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Abstract 

A key feature distinguishing 3D bioprinting from other 3D cell culture techniques is its precise 

control over created structures. This property allows for the high-resolution fabrication of 

biomimetic structures with controlled structural and mechanical properties such as porosity, 

permeability, and stiffness. However, for bioprinting to be successful, a comprehensive 

understanding of cell behavior is essential, yet challenging. This includes the survivability of cells 

throughout the printing process, their interactions with the printed structures, and their responses 

to environmental cues after printing. There are numerous variables in bioprinting which influence 

the cell behavior, so bioprinting quality during and after the procedure. Thus, to achieve desirable 

results, it is necessary to consider and optimize these influential variables. So far, these 

optimizations have been accomplished primarily through trial and error and replicating several 

experiments, a procedure that is not only time-consuming but also costly. This issue motivated the 

development of computational techniques in the bioprinting process to more precisely predict and 

elucidate cells’ function within 3D printed structures during and after printing. 

During printing, we developed predictive machine learning models to determine the effect of 

different variables such as cell type, bioink formulation, printing settings parameters, and 

crosslinking condition on cell viability in extrusion-based bioprinting. To do this, we first created 

a dataset of these parameters for gelatin and alginate-based bioinks and the corresponding cell 

viability by integrating data obtained in our laboratory and those derived from the literature. Then, 

we developed regression and classification neural networks to predict cell viability based on these 

bioprinting variables. Compared to models that have been developed so far, the performance of 

our models was superior and showed great prediction results. The study further demonstrated 



v 

 

that among the variables investigated in bioprinting, cell type, printing pressure, and crosslinker 

concentration, respectively, had the most significant impact on the survival of cells.  

Additionally, we introduced a new optimization strategy that employs the Bayesian 

optimization model based on the developed regression neural network to determine the optimal 

combination of the selected bioprinting parameters for maximizing cell viability and eliminating 

trial-and-error experiments. In our study, this strategy enabled us to identify the optimal 

crosslinking parameters, within a specified range, including those not previously explored, 

resulting in optimum cell viability. Finally, we experimentally validated the optimization model's 

performance. 

After printing, we developed a cellular automata model for the first time to predict and elucidate 

the post-printing cell behavior within the 3D bioprinted construct. To improve our model, we 

bioprinted a 3D construct using cell-laden hydrogel and evaluated cellular functions, including 

viability and proliferation in 11 days. The results showed that our model successfully simulated 

the 3D bioprinted structure and captured in-vitro observations. The proposed model is beneficial 

for demonstrating complex cellular systems, including cellular proliferation, movement, cell 

interactions with the environment (e.g., extracellular microenvironment and neighboring cells), 

and cell aggregation within the scaffold. We also demonstrated that this computational model 

could predict post-printing biological functions for different initial cell numbers in bioink and 

different bioink formulations with gelatin and alginate without replicating several in-vitro 

measurements.  

Taken all together, this thesis introduces novel bioprinting process design strategies by 

presenting mathematical and computational frameworks for both during and after bioprinting. We 

believe such frameworks will substantially impact 3D bioprinting's future application and inspire 



vi 

 

researchers to further realize how computational methods might be utilized to advance in-vitro 3D 

bioprinting research. 
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Chapter 1 Introduction 

1.1 Cancer and 3D Cell Cultures 

Based on the World Health Organization (WHO) reports, the number of cancers diagnoses 

worldwide has nearly doubled in the past two decades, from 10 million in 2000 to 19.3 million in 

2020. Today, it is reported that 20% of people globally will experience cancer during their lifetime. 

It is projected that by 2040, there will be over 50% more people diagnosed with cancer than there 

were in 2020. Breast cancer is regarded as the most prevalent form of cancer in women, other than 

nonmelanoma skin cancer. In the US, 12% of all women are reported to develop breast cancer 

during their lives 1. Breast cancer has proven to be challenging to study in an individual person, 

and therefore, much effort has been made to develop experimental systems to mimic this process 

in vitro. 

Significant advances have been made in cancer biology during the past years, with the support 

of a wide range of cancer models, from traditional 2D cell cultures to in vivo models, both of 

which are essential for the successful discovery of novel therapies in laboratories around the 

world2. Recently, 3D cell culture has been introduced to these traditional cultural methods in order 

to investigate cancer cells in a natural 3D microenvironment more similar to that found in living 

organisms 3. The emergence of 3D cell culture was critical for the advancement of the 

pharmaceutical industry because, even though many pharmaceuticals passed preclinical trials, the 

majority of them failed clinical trials. This could be because the 2D culture model of cancer cells 

does not simulate the 3D in-vivo tumor environment and cellular heterogeneity of a real tumor in 

humans and consequently have a poor ability to predict the clinical influence of therapies 4. For 

instance, in 2D cell culture, most cancer cells are at a similar cell cycle phase, illustrating uniform 
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growth, while cancer cells in vivo are at various cell cycle phases 5,6. As a result, 3D cell culture 

methods are being employed as a prerequisite to preclinical and clinical investigations to better 

predict the toxicity and efficacy of anti-cancer drugs 7. In such cell culture, cancer cells get this 

chance to grow in a 3D microenvironment similar to the extracellular matrix (ECM) of tumors in 

terms of mechanical and biological features 7–9.  Though several 3D cancer models have made 

great advancements so far, like spheroids, which attempt to employ ECM or multiple cell lines that 

are distinctive to tumor microenvironments, they frequently lack spatial and temporal cell 

configuration and fail to simulate tumor heterogeneity. Therefore, drug studies on such models 

lack biological relevance or a high level of pharmacogenetic predictability 3. As a result, there is a 

need to resolve the gap of mimicking tumor heterogeneity within a tumor model in a controlled 

manner. One of the latest 3D biofabrication methods is 3D bioprinting which provides this 

opportunity to customize the fabrication of a 3D in-vivo-mimetic system through predesigned 

computer-aided designs (CAD) 10. This method facilitates accurate control over matrix structure 

resulting in optimal characteristics with modified cellular behavior. In the following sections, we'll 

go through the specifics of 3D bioprinting in greater depth. 

1.2 3D Bioprinting  

3D bioprinting is one of the burgeoning techniques widely applied in regenerative medicine and 

tissue engineering to fabricate complex tissue-mimetic structures simulating human tissues and 

organs. 3D bioprinting can be defined as a technique involving layer-by-layer deposition of (cells-

laden) biomaterials referred to as bioink in a predesigned structural architecture to create human-

like organs or tissues. This technology merges cells, biomaterials, and controlled motor systems 

to develop complicated 3D structures with greater accuracy than any other method used thus far. 

Therefore, the employment of 3D bioprinting in biomedical applications provides the opportunity 
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to fabricate bio-mimetic structures with controlled structural and mechanical properties such as 

porosity, permeability, and stiffness 11–13. These fabricated 3D structures may be designed and 

created in CAD utilizing the complicated geometrical information gained from medical images 

like X-ray images, magnetic resonance imaging (MRI), and micro-computerized tomography scan 

(μ-CT-scan). Applying 3D bioprinting may be of benefit to the biomedical area, including the 

potential for increased accuracy, the formation of personalized patient designs, and the economic 

development of complicated 3D structures rapidly 14,15. Additionally, 3D bioprinting is a potent 

technique which may bridge the gap between the inaccurate in-vitro therapeutic response and the 

in-vivo circumstances for biomedical research, chemotherapeutic responses, and the discovery of 

cancer treatments 16. 

1.2.1. Different Types of 3D Printing Techniques  

Among the available 3D printing techniques, inkjet, laser-assisted, and extrusion-based 

bioprinting are the leading technologies primarily used for the 3D bioprinting of live cells. As can 

be seen in Figure 1.1. a, in inkjet-based bioprinting, solutions with low viscosity, such as colloidal 

solutions or cell suspensions, are precisely deposited as droplets at high shear rates 17. Then, the 

droplets can be solidified either using chemical or photocrosslinking processes. The volume of 

bio-ink droplets can be controlled through thermal or acoustic techniques. In thermal inkjet-based 

bioprinting, droplets are extruded from the printhead using air pressure made by the water 

vaporization when the bio-ink is heated up at the nozzle. The heater increases the temperature of 

the bio-ink slightly, which has been illustrated to have a low impact on the viability of cells. 

Acoustic inkjet printers print through either a piezoelectric actuator or an ultrasonic wave in order 

to form the droplets. This method does not put the cells at risk of high temperatures and pressures 
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related to the heated inkjets. However, acoustic damage to the cell membrane might happen if the 

frequencies are unsuitable 13. 

Laser-assisted bioprinting works by using focused laser pulses directed at a laser-absorbing 

layer on a surface with another layer of bio-ink. The laser absorbing layer sends the laser energy 

to the bio-ink to produce a high-pressure bubble which leads the bioink onto a collector substrate. 

This laser provides high structural resolution regardless of biomaterial's viscosities. Also, since 

laser-assisted bioprinting is a nozzle-less method, no sign of a nozzle-clogging-related problem is 

associated with this technique. However, the issue with this kind of bioprinting is that each cell 

type or material should have its own ribbon that should be interchanged during the printing leading 

to slowing down the overall output 13,18. 

An extrusion bioprinter is a robot-controlled machine that propels bio-ink onto a substrate 

via a nozzle to form a continuous filament. Extrusion printers include a printhead and a bed which 

can be moved in three dimensions. Most extrusion printers also consist of systems for adjusting 

temperature, humidity, and light sources used for photo-crosslinking. The primary components of 

this approach are a syringe, nozzle, and pressure system. The extrusion of bio-ink is frequently 

controlled using pneumatic or mechanical techniques. Pneumatic systems have a simple drive 

mechanism; however, one of the main issues with pneumatic systems is that there can be delays in 

the deposition process due to the time required for gas compression in the system. Mechanical 

systems such as pistons or screws have more control over the extrusion of the bio-ink but have 

smaller and more complicated components which are at the risk of breaking under high pressure13. 
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Figure 1.1 Three major bioprinting techniques: (a) Laser-assisted printing; (b) Inkjet-based printing; (c) 

Extrusion-based printing 19. 

Table 1.1 Comparison between different categories of bioprinting technologies 18. 

 

Performance 
Extrusion 

bioprinting 

Laser-assisted 

bioprinting 

Inkjet 

bioprinting 

throughput Medium Low to medium High 

Spatial resolution Medium Medium to high Medium 

Cell-encapsulation 

control 
Medium Medium to high Low 

Cell survival 40-80% >95% >85% 

Cell density High Medium,108 cells/ml 
Low, 

<106 cells/ml 

Material\ viscosity 
30 mPa.s to > 600 

kPa.s 
1-300 mPa.s <10 mPa.s 

Gelation method 

Chemical, Ionic, 

Enzymatic, Photo 

Crosslinking, Thermal, 

PH 

Ionic 

Ionic, Enzymatic, 

Photo Crosslinking, 

Thermal 

Gelation speed Medium High High 

Print/fabrication speed High Low Medium 

Printer cost Medium High Low 
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Each 3D bioprinting method has its advantages and disadvantages, which are demonstrated in 

Table 1.1. Inkjet-based bioprinters are likely to be relatively low-priced as they can be produced 

with commercially available 2D ink-based printers by adding an electrically adjustable stage. 

However, this type of bioprinters tends to bring cells subject to mechanical and thermal stress, low 

bio-ink directionality, uncontrolled droplet size, high probability of clogging, and inaccurate cell 

encapsulation. Laser-assisted bioprinting has shown high resolution, which makes it a potential 

candidate for printing complicated structures, but they are likely to slow flow rates from the laser-

energy absorbing layer. This deposition method is also expensive, making it unsuitable for basic 

tissue engineering studies. Compared to Inkjet-based and Laser-assisted bioprinting, extrusion-

based bioprinting has become the preferred technique in biofabrication due to its simplicity, low 

cost, and scalability. Additionally, the capability of printing high cell density with high speed is 

another advantage of this method which provides this opportunity to reach required physiological 

cell densities in less time, allowing for more rapid cellular and mechanistic studies. Moreover, the 

multi-material printing capability of extrusion-based printers allows for the fabrication of 

heterogeneous structures, which is one of the essential aspects of bioprinting. This ability is 

particularly essential for applications such as tissue engineering and regenerative medicine, where 

the goal is to create functional tissue models that replicate the complex architecture and 

composition of native tissues 20–22. However, this bioprinting method compared to the other two 

ones, has a lower cell viability. Extrusion-based bioprinting may affect the viability and 

functionality of cell lines due to the shear stress caused by the extrusion procedure. In the following 

section, we will discuss the impact of extrusion-based printing parameters on cellular viability and 

provide a more in-depth review of this issue. 
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1.2.2. Extrusion-based Bioprinting and Its Effect on Cell Viability 

The extrusion-based bioprinting process generally consists of three main phases: pre-

processing, processing, and post-processing 23. In the pre-processing phase, 3D model geometry, 

number of layers, porosity, and material distribution are designed using CAD and Slicer software. 

The specified physical design is crucial in determining the scaffold's mechanical qualities. In 

addition, the bioink components, including appropriate cell types and biomaterials, are selected 

during this phase. To guarantee good cell viability and resolution, viscosity, biodegradation rate, 

biocompatibility, and printability should also be considered 24. During the processing phase, the 

cell-laden bioink is loaded into the printer's cartridge. The structure is then printed by adjusting all 

bioprinter-related parameters, including extrusion pressure, cartridge temperature, bed 

temperature, nozzle size, and extrusion speed. Lastly, in the post-processing phase, before 

incubating the bioprinted structure, they usually need to be crosslinked. This stage is necessary to 

guarantee the structure's integrity and proper mechanical strength. 

Several studies have examined the impact of various bioprinter-related parameters involved in 

the three phases on the printability of bioink, but for 3D printing to be successful, it is essential 

also to evaluate the effects of parameters on cell survival 24. Cell viability is the main problem with 

extrusion-based bioprinters, as the extrusion of the bio-ink out of the nozzle can lead to high shear 

stress that might cause damage to cell membranes. Therefore, optimizing the extrusion-based 

bioprinting process concerning cellular viability is of great importance 25. During the processing 

phase, cells are exposed to a variety of mechanical stresses that have been found to regulate cellular 

proliferation, differentiation, and migration 26–29. This stress can be regulated by several variables, 

such as the pressure system, the size of the nozzle, and the bioink components, including cell types 

and specified biomaterials. 
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In the processing step, pressure is the most critical variable to adjust, as greater shear stress and 

tension is given to cells at higher pressures leading to cell injury. Nair et al.30 have demonstrated 

that the impact of printing pressure on cell survival is significantly greater than that of nozzle size. 

This does not negate the nozzle diameter's influence on cell viability during and after the 

procedure. Nozzle size is mainly important to determine print resolution; however the smaller the 

size of the nozzle, the greater the velocity gradient, shear stress, and ultimately cell injury 31. 

The choice of bioink components is another influential factor in cell viability. The viscosity of 

a bioink is the most vital measure of its resistance to extrusion. The greater the viscosity of the 

bioink, the greater the shear stress at the contact between the nozzle wall and the bioink, which 

can compromise cell membrane integrity and reduce cell survival 32. To minimize shear stress-

induced cellular viability loss, it is common practice in extrusion-based bioprinting to employ 

shear-thinning hydrogels, whose viscosities drop as shear strain increases, leading to higher cell 

survival. The sensitivity of a cell to pressure and shear stress is also dependent on the cell type. As 

an example: When subjected to the same level of shear stress, cells such as L929 fibroblasts, human 

mesenchymal stem cells, and HeLa cells experience less cell damage compared to mice embryonic 

stem cells 33–35. Hence, optimizing cell viability in extrusion-based bioprinting also requires 

carefully evaluating the materials and cell types utilized as bioink. 

1.2.3. Two-Step and One-Step Bioprinting  

In addition to different 3D printing techniques, there are two distinct approaches to 3D 

bioprinting: one-step and two-step 3D bioprinting. One bioprinting approach is a 'two-step' 

biofabrication that involves cell seeding onto the prefabricated scaffold. In this method, 3D 

printing is employed to fabricate precise biocompatible scaffolds with interconnected pore 

networks for culturing cancer cells with adjustable structural properties and composition 16. Using 
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this method results in keeping the shape and the mechanical features of the mimicked engineered 

tissue, which improve cell adhesion and provide the cell with a structure to proliferate into the 3D 

functioning tissues 36,37. However, this method confronts some challenges, such as limited cell 

density, low accuracy in cell placement, repeatability, and inadequate interconnectivity 16. Despite 

all of these challenges, there has been a growing interest in using this method of bioprinting in an 

effort to simulate the cancer microenvironment 38 due to some reasons: 1) being straightforward 

and easy to use; 2) providing researchers with geometrically well-controlled scaffolds in a fast and 

low-cost approach, using different materials such as ceramics, polymers and other cell-stimulating 

factors that make support for the seeded cells. This can provide high-throughput fabrication of 

copies of geometrically well-defined complex structures representing 3D complexity through 

multilayer printing 39–41. In 2007, Fischbach et al.42 constructed a 3D model containing oral 

squamous cell cancer, and they showed highly positive results similar to that of an in vivo model 

by comparing the results of in vitro and vivo 3D models. Since then, porous scaffolds consisting 

of different materials such as collagen, silk, and nanoparticles have been established to imitate 

angiogenesis, tumorigenicity, metastasis, and cancer therapy 43,44.  

The one-step bioprinting technique prints a combination of hydrogel and cells as bioink, 

which is an effective method for producing 3D tumor models. This bioprinting method enables the 

3D patterning of human cancer cells on hydrogel with 3D complexity and control across the 

microenvironment in terms of cell quantities and cell-cell distance 45.  The formation of cancer co-

culture models for studying cell-cell interactions and tumor growth can be accelerated through this 

technique. Despite the fast growth of this bioprinting method, it has some challenges, including 

biological concerns involving cell viability and long-term functionality post printing. This 

technique might have apoptotic influences after and during bioprinting. In vivo, human cancer is 
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a 3D structure including neighboring cells, ECM, and arteries. Recent research on 3D culture has 

illustrated that cancer cells highly interact with their surrounding habitat during cell proliferation, 

angiogenesis, metastasis, and therapy 46,47. Therefore, in-vitro research must simulate cancer cells 

and their adjacent environment. One-step bioprinting involving cancer cell encapsulation within 

hydrogel is one of the most common in vitro 3D culture methods, which can precisely imitate in-

vivo conditions.  Encapsulating cells can provide a valuable tool for studying cellular signal 

pathways, gene expression, angiogenesis, metastasis, as well as chemotherapy response 48,49. 

Recently using multicellular tumor spheroid models has grabbed the researcher's attention to study 

gene expression and cancer treatment 50–52. The spheroid culture was studied for the first time 

approximately 40 years ago, and progressively more refined models have been created to 

accommodate the rapidly expanding field of cancer treatment 53. Jiang et al. 10 reported the 

successful creation of multicellular tumor spheroids (MCTS) of the MDA-MB-231 cell line using 

an extrusion bioprintable hydrogel bioink consisting of ionically crosslinked alginate and gelatin 

hydrogels without applying additional stresses. Cells grown within hydrogels not only interact 

with each other in their neighborhood but also show matrix adhesion 54. 

1.3 Bioink  

One of the significant elements of the 3D bioprinting technology is bioink which acts as the 

delivery and supportive materials for post-printing attachment, growth, and proliferation of the 

cells 55. For the 3D bioprinting of cells and scaffolds in 3D cancer modeling to achieve the required 

native tumor microenvironment, including its biological components and microarchitecture, the 

selection of appropriate bioink materials is essential. Bioink features play a critical role in printing 

an integrated multilayer structure as well as the formation of 3D in-vivo-mimetic systems. Bioinks 

must represent gelation characteristics after extruding from the nozzle and show a rigid 
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construction that should have the sufficient mechanical strength to support the deposition of many 

layers 56. Besides, bioinks must exhibit biocompatibility and be suitable microenvironments for 

live cell accommodation and activations such as cell growth, migration, and proliferation. An ideal 

bioink requires satisfying two critical physical and physiological properties; good printability to 

fabricate a successful multilayer structure with enough fidelity and integrity and representing a 

high cell viability rate post printing 33. Therefore, it should be selected to satisfy these 

characteristics. 

1.3.1 Materials Used in Bioinks 

To choose an appropriate biomaterial for bioprinting a tumor, one must understand the specific 

tumor ECM contents associated with the target cancer type and its tissue. The biomaterial used in 

bioink is crucial to the bioprinting of an accurate tumor model because of its specific chemical and 

physical properties 16. Biomaterials generally employed for 3D bioprinting applications can be 

separated into two classes: natural polymer-based and synthetic polymer-based. Natural 

biomaterials, such as Matrigel, collagen, gelatin, and alginate, consist of naturally derived 

polymers having ECM-like characteristics and a high level of biocompatibility with cells. In 

contrast, synthetic biomaterials are constructed of polymers manufactured in the laboratory, such 

as polylactic acid, polyglycolic acid, and hydroxyapatite. They include characteristics such as 

matrix rigidity, cell alignment, and other physical factors, which are required for 3D scaffolds or 

bioprinted structures to last longer than those made from natural biomaterials, which biodegrade 

at a faster rate 57.  

