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Abstract

Recent breakthroughs in Deep Learning (DL) have led to high demand for executing
inferences in interactive services such as ChatGPT and GitHub Copilot. However, these
interactive services require low-latency inferences, which can only be met with GPUs and
result in exorbitant operating costs. For instance, ChatGPT reportedly requires millions of
U.S. dollars in cloud GPUs to serve its 1+ million users. A potential solution to meet low-
latency requirements with acceptable costs is to use serverless platforms. These platforms
automatically scale resources to meet user demands. However, current serverless systems
have long cold starts which worsen with larger DL models and lead to poor performance
during bursts of requests. Meanwhile, the demand for larger and larger DL models make
it more challenging to deliver an acceptable user experience cost-effectively. While current
systems over-provision GPUs to address this issue, they incur high costs in idle resources
which greatly reduces the benefit of using a serverless platform.

In this thesis, we introduce Flashpoint, a GPU-based serverless platform that serves
DL inferences with low latencies. Flashpoint achieves this by reducing cold start durations,
especially for large DL models, making serverless computing feasible for latency-sensitive
DL workloads. To reduce cold start durations, Flashpoint reduces download times by
sourcing the DL model data from within the compute cluster rather than slow cloud storage.
Additionally, Flashpoint minimizes in-cluster network congestion from redundant packet
transfers of the same DL model to multiple machines with multicasting. Finally, Flashpoint
also reduces cold start durations by automatically partitioning models and deploying them
in parallel on multiple machines. The reduced cold start durations achieved by Flashpoint
enable the platform to scale resource allocations elastically and complete requests with low
latencies without over-provisioning expensive GPU resources.

We perform large-scale data center simulations that were parameterized with measure-
ments our prototype implementations. We evaluate the system using six state-of-the-art
DL models ranging from 499 MB to 11 GB in size. We also measure the performance of the
system in representative real-world traces from Twitter and Microsoft Azure. Our results in
the full-scale simulations show that Flashpoint achieves a mean of 93.51% shorter average
cold start durations, leading to 75.42% and 66.90% respective reductions in average and
99th percentile end-to-end request latencies across the DL models with the same amount
of resources. These results show that Flashpoint boosts the performance of serving DL
inferences on a serverless platform without increasing costs.
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Chapter 1

Introduction

Deep Learning (DL) products such as ChatGPT and GitHub Copilot have grown rapidly
in demand in recent years. ChatGPT is a large language model with 175 billion parameters
that provides an interactive and sophisticated chat experience on a wide range of subjects.
Meanwhile, GitHub Copilot is a natural language model that autocompletes code, saving
time for programmers. It is a challenge to operate these products cost-effectively with
reasonable performance due to three important properties. First, these interactive products
require low-latency responses; otherwise, users would not use them. For example, [106]
indicates, as of 2022, that 90% of inferences across 600 machine learning models require
response times below 200ms for services including chatbots, advertisements, and fraud
detection. Second, these products experience dynamic demand due to being user-facing
products, requiring the system to dynamically adapt to the load. Third, the operating
costs to execute DL inferences is high. For ChatGPT, it has been reported to cost an
estimated 3 million U.S. dollars per month [36] to perform the inferences for its 1+ million
monthly active users.

Due to these properties, operating these services on a serverless platform is a promising
approach. Serverless computing, as a paradigm, aims to automatically and cost-effectively
meet the scaling needs of users while reducing costs compared to dedicated on-site hosting.
To reduce costs and serve multiple customers, service providers use a shared compute
infrastructure and allocate resources to a user’s workload as needed. However, this dynamic
allocation leads to the so-called “cold start” problem, which occurs when the demand for
a program exceeds the service capacity of resources that are currently allocated. Requests
must then wait until new replicas of the program are created on other nodes in the system.

With GPUs, the cold start problem is exacerbated and presents a barrier to the adoption
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of serverless for applications such as ChatGPT. This is because the cold starts cause long
wait times that exceed the low-latency requirements in interactive DL products. The fol-
lowing factors amplify the problem. First, the size of DL models (in the order of megabytes
to gigabytes) are often larger than general-purpose serverless code (within kilobytes to
megabytes), causing longer cold starts. Second, short execution time requirements in DL
inferences make the relative magnitude of cold starts larger and more undesirable compared
to CPU-based systems. Third, while general-purpose systems can over-provision CPU re-
sources at low cost to mask cold starts, GPUs are required to meet low-latency deadlines
and are both limited and expensive. This makes over-provisioning costly for serving DL
workloads.

While related works address parts of the cold start problem for general-purpose func-
tions, they do not address the cold start problem in GPUs. For example, current systems
such as [87] aim to reduce cold start frequencies through adaptive keep-alive windows.
Other works that explore reducing cold start durations rely on memory sharing and creat-
ing new processes on the same machine [58, 25] which does not scale out service capacity
for a DL model. Meanwhile, current commercial GPU-enabled serverless platforms such as
AWS SageMaker [14] and state-of-the-art research [90] opt for over-provisioning despite its
high cost. For instance, SageMaker recommends over-provisioning with a factor of 2 [111].

In this thesis, we introduce Flashpoint, serverless platform that achieves sub-second
cold starts using model partitioning, locality-awareness, and network multicasting. These
techniques enable cost-effective, low-latency elastic scaling of serverless DL serving appli-
cations. Flashpoint solves three keys problems regarding GPU cold starts:

1. Long process initialization durations from large DL model sizes.

2. Long cold start durations from downloading the DL model from cloud storage.

3. Network congestion during concurrent DL model downloads.

To tackle long process initialization durations, Flashpoint utilizes automated model
partitioning to split the model into sequential parts and load them in parallel on separate
GPUs. This reduces cold start durations through parallelism, thus achieving sub-second
cold starts. Model partitioning trades off additional network latencies during inferences.
Flashpoint’s partitioning algorithm adaptively optimizes the partitioning scheme to mini-
mize the average end-to-end request latencies of requests served by the partitioned model
based on the expected number of requests. Without model partitioning, the duration of
cold starts are bottlenecked by the duration loading the model after downloading it. These
cold start durations are orders of magnitude greater than execution times, leading to wait
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times greater than acceptable interactive latencies [111, 77] (i.e. 1,000 milliseconds). While
model partitioning improves the cold start durations by parallelizing the loading process
on separate GPUs, the download process will be limited by the network bottleneck to cloud
storage, often resulting in long wait times. This is the case when the compute cluster is
separated from the cloud storage through the public internet. The network bottleneck
from cloud storage to the compute cluster is an issue observed in our experiments and
production systems [99, 113, 51]. Thus, another method on top of model partitioning is
needed to address long cold start durations.

To reduce the duration of long cold start downloads from cloud storage, Flashpoint uses
locality and remote memory pooling to create a compute-colocated distributed registry.
This registry is then used to store and download the DL model across host machines,
reducing the duration for downloads compared to cloud storage at no additional cost. To
create this distributed registry, we first identify opportunities in unused memory space
and network bandwidth in a serverless deployment. Then, by transparently changing the
download source of a DL model, Flashpoint optimizes this critical path of downloading from
cloud storage by prioritizing the download of the DL model from nearby host machines.
In the best case, it completely negates the need for downloading the DL model for a GPU
if it is available in the local host machine from previously being downloaded for another
GPU. Flashpoint also maximizes the benefit of shorter paths using a Pareto-optimal greedy
algorithm that fully captures the benefit of local downloads while maximizing the chance
of future shortest-path cold starts. In comparison, current systems incur long cold start
durations by downloading from AWS S3, PyTorch Hub, a remote NFS server, of an Elastic
Container Registry [58, 21, 14].

In addition to reducing long cold start downloads from cloud storage, Flashpoint also
tackles the problem of network congestion from concurrent DL model downloads. These
downloads occur concurrently due to the autoscaler requesting multiple new replicas to
be instantiated at the same time when reacting to changes in the workload. Flashpoint
uses network-aware autoscaling where it utilizes multicasting protocols to minimize redun-
dant packet transfers. In particular, concurrent cold starts cause congestion in network
links when source host machines send the DL model to multiple recipient host machines.
In Flashpoint, the network congestion problem is addressed through the application of
reliable multicasting using the protocol of TCP chaining at the application level. This
technique addresses redundant network transfers during simultaneous cold starts across
host machines while guaranteeing completion of DL model transfers. In comparison, cur-
rent multicasting protocols use UDP and is designed for broadcasting real-time messages
using group addresses. Because of using the UDP as the underlying protocol, this form of
multicasting requires additional logic for guaranteeing complete data transfers. The issue
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of network congestion becomes more prevalent when transferring DL model data from one
host machine to multiple others. In this case, the bottleneck is in the uplink bandwidth
of the source host machine. Reliable multicasting then minimizes network congestion and
transfers data swiftly for multiple cold starts. Flashpoint also optimizes redundant DL
model transfers to the same host machine through download sharing using a lightweight
DL model manager in the host machines. These techniques, overall, bound tail cold start
durations to the duration of host-to-host transfers without incurring additional costs as
compared to cloud storage download times.

We evaluate the techniques in Flashpoint using experiments on our testbed, as well
as a physical deployment on a Lambda Labs test bed. To further evaluate Flashpoint,
we then use large-scale data center simulations parameterized with measurements from
our testbed. In the experiments, we use six state-of-the-art DL models in the Natural
Language Processing (NLP) domain with sizes ranging from 499 MB to 11 GB and real-
world workload traces from Twitter [96] and Microsoft Azure [87]. We show that our
approach achieves a 93.51% mean reduction in cold start durations and up to 75.42% and
66.90% respective reductions in average and 99th percentile end-to-end latencies compared
to baselines while keeping the resource usage of techniques to be within 5% of the baseline
for fairness.

To summarize, our contributions in this work are the following:

• We characterize the problem of cold starts in GPU-based DL inference serving sys-
tems.

• We design Flashpoint, a serverless framework that enables low-latency inference serv-
ing by reducing cold start durations. Flashpoint does this through the following.
First, it divides cold start durations using automated model partitioning. Second, it
exploits underutilized memory and network resources through remote memory pool-
ing. Third, it minimizes GPU cold start durations through a compute-colocated
distributed registry, multicasting, and download sharing.

• We evaluate Flashpoint through large-scale data center simulations parameterized
with our physical testbed measurements. Our results show that, for the Twitter
workload, Flashpoint achieves a 93.51% reduction in average cold start durations,
75.42% reduction in average end-to-end request latencies, and 66.90% reduction in
99th percentile end-to-end request latencies on average across DL models compared
to baselines while keeping resource usage within 5% of the baseline.
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Chapter 2

Background and Related Work

This chapter describes background and related work regarding serverless computing, deep
learning inferences on serverless, and the three optimization aspects developed in Flash-
point: model partitioning, locality-aware autoscaling, and network multicasting.

2.1 Serverless Computing

Serverless computing is a computing paradigm that has emerged in recent years as a re-
sponse to the growing demand for scalable, flexible, and cost-effective computing solutions.
In a serverless environment, the cloud provider is responsible for managing the infrastruc-
ture and automatically allocating resources based on the needs of the application. This
eliminates the need for businesses to invest in and maintain their own hardware, freeing
them up to focus on delivering value to their customers.

In traditional computing models, the key challenge is the difficulty of allocating re-
sources in a way that is both performant and cost-effective. In traditional environments,
resources are statically provisioned in advance based on estimated needs, but this often
leads to idle resource waste during low demand and missed requests during high demand.
In most cases, due to the dynamic nature of user-facing services, spikes and troughs in
demand lead to both over-provisioned resources and long delays from under-provisioning
in static allocations [8].

Serverless computing addresses this challenge by providing a pay-as-you-go model that
automatically scales resources based on the actual needs of the application. This eliminates
the need for businesses to perform regular workload measurements and frequent hardware
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purchases or sales, freeing them up to focus on delivering value to their customers without
having to worry about the underlying infrastructure. While serverless computing offers
many benefits, it is not without its challenges. One of the main barriers to wider adoption
of serverless computing is the issue of “cold starts,” which refer to the latency introduced
when a serverless function is invoked after a period of inactivity. Cold starts can result in
slow response times, particularly for latency-sensitive workloads.

Several studies have shown that cold starts can be a significant barrier to the adoption
of serverless computing, as they can negatively impact the performance of applications in-
cluding user-facing chatbots and reduce the quality of user experience [45, 105]. To address
this issue, current serverless systems trade off cost-effectiveness for performance, providing
a balance between the two that is suitable for most workloads [66]. However, for low-latency
workloads, such as those in user-facing chat applications, financial, gaming, or real-time
data processing industries, the trade-off between cost-effectiveness and performance can
be a challenge because of long cold starts, which lead to an inelastic system.

2.2 Deep Learning Inference Serving on Serverless

In recent years, deep learning has become an important area of research and development
in the field of machine learning, with numerous applications in areas such as image and
speech recognition, Natural Language Processing (NLP), and predictive modeling. As
deep learning models continue to grow in complexity and size, serving these models in a
production environment become a major challenge.

One of the biggest challenges in serving deep learning models is the requirement for GPU
resources, which are essential for processing the large amounts of data and performing the
complex computations required by these models. While GPUs have become increasingly
powerful in recent years, serverless platforms using GPUs are still limited in their ability
to support large-scale deep learning workloads, particularly when it comes to serving large
numbers of requests in real-time.

While containerization [2] and memory sharing techniques [32, 60] have reduced cold
start durations for general-purpose CPU functions, such methodologies are not applicable
in GPUs due to lack of support for sequential control flow. These limitations have made it
difficult to find a solution that is both performant and cost-efficient for GPUs in serverless
computing. Current serverless platforms, such as AWS Lambda, do not support GPU
processing. On the other hand, while AWS SageMaker supports GPU usage for inferences,
it recommends an over-provisioning of 2, which leads to increased costs [62, 61].
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Figure 2.1: Overview of system architecture with autoscaling.

Recent studies on Deep Learning inference serving on GPUs [111, 81, 21] use CPUs
in conjunction with GPUs to reduce costs while meeting Service Level Objective (SLO)
requirements such as having 98% of requests below 200 milliseconds. Meanwhile, [106, 95,
76] adaptively batch requests to make GPU usage more efficient within SLA requirements.
Despite the techniques, the serverless platforms still face the intrinsic trade-off of cost-
effectiveness and performance.

In this thesis, we examine the use of serverless computing for deep learning inference
serving, exploring the challenges and limitations of using serverless platforms for low-
latency workloads and propose novel solutions that address the problem of cold starts in
GPU-enabled serverless platforms.

2.3 System Architecture for Deep Learning Inference
Serving on Serverless

Fig. 2.1 shows an overview of system architecture with autoscaling in open-source products
such as Kubernetes and OpenWhisk [86, 1, 69]. Requests are sent by clients to the system’s
API gateway, which are then forwarded to the scheduler. Omitting authentication steps,
the request is then sent to a message queue. Afterwards, active workers then pull messages
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from the queue whenever they are available. An active worker is a compute resource
that has the requirements initialized (e.g. the DL model) and is available when it is not
processing a request. While this occurs, workers update their status to the autoscaler.
The autoscaler then runs an independent event loop to decide whether to scale up nodes
based on metrics used by a configured autoscaling policy. Upon scaling up or down, the
autoscaler triggers the initialization of inactive nodes and updates the scheduler when they
are ready.

2.4 Model Partitioning

2.4.1 Automated Model Partitioning

Model partitioning is an active area of research in recent years with a focus on enabling
the execution of large DL models on multiple machines. Previous studies such as [110,
65, 54, 47] have primarily focused on latency optimization and cost optimization with
SLA-awareness for execution, but have not considered the impact of cold starts leading to
long wait times. In contrast to existing works, we use model partitioning in Flashpoint
to optimize cold start durations while minimizing degradation in execution latency due
to intermediate data transfers. Flashpoint thus reduces long waiting times observed in
state-of-the-art systems and adapts the partitioning scheme used based on the workload
experienced by the system. Additionally, in comparison to the state-of-the-art, Flashpoint
utilizes long-running compute instances rather than AWS Lambdas, as GPU execution is
not supported in the latter.

This section was moved from the model partitioning chapter to here. Meanwhile, the
idea of separating a deep learning model into sequential layers can seem trivial. Previous
works in [110] and [54] have only been used in computer vision which primarily have simple
types of convolutional layers, pooling, and fully connected layers. These have straightfor-
ward input to output mappings. However, with the Natural Language Processing (NLP)
DL models researched in this thesis, the inputs and and outputs contain multiple strings,
embedding tensors, and other tensors with non-trivial output to next-layer input mappings.
In general Machine Learning frameworks such as PyTorch, ONNX, and other Machine
Learning frameworks, DL models are constructed as a series of connected computation
modules. These modules can have varying levels of modules inside them. This affects how
DL models can be partitioned. In this thesis, we set a max module depth of 4 to break
down high-level embedding, encoder, and decoder modules into smaller components. This
level of depth results in a reasonable trade-off of complexity and cold start benefits in the
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tested models. Flashpoint then provides this interface which defines the model layers and
transformations of outputs of a layer to the inputs of the following layer. This enables ar-
bitrary DL models to work seamlessly with the automated partitioning process. However,
acquiring the individual layers of a general DL model and input / output transformations
is non-trivial and requires manual intervention in the state of the work. Once these layers
and transitions are correctly defined, then the Flashpoint system can perform automated
partitioning.

2.5 Locality

2.5.1 Centralized Registry

Replication in cloud computing is a technique used to horizontally scale the system’s ca-
pacity by creating multiple copies of a service or application and distributing them across
multiple nodes. However, current systems are limited in that replicas are treated as indi-
vidual instances and unaware of DL model copies in other machines. To download the DL
model in cold starts, centralized registries are used and have shown to result in network
bottlenecks [99].

In [99], many clients have shown to request data from the registry, leading to congestion
and delays in the network. This is a major challenge in cloud computing, as it can severely
affect the performance and reliability of the system. [99] attempts to address the solution
by structuring replica in a binary tree for container downloads. However, even with this
approach, host nodes still suffer from bandwidth limitations in their network links. We
have observed, for example, in our experiments that in the case of sending a DL model
from a source host machine in the data center to multiple other host machines, the uplink
bandwidth of the source host machine becomes congested with multiple unicast network
streams.

