparable accuracy and MSE, regardless of the type of exposure models; this
occurs because the predictions are close to one another, with absolute values no greater
than 0.03, resulting in the same rounded values, and thus the same accuracy. ‘Logit-DR’,
which refers to logistic regression as the exposure model and DR as the outcome model,
achieves the highest accuracy with 96.1724% and the greatest MSE. ‘NMF-DR’ and ‘NN-
DR’ yield the same accuracy as ‘Non-DR’ but with inferior generalization.

Table 4.3 presents the estimated average treatment effect (represented by ‘ATE’) and
SE for causal effect estimation methods. The values in the ‘ATE’ represent the average
change in rating if we assign another treatment value. For example, the 1.6141 in the
first line of the table stands for if we decide to expose an item to a user (treatment value
changes from 0 to 1), on average, we should anticipate a 1.6141 increase in rating, which
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Dataset Exposure Model Outcome Model ATE SE Pr(¿| t |)

Music
HPF Linear 1.6141 0.0050 ≈ 0

Logit-HPF IPW 1.6006 0.0263 ≈ 0

Restaurant

NMF
Linear 1.1963 0.0072 ≈ 0
IPW 1.1891 0.0099 ≈ 0
DR 1.1951 0.0092 ≈ 0

Logit
Linear 1.1975 0.0072 ≈ 0
IPW 1.1973 0.0096 ≈ 0
DR 1.1976 0.0095 ≈ 0

NN
Linear 1.1965 0.0072 ≈ 0
IPW 1.1960 0.0097 ≈ 0
DR 1.1985 0.0098 ≈ 0

Table 4.3: Average Treatment Effect and Standard Error

means we predict the user will rate 2 (out of 4, a categorical variable) as we will only show
unseen items and we assume them with rating 0 before recommending. Overall, the causal
RS could have a positive impact on the ‘Music’ data, increasing the average rating by 1.6
(out of 4); additionally, Pr(> |t|) is close to zero, indicating the significance of the exposure
variable. For ‘Restaurant’, the table illustrates that if an item is exposed to a user, the
average rating should grow by approximately 1.2 (out of 2), with DR showing the most
significant effect most of the time and linear regression having the second highest ATE and
the lowest SE. In contrast, IPW exhibits the smallest causal effect and largest SE across
all categories of the exposure model. Despite this, they all emphasize the importance of
exposure variables. Notice that results for zero-inflated models are excluded from the table
as a consequence of the dataset’s complete separation. This study aims to investigate the
causal effect of exposure, i.e., the change in rating if an item is exposed to a user; thus,
exposure is a crucial explanatory variable. On the assumption that an unseen object can
only have a rating of 0 and a visited item can have a rating between 0 to 2, there will be a
complete separation, as exposure 0 only corresponds to rating 0. Therefore, a zero-inflated
model cannot determine a rating other than zero for the control group when applied,
leading it to be unable to distinguish between always 0 and not always 0, resulting in a
convergence issue. Consequently, all SE and p-values for models with zero inflation are
omitted from the table.
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Chapter 5

Conclusion, Limitation, and Future
Direction

5.1 Conclusion

In this paper, we investigated different algorithms to remove the confounding effect of the
CI for RSs. We first used logistic regression and NMF, these two classical methods, to
estimate the propensity scores. Meanwhile, we built a NN to better capture the patterns
between users and items. For the sake of Sparse Data, we also implemented HPF to de-
emphasize the effects of excessive zeros in the data. According to our data, if a user’s
rating is zero, they either do not like the item or will like it if exposed to it; however, if the
rating is not zero, the user is intrigued by the item. HPF benefits from non-zero ratings to
discover latent factors to allow user-item pairs to be more similar, as opposed to allowing
the pair to be less similar based on the zero rating, allowing it to struggle less with zero
data and increase computing efficiency.

After we estimate the propensity scores, we can proceed with the estimation of the
causal effect. In addition to the traditional approach of IPW, based on the idea of Wang
et al. [2020], we also attempted linear regression. But, instead of using MAP estimation
as they stated in their study, we proposed a new update algorithm based on the concept
of AGD, which can update variables alternatively with an unfixed learning rate. Since
Sparse Data also exists in our outcome model, to retrieve the sparse factor and increase
the accuracy of statistical analysis, we applied ZIP And ZINB, which are more suitable
to use when there are over-abundant zeros. Our research shows that, after de-biasing the
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data, the causal RS results lead to an average of 1.6 points (out of 4) higher in the user-item
rating for the Yahoo! R3 dataset, and 1.2 points (out of 2) higher for the restaurant data.

5.2 Limitation and Future Direction

The present study has limitations that must be acknowledged cautiously. First, despite
using two datasets and zero-inflated models, which are designed to handle data with an
excess of zero counts, to maintain validity and reliability, our models are still affected by
over-dispersion issues, indicating excessively high accuracy, as a result of the presence of too
many zeros (i.e., missing rating value) in our data. The second limitation derives from the
assumptions made regarding the missing value; we consider the missing data to be MAR.
Nonetheless, the sensitive character of certain information may indicate that the missing
category is MNAR. People who smoke, for instance, prefer not to answer the smoking
question because they are aware that smoking is an unhealthy habit. Therefore, MI may
not be able to resolve this issue effectively. Finally, the causal effect concludes that, for the
restaurant data, if we recommend an item to a user, it may receive an average rating score
of 1.2 points higher (out of 2) than if it were not recommended. However, this prediction
remains unvalidated due to the absence of actual feedback to corroborate the predicted
outcome, and the practical implications of these results should be interpreted with caution
until additional empirical evidence can be gathered to support these assertions.

In the future, in order to handle sparse data, we could reapply this de-confounding
framework to a dataset with more rating data and then employ zero-inflated models once
more. Concerning the missing data type, we could provide a sensitivity analysis and addi-
tional techniques, including pattern-mixture models and informative missingness methods.
Lastly, the unvalidated prediction could be addressed by launching an updated causal RS
with a built-in feedback collection mechanism to collect actual user responses, thereby pro-
viding empirical evidence to support the model’s predictive capabilities and enhancing the
results’ credibility and practical utility. In addition, although we tested nine algorithms
in this study, the field of machine learning is constantly evolving, and more advanced and
unbiased methods are continuously arising and can be evaluated based on survey papers
from Gao et al. [2022], Xu et al. [2023b], Zhu et al. [2023].
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