Hydrogel-based bioinks, whether naturally or synthetically based, are a popular choice due to 

their biocompatibility as well as their ability to offer a well-hydrated microenvironment for cells 

in 3D structures by retaining a large amount of water 58,59. Nevertheless, hydrogels by themselves 
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are frequently excessively soft and unstable to preserve the structure's ideal shape. Crosslinking is 

the method of forming covalent or noncovalent links between polymer chains in a hydrogel in 

order to strengthen its rigidity and endurance.  

1.3.2 Crosslinking Methods of Hydrogels 

Agents for crosslinking may be physical, such as ionic interaction, chemical, such as photo-

crosslinking, or a combination of them. Crosslinking not only increases the hydrogel's rigidity but 

also offers physical stability for the cells, preventing their migration or separation during and after 

the bioprinting procedure 60. 

Ionic interaction is among the most frequently used techniques for the physical crosslinking of 

3D bioprinting hydrogels. Gelation is often induced by adding multivalent metal ions to the 

polymer network. This method of quick crosslinking enables the formation of hydrogels under 

moderate circumstances at room temperature and physiological pH, resulting in a desirable 

crosslinking technique. Nonetheless, it has several disadvantages, including mechanical fragility, 

poor stackability, and the likelihood of cation escape following implantation.  The impact of 

ions on cell viability post printing is an additional problematic aspect. Recent research has 

demonstrated that the survival and proliferative potential of cells encapsulated in hydrogels vary 

with the amount of the cationic crosslinker and crosslinking duration. Indeed, more cations might 

be harmful to cells as the excessive concentration of ions damages the cell membrane, leading to 

an electrolyte imbalance 61–63.  Additionally, the level of sensitivity a cell exhibits in response to 

the crosslinking procedure is also dependent on its kind. For example, numerous cell types, such 

as fibroblasts 64, endothelial cells 65, and chondrocytes 66 were printed within hydrogel-based 

bioink, and each of them exhibited a unique cell sensitivity to the crosslinking procedure.  
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Along with the chemical crosslinking process, photocrosslinking occurs through light radiation 

that comes in the form of ultraviolet (UV), laser, or visible light. UV is the most widely employed 

of all the many types of photocrosslinking methods. Despite the prevalent application of UV 

crosslinking in 3D bioprinting, it poses biological concerns. The use of UV radiation for 

photocrosslinking has the potential to harm the cells of the printed structure. Hence, all 

crosslinking parameters must be tuned for the desired 3D bioprinted systems. Such variables as 

irradiation time, intensity, photoinitiator kind, and amount might affect the rigidity and biological 

activities. Gelatin methacryloyl (GelMA) is among the most broadly applied photocrosslinkable 

polymers in 3D bioprinting. Reduced crosslinking density results in significantly increased 

swellability and wider pores when making GelMA hydrogels, creating more favorable conditions 

for biomolecule incorporation. Unfortunately, the processability of bioinks with low crosslinking 

density is unsatisfactory 60. Consequently, the optimal crosslinking conditions must be chosen to 

achieve a compromise between printability and biological efficiency. 

1.4 Bioprinting Optimization and Computational Approaches 

In general, for 3D bioprinting to be successful in creating functional and viable tissues or 

cancerous tumors, the different bioprinting variables need to be carefully optimized. Currently, 

researchers systematically vary the bioink composition and bioprinting parameters experimentally 

until they accomplish the desired result in order to optimize these factors. However, this strategy 

can be time-consuming, costly, and may not yield the best results. In addition, this approach may 

not completely account for the complex interactions between the various bioprinting factors, 

resulting in suboptimal outcomes. Therefore, more effective and efficient methods like 

computational techniques for optimizing the 3D bioprinting process are required. 



14 

 

Computational methods or in-silico approaches have been used to complement in vitro 

experiments and help resolve some of the limitations of this 3D technique 67–69. Common in-silico 

methods consist of machine learning (ML) techniques and mechanistic modeling. ML models can 

be further classified into subgroups such as deep neural networks, random forests, support vector 

machines (SVM), and tree classifiers 70. Mechanistic models include stochastic and agent-based 

models, discrete models, ordinary differential equations (ODEs), and partial differential equations 

(PDEs) 71. These computational tools can help us develop more effective strategies for optimizing 

bioprinting systems. 

In this research study, we provide a comprehensive study on optimizing bioprinting in two 

stages: during and after printing. At each stage, there are different variables affecting cell viability 

and cell functioning, which need optimization.  

1- During printing, we applied ML algorithms to investigate cell viability based on the 3D 

bioprinting process parameters like bioink formulation and different adjustable printer 

parameters whose relationships and synergistic impacts on cell functions are not well-

understood (Chapter 3).  

2- After printing, we used Cellular Automata (CA) simulation to study the post-printing 

behavior of a population of cells embedded in a 3D bioprinted structure (Chapter 4). 

In the following sections, these computational techniques and their application in 

bioprinting process are discussed in more detail. 

1.4.1 Machine Learning  

Currently, ML is one of the most quickly growing techniques which can play a significant role 

in optimizing a process through smarter and more effective use of required materials and services. 

ML is a subset of artificial intelligence (AI), which lets systems learn and predict according to 
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former experience, which is called a training dataset. ML algorithms require learning from training 

datasets during the training process to update parameters to develop a model. With modified 

parameters, this algorithm can make predictions for a new dataset that the model has not already 

observed 70. Depending on the type of feedback provided to the learning model, ML methods can 

be mainly categorized into four groups: supervised learning 72, unsupervised learning 73, semi-

supervised learning 74, and reinforcement learning 75. Each ML type will be elaborately described 

in the next paragraphs. 

 In supervised learning, which is the most popular ML technique, the algorithm is trained using 

a labeled dataset. The labels of data points are representatives of a specific class that the data point 

belongs to. A supervised algorithm then attempts to determine the decision boundaries, which 

separate different classes of data in order to find the function between the inputs and the labeled 

outputs. So, it is capable of making a prediction of input features based on "desired" outcomes 76. 

Based on whether the labels are discrete or continuous, supervised ML can be subdivided into the 

classification and regression disciplines, respectively. Whereas classification makes predictions 

relies on predetermined classes, regression typically makes predictions according to the 

characteristics of the data. Classification can either be "binary," where only two classes need to be 

predicted, or "multi-classes," where many more classes need to be predicted 77. The most common 

supervised learning algorithms which have been applied in 3D printing technique include k-nearest 

neighbor 78, support vector machine 79, Naive Bayes 80, neural network, linear regression, radial 

basis function 81, convolutional neural network 76,82,83, and decision tree 78.  

Unsupervised ML is implemented with indistinct and unstructured datasets 84. Unsupervised 

ML is more efficient when it has access to more data. Due to the lack of a training and labeled 

dataset, unsupervised learning algorithms must first, using the self-taught rule, learn and extract 
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the features of the inputs to identify naturally existing trends within the training data 76. 

Unsupervised ML can serve as an initial step in identifying significant characteristics of a dataset 

before utilizing advanced supervised ML. Indeed, unsupervised ML can be a powerful tool for 

gaining insights into complex datasets and identifying important patterns or structures that may 

not be immediately obvious 85. These unsupervised ML features have several potential 

applications, such as clustering customers having the same preferences in a business, classifying 

closely related flower or animal species, and recognizing unusual network connections. K-means 

clustering 86 and self-organizing maps 78,87 are examples of this learning method applied in 3D 

printing.  

Semi-supervised ML is a mixture of both supervised and unsupervised ML techniques. During 

training, semi-supervised ML algorithms use a small quantity of labeled data in addition to a great 

deal of unlabeled data. Semi-supervised machine learning is frequently employed to improve 

classification results by incorporating unlabeled data when the available labeled data is limited. 

As the capabilities of ML increase, labeling has moved from being a straightforward procedure to 

a complex and highly professional task. Hence, semi-supervised ML has attracted attention in 

numerous applications by processing quite unlabeled data 74. 

In reinforcement learning, the input data is between unsupervised and supervised learning, 

which can just provide an indication as to whether the algorithm is correct or not 70. This model 

attempts to understand the relationship between input and output by interacting with their 

environment. To boost performance, it does not rely on training data like supervised/unsupervised 

ML does but instead rewards the outcome of actions related to a particular state. In reinforcement 

ML, training steps are repeated to gain better incentives. It needs information produced from 

environments, carefully specified reward and punishment criteria, and adequate computing power. 
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Reinforcement ML can be performed using a Markov decision process that carries out consecutive 

actions in a predefined setting 74. These are distinct from traditional supervised ML, which is 

characterized by a concentration on online performance and does not necessitate familiarity with 

the Markov decision process. Alternatively, reinforcing ML achieves an equilibrium between 

investigating previously unexplored areas and utilizing existing knowledge. All that's needed is 

the present state and action; from there, the reward or penalty can be calculated. This approach is 

influenced by behavioral psychology, and Q-learning and deep adversarial networks are examples 

of this learning method 76,88. 

1.4.2 Application of ML in 3D Bioprinting  

Recently, the application of ML to bioprinting-relevant studies has attracted the researchers' 

attention, and there is a rise in the number of papers published in this area. The application of ML 

in 3D bioprinting can decrease fabrication time and cost and increase the quality of bioprinting to 

satisfy desired purposes. In recent publications, ML methods have been used in the optimization 

of system and bioink 89,90, dimensional accuracy control 91, defect detection in the process of 

fabrication 92, and material features prediction 85. 

As mentioned above, an ideal bioink, in 3D bioprinting, requires satisfying two critical physical 

and physiological properties; good printability to fabricate a successful multilayer structure with 

enough shape integrity and fidelity and a high cell viability rate post printing 33. Based on the 

literature, these two criteria depend on the physicochemical properties of bioink, 3D printer 

parameters, and post-printing treatments. Although there are many studies that have investigated 

the optimization of bioink printability and viability by doing rheological measurements 93–95, 

mathematical simulation on bioink flow 95, and image analysis 96, researchers still require to do 
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trial-and-error experiments in order to bioprint a 3D structure with good characteristics. Hence, 

there is an increasing need to find a smart and fast technique for optimizing an ideal bioink.  

Several studies have tried to develop different ML-based techniques to optimize the printability 

of bioinks. For instance, Lee et al. 97 utilized inductive logic programming (ILP) and regression 

analysis to create a printable bioink. They used different forms of natural collagen and 

atelocollagen in combination with hyaluronic acid and fibrin to create a variety of bioink 

formulations. Using ML, they could find a correlation between the mechanical characteristics of 

bioink and its printability; more specifically, a higher elastic modulus resulted in better shape 

integrity and that extrusion could happen below the threshold yield stress. From this correlation, 

they used multiple regression analysis to develop many formulations of bioinks that maintained a 

high degree of shape accuracy while printing. Another study used a Bayesian optimization 

algorithm to fine-tune the printability of bioinks consisting of GelMA and hyaluronic acid 

methacrylate for extrusion-based bioprinting. This study optimized bioink in terms of layer 

stacking and filament morphology by changing GelMA composition, ink cartridge temperature, 

printing pressure, speed, and platform temperature 55. Similarly, using ML methods, Bone et al. 98 

attempted to systematically maximize the shape fidelity of printed alginate-based scaffold based 

on print speed, flow rate, alginate concentration, and nozzle size.  

Cell viability is one of the most critical factors in 3D bioprinting. The main objective of 3D 

bioprinting is to create functional tissues, organs or tumours, which require living cells to grow, 

proliferate or differentiate into specific tissue types. The viability of cells in 3D bioprinting 

determines the success of the printing process and the functionality of the printed construct. Hence, 

it is important to optimize the printing conditions to maintain high cell viability and ensure the 

success of the 3D bioprinting process. However, despite the importance of cell viability, the effect 
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of this factor on bioprinting success is often undermined. To the best of our knowledge, only a few 

studies have been working on applying ML algorithms to study the effect of 3D bio-printing 

parameters on cell viability. Therefore, the relationship between these parameters with cell 

survival rate is not yet well-defined.  

For instance, Xu et al. 99, created an ensemble learning model to predict cell survival in 

stereolithography-based bioprinting. The model achieved a high level of accuracy, as evidenced 

by R2 of 0.953 when tested on 10% of the dataset. This score indicates that the model is well-

suited for predicting the viability of cells when given new parameter combinations. In a recent 

study, Tian et al. 100 also studied the capability of ML regression and classification approaches in 

predicting the survival of cells and the printability of cell-containing alginate and gelatin-based 

bioinks. To do this, they collected a dataset on bioink material content, solvent 

utilized, crosslinking data, printing settings, survival rate, and printability results from various 

bioprinting laboratories published in the last 13 years. This research compared three regression 

models (support vector regression, linear regression, and random forest regression) and three 

classification models (random forest classification, logistic regression classification, and support 

vector machines). The random forest models yielded the highest R2 in regression and prediction 

accuracy in classification, compared to other models. Additionally, based on feature importance 

evaluation through decision, Printing pressure, particular material concentration, solvent selection, 

nozzle size, and printing temperatures were found to have the most influence on cell survival 

predictions. Results taken from this study illustrate how ML models could be useful for 

experimental design in bioprinting. 

Despite these studies, research analyzing the characteristics associated with cell viability and 

proliferation in bioprinting is inadequate due to the lack of a comprehensive understanding of how 
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cell viability and proliferation are affected in the bioprinting process. Hence, the next stage in the 

use of ML in bioprinting appears to be integrating cellular parameters and predicting cellular 

performance in bioprinted structures. 

Despite the availability of a few studies on the subject, our understanding of the bioprinting 

factors that affect cell viability and our ability to optimize the bioprinting process remain limited. 

To leverage the full potential of ML in bioprinting and advance the field towards more complex 

and functional bioprinted tumor models, tissues, and organs, more efforts should focus on 

integrating bioprinting process with ML approaches and developing models to predict cellular 

performance. 

1.4.3 Cellular Automata Modeling  

CA is a type of mathematical model, under the larger framework of agent-based modeling, used 

to study the behavior of complex systems, particularly those that evolve over time. In CA, the 

system is spatially and temporally discretized. In addition, the system is represented as a grid of 

cells or elements, each of which has a state and a neighborhood. The state of each cell can change 

over time and be updated at discrete time intervals in accordance with a set of rules that specify 

how the state of a cell is dependent on its present state and the state of its surrounding elements. 

This allows the system to evolve in a dynamic and frequently unexpected manner over time 101. 

CAs have been used to simulate a variety of phenomena, including physical systems, biological 

systems, and social systems, and they have applications in domains including physics, biology, 

computer science, and economics. Neighborhoods refer to the set of elements that interact with a 

certain element. Von Neumann and Moore neighborhoods are the two most common 

neighborhoods in CA. A cell's first-order von Neumann neighborhood is composed of the four 

elements directly adjacent to it, the cells sharing an edge with the cell of interest 102. A cell's first-
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order Moore neighborhood includes the eight cells immediately adjacent to it. First-order and 

second-order Von Neumann and Moore neighborhoods are illustrated in Figure 1.2. More detailed 

aspects of CA modeling are described in Chapter 4.  

 

Figure 3 (A): First (R=1) and second (R=2) order Moore neighborhood; (B): First and second order Von 

Neumann neighborhood 103. 

1.4.4 Application of Cellular Automaton Model in 3D Bioprinting  

As discussed previously, cell culture experiments are experiencing a switch from a traditional 

2D system to a 3D culture, which provides researchers with more realistic representations of in 

vivo cell behavior. Indeed, these 3D methods incorporate important aspects of cellular habitat, 

including a non-uniform microenvironment, complex interactions of cells with their neighbor cells 

and with local ECM, as well as more complicated diffusion processes of nutrients and oxygen. 

Thus, these methods can be used to better represent insights into cell growth mechanisms and 

provide a closer prediction of the real system. However, these complexities make the experimental 

design as well as data collection more complicated, so there are several issues that require to be 

addressed in these 3D culture methods. Computational modeling can be considered a good 

complement to the in-vitro experiments and can assist in addressing some of the limitations of 3D 

method settings 68,104. For example, in 3D bioprinting method, simulation of cellular behavior 

cultured within the hydrogel helps by providing researchers with more insights into cell activities 

during or after the bioprinting. In addition, it allows them to predict cellular behavior in this process 
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and optimize the cellular microenvironment to better simulate the in-vivo ECM, saving more 

money and time.  

CA modeling has been widely used in recent years to investigate different cancer cell 

mechanisms based on different static automaton rules 105. For instance, Cui et al. 54 used CA 

modeling to simulate and compare cancer cell spheroids' formation in two environments; microgel 

scaffold and suspension. In their model, cells behave based on the rules for movement, 

proliferation, and death and could simulate the experimental results of size distribution and 

spheroid formation rate in both environments. The CA model suggested an important effect of 

initial cell density in the formation of spheroids and their features, such that more initial cells 

caused larger spheroids and more variability in their size, which was shown to be more pronounced 

for cells within the microgel scaffold compared to the suspension cultures. Additionally, in another 

recent study, Cortesi et al. 106 introduced a ScAffoLd SimulAtor (SALSA) as a computational tool 

to study the cellular behaviors of two types of breast cancer cells (MCF-7 and MDA-MB-231) 

cultured in a 3D system. SALSA was used to investigate both the cellular (such as position, status, 

and behavior) and the local microenvironmental (such as concentration of glucose and oxygen, as 

well as stiffness of the scaffold) of relevant properties. The results illustrated that combining 

experiments and computational modeling could modify the study of complicated cell culture 

within the 3D scaffold, representing more complete data and tools for researchers to do 

experimental screening and optimization. The promising results of these studies motivated us to 

apply the CA model in 3D bioprinting method for the first time to study the behaviors of a 

population of arbitrary cancer cells encapsulated and grown in a 3D structure.  
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1.5 Motivation and Scope of the Thesis 

As discussed above, extrusion-based bioprinting is a 3D bioprinting technique that has made 

significant progress in recent years; however, it has its particular challenges. Various variables are 

involved in the bioprinting process that can influence printing quality and cell behavior during and 

post printing. Hence, depending on the intended purpose of bioprinting, it is essential to carefully 

consider and optimize different variables to ensure successful outcomes. This optimization can be 

categorized into two stages: during and after printing. 

During the printing, variables such as material choice, cell type, printing settings, and post-

printing treatments must be optimized for optimal cell viability and functionality. Optimization in 

this stage is typically accomplished by replicating numerous trial-and-error experiments in 

research laboratories, a tedious and costly procedure. To overcome this challenge, in this study, 

we developed Neural Networks to predict cell viability based on a variety of effective 

characteristics for both classification and regression purposes. In addition, we utilized a Bayesian 

optimization model to inversely determine the optimum global value of the selected 

bioprinting variables that would result in the highest cell viability during the printing process. To 

achieve this, we combined the data collected in our laboratory under various experimental 

conditions with acquired data from previously published bioprinting research to create a dataset to 

train and test our neural network models. 

After the printing, cells' behavior, including proliferation and viability, is influenced by a 

variety of factors, such as initial cellular density in bioink, cell-cell interactions, cell-

microenvironment interactions, and source diffusion. As the cells are embedded in a 3D structure, 

it is challenging to measure these factors experimentally, particularly over an extended period of 

time. Therefore, it is difficult to obtain insight into the cell dynamics within a 3D bioprinted 
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structure without costly and time-consuming experiments. To address this issue, we developed a 

CA model for the first time to simulate post-printing cell behavior within the 3D bioprinted 

construct. To improve our model, we bioprinted a 3D construct using cell-laden hydrogel bioink 

and evaluated cellular functions, including viability and proliferation in 11 days. Using this model, 

researchers can simulate the dynamics of cells within a 3D bioprinted structure, study the effect of 

various variables on cellular functions, and optimize these variables to accomplish the desired 

cellular behavior more efficiently and cost-effectively. This thesis is structured as follows: 

Chapter 2 introduces and discusses some of the experimental research methods and 

computational and mathematical methodologies applied throughout this study. In Chapter 3, we 

present ML algorithms for optimizing the bioprinting process during printing. In Chapter 4, we 

introduce the integrated CA model with the bioprinted tumor model to predict and elucidate the 

post-printing behavior of 3D-printed cancer cells in hydrogel structures. In Chapter 5, we present 

the conclusion of the findings drawn from this study. This chapter provides a comprehensive 

overview of this study's contributions to the field of bioprinting and recommends prospects for 

future research in this area. 