2.5.2 Hierarchical Caching

In TrIMS [25], a cache-inspired mechanism is proposed to ship a DL model from CPU to
GPU with fallback to cloud storage. TrIMS relies on CUDA Inter-Process Communication
(IPC) to create new processes which reference shared GPU memory in the same GPU
device. This is not used to scale the system’s capacity for serving the model. GPU-
enabled FaaS [117] proposes locality-awareness at the request scheduling level instead of
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replica autoscaling. It does this by comparing and selecting the best of the estimated
completion time of requests if waiting for an active GPU to be available versus reloading
the process on a GPU that has the DL model data in memory. Compared to TrIMS,
GPU-enabled FaaS proposes selecting GPUs with the DL model data in the host machine
instead of selecting the lowest utilization GPU, which may not have the DL model data in
the host machine [117].

In contrast, Flashpoint reduces cold start durations at the replica autoscaling level by
utilizing locality further in two ways. Firstly, under the common structure of data centers
which have multiple GPUs per host machine, DL model data may not have been loaded
in the memory of a GPU when the data is available in the host machine. By prioritizing
these GPUs over those where the host machine does not have the data in memory, network
data transfers are eliminated and cold start durations are reduced. Secondly, when no
host machine has the data, Flashpoint leverages the stored memory of the DL model data
from other host machines in the compute cluster, avoiding the slow download path of
cloud storage. These approaches significantly improve system elasticity for more common
scenarios in a bursty workload.

Meanwhile, FaaSNet [99] uses a binary tree to route function container downloads across
virtual machines. In contrast, our proposed methodology uses a compute-colocated dis-
tributed registry that provides greater fan-outs than binary trees. Our proposed methodol-
ogy also introduces locality-aware autoscaling which maximizes the benefit of hierarchical
copies as well as increasing download efficiency in burst instantiation requests through
download sharing.

2.5.3 Remote Memory Pooling

In Atoll [90] and Lin et al. [59] a proactive memory pool is used to pre-allocate memory of
pre-initialized sandboxes in order to reduce sandbox initialization overhead. The memory
footprint of this memory pool is configured by an administrator. The sandboxes are used
within the worker as cores become available and requests are received. In comparison, we
adaptively use excess resources in host machines to constitute the memory pool. Addition-
ally, we use the DL models stored in the remote memory pool as a hierarchical source for
downloading to avoid the slowest path of downloading from cloud storage instead of just
executing inferences on the same machine.
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2.6 Network

2.6.1 Multicasting

Multicasting, or the ability to simultaneously transmit data to multiple recipients, is not
currently used in serverless environments due to the challenge of performing cold starts
individually. Instead, individual unicast streams are used to transmit data to each recipient.
However, the development of protocols such as one by Khooi et al. [52] is a promising
direction using Remote Direct Memory Access (RDMA) with Software-Defined Networking
P4 switches to perform multicasts in a fast and reliable manner. This work is inspired by
this potential to be implemented in serverless environments to improve performance and
scalability.

2.7 Autoscaling

2.7.1 Trade-offs of Modern Autoscaling

Current state-of-the-art systems such as [63, 111, 11, 26] use a mix of “serverless” or
“burstable” Function-as-a-Service (FaaS) resources which have shorter startup times but
are generally higher cost, and “serverful” or Infrastructure-as-a-Service (IaaS) resources
with longer cold start durations and lower long-term costs, to reduce costs while serving a
workload and meeting pre-defined end-to-end request latency targets such as Service Level
Objectives (SLOs). Meanwhile, BATCH [4] and INFless [106] use adaptive batching to
reduce resource costs within user-defined SLOs. On the other hand, SHEPHERD [112]
aggregates multiple request streams for DL models to reduce workload unpredictability.
Additionally, ENSURE [93] uses a square-root staffing policy to over-provision resources
to meet high levels of performance, sacrificing cost-effectiveness. These systems achieve
guarantees that trade off performance for cost-effectiveness [66] or optimizes resource shar-
ing when multiple streams can use the same GPU resources. In contrast, we show that
Flashpoint’s model partitioning, locality-aware autoscaling, and network multicasting tech-
niques improve the performance of the system at all levels of cost-effectiveness by tackling
the underlying problem of long cold start durations and achieving greater system elasticity.
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2.7.2 SLA-driven Scaling

Works such as [111, 81, 21] all adaptively use GPUs to meet SLA requirements, while other
works such as [106, 95, 76] focus on adaptively batching requests to make GPU usage more
efficient within SLA requirements. All of these works also use a variety of metrics includ-
ing CPU and GPU utilization, profiled inference time, queue length and delays to inform
scaling decisions. In comparison to the related works, our autoscaling placement decisions
are informed by network structure, locality information, and profiling for model partition-
ing. Additionally, Flashpoint reduces cold start durations in any autoscaling policy with
locality and network optimizations. These parts can provide benefit in conjunction with
the aforementioned works.
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Chapter 3

Measurement Study of Cold and Warm
Starts on GPUs and CPUs

In this chapter, we perform a measurement study to quantify the magnitude of the cold
start problem based on the duration of GPU and CPU cold starts and warm starts. The
rapidly growing demand for interactive DL services makes efficient use of scarce GPU
resources an important problem to solve. A key way to achieving elastic use of these
resources is to reduce GPU cold start durations. Thus, our motivating research question
for the overall thesis is “How can the duration of GPU cold starts in serverless DL inference
serving systems be reduced?”

We then divide the analysis of the problem with the following research questions:

RQ1. What are the performance differences of CPUs and GPUs for DL inference
serving?

RQ2. How much do long cold start durations impact system performance?

RQ3. What are the mathematical factors that impact system performance for server-
less computing?

3.1 Experimental Configuration

The following experimental configurations were used in this measurement study:
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Table 3.1 Overview of DL Models
Name Version # Params Size

CodeBERT Base 125M 499 MB
ALBERT XXLarge V2 223M 890 MB
BART Large 406M 1,626 MB

DialoGPT Large 774M 3,135 MB
GPT-2 XLarge 1,558M 6,282 MB

T5 3B ∼2.8B 11,408 MB

Deep Learning Models. Table 3.1 shows the six popular DL language models used in
this measurement study. These are representative of various model sizes in the domain of
Natural Language Processing (NLP). The models used include CodeBERT [34], ALBERT
[55], BART [56], DialoGPT [116], GPT-2 [72], and T5 [73], which range from 499 MB to 11
GB in size. By testing with these models, we show that our observations hold for various
model sizes.

Workload. The simulation uses 1 hour long traces of realistic workloads provided by
Twitter [96] and Microsoft Azure in 2019 [87]. These public workloads are used due to the
lack of public DL inference serving traces. However, the user-facing nature of the related
products are expected to result in similar access patterns to low-latency DL services such
as ChatGPT and GitHub Copilot. The 1 hour Twitter trace has a median of 57 requests
per second and peak-to-median ratio of 4.68, while the 10 hour trace has a median and
peak-to-median ratio of 47 and 6.19 respectively. The Microsoft Azure trace has a median
of 18 requests per second and a peak-to-median ratio of 2.54. For profiling, we use the
inputs from the code to natural language test dataset from [34].

Baselines. We use PyTorch deployed using its inference serving framework, Torch-
Serve, on Kubernetes (TSK) [1] as a baseline. We also compare this work with proactively-
provisioned memory pooling techniques proposed in Atoll (ATL) [90], OpenWhisk on Ku-
bernetes (OWK), and our implementation of an AWS SageMaker autoscaling policy (SM*)
[29].

The TorchServe on Kubernetes (TSK) baseline uses queue latency as its autoscaling
target metric with a default target of 7 seconds. Atoll (ATL) similarly uses queue latency
as a metric for autoscaling as well as proactively provisioning resources based on the ar-
rival rate of requests. In the experiments, Atoll is set to use the arrival rate of requests.
OpenWhisk on Kubernetes (OWK) relies on the Kubernetes horizontal pod autoscaler,
which uses the CPU compute utilization of host machines with a default target utilization
of 60%. In this thesis, this is modified to use GPU compute utilization. Finally, AWS
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SageMaker (SM*) uses compute utilization, invocations per instance, or a custom metric
for its autoscaling policy. For this research, it is set to use invocations per instance, which
is the number of requests served by each replica on average.

For model partitioning, we use baselines of Gillis (GLS) [110] and SerFer (SFR) [54]
as the most related works. Both Gillis and SerFer limit the size of DL models to fit
in a Lambda, which is 250MB [110, 54]. Gillis attempts to fit the memory limits while
minimizing network transfers. Consequently, it also minimizes the number of partitions
used, leading to longer cold start durations. Meanwhile, SerFer solves for partitions that
fit these limitations with no consideration for the network transfer costs incurred and leads
to more partitions than Gillis and Flashpoint.

Simulation. This thesis uses simulations to measure the impact of the work. The
simulator is built using a customized version of faas-sim [75], which simulates network
congestion through the framework, Ether [74], and is built on top of the Python simulation
framework, SimPy [84].

It uses a fixed number of GPUs (1600) available within a data center with 8 GPUs per
host machine. The structure of the network used is a spine-leaf architecture with 100 Gbit/s
links from spine to leaf nodes and 50 Gbit/s links from leaf nodes to host machines with
20 host machines per leaf node. This work assumes homogeneous GPUs for simplicity and
could be modified to incorporate the variety in compute capacity for heterogeneous GPUs.
The simulation incorporates the time to perform autoscaling and scheduling decisions. This
means that the actions do not take effect until time is incremented by the wall time it took
to make the decisions.

Based on the Kubernetes baseline, each host machine is set to have the PyTorch base
Docker image pre-loaded, meaning that a web server with PyTorch dependencies loaded is
already running on each host machine.

Testbed. All characterizations in this chapter use the following setup unless other-
wise specified. We use a cluster of 3 host machines that each have 40 Intel® Xeon®
Silver 4114 CPUs and one additional dedicated workload generator machine with the same
specifications. Each host machine has 2 Nvidia Tesla P40 GPUs attached for a total of
6 GPUs. The testbed uses 25 Gbit/s network links. For all characterizations of AWS S3
downloads, a p3.2xlarge EC2 instance with a single C++ S3 client is used in the us-east-2
(Ohio) region with a single AWS S3 bucket using in the same region. The EC2 instance
has 1 Nvidia V100 GPU with 16 GiB of memory, 8 vCPUs with 61 GiB of memory, and
up to 10 Gbit/s network link.

Confidence Intervals. All confidence intervals, wherever included, are 95% over 5
trials.
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3.2 Performance differences of GPUs and CPUs

3.2.1 GPU Inferences are Faster than CPU Inferences

In Sections 3.2.1 and 3.2.2, we tackle RQ1 “What are the performance differences of
CPUs and GPUs for DL inference serving?” by measuring the difference in GPU and CPU
inference and cold start durations. We show that cold start durations are several orders
of magnitude larger than execution times and are made worse by longer GPU cold starts
and faster GPU inferences.

0.0 0.2 0.4 0.6 0.8 1.0
Duration (ms)

0.0

0.2

0.4

0.6

0.8

1.0

0 500 1,000 1,500 2,000 2,500

C
od

eB
E

R
T

(4
99

 M
B

)

2,303
298

2,373
13

CPU Cold Start
CPU Warm Start

GPU Cold Start
GPU Warm Start

0 10,000 20,000 30,000 40,000 50,000 60,000

T5
-3

B
(1

1,
67

1 
M

B
)

55,057
5,259

56,329
53

Figure 3.1: Duration of CPU and GPU warm starts compared to CPU and GPU cold
starts.

As a natural consequence of computation parallelization in GPUs, inferences complete
quicker in GPUs than with CPUs. Fig. 3.1 compares CPU and GPU inference times for
different DL models. The data is collected by initiating cold starts for each model on a
single host machine. The warm start excludes input and output transfer steps, while the
cold start excludes the warm start. The results on average across DL models shows that
CPU inferences take 53.15× longer than GPU inferences. The shorter GPU inferences
motivates the use of GPUs in modern DL inference serving systems to meet low-latency
deadlines. We also observe through the characterization that the execution latency of DL
models are predictable, which is consistent with the findings in [39, 24].
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3.2.2 GPU Cold Starts are Prohibitively Longer than Warm Starts

The benefits of faster GPU inferences are diminished by longer cold start durations in
GPUs. Fig. 3.1 also compares the ratio of warm and cold start durations for GPUs
and CPUs for the largest and smallest DL model. The GPU cold start is measured by
downloading the model from the AWS S3 bucket in the testbed. GPU cold starts are
longer than CPU cold starts due to the additional step of sending the model to the GPU.
The characterization shows that, using the mean across DL models, GPU cold starts are
581.02× longer than GPU inferences while CPU cold starts are 10.71× longer than CPU
inferences. This emphasizes the need for reducing cold start magnitudes in GPU-powered
serverless systems.

3.3 Impact of Long Cold Starts on Performance

3.3.1 Workload Timeline Example

Fig. 3.2a shows the end-to-end latencies of requests at different request received times in
1 hour of the Twitter trace. The experiment shows results from the simulation of the full
scale workload using the baseline Atoll autoscaler, which uses request rate. The practicality
of the simulation is discussed and validated later in Chapter 4. Meanwhile, Fig. 3.2b shows
the number of replicas desired, reserved, and deployed over the course of the workload. The
figures, together, show that bursts of requests consistently lead to long waiting times due
to new replicas not being instantiated quickly. The result shows that the burst of requests
at 456 seconds causes an excess load that is not met by the current service capacity of
19 replicas, leading to the long tail of requests. In this overloaded state, later requests
experience longer waiting times due to the buildup of the request queue. Then, during the
burst, new replicas complete their initialization, leading to rapid consumption of requests
in the queue and the drop in end-to-end request latencies after the peak. This example
highlights the importance of fast replica initialization in order to reduce the number and
magnitude requests in the long tail in terms of end-to-end request latencies.

In the example, a second burst occurs at 1,462 seconds. Prior to this, the relatively
stable request rates before it has established a low number of deployed replicas. The burst
then creates another local peak in end-to-end request latencies. While current systems
opt to use scale down stabilization mechanisms which use a configurable window to pre-
vent quickly scaling down, the optimal configuration for the window is dependent on the
volatility of the workload and can lead to high amounts of idle resources. Instead, reducing
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Figure 3.2: Simulated results for a 1 hour Twitter workload using the baseline system.

the duration of cold starts can make the system more elastic and adapt to any workload
without relying on workload-specific configuration.
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Figure 3.3: Simulated results for a 10 hour Twitter workload using the baseline system.

Fig. 3.3 shows another example similar to Fig. 3.2 for a 10 hour trace of the Twitter
workload. Fig. 3.3a and Fig. 3.3b respectively show the end-to-end request latency of
requests and number of replicas desired, reserved, and deployed over the course of the
workload. The result reinforces that bursts in request rates which occur after a period of
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stability lead to scenarios of under-provisioned resources where requests incur waiting time
and longer end-to-end request latencies. This shows that while the baseline system may
use stabilization mechanisms to prevent scaling down, sufficiently long periods of stability
before a burst of requests will cause the system to evict enough replicas to cause long
waiting times.

3.3.2 Cold Starts Manifest as Long Waiting Times

In this subsection, we address RQ2 “How much do long cold start durations impact system
performance?” and measure the impact of long cold start durations to the performance of
the system in terms of end-to-end request latencies.
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Figure 3.4: Simulated end-to-end request latency cumulative distribution function (CDF)
of the baseline system with different autoscalers for the Twitter workload using the T5-3B
model.

The time spent by requests waiting in the system during bursts in requests is largely
determined by the speed that replicas can be instantiated on new machines. Fig. 3.4
shows the end-to-end request latency cumulative distribution function (CDF) for 1 hour
of the Twitter workload for the T5-3B model with the baseline system using different
autoscalers. The figure shows that the tail latency (99th percentile) of requests can be
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up to 674× longer than the inference time of the DL model. The characterization also
shows that various autoscaling policies lead to an average of 147.48, 50.22, 51.80, and
69.91 seconds for the baseline frameworks ATL, TSK, OWK, and SM*, respectively. The
mean of these values, 11.52 seconds is 82× as long as the average execution time. For each
framework, their ratio of average end-to-end request latencies to execution times are 147×,
50×, 52×, and 70× respectively. These long tail latencies are attributed to both long cold
starts causing delays in provisioning resources as well as long default periods in autoscaler
metric evaluation. This validates the impact of long cold starts in real workloads and
further motivates reducing cold start durations.

3.4 Mathematical Model for GPU Cold Starts and Per-
formance

3.4.1 A Thorough Analysis of GPU Cold Starts

In this subsection, we approach RQ3 “How can we mathematically represent system per-
formance for serverless computing?” by first identifying the relative duration of different
stages in the cold start process. We show that each stage in the cold start process must
be reduced to achieve sub-second cold starts.

We identify three major steps in the cold start process:

1. Downloading the DL model

2. Loading the model on the host machine

3. Sending the model to the GPU

In this thesis, we define the startup time to be comprised of the latter two steps. Upon
completion of all of the steps, a process has been initialized in the GPU to accept requests
and perform inferences.

Fig. 3.5 shows the absolute duration of cold start steps for the smallest and largest DL
model, CodeBERT and T5-3B respectively. In the process of the cold start, the DL model
has already been trained. Its weights and layer information are serialized into a binary
format readable by the tensor module. In our experiments, we use PyTorch’s Just-In-Time
(JIT) trace format. The steps in the cold start process from start to finish can be broken
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Figure 3.5: Detailed breakdown of GPU cold start durations.

down to the three steps. Using the example for the T5-3B model, the DL model binary
data is first downloaded into host machine memory in approximately 41 seconds. Then,
the binary data is loaded into usable tensor modules in the same host memory for about 14
seconds. Finally, the tensor modules are sent to the GPU in nearly 1 second. After these
three steps are complete, the host machine is ready to perform inferences using the GPU.
The experimental configuration for this test is to use a Lambda Labs machine with an
Nvidia A10 GPU. The effective network bandwidth observed when downloading the model
from AWS S3 in the same region is 2,203 Mbps. In comparison, we measure the effective
network bandwidth of 2,936 Mbps for downloading from AWS S3 in the same region as a
p3.2xlarge EC2 instance which is rated to up to a 10 Gbit/s network link.

Fig. 3.6 shows the mean of durations for each step in the cold start process across
DL models. The values are normalized to the GPU warm start of the DL model. The
characterization uses an AWS S3 client to download the model into a Lambda Labs machine
with an A10 GPU in the same region. The data is a generalization of data shown in Fig.
3.5.

The characterization shows the first step being 581.2× longer than the GPU warm start,
while the second and third steps are 214.0× and 18.0× the GPU warm start respectively.
Overall, the first step of downloading the model is over 71.46% of the whole cold start
duration and is thus a focus of this work. This indicates that downloading the DL model
from cloud storage is prohibitively slow due to network bottlenecks.

Meanwhile, Fig. 3.6 also shows that the load and send to GPU step are sizeable
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Figure 3.6: Relative duration of steps in a cold start compared to the warm start of the
DL model (mean across DL models).

durations compared to real-time latencies and human reaction times of 1,000 ms [111, 77].
For example, the T5-3B model takes 14,138 ms to for the load step while it takes 1,206 ms
to send the model to the GPU. In order to scale elastically, these load and send steps also
have to be reduced.

3.4.2 Problem Formulation

In this subsection, we tackle RQ3 “How can we mathematically represent system perfor-
mance for serverless computing?” and develop an analytical model that mathematically
relates different steps of the cold start process to the end performance metric of aver-
age end-to-end request latencies. This model is then used to identify relevant factors in
minimizing cold start durations and compare their relative impact on system performance.

In this section, we describe the behaviour of the system and formulate the problem as
an analytical model derived from queuing theory. We use the notations described in Table
3.2. Firstly, we relate the expected duration of cold starts to the expected end-to-end
latency of requests in the system. Then, we identify variables that affect the duration of
cold starts, which highlight opportunities to address the issue.

To model the behaviour of the system, we develop a state transition Semi-Markovian
Process (SMP) shown in Fig. 3.7 inspired by [66]. Fig. 3.7 shows a state transition diagram
for the system having m number of instantiated GPUs for a DL model up to a large number
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Table 3.2 Table of Notations
Notation Description
t timestamp
T time interval for autoscaling event loop
m number of GPU instances with DL model
λ arrival rate of requests
µ service rate of GPUs for a DL model
de duration of execution
dc duration of the whole cold start
dc,d duration of the download step of a cold start
dc,l duration of the load model on host step of a cold start
dc,s duration of the send model to GPU step of a cold start
dw duration of waiting for the request
nd number of desired replicas in the system
r arrival rate of requests
σ volatility of workload
cu compute utilization for a DL model inference as percent of GPU
ql queue length for the DL model
lt end-to-end latency target

mt = 0
mt = 
mt-1

mt = M
mt =  

(mt-1)+1
mt = 

(mt-1)-1... ...

Figure 3.7: State transition diagram for the number of instantiated GPUs m for a DL
model at a time t.
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M at any time t for a discretized time intervals of T . At each time interval, the system has
a probability P (λt

µt
= x) to have a desired number of replicas x which can be represented

relative to the current number of running instances mt. The arrival rate λt represents the
total number of requests arriving into the system at time window t. Meanwhile, µt is the
service rate of the system at time t defined by (3.1) where c(f) is the maximum number
of requests an instance can execute concurrently for a function f .

µt = mt ∗ c(f) (3.1)

The definition of c(f) is elaborated in (3.2) where g is the GPU and f is the function.

c(f) = min(
smemory

fmemory

,
scompute

fcompute

) (3.2)

The probabilities depend on the arrival rate profile λ, which we assume to be a Poisson
process with its mean varying over time [4, 112].

When the desired number of replicas for the time window t is greater than the current
number of instantiated GPUs in the system, the cold start process for a number of GPUs
begin. Due to the non-zero time to instantiate GPUs, sustained excess demand for a
function causes an accumulation of requests queued in the system. Assuming that the
excess demand is sustained for the duration of the cold start such that t′ = t + dc, which
represents a worst case scenario, the average number of requests in the system L is defined
in (3.3) where E(tc) is the expected cold start duration in the system.

L = λt · E(dc)− µt · E(dc) (3.3)

Meanwhile, the end-to-end latency in the asynchronous autoscaler model can be represented
as shown in (3.4) as the sum of execution time de and wait time dw. For deep learning
models, de is roughly constant.

E(de2e) = E(de) + E(dw) (3.4)

Applying Little’s Law, which is L = λW for the number of requests in the system L,
effective arrival rate λ (throughput), which in our case is µt′ , and waiting time W , we
combine (3.3) and (3.4) to achieve the following result for the waiting time during the
stage of excess demand in (3.5), valid for µt′ > λt′ . This equation shows that the average
end-to-end latency is proportional to the excess demand as well as expected duration of
the cold start. The equation also indicates that although the cold start duration may be
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large, the longest observed waiting time for a request is not necessarily as long as the cold
start duration depending on the ratio of the arrival rate to the service rate.

E(dw) = (
λt′

µt′
− 1) · E(dc) (3.5)

Upon scaling up, the system must scale up to a service rate greater than the arrival rate
in order to consume messages in the queue, leading to a reduction in queue length.

Meanwhile, as shown in the characterization, the duration of cold starts are proportional
to the ratio of cold starts and is modelled by (3.6) where r is the ratio of instances to be
created to current instances shown in (3.7), while dc,d, dc,l, and dc,s are the expected
download, load on host, and send to GPU durations of the cold start respectively.

E(dc) = r ∗ E(dc,d) + E(dc,l) + E(dc,s) (3.6)

r =
mt+T −mt

mt

=
λt

cf ·mt

− 1 (3.7)

The problem formulation in this section shows two main properties that we aim to address.
First, longer expected cold start durations lead to longer average end-to-end latencies. Sec-
ond, larger cold start bursts lead to longer cold start durations due to network congestion.

3.5 Measurement Study Summary

We identified that GPU cold starts are orders of magnitude longer than the actual inference
times and that this difference is greater than in CPUs. We then measured the download
step for the DL model to comprise a majority of the cold start. We also showed that ex-
cess system resources exist and could be used to support shorter cold start durations. We
have then showed that network congestion is a problem that extends cold start durations
during frequent simultaneous cold starts. Afterwards, we presented an analytical model
to formalize the problem of cold starts and identify opportunities for improvement. Fur-
thermore, we investigated the properties of model partitioning with respect to cold start
durations and end-to-end latencies, which have not been studied before. Finally, we iden-
tified the limitations of stabilization windows in current autoscalers. These were designed
due to long cold start durations and we propose the removal of these mechanisms in light
of sub-second cold starts achieved by Flashpoint.
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Chapter 4

Model Partitioning

4.1 Characterization of Model Partitioning

In Section 3.4.1, we have identified that the cold start process leads to waiting times that are
several orders of magnitude greater than execution times. In order to achieve elastic scaling
with acceptable performance without overreliance on over-provisioning, the duration of cold
starts has to shortened. To achieve these shortened cold starts, we investigate the use of
model partitioning.

The technique of model partitioning is possible when multiple machines are selected
for DL model initialization. The technique is to load different parts of the model in
parallel across the machines, forming a co-dependent set of replicas. In comparison, the
default method is to load a full, independent model on each of the machines. Model
partitioning provides the opportunity of reducing cold start durations for downloading
the model, loading it on the host machine, and sending the tensors to the GPUs due
to its parallel nature. However, since the model is loaded in part on different machines,
intermediate data between DL model layers must be transferred between the machines
through the network to perform the inference, thus adding network transfer delays. With
these important aspects of model partitioning, we use the following questions to guide the
research in this chapter:

RQ4. What is the main cause for long DL model cold starts?

RQ5. How can the durations of cold start steps with GPUs be reduced?

RQ6. How does model partitioning affect system performance?
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4.1.1 Main Cause of Long DL Model Cold Starts

In response to RQ4, we identify that the long cold start steps as measured in Section
3.4.1 are caused by the host machine needing to parse the entire archived DL model data
into callable tensor modules and send those tensors to the GPU before it can be used for
execution. With increasingly large DL model sizes, these steps grow longer, consequently
making the system less elastic.

4.1.2 Methods to Reduce the Durations of GPU Cold Starts

For RQ5 , we identify that model partitioning can be used to reduce cold start durations
and reduce average end-to-end request latencies. This is because model partitioning divides
the DL model into parts that can be loaded simultaneously on different machines, thus
tackling the core issue of loading the whole model sequentially before it begins execution.

Download Load Send

Download Load Send

Download Load Send

Figure 4.1: Example of parallelizing deep learning cold starts with model partitioning.

Fig. 4.1 shows the technique of model partitioning and its overall effect in reducing
cold start durations and addresses RQ6. Model partitioning divides the DL model into
individual parts that can be loaded simultaneously on different machines. This introduces
the opportunity to reduce the cold start duration of the DL model to the maximum of the
longest cold start duration of any individual part. The amount of data processed for each
part is smaller than the whole. Thus, the durations for downloading the model, loading
the model on the host machine, and sending the loaded tensors to the GPU are shorter for
each part. By performing these in parallel, the cold start duration is reduced.

Yet, if the model parts are all downloaded from a single source, it can be bottlenecked
by the network bandwidth from that source. By loading these individual parts to different
destinations and using different source machines with independent download paths, we can
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ensure that the network uplink or downlink bandwidth of any individual machine is not a
bottleneck for the modified cold start process.

In addition, compared to downloading multiple full replicas of the same DL model to
different machines, a single copy of the DL model binary is downloaded across replicas in
the partitioned model. This leads to lower load on the network, lower network congestion,
and reduces the duration of downloads, which is the longest step in the cold start process.

However, the partitioned model incurs additional costs of transferring the output data
of earlier parts as the input of the following parts in a series. This trade-off between shorter
cold start durations and longer inference times should then managed.

4.1.3 Effects of Model Partitioning on System Performance

a1 a2 a4a3

b1 b4b3b2

e1 e2 e4e3

f1 f4f3f2

g1 g2 g4g3

h1 h4h3h2

Cold Start

Cold Start

GPU 1

GPU 2

24 s

Last request: 40 s  = 24 s + 16 s

 Average end-to-end latency: 34 s = 24 s + 10 s

c1 c2 c4c3

d1 d4d3d2

4 s 8 s 12 s 16 s

Figure 4.2: Example of 8 DL inferences on 2 GPUs without model partitioning.

We first approach RQ6 by investigating the following examples.

The examples in this section will describe the effect of model partitioning on cold start
durations, execution time, wait times, and end-to-end latencies. The examples use the
following parameters:

1. A single request takes 4 seconds on the GPU indicated by 4 blocks.

2. The execution of a single model uses 100% of the GPU’s compute capacity (i.e. the
GPU can execute up to 1 concurrent request).

3. The goal is to complete 8 requests that are waiting in a message queue.

4. There are not enough GPUs to serve these requests, meaning that new replicas must
be instantiated

29



a1 a2

a4a3

b1

b4b3

b2 c1 c2

c4c3

d1

d4d3

d2

e1 e2

e4e3

f1

f4f3

f2 g1 g2

g4g3

h1

h4h3

h2

Cold Start

Cold Start

GPU 1

GPU 2

12 s

Last request: 52 s  = 12 s + 40 s

 Average end-to-end latency:
34.5 s = 12 s + 22.5 s

a2-3 b2-3 c2-3 d2-3

e2-3 f2-3 g2-3 h2-3

...

...

Last request

Average end-to-end latency

GPU 1

GPU 2

5 s 10 s 15 s

25 s 30 s 35 s 40 s

Figure 4.3: Example of model partitioning without pipelining.

5. The full model cold start is 24 seconds, while a 2-part partitioned model divides the
cold start into two equal parts, leading to a cold start duration of 12 seconds. This
ratio of cold start duration for partitioned models are validated in our experimental
results described later in Figure 4.5.

Fig. 4.2 shows that the execution of 8 inferences on two GPUs with the full DL model,
which does not have any model partitioning, has an average request completion time is 34
seconds. This is done by each GPU executing requests with a single level of concurrency.
This is 24 seconds for the full cold start and an average of 10 seconds for executing 4
requests (4 + 8 + 12 + 16 seconds divided by 4). Meanwhile, Fig. 4.3 shows an example
of executing the same 8 inferences with model partitioning but without any pipelining.
This means that the first GPU does not start executing the next request until the whole
request is completed. In the example, the DL model is cut into two equal parts, and a
network transfer delay (e.g. block a2−3) of 1 second is incurred for every request execution.
When the first GPU completes executing the first half of the DL model, the output tensor
is then sent through the network to the second GPU, which executes the rest. Without
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a2-3 b2-3 c2-3 d2-3 e2-3 f2-3 g2-3 h2-3

5 s 7 s 9 s 11 s 13 s 15 s 17 s 19 s

Figure 4.4: Example of model partitioning with pipelining. *Network transfer is performed
using extra memory space in GPU

pipelining, subsequent requests do not begin until the previous requests on the GPU are
completely finished. This results in completing the 8 requests in 40 seconds after the cold
start of 12 seconds, with an average of 34.5 seconds. This is longer than using the full,
non-partitioned model.

We address this problem of longer end-to-end request latencies with model partitioning
through the use of pipelining. By pipelining, upstream GPUs begins the execution of
the next request immediately after it has completed its current request. This increases
compute utilization among GPUs. The example in Fig. 4.4 shows that pipelining makes
model partitioning worthwhile to consider. In this case, As soon as the first half of the DL
model is finished executing in the first GPU, a separate process can transfer the tensor to
the next GPU, allowing the first GPU to begin executing other requests in other memory
regions in the GPU. This can be performed using RDMA, which instructs the RDMA
Network Interface Card (RNIC) of the local and remote machines to perform the transfer
at the hardware level without additional overhead and control from the application. The
performance impact of pipelining with model partitioning in the example is that cold start
durations are reduced without impacting inference durations significantly. This results in
an average end-to-end latency for the 8 requests of 24 seconds, which is lower than the
original 34 seconds with no model partitioning. This is achieved by the 12 seconds of cold
start plus an average of 12 seconds for executing the requests (5 + 7 + 9 + 11 + 13 + 15
+ 17 + 19 divided by 8). The examples described in this section motivate investigating
model partitioning as a method to reduce DL model cold starts with the trade-off of longer
execution times.

We then address RQ6 by measuring the process initialization and inference times of
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Figure 4.5: Process initialization and inference durations for full and partitioned DL mod-
els.

the default full model and optimally partitioned models. Process initialization consists of
the steps of loading the DL model on the host machine and sending the loaded objects to
the GPU. The optimal partitioning is discussed later in Section 4.2.3. The experiments to
measure these are performed using an Nvidia A10 GPU with 24GB of GPU VRAM and 64
GBps PCIe interconnect hosted by Lambda. The DL model is downloaded from an AWS
S3 bucket in the same region as the GPU.

Fig. 4.5 shows the process initialization and inference times for the full and partitioned
DL model for all models. The process initialization durations for the DL models are
optimized with the locality and network techniques in this thesis. For a cold start duration
of 25.974 seconds for T5-3B, using at most 55 partitions, which is the number of layers, the
expected partitioned cold start becomes 589 milliseconds, which is 44.10× shorter due to
the parallel loading processes across GPUs. This also introduces network transfer delays
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leading to 43.94% longer inference wall times. This analysis is performed by measuring the
cold start durations, execution times, and output sizes of individual layers. Then, using the
optimized partition plan, we calculate the cold start to be the longest cold start duration
of any individual partition. Meanwhile, the inference time is the sum of the execution time
of the layers and the network transfer delays between partitions. These analytical results
omit networked message overheads and serve as a rough measure of the improvements that
can be achieved.

The results show that a mean of a 7.1× speedup in process initialization durations
can be achieved across DL models. Meanwhile, the mean of percentage for the network
transfer delay to the execution time across DL models is 44.59% or 0.45×. While this
percentage may appear large, it is important to note that the reduction in cold start
durations outweigh the cost of longer inference times when accommodating excess requests
from burst scenarios as described in Fig. 4.4.

Finally, we also identify that the benefit of reducing cold start durations from model
partitioning requires that the uplink bandwidth of the source of the DL model parts is not
the bottleneck. This then requires that the download path of the DL model part source and
target GPUs are independent, otherwise the uplink bandwidth of the source can become
the bottleneck.

4.2 Model Partitioning Design

In this section, we look at the actions enabled by the technique of model partitioning
and the mathematics behind it. We then design an algorithm to make use of model
partitioning and show how it affects the system’s architecture. As part of Flashpoint,
we present a novel model partitioning algorithm to optimize average end-to-end request
latencies. The algorithm incorporates the number of requests in the system as well as the
workload profile in scaling decisions. Flashpoint also changes the autoscaling placement
decisions by opportunistically splitting and merging models depending on system state.

4.2.1 Trade-offs of Model Partitioning

The notations used in this section is described in Fig. 4.6 and arranged in Table 4.1. In the
figure, three requests are shown and served in order with model partitioning and pipelining.
The figure assumes that all of the requests are received at the same time at the beginning
and only begin execution when it can complete it without delay for visual simplicity. In
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Table 4.1 Table of Notations for Model Partitioning
Notation Description
C The longest cold start duration of any part
E The longest execution time of any part
N The longest network transfer delay of any part
IN The total network delay incurred by a partition plan
I The inference time including all execution times and network delays
W Waiting time for the request excluding the cold start duration

L
Total latency of the request excluding cold start duration (sum of waiting and
inference time)

T Total end-to-end time for the request including cold start duration
c Number of cuts in a partition plan
p Number of partitions (c+ 1) in a partition plan

the example, three partitions are used with three GPUs. Each stage has varying amounts
of request execution time on the GPU and network transfer delays. These stages are served
in three GPUs. The cold start of the first GPU is set in the example to be the longest
among other DL model parts loaded on the other GPUs.

In the notation, C is the cold start duration incurred by the partitioned model, which
is the longest cold start duration of any part. E is the execution time of the longest part.
In the example, this is part a, among (a, c, e). N is the longest network delay between any
partitions, which is part b among (b, d). IN is the total incurred network delay, which is
the sum of b and d. I is the inference time, which includes all the execution times and
incurred network delay. This is the sum of a to e. W is the waiting time incurred by a
request under a partitioned model. This excludes the duration of the cold start to make it
proportional to number of requests ahead of it. This proportionality will be discussed later
in this section in equation (4.3). L is the latency of the request, which includes the waiting
time W and the inference time I. Note that this excludes the cold start duration C, which
means it is the end-to-end request latency assuming the DL model is already instantiated.
Finally, T is the total time including C, W , and I.