 This thesis partly adapts the publication “Mohammadrezaei, D. et al. Predicting and elucidating 

the post-printing behavior of 3D printed cancer cells in hydrogel structures by integrating in-vitro 

and in-silico experiments. Sci. Rep. 13, 1–13 (2023)” 107.   
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Chapter 2 Method Background 

2.1 Introduction 

This chapter outlines the methodology used for this thesis, which is divided into two discrete 

sections: in-vitro studies and computational studies. The in-vitro studies consist of cellular assays 

and bioink characterization, which provide a good understanding of the cellular behavior and 

material properties in the bioprinting procedure. The computational techniques utilized in this 

study include the development of a neural network to predict cell survival during the bioprinting 

based on various variables in this process. In order to prevent overfitting and assure the reliability 

of our models, we also employed regularization and cross-validation techniques. We also used      

Bayesian optimization to optimize the system and determine the global optimal parameter 

combinations for the highest viability. A comprehensive explanation of these techniques is 

provided in this chapter. In addition, we elucidated and predicted the cellular behavior within the 

3D-printed structure after printing using CA method, whose methodology and specifics are 

described in Chapter 4 and Appendix 2.  

2.2 In-vitro Studies 

2.2.1 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay 

The colorimetric measurement of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide (MTT) was initially invented as a fast technique for measuring the growth and viability of 

mammalian lymphoma cells 108. The respiratory chain and other electron transportation networks 

decrease MTT as well as other tetrazolium compounds inside the cell, producing non-water-

soluble violet formazan crystals 109. A spectrophotometric assessment of the concentration of these 

crystals provides an approximation of the sample's mitochondrial content and, therefore, its cell 
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viability. These properties can be used in cytotoxicity and cell proliferation experiments, which 

are common methodologies in the fields of immunology, toxicology, and cell biology 110. 

2.2.2 Ki67 Immunohistochemical Assay 

Ki67 is a type of protein that is produced in every mammalian cell throughout the growth cell 

cycle but is greatly suppressed in the G0 phase. Because of this property, Ki67 has become an 

important biomarker for evaluating proliferation in clinical samples. The Ki-67 proliferative index 

is a well-characterized indicator of breast cancer progression and is the proportion of proliferating 

cells relative to the overall number of cells. The measurement of the Ki-67 proliferative index 

involves the use of immunohistochemistry, a technique that uses specific antibodies to detect and 

visualize the Ki-67 protein. In this technique, the sample is treated with the primary Ki-67 

antibody, which binds specifically to the Ki-67 protein present in the proliferating cells. Afterward, 

a secondary antibody, labeled with a visible marker, is introduced to bind to the primary antibody 

which highlights the locations of the Ki-67 protein in cells, allowing for visualization under a 

microscope 111. To calculate the Ki-67 proliferative index, the number of ki-67 positive cells is 

counted, and this count is divided by the total number of cells present in the same sample. The 

result is then expressed as a percentage, representing the proportion of proliferating cells. 

2.2.3 Calcein AM and Propidium Iodide  

Calcein AM (CAM) is a non-fluorescent dye that, inside living cells, is rapidly degraded by 

esterases, converting into the bright green fluorescing calcein 112. Therefore, cells lacking these 

esterases will not be able to convert CAM to calcein, preventing them from producing fluorescing 

green. This facilitates the rapid and straightforward analysis of samples for the presence of 

metabolically active cells. 
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Propidium iodide (PI) is a red fluorescent dye that cannot enter living cells due to their intact 

membranes but can enter non-living cells with damaged membranes, such as dead or dying cells. 

PI interacts with DNA and emits red fluorescence when excited by specific light wavelengths 113.  

Therefore, CAM and PI can be used together to assess a sample's viability by counting the 

proportion of metabolically active (green fluorescent) cells to those that are not viable (red 

fluorescent) when observed by fluorescence microscopy or flow cytometry. 

2.3 Rheological Properties of Bioinks 

In bioprinting, the rheological properties of bioinks determine their printability and ability to 

retain their morphology after printing. In general, there are two categories of fluid rheology: 

Newtonian and non-Newtonian fluids (Figure 2.1). In contrast to non-Newtonian fluids, 

Newtonian fluids' viscosity does not correlate with shear rate. Non-Newtonian fluids do not follow 

Newton's principle of viscosity and can behave differently when subjected to shear strain. The 

features of non-Newtonian fluids allow for three distinct categories: Bingham, shear-thinning, and 

shear-thickening. For instance, in Bingham polymers, like toothpaste, shear stress and shear rate 

are linearly related, however, yield stress is required to initiate its flow. In contrast, shear-thinning 

fluids exhibit a decrease in viscosity as the shear rate increases 114.  

Typically, bioinks are non-Newtonian fluids, with many displaying shear-thinning behavior. 

This enables them to be extruded through small nozzles during the 3D printing process with 

minimal impact on the cells while retaining their structure without collapsing after extrusion. 
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Figure 2.1 Relationship between shear stress and shear rate for various types of fluids. 

2.4 Computational Studies 

2.4.1 Multi-layer Perceptron Neural Network  

One of the purposes of the proposed work is the classification and regression application of 

multi-layer perceptron (MLP) neural networks. An MLP neural network is a feedforward neural 

network that employs the backpropagation learning approach utilizing gradient descent, in order 

to optimize its weights. In MLP neural network, the input layer of nodes is followed by one or 

more layers of hidden layers of neurons that process the data and perform iterations and an output 

layer that estimates the output (Figure 2.2) 115. 
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Figure 2.2 Artificial neural network structure. 

Each node in a layer is linked to every node in the preceding layer, and the links are associated 

with weights that are adapted during training  116. The weights in input neurons are used to generate 

the output by applying a nonlinear activation function. The perceptron computes a linear 

combination of multiple real-valued inputs to produce an output neuron. This computation can be 

expressed using the following equation 117: 

𝑦 = 𝜑(∑ 𝑤𝑖𝑥𝑖 + 𝑏𝑛
𝑖=1 ) = 𝜑(𝑤𝑇𝑥 + 𝑏) 

Here 𝑥, 𝑤, 𝜑, n and 𝑏 denote the input vector, weight, activation function, number of input 

neurones and bias, respectively. Numerous nonlinear activation functions include ReLU, Sigmoid, 

Tanh, softmax, and others. In most cases, the activation function used on the output layers will 

differ from those used on the hidden layers. The selection of the activation function relies on the 

expected output value range and the problem kind. For example, in a binary classifier, typically, 

there is only one neuron in the output layer, and its value is between 0 and 1 to indicate the level 

of certainty that the input vector corresponds to one of two classes. Likewise, in the multi-class 

classifier, the number of output neurons is equal to the number of classes, and the output neurons 

reflect the probabilities of an input vector belonging to a specific class. As a result, a distinct 



30 

 

activation function is employed, as the output neurons must add up to 1. Therefore, the "softmax" 

function is the most frequently employed activation function for the output layer neurons. For this 

reason, "softmax" is the most popular activation function for neurons in the output layer. 

Notationally, if  and denote the input vector, and lth layer of  , and  represents 

the lth layer's activation function, then the lth layer's value of the network is calculated as 

 

     Meaning that each layer's value is calculated by using the layer's weights and biases in 

conjunction with the output of the preceding layer and then putting this information into the 

activation function. So, finding the neural network's output for a given input vector is quite 

straightforward, given a set of weights and biases. 𝑊(𝑙) is a weight matrix in lth layer, with the 

shape (output neurons, input neurons), where output neurons represent the number of hidden units 

or number of neurons in the following layer, and input neurons represent the number of neurons 

in the input layer or previous layer that fits 𝑎(𝑙−1).The challenge of ML, thus, is to establish 

appropriate values for these weights and biases. Backpropagation comes into action at this point. 

Backpropagation is a frequently employed training strategy for neural networks that relies on a 

loss function and optimization algorithm. Backpropagation commonly selects starting weights and 

biases from Gaussian data 118 and trains them using stochastic gradient descent optimization. 

There are different loss functions that can be implemented in neural network training. The mean 

squared error (MSE) function is among the most often employed loss functions for regression 

tasks. It determines the average squared error between predicted and actual output. The MSE loss 

function is calculated as: 
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Where  represents the sample size,  represents the actual output, and  represents the 

predicted output. Typically, the categorical cross-entropy function is applied to classification tasks. 

It quantifies the difference between predicted and actual class probabilities. The definition of the 

categorical cross-entropy loss function is: 

 

It is important to note that the categorical-cross entropy loss function is only used here if the 

activation function of the last layer is the "softmax" function that assures a loss function with a 

positive, real-valued sign. 

To reduce this loss function, numerous optimization procedures can be utilized, although 

stochastic gradient descent variations are the most common. The purpose of the training procedure 

is to calculate the gradient of the loss function in regard to the neural network's weights and biases. 

Automatic differentiation is utilized to calculate a numerical gradient for each training sample. 

Then for a specific learning rate ( ), the weights in the neural network are adjusted using the 

backpropagation algorithm. The algorithm consists of the following steps: 

1- Pass the input  through the neural network. 

2- Calculate the error  for the output layer using the following equation:  

 

Where ⊙ denotes element-wise multiplication,  is cost function, 

, ,  is the activation function, and  is the gradient 

of the loss function with regard to the output. 

3- Backpropagate the error δ from the output to the input layer by computing the error for 

each layer using the equation below: 

 

Where  is the weight matrix of the next layer,  is the error of the next layer, 

and  is the weighted sum of inputs for the current layer. 
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4- Compute the cost function's gradient with regard to the weights and biases using the 

following equations: 

 

 

Where  is the cost function,  is the activation of the previous layer, and  is 

the error for the current layer. 

5- Update the weights and biases using the following equations: 

 

 

Where  is the learning rate.  

These steps are repeated for each training example in the dataset for a certain number of epochs 

until the weights and biases converge to a minimum of the cost function. 

The stochastic gradient descent technique calculates gradients by randomly dividing training 

data into batches of a predetermined size. Using backpropagation with fixed weights, gradients are 

computed for each batch. Following this, the gradient technique is used to fine-tune the weights, 

but this time the learning rate is . This procedure continues until all training data is processed, 

which represents one learning epoch. Generally, training continues for a number of epochs until 

the loss function stops diminishing or reaches a minimum amount. The Adam optimizer is a 

popular form of stochastic gradient descent that adjusts the learning rate for each parameter based 

on the mean and standard deviation of recent gradients for the weights 119. 

2.4.2 Regularization 

Overfitting is a common problem in ML where a model becomes overly complex and starts to  

memorization of the training data, leading to poor generalization accuracy on new, unseen data. 
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Overfitting has three major causes: First: noise in the training data, which can arise when the 

training data is too small or contains too many irrelevant features. This circumstance makes it 

likely that the noises will be learned and subsequently act as the foundation for predictions. Thus, 

a properly operating algorithm must be capable of distinguishing between representative data and 

noise 120. Second: the model's complexity can result in a bias–variance trade-off. When there are 

too many inputs into a model, it can become more accurate on average but less consistent across 

various datasets. Third: Multiple comparison techniques, which are prevalent in induction and AI 

algorithms 121. Throughout these procedures, we regularly analyze various evaluation 

metric scores and pick the one with the highest score. Nevertheless, this can lead to the selection 

of items that do not increase prediction accuracy. 

Regularization is one of the techniques used to prevent overfitting by incorporating a penalty 

factor to the model’s objective function that is attempting to optimize. This factor motivates the 

model to learn simpler and more generalizable patterns. There are several common regularization 

techniques used in ML, including L1 and L2 regularization, as well as dropout regularization 121. 

L1 regularization, which is also referred to as Lasso regularization, introduces a penalty to the 

objective function that is proportional to the absolute value of the model's weights. This penalty 

term encourages the model to learn sparse feature representations, which can be useful in situations 

where feature selection is important.  

 

L2 regularization, which is also referred to as Ridge regularization, introduces a penalty factor 

that is proportional to the square of the model's weights. This penalty term motivates the model to 
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learn small weight values, which aids in eliminating overfitting by reducing the model's sensitivity 

to small fluctuations in the training data. 

 

The factor of 1/2 is multiplied to simplify the gradient term 122. 

Regularization strength (also known as the regularization parameter or lambda value) controls 

the impact of the penalty term on the model's loss function. The effect of the regularization strength 

on the model's performance and the sparsity of the generated coefficients depends on the specific 

problem and dataset employed. Increasing the regularization strength can assist in enhancing the 

model's generalization performance by reducing overfitting, but it may also raise the model's bias. 

Increasing the regularization strength can also lead to sparser coefficient values, as the penalty 

term encourages parameter values to be closer to zero. However, if the regularization strength is 

too high, the model may become overly simplistic and underfit the data. Typically, the best 

regularization strength for a particular problem and dataset is determined by trial and error and 

model selection techniques, such as cross-validation. 

Dropout is another popular technique commonly employed in deep neural networks to prevent 

overfitting. This technique involves temporarily "dropping out" or setting a random subset of the 

neurons in a layer to zero during training. This approach is aimed at reducing the network's 

dependence on specific neurons and promoting the learning of more robust features that are useful 

for making predictions, even when some of the neurons are missing. Dropout can be applied to 

any layer in a neural network, but it is usually applied to fully connected layers. The probability 

of dropout is typically set between 0.2 and 0.5 during training. By randomly dropping out neurons 
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during training, the neural network is forced to learn more generalized features and reduce the risk 

of overfitting the training data 123.  

The choice of regularization technique will depend on the specific requirements of the model 

and the dataset. While both L1 and L2 regularization can help to prevent overfitting, L2 

regularization has several advantages over L1 regularization 122. One advantage of L2 

regularization is that it tends to produce smoother and more stable models than L1 regularization. 

This is because the penalty term in L2 regularization is proportional to the square of the weights, 

which means that small changes to the weights impact the objective function less than they do in 

L1 regularization. However, if feature selection is important and the dimensions of the data are 

high, L1 regularization may be preferred. It is also common to use a combination of both 

techniques, known as Elastic Net regularization, to balance the advantages of both L1 and L2 

regularization 124.  

Overall, regularization is a fundamental aspect of building effective and reliable machine 

learning models. By choosing the appropriate regularization technique, developers can produce 

models that are better suited for their specific applications and that can generalize well to new, 

unseen data. 

2.4.3 Cross Validation 

Cross-validation is a widely used statistical technique in machine learning and data analysis to 

measure the performance of a predictive model. The purpose of cross-validation is to estimate how 

well a given model can generalize to new, unseen data. The primary idea is to partition the 

available data into two separate subsets: a training set that is utilized to train the model, and a 

validation set, that is utilized to evaluate its performance. However, a single split of the data into 
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training and validation sets may result in a biased estimate of the model's performance, as the 

choice of the split may impact the model's capability to generalize to new data. 

K-fold cross-validation is a popular method to address this issue. It involves splitting the data 

into K equal-sized folds, where K is a user-defined parameter typically set to 5 or 10. The model 

undergoes training on K-1 folds and is validated on the rest of the fold; this procedure is carried 

out K times, with each fold functioning as the set for validation once. The results are then averaged 

over the K folds to obtain a further reliable measure of the model's performance. 

Optimizing the value of K is important to balance the bias-variance trade-off. A small value of 

K (e.g., K=2) may result in a high bias estimate, as the model is trained on a small subset of the 

data. On the other hand, a large value of K (e.g., K=10) may result in a high variance estimate, as 

each fold may contain a small number of samples, leading to instability in the estimated 

performance. In practice, values of K between 5 and 10 are commonly used. 

Using k-fold cross-validation can aid in eliminating overfitting and enhance the model's 

generalization performance. By estimating the model's performance on unseen data, cross-

validation can help identify whether the model is overfitting to the training data or can be 

generalized to new, unseen data. It can also be used to tune the model's hyperparameters, such as 

the regularization parameter in L2 regularization, to improve its performance on new data 124. 

2.4.4 Bayesian Optimization 

Bayesian optimization is a technique of optimization that employs a probabilistic model to 

optimize objective functions like black boxes that might be unknown, noisy, or 

expensive. Bayesian optimization tries to determine the objective function's global optimum in a 

few steps by incorporating prior beliefs about the function and updating this prior belief with new 

samples derived from the function to produce a posterior that more closely approximates the 
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objective function. It is also beneficial when evaluations are costly or when the 

questioned problem is non-convex 125.  

Bayesian optimization uses a probabilistic surrogate model to approximate the objective 

function and a Bayesian technique to update the surrogate model according to observed function 

evaluations. A surrogate model is used for predicting the objective function at unexplored points, 

and an acquisition function is utilized to determine the next point to be evaluated 125. Bayesian 

optimization has been effectively implemented in numerous applications, such as hyperparameter 

tuning of ML models, optimization of costly simulations, and drug discovery 126. 

Bayesian optimization is comprised of two primary elements: a statistical model for conveying 

hypotheses about the back-box function and an acquisition function for determining next 

promising points to evaluate. 

The Bayesian optimization model algorithm is as following 127: 

1- Apply a prior distribution to the black-box function f(x), typically a prior based on the 

Gaussian process.  

2- Select typically randomly n=𝑛0 initial points 𝑥1, 𝑥2,..., 𝑥𝑛0from the domain of interest. At 

these points, evaluate the function f(x) and derive the outputs 𝑦1, 𝑦2,..., 𝑦𝑛0. 

3- Repeat steps 4 to 7 for n = 𝑛0 + 1, 𝑛0+ 2,…,N until the budget for N function evaluations 

is achieved. 

4- Update the Gaussian process model of the function f(x) utilizing the collected data so far, 

which generates a posterior distribution on each f(x). 

5- Use the determined acquisition function, which optimizes exploration and exploitation of 

the function space. The selected acquisition function maximizes the trade-off between 
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exploring unexplored regions of the function space and exploiting promising areas. This 

optimization method attempts to reduce the number of objective function evaluations. 

6- Optimize the acquisition function to identify the subsequent point 𝑥𝑛 at which to compute 

the function f(x).  

7- Estimate the function f(x) at the selected point 𝑥𝑛 and calculate the output 𝑦𝑛. Incorporate 

this point into the list of assessed points and update the Gaussian process model. 

In the end, the point with the highest observed or predicted output value can be selected as the 

solution. Standard Bayesian optimization for a 1D problem is depicted in Figure 2.3. During each 

iteration, the maximum of the acquisition function shows the next most viable point, based on the 

mean and variance of predictions across the space, to evaluate using the objective function. After 

updating the Gaussian process model using the new data, the procedure is repeated for the 

subsequent iteration 125. 
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Figure 2.3 A Bayesian optimization procedure in four iterations (t) for a 1D problem. The figures depict 

true values of observations of the objective function f(x) at two sites (black dots) at t=2, and the dashed 

line is indicative of the true f(x). The solid black line represents the approximates of the f(x), the posterior 

mean of the Gaussian process, while the shaded area represents the posterior mean +/-standard deviation. 

The acquisition function is also depicted in the shaded graphs located below. Prioritizes regions with high 

predicted objective function values (exploitation) and high prediction uncertainty (exploration). 

Therefore, locations possessing both characteristics are sampled first. However, the area on the far left is 

not sampled, despite its high degree of uncertainty, because the algorithm predicts it will not increase f(x) 

to reach the highest observation 128. 

2.4.4.1 Gaussian Processes Regression 

A Gaussian process is a stochastic process with an unlimited number of dimensions that is 

defined by expanding the concept of a multivariate Gaussian distribution. In this process, any finite 

combination of dimensions is itself a Gaussian distribution. The Gaussian process regression 

methodology focuses on the values of a function f(x) at a restricted set of points 

These function values can be collected in the vector  Similar to how the 

mean and standard deviation of a random variable completely define the Gaussian distribution, the 

mean function, m, and the covariance function,  of a Gaussian process, define the entire 
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distribution of functions. The covariance function, or kernel  is calculated at each pair of points 

 and  to provide the covariance matrix for the Gaussian process. As a result, the prior 

distribution on the interval  is 129:  

 

Where , , and  𝛴0(𝑥1:𝑘, 𝑥1:𝑘) =

[𝛴0(𝑥1, 𝑥1), . . . , 𝛴0(𝑥1, 𝑥𝑘); . . . . , 𝛴0(𝑥𝑘 , 𝑥1), . . . , 𝛴0(𝑥𝑘, 𝑥𝑘)]. 

The kernel is chosen so that there is a strong positive correlation between the points  and  

that are nearer together in the feature space 127. Now, assume we had noise-free observations

, for some n, and aim to choose the next point in the Bayesian optimization process. 

Thus, we would want to derive f(x) at the new point x. Let k = n+1 and ; we can then 

determine the conditional distribution of f(x) given the previous observations 129. 

 

 

 

The conditional distribution obtained by using Bayes' theorem is known as the posterior 

probability distribution. The posterior mean  is calculated via a weighted average of the 

prior mean and a data-driven estimate based on . The weight assigned to each term 

is calculated using the kernel used. The posterior variance  can be calculated by subtracting 

the variance that is omitted by observing the data from the prior covariance . 

Moreover, in the training of the Gaussian Process model, a small positive number, such as 

, can be added to each element on the diagonal of the covariance matrix  to 

modify the numerical stability of this method, particularly when two or more nearby points are 
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present in the set of points . This ensures that the eigenvalues of the covariance matrix do not 

approach zero, thereby minimizing the impact of numerical errors on the predictions 127. 

2.4.4.2 Covariance Function Selection  

We will now discuss the selection of covariance functions or kernels. As mentioned before, 

points nearer together in the input space are generally further correlated, for example, 

for a norm ||.||, then . Thus, when the values are very 

close, the covariance function approaches 1, and when they are pretty distant, it approaches 0. 

Indeed, two points that are near together can be anticipated to significantly impact one another, 

while points far apart exert minimal impact. This section describes two common kernels in the 

Gaussian process. 

One frequently employed and straightforward covariance function is the power exponential or 

Gaussian covariance function, 

 

Where .  is a kernel parameter whose different values lead to 

various expectations for how quickly f(x) varies with x.  

The second frequently used covariance function in Bayesian optimization is the Matern kernel, 

which includes a smoothness parameter ( ) to allow increased flexibility in modeling functions 

125: 

 

Where  and   are the Gamma function and the Bessel function of order . Three 

approaches are typically used to select the hyperparameters for these kernels: maximum likelihood 
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estimate (MLE), fully Bayesian approach, and maximum a posteriori. This method's specifics can 

be found in 127. 

2.4.4.3 Acquisition Functions 

Acquisition functions are another important component in the Bayesian optimization process. 

A well-designed acquisition function should balance the trade-off between exploring new areas 

within the search space and exploiting the promising areas. If an acquisition function does not 

sufficiently explore, it may become stuck in exploiting suboptimal areas and never discover the 

global maximum solution. Nevertheless, it may lose expensive evaluations modifying an 

already developed Gaussian process if it explores excessively. Different acquisition functions 

exist, such as the Gaussian process upper confidence bound, entropy search, Expected 

Improvement, Probability of Improvement, and knowledge gradient. One of the most commonly 

used functions is the Gaussian process upper confidence bound (GP-UCB), which is among the 

most intuitive acquisition functions, balancing exploration and exploitation with a single 

hyperparameter  130. 

 

Where and  are the mean and the standard deviation of the Gaussian process at 

iteration t and point x, respectively. Increasing   favors points with a high variance promotes 

exploration, whereas decreasing  favors points with a high mean, which promotes exploitation.  

By identifying the x value that maximizes the GP-UCB (x), the next best point to evaluate for 

the function f(x) is determined. 
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Chapter 3 Predicting and Optimizing Cell Viability in Bioprinting through 

Regression, Classification Neural Networks, and Bayesian Optimization 

3.1 Introduction 

In the domains of regenerative medicine and cancer modeling, 3D bioprinting has witnessed 

rapid growth and is rising in popularity 131. 3D bioprinting is a biofabrication process that refers to 

computer-guided additive manufacturing that allows the development of extremely precise and 

complex 3D structures utilizing biologic materials in a pre-designed geometry 132,133. There are 

two approaches for including cells in 3D printing: two-step bioprinting entails seeding the cells 

on the surface of pre-printed constructions, and one-step bioprinting involves incorporating the 

cells directly into the bioink before making cell-laden 3D structures 134.  

In one-step bioprinting, bioink is a key component of the process, as it serves as the building 

block for the final construct. Bioinks can be made from a variety of materials, including hydrogels, 

polymers, and decellularized extracellular matrices 135. Hydrogels derived from natural or 

synthetic materials are widely used as bioinks in one-step bioprinting. They can provide the high-

water content of the natural ECM and let tunability of the mechanical strength and biochemical 

properties. Most of these materials need optimization before they can be effectively applied in 

bioprinting. This optimization involves modifying the hydrogel's viscosity and mechanical 

strength which can be achieved by the addition of thickening materials or by crosslinking to create 

a scaffold that closely resembles the ECM 136.  
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 Alginate is one of the commonly used hydrogels in 3D bioprinting, which is biocompatible and 

biodegradable and can be crosslinked by multivalent cations such as Ca2+ 137. After crosslinking, 

the alginate-containing scaffolds are illustrated to keep their morphology and enhance their 

mechanical properties 138. One disadvantage of alginate is its poor capability to provide enough 

binding sites for cells to attach and proliferate 139. However, this problem can be solved by 

introducing cell attachment peptides such as the RGD sequence, a typical cell binding site, to 

modify the properties of alginate 140. Of all the different polymers that can provide cell attachment 

peptides, gelatin attracted great interest during the last decade. Gelatin is a water-soluble polymer 

that is the product of partial hydrolysis of natural polymer collagen and has a similar structure to 

that of collagen, the main ECM component. Gelatin contains several biological signals that 

improve cellular functions, including cell attachment, growth, and proliferation 138, 141. However, 

the disadvantages of applying gelatin as bioink are its relatively low mechanical strength and fast 

biodegradation 141. Hence, the composition of the gelatin and alginate can be considered as an 

effective way to develop a bioink with modified properties to be used for bioprinting 3D cell-laden 

structure in this study. 

Although the introduction of one-step bioprinting is significant progress in 3D printing, cells 

may be impacted or even lost during the printing procedure. In extrusion-based bioprinting, the 

extrusion of bio-ink from the nozzle can result in severe shear stress that can lead to cell membrane 

damage. Hence cell viability, defined as the proportion of live cells at the end of the bioprinting, 

is an essential factor in bioprinting in different applications like cancer research, as it can affect 

the accuracy of the 3D bioprinted model, the reliability of the results, and the development of new 

therapies. Therefore, it is crucial to optimize the bioprinting conditions to maintain high cell 

viability and ensure the success of bioprinting. 
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 Several efforts have been made to produce biomimetic scaffolds with high cell viability using 

an extrusion-based bioprinting technique 31. Cell survival, depending on the type of cell line, in 

the 3D bioprinting process can be affected by different variables, including bioink formulation, 3D 

printer parameters, and post-printing treatments. Each of these categories may be subdivided into 

distinct parameters: Bioink formulation consisting of the type and concentration of biomaterials; 

3D printing parameters including cartridge temperature, bed temperature, nozzle size, printing 

pressure, printing speed, etc.; and post-printing treatment involving crosslinking process that can 

be adjusted by choosing a suitable crosslinking method and fine-tuning the amount of crosslinker 

and crosslinking time.   

Until now, optimization of the extrusion-based bioprinting settings has been conducted using 

time-consuming and expensive trial-and-error experimentation. This optimization process can 

become even more challenging when it comes to incorporating various biomaterials- and printer-

related factors into the process.  100. As a solution, computational techniques have been introduced 

in 3D bioprinting. These days, with the emergence of supercomputers, ML has provided a new 

perspective for numerous sectors of science and engineering, such as biofabrication. It is 

anticipated that ML can speed up and improve bioprinting process by optimizing research design 

and findings, diminishing trial-and-error experiments, and decreasing fabrication time and 

expense31,142. 

ML as one the recent computational techniques can find connections between input parameters 

and forecast expected results based on these connections The majority of ML applications have 

focused on improving printability 97, optimizing material utilization 143, and architectural design 

factors to enhance material characteristics 144,145 . However, only a few studies have been working 

on applying ML algorithms to study the effect of 3D bio-printing parameters on cell viability. 
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Therefore, the relationship between the effective aforementioned-bioprinting parameters with cell 

survival rate is not yet well-studied. In one of these studies, Xu et al. 99 created an ensemble 

learning model to predict cell survival in stereolithography-based bioprinting by considering the 

impact of four crucial parameters, including UV intensity, length of exposure, GelMA content, 

and layer thickness. The model achieved a high level of accuracy, as evidenced by 𝑅2 of 0.953 

when tested on 10% of the dataset. In another recent study, Tian et al. 100 studied the capability of 

ML regression and classification approaches in predicting the survival of cells and the printability 

of cell-containing alginate and gelatin-based bioinks in extrusion-based bioprinting. To do this, 

they collected a dataset on bioink material content, solvent utilized, crosslinking data, printing 

settings, survival rate, and printability results from various bioprinting laboratories. Their results 

showed that the random forest models yielded the highest accuracy in both regression and 

classification.  

So far, the existing studies have focused on different optimizing bioprinting parameters without 

taking into account the cell type. However, it is essential to note that different cell types have 

different optimal bioprinting parameters and have different characteristics that affect their viability 

during the bioprinting process, such as their size, shape, and susceptibility to mechanical stress. 

Therefore, the importance of cell type in predicting cell viability and optimizing bioprinting 

parameters is crucial for the development of effective bioprinting strategies.  

In this study, we aimed to achieve two objectives:  

First, to develop predictive regression and classification neural networks in bioprinting process. 

To accomplish this, we gathered 92 data points in our laboratory under a variety of experimental 

conditions, including bioink formulations incorporating gelatin and alginate, 3D printing 

parameters of extrusion-based bioprinting, and crosslinking conditions. To train and test our ML 
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model, we also acquired data from previously published bioprinting research involving and 

combined it with our own data to form a dataset of 713 instances. We evaluated the capability of 

ML regression and classification algorithms to effectively and precisely predict cell viability result 

depending on different bioprinting conditions. We also identified the most important parameters 

influencing cell viability prediction through network training in regression model. 

Second, we integrated a Bayesian optimization model with the regression neural network and 

subset of bioprinting experimental data for the first time in bioprinting field to inversely predict 

the optimum values of selected bioprinting parameters that yields the highest cell viability. 

Bayesian optimization is a powerful tool used in ML to optimize complex systems 127. The method 

uses a probabilistic model to predict the performance of multiple input values to discover the best 

possible input for a given function by iteratively selecting new input values based on the outcomes 

of prior evaluations. The key idea about this optimization is to use prior knowledge about the 

function by building a probabilistic model using a Gaussian process prior distribution, which is 

updated as new function evaluations become available 125. 

This study used the developed regression neural network as the objective function of the system 

in the Bayesian optimization model, focusing on fine-tuning the crosslinking condition including 

the crosslinker concentration and crosslinking time for specific sets of parameters while holding 

all other parameters constant. The Bayesian model, with its probabilistic approach and Gaussian 

process prior distribution, was able to provide a robust framework for estimating uncertainty in 

viability prediction. Additionally, using the trained neural network to make predictions in the 

Bayesian model could also improve the accuracy of the predictions by guiding the optimization 

search more effectively using the information acquired from the available data. This integration 
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could lead to faster convergence and improved system performance, making it an efficient method 

for obtaining more accurate predictions with limited data. 

3.2 Materials and Methods 

3.2.1 In-vitro Studies 

3.2.1.1. Materials 

The alginic acid Sodium salt, dimethyl sulfoxide (DMSO), Sodium chloride, Calcium chloride 

(CaCl2) and gelatin from bovine skin (type B) were obtained from Sigma-Aldrich (Canada). For 

cell culture studies, MDA-MB-231 were purchased from ATCC, Dulbecco's Modified Eagle 

Medium (DMEM), fetal bovine serum (FBS), penicillin/streptomycin, Trypsin/EDTA solution at 

0.25% (w./v.) and phosphate buffer saline (PBS) tablets were bought from Wisent Bioproducts. 

Furthermore, a Live-Dead Cell Viability assay kit (CBA415), Hoechst 33342Nuclei Dye were 

provided from Sigma-Aldrich (Canada). 

3.2.1.2. Cell Culture 

MDA-MB-231 cells were cultured in DMEM supplemented with 10% FBS and 1% 100 

Uml−1penicillin/streptomycin in T-75 flasks. Cells were incubated at 5% CO2 and 37 °C, and the 

media was exchanged every other day. When cells reached 80% confluency, the cells were rinsed 

twice with DPBS and then suspended with trypsin/EDTA (0.25%-1X).  

3.2.1.3. Bioprinting 

To prepare bioink, first 0.5% NaCl solution using DI water was prepared. Then, gelatin and 

alginic acid with different concentrations from 1% (𝑤/𝑣)  to 8% (𝑤/𝑣) were added, and the 

solution was stirred vigorously for 1 hr. The prepared solution was sterilized by heating at 70 °C 



49 

 

(30 min, three times) and then kept at 4 °C before usage. Prior to bioprinting, MDA-MB-231 

suspension was gently and evenly mixed with prepared gelatin/alginate solution using a mixing 

syringe to make a bioink with final cell number of 1-5-2 × 106 MDA-MB-231 cells mL−1. 

Bioprinting was carried out using CELLINK INCREDIBLE+ extrusion-based bioprinter. The 

prepared bio-ink was extruded using a needle to fabricate the 3D cell-hydrogel layered grid 

constructs. More specifically, printing nozzles applied for these experiments were standard conical 

nozzles (25G and 22G), and the moving speed of the needle was adjusted at 20 𝑚𝑚𝑠−1. The 

printings were done at room temperature by applying appropriate various pressure. The structures 

were designed using Solidwork software and sliced in slicer software to 10 layers with the size of 

15 × 15 × 3 𝑚𝑚3 with a rectilinear filling pattern. During the printing, we made an effort to 

maintain the pressure at the least level to have the minimum damage to cell viability. Subsequently, 

the cell-laden constructs were immersed in sterile calcium chloride solutions with two different 

concentrations (3% and 5% (𝑤/𝑣)) for different periods of time (5, 10, 15, 20 min) for crosslinking 

sodium alginate with calcium ions 10. Then, after being washed with PBS three times, each 

structure was cultured in DMEM medium containing 10% FBS and 1% penicillin/streptomycin in 

a 12-well plate and incubated at 5% CO2 and 37 °C.  

3.2.1.4. Live-Dead Assay 

The 3D bioprinted cell-laden constructs were stained after printing using Live-Dead staining 

viability kit based on the manufacturer's instructions to determine cell viability. Briefly, each 

construct was washed in PBS three times. Then, for staining each three repeats, we first prepared 

a 12 ml dye solution by mixing 6 ml of cell complete medium and 6 ml of PBS (1:1), followed by 

adding 5 µl of CAM and 20 µl of PI (present in Live-Dead Cell Viability assay kit (CBA415)). 

Then 2 ml dye mixture was applied to each well to stain cells while incubated for 1 hr in the 
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incubator. A laser scanning confocal microscope (Zeiss LSM 700) was used for imaging the live 

and dead cells within the 3D constructs at multiple spots. Then, to quantify cell viability, images 

were analyzed using ImageJ software. First, a pre-processing step was performed to improve 

quality of images and eliminate any background noise.  This step involved adjusting the brightness 

and contrast of the images to ensure optimal visibility of the fluorescent signals. the analysis 

proceeded by segmenting the green and red channels in the images. Then, through careful manual 

counting, the number of cells exhibiting green fluorescence was determined from the green 

channel, while the number of cells showing red fluorescence was counted from the red channel. 

These counts represented the population of live cells and dead cells, respectively. At the end, Cell 

viability was counted by dividing the number of green (living) cells by the total number of cells in 

each image. 

3.2.2 Computational Studies 

3.2.2.1. Dataset Preparation   

The dataset created for this thesis consists of two sections. The first section provides 92 data 

points collected in our laboratory under a range of experimental settings, including several bioink 

formulations, particular 3D printing parameters, and particular crosslinking conditions. The 

dataset's second section comprises 63 previously reported bioprinting studies, including 14 distinct 

cell types. This section was integrated with our own data to create a comprehensive dataset of 713 

instances, each with a distinct cell viability value. 

Parameters related to bioink formulations mainly include "Gelatin_Concentration(%w/v) " and 

"Alginate_Concentration(%w/v)". In some research studies, gelatin and/or alginate were mixed 

with certain concentrations of other hydrogels, such as GelMA, hyaluronic acid, and 



51 

 

nanocellulose, which are also added to the dataset. The 3D printing parameters include 

"Printing_Pressure(kPa)," "Movement_Speed(mm/s)", "nozzle_size(µm)", 

"Cartridge_Temperature(°C)", and "Bed_Temperature(°C)." Finally, post-printing treatments, 

including "crosslinker(CaCl2)_concentration(mM)" which in this study is calcium chloride 

(CaCl2), and "Physical_Crosslinking_time_(s)" are added to the dataset. In addition, the duration 

of photocrosslinking in some experiments, such as the ones using GelMA in bioink formulations, 

is incorporated into the dataset. 

Moreover, "Cell type" and "cell number" are other important characteristics of our dataset 

collection. "Cell type" specifies the type of bioprinted cells, such as "MDA-MB-231," the cell type 

employed in our experiments, and "Cell_Number(cells/mL)" represents the starting cell number 

per mL of bioink with which bioprinting was initiated. In research studies, thirteen other cell types 

were utilized, including "Mesenchymal Stem Cells (MSCs)", "Endothelial Cells", "Schwann 

Cells", "Fibroblast Cells", "Glioma Cells", "Femur-derived Cells", "Chondrocytes”, “HepG2 

Cells", "Myoblasts", "Epidermal Stem Cells (ESCs)", "Cartilage Progenitor Cell (CPCs)",  

"Embryonic Stem Cells ", and "Hela Cells." 

"Time of measurement(day)" is another characteristic of the dataset that indicates how long 

after bioprinting the cell viability was evaluated. Cell survival at the measurement time is 

represented by the target variable "Cell Viability (%)". 

3.2.2.2. Data Preprocessing  

Preprocessing is a critical step in ML that involves transforming raw data into a format that can 

be effectively used by ML models. It typically involves cleaning the data, scaling the data, 

encoding categorical variables, and handling missing values. During the preprocessing stage of 
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this research, first, we removed all the rows where the "Alginate_Concentration(%w/v)'' column 

and the ''Gelatin_Concentration(%w/v)'' column were both 0 because we wanted to focus on 

gelatin- and alginate-based bioinks containing at least one of these materials. Then, numerical data 

were normalized using MinMaxScaler function for better model evaluation. This function scales 

the values of each feature between 0 and 1 to ensure that each feature contributes equally to the 

model. One-hot-encoding was utilized to convert categorical data ("Cell type") into numerical data. 

This technique involves creating a binary column for each category of a categorical variable. 

Additionally, the instances in which cartridge and substrate temperatures were null were assigned 

a value of 22.5 °C, as it was assumed that the experiments were performed at room temperature. 

In addition, k-nearest-neighbors imputing was applied to impute the missing values of the other 

variables, with a neighbor range of 10. In this method, by considering the known values of the 10 

neighboring data points, the algorithm estimated the missing values for the variables of interest, 

resulting in a complete dataset suitable for further analysis. Then, the dataset is split into a training 

set and a test set using the train_test_split() function from the scikit-learn library, with a test size 

of 0.15.  

3.2.2.3. Regression Neural Networks 

 For the cell viability regression model, the neural network consists of three fully-connected 

layers: a fully-connected layer with 44 neurons and a hyperbolic tangent activation function (tanh), 

a fully-connected layer with 120 neurons, a hyperbolic tangent activation function, and L2 

regularization with a weight of 0.01, and a fully-connected layer with a single neuron and a linear 

activation function. The model is compiled with the MSE loss function and the Adam optimizer 

with a learning rate of 0.01. The neural network used in this study is based on the Keras library, 

which is a high-level API that allows the creation of neural network models with minimal code. 
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The dataset is split into a training set and a testing set using the train_test_split function with a test 

size of 15%. The K-Fold cross-validation technique is applied with 10 folds to evaluate the model 

performance. For each fold, the dataset was scaled using the MinMaxScaler, and the model was 

trained on the training set for 1000 epochs with a batch size of 5. The training and validation set 

MSE and R2 cores are calculated for each fold, and the average scores are computed across all 

folds. Finally, the trained model is evaluated on the test set, and the predicted values for cell 

viability are compared with the true values. 