In this subsection, we identify the factors that influence when partitioned models should
be used and how many partitions should be made. In the characterization in Section 4.1.2,
we identified that a partitioned DL model with pipelining can outperform a full model
depending on factors of the reduction in cold start duration, network transfer delays during
inferences, and wait times expected by the requests. A pipelined partitioned model can
provide lower average end-to-end latencies compared to a full model when considering the
case of serving x requests for some large x. This is because the model with pipelining can
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Figure 4.6: Annotated timing sections of a partitioned DL model.

reduce the cold start duration to a larger extent than the amount of increased inference
delays it incurs.

To understand when a partitioned model with pipelining can perform better than the
full model, we identify when it is advantageous to use model partitioning when a full
model and partitioned model have already been instantiated (i.e. omitting the cold start
duration). Then, we identify how the cold start affects the average end-to-end latency and
formulate a general solution to the problem.

We model the end-to-end latency of the x’th request in the system for a full model and
a partitioned one in equation (4.1), where p is the number of partitions. When p = 1, a
full model is used. The end-to-end request latency without the cold start is then the sum
of the waiting time W (p, x) and inference time I(p).

L(p, x) = W (p, x) + I(p) (4.1)

For a given partition plan with, p, partitions, the inference time is modelled in equation
(4.2) as the original inference time of a single partition, I(1), which has no cuts in addition
to the incurred network transfer delays IN(p) for the p partitions.

I(p) = I(1) + IN(p) (4.2)

From the example, W (p, x) can be represented in equation (4.3) as the longest part k from
0 to the maximum number of partitions P , either execution or network transfer of the

35



a1 a2 a3 a4 b1 b2 b3 b4

a1 a2

a3 a4

b1 b2

b3 b4

a2-3 b2-3

0 2 4 6 8

W'(b) I'(b)

W(b) I(b)=E(b)

Full Model

Partitioned Model

Figure 4.7: Example to determine when a partitioned model should be used compared to
a full DL model.

DL model, multiplied by x− 1 requests pipelined ahead of it. This is because the longest
execution time or network transfer delay of any part determines the bottleneck that the x′th
request must wait for before it can begin executing without additional waiting delays. This
is also shown in Fig. 4.6 where the execution time b is the bottleneck. Thus, the waiting
time for the third request, which has annotations, is two times the bottleneck duration
b. Formally, the mathematical property of relating the bottleneck and the waiting time
can be intuitively achieved by reorganizing the execution and network delays to have the
longest part first. To perform the inference, the x′th request must then wait x − 1 times
the duration of the longest execution or network transfer.

W (p, x) = max
k=0...P

(E(p, k), N(p, k))(x− 1) (4.3)

Then, the remaining duration to complete the latency L(p, x) is the inference time of the
partitioned model I(p). This leads us to the final formulation of end-to-end latency for a
partitioned model without cold starts in equation (4.4).

L(p, x) = max
k=0...p

(E(p, k), N(p, k))(x− 1) + I(1) + IN(p) (4.4)

For all values of x, increasing p will always yield longer L(p, x) and lower values for the
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cold start duration C(p). However, this is also not yet normalized by the number of GPUs
that different partitioning schemes use.

Requests Model Partition Size
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GPU 5
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(a) Example of 16 GPUs hosting full DL models.
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Figure 4.8: Example for network bottleneck in concurrent cold starts.

In the next example, we compare the performance of different levels partitioning on
equal amounts of resources. In particular, we show how different levels of partitioning can
serve the same number of requests concurrently. This means that assuming the parts of
the partitioned model are loaded, the throughput of the system is mainly affected by the
increased inference time from extra network transfers rather than the number of requests
it can serve concurrently. This throughput affects the waiting time of requests when there
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is excess demand, as leading requests are served first before the new request is served.

Fig. 4.8 shows a comparison of concurrency levels for different amounts of partitions
for a DL model. Since a DL model using p partitions requires at least p GPUs, we set
the examples to use P (the maximum number of partitions) GPUs for fair comparisons
in number of resources used with a value of P = 16. The figure shows that for P GPUs,
the full DL model can execute with a concurrency of P . In Fig. 4.8a, each GPU hosts
a single unpartitioned model. Since there are P GPUs, the concurrency of the system is
P . Meanwhile, in Fig. 4.8b, when splitting the DL model into p = 4 equal partitions,
4 GPUs can host each partition. Since each of these GPUs host 1

4
th of the DL model,

the execution time on each GPU is approximately 1
4

of the unpartitioned execution time.
However, while there are then P

4
main replicas, the concurrency remains at P due to

pipelining requests. In other words, at maximum, there will be P requests being served
by the P GPUs. Finally, for generalization, in Fig. 4.8c, when p = P , each GPU hosts
one partition. The concurrency becomes 1. This example shows that the concurrency level
of the DL model with a given number of GPUs is unaffected by the number of partitions
used.

The example in Section 4.1.2 also showed that with various number of partitions p,
the first floor(P

p
) requests can be served without waiting delays. Meanwhile, the next P

requests need to wait until at least the first partition is completed, and so on. Based on the
example in Fig. 4.7, the duration that a request has to wait is defined by the longest part
as in equation (4.3). This leads us to model the waiting delay in the partitioned model
with equal GPU resources as in equation (4.5).

W (p, x, P ) = max
k=0...P

(E(p, k), N(p, k)) · (ceil( x

floor(P
p
)
)− 1) (4.5)

Then, assuming equal partitioning, the cold start delay incurred by each request is
independent of x as in equation (4.6). The equation assumes that the partitions are
approximately equal in size, leading to the longest and overall cold start duration being
C(1)
p

.

C(p) =
C(1)

p
(4.6)

The end-to-end latency for serving request x in a queue is then shown in equation (4.7),
which includes the cold start duration.

T (p, x, P ) = C(p) +W (p, x, P ) + I(p) (4.7)
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The average end-to-end latency for serving all x requests then becomes that in equation
(4.8).

T̄ (p, x, P ) =

∑x
y=1 T (p, x, P )

x
(4.8)

Then, to identify the theoretically optimal solution, we develop equation (4.9), which
uses the probability Pr(λ = x) for serving x requests with the model and the cold start
duration C(p) for p partitions.

E(T̄ )best = min
p=1...P

∞∑
x=0

(T̄ (p, x, P ) · Pr(λ = x)) (4.9)

4.2.2 Precalculation of Partition Plans

Solving equation (4.9) during the autoscaler event loop for changing probability distri-
butions is impractical since it requires multiple dynamic programming solutions for an
infinitely large number of x’s. Thus, we develop a search algorithm that precalculates the
best number of partitions for values of x offline. We identify that for adjacent values of x
requests to be served by the partitioned model, the optimal partition scheme is likely to
be the same. Thus, there are ranges of x values from n1 to n2 where the optimal partition
scheme at those x values are the optimal across all possible number of partitions from 1 to
a maximum number of partitions, P . For an optimal partition scheme with p partitions,
when the maximum number of partitions to be used when scaling up is P ′ where P ′ < p,
then the optimal partition scheme with P ′ partitions is used. The range of x with the
same optimal partition scheme can then be precalculated for a broad range of x values and
referenced during the workload. To do this, we set the maximum number of partitions to
the total number of layers in the DL model. We then identify that the x value is the only
search axis. We first find the best number of partitions (and their cuts) at x = 1 with
dynamic programming. Then, we use an exponential search algorithm to identify the first
x value k that changes the optimal number of cuts. Searching for the bounds of different
optimal values of p is then continued up to a maximum number of X = 3000 requests. The
value of X is selected as the maximum number of requests in the queue for the baseline
frameworks for the workloads. Concurrently, the best partition plans for number of parti-
tions from 1 to P are also saved for each value of x. These partition plans are used when
the autoscaling policy decides to scale up by fewer number of replicas than the calculated
optimal number of partitions from the partition plan. During the exponential search, we
use a memo for calculating T̄ (p, x, P ) to reuse the sum calculations.
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The locality property of the DL model parts in the local host machine as compared to
a remote host machine impacts the optimal placement of these DL model parts. Given a
limited number of GPUs per host, sequential DL model parts can be placed in the same
host to reduce network transfer costs. However, this increases the cold start duration of
future scale-up actions due to occupying local GPUs with different DL model parts. By
using cold start and network transfer cost values corresponding to non-local cases, we solve
for the optimal partitioning plan for the worst case. The actual performance of the system
is then improved by locality and guarantees that the partitioning plan always outperforms
only using a complete model.

4.2.3 Finding the best cuts for a DL model

The layers of a given DL model can be partitioned in many ways. Whenever a part is cut
into separate partitions, the cold start duration becomes the maximum of the cold start
durations of either part. This is because each part can be loaded in parallel. Meanwhile,
each cut also introduces networking delays of transferring the output tensor of a part to
the next. This affects inference times. The impact of these networking delays vary in
magnitude depending on how many requests the partitioned model will serve.

To solve for the best partition plan for a given number of requests, we develop the
dynamic programming formulation described in equation (4.10). The algorithm is an ex-
tension of the dynamic programming solution for the log cutting problem. In comparison
to the traditional problem, cuts at different locations in the DL model can result in differ-
ent costs. As such, the solution must traverse through all possible cut placements for up
to the maximum number of cuts, which is the number of layers minus 1. The algorithm
takes the cold start durations of each layer and their corresponding execution times and
input tensor sizes. The input tensor size is determined by the output tensor size of the
previous layer. The algorithm uses memoization to cache previously solved results.

For each position, (i, j, c) in the solution matrix M , where i and j are the starting and
ending layers in the DL model, and c is the number of cuts available, the minimum of two
types of solutions is taken. The first is when no cuts are used, then the optimal solution
is the same as that for (i, j, c− 1). Then the other case performs a cut at position k for all
values of k from i to j and gets the best value when allowing cl more cuts on the left side
and the remaining c− 1− cl cuts on the right for cl from 0 to c− 1. The solution matrix
is initialized for all c with the values when no cuts are used.

Additional matrices DC, DE, DN are used to store the duration of the maximum cold
start time, execution time, and networking delay for any of the partitions respectively for
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combinations of i, j, and c. Meanwhile, a matrix DIN is used to store the incurred network-
ing delay for the combinations of (i, j, c). These matrices are grouped together as an object
D. Meanwhile, Tdp(D, x, P, i, j, c) is the average end-to-end latency of x requests given the
best partitioning scheme for layers i to j for c cuts, and Tdp2(D, x, P, il, jl, cl, ir, jr, cr) is
same but for the best partitioning scheme for left side il, jl, cl and right side ir, jr, cr.

Mi,j,c = min



T (D, x, P, i, j, c− 1) for no cut

min
k=i...j

cl=0...c−1


Tdp2(
D, x, P,
i, k, cl,
k + 1, j, c− 1− cl

)

for non-final cut (4.10)

The function in Tdp2, takes the longest best cold start duration DCi,j,c for (i, j, c) on the
left side (i, k, cl) and the right side (k+1, j, c− 1− cl). This is done for both DE and DN .
Then To identify the longest part, the max of DE, DN , and dn[k] is used to calculate W .
Finally, DINi,j,c is the DINi,j,c for the left and right side, with addition of dn[k].

4.2.4 Model Partitioning System Architecture
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Figure 4.9: System architecture using model partitioning.
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Fig. 4.9 shows the components involved in model partitioning and their interactions.
When a new DL model is received by the system, it is first partitioned in to layers, and
each layer’s cold start duration, inference time, and output sizes are analyzed. Then us-
ing dynamic programming, the optimal solution for reducing cold starts is identified for
different numbers of partitions at different values of x requests expected in the system.
This results in precalculated partition schemes for the DL model. Afterwards, during the
operation of the autoscaler, multiple factors are used to make scaling and placement deci-
sions. These include the state of the system, which includes how many full and partitioned
replicas it has for the DL model, the arrival rate of requests for the DL model, and the
profiled information. The decisions from the control plane are then sent to the partitioner
for execution.

4.2.5 Model Completion

When the system scales up with a partitioned DL model, the effective service rate of the
new replicas are lower than that of the same number of machines with full DL models.
This is because the network transfer delays from transferring intermediate data causes
each inference request to be longer and reduces the collective throughput of the machines.
Because of this reduced throughput, the system will eventually need instantiate more
replicas or suffer longer waiting times.

In order to limit this downside of model partitioning, we develop a mechanism called
model completion. Model completion instructs the machines of a partitioned DL model to
perform the cold start for the other layers continuously after it has completed setting up its
initial part. After the time it takes to download the additional layers, both a system using
model partitioning and the baseline system are equivalent and have the same number of
machines, each with full DL models. Through this mechanism, model partitioning enables
the system to serve requests earlier than the baseline, without incurring penalties in the
long term.

4.2.6 Model Partitioning with the Autoscaler

To maximize the benefit of model partitioning, we design the autoscaler to control a mix
of full and partitioned models. For a set R of replicas for a DL model, R can consist of
full and partitioned models as shown in equation (4.11).
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R =
P∑

p=1

(Rp) (4.11)

The autoscaler’s event loop generates a desired number of replicas as determined by the
autoscaling policy. Given the current number of replicas , the desired number of replicas
can fall into one of three categories in equation (4.12):

CAT (Rt, λt) =


(1) scale up if λt + ρH > µt

(2) keep the same if λt − ρL < µt < λt + ρH
(3) scale down if λt − ρL > µt

(4.12)

In equation (4.12), ρL and ρH are configurable low and high thresholds for number
of replicas, while µt is defined in equation (4.13) as the sum of service rates of different
partitioned models.

µt =
P∑

p=1

µRp,t (4.13)

In the case of scaling up, we determine the number of requests expected to be served using
the definition in equation (4.14). This equation includes both the number of requests in
the system and excess load. Since we bound the duration of model partitioning cold starts
to the cold start duration of the full model, we use C(1) to measure the time that the
excess load (λt − µt) adds requests to be served.

E(x) = ql + (λt − µt) · C(1) (4.14)

Then, from this value of E(x), we select the best partition plan from the precalculated
solutions with at most P partitions where P is the number of replicas to scale up by, as
determined by the autoscaler.

Meanwhile, when keeping the number of replicas the same, no changes are made. Fi-
nally, when scaling down, the autoscaler prioritizes evicting partitioned models due to its
lower service rate from extended execution times. Due to partitioned models using more
than one GPU, when scaling down, the replicas are sorted by decreasing number of GPUs
used. Iterating through this sorted list, the autoscaler then removes models with at most
the n GPUs to scale down by until at most n GPUs have been selected for eviction.
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Chapter 5

Locality-Aware Autoscaling

5.1 Characterization of Long Cold Start Downloads

In this section, we are motivated by the problem of long download durations for DL models.
To address this issue, we measure the amount of excess resources in the system. We answer
the following research questions:

RQ7. What is the main cause of long download durations?

RQ8. How much extra resources are present in a saturated system?

RQ9. How can extra resources be used to reduce download durations?

5.1.1 Main Cause of Long Download Durations

In response to RQ7, we identify that long download durations, especially with large DL
models, are due to downloading all of the DL model from the same source, limited primarily
by the network bandwidth in the route from source to destination. This issue is also only
more relevant as the size of DL models continue to grow.

5.1.2 Extra Resources while Saturating GPU Compute

To address RQ8, we acquire measurements of resource utilization rates for different re-
sources of compute and memory for the GPU and CPU, and network utilization when the
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Figure 5.1: Utilization (%) of system resources with saturated GPU compute.

system is processing requests at its maximum throughput. Fig. 5.1 shows the percent of
network bandwidth, CPU compute, CPU memory, and GPU memory that is consumed
while saturating GPU compute at over 95% utilization and completing requests at max-
imum throughput across DL models. GPU compute utilization is omitted since it is sat-
urated. The test is performed by initializing a remote queue with 1,000 images from the
ImageNet dataset [43], then having torch.multiprocessing GPU processes consume images
from the queue, perform the inference, and write the result to a shared file. The test is
performed with 1, 2, and 4 processes and is shown to saturate GPU compute utilization
with just 1 process. The results shown use means across DL models.

The characterization shows that a single GPU process is enough to saturate GPU
compute while leaving extra memory and network resources. This motivates using new
physical machines to scale out throughput rather than creating new processes in the same
machine since GPU compute is the bottleneck for throughput. In addition, the excess
resources provide the opportunity to source DL models from other host machines along
with the necessary network bandwidth for the transfers. Since the input data for DL
inferences is typically orders of magnitude smaller than the DL model itself, a compute-
saturated GPU only requires less than 0.01% of network bandwidth to transfer the inputs
and outputs to and from the GPU since they are mostly text data. Similarly, less than
4.77% and 4.81% of CPU compute and memory respectively are used. Finally, only 13.03%
of GPU memory is used. Typical GPU-enabled EC2 instances provide excess memory and
network resources under GPU compute saturation and can be used as remote memory
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storage [10].

5.1.3 Opportunity Provided by Excess Resources

Finally, to answer RQ9, our results from Fig. 5.1 show that the amount of excess memory
is enough to store replicas of inactive DL models and that sufficient network bandwidth
can be used to perform transfers of the DL model data between host machines without
interfering with request completion throughput.

5.2 Locality-Aware Autoscaling Design

In this section, we design the use of excess resources and locality-awareness in Flashpoint’s
autoscaler to solve long download durations for large DL models. It involves using remote
memory pooling to create a compute-colocated distributed registry which downloads the
DL model from nearby host machines. In addition, a Pareto-optimal replica placement
algorithm is designed to maximize the benefit of locality.

5.2.1 Remote Memory Pooling

By identifying opportunities in excess resources in the system, we further reduce the prob-
ability of using the worst case slowest path of downloading from cloud storage at no added
cost. One-shot profiling as described in Section 5.1.2 is used to determine the amount of
resources used by a DL model when it saturates GPU compute serving multiple requests.

In Flashpoint, the binary data of the DL model must be downloaded into a host ma-
chine’s memory, loaded into process memory, and sent to the GPU, consuming GPU mem-
ory. These memory requirements are reserved at the start of a cold start to ensure it can
be completed. In case of memory pressure in host machines, model data is evicted first
before process memory. As memory and network resources are underutilized in modern
cloud offerings, remote memory pooling and hierarchical sourcing do not incur additional
cost.