3.2.2.4. Classification Neural Network  

For cell viability classification models, a binary class was created from the numerical cell 

viability data by converting the target variable to binary by assigning 1 to values greater than 70 

and 0 to values less than or equal to 70. The neural network model has three dense layers. The first 

dense layer has 44 nodes with a ReLU activation function. The second dense layer has 200 nodes 

with a ReLU activation function and L2 regularization with a lambda value of 0.01. A dropout 

layer with a rate of 0.7 follows the second dense layer. Finally, a dense layer with a single node 

and a sigmoid activation function is used to produce the binary classification output. The model is 

compiled with a binary cross-entropy loss function, accuracy metrics, and the Adam optimizer 

with a learning rate of 0.001. The dataset is split into a training set and a testing set using the 

train_test_split function with a test size of 15%. The model is trained using K-fold cross-validation 

with 10 folds on the training set. The data is scaled using MinMaxScaler, and the training and 

validation set accuracy, precision, and recall are recorded for each fold, and the averages across 

all folds are computed. Finally, the trained model is evaluated on the test set, and the predicted 

values are compared with the actual values. 
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3.2.2.5. Hyperparameter Fine-tuning  

We utilized the GridSearchCV module from the scikit-learn library to conduct hyperparameter 

tuning on neural networks. This module allowed us to systematically search for the optimal 

hyperparameter combination within a given range by conducting a grid search over a 

specific hyperparameter space. These hyperparameters include activation function, dropout rate, 

L2 regularization strength, learning rate, number of layers, and number of units in the hidden 

layers. The model is then trained and evaluated for each possible combination by means of cross-

validation, and let us find the optimal hyperparameters that produced the greatest performance on 

the validation dataset and reduce the possibility of overfitting. 

3.2.2.6. Permutation Importance  

We used the Permutation Importance method to evaluate the significance of each feature in the 

built regression model for predicting the target variable. To do this, we utilized the 

"permutation_importance" utility from the scikit-learn library. This method involves arbitrarily 

permuting the values of a single feature and measuring the resulting decrease in the model's 

performance or score. This procedure is repeated K times to estimate feature significance 

accurately. The importance (𝑖𝑗) for each feature j for K repetition is calculated as: 

𝑖𝑗 = 𝑠 −
1

𝐾
 ∑ 𝑠𝐾,𝑗

𝐾

𝐾=1

 

Where 𝑠 is the reference score of the model, and 𝑠𝐾,𝑗 is score of the model for permuted data 

which feature j and on K𝑡ℎ repeat. In this study,  K = 10 and, since the neural network's loss 

function is MSE, the permutation importance score is also determined by the decrease in MSE 

when each feature is permuted. 
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3.2.2.7. Bayesian Optimization Model 

We employed a Bayesian optimization model based on a constructed regression neural network 

in order to optimize the bioprinting variables for maximizing cell viability. We aimed to determine 

the optimal “physical-crosslinking time” and “crosslinker (CaCl2) concentration” for a given set 

of bioprinting parameters to achieve the highest level of cell viability possible. 

The algorithm of this neural network-based Bayesian optimization model is depicted in Figure 

3.1. Here, the based Bayesian optimization framework started by constructing the Gaussian 

Process model using the created dataset of variables in the bioprinting process and their associated 

cell viability. The Gaussian Process model consists of a mean function and a covariance function. 

The covariance function, which in this study is the Matern kernel, with a smoothness parameter  

equal to 2.5, conveys the smoothness of the function and determines how the cell viability 

percentage at one location affects the estimate of the values surrounding it 128. Moreover, in the 

training of the Gaussian Process model, a small positive number, 𝛼 = 10−3, was added to each 

element on the diagonal of the covariance matrix to modify the numerical stability of this method. 

The mean and covariance from the Gaussian Process model were utilized to develop an 

acquisition function that suggests the next questioned bioprinting variables to probe. The suggested 

parameters were chosen to maximize the probability of achieving the highest cell viability while 

maintaining a balance between exploration and exploitation. In this study, the GP-UCB acquisition 

function, with =2.5, was applied 130. New suggestions for questioned parameters were chosen 

within the range specified for them. Some of these ranges in our bioprinting dataset can be found 

in Table 3.1. Then, the newly recommended crosslinking time, amount, and other constant 

variables were fed into the developed regression neural network in each iteration. Utilizing the 

developed neural network, we were able to predict cell viability without having to conduct time-
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consuming and laborious laboratory experiments. Then, using the collected data so far, the 

Gaussian process model was updated and generated a posterior distribution. This process 

continued for 50 iterations, then the best combination of parameters with the highest observed or 

predicted cell viability was chosen as the solution. 

 

Figure 3.1 Algorithm of Bayesian Optimisation Model based on regression neural network for 

bioprinting process optimization. 

3.3 Result and Discussion 

3.3.1 In-vitro Studies 

In this study, we conducted in-vitro experiments and bioprint gelatin and alginate-based bioinks 

under various printing and post-printing conditions. We selected gelatin and alginate for 

formulating the bioink because they are the most common hydrogels used in bioprinting studies 

due to their suitable properties in terms of biocompatibility and rheology 146. Then, we utilized 

live-dead assay and confocal microscopy to measure cell survival following printing for each set 

of parameters and collected a dataset of effective parameters and corresponding cell viability. To 

create a more comprehensive dataset, we combined our results with those from other laboratories. 



57 

 

This resulted in a dataset with a categorical parameter, "Cell type", encompassing 14 distinct cell 

types listed in the previous section. Some of the numerical variables in the final dataset are also 

summarized in Table 3.1, including their maximum and minimum values. Based on this table, for 

instance, data points are generated with various bioink formulations containing varying 

concentrations of gelatin and alginate ranging from 0 to 20% (w/v), and with varying printing 

setting parameters such as extrusion pressures ranging from 5 kPa for low-viscosity bioinks to 300 

kPa for highly viscous ones. 

Table 3.1 A subset of numeric variables in the bioprinting dataset and their range. 

Feature Unit Min Max 

Alginate Concentration %w/v 0 20 

Gelatin Concentration %w/v 0 20 

GelMA Concentration %w/v 0 7 

Hyaluronic acid Concentration %w/v 0 2 

NaCl2 Concentration mM 0 272 

Agarose Concentration %w/v 0 1 

Crosslinker (CaCl2) Concentration mM 0 901 

Physical Crosslinking time s 0 1800 

Photo-crosslinking time s 0 2400 

Printing Pressure kPa 5 300 

Movement Speed mm/s 0.666 235 

Nozzle Size µm 101.6 1600 

Cell Number  cells/mL 100,000 20,000,000 

Cartridge Temperature °C 4 40 

Bed Temperature  °C 3.5 25 

Time of Measurement  day 0 30 

 

Each of these parameters has the potential to affect the viability of cells in the bioprinting 

procedure. For example, cells printed within the same bioink (4%(w/v) gelatin - 3%(w/v) alginate), 

crosslinking conditions, and printing settings but with different nozzle sizes showed different cell 

viabilities. Cells extruded using a nozzle with a diameter of 250 micrometers exhibited 

approximately 61% cell viability, while those printed using a nozzle with a diameter of 410 



58 

 

micrometers showed 82% cell viability. This disparity in cell viability is due to the difference in 

nozzle size; the smaller the nozzle, the lower the cell survival rate. Another example is for cells 

printed with different bioink formulations. Figure 3.2 displays images of stained cells in 4%(w/v) 

gelatin-8%(w/v) alginate and 4 (%w/v) gelatin- 4(%w/v) alginate using the same other parameters 

except for the printing pressure, which varied based on the bioink viscosity. Cells in 4%(w/v) 

gelatin-8%(w/v) alginate exhibited approximately 57% viability, whereas those in 4%(w/v) 

gelatin-4%(w/v) alginate exhibited about 68% viability. The lower cell viability in the 4%(w/v) 

gelatin-8%(w/v) alginate hydrogel may be attributable to the higher amount of alginate, resulting 

in a more viscous and stiffer bioink necessitating a greater printing pressure. 

 

Figure 3.2 Microscopic images illustrating viability of MDA-MB-231 cells within 3D hydrogel 

constructs using the fluorescent live-dead assay kit on day 0. Bioink is consist of: (A) 4 (%w/v) Gelatin-8 

(%w/v)Alginate, (B) 4 (%w/v)Gelatin- 4 (%w/v) Alginate. Live and dead cells were stained using 

calcein-AM and PI (green color represents live cells; red color represent dead cells). Cells were imaged 

using the laser scanning confocal microscope. Scale bar, 100 μm. 

3.3.2 Computational Studies 

3.3.2.1 Regression and Classification Neural Networks  
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To improve the bioprinting optimization process, we developed neural networks for regression 

and classification purposes to predict cell viability based on key variables. To construct these 

networks, we randomly divided the dataset into a training set containing 85% of the data points 

and a test set containing 15% of the data points. We utilized feature scaling techniques to ensure 

that all numeric features were normalized to the same range of distribution. Cross-validations were 

performed on the training datasets to determine the optimal configuration of ML algorithms. In 

order to prevent data leakage, the encoding and scaling methods were performed exclusively on 

the subtraining dataset and then applied to the subvalidation dataset during cross-validation.  

The performance of the regression neural network model on the train set and test set is shown 

in Table 3.2. This graph depicts the mean and standard deviation of performance metrics, including 

MSE, MAE, and R2 across 10 folds for the train set. This figure also showcases the corresponding 

values of MSE, MAE and R2 for the test set. The mean MSE, MAE, and R2 values for the train 

set were found to be 0.010, 0.075, and 0.81, respectively. Similarly, the corresponding metrics for 

the test set yielded values of 0.016, 0.089, and 0.71, respectively.  

These metrics provide insight into the model's success in prediction. Lower MSE and MAE 

values indicate that the model's predictions are closer to the actual values, whereas a higher 

R2 value indicates that the model explains a substantial portion of the data's variance. Thus, the 

relatively low MSE and MAE values for both the train and test sets and the relatively high R2 

value suggests that our model was trained effectively on the dataset and can predict cell viability 

with good performance.  
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Table 3.2 Performance of the regression neural network model evaluated using MSE, MAE, and R2 for 

the train set and test set. ± Std indicates the standard deviation for each metric for the train set across 10 

folds. 

Metric Train Set (Mean ± Std) Test Set 

MSE 0.01 ± 0.0024 0.016 

MAE 0.075 ± 0.0089 0.089 

𝑹𝟐 0.81 ± 0.03 0.71 

 

Table 3.3 compares the cell viability of random six laboratory-collected samples, available in 

the test set, with the predicted values derived from the regression model. As shown in this table, 

the predicted viability and actual one are in good agreement confirming the model's good 

performance in predicting cell viability and its ability to replicate laboratory measurements. 

 

Table 3.3 A comparison between the predicted viability values using the regression neural network model 

and the actual value produced in the laboratory. 

Sample Predicted Viability (%) Actual viability (%) Error% 

1 81.636 84.846 3.783 

2 82.504 95.986 14.046 

3 95.917 94.49 1.510 

4 97.891 94.9821 3.063 

5 80.656 73.204 10.179 

6 42.099 41.792 0.734 

 

For the purpose of the classification, we defined two classes for cell viabilities: 0 for viabilities 

below 70% and 1 for viabilities greater than or equal to 70%, the threshold accepted in the literature 

as indicative of acceptable cell survival in 3D bioprinting 147. To evaluate the neural network's 

performance in the training and validation process, we measured the average accuracy, precision, 

and recall over 10 folds in the training. Similar to regression model evaluation, a test set, 15% of 

the whole dataset, was used to assess its ability to predict cell viability on unseen data. The results 

of the model performance on the train set and test set are presented in Figure 3.3. This figure shows 
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that the model achieved a mean accuracy of 0.91, a mean precision of 0.96, and a mean recall value 

of 0.90 for the train set. Additionally, this figure shows these metrics for the test set, which are 

0.86, 0.85, and 0.97, respectively. Thus, with an accuracy score of 0.91 in seen data and 0.86 in 

unseen data, it can be concluded that the model correctly classified 91% and 86% of instances in 

the train set and test set, respectively, representative of how well the model could be trained and 

predict the objective. Moreover, with a recall score of 0.97, the model accurately captured 97% of 

the actual positive or high-viability (>70%) instances in the test set.  

Thus overall, these findings suggest that both regression and classification neural networks are 

effectively trained on the created dataset and can predict cell survival with excellent performance, 

making it a reliable tool for predicting cell viability in bioprinting processes with high 

generalization. 

 

Figure 3.3 Performance of a neural network Classification model evaluated using Accuracy, Precision, 

and Recall for train set and test set. Error bars indicate the standard deviation for each metric for train set 

across 10 folds. 

Our developed neural networks for both regression and classification also outperformed the 

only study that predicted cell viability so far in extrusion-based bioprinting. This study, conducted 
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by Tian et al. 100, which was also used as one of the sources for creating our dataset, compared 

three regression models (support vector regression, linear regression, and random forest 

regression) and three classification models (random forest classification, logistic regression 

classification, and support vector classification). Compared to other models, the random forest 

models produced the highest R2 (approximately 0.38) and prediction accuracy (approximately 

65%) in regression and classification. However, the trained neural networks in our study yielded 

a regression R2 value of 0.71 and classification accuracy of 0.86, representing a significant 

improvement over previous research. These results demonstrate the efficacy of neural networks 

for predicting cell viability in bioprinting and imply that they may offer significant advantages 

over conventional regression and classification models. Additionally, we believe the models’ 

performance can be enhanced even further by expanding the dataset to capture a broader range of 

patterns and relationships, reducing overfitting, and enhancing the model's generalization ability. 

Increasing the number of instances with diverse combinations of bioprinting parameters and 

corresponding cell viability measurements can be accomplished by collecting additional in-vitro 

data in the laboratory or incorporating data from other sources. 

3.3.2.2 Permutation Importance of Bioprinting Parameters  

 Permutation Importance was applied to determine the most significant features of the 

bioprinting for predicting cell viability using a neural network for regression. Figure 3.4 shows 10 

of the most important features; the x-axis represents the significance score, while the y-axis 

represents the evaluated bioprinting parameters.  
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Figure 3.4 Permutation Importance of bioprinting parameters on cell viability, based on regression neural 

network. The boxplot illustrates the distribution of each parameter's importance scores. 

As demonstrated in this figure, the "Cell type" has the most significant impact on optimizing 

the bioprinting process compared to other variables. In the dataset, we included cancer cells for 

cancer research and normal cells for tissue engineering purposes. In the bioprinting procedure, the 

survival and viability of these two cell types can vary significantly. Typically, cancer cells with a 

higher proliferation rate may be better able to recover from any printing-related damage, while 

normal cells may be more fragile and susceptible to injury. Different cell types within cancerous 

and normal cell populations may demonstrate varying bioprinting sensitivity. The degree to which 

cells are affected by pressure and shear stress depends on the cell type. This variation can be 

attributed to the unique physiological properties of each cell type. For instance, cells with a more 

robust cytoskeleton may be more deformation-resistant during printing. Studies showed that, for 

example, immortalized cells like L929 fibroblasts, human mesenchymal stem cells, and HeLa cells 

experience less cell damage compared to mice embryonic stem cells when exposed to the same 

level of shear stress 34,35,33. In other studies, numerous cell types, including fibroblasts 64, myoblasts 

148, endothelial cells 65, chondrocytes 66, and Schwann cells 149, were printed in alginate-based 
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structures, and each exhibited unique cell vulnerability to the post-printing process. Hence, these 

observations highlight the significance of considering cell types as a critical element for optimizing 

cell viability in the bioprinting process. 

The second most significant bioprinting variable is "Printing_Pressure", influencing cell 

viability prediction. The extrusion involves using pressure to force the bioink through the nozzle 

and deposit it onto the substrate. The amount of pressure applied determines the flow rate and 

deposition speed of the bioink, affecting the tension experienced by the cells during printing. 

Previous research has indicated that increasing dispensing pressure during bioprinting has a 

damaging effect on cell viability 150.  This is primarily due to the mechanical stress and shear forces 

imparted on the cell membrane by the pressure, causing damage and diminishing viability. 

Additionally, high pressure may cause the formation of air bubbles or the fragmentation of the 

bioink, which can further damage cells. Consequently, optimizing printing pressure is essential for 

achieving high cell viability during the bioprinting procedure. It is important to note that pressure 

can be controlled by considering factors such as nozzle size and material properties within the 

bioink, which will be further explained in the subsequent explanations. 

Among other 3D printer parameters, Permutation Importance in our study shows that after 

"Printing_Pressure", "Nozzle_size" and "Movement_speed" are among the 10 most important 

variables affecting cell viability prediction. This result aligns with previously conducted research 

that concluded that the dispensing pressure has a more substantial impact when compared to the 

nozzle size 30.  Smaller nozzle sizes typically result in higher printing pressures due to the restricted 

flow area, whereas wider nozzles allow for reduced extrusion pressures resulting in decreased 

shear stress. Using wider nozzles, however, diminishes the filament's resolution. Hence, selecting 

the proper nozzle size is one of the parameters that must be tuned to produce the best outcomes in 
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terms of printability and viability 151. High printing speeds, as the 9th important parameter, can also 

lead to mechanical stress on cells, which can affect their viability and functionality. In addition, 

high extrusion speeds can reduce the precision and resolution of 3D printed structures, resulting in 

regions of high stress or low nutrient supply, which affects cell survivability post printing. On the 

other hand, low printing speeds can result in prolonged cell exposure to the printing environment 

and excessive residence time in the nozzle, which is harmful to cells 31. Therefore, the optimal 

printing speed may depend on several variables, including the required printing resolution, as well 

as the sensitivity of the cells to mechanical stress. 

The third significant parameter in predicting cell viability, identified in our study, is 

"crosslinker(CaCl2)_concentration". The crosslinking method, including physical and chemical, 

can be selected based on the bioink formulation 60. For example, in this study, Ca2+ in CaCl2 

solution is used as a crosslinker for an alginate-containing scaffold, which forms a flexible and 

solid structure. Increasing the amount of crosslinker means more calcium ions can move into the 

3D network, leading to more crosslinked and a firmer construct, while a higher amount of Ca2+can 

be toxic to cells and decrease cell viability 138. Another important parameter in controlling the 

crosslinking process is "physical_Crosslinking_time" which is the length of time the printed 

structure is immersed in the CaCl2 solution, and is among the 10 most important factors in 

optimizing cell viability during bioprinting. High "physical_Crosslinking_time" and long-term 

exposure to Ca2+ ions can further reduce cell viability, highlighting the significance of reducing 

the physical crosslinking duration as well as its amount to minimize cell damage.  

However, it is important to note that in alginate-based bioprinting, the absence or improper 

execution of crosslinking can also lead to reduced cell viability. Proper crosslinking is critical for 

preserving structural integrity, preventing cell leakage and relocation, and supplying nutrients and 
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oxygen. Without sufficient crosslinking, the cell-laden structure may lack mechanical integrity, 

resulting in ineffective cell attachment and arrangement. Moreover, inadequate crosslinking can 

result in cell leakage, uneven distribution, and restricted nutrient exchange, all contributing to a 

decline in cell viability. This creates a trade-off, emphasizing the significance of optimizing the 

crosslinking condition to balance structural integrity and cell viability. Therefore, in order to 

achieve optimal cell viability and overall success in alginate-based bioprinting, it is essential to 

ensure appropriate crosslinking conditions.  

The "Time of Measurement" parameter is demonstrated to be the 4th important parameter in 

expected cell viability. Over time, after the printing, cells within the bioprinted structure, depend 

on their proliferation rate, are likely to grow and repair any damage caused by the bioprinting 

process. However, after some time, there is a growth capacity threshold beyond which cell viability 

may plateau or decline. This phenomenon was illustrated in one of our studies described in Chapter 

4, where we assessed the viability and proliferation of MDA-MB-231 cells over an 11-day period 

after bioprinting using live-dead assay and MTT assay. Our results, illustrated in Figure 4.5, 

indicated that the viability rate of cells was 76±2% on the day of printing (day 0), and the viability 

rate progressively increased during the first week, reaching 98±1% on day 4 and 99±1% on day 7. 

Then, from say 7 to day 11, the rate of viability decreased a little and reached 96±2% on day 11107. 

Therefore, the time at which measurements are taken has a significant impact on the observed cell 

viability and should be carefully considered in accordance with the specific objectives of the study. 

From the material perspective, "Alginate_Concentration" and "Gelatin_Concentration" are 

shown to be the 5th and 8th significant variables in predicting cell viability based on our built neural 

network. Indeed, the type of hydrogel and its concentration define the bioink property, which is 

one of the critical factors determining bioprinting success in terms of cell survivability and 
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printability. Depending on the bioink component, the rheology behavior, such as viscosity and 

mechanical properties of bioink can change 131. When bioink viscosity is high, shear stress 

increases at the point of contact between the bioink and the nozzle wall, leading to cellular damage, 

such as membrane rupture, cytoskeletal damage, and DNA damage 32. In addition, bioinks with a 

greater viscosity or stiffness require higher extrusion pressures to overcome resistance and flow 

through the nozzle to accomplish proper flow and deposition. For instance, increasing alginate 

concentration can increase the hydrogel's rigidity and mechanical strength, exposing the cells to 

greater mechanical stress during extrusion and printing 100. This increased rigidity can also reduce 

the diffusion of nutrients and oxygen to the cells, resulting in reduced cell viability and growth for 

more extended studies after printing. Hence, this result shows the significance of bioink 

formulation in achieving high viability during and after printing.  