This mechanism utilizes the excess memory and network bandwidth across host ma-
chines to source the DL model from existing replicas in other host machines when instan-
tiating a new GPU node. This enables the storage of different DL models across host
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Figure 5.2: Hierarchical sourcing and remote memory pooling.

machines in the system and effectively bounds the cold start duration to intra-data center
network speeds in contrast to cloud storage downloads.

While an option is to pre-load all DL models in the system, this work makes no as-
sumption on the number of DL models and number of GPUs in the system. As such, the
work is generalizable and aims to instead minimize the footprint of individual DL models.

5.2.2 Compute-colocated Distributed Registry

We identify properties of DL inference serving, in comparison to DL training, that present
an opportunity to optimize the cold start process. In contrast to deep learning training,
inferences do not have to update model state and thus model data are mostly static.
These models can then be replicated across host machines in the system. Furthermore,
current data centers typically have multiple physical GPUs attached to each host machine
[10]. Finally, current systems handle cold starts by downloading the DL model from cloud
storage or a remote Network File System (NFS) server [58, 21].

Due to these properties, we design the mechanism of hierarchical sourcing as shown
in Fig. 5.2 to source the DL model data for a target GPU node from the 1 local host
machine first, over 2 remote sources of other host machines, and 3 cloud storage. This
reduces the download step duration. Using in-memory copies in the local host machine,
hierarchical sourcing eliminates most of the cold start durations that involve downloading
the model to the host machine and loading the data into memory. This leaves the remaining
duration to be in sending the loaded tensor data to the GPU.
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5.2.3 Pareto-optimal Greedy Placement Algorithm

The main challenge of serverless scheduling is balancing resource efficiency and meeting
deadlines. Serverless systems have the option of packing incoming requests on active nodes
which can cause queuing delays, or initializing new ones, which lead to higher costs. This
leads to a large solution space for GPU machine combinations with varying levels of re-
source efficiencies, end-to-end latencies, and cold start penalties. To navigate this, we use
locality information and simplify the set of candidate GPUs for instantiation. We divide
the scheduling problem into two stages: scheduling requests among active instances, and
determining when and where to create new instances. The overarching goal of the sys-
tem is to amortize cold starts across multiple warm start requests while meeting the most
deadlines.

We design the scheduler to evenly distribute requests among active nodes using Sparrow-
style [70] global queue to assume optimal scheduling for both baselines and proposed sys-
tem. This optimizes scheduling to reduce waiting delays by having workers pull messages
from the queue when they have resources available. In comparison, a round-robin scheduler
with per-worker queues lead to older workers having numerous requests while newer nodes
have close to an empty queue.

While request batching has been used to amortize cold start costs by grouping requests
to a replica, the use of batching in selecting cold start nodes has not been studied ex-
tensively. Batching of candidate nodes during burst cold starts naturally occurs because
modern autoscalers accumulate waiting requests in the system before scaling up. Thus,
the number of nodes to scale up by is typically greater than one. This presents an oppor-
tunity to optimally place new instances based on this simultaneous cold start compared to
stateless sequential cold starts.

Host
Memory

GPU

(a) Local host to GPU cold
start.

Host Host

(b) Remote host to GPU cold start.

Host

Cloud Storage

(c) Cloud storage to GPU
cold start.

Figure 5.3: Data path diagrams for locality-aware cold starts with hierarchical sourcing.

48



# autoscaler.py
def get_receivers(self, model_id: UUID, scale: int):

"""
model_id: Identifier for the DL model to scale up.
scale: Nat of how many replicas to scale up by.

Returns:
- receiver_gpus: List of GPU nodes for cold start
- receiver_hosts_set: Set of hosts for cold start GPUs
"""
receiver_gpus = []
do_break = False
for host in list_of_hosts:

for gpu in host.children:
if can_allocate(gpu, model_id):

reserve(gpu, fd)
receiver_gpus.append(gpu)
leftover_scale -= 1
if leftover_scale == 0:

do_break = True
break

break
if do_break:

break

receiver_hosts = set(map(lambda gpu: gpu.parent, receiver_gpus))
return receiver_gpus, receiver_hosts

Listing 5.1: Pseudocode for locality-aware Pareto-optimal greedy cold start candidate
selection algorithm
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In this section, we present a locality-based optimal greedy algorithm for selecting which
GPUs to instantiate for burst cold start requests.

Fig. 5.3 depicts three locality decisions in Flashpoint. In Fig. 5.3a, a copy of the DL
model is present in the host memory in blue, which also indicates that at least one other
GPU already has the model. In this hierarchical level of cold start, the model takes one
step to be sent to a new GPU in light blue. Meanwhile, Fig. 5.3b shows a remote host (on
the left) transferring the DL model from its memory to a local host (on the right), loading
the model, and then sending the DL model to the GPUs in the local host. Finally, Fig.
5.3c indicates the default mechanism of download the model from cloud storage, loading
the model on the host machine, then sending the model to the GPU.

During batched selection of cold start nodes, two extremes are present. First, selecting
only GPUs that are in the same host attempts to capture the shortest hierarchical cold
start; however, this is suboptimal due to the batched nature of cold starts. In this case,
the cold start takes as long as a host-to-host download, loading the model, and sending to
the GPU when the target host does not yet have the DL model. This is because of task
dependency between downloading the DL model and the remaining downstream actions.
Second, selecting only one GPU from each host, since selecting additional GPUs in the
same hosts do not present immediate benefits, is also suboptimal due to not capturing the
benefit of the shortest hierarchical cold start. To optimize this placement, we present a two-
stage Pareto-optimal greedy algorithm. We first select GPUs in host machines that already
have the model. This requires that there are host machines with the model. Meanwhile, for
the remaining worker nodes, we select single GPUs from other host machines. This second
stage primes the system for future cold start bursts and obtains a Pareto-optimal allocation
of cold start nodes. The proof of Pareto-optimality for this algorithm is as follows. First,
selecting fewer GPUs that all that are primed for the fastest level of cold start reduces the
benefit captured by the algorithm. Second, packing the remaining GPUs in the same host
machine also reduces the benefit of shorter cold starts that can be captured in the future.
This leads to the optimal solution being to fully utilize primed GPUs, while distributing
the remaining GPUs across different host machines.

The algorithm is shown in Listing 5.1. It starts by iterating through each GPU of
each host machine in the cluster. Then, it attempts to reserve the required resources in
the GPU. The GPUs selected in the algorithm must satisfy the following conditions. It
must have the memory and compute capacity available for running the DL model process
based on profiled averages. Meanwhile, the host machine that the GPU is in must either
have the DL model process initialized or have enough memory and compute capacity to
first download the DL model into memory as well as load the DL model process. Then, it
reserves the resources on the GPU and respective host machine. The algorithm first select
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GPUs colocated within the host machines that already have the DL model. Finally, for the
remaining replicas to be instantiated, it distributes the cold start GPU candidates across
host machines by skipping the remaining GPUs in the host machine if the current selected
GPU is the first to load the model in the host.

5.2.4 Burst Download Request Sharing
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(a) Example of independent downloads.
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(b) Example of download sharing.

Figure 5.4: Example figures for download sharing.

Multiple cold starts during burst requests can cause a system to download redundant
copies of the same DL model destined for different GPUs in the same host machine. Fig.
5.4a shows an example of independent downloads for different GPUs occurring using the
same host machine. To address this redundancy, we implement a download manager agent
that checks downloads in progress and performs transfer chaining system to target GPUs
from the host machine. This is shown in Fig. 5.4b, where a single download to the host
machine is used, and that data is sent to multiple GPUs. This prevents redundant transfer
requests for a DL model and allows distribution of the DL model to different GPU nodes
as soon as the download on the host machine is completed.
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Chapter 6

Network-Aware Autoscaling

6.1 Characterization of Network Congestion

In this section, we measure the frequency and magnitude of network congestion in the
Twitter [96] workload. Network congestion occurs when the system’s autoscaler scales up
the number of provisioned replicas and more than one of these cold starts use the same
download source. The network congestion from using the same source extends cold start
durations and reduces the elasticity of the system.

We then formulate the following research questions:

RQ10. How does the concurrency of cold starts impact the duration of cold starts?

RQ11. How frequent are simultaneous cold starts in a serverless system?

6.1.1 Effect of Concurrent Cold Starts to Cold Start Duration

The network in a data center is a bottleneck during simultaneous cold starts which occurs
in production systems [99, 113, 51] and validated in our physical experiments. Modern au-
toscalers such as in AWS SageMaker and Kubernetes spin up new instances asynchronously
from scheduling requests [29, 1, 9]. These autoscalers use metrics such as a target average
invocations per instance, queue latency, compute utilization, etc. to decide the desired
number of replicas for a DL model at a given instant. Because of this, queued requests
build up in a system during a burst in demand, causing all requests the requests to have
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long queue wait times before new instances are simultaneously instantiated. In comparison
to asynchronous systems, synchronous systems such as [28] require requests to block until
cold start instances are initialized, leading to significantly longer wait times. To compound
the issue, due to the simultaneous nature of cold starts, multiple download requests going
through the same links in the network cause network congestion, which extends each of
the cold starts. In particular, a one-to-many host-to-host transfer causes congestion in the
link from the host machine to the top-of-rack switch in the data center.
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To answer RQ10, we measure the duration of cold starts compared to the number of
concurrent cold starts for the 11 GB T5-3B model in Fig. 6.1. Results for the other models
are similar in shape. This experiment is performed using 5 servers, each having 12 Intel®
Xeon® E5-2620 v2 CPUs, 64 GiB of RAM, and 10 Gbit/s network connections.

The figure shows a linear increase in cold start duration with number of concurrent cold
starts for baseline transfer protocols using TCP, memcached, and Remote Direct Memory
Access (RDMA). This performance degradation is attributed to network congestion in the
data center where the download duration is extended. Results for Encrypted UDP based
FTP with multicast (UFTP) [19] and A RDMA Multicast (RDMC) [15] using TCP and
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RDMA are omitted due to the results being greater than 5× the optimal download time
for the model.

6.1.2 Frequency of Concurrent Cold Starts

Meanwhile, to answer RQ11, we measure the the ratio of requested replicas (cold starts)
to running replicas for scale up actions for different autoscaling policies for the Twitter
workload. Fig. 6.2 shows a cumulative distribution function (CDF) of these ratios. The
ratio represents the best case scenario of evenly mapping a set of receiver host machines to
a set of source host machines. For example, if the ratio is 0.5 and the number of running
replicas is 10, half of the running replicas can act as sources for the 5 new replicas being
instantiated. The results show that all scale up actions require a ratio of new replicas
request to current running replicas greater than 1. This indicates that the case of source
host machines sending to multiple receiver host machines is fairly common. In combination
with Fig. 6.1, this characterization motivates the need to improve download management
to mitigate prolonged cold starts.

6.2 Network-Aware Autoscaling Design

Host 1

ToR Switch

Host 3Host 2

 

(a) Example network structure of three
hosts connected to a Top-of-Rack (ToR)
switch.

Host 1

ToR Switch
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Host 3

Transfers:
- 10G from Host 1 to Host 2
- 10G from Host 1 to Host 3

Host 2
20G

10G 10G

(b) Example of two 10 Gigabit transfers oc-
curring simultaneously and congesting the
network with 10 Gigabit/s (G) links.

Figure 6.3: Example for network bottleneck in concurrent cold starts.
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Current serverless systems execute the scale-out of DL model replicas individually, with
each new instantiation process unaware of the other. In the workloads tested, we observe
that bursts in requests lead a burst of cold start instantiations which all occur at the same
time. This leads to network congestion in the host machines that act as data sources for
the DL model.

Fig. 6.3 shows an example of the network bottleneck during concurrent cold starts.
In the example, host-host network transfers to distribute the model. Fig. 6.3a shows
a simple network structure of 3 host machines each connected to the same Top-of-Rack
(ToR) switch, which is a common structure in data centers. In the network structure, 10
Gigabit/s (G) duplex links are used. Fig. 6.3b shows a scale out action of ratio 2. In this
case, when evenly distributed, every host machine that contains the DL model can send
the model out to two other hosts. In the example, Host 1, sends a DL model of 10 Gbits
to Hosts 2 and 3. Because the network links have a capacity of 10 Gbits/s, individual
transfers would normally take 1 second in isolation. However, since the transfers occur
simultaneously and are unaware of each other, the transfers congest the uplink bandwidth
of Host 1, and take twice as long. This leads to degraded download times and longer cold
start durations.

To address this issue, we employ the use of multicasting, which has not been applied
to reduce cold start durations in serverless deployments. Multicasting reduces network
congestion by enabling servers to send a single packet to be received at multiple clients. In
one protocol, network hardware primitives could be used to replicate packets at network
switches, rather than the sender machine, effectively reducing the amount of redundant
information sent from the sender to the switch.

The use of multicasting comes with several issues. One is that multicasting uses the
User Datagram Protocol (UDP), which does not guarantee that packets are received by the
other hosts such as in a TCP protocol. In addition, current reliable multicasting protocols
are shown to have high synchronization overheads, leading to longer download durations
compared to multiple TCP downloads.

The method employed in Flashpoint to reduce network congestion in a multi-node
transfer is to use chained TCP flows. This method uses the full-duplex bandwidth of
modern data centers to execute the transmission of data from a receiver node to another
node concurrently as it receives data. It works by receiving the packet in a stream at a
node’s buffer and immediately copying the packet and forwarding it to the next node in the
chain. While this method has its drawbacks including longer time-to-first-byte (TTFB)
latencies in downstream nodes in longer chains, it is sufficient to achieve close-to-optimal
scaling with greater cold start concurrency and is sufficient for this work. An example of
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Figure 6.4: Example of TCP chaining with no network congestion.

the TCP chain protocol is shown in Fig. 6.4 where two 10 Gigabit transfers from Host 1
to Host 2, and from Host 2 to Host 3 then occur concurrently, allowing both transfers to
complete in approximately 1 second.

In comparison, a Remote Direct Memory Access (RDMA) protocol bypasses the op-
erating system kernel and other protocols by performing transfers through a data path
that does not involve using CPU compute cycles. This path starts from the applica-
tion’s buffer, then the local RDMA-enabled Network Interface Card (RNIC), followed by
the remote RNIC, and finally to the remote application’s buffer. This avoids redundant
copies being made on the critical path and is a promising direction for multicasting. In
non-RDMA protocols, copies from the application’s buffer may be copied to socket and
transport protocol driver buffers before they arrive at the local RNIC.

However, current RDMA-based reliable multicasting protocols such as [15] and [19]
are unable to outperform TCP chaining due to the lack of necessary network primitives
that allow group packet multiplication at switches or packet copying in streams without
application-level control. While [52] works on using P4 software-defined networking solu-
tions to enabling reliable multicasting, the controller functions are not yet available for
this work.

6.2.1 Reliable Multicasting with TCP Chaining

To perform TCP chaining, Flashpoint employs a master controller which resides in the
autoscaler to manage connection parameters and updates as shown in Fig. 6.5. During
cluster creation, a long-lived TCP chain manager application is launched in each host

56



Host 1 Host 3Host 2

Controller

1

2

3

Figure 6.5: Controller and host machine interactions for TCP chaining.

machine. Then, when a scale up decision is made, as shown in Fig. 6.5, 1 the first step
of the TCP chaining protocol is to set up the chain of recipients. The set of recipients is
generated from the Flashpoint autoscaler’s locality-aware Pareto-optimal greedy algorithm.
The controller then sends chain parameters to each node. These parameters include the
ID of the DL model to be transferred and the address of the next node if it is not the end
of the chain. Once the chain has been established, 2 the controller initiates the transfer
of the model in a TCP stream. The recipient, upon receiving each packet, then copies the
packets in its memory and forwards the data to next recipient in the chain. This process
continues along the chain of recipients until the last recipient has received the model.

The TCP chaining protocol employs flow control mechanisms to ensure efficient network
usage. The protocol monitors network conditions, such as network congestion, and adjusts
the transfer rate of the model accordingly to minimize network congestion and reduce
transfer time. Since Flashpoint is designed for data center usage with stable connections,
fault tolerance mechanisms are not a critical requirement. However, the protocol is designed
to be robust and handle certain types of network failures such as node failures or slow
network conditions. In the case of a node failure, 3 the controller can re-route the
transfer to the next recipient in the chain, ensuring the delivery of the model to the
remaining recipients. The TCP chain managers in host machines can also communicate
with the controller to request missing packets.

In summary, the TCP chaining protocol provides a reliable and efficient solution for
the transfer of deep learning models to multiple recipients in a data center environment.
By leveraging the reliable delivery mechanism of TCP and utilizing a chaining mechanism,
the protocol ensures the simultaneous transfer of the model to multiple recipients, with
efficient network usage and robustness against certain types of network failures.
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Chapter 7

Overall System Design

In this chapter, we outline the design of the Flashpoint system that incorporates the three
main solutions designed in the previous sections. Flashpoint affects the general serverless
computing system architecture by modifying the autoscaler and adding a profiler.

7.1 Components and Control Flow

SchedulerProfiler Autoscaler

GPU
(Isolated) Worker Pool

1 4

2

3 6

5

 

Figure 7.1: The components and control flow in Flashpoint.

The components of Flashpoint and their interactions are described in Fig. 7.1. The
main components are the scheduler, profiler, and autoscaler.

When a new DL model is received by the system, 1 the profiler uses an isolated GPU
to measure execution time, working process size, compute usage, etc. for new DL models.
Then, 2 the profiler sends the data to the autoscaler. Meanwhile, 3 the autoscaler
regularly receives target metric (e.g. queue length) and DL model status information on
active workers for DL models. In a separate loop, 4 the autoscaler applies an autoscaling
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policy to scale DL model replicas up or down. Whenever there are updates, 5 the
autoscaler informs the scheduler of new or removed instances for a DL model. While steps
1 to 5 occur, 6 the scheduler asynchronously assigns requests for a DL model to their

respective warm nodes. A warm node is a GPU that is ready to serve requests for the DL
model.

Given our observation that the GPU compute is the bottleneck in scaling, we make the
design decision of delegating new instance allocation and sourcing decisions to a centralized
autoscaler. This offloads tasks such as reserving memory and performing cold starts from
the critical path of serving requests. Through this, the compute power in GPU nodes
are maximally utilized to perform inferences instead of maintaining additional state and
performing graph searches to identify DL model sources.