3.3.2.3 Bayesian Optimization Model Based on the Built Regression Neural Network  

This study utilized a neural network-based Bayesian optimization model to optimize the 

bioprinting process to obtain the highest possible cell viability. Bayesian optimization is a 

powerful ML optimization tool that is used to find the optimal set of parameters for a given 

objective function 127. This method in extrusion-based bioprinting was used in the study by Ruberu 

et al. 131 for the first time to optimize the printability of GelMA and GelMA/hyaluronic acid 

methacrylate bioinks. The researchers utilized Bayesian optimization as a novel method for 

determining the optimal printing parameters while minimizing the number of necessary 

experiments. The study demonstrated the promising outcome of this method in speeding up the 

extrusion bioprinting experimentation process compared to conventional optimization.  

Our current work aims to eliminate laborious trial-and-error steps in optimizing cell viability in 

extrusion-based bioprinting by integrating our built neural network with the Bayesian optimization 
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technique. Inspired by the pioneering efforts of Gau et al. 152, who successfully implemented the 

ML-Based Bayesian optimization model to revolutionize membrane design, we aimed to 

significantly accelerate the optimization process in bioprinting process.  

Integrating the Bayesian optimization model with a neural network not only overcomes the 

noise and uncertainty of the viability prediction but also provides us with a model that can predict 

the optimal bioprinting experimental features for maximizing cell viability. Using the trained 

neural network to make predictions in the Bayesian model can also improve the accuracy of the 

predictions by guiding the optimization search with the available data more effectively. This 

combination can expedite convergence and boost overall optimization system performance. 

Analysis of Permutation Importance revealed the significance of the crosslinking conditions on 

cell viability in the bioprinting process for alginate-and gelatin-based bioinks, which encouraged 

us to optimize these parameters in this study. Hence, our optimization model focused on finding 

the optimal "Crosslinking (CaCl2)_Concentration" and "Physical_crosslinking_time" parameters, 

presuming that all other bioprinting parameters were already predefined.  

We did not include the first two important parameters, cell type, and printing pressure, in our 

optimization model for the following reasons: Firstly, the choice of cell type is typically decided 

by researchers based on the specific objectives of their project, and it is not a parameter that needs 

to be optimized using our model. Secondly, in extrusion-based bioprinting, the printing pressure 

normally cannot be predetermined as it depends on various factors such as the bioink formulation, 

temperature, and printing conditions. Consequently, the pressure should be adjusted during the 

printing process, and determining it in advance would not be beneficial. Hence, in this study, we 

focused on determining optimal crosslinking parameters to optimize cell viability. This method 

allowed us to determine the optimal combinations for crosslinking parameters along with the 
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desired bioink formulation and printing settings. Indeed, using this method, we are able to print 

cell-laden scaffolds with superior cell viability and minimal crosslinking-induced injury. 

To execute Bayesian optimization, we first defined the range space for "Crosslinking 

(CaCl2)_Concentration" and "Physical_crosslinking_time" by determining minimum and 

maximum values. We set the minimum value to be greater than zero because we intended to 

evaluate optical crosslinking parameters rather than zero for our particular bioprinting parameters. 

In addition, we defined the range's maximal value as the highest value observed in our dataset. The 

Bayesian optimization procedure relied on the neural network we developed for regression. During 

each iteration of the optimizer, the suggested "Crosslinking (CaCl2)_Concentration" and 

"Physical_crosslinking_time" with other predefined and desired variables were fed into the trained 

neural network to predict cell viability with good accuracy. This approach enabled us to rapidly 

investigate numerous unexplored parameter possibilities without the need for time-taking and 

costly experiments, ultimately identifying the most efficient parameter combination during 

printing.  

The Gaussian process in this process model the underlying patterns and correlations in the data, 

providing a probabilistic estimate of the behavior of the cell viability. The bioprinting dataset used 

for developing the Gaussian process in Bayesian optimization was limited to a smaller subset 

compared to the data used for training the neural networks. We specifically selected a portion of 

the dataset that met certain constraints, including:  having non-zero concentration values for both 

gelatin and alginate, using MDA-MB-231 as the cell type, and ensuring non-zero values for the 

crosslinking parameters. We mainly focused on the most essential data necessary for our specific 

experiments in the laboratory. 
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To demonstrate the practical implementation of our model, we designed a process of printing 

cell-laden structure using MDA-MB-231 using alginate and gelatin hydrogels in the bioink. 

Initially, we determined the desired concentrations of hydrogels and specific printing settings for 

two different structures: 1) 4%(w/v) gelatin-3%(w/v) alginate and 2) 3%(w/v) gelatin-7%(w/v) 

alginate containing 2 × 106 and 1.5 × 106 cells/ml, as outlined in Table 3.4, respectively.   

 

Table 3.4 Predefined values of bioprinting parameters for Experiment 1 and Experiment 2 

Bioprinting Parameter Experiment 1 Experiment 2 

Cell type MDA_MB-231 MDA_MB-231 

Gelatin_Concentration(%w/v) 3 5 

Alginate_Concentration(%w/v) 2 6 

Printing_Pressure(kPa) 23 67 

Movement_Speed(mm/s) 15 22 

Nozzle_size(µm) 250 410 

Cell_number(cells/mL) 2,000,000 1,500,000 

Cartridge_Temperature(°C) 22.5 22.5 

Bed_Temperature(°C) 22.5 22.5 

Time of Measurement(day) 0 0 

 

Using the Bayesian optimization model in combination with our regression neural network, we 

could identify the optimal "Crosslinking (CaCl2)_Concentration" and 

"Physical_crosslinking_time" for each structure, represented in Table 3.5, thereby predicting the 

associated optimal cell viability. To assess the reliability and accuracy of our model, we printed 

the cell-laden structures and crosslinked the bioprinted construct with the optimal crosslinking 

conditions identified by the Bayesian optimization in our laboratory. Finally, the actual cell 

viability was evaluated using live-dead assay. The results of prediction values of cell viability and 

actual viability for both structures are represented in Table 3.5. 
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Table 3.5 Predicted optimal crosslinking parameters and cell viability using neural network-based 

Bayesian optimization model and the actual cell viability of Experiment 1 and Experiment 2. 

 
Experiment 1 Experiment 2 

Optimal 

Crosslinker(CaCl2)_Concentarion(mM) 

376 568 

Optimal Physical_Crosslinking_time_(s) 1796 1800 

Optimal Predicted Cell Viability (%) 85 79 

Actual Cell Viability (%) 80±1.6% 64±2.3% 

 

The findings demonstrate that this approach can successfully improve the bioprinting process 

by determining the optimum crosslinking condition. There is a good agreement between the actual 

and predicted value of cell viability for both experiments, showing the promising application of 

this optimization method for bioprinting. Using this neural network-based Bayesian optimization 

model, researchers can determine optimal crosslinking conditions for any sets of parameters for 

alginate-based bioink and optimize the bioprinting without any trial-and-error experiments. 

Additionally, this optimization method can be extended to predict other bioprinting parameters, 

such as concentration of materials, printing setting parameters, or combinations of all of them, to 

optimize cell survival in future studies.  

Although there is agreement between the predicted and actual viabilities, there are still 

differences. This discrepancy can be attributed to the performance of neural network. Indeed, our 

Bayesian optimization model performance is based on the built regression neural network, whose 

prediction ability is highly dependent on the dataset's precision, and size. Our neural network is 

developed based on the limited dataset mainly collected from the literature. Hence, the 

performance of the optimization model can be further improved by including more precise data 

collected from different bioprinting laboratories allowing for more accurate prediction of optimal 

parameter combinations. 
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Finally, it can be concluded that the application of neural network-based Bayesian optimization 

provides a novel and efficient method for the reverse design of the bioprinting process for gelatin 

and alginate-based bioinks. This technique eliminates the need for the typical trial-and-error 

optimization, paving the way for a more straightforward and efficient optimization technique of 

the bioprinting process in the future. 
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Chapter 4 Predicting and Elucidating the Post-printing Behavior of 3D 

Printed Cancer Cells in Hydrogel Structures by Integrating In-vitro and In-

Silico Experiments 

4.1 Introduction 

One of the burgeoning 3D biofabrication methods is 3D bioprinting, which is widely applied in 

regenerative medicine and tissue engineering to fabricate complex tissue-mimetic 

structures.153 The application of this technique has great potential in personalized therapy with 

more concentration on controlling drug release, drug screening for cancer treatment, studying 

possible side effects, and analyzing the metastasis and invasion of tumour cells.154 3D bioprinting 

technique combines cells, biomaterials and controlled motor systems to develop complex 3D 

structures and has accurate control over the structure's features such as mechanical properties, 

porosity, permeability and stiffness.11,12,155 This technique can overcome multiple limitations of 

the traditional 3D methods by incorporating important aspects of cellular habitat.  These aspects 

include a nonuniform 3D microenvironment similar to the natural extracellular matrix (ECM) of 

tumours, complex interactions of cells with their neighbouring cells and with local ECM, and 

complicated diffusion processes of nutrients and oxygen.7,9,156 Thus, this method can be used to 

better represent insights into cell growth mechanisms and provide a closer prediction of in vivo 

tumour dynamics and cancer cells' response to therapies.156  

Despite the fast advancement of the 3D bioprinting method, there are some challenges that need 

to be addressed. Currently, the bioprinting technique is mainly on a trial-and-error basis to achieve 

the desired output, increasing the need for experimental techniques. This trial-and-error basis 

includes optimizing bioink properties and its printability, structure mechanical strength, and cell 

viability during and post-printing. Therefore, it is very costly to optimize bioprinting-related 
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experiments.157 These challenges make the experimental design and data gathering more 

complicated in this process.   

In silico methods can be used to complement in vitro experiments and assist in addressing some 

of the limitations of this 3D method.158–160   Common in-silico approaches include ML methods 

and mechanistic modelling. We developed ML models for optimizing cell survival during 

bioprinting procedure (Chapter 3); in this chapter, we would like to apply mechanistic modelling 

for simulating embedded cells' activity in 3D printed structure post printing. 

Mechanistic modelling concerns describing phenomena via hypotheses for underlying 

mechanisms. Mechanistic models include stochastic and agent-based models, discrete models, 

ODEs, and PDEs.  Such mechanistic models may provide insight into the mechanistic aspects of 

cell behaviors in bioprinted structures and are our preferred mathematical technique in this study.  

There is increasing research on mechanistic modelling and simulation as part of the 3D 

bioprinting process. For example, there are multiple mathematical studies predicting the shear 

stress applied on the bioink and cells in the nozzle;161,162 predicting the mechanical properties of 

the final printed structure based on bioink material properties;163 and simulating the bioink 

deposition and the ultimate shape of the created 3D structure.157 These mathematical techniques 

have tried to simulate the bioprinting process - during and after bioprinting - to investigate the 

effect of different parameters on various aspects of bioprinting, including cell viability and 

structural stability. 

However, a comprehensive computational study of the post-printing behaviour of cells 

embedded in 3D bioprinted structures is yet to be reported. Such mathematical studies can provide 

researchers with more insights into post-printing cell functioning and allow them to predict 

complex cellular activities and optimize the cellular microenvironment to save money and time by 
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keeping experimental evaluations to a minimum.  This is the first study that aims to develop an 

integration of in-vitro and in-silico 3D bioprinted breast cancer models to study the post-printing 

behaviour of a population of breast cancer cells embedded in a 3D bioprinted structure (Figure 

4.1). In the in-vitro study, we used the MDA-MB-231 cell line, one of the most aggressive breast 

cancer cell lines most frequently used in cancer-related studies. To develop the bioink, a mixture 

of gelatin and alginate is selected as the most common bioink material in 3D bioprinting due to its 

similar characteristic to native ECM and appropriate physiological and biological properties for 

bioprinting application 10. For our in-silico study, we selected cellular automata modeling, in which 

most of the parameters were picked from experimental data. Comprehensive in-vitro assays were 

also done to improve the reliability of the model.  

 

Figure 4.1 Schematic illustration of the main steps involved in this study; step 1: preparing bioink 

consisting of gelatine, alginate, and MDA-MB-231 cell line; step 2: printing and crosslinking the cell-

laden 3D structure; step 3: performing post-printing in-vitro assays; step 4: developing and calibrating an 

in-silico model. Created with BioRender.com. 

The proposed agent-based model in this study is beneficial for demonstrating complex cellular 

systems, including cellular proliferation, movement, cell interactions with the environment (e.g., 

ECM, neighbouring cells, and resource consumption) and cell aggregation within the scaffold. In 

this study, we demonstrate that mathematical models and in-silico simulations can be used to 
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capture in-vitro dynamics. Such a combination of in-vitro and in-silico studies can improve 

researchers' understanding of cell activities within 3D bioprinted constructs with the purpose of 

accelerating and increasing the accuracy of optimization and experimental settings. The proposed 

in-silico model is very promising and is able to be further developed to be applied in 3D cell 

culturing using bioprinting techniques in different biomedical applications. 

4.2 Materials and Methods  

4.2.1 Experimental Methodology  

4.2.1.1 Materials 

The alginic acid Sodium salt, dimethyl sulfoxide (DMSO), Sodium chloride, CaCl2 and gelatin 

from bovine skin (type B) were obtained from Sigma-Aldrich (Canada). For cell culture studies, 

MDA-MB-231 were purchased from ATCC, DMEM, FBS, penicillin/streptomycin, 

Trypsin/EDTA solution at 0.25% (w./v.) and PBS tablets were bought from Wisent Bioproducts. 

MTT powder, Triton X-100, BSA and paraformaldehyde were bought from Sigma-Aldrich 

(Canada). Furthermore, a Live-Dead Cell Viability assay kit (CBA415), Hoechst 33342Nuclei Dye 

were provided from Sigma-Aldrich (Canada). Additionally, Anti-Ki67 antibody (ab15580), Alexa 

Fluor 546 Goat anti-Rabbit IgG (H+L) were purchased from Abcam and Invitrogen (Canada), 

respectively.  

4.2.1.2 Rheological Measurement 

Rheological measurements are carried out using a Bohlin-CS Rheometer with a parallel plate 

geometry. The complex viscosity was measured at different frequencies ranging from 0.1 to 100 
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(Hz). The strain sweep test is performed at room temperature from 0.1 to 100% to investigate the 

viscoelastic properties of the bioink. All rheological tests are carried out three times. 

4.2.1.3 Cell Culture  

MDA-MB-231 cells were cultured in DMEM supplemented with 10% FBS and 1% 100 

Uml−1penicillin/streptomycin in T-75 flasks. Cells were incubated at 5% CO2 and 37 °C, and the 

media was exchanged every other day. When cells reached 80% confluency, the cells were rinsed 

twice with DPBS and then suspended with trypsin/EDTA (0.25%-1X).  

4.2.1.4 Bio-printing 

To prepare bioink, according to the protocol provided by Ouyang et al.164 first 0.5% NaCl 

solution using DI water was prepared. Then, gelatin and alginic acid sodium salt powder were 

added, and the solution was stirred vigorously for 1 hr. The prepared solution was sterilized by 

heating at 70 °C (30 min, three times) and then kept at 4 °C before usage. Prior to bioprinting, 

MDA-MB-231 suspension was gently and evenly mixed with prepared gelatin/alginate solution 

using a mixing syringe to make a bioink with final concentrations of 4% (𝑤/𝑣) gelatin, 4% (𝑤/𝑣) 

alginate and 2-2.5 × 106 MDA-MB-231 cells mL−1.  

Bioprinting was carried out using CELLINK INCREDIBLE+ extrusion-based bioprinter. The 

prepared bio-ink was extruded using a needle to fabricate the 3D cell-hydrogel layered grid 

constructs. More specifically, the printing nozzle applied for this experiment was a standard 

conical nozzle (22G), and the moving speed of the needle was adjusted at 5 𝑚𝑚𝑠−1. The printing 

was done at room temperature by applying appropriate pressure. The structure was designed using 

Solidwork software and sliced in sli3r software to 10 layers with the size of 10 × 10 × 3 𝑚𝑚3 

with a rectilinear filling pattern. During the printing, we made an effort to maintain the pressure at 
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the least level to have the minimum damage to cell viability. Subsequently, the cell-laden 

constructs were immersed in 3% (𝑤/𝑣) sterile calcium chloride solution (20 min) for crosslinking 

sodium alginate with calcium ions.10 Then, after being washed with PBS three times, each structure 

was cultured in DMEM medium containing 10% FBS and 1% penicillin/streptomycin in a 12-well 

plate and incubated at 5% CO2 and 37 °C for a predetermined period of time. Culture medium was 

exchanged every other day. 

4.2.1.5 MTT Assay  

Cell proliferation within the 3D network was assayed using MTT assay. After predetermined 

days of incubation, the medium in each well of a 12-well plate containing a 3D structure was 

removed, and 900 𝜇𝐿 fresh media and 100 𝜇𝐿 of MTT solution (0.5 mg 𝑚𝐿−1 in PBS) was added 

into each well, and the plate was incubated for 4 hr at 37°C in a CO2 incubator. The control was a 

3D structure without any cells. Then, after aspirating the medium, 1 𝑚𝐿 of DMSO was added into 

each well to dissolve formed formazan crystals for 30 min at 37°C in a CO2 incubator. In the end, 

the intensity of the solubilized formazan crystals was recorded using the Absorbance Microplate 

Reader at 540 nm.  

4.2.1.6 Live-Dead Assay 

The 3D bioprinted cell-laden constructs were stained at specific time points using Live-Dead 

staining viability kit based on the manufacturer's instructions to determine cell viability. Briefly, 

each construct was washed in PBS three times. Then, 1 μM CAM and 2 𝜇𝑀 PI were applied to 

stain cells while incubated in darkness. A laser scanning confocal microscope (Zeiss LSM 700) 

was used for imaging the live and dead cells within the 3D constructs at multiple spots. Then, 
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images were analyzed using ImageJ software. Cell viability was counted by dividing the number 

of green (living) cells by the total number of cells in each image.  

4.2.1.7 Cellular Proliferation 

Ki-67 Cell Proliferation Assay is a quantitative technique to evaluate cell proliferation in vitro. 

Using this method, the Ki-67 protein is applied as a marker for cell proliferation as it is expressed 

during the active cell cycle (G1, S, G2, and M) but not the stationary phase (G0). For this essay, 

first, the medium of each well at predetermined timesteps was removed entirely, and each scaffold 

was washed two times with PBS. Then, cells were become fixed by incubating scaffolds in 4% 

paraformaldehyde in PBS for 1hr at room temperature. Fixed structures were permeabilized in 

PBS containing 0.1-0.25% Triton X-100 for 15 min after being washed with PBS two times. 

Afterward, cells were blocked with 3% BSA/0.1% Triton X-100 in PBS for 1hr before the addition 

of Anti-Ki67 antibody with a concentration of 5 μgmL−1 in PBS/1% BSA and incubation 

overnight at 4°C. Then, the 3D structures were washed three times for 5 min with PBS/1% BSA 

prior to the addition of the Goat anti-Rabbit IgG (H+L) Secondary Antibody and incubation for 2 

hr. Next, the structures were rewashed (two times, 5 min) with PBS/BSA before adding Hoechst 

33342 (incubation of 1 hr). Ultimately, the cells were imaged using the laser scanning confocal 

microscope. 

4.2.2 Computational Methodology 

4.2.2.1 Cellular Automata Model Description  

This model simulates time as discrete, uniform time steps; each time step is 1 hr, and each 

simulation lasts for 11 days. A subdomain of the porous cell-laden scaffold fabricated using the 

3D bioprinting method is simulated in this model, which comprises a rectangular lattice of 190 × 
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190 × 30 lattice points, symmetrically consisting of four pores with widths of 50 × 50× 30 lattice 

points. Each lattice point within the hydrogel can be occupied by a cell or remain vacant, while 

the grid points in the pores should remain unoccupied, as the cells in the corresponding in-vitro 

experiments do not move into the pores (Appendix A, Figure A2).  A simulation is instantiated by 

placing a specified initial number of cells at random locations on the lattice within the hydrogel. 

At each time step, cells behave according to a set of stochastic rules that describe cellular processes 

such as proliferation, movement, and death. The main algorithm and schedule of processes within 

each time step in bioprinting are depicted in Figure 4.2. The computational framework builds upon 

previous theoretical cell population work 165,166.  
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Figure 4.2 Main steps in in-vitro and in-silico bioprinting. 
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4.2.2.2   Cell Proliferation Process  

This process is simulated for each cell individually to consider variations among cells.  