The autoscaler and profiler are implemented in the simulator using Python with 2.8K
and 2.3K Lines of Code (LOC) respectively.

Overall, the developer impact of integrating these techniques are mainly for the tech-
nique of model partitioning. To enable the use of model partitioning the DL model’s layers
and respective intermediate data must be defined in code. Meanwhile, locality and multi-
casting has minimal impact on the developer as the changes required are at the serverless
platform level. The serverless platform must add support for the controller and add the
downloads and connections manager agent in the host machines. These altogether control
the download sources and network transfer protocols used for downloading the model.

7.2 Isolation Properties

In Flashpoint, each host machine uses a single container runtime to manage requests for
different DL models among its GPUs. This level of isolation provides performance im-
provements in terms of reducing container instantiation overheads. In contrast, systems
that isolate each workload in separate containers provide stronger isolation properties, but
with greater instantiation overheads which are incurred as new DL models are loaded on
a host machine.

While a container with request load balancing logic can be instantiated quickly on the
host machine, the cold start process for the DL model must still be completed separately.
The overheads of downloading the DL model, loading it on the host machine, and sending
the tensor modules to the GPU, which are in the order of seconds, dominate container
instantiation time, which are in the order of milliseconds [101].
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Table 7.1 Metrics recorded by Flashpoint.
Metric Description

1. System Information
system_structure Number of host machines and number of GPUs per host machine

2. One-shot Model Profile
isolated latency Average execution time on an isolated GPU in milliseconds

threshold Additional percentage to accept run-time performance degradation
deadline Inference deadline in ms, based on isolated latency and threshold

static_memory Size of the model in GB
run-time_memory Additional memory usage of model during run-time in GB

3. Continuously Profiled Model Information
execution_time Moving average of measured request execution time
download_time Moving average of model download time

load_time Moving average of loading model on host time
send_to_gpu_time Moving average of sending model to GPU time

7.3 Implementation

7.3.1 Autoscaler

The logic for scaling up in the autoscaler is shown in Listing 7.1. The algorithm first
adjusts the amount of replicas to scale up by using the maximum amount in the deployment
configuration. Then, it acquires a partitioning plan based on the current state of the
system, the workload, and target increase in replicas. Afterwards, the algorithm selects
the receiver GPUs based on the partition plan using get_receivers(), which also checks
if the GPU and its encompassing host machine have the memory and compute capacity
required to host the DL model. It then collects the senders that have the target DL model,
which defaults to the cloud container registry. The sender hosts are then mapped to an
approximately even list of receiver host machines. This mapping is used to initiate the
multicast transfer. The multicast transfer occurs in three stages. First, a multicast group
address is selected and receiver hosts are instructed to register their IP in that address.
Subsequently, the data transfer is performed. Finally, the machines are deregistered from
the group address and the address is released.
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# autoscaler.py
def scale_up(self, model_id: UUID, scale: int):

"""
model_id: Identifier of the DL model to scale up.
scale: Nat of how many replicas to scale up by.
"""
config = self.functions_deployments[model_id].scaling_config
current_replicas = self.replica_count[model_id]

# Limit max by maximum scale config
scale = math.min(scale, config.scale_max - current_replicas)
# Do nothing if nothing to scale up by
if scale == 0: return

# Prepare and send multicasts
# Select partitioning plan
partition_plan = self.get_partition_plan(model_id, scale)

# Select GPUs by locality (with Pareto-optimal greedy algorithm)
# Also reserves the resources as they are selected
receiver_gpus, receiver_hosts_set = self.get_receivers(model_id, scale, partition_plan)

# Acquire the senders with the model including cloud storage
sender_hosts_set = self.get_senders(model_id)

# Create a map of senders and receivers
sender_receiver_map = self.map_senders_to_receivers(sender_hosts_set, receiver_hosts_set)

# Create the flows
flows = self.create_multicast_flows(sender_receiver_map, model_id)
for flow in flows:

flow.start()

# Trigger the rest of the initialization process in the receiver_gpu
reverse_sender_receiver_map = self.get_reverse_map(sender_receiver_map)
for receiver_gpu in receiver_gpus:

receiver_host = receiver_gpu.parent
sender_host = reverse_sender_receiver_map.get(receiver_host, receiver_host)
self.deploy_replica(model_id, receiver_gpu, sender_host)

Listing 7.1: Logic for scaling up with locality-awareness, multicasting, and model
partitioning in Flashpoint
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7.3.2 Profiler

Flashpoint gathers three categories of information described in Table 7.1. System informa-
tion is gathered upon setup where the network topology, number of hosts, and number of
GPUs in each host are acquired. One-shot model profile information includes the isolated
latency, threshold, deadline, static model memory size, and run-time memory consumption
of the DL model. Finally, continuously profiled model information includes the average
execution time, download time, load time, and send to GPU time for the DL model. The
profiled information is used for determining whether the GPU and its respective host ma-
chine have the capacity to host the model.
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Chapter 8

Evaluation of Flashpoint

In this chapter, we compare the performance of the techniques used in Flashpoint against
other systems. We first evaluate each technique against related baselines and state-of-the-
art systems using physical experiments and prototype implementations. We also evaluate
the practicality of the simulations by comparing its results with the physical experiments.
Then, we perform evaluations across techniques through full-scale simulations using pa-
rameters from the physical experiments.

8.1 Evaluation of Model Partitioning

In this section, we evaluate the technique of model partitioning used in Flashpoint. We
use the analytical model and partition solver developed in Section 4.2.3 to compare the
improvements that Flashpoint achieves for partitioned models at different numbers of re-
quests served by the partitioned model. Model partitioning is the technique where we
divide a DL model into parts to download them in parallel in a GPU chain Through these
divisions, Flashpoint also loads these parts on the host machines and sends them to the
respective GPUs in parallel. This technique introduces a trade-off of increased inference
durations due to intermediate data being transferred across GPUs.

8.1.1 Optimality of Model Partitioning Schemes

In this subsection, we compare Flashpoint’s model partitioning solver using the analytical
model developed in Section 4.2.3 against state-of-the-art systems. The measurements of
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cold start durations, execution times, and input sizes used in the analytical model were
acquired using servers with Nvidia A10 GPUs (24 GB VRAM, 64 GBps PCIe intercon-
nect), 30 Intel(R) Xeon(R) Platinum 8358 CPUs, 200 GiB of RAM, and 50 Gbps network
connections in the us-west-1 region from Lambda Labs. The cloud storage used is an AWS
S3 bucket also in the us-west-1 North California region. The DL model is then downloaded
from cloud storage to the cluster through the internet.

Fig. 8.1 shows the optimal number of cuts (p − 1) for the different DL models for
the expected range of number of requests x based on the analytical model developed in
Section 4.2.1. The results show that the optimal value of p does not change rapidly across
the expected values of x. These results demonstrate that model partitioning is a feasible
approach to consistently achieve greater performance than the default of full DL models
in serverless.

Fig. 8.1 also shows the percentage benefit in average end-to-end latencies for the
optimal number of cuts at different values of x. The figure shows that the partition scheme
selected by Flashpoint consistently outperforms baseline model partitioning policies in
terms of reduction of average end-to-end latencies. In particular, for CodeBERT, BART,
and GPT-2, Flashpoint always selects partition plans that are different from the baselines
and always achieves a better average end-to-end latency. For ALBERT, Flashpoint decides
not to partition the model at larger values of x requests, while the baselines perform cuts
and suffer from network transfer delays, leading to worse performance than a deploying
full replicas. For DialoGPT, the model performs different cuts, but achieves approximately
the same benefit as baselines. Finally, for T5, Flashpoint selects nearly the same number
of partitions as Gillis, and fewer than SerFer. However, Flashpoint outperforms Gillis by
also considering the reduction in cold start duration. For this model, Flashpoint achieves
similar results as SerFer with fewer partitions. Overall, the evaluation shows that the model
partitioning baselines achieve suboptimal partitioning at different workload scenarios. This
is attributed to the lack of consideration of system and workload state.

8.1.2 Performance of Model Partitioning

We implemented and deployed Flashpoint’s automated model partitioning technique on a
Lambda Labs testbed and compared it to an implementation without model partitioning.
The implementations were done using Python and consists of 3K Lines of Code (LOC).

In the physical implementation, the following were used: 10 servers with one Nvidia
A10 GPU (24 GB VRAM, 64 GBps PCIe interconnect), 30 Intel(R) Xeon(R) Platinum
8358 CPUs, 200 GiB of RAM, and 50 Gbps network connections. The cloud storage used
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Figure 8.1: Number of cuts (p− 1) and percentage benefit on average end-to-end request
latencies for optimal partitions for different DL models for different values of x based on
the analytical model.
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is an AWS S3 bucket in the us-west-1 North California region. The DL model is then
downloaded from cloud storage to the cluster through the internet. The workload used for
this deployment is a 15% scaled down version of the Twitter workload due to the scaled
down number of servers. A separate server is used to host the controller and generate the
workload. The same configurations are used for the simulation.

Scaling down the infrastructure configuration introduces a limitation that optimal par-
tition schemes requiring a high number of GPUs cannot be used. For example, due to only
having 10 machines, partition schemes that use more than 10 machines are not consid-
ered. Using the memoized solutions, the best partition plan given the limited number of
machines is used instead. In addition, fewer machines are requested when scaling up due
to the smaller absolute gap between valleys and peaks in the arrival rate of requests in the
scaled down workload.

The autoscaler used in the deployment is based on Atoll which uses the 99th percentile
arrival rate of requests scaled by the average request execution time to determine the
desired number of replicas. This autoscaler is selected due to it selecting the desired
number of replicas independent of the current state of the system, leading to simpler,
more straightforward causes of improvements. The request scheduling in the deployment
mimics a Sparrow scheduler, where the first available worker receives the request. This
is performed through random selection of available worker nodes. A worker is considered
available when it is not processing any request. When all workers are busy, the request
blocks until a worker is made available.

Fig. 8.2a shows the cumulative distribution function (CDF) of end-to-end request la-
tencies for the baseline system and model partitioning in the physical deployment for the
largest DL model (T5-3B) and the Twitter workload. The results show that the average
end-to-end request latency for the baseline framework is 2.61 seconds while model parti-
tioning achieves 1.39 seconds, which is a 46.74% reduction. These improvements are at-
tributed to the shorter cold start duration that model partitioning achieves. These shorted
cold starts enable new GPUs to serve requests sooner than their baseline counterpart and
reduce waiting times for the requests. The partition plan, which determines the number of
parts in the group, is selected by Flashpoint’s partition solver. This selection is optimized
to maximize the benefit from the cold start reduction while minimizing the penalty of
increased inference times. In addition, by performing model completion, Flashpoint con-
verges to using full models, further limiting the upper-bound of performance of the system
to the level that the baseline system achieves.
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(a) Comparison of baseline and automated model
partitioning on physical deployment.
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(b) Comparison of baseline and automated model
partitioning on simulation.
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(c) Comparison of physical baseline and simu-
lated baseline.

0 10 20 30 40
End-to-end Request Latency (s)

0

20

40

60

80

100

Pe
rc

en
til

e 
(%

)

Experiment
Physical-Model Partitioning
Simulated-Model Partitioning

(d) Comparison of physical and simulated auto-
mated model partitioning.

Figure 8.2: Cumulative distribution function (CDF) of end-to-end request latencies for
the physical deployment and simulation of model partitioning for T5-3B for the Twitter
workload.

8.1.3 Simulator Practicality

Fig. 8.2 also shows the cumulative distribution function (CDF) of end-to-end request
latencies for the simulation of model partitioning and the baseline system for the T5-3B DL

67



model and the Twitter workload. From the evaluation, we observe that the average end-to-
end request latency for the baseline framework in the physical system is 2.61 seconds while
an equivalent simulation results in 2.23 seconds. Meanwhile, for Flashpoint’s automated
model partitioning in the physical system and simulation, they are 1.39 and 1.30 seconds
respectively. The median absolute error of the physical deployment and simulation for
automated model partitioning is 0.31 seconds while for the baseline, it is 0.20 seconds. We
believe this small difference between the results of the physical system and the simulator
provides evidence that the simulator generates valid results.
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Figure 8.3: Comparisons of average end-to-end request latencies of a system using model
partitioning and the baseline for different data center to cloud storage network bandwidths
using the simulator.

Through the experiments, we identify two factors as being important in determining the
average end-to-end request latencies. The first is the execution time of the function, while
the other is the network bandwidth to cloud storage. The execution time determines the
tail end-to-end request latencies wherein during a burst of requests, the later requests must
wait for others ahead of it to complete. This waiting time is dependent on the execution
time and the number of requests ahead of it. Meanwhile, the network bandwidth to cloud
storage is the bottleneck for the cold start duration. The length of the cold start duration
then impacts the end-to-end request latency for a portion of requests.
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Fig. 8.3 shows comparisons of average end-to-end request latencies at different network
bandwidths from the compute cluster to cloud storage for model partitioning and the
baseline system using the simulator. In this experiment, the full scale of the workload
is used with a full system with a spine-leaf data center structure containing 1600 GPUs
across 200 host machines in 10 server racks. The results show that increasing the bandwidth
reduces the percentage of requests with long waiting times as well as the longest tail latency.
This is because the faster cold start duration enables the new replica to serve requests
sooner and allows more requests to be served immediately when they are received.

In the case of 2000 Mbps of effective bandwidth from the compute cluster to cloud
storage, a low percentage of requests are executed immediately. This is because the long
duration of cold starts performed simultaneously cause congestion in the network. With-
out flow prioritization, these cold starts all compete for network bandwidth and take a
prolonged time to complete, leading the system to have low service capacity for most of
the requests

The results show that model partitioning improves end-to-end request latencies at each
level of effective bandwidth tested. The average end-to-end latency is shown to be 1.59×
shorter for model partitioning compared to the baseline for 2,000 Mbps in effective band-
width based on measurements. The measured bandwidth for using AWS S3 clients from
the Lambda Labs cluster is 2,203 Mbps across 10 tests.

We also evaluate the average cold start duration of model partitioning with different
levels of maximum partitions of 1, 2, 4, 8, 16, 32, and 64. We perform this evaluation in
the simulation with all 1600 simulated GPUs and at a 100% scale of the workload. Fig.
8.4 shows the cumulative distribution function of the end-to-end request latencies in the
system for the different configurations. While not all model partitioning actions are limited
by this cap, the results show that increasing the maximum number of partitions enables
greater improvements in cold start durations.

8.2 Evaluation of Locality-Aware Autoscaling

In this section, we evaluate the technique of locality-aware autoscaling in Flashpoint. We
first compare the cold start durations across different hierarchical sources for acquiring the
DL model of cloud storage, remote host memory, and local host memory using physical
experiments. Then we compare Flashpoint’s locality-aware autoscaling to state-of-the-art
systems through full-scale simulations parameterized with the physical experiments.
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Figure 8.4: Comparisons of average cold start durations for model partitioning with dif-
ferent maximum number of partitions.

In the technique of locality-aware autoscaling, Flashpoint uses excess memory and
network resources from host machines in the compute cluster to store DL models and
download them into other host machines on-demand. Flashpoint also uses a Pareto-optimal
greedy algorithm to optimize the selection of GPUs and maximize the improvements from
faster hierarchical sources.

8.2.1 Evaluation of Hierarchical Sourcing

In this section, we evaluate the performance of different hierarchical sources using a physical
deployment. The measurements for this evaluation are obtained using two p3.2xlarge EC2
instances with a single C++ S3 client in the us-east-2 (Ohio) region and a single AWS S3
bucket using in the same region. The EC2 instances each have 1 Nvidia V100 GPU with
16 GiB of memory, 8 vCPUs with 61 GiB of memory, and up to 10 Gbit/s network link.

Fig. 8.5 shows the mean cold start latencies of different hierarchical sources with a
logarithmic scale. The results in the figure show the magnitude of speedups for cold starts
from hierarchically local sources over remote. They show that sourcing the DL model from
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Figure 8.5: Relative duration of cold starts from hierarchical sources compared to warm
starts (mean across DL models).

local host memory is 18.0× of a GPU warm start since it only needs to perform the third
step in the cold start process of sending the model to the GPU. By exploiting underutilized
resources with remote memory pooling, we source from remote host memory to achieve
second-level cold start durations at 232.2× of a GPU warm start. Finally, the fallback of
cloud storage is shown to take 813.2× of a GPU warm start. The remote memory and
cloud storage sources are longer than the individual cold start steps shown in Fig. 3.6 since
the former source also downloads from remote memory, while the latter includes steps of
loading the model and send it to the GPU. Overall, hierarchical sourcing shows a 45.8×
mean speedup for local copies over default cloud storage downloads. The effective host-to-
host download bandwidth for the experiment is 7,506.89 Mbps on average for 5 tests on
the Lambda Labs environment. This environment is using two machines with one Nvidia
A10 GPU each. We then validate that the simulator achieves cold start durations for these
hierarchical sources within 5% of the physical experiments.

8.2.2 Evaluation of Locality-Aware Autoscaling Compared to Other
Systems

In this subsection, we compare the performance of Flashpoint’s locality-aware autoscaling
to state-of-the-art and baseline systems. For this evaluation, the following configurations
are used:
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Baselines. We use the following system to compare against Flashpoint. Baseline is
the system without any optimizations. The download source is cloud storage using AWS
S3. Atoll [90] uses lazy eviction to keep DL model data in the memory of host machines.
It selects machines from the pool of workers with the DL model data first, but does not
keep the process running in the host machine. GPU-enabled FaaS [117] also performs
lazy eviction and adds the use of caching the DL model data from the host machine to
the GPU as well as prioritizing the selection of GPUs where the DL model data is present
in the host machine. In comparison, Flashpoint provides these improvements and enables
the use of the remote host memory of other machines in the compute cluster to download
the DL model data from.

In addition, while [14] suggests using AWS Elastic Container Registry (ECR) using
Docker to download function containers, in the case of large DL models such as T5, the
cold start download durations are consistently longer than using AWS S3. This is because
using ECR with Docker requires that the DL model is persistently stored in the machine,
leading to additional overheads, whereas using AWS S3 with only in-memory data avoids
these overheads. Thus, the use of ECR is omitted from the results.

Simulation. The simulator is built using a customized version of faas-sim [75], which
simulates network congestion through the framework, Ether [74], and is built on top of the
Python simulation framework, SimPy [84].