Individual cells are characterized by a specific, stochastic doubling-time, which attributes to the 

time it takes for each cell to complete one cell cycle to divide. Based on our experimental data, the 

doubling-time for each cell is picked from a normal distribution with a value µ=96 hrs and a 

standard deviation σ=6 hrs. The modeled cell cycle process in proliferation consists of transitions 

between proliferative and non-proliferative (G0) phases. After dividing, parent cells remain at their 

current position, and daughter cells can be placed in an unoccupied lattice point in the 

neighbourhood of the parent. If every neighbouring site is already occupied, parent cells enter the 

G0-phase, known as the resting or quiescence phase, where cells become inactive.167 First, second 

and third-order Moore neighbourhoods are used for placing daughter cells. The scaffold has a 

specified maximum carrying capacity 𝐶 to accommodate cells, and upon reaching the total number 

of cells to this capacity, the proliferation is aborted with a specified probability (𝑃0). The carrying 

capacity depends on spatial and nutrient limitations in the in-vitro system. The values of 𝐶 and 𝑃0 

are calibrated according to the in-vitro observations. Due to the unequal distribution of nutrients 

and oxygen within the scaffold, some cells can still proliferate after reaching the scaffold's carrying 

capacity, while others enter the G0 phase. This means that cells can continue to proliferate at sites 

with sufficient nutrients and free neighbouring lattice points. Table S1 contains the values for all 

in-silico parameters.  

4.2.2.3 Movement Process 

In the movement process, cells move every specific time known as 𝑚𝑐, however as all the cells 

might not be synchronized in their movement, a random number was introduced to be added to 
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𝑚𝑐. The value of the 𝑚𝑐 parameter was also calibrated using in-vitro data. In this process, 

individual cells can move in a random manner with random-probability, or biased-random manner 

with biased-probability, and change their positions if there is a free lattice point in their 

neighbourhood 168. Cells can move toward one of six directions (right, left, up, down, forward, and 

backward) of their neighbourhood with equal probability, which is known as random movement, 

or move in a biased-random manner with weighted probability, where cells are attracted to other 

cells and the pores in their vicinity, as motivated by empirical observations from the in-vitro 

experiments. In the biased-random movement, we compute the probability of movement in each 

direction (direction-p) depending on the number of neighboring cells at that direction of a cell 

within its range of attraction, defined as (𝐿𝑐). Also, the probability in each direction can be 

increased depending on the Euclidean distance between the individual and pores within a specific 

attraction range known as (𝐿𝑝). In the random movement case, 𝑃up = 𝑃down = 𝑃left = 𝑃right =

𝑃forward = 𝑃backward = 1/6, where 6 is the number of directions, and 𝑃up, 𝑃down, 𝑃left 𝑃right , 

𝑃𝑓𝑜𝑟𝑤𝑎𝑟𝑑 , and 𝑃backward are the probability of cell movement in the up, down, left and right 

direction, respectively. In the random-biased case, 𝑃up = 𝑃1, 𝑃down = 𝑃2, 𝑃right = 𝑃3, 𝑃left = 𝑃4, 

𝑃𝑓𝑜𝑟𝑤𝑎𝑟𝑑 = 𝑃5 , and 𝑃𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 = 𝑃6, with  ∑ 𝑃𝑖
6
𝑖=1 = 1. The probabilities 𝑃𝑖 are computed by 

scanning and summing the neighboring cells and pore lattice points. More details are described in 

the Appendix B. Finally, each cell moves with more tendency in the direction where higher 

probability is computed. 

4.2.2.4 Death 

In the simulations, we assumed that the porous structure of the 3D bioprinted scaffold allowed 

all cells to access nutrients and oxygen, which prevented death due to the lack of such vital 
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materials. However, cells lose their viability if they remained in the stationary phase for more than 

a specific time defined as 𝐶𝑑, calibrated within a range of values, with the probability of 𝑃𝑑. Table 

S1 contains the values for all in-silico parameters.  

4.2.3 Statistical Analysis 

Image J software was utilized to analyze the images. All error bars in the figures and reported 

data indicated ±SD from at least three repeats (n ≥ 3). The results were reported in the format 

of mean± SD. The reported statistics from confocal microscopy images were obtained by 

averaging the number of cells in at least five distinct points of each structure.  

4.3 Result and Discussion 

4.3.1 Rheological Measurements 

As previously stated, the ideal bioink for extrusion-based printing should possess suitable 

rheological characteristics, such as shear-thinning properties. As demonstrated in Figure 4.3, the 

complex viscosity of the 4%gelatin-4%alginate bioink was assessed as a function of frequency for 

this purpose, revealing that as the frequency increased from 0.1 to 10 Hz, the complex viscosity 

dropped, demonstrating its shear-thinning behavior. Hence, during extrusion, when cell-laden 

bioink is exposed to high shear stress at its interface with the nozzle, it can be easily extruded 

through the nozzle. This characteristic not only improves the printability of bioink, but also reduces 

the shear stress-induced loss of cell viability, resulting in greater cell survival. 
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Figure 4.3 The complex viscosity of the 4%gelatin-4%alginate formulation vs. frequency. 

 

4.3.2 In-vitro Cell Studies 

The tumour-like hydrogel network model was successfully printed (Figure 4.4 (A)). To 

determine the proliferation of MDA-MB-231 cells embedded within the hydrogel, MTT assay was 

used to monitor cellular metabolic activity on days 0, 4, 7, 10, and 11. As illustrated in Figure 4.4 

(B), compared to day 0, MDA-MB-231 cells in the 3D cell/hydrogel construct demonstrated 1.86-

, 2.7- and 2.78- and 2.8- fold proliferation on days 4, 7, 10, and 11, respectively. Indeed, cells 

showed rapid proliferation in the first 7 days and almost maintained almost a plateaued cell 

proliferation from day 7 to 11. Interestingly, the results showed that the doubling time of the MDA-

MB-231 encapsulated in the 3D microenvironment was three times higher than that of cells grown 

in 2D cultures, which can be attributed to the reduced cell activities within the 3D matrix 169. From 

day 7 to day 11, the number of proliferating cells remained approximately constant and left a 

question behind: whether cells died or entered to non-proliferating phase (quiescent) due to 
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undesired conditions. To answer this question, live-dead assay, as well as Ki-67 immunostaining, 

were further employed during 11-days period to get a better understanding of cell behaviour 

growth encapsulated in the 3D scaffold.  

 

 

Figure 4.4 (A): Fabricated cell/hydrogel structure using 3D bioprinting technique; (B): MDA-MB-231 

proliferation embedded in hydrogel network post printing from day 0 to day 11. Error bars represent ± 

SD, n ≥ 3. 

 

The viability of MDA-MB-231 over 11 days was visualized using live-dead staining, which 

was in line with MTT assay results. As shown in Figure 4.5 (A), most cells were viable after 

printing, and the viability rate of cells was 76±2% on day 0, which clearly demonstrated minor 

damage of the bioprinting process on cell viability. The rate of viability increased over the first 

week and reached 98±1% and 99±1% on day 4 and day 7, respectively. Therefore, the structure 

was porous enough for oxygen and glucose to diffuse and distribute through the hydrogel scaffold, 

which could provide a proper living environment for cells. From day 7 to day 11, although some 

cells died, the majority of cells survived, and the rate of viability reached 96±2% on day 11. By 

comparing the results of live-dead assay and MTT assay, it can be concluded that a significant 

portion of cells entered the resting phase after seven days since the maximum capacity of the 
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scaffold had been achieved, and some of the cells began to die during the long-term stationary 

phase, or due to the lack of resources. Cell death in this experiment is almost negligible, which 

illustrates the promising potential of gelatin/alginate scaffold for bioprinting applications for a long 

time. Furthermore, for better visual representation of the printed cells within the three-dimensional 

structure, the distribution of cells within the hydrogel is depicted in Figure 4.5 (B). 

 

Figure 4.5 (A): Microscopic images demonstrating viability of MDA-MB-231 cells within 3D hydrogel 

constructs using the fluorescent live-dead assay kit from day 0 to day 11. Live and dead cells were stained 

using CAM and PI, respectively; (B): Distribution of cells whithin 3D hydogel-based construct on day 0.  

Green color represents live cells; red color represent dead cells. Cells were imaged using the laser 

scanning confocal microscope. Scale bar, 50 μm (enlarged images, scale bar, 30 μm). 

To visualize the proliferative capacity of MDA-MB-231, cells were fixed, and an anti-Ki-67 

antibody was used to image proliferating cells using a confocal microscope (Figure 4.6). Ki-67 is 

a common-used marker that is present for all active phases of the cell cycle but absent in cells at 

the stationary phase.170 The results demonstrated that on days 0 and 4, almost 98±1% and 95±2% 

of the cells were positive for ki-67, respectively, while this number decreased to 86±2% on day 7, 

followed by a dramatic drop to about 48.2±2.4 on day 11. This result is in agreement with the data 

in the previous Figure (Figure 4. 5 (A)), illustrating that within seven days, cells not only survive 
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but also maintain their proliferating ability. From day 7 to day 11, although a high proportion of 

cells demonstrated to be alive, they were quiescent and were not able to proliferate anymore 

because of the lack of enough space for cells to proliferate. Additionally, on days 7 and 11, cells 

became more aggregated, particularly close to the pores, and cells at the center of the cell 

aggregates were shown to be non-proliferating due to being surrounded by other cells. Therefore, 

the proliferation process was aborted as there was not enough space for daughter cells to be placed 

and due to the lack of nutrients and oxygen at the center of aggregates.  

The results of the in-vitro experiments were applied to parameterize the developed mathematical 

model. 
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Figure 4.6 Ki-67 staining of encapsulated MDA-MB-231 cells within 3D bioprinted constructs. Cells 

were stained using anti-Ki-67 antibodies visualized with Alexa Fluor 546, and Hoechst 33342 (red color 

represents cells positive to ki-67; blue color represents all cells). Cells were imaged using the laser 

scanning confocal microscope. Scale bar, 50 μm (enlarged image, scale bar, 30 μm). 
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4.3.3   In-silico cell studies 

Individual-based modelling using a cellular automaton is one method to simulate the spatial and 

temporal mechanism of cell growth at the cellular level 171,172. This approach is a dynamic system 

that includes grids of cells, and each cell has sets of discrete states.101 CA modelling has been 

widely used in recent years to investigate different cancer cell mechanisms based on a 

variety of static automaton rules 105. However, to date, no study has applied CA modelling in 3D 

culturing cancer cells using 3D bioprinting. We selected this mathematical method for 

this study on simulating cell growth encapsulated in a 3D bioprinted structure due to its ability to 

capture spatial properties of the 3D printing structure and its flexibility to explore different 

hypotheses. Additionally, since the data obtained from our in-vitro experiments contained cells in 

discrete form, this discrete mathematical technique would have a more accurate simulation of this 

process. The framework developed in this study represents rules in cellular proliferation, viability, 

movement, and interactions with the environment, which includes hydrogel and neighbouring 

cells, as well as cluster formations within the hydrogel network. The in-silico results demonstrated 

in this article are based on mean values, and standard deviations from n=100 simulation runs, 

where n is motivated by consistency analysis (Appendix C, Consistency Analysis). 

Figure 4.7, showing the cell proliferation patterns for 11 days within the scaffold for both in-

vitro and in-silico, illustrates them in agreement with each other. In cell proliferation, the initial 

cell density and scaffold capacity are two key parameters that we specified as 𝐶initial and 𝐶 

variables, respectively. The corresponding values of these parameters were determined using 

calibration to produce the best fit to the in-vitro studies. Note that, the initial cell density 

in the developed model represents the effective initial population of cells that can interact with one 

another within a thin layer, not the total number of cells in the scaffold. Therefore, the simulated 
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cell density was reduced by a scale factor compared to the cell density in the experimental settings. 

The results showed that cells reached the maximum cell density of cells in both simulation and 

experiments after seven days. The time it took for cells to achieve maximum density in the scaffold 

was strongly dependent on the number of initial cells and the capacity of the printed scaffold. 

The greater the number of initial cells and the less the scaffold capacity, the sooner cells reached 

maximum cell density and stopped proliferation. Therefore, by fine-tuning these parameters and 

running simulations in different scenarios, researchers can design the experiments to achieve 

desired results without repeating in-vitro assays.  

 

 

Figure 4.7 Comparison between in-vitro and in-silico results of MDA-MB-231 cell proliferation within 

the 3D hydrogel network. Error bars represent ± SD, n ≥ 3.  

  

Simulated data were also able to consistently replicate the viability and proliferation 

experimental results. As explained in the previous section, although cells showed around 99% 

viability within seven days of printing, the number of dead cells slightly increased from day 7 to 

day 11 when the significant portion of cells was in the resting phase. Hence, to precisely simulate 

the in-vitro condition, it was assumed that cells that remained in a prolonged stationary phase for 
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more than the specified hours, defined by a stochastic number (𝐶𝑑), started to die with a specified 

probability (𝑃𝑑). This observation can be explained biologically by the cells' inability to re-enter 

the cell cycle after entering the cell stationary phase.  

Figure 4.8 shows the snapshots of in-silico MDA-MB-231 cells growing within the hydrogel 

network; as well as in-vitro microscopic images of cells in the 3D structure. In this figure, you can 

see cells' distribution and progression of cell cluster formation on days 0, 4, 7 and 11 for both in 

vitro and in silico. In the in-silico images, yellow, red and black coloured cells are representative 

of proliferating, non-proliferating and dead cells, respectively. 

On day 0, a few cells were distributed inside the hydrogel network. Over time, cells proliferated 

and created the first two-cell clusters and then bigger ones. Similar to in-vitro observations, the 

percentage of viability remained around 100% until day 11, when the viability slightly decreased 

and reached 93.74±0.5%. Furthermore, simulated cell proliferation decreased over time and after 

seven days experienced a significant drop due to achieving the maximum capacity of the scaffold; 

and finally dwindled to 54.14±0.25% on day 11.  

Another important factor apart from cell viability and proliferation is the ability of the cells to 

move in their surrounding matrix. This simulation can also be applied to analyze the cell movement 

as well as the structure and distribution of formed tumour clusters in the hydrogel network without 

experimental assessment. Tumour clusters might be created due to interactions between 

neighboring cells or between parent and daughter cells, depending on their position and the 

microenvironment 173. Indeed, cells coordinate through cell-cell physical and signalling 

interactions and create clusters. 

In Figure A1 (Appendix A), cells show a trend of crawling toward scaffold pores followed by 

forming clusters around those pores, as essential resources are in greater concentration there, 
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particularly after seven days. This fact suggests that the hydrogel networks had limited resources 

transport capacity. Thus, we have defined particular ranges of attraction for both cell-cell 

signalling (𝐿𝐶) and cell-pore attraction (𝐿𝑝) to consider different cell migration directions. Speed 

of movement was another important parameter affecting cluster formation. Fallica et al.169 

illustrated that the movement of cancer cells is inhibited in 3D microenvironments and shows 

extremely low speed due to the combination of material rigidity and the anchoring of cell receptors. 

Therefore, based on the observations in this and previous studies, we have calibrated cell 

movement speed. In the movement processes, each individual moved at a specific time defined as 

𝑚𝐶 in a direction determined based on cell attraction. During the process of calibration, by 

comparing in-vitro and in-silico results, it was concluded that cells had less tendency to move 

toward neighbouring cells within a smaller attraction range (𝐿𝐶) compared to the surface/pores of 

the scaffold (𝐿𝑝). Applying these rules in the model, cells mimic the in-vitro cellular behaviour in 

terms of movement and cluster formation. The results of the proposed model are consistent 

with those of previous studies 169,174. 
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Figure 4.8 Middle panels visualize the MDA-MB-321 growth within the 3D hydrogel construct in silico; 

yellow represents proliferating cells; red represents non-proliferating cells; black represents dead cells. 

The right and left panels represent MDA-MB-231 cells encapsulated in 3D hydrogel constructs observed 

by a phase-contrast microscope on day 0, day 4, day 7, and day 11: scale bar, 50 μm. 

In general, this model is developed to combine with in-vitro 3D-bioprinting evaluations, leading 

to a comprehensive analysis of the whole 3D fabricated structures. One of the main applications 

of this simulation is to predict the post-printing cellular behaviour in an unpracticed 

microenvironment which improves its capability to replicate desired biological settings. For 

example, this model provides the opportunity to evaluate the impact of different important 

parameters such as various initial cell densities on cellular behaviour in a long-term period. This 

can be of benefit to researchers to generate a more suitable microenvironment for cell growth 

without the need to repeat experiments. For instance, they can design the scaffold in terms of size 

or structural shape with the purpose of modifying the scaffold capacity to improve cell 

proliferation and decrease cell death. 



95 

 

4.3.4 In-silico Model Validation 

To further validate the in-silico model, we performed the bioprinting procedures with different 

experimental variables in two different situations: case 1: varying initial cell densities; case 2: 

varying bioink formulation. In case 1, we did bioprinting with a bioink with 4% (𝑤/𝑣) gelatin, 4% 

(𝑤/𝑣) alginate, and 1.5 × 106 MDA-MB-231 cells mL−1. In case 2: we performed bioprinting 

experiments with a bioink with final concentrations of 4% (𝑤/𝑣) gelatin, 5% (𝑤/𝑣) alginate, and 

2× 106 MDA-MB-231 cells mL−1. Using the calibrated in-silico model, we would like to predict 

the proliferation pattern of cells in these two new conditions.  

Figure 4.9, showing the cell proliferation patterns for 10 days for case 1 for both in-vitro and 

in-silico, illustrates them in agreement with each other. In the in-silico model, all parameters except 

𝐶initial (the initial cell density) have the same values as in the calibrated model. The simulated cell 

density is reduced by the same scale factor compared to the cell density in the experimental 

settings and set to 𝐶initial = 2000. Both simulations and experiments demonstrated that cells did 

not achieve the maximal cell density after 7 days and kept growing. Hence, when the number of 

beginning cells reduced, the later cells attained their scaffold capacity and consequently ceased 

proliferating. 
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Figure 4.9 Prediction of cell proliferation using in-silico model for case 1: 1.5 × 106 MDA-MB-231 cells 

𝑚𝐿−1 in 4% gelatin/4% alginate bioink; on day 0, 3, 7, and 10. In vitro study was performed using the 

MTT assay. Error bars represent ± SD, n ≥ 3 

Figure 4.10, comparing in-vitro and in-silico cell proliferation patterns for case 2, also shows 

agreement. In this case, experimentally, we altered the formulation of bioink. Increasing the 

alginate concentration can increase the rigidity of a hydrogel-based construction, as demonstrated 

earlier 146. It has also been found that the stiffness of the microenvironment would also affect cell 

movement and spheroid formation within the scaffold 168. Although parameters directly related to 

stiffness have not yet been integrated into our model, we may regulate cellular behavior and 

investigate the impacts of bioink formulation and stiffness on proliferation and migration by 

varying some rules of cellular movement. In the calibrated model for bioink containing 4% (w/v) 

gelatin and 4% (w/v) alginate, cells move every 15 hours, denoted by 𝑚𝑐 . Thus, with 4% (w/v) 

gelatin, 5% (w/v) alginate-based bioink, we reduce the movement speed of cells encapsulated in a 

stiffer microenvironment and change 𝑚𝑐 to 20 hours while keeping other parameters unchanged. 

Comparing the results of an in-silico model to in-vitro data, we conclude that for 4% (w/v) gelatin 

and 5% (w/v) alginate-based bioink, 𝑚𝑐 =20 hours closely match the in vitro proliferation trend 

within 11 days.  
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The in vitro observations revealed that on day 11, cell proliferation decreased slightly, which 

can be explained by the stiffer microenvironment. Indeed, the rigidity might reduce cell movement 

and proliferation; and hinder the transport of nutrients, resulting in cell death over time. For more 

significant changes in bioink formulation, it is necessary to incorporate microenvironment stiffness 

or bioink-related parameters into the model to anticipate cell behaviour accurately. However, with 

4% (𝑤/𝑣) gelatin, 5% (𝑤/𝑣) alginate, and minor modifications to the bioink formulation, our 

developed model can be used successfully. 

 

 

Figure 4.10 Prediction of cell proliferation using in-silico model for case 2: 2 × 106 cells 𝑚𝐿−1 in 4% 

gelatin/5% alginate bioink. In vitro study was performed using the MTT assay. Error bars represent ± SD, 

n ≥ 3 

Taken together, we could validate our model by creating variations in the in vitro data and 

successfully simulating the varied situation. Hence, we can confidently claim that this model can 

help researchers plan experiments more accurately by predicting the outcome. In fact, researchers 

executing simulations under various situations and fine-tuning related parameters can design 

experiments to reach the desired results without repeating in-vitro procedures. 
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Chapter 5 Conclusions and Future Work 

5.1 Conclusion 

Studying and optimizing cell behavior, such as cell viability and growth, and understanding 

how different variables in the bioprinting process affect cell functioning during and after printing 

are essential for the success of the bioprinting process. In this study, we attempted to understand 

cell behaviour in this process better and optimize the bioprinting procedure by integrating 

computational techniques and in-vitro bioprinting studies to eliminate the need for costly and time-

consuming trial-and-error methods. 

In Chapter 3, we developed a novel cell viability optimization process during the bioprinting 

process through the application of ML techniques. To do this, we combined the 92 datapoints 

generated in our laboratory with those collected from other laboratories to create a larger dataset 

with 713 data points. Using the created dataset, we successfully created regression and 

classification neural network models to predict cell viability for gelatin and alginate-based bioinks. 

The trained neural network for regression in our study yielded regression R2 value of 0.71 and 

classification accuracy of 0.86. In conclusion, the neural networks represent great performance 

and a significant improvement over the previous studies using other ML techniques conducted so 

far.  

Through the neural network for regression and Permutation Importance, we identified the 

bioprinting parameters significantly impacting cell viability prediction. Among 

different parameters, "cell type" emerges as the most critical variable, highlighting different 

sensitivities of various cell types to the bioprinting procedure. In addition, "extrusion pressure" is 

identified as the second most significant parameter, demonstrating the detrimental impact of 
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excessive pressure on cell viability due to mechanical stress and shear forces on the cell membrane. 

After the bioprinting procedure, the "crosslinker (CaCl2) concentration" and "physical 

crosslinking time" are identified as the third and fifth significant features, respectively, 

which balance the structural integrity and cell viability of bioprinted structures. Therefor, we can 

conclude that tuning these effective parameters can highly impact the survival of cells during the 

bioprinting procedure.  

In this study, we are pioneers in conducting a computational investigation to explore the 

profound influence of cell type on cell viability in bioprinting. Our dataset not only includes 

cancer cell lines but also encompasses diverse cell types, including mesenchymal stem cells, 

allowing this model to be utilized not only in cancer research but also in various tissue 

engineering applications. 

We finally developed a novel Bayesian optimization model based on the created trained 

neural network to inversely predict optimal bioprinting crosslinking parameters achieving the 

highest cell viability without any trial-and-error experiments. By integrating the synergistic 

capabilities of our neural network and Bayesian optimization model, we achieved quicker and 

more efficient optimization that surpasses the limitation of traditional optimization approaches. 

In addition, we validated the performance of our Bayesian optimization model by conducting 

two distinct laboratory experiments. These experiments showed good agreement between the 

final predicted and actual cell viability, demonstrating the promising potential of this 

optimization technique for determining optimal bioprinting parameters.  

In Chapter 4, we developed a CA model to simulate post-printing cells' dynamics within 

the 3D bioprinted construct. To this end, we first successfully printed MDA-MB-

231/gelatin/alginate bioink and evaluated cellular behavior in 11 days using MTT, Live-dead, and 



100 

 

Ki-67 cell proliferation assays. Using in-vitro results, we defined rules in the CA model for cell 

proliferation, viability, movement and cluster formation within the 3D hydrogel network and 

calibrated model parameters such as doubling-time, movement speed, and probability of death in 

11 days.  

Our model could quantitatively capture the post-printing in-vitro behavior of cells in the 

3D scaffold and predict and elucidate the cell behavior for different bioprinting conditions. For 

example, it replicated the cellular movement and cell crawling toward the pores, followed by 

forming clusters after seven days due to uneven distribution of nutrients and oxygen. Furthermore, 

the in-silico data elucidated the dependence of cell proliferation on the initial number of cells and 

the capacity of the printed hydrogel network and could predict post-printing cellular proliferation 

based on the initial quantity of cells in bioink. This in-silico model could also represent cell activity 

using various network formulations containing gelatin and alginate. The proposed mathematical 

framework can be of benefit to researchers to generate a more suitable microenvironment for cell 

growth without the need to repeat experiments.  

In the end, we believe that the encouraging outcomes of our study and our developed 

mathematical and computational frameworks provide a solid foundation for advancing bioprinting 

applications.  

5.2 Future Work 

In addition to the accomplishments and contributions outlined in this study, several 

promising directions for the future can enhance the performance and broaden the applicability of 

our research: 

1- By expanding the available dataset with additional literature and experimental data, 

with diverse values for each parameter, such as varying hydrogels, cell types, printing 
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settings, and crosslinking conditions, we can further improve the accuracy of our 

predictions of both neural networks and the Bayesian optimization model.  

2- The inclusion of additional parameters, such as the geography of the printed structure 

and the thickness, in the dataset for each set of data is likely to improve the accuracy 

of cell viability prediction. 

3- After modifying the neural network, backpropagation optimization is another powerful 

ML technique that can maximize cell viability by tuning bioprinting parameters. 

Backpropagation can be used in this method to efficiently compute gradients that 

indicate the sensitivity of cell viability to parameter changes. These gradients lead the 

optimization process to search for parameter values that result in the highest cell 

viability. 

4- To expand the bioprinting dataset and improve model performance, considering data 

from other types of printing techniques like stereolithography and inkjet-based 

bioprinting, in addition to extrusion-based bioprinting, can be beneficial. By 

incorporating diverse printing data, the dataset becomes more comprehensive and 

representative of various bioprinting scenarios. Subsequently, pretraining the model on 

this augmented dataset and applying transfer learning to fine-tune the model 

specifically for extrusion-based bioprinting can enhance its performance and predictive 

capabilities. This approach leverages the knowledge gained from different printing 

techniques and adapts it to improve cell viability prediction in the context of extrusion-

based bioprinting. 

5- Optimizing the printability of structures is a crucial aspect of bioprinting that has 

traditionally been accomplished through tedious trial-and-error experiments. In order 
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to improve the predictive capabilities of neural networks in determining successful 

bioprinting of a cell-laden structures, it is advantageous to expand the dataset with 

data regarding printability in addition to cell viability. By incorporating printability 

information, the model can predict cell viability as well as printability based on 

particular bioprinting parameters. This strategy provides bioprinting laboratories with 

a broader understanding of bioprinting, allowing them to optimize bioprinting 

outcomes with more informed decisions. 

6- The structural integrity of the bioprinted constructs is another factor playing a vital 

role in the overall success of the bioprinting process. Additionally, optimal 

crosslinking parameters can be accomplished more precisely by creating a balance 

between preserving cell viability and assuring the desired structural integrity of 

printed constructs. Hence, to enhance the predictive ability of the Bayesian 

optimization model for predicting the crosslinking parameters, we can include both 

structural integrity and cell viability in the objective function. By incorporating these 

variables, we can create a more comprehensive optimization model allowing more 

effective prediction of crosslinking parameters to preserve cell viability while 

strengthening the structure.  

7- Our neural network-based Bayesian optimization technique has the potential to be 

expanded to address demands of different bioprinting projects. Using this method, we 

may explore the inverse prediction of other bioprinting parameters, such as initial cell 

density, bioink formulation, printer setting parameters, or a combination of all of 

them to optimize cell viability. This expansion of our Bayesian optimization 
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model enables a comprehensive optimization framework that accommodates the 

diverse needs and goals of bioprinting projects. 

8- The developed CA framework in this study can be extensively applied in different 

bioprinting-related studies for various applications such as tissue engineering, 

oncology, and the pharmaceutical industry by extending its rules and improving its 

ability to provide an accurate prediction of biological systems. Our CA model can be 

expanded by incorporating bioink-related parameters such as stiffness and structural 

integrity, which regulate cellular behavior, including proliferation, migration, and 

oxygen/nutrient diffusion to the 3D network.131,175–178 

9- The proposed CA model can be integrated with the machine learning algorithms and 

provide researchers with this opportunity to predict the temporal or structural effect of 

the hydrogel network on any desired objectives in the biological system. Furthermore, 

we can use CA simulation to pre-train the ML algorithm, and then a transfer learning 

approach can be applied to train the experimental data. 

10- Another prospect of our CA model is its application in a heterogeneous environment 

with multiple cell lines for studying cell-cell interaction and cell-ECM interactions. 

Besides, by adjusting the rules, this model can be integrated with pharmacokinetic 

modelling techniques to simulate drug treatment responses in 3D cell culture using 3D 

bioprinting to help study tumor development and metastasis, drug screening, and other 

aspects of cancer research.  

11- A 3D bioprinted tumor model has the potential to advance cancer therapy research 

significantly. By successfully printing a 3D model with the MDAMB-231 cell line 

using gelatin and alginate-based bioink in our laboratory, we can further study the 
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effect of various cancer treatments on cells in an environment that closely resembles 

the ECM. Compared to traditional cell cultures, this model provides a more biologically 

accurate representation of actual cancer cells in the human body 
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Figure A1. MDA-MB-231 cells encapsulated in 3D bioprinted structures observed by a phase-contrast 

microscope on days 0, 4, 7 and 11. Scale bar, 50 μm. 

Appendix A  

Microscopic Images of Cells Embedded in 3D Constructs 

Cells encapsulated in 3D bioprinted structures were monitored by a phase-contrast microscope 

on days 0, 4, 7 and 11 (Figure A1). Cells show a trend of crawling toward scaffold pores over time, 

followed by forming clusters. 
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Figure A2. 3D bioprinted constructs observed by a phase-contrast microscope on days 0, 4, 7 and 11. 

Scale bar, 500 μm. 

In addition, as shown in Figure A2, the 3D printed construct could hold its structure and 

maintain a good form within 11 days. During this period, the pore size remained unchanged, and 

cells were unable to exit the hydrogel network. 
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Appendix B 

ODD (Overview, Design Concepts, and Details) Protocol of CA Model 

To improve our model description with the purpose of ensuring that enough information is 

communicated to help model understanding and replication, we used the ODD protocol proposed 

by Grimm et al.179. 

Model description 

Overview 

Purpose 

The purpose of this model is to study the post-printing cellular behaviour of MD-MB-231 

cells encapsulated and grown in a 3D hydrogel-based structure fabricated using bioprinting, and 

investigate the impact of this culture method on cellular proliferation as well as cluster formation 

over time.   

State Variables and scales 

This model simulates time as discrete, uniform time steps; each time step is 1 hour, and each 

simulation lasts for 11 days (264 time steps). This model applies a two-dimensional lattice for 

the purpose of developing a better simulation of the obtained 2D in-vitro data. A subdomain of 

the porous cell-laden scaffold fabricated using the 3D bioprinting method is simulated in this 

model, which comprises a rectangular lattice of 190 × 190× 30 lattice points, symmetrically 

consisting of four pores with widths of 50×50×30 lattice points. Each lattice point spans a 

volume of 1000µ𝑚3. Each grid point within the hydrogel can be occupied by a cell or remain 

vacant, while the grid points in the pores should remain unoccupied. A simulation is initiated by 

placing a specified initial number of cells (init_c) at random locations on the lattice within the 
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hydrogel. At each time step, cells behave according to a set of stochastic rules that describe 

cellular processes such as proliferation, movement, and death. Each cell can be characterized by 

cell-cycle phase and cell-cycle length. Cell-cycle phases include the proliferative phase (G) and 

non-proliferative or stationary phase (G0), and cell-cycle length is chosen from a normal 

distribution with a mean of 96 hours and a standard deviation of 6 hours. The mean and standard 

deviation of this distribution are selected to match the in-vitro results of this study for MDA-

MB-231 cells. An overview of state variables, their default values, and experimentally observed 

data used for their calibration is illustrated in Table 1. 

Table B1. Overview of state variables, default values and experimentally observed data used for their 

calibration. 

Parameter Value 

experimentally 

observed data used for 

calibration 

The total size of the 

scaffold 

190× 190 × 30 lattice 

points 

Size of 3D bioprinted 

scaffold 

Pore size 50×50× 30 lattice points 
Size of 3D bioprinted 

scaffold 

Time step 1 h - 

Initial distribution of 

cells 
Random - 

Cell phases 
Proliferative phase (G), non-

proliferative phase (G0) 
Ki-67 test 

Cell-cycle length 
Picked from a normal 

distribution 
MTT assay 

Mean of cell cycle 

length distribution (µ) 
96 h MTT assay 

The standard deviation 

of cell cycle length 

distribution (σ) 

6 h MTT assay 

Probability of random 

movement 
0.25 Microscopic images 
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Probability of biased-

random movement 
0.75 Microscopic images 

𝒎𝑪 15 h Microscopic images 

𝒔 0 or 1 h - 

𝑪 10,000 cells or lattice points Proliferation assays 

𝑳𝑪 5 lattice points Microscopic images 

𝑳𝒑 10 lattice points Microscopic images 

𝑪𝐢𝐧𝐢𝐭𝐢𝐚𝐥 3000 cells Proliferation assays 

𝑷𝟎 0.5 Proliferation assays 

𝑪𝒅 48 h Proliferation assays 

𝑷𝒅 0.03 Proliferation assays 

 

For example, as part of the process of calibrating µ of cell cycle, we defined a parameter range 

based on the MTT assay results obtained from multiple repetitions and samples. The range 

extended from 85 hours to 130 hours, with a 5-hour increment. Subsequently, we executed the 

model multiple times, utilising distinct parameter values within the predetermined range. By 

conducting a thorough analysis of the results, we determined the parameter values that produced 

the most accurate replication of the in-vitro proliferation pattern. We repeated the same procedure 

for all calibrated parameters. 

Process Overview and Scheduling 

Process overview and scheduling are illustrated in Figure 3.2. At each time step, cells proliferate 

and divide to create a daughter cell.  Also, individual cells move randomly or biasedly and change 

their positions if there is a free lattice point in their neighbourhood. In our study, cell death occurs 

under specific conditions.   

Design Concepts 
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Emergence 

The emergent behaviour in this model exists in the cellular proliferation of cancer cells. Indeed, 

cancer cells encapsulated in the hydrogel network can show different proliferation rates post-

bioprinting depending on the initial number of cultured cells; cell movement (biased-random or 

random) and the direction they move; the position they plant their daughter cells in their 

neighbourhood; carrying capacity of the scaffold; and accumulation of vital materials. 

Sensing 

 In the proliferation process, the parent cells sense the presence of other cells in their 

neighbourhood, and daughter cells can only be placed in an unoccupied lattice point in the 

neighbourhood of the parental cell. If all lattice points within a third-order Moore neighbourhood 

of the parental cell is occupied, no daughter cell will be placed, and the parental cell will enter the 

G0 phase. Additionally, in the biased-random movement toward neighbouring cells, each cell can 

access the number of cells within its range of attraction and attempts to move toward the direction 

in which there are more cells. 

Interaction 

Cells in this model have indirect interactions as the proliferation is assumed to be aborted when 

the total number of cells reaches the maximum capacity of the scaffold or all neighbouring 

positions are occupied by other cells. Cells also move towards each other in biased-random 

movement, and daughter cells are placed in the neighbourhood of parent cells. 

Stochasticity 

Behavioural stochasticity is represented in this simulation. In the initialization step of the 

simulation, cells in the active phase (G1) are seeded at random positions. Additionally, for 

proliferation and movement and death processes, there are associated probabilities that cells make 
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certain decisions. For example, in cell movement, cells do not always move randomly and 

sometimes move in a biased-random manner instead. Whether a cell decides to do a biased-random 

movement or random movement at any time step is simulated stochastically (using parameters 

called biased probability and random probability). Cells move every 𝑚𝐶 + 𝑠 hours, where 𝑠 is a 

random number (0 or 1) in order to avoid the synchronized movement of all cells. The direction 

of movement is finally selected stochastically depending on the probability computed for each 

direction.  Also, in cell proliferation, each cell is given an individual stochastic doubling-time that 

is derived from a normal distribution with a determined mean and standard deviation.  

Details 

Initialization 

The values of parameters utilized in initialization are based on the carried out experiments. 

Random lattice points are initially occupied by the specific initial density of cells in a two-

dimensional lattice. For initial values of parameters, look at table 1. Initialization consists of two 

steps: 

Setup scaffold  

A scaffold is set in lattice points, such that scaffold[z][n]=1, where there are printed layers of 

hydrogel, and scaffold[z][n]=0 where there are pores (z and n are representatives of the lattice 

point coordinates).  

Place Cells in Random Locations 

Each initial cell is planted randomly in the position (z,n), if and only if scaffold[z][n]=1. 

Check if the new location is free or occupied by a cell. If it is free, a cell is planted in a new 

random location, and the counter of cell density "no_planted_cells" is incremented by one; 
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otherwise, a different location is tried by redoing the while loop without incrementing the number 

of planted cells.  

After planting each cell at any position, the status of positions is updated by getting changed 

from 0 to 1. On day 0, the in-vitro results showed that 24±2% of the cells in bioink were damaged 

and dead due to being exposed to the high pressure during the bioprinting process. However, we 

did not consider the initial dead cells in the model, and cultured only viable cells on day 0.  

Input 

A subdomain of the porous cell-laden scaffold fabricated using 3D bioprinting method is 

simulated in this model, which comprises a square lattice of 190 × 190 × 30 lattice points, 

symmetrically consisting of four pores with 50×50 × 30 lattice points.   

Submodels 

Within each time step, the following processes are defined in this model. 

Cell movement 

In this process, each cell can move in a random way or biased-random manner and change its 

positions if there is a free lattice point in its neighbourhood. The probability of biased-random 

movement is considered to be 0.75, and the probability of random movement is equal to 0.25. Cells 

move every 15 hours known as 𝑚𝑐, however as all the cells might not be synchronized in their 

movement, a random number (0 or 1) was introduced to be added to 𝑚𝑐. The value of the 𝑚𝑐 

parameter was also calibrated using in-vitro data. In the biased movement, the probability in each 

direction is computed using the number of neighbouring cells at that direction of a cell within 𝐿𝑐 =

5 (lattice points) and the Euclidean distance between the individual and pores within 𝐿𝑝 = 10.  

For example, the probability of movement in up direction is computed similar to the following: 
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For the range of 𝐿𝑝 lattice points around each focal cell: 

  𝑋𝑢𝑝 = ∑
ℎ𝑖

𝑙𝑖
𝑖  W 

For the range of 𝐿𝑐 lattice points around each focal cell: 

      𝑝up = 𝑌  

 

Here W is a constant weight, 𝑖 is sum over 𝐿𝑝 lattice points that are above the focal cell, ℎ𝑖 =

{
1,  if lattice point is a pore
0,  otherwise

, 𝐿𝑖 is the Euclidean distance between the focal cell and lattice point 

i. 𝑌 is the number of neighboring cells in 𝐿𝑐 lattice The value 𝑊 = 100, 𝐿𝑐 = 5  (lattice points) 

and 𝐿𝑝 = 10 (lattice points) are calibrated to consider the empirical observation that cells were 

more desired to move toward pores where more vital materials were found, in comparison to the 

movement toward other cells.  Finally, 

𝑃up = (𝑋𝑢𝑝  + 𝑝up) 𝑁 

 

Indeed, 𝑋𝑢𝑝 and 𝑝up are the contribution from pores and cells, respectively, and N is 

normalization constant. Therefore, we end with 𝑃up+𝑃down+𝑃right + 𝑃left + 𝑃forward +

𝑃backward=1, and each focal cell is more likely to move in the direction where a higher directional 

probability is computed.  

Other submodels (Cell Proliferation and Cell Death) are described in the Method section. All 

the parameters in these submodels are calibrated to best fit the experimental data.  
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Appendix C 

Consistency Analysis 

Consistency analysis is a technique that is applied to find how many times the simulation should 

be run before describing our results in order to minimize the uncertainty originating from inherent 

model stochasticity. This simulation experiment was conducted based on the study performed by 

Hamis et al. 180 To do this, we produced five different groups that each contains 𝑘 = 20 

distributions of size 𝑛 = {1, 5, 50, 100, 200}. We also specified two outputs of interest: X1: the 

number of living cells on day 5, and X2: the number of proliferating cells on day 5. The purpose 

of consistency analysis is to determine a distribution size that leads to small statistical significance 

for these results. In each group, we computed and plotted the maximal Â-measure 165 for 𝑘 =

1,2, … , 20 distributions and for both X1 and X2 separately, as is shown in Figures C1, C2, C3, and 

C4.  

 
               Figure C1. Consistency Analysis, Â-values and scaled Â-values for 𝑛 = 1. 
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Figure C2. Consistency Analysis, Â-values and scaled Â-values for 𝑛 = 5. 

Figure C3. Consistency Analysis, Â-values and scaled Â-values for 𝑛 = 50. 



138 

 

 

 

The figures above demonstrated that the minimum distribution size for which the statistical 

significance is considered small (< 0.56) for both outputs of interest is 𝑛 = 100. Therefore, all in-

silico results are based on an average obtained from 100 simulation run1. 

 

Figure C4. Consistency Analysis, Â-values and scaled Â-values for 𝑛 = 100. 

 