In this evaluation, it simulates a fixed number of GPUs (1600) available within a data
center with 8 GPUs per host machine. The structure of the network used is a spine-
leaf architecture with 100 Gbit/s links from spine to leaf nodes and 50 Gbit/s links from
leaf nodes to host machines with 20 host machines per leaf node. This work assumes
homogeneous GPUs for simplicity and could be modified to incorporate the variety in
compute capacity for heterogeneous GPUs.

The execution times, loading times, sending to GPU times, network request overheads,
and network bandwidths are parameterized by our physical experiments. The practicality
of the overheads and parameterized used in the simulation was discussed earlier in Section
8.1.3. The simulation incorporates the time to perform autoscaling and scheduling deci-
sions. This means that the actions do not take effect until time is incremented by the wall
time it took to make the decisions.

In the simulation, each host machine is set to have the PyTorch base Docker image pre-
loaded, meaning that a web server with PyTorch dependencies loaded is already running
on each host machine and does not have to be re-downloaded every time a new DL model
is initialized in a GPU of the host machine.

Fig. 8.6 shows the cumulative distribution function (CDF) of cold start durations and
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Figure 8.6: Comparison of different systems for different workload scales.

end-to-end request latencies for the baseline, state-of-the-art systems, and Flashpoint with
only the technique of locality-aware autoscaling for increasing scale of the Twitter 1 hour
workload using the request rate autoscaler and the T5 DL model. The results show that
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increasing the scale of the workload provides more opportunities for the contribution of
locality-aware autoscaling in Flashpoint to reduce cold start durations.

In the example of 2.5× workload scale in Fig. 8.6a, majority of cold start durations
are bounded by the duration to download requests within the compute cluster, which has
a higher network bandwidth and larger number of independent paths for downloading the
DL model data than cloud storage. In comparison, other systems suffer from degraded
cold start duration times due to requiring new host machines to download the data and
congestion in the network from the compute cluster to cloud storage. Consequently, in
Fig. 8.6b the improvements of Flashpoint in end-to-end request latencies compared to
other systems become larger with increasing workload scale.

Meanwhile, Fig. 8.7 shows the CDF of cold start durations and end-to-end request
latencies for increasing numbers of 1, 2, 4, and 8 GPUs per host for the Twitter 1 hour
workload using the request rate autoscaler and the T5 DL model. The results in Fig. 8.7a
with the CDF of cold start durations show that increasing the number of GPUs per host
improves the performance of Flashpoint as well as GPU-enabled FaaS. This is because
increasing this number enables more opportunities for the DL model data to be cached
directly from the host machine to the GPU. Similarly, the improvements in end-to-end
request latencies in Fig. 8.7b show similar improvements for both systems. We discuss the
implications of the findings in Fig. 8.6 and 8.7 in the following section.

8.3 Evaluation of Network-Aware Autoscaling

In this section, we compare the network-aware autoscaling technique of Flashpoint to
state-of-the-art and baseline protocols. In th evaluation, we demonstrate the practicality
of Flashpoint’s TCP chaining through a physical experiment. Flashpoint’s network-aware
autoscaling uses TCP chaining as a protocol of multicasting to reduce network congestion
when large numbers of new replicas are simultaneously requested by the autoscaler.

We have shown in the characterization in Section 6.1.1 that cold start cases where host-
host DL model transfers with a one-to-many ratio is a common case. With this, Fig. 8.8
shows the duration of cold starts for various levels of concurrency with different protocols
for the T5-3B model. Other DL models show similar results. The figure includes an optimal
line where the full network bandwidth is realized as throughput. The measurements for
this physical experiment were acquired using a local testbed with 5 servers, each having 12
Intel® Xeon® E5-2620 v2 CPUs, 64 GiB of RAM, and 10 Gbit/s network connections.
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Figure 8.7: Comparison of different systems for different numbers of GPUs.

The figure shows that baseline protocols of using TCP and RDMA grow linearly in dura-
tion as more transfer requests occur simultaneously. This is because of network congestion
with multiple unicasts from a source to different destinations share the uplink bandwidth
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Figure 8.8: Duration of host-to-host cold starts compared to number of concurrent cold
starts for T5-3B.

from the source to the first switch. Meanwhile, while UDP multicast can be used, reliabil-
ity mechanisms designed ensure the complete file is sent correctly still lead to suboptimal
scaling. Meanwhile, an RDMA-based reliable multicast protocol such as RDMC [15] is also
suboptimal due to high synchronization overheads as from using RDMA unicasts with an
overlay mesh. Additionally, multicasting using UDP is shown to have the ideal constant
scaling; however, additional synchronization overheads needed to make it reliable cause it
to be suboptimal in duration.

In contrast to the baseline protocols, the figure shows that chaining TCP flows allows
near-optimal scaling at higher levels of concurrency, being within 9.6% of the optimal
duration. TCP chaining is also shown to be 3.30× faster than the baseline TCP protocol
at a concurrency level of 4. While a hardware-bound protocol such as RDMA could ideally
be used to reduce CPU consumption on the host machines that deliver the DL models, the
current state of the RDMA library, libibverbs [50], does not support the required primitives
to chain transfers or multicast quickly and reliably.
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8.4 Evaluation of Techniques

In this section, we evaluate the performance improvements of the Flashpoint system from
each of the techniques used. We focus on the metrics of average end-to-end request la-
tencies and average cold start durations. These metrics are important for the latency
sensitive workloads that motivate the thesis. We evaluate the performance improvement
of each technique individually and then in combination. The overall results show that
Flashpoint improves both end-to-end request latencies and average cold start durations
while consuming similar levels of resources as baseline systems.

The following configurations were used for the evaluation:

Deep Learning Models. Table 3.1, which was shown previously in Section 3, shows
the six popular DL language models used in this measurement study. These are represen-
tative of various model sizes in the domain of Natural Language Processing (NLP). The
models used include CodeBERT [34], ALBERT [55], BART [56], DialoGPT [116], GPT-2
[72], and T5 [73], which range from 499 MB to 11 GB in size. By testing with these models,
we show that our observations hold for various model sizes.

Simulation. This evaluation uses simulations to measure the improvements of the
techniques developed. The simulator is built using a customized version of faas-sim [75],
which simulates network congestion through the framework, Ether [74], and is built on top
of the Python simulation framework, SimPy [84].

In this evaluation, the simulation creates a fixed number of GPUs (1600) available
within a data center with 8 GPUs per host machine. The structure of the network used
is a spine-leaf architecture with 100 Gbit/s links from spine to leaf nodes and 50 Gbit/s
links from leaf nodes to host machines with 20 host machines per leaf node. This work
assumes homogeneous GPUs for simplicity and can be modified to incorporate the variety
in compute capacity for heterogeneous GPUs.

The execution times, loading times, sending to GPU times, network request overheads,
and network bandwidths are parameterized by our physical experiments. The practicality
of the overheads and parameterized used in the simulation was discussed earlier in Section
8.1.2. The simulation incorporates the time to perform autoscaling and scheduling deci-
sions. This means that the actions do not take effect until time is incremented by the wall
time it took to make the decisions.

In the simulations, each host machine is set to have the PyTorch base Docker image pre-
loaded, meaning that a web server with PyTorch dependencies loaded is already running
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on each host machine and does not have to be re-downloaded every time a new DL model
is initialized in a GPU of the host machine.

Autoscalers. We use the autoscaling policy as a controlled variable. This indicates
the target number of replicas at different times in the workload is determined only by
the autoscaling policy and then implemented by Flashpoint. In these evaluations, we
use four autoscaling policies to demonstrate the improvement of Flashpoint with different
scaling decisions. These autoscalers are: TorchServe on Kubernetes (TSK), Atoll (ATL),
OpenWhisk on Kubernetes (OWK), and AWS SageMaker (SM*). These baselines represent
both state-of-the-art and commercial baseline systems.

TSK uses queue latency as its autoscaling target metric with a default target of 7
seconds. ATL similarly uses queue latency as a metric for autoscaling resources based on
the arrival rate of requests. In the experiments in this thesis, ATL is set to use the arrival
rate of requests. OWK relies on the Kubernetes horizontal pod autoscaler, which uses the
CPU compute utilization of host machines with a default target utilization of 60%. In
this thesis, this is modified to use GPU compute utilization. Finally, SM* uses compute
utilization, invocations per instance, or a custom metric for its autoscaling policy. For our
experiments, SM* is set to use invocations per instance, which is the number of requests
served by each replica on average.

In order to fairly evaluate and isolate the improvements of the techniques from other
factors, the thresholds for the target metric of the autoscalers are modified to have the
autoscaler use approximately equal amounts of resources in average replicas per second
within 5% of the baseline. Changing this parameter to scale up to more instances generally
improves performance while incurring higher costs, while reducing this generally reduces
performance with lower costs. Meanwhile, the number of replicas that the autoscaler scales
up by is a factor of the number of replicas currently running. Since the techniques used
in Flashpoint reduce cold start durations, this count of running replicas increases rapidly
and causes the autoscaler to scale up to a larger number of instances than the baseline. By
adjusting the threshold of the autoscaler based on the technique, the number of replicas
used in Flashpoint matches that of the baseline and improvements from increased replica
counts are eliminated.

Workloads. An hour-long trace of the Twitter workload [96] and Microsoft Azure
workload [87] are used for the evaluation. The Twitter trace has a median of 57 requests
per second and peak-to-average ratio of 4.68. Meanwhile, the median and peak-to-median
ratio for the Microsoft Azure trace is 18 requests per second and 2.54 respectively. These
public workloads are used due to the lack of public DL inference serving traces. However,
the user-facing nature of the related products are expected to result in similar access
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patterns to low-latency DL services such as ChatGPT and GitHub Copilot. Compared to
the Twitter trace, the Microsoft Azure trace is a low-frequency workload that is used to
illustrate the performance of the system when scaling up from a low number of replicas.

Request Scheduling. As the focus of this work is in autoscaling, we set the default
load balancing protocol to have worker nodes pull from a global queue whenever compute
capacity is available. This load balancing protocol reduces imbalance in comparison to a
round-robin load balancer where older instances have a large number of requests scheduled
while new instances created during a burst have fewer instances scheduled in the worker’s
queue. The load balancing protocol using a global queue represents a well-balanced load
balancing protocol. This protocol improves the performance of Flashpoint and the base-
lines equally. Furthermore, when using model partitioning where parts of the request are
executed sequentially on different machines, the machine does not consume a request from
the upstream machine or queue until its current request is sent to the downstream machine
and it has reserved the necessary resources for the request. This is to prevent slower ma-
chines from accumulating multiple requests while still allowing the machines to collectively
serve multiple requests concurrently.

8.4.1 Evaluation of Individual Techniques

In this section, we evaluate the performance of the individual techniques of Model Par-
titioning (MP), Multicasting (MC) and Locality (LC) compared to the baseline system
(BL) for each of the autoscalers. We use the metrics of average cold start duration and
average end-to-end request latency. The resource usage in terms of average replicas per
second for the different techniques are kept within 5% of the baseline by modifying the
autoscaler threshold. The results show that the improvements provided by the techniques
are consistent among different autoscalers and are more prevalent in larger models.

Fig. 8.9a shows the average cold start duration of individual techniques compared to
the baseline for different autoscalers and DL models for the Twitter workload. Each row
shows the results for the same autoscaler, while each column is for the same DL model.

Comparing different autoscalers, the request rate autoscaler in ATL and the invocations
per instance autoscaler in SM* tend to scale up in bursts along with the request rate as it
reacts to the workload with lagging indicator. Meanwhile, the queue latency autoscaler in
TSK scales up in larger batches because the changes in the target metric is more delayed
than in ATL and SM*. Meanwhile, the GPU compute utilization autoscaler in OWK
is more conservative and over-provisions resources. In addition, with a default target
utilization of 60%, the maximum scale-up ratio of target number of replicas to current

79



0 1 2 3 4

AT
L

3.10
1.41

1.14
0.45

0.34
0.26

CodeBERT
(499 MB)

0 2 4

3.71
2.81

2.14
0.75

0.49
0.36

ALBERT
(890 MB)

0 10 20 30

25.89
13.79

5.82
2.27
1.77

1.01

BART
(1,626 MB)

0 5 10 15 20

15.51
7.58

6.74
2.72

1.99
1.53

DialoGPT
(3,135 MB)

0 20 40 60

54.48
15.98
16.15

7.56
4.20
3.36

GPT-2
(6,282 MB)

0 50 100

106.64
40.51

28.76
10.91
8.81

5.66

T5
(11,408 MB)

0 1 2

TS
K

1.97
1.36

1.03
0.47

0.27
0.26

0 2 4 6

5.12
3.39

2.30
2.35

0.74
0.59

0 5 10

11.04
4.91
4.88

5.54
1.95

1.31

0 5 10 15 20

16.77
6.77
7.30
7.91

3.02
1.34

0 10 20 30 40

33.99
14.91
15.70

14.76
6.23

3.11

0 20 40 60 80

65.00
26.61
27.76

32.02
9.65

5.62

0 2 4 6

O
W

K

4.97
2.04

1.32
0.75

0.61
0.30

0 5 10

9.46
6.89

2.75
2.22

1.04
1.03

0 10 20

21.45
13.03

5.83
5.28

3.28
1.05

0 20 40

40.19
22.32

9.06
7.50

4.13
1.74

0 50 100

103.33
50.45

19.53
10.09
9.10

3.43

0 50 100 150 200

169.64
81.81

35.73
29.46

19.80
5.77

0 2 4

SM
*

3.91
1.87

1.28
0.59

0.43
0.27

0.0 2.5 5.0 7.5 10.0

8.60
6.74

2.71
3.24

1.29
1.14

0 5 10 15 20

16.74
5.09
5.67

7.08
2.91

0.96

0 10 20

21.61
9.29

8.25
10.93

3.10
1.32

0 20 40

44.35
17.42
16.81

22.18
8.04

2.91

0 25 50 75 100

87.80
42.10

30.71
41.67

13.26
5.23

Baseline MP MC LC LC+MC Flashpoint
(LC+MC+MP)

(a) Average cold start durations of techniques.

0.0 0.5 1.0 1.5

AT
L

1.28
1.12
1.10

0.95
0.94
0.93

CodeBERT
(499 MB)

0 1 2

1.73
1.73

1.35
1.04
1.02
0.99

ALBERT
(890 MB)

0 1 2

1.80
1.79

1.58
1.37
1.38

1.18

BART
(1,626 MB)

0 2 4

3.08
3.02

2.03
1.81

1.51
1.35

DialoGPT
(3,135 MB)

0 2 4

4.39
3.30

2.36
1.68

1.54
1.49

GPT-2
(6,282 MB)

0 10 20

20.74
12.85

4.91
1.73
1.60
1.54

T5
(11,408 MB)

0.0 0.5 1.0

TS
K

1.06
0.95

1.02
1.02

0.95
0.90

0.0 0.5 1.0

1.00
0.92
0.97
0.96

0.92
0.96

0.0 0.5 1.0 1.5

1.40
1.24
1.27

1.18
1.17
1.15

0 1 2 3

2.28
1.39
1.46

1.20
1.19
1.16

0 1 2 3

2.43
2.01

1.83
1.38
1.35
1.31

0 2 4

4.44
3.77

1.96
1.50
1.43
1.31

0.0 0.1 0.2 0.3

O
W

K

0.27
0.26

0.25
0.25
0.25
0.25

0.0 0.2 0.4

0.30
0.29

0.25
0.24
0.24
0.24

0.0 0.2 0.4 0.6

0.45
0.38

0.29
0.27
0.27
0.26

0.00 0.25 0.50 0.75

0.72
0.61

0.35
0.27
0.27
0.27

0 1 2

1.72
1.41

0.44
0.32
0.31
0.30

0.0 2.5 5.0 7.5

6.77
3.42

0.61
0.32
0.32
0.30

0.0 0.2 0.4

SM
*

0.42
0.40
0.41

0.38
0.37
0.37

0.0 0.2 0.4

0.43
0.42

0.34
0.32
0.31
0.31

0.0 0.5 1.0

0.95
0.79

0.67
0.55

0.51
0.48

0 1 2

1.52
1.19

0.91
0.59

0.53
0.50

0 2 4

4.33
3.62

2.35
0.96
0.91
0.88

0 5 10 15

13.06
7.78

2.96
1.00
1.02
0.82

(b) Average end-to-end request latencies of techniques.

Figure 8.9: Results for the Twitter workload.

number of replicas is approximately two times, leading to slower scaling up compared
to other autoscalers. Increasing the value of this target utilization reduces the amount
of replicas over-provisioned for the workload but also increases the end-to-end request
latency as fewer machines are available to handle bursts in requests. The opposite occurs
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for reducing this target value.

Across different autoscalers, the results show the different techniques individually reduce
cold start durations with increasing improvements from MP, MC, then LC. For example,
for the T5 DL model using the baseline ATL autoscaler, the average cold start duration
is 3.10 seconds. Meanwhile, for MP, MC, and LC, it is 1.41 seconds, 1.14 seconds, then
0.45 seconds. These are equal to 2.19×, 2.72×, and 6.82× reductions in latency for the
respective techniques. The results show that the mean of the reduction in cold start
durations is 2.12×, 3.09×, and 15.41× for MP, MC, and LC respectively.

Both MP and MC result in similar reductions in cold start durations when using reactive
autoscalers such as ATL, and SM*. This is due to both techniques addressing the network
bottleneck of downloading n full copies of the DL model to n machines and changing it
such that effectively one copy is distributed among the n machines.

In contrast to MC, MP results in shorter cold starts when using autoscalers that batch
cold starts in larger numbers such as TSK. The larger batches enable more machines
to download smaller parts, leading to greater parallelism and earlier starting times for
executing requests compared to waiting to download the full model. Contrary to this, in
the case of the OWK autoscaler, MP provides lower reductions in cold start duration due
to fewer replicas to scale up by and fewer opportunities for parallelism. Meanwhile, LC
outperforms both MP and MC by directly alleviating the network bottleneck from cloud
storage to the compute cluster, leading to greater reductions in the download time for the
DL model.

Fig. 8.9b shows the average end-to-end request latency of the individual techniques
compared to the baseline for different autoscalers for the Twitter workload. Across different
autoscalers, the results show the different techniques individually contribute to latency
reductions with increasing improvements from MP, MC, then LC. The improvements in
average end-to-end request latency are attributed to the reductions in cold start durations.
For example, for the T5 DL model using the baseline ATL autoscaler, the average end-to-
end request latency is 1.28 seconds. Meanwhile, for MP, MC, and LC, it is 1.12 seconds,
1.10 seconds, then 0.95 seconds. These are equal to 1.14×, 1.16×, and 1.35× reductions in
latency for the respective techniques. Taking the mean of improvements across autoscalers
leads to 1.23×, 2.17×, and 4.07× reductions in latency from the baseline for MP, MC, and
LC respectively.

Compared to the trends in average cold start durations, the improvements in average
end-to-end latency are greater for larger models. This is because as the DL model becomes
smaller, the ratio of the cold start duration compared to the inference time becomes smaller.
At this lower level, network overhead requests become more dominant and reduces the
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impact of cold start reductions.

There are also important differences in the improvements in average end-to-end request
latencies achieved by the techniques compared to their average cold start durations. For
example, while MP and MC can offer similar improvements in cold start durations, MP
incurs longer inference times due to additional network transfer delays of intermediate
data between machines while MC does not. This leads to MP providing having longer
average end-to-end latencies compared to MC. In contrast, LC continues to achieve the
best average end-to-end latencies among all techniques in majority of the experiments.

Analysis of Model Partitioning Results
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(a) T5-3B using the ATL autoscaler for the
Twitter workload.
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(b) DialoGPT using the ATL autoscaler for the
Twitter workload.

Figure 8.10: Examples of number of partitions used for scale up actions.

Fig. 8.10 shows the number of partitions used for scale up actions for example config-
urations. These values demonstrate the effect of model partitioning on the performance
of the system. Fig. 8.10a shows the number of partitions used for the T5-3B model using
the ATL autoscaler for the Twitter workload. In this configuration, the average end-to-end
request latency of using model partitioning is 12.85 seconds, while the baseline is 20.74
seconds. This is a 38.04% reduction in latency. Meanwhile, Fig. 8.10b shows the values
for the DialoGPT model. In this configuration, the average end-to-end request latency of
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using model partitioning is 3.02 seconds, while the baseline is 3.08 seconds, leading to a
1.95% reduction in latency.

In comparison, the configuration using the T5-3B model selects a larger number of
partitions, which achieves greater improvements than for the DialoGPT model, which uses
fewer number of partitions. Specifically, over 50% of scale up actions only use one partition
for the DialoGPT model. This is due to the cost of increased execution times being too
large as determined by Flashpoint’s model partitioning algorithm. Therefore, less than
half of the actions can benefit from model partitioning.

8.4.2 Evaluation of Combined Techniques

In this section, we evaluate the performance improvements in cold start durations and
end-to-end request latencies when incrementally combining the techniques in Flashpoint.
We start with the best performing technique of LC, then add MC multicasting. Then, on
top of these, we add automated model partitioning.

Fig. 8.9a also shows the performance of different combinations of techniques in terms
of average end-to-end request latency for different autoscalers and DL models for the
Twitter workload. Meanwhile, 8.9b also shows the average cold start durations for different
combinations of techniques for different autoscalers and DL models similar to the previous
section.

Beginning with locality-awareness (LC) using the ATL autoscaler and the T5 DL model,
the average cold start duration is 0.45 seconds and the average end-to-end request latency is
0.95 seconds. By introducing this technique, the download path of the DL model is made
to be independent from each other, avoiding a network bottleneck from cloud storage.
This is because the source of the DL model parts no longer come solely from cloud storage
and can be other machines in the compute cluster. This route independence relieves the
network bottleneck and improves download times for the DL model.

Then, by adding multicasting to locality (LC+MC), the average cold start duration
becomes 0.34 seconds. This is a 26.18% improvement in duration compared to only using
LC. Network-awareness improves the system’s performance by reducing the amount of
redundant packet transfers from source nodes to multiple receiver nodes when downloading
DL model parts. With the addition of this technique, Flashpoint achieves a average cold
start duration of 0.94 seconds, which is a 0.53% improvement compared to using only LC.

Finally, while both multicasting and locality reduce the download time for initializing
DL model, the time to load the DL model and send it to the GPU then becomes a greater
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proportion of the whole cold start duration. The addition of model partition to Flashpoint
(LC+MC+MP) then addresses this issue by reducing the amount of data that is down-
loaded to the compute cluster and reducing the startup time of each partition in the DL
model. This results in an average cold start duration of 0.26 seconds, which is a 42.67%
improvement. Automated model partitioning also carefully avoids excessive inference time
penalties from transferring intermediate data between GPUs by calculating the optimal
number of partitions to use given the state of the system and workload. The result is an
improvement of 1.55% for an average end-to-end request latency of 0.93 seconds.

Taking the mean of improvements in average cold start durations across autoscalers
and DL models result in a 75.21% and 75.21% reduction for LC+MC and LC+MC+MP
respectively. These then result in respective improvements of average end-to-end request
latencies of 8.22% and 8.22% compared to using only LC.

Together with all techniques, Flashpoint achieves a 93.51% reduction in average cold
start durations compared to the baseline, leading to a 75.42% reduction in average end-to-
end request latencies across DL models and autoscalers for the Twitter workload. At the
99th percentile, the mean reduction in end-to-end request latencies is 66.90%.

Compared to the state-of-the-art, Flashpoint achieves a 78.46% reduction in average
cold start durations and reductions of 20.63% and 19.69% for the average and 99th per-
centile end-to-end request latencies across DL models and autoscalers for the Twitter work-
load.

Fig. 8.11 shows the average cold start durations and average end-to-end request laten-
cies for different techniques for the Microsoft Azure workload. The results show similar
trends as the Twitter workload and reinforces the findings. The improvements are shown
to be greater in the larger workload for Twitter than in Microsoft Azure.

For the Microsoft Azure workload, the mean of improvements in average cold start
durations across autoscalers and DL models result in respective improvements for MP,
MC, LC of 1.95×, 1.73×, 7.93×. These then result in respective improvements of average
end-to-end request latencies of 1.22×, 1.30×, 2.28× respectively. Meanwhile for LC+MC
and Flashpoint (LC+MC+MP), the improvements are 34.86%, and 34.86% for average
cold start durations, and 10.13%, and 10.13% respectively for average end-to-end request
latencies.

Compared to the baseline for the Azure workload, Flashpoint achieves a 87.39% re-
duction in average cold start durations compared to the baseline, leading to a 56.23%
reduction in average end-to-end request latencies across DL models and autoscalers for the
Azure workload. At the 99th percentile, the mean reduction in end-to-end request laten-
cies is 56.67%. Then, compared to the state-of-the-art, the reductions in average cold start
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Figure 8.11: Results for the Microsoft Azure workload.

durations, average end-to-end request latencies, and 99th percentile end-to-end request
latencies are 68.50%, 14.54%, and 11.20% respectively.

Overall, Table 8.1 shows the performance improvements in average end-to-end request
latencies for Flashpoint compared to GPU-enabled FaaS [117] and the baseline system.
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Table 8.1 Percentage improvements in average end-to-end latency for Flashpoint over
GPU-enabled FaaS and the baseline system for different workloads.

Model Size
(MB)

GPU-enabled FaaS Baseline
Azure Twitter Azure Twitter

CodeBERT 499 4.44% 7.24% 17.25% 16.52%
ALBERT 890 6.33% 8.17% 20.79% 27.02%
BART 1,626 14.52% 18.59% 37.44% 37.66%

DialoGPT 3,135 23.72% 26.18% 49.11% 60.05%
GPT-2 6,282 15.99% 19.44% 66.57% 74.12%

T5 11,408 19.08% 36.23% 78.64% 92.79%

These values are gathered by using the ratios of average end-to-end request latency of
the compared system and that of Flashpoint for each autoscaler, then taking the mean
across autoscalers, converted into percentage improvements. For example, the 92.79%
improvement for Flashpoint compared to the baseline system for the Twitter workload
and the T5 DL model means that the average end-to-end request latency for Flashpoint
is smaller than the baseline by 92.79%. In the case of the T5 model for the baseline,
Flashpoint provides greater improvements from 78.64% to 92.79% going from the smaller
Azure workload to the larger Twitter workload. Meanwhile, for the Twitter workload, the
improvements in Flashpoint compared to the baseline increases from 16.52% to 92.79%
starting from the smaller CodeBERT DL model to the larger T5 DL model.

The trends observed are that on average, both larger workloads and larger DL models
show greater improvements for Flashpoint compared to the state-of-the-art and baseline
systems. Larger workloads cause more instances of scaling up, which provides more oppor-
tunities for Flashpoint to reduce cold start durations and reduce average end-to-end request
latencies to a greater extend than other systems. Meanwhile, larger DL models also lead to
longer cold start durations for all systems; however, Flashpoint is able to minimize these
durations also for more scenarios than other systems, leading to greater improvements in
performance. The importance of these trends are described later in Section 8.7. In the
discussion, we examined trends and provided evidence to show that the growing sizes of DL
models and growing demand for such models exceeds the growth in computational power.
These observations highlight the need for employing the techniques used in Flashpoint to
address the future demand for DL models effectively.
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8.5 Resource Consumption

In this section, we describe the resource consumption of the systems in the experiments.
Increasing the overall resource consumption of systems leads to lower average end-to-end
request latencies but at higher costs, and vice versa. Throughout the experiments across
techniques, we maintain resource consumption as a constant to observe the performance
difference between techniques that is not attributable to just increasing the amount of
resources used.
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Figure 8.12: Resource usage ratio for different techniques compared to the baseline

Fig. 8.12 shows the ratio of average number of replicas per second used for each
technique and combination of techniques compared to the baseline across autoscalers and
workloads with a confidence interval of 95%. The metric of average number of replicas
per second is calculated by measuring the time that each replica is reserved until it is
evicted, taking the sum of these across replicas, and then dividing it by the duration of
the workload. The results show that the amount of resources used across autoscalers are
approximately the same within 5% of the baseline system for each configuration.

While the current experiments show that Flashpoint achieves better performance with
the same amount of resources, we also perform a search to identify the amount of resources
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that the baseline systems need to achieve the same performance as Flashpoint in terms of
average end-to-end request latencies. The search is performed by modifying the thresholds
of the autoscaler until the compared systems are within 10% of Flashpoint’s average end-
to-end request latency. For fairness, we keep the average end-to-end request latencies of the
compared systems above Flashpoint, which requires less resources for the compared system.
For the Azure workload across autoscalers and DL models, this results in the state-of-the-
art and baseline systems respectively requiring 13.92% and 30.63% more resources to match
the performance of Flashpoint. Meanwhile, for the Twitter workload, these are additional
resources required of 17.30% and 38.13% respectively. In the case of the T5 model for
the Twitter workload, the additional resources needed for the state-of-the-art and baseline
systems to match Flashpoint’s performance are 18.67% and 53.28% respectively.

8.6 Evaluation Summary

As a summary of all evaluations, including those of individual techniques in the previous
chapters, Flashpoint improves system performance by reducing cold start durations and
end-to-end request latencies. It achieves this through various techniques such as partition-
ing the model to load it in parallel, co-locating download sources in the compute cluster,
and minimizing network congestion. Specifically, Flashpoint improves the system’s cold
start durations and end-to-end request latencies in the following ways for the larger Twitter
workload:

1. Flashpoint decreases DL model loading durations by 7.1× across 6 DL models shown
in Chapter 4. Flashpoint does this through model partitioning, which divides the
model into modular sections and loads them in parallel.

2. Flashpoint reduces download durations by up to 45.8× across the DL models with a
compute co-located replica registry and locality-aware autoscaling shown in Chapter
5.

3. Flashpoint attains near-optimal scaling of cold start durations with respect to number
of concurrent cold starts by reducing network congestion, achieving a 3.3× reduction
of download times at a concurrency level of 4 shown in Chapter 6.

4. Altogether, Flashpoint achieves 93.51% shorter average cold start durations than the
baselines and achieves a 75.42% and 66.90% reduction in average and 99th percentile
end-to-end latencies across DL models and autoscalers compared to baselines.
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5. Compared to the state-of-the-art, Flashpoint achieves 78.46% shorter average cold
start durations than the baselines and achieves a 20.63% and 19.69% reduction in
average and 99th percentile end-to-end latencies across DL models and autoscalers.

6. To match the performance of Flashpoint in the Twitter workload in terms of average
end-to-end request latencies, baseline and state-of-the-art systems require 53.28%
and 18.67% more resources for the T5 model across autoscalers.

7. The evaluations show that the improvements of Flashpoint are greater with larger
workloads and larger DL models. Evidence also supports that growing demand and
DL model sizes exceed growth in computational power, highlighting the importance
of employing the techniques in Flashpoint to address future demand.

8.7 Discussion

Growth in Demand Compared to Computational Power

In this section, we discuss the findings and implications of our evaluations on the perfor-
mance of locality, in comparison to the baseline and state-of-the-art.

The advantages of Flashpoint compared to the other systems are greater with increasing
deep learning model size and larger demand in proportion to the compute capacity of
GPUs per host machine. In recent years, there has been a significant increase in demand
for large language models and growing sizes that support the advantages of Flashpoint.
This evidence includes the rapid growth of users of ChatGPT from release to 100 million
users in just two months [68], growing search volumes for “Large Language Models” [30]. In
addition, the largest model size has observed a growth rate of 15, 000× in 5 years, an annual
growth rate of 6.8× [71]. Meanwhile, the annual growth rate in visits of ChatGPT is 56.11×
for the months of November 2022 to June 2023 [33]. These growth rates are comparably
larger than the 1.7× growth rate in GPU compute power per year in 2018 [103] and even
lower with a longer-than-2-year doubling time reported in 2022 [42]. Meanwhile, the growth
rate of GPUs per server also has a 1.4× growth rate based on the 2-year doubling time
from the release of the 8-GPU DGX-1 system in 2016 [92] and 16-GPU DGX-2 system
in 2018 [97]. These differences in growth rates create a challenge for effectively handling
future large-scale workloads.

To address this challenge, Flashpoint leverages compute cluster locality to overcome the
network limitations of downloading the model from cloud storage and reduces cold start
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durations when the change in the workload exceeds the capacity of GPUs to use cached
data on the corresponding host machine. By distributing the cold start of DL models across
multiple machines, among other techniques, Flashpoint increases the elasticity and end-
to-end request latency performance of serving DL inferences to accommodate the growing
demand for computational power.

For smaller workload volatility that can be handled within a single host machine, Flash-
point’s performance improvements were modest compared to other systems. However, as
the workload size is increased, representing the demands of the future, Flashpoint demon-
strates significant advantages. By effectively utilizing compute cluster locality, Flashpoint
outperforms other systems in terms of cold start durations and end-to-end request latencies
with the same amount of resources used.

In conclusion for this discussion, our study demonstrates that Flashpoint offers signifi-
cant advantages over other systems when the scale of the workload exceeds the capacity of
a number of GPUs per host machine. As the demand for large language models continues
to rise, our system provides an effective solution for handling large-scale workloads and
overcoming the limitations of individual host machines. These findings highlight the im-
portance of considering system-level optimizations and distributed execution approaches
to meet the future demands of large language models effectively.

S3 Cloud Storage and Network Bandwidths

In the experiments, an effective bandwidth of 2,203 Mbps was observed when down-
loading files from S3 from the Lambda Labs test bed in the same region. While other
works have identified methods to parallelize downloads from S3 [67], the improvement
has been shown to be up to 23%. These improvements are likely bottlenecked by other
parts of network bandwidth, such as the bandwidth from the compute cluster to the cloud
storage nodes, which may use public-facing Internet connections. In addition, no further
optimizations on S3 cloud storage based on standard S3 download patterns in commercial
systems use one S3 location [6]. Meanwhile, the effective bandwidth achieved when down-
loading the DL model binary file from other host machines in the Lambda Labs test bed is
7,506 Mbps. Techniques such as jumbo frames with an MTU of 9000 bytes is used. Since
the network interface card has a limit of 50 Gbps, there is room to optimize host-to-host
transfers. Such improvements would yield greater results for Flashpoint.
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Comparison of TCP Chaining and Peer-to-peer Networks

While both TCP Chaining and peer-to-peer networks such as BitTorrent optimize net-
work bandwidth usage within a cluster of machines, this work uses TCP chaining to simplify
the controller state and tracking information. A peer-to-peer network can provide stronger
fault tolerance with further improvements in download durations. For example, in TCP
chaining, the last node in the chain may receive longer first-byte latencies. While other
multicasting protocols can be used, in this paper, we use TCP chaining as a simple protocol
that can demonstrate the impact of improving network utilization in reducing model load
time.

Model Versioning

In this thesis, we identify each Deep Learning (DL) model as separate from other
versions. When updating a model’s layers, the model is treated as a separate replica from
its original version. In this case, the data will be redistributed among the compute nodes
as the requests for the new version arrives to the system.

In comparison, a DL model can be updated by only changing its weights. Updating
the weights of the model is typically done for online learning systems, which are frequently
retrained based on new results. When changing the weights of the DL model, the execution
time is generally unchanged. This enables the reuse of the precalculated partition plans
for each value of x number of requests served in Flashpoint’s model partitioning since the
optimal partition plans depend on only the following properties of the DL model’s layers:
file size, intermediate data size, and execution time.
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Chapter 9

Conclusion

In this work, we have identified and characterized the GPU cold start problem in detail for
Deep Learning (DL) inference serving in GPU-enabled serverless systems. We have then
investigated various solutions and measured their impact on the problem. To tackle the
problem, we introduced Flashpoint, which makes use of automatic model partitioning, re-
mote memory pooling, a compute-colocated distributed registry, locality-aware autoscaling
and network multicasting.

Our results show that, compared to baselines, Flashpoint achieves 93.51% shorter cold
start durations across 6 DL models and 4 different autoscalers. As a result, Flashpoint
achieves 75.42% and 66.90% shorter average and 99th percentile end-to-end request laten-
cies respectively. Alternatively, to match the performance of Flashpoint, state-of-the-art
and baseline systems require 18.67% and 53.28% more resources in the example of the
largest DL model, T5, across autoscalers for the Twitter workload. We also gathered evi-
dence that highlights the importance of employing the techniques in Flashpoint to address
future demand. Through the advancements, Flashpoint creates the infrastructure needed
to support the cost-effective deployment of large DL models with low-latency requirements.
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