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Abstract

We introduce a new notion of “faux-deterministic” algorithms for search problems in query
complexity. Roughly, for a search problem S, a faux-deterministic algorithm is a probability
distribution A over deterministic algorithms A ∈ A such that no computationally bounded
adversary making black-box queries to a sampled algorithm A ∼ A can find an input x on
which A fails to solve S ((x,A(x)) /∈ S). Faux-deterministic algorithms are a relaxation
of pseudo-deterministic algorithms, which are randomized algorithms with the guarantee
that for any given input x, the algorithm outputs a unique output yx with high probabil-
ity. Pseudo-deterministic algorithms are statistically indistinguishable from deterministic
algorithms, while faux-deterministic algorithms relax this statistical indistinguishability to
computational indistinguishability.

We prove that in the query model, every verifiable search problem that has a randomized
algorithm also has a faux-deterministic algorithm. By considering the pseudo-deterministic
lower bound of Goldwasser et al. [Gol+21], we immediately prove an exponential gap
between pseudo-deterministic and faux-deterministic complexities in query complexity. We
additionally show that our faux-deterministic algorithm is also secure against quantum
adversaries that can make black-box queries in superposition.

We highlight two reasons to study faux-deterministic algorithms. First, for practical
purposes, one can use a faux-deterministic algorithm instead of pseudo-deterministic algo-
rithms in most cases where the latter is required. Second, since efficient faux-deterministic
algorithms exist even when pseudo-deterministic ones do not, their existence demon-
strates a barrier to proving pseudo-deterministic lower bounds: Lower bounds on pseudo-
determinism must distinguish pseudo-determinism from faux-determinism.

Finally, changing our perspective to the adversaries’ viewpoint, we introduce a notion
of “dual problem” S∗ for search problems S. In the dual problem S∗, the input is an
algorithm A purporting to solve S, and our goal is to find an adverse input x on which A
fails to solve S. We discuss several properties in the query and Turing machine model that
show the new problem S∗ is analogous to a dual for S.
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Chapter 1

Introduction

The study of randomized algorithms and their power compared to deterministic algorithms
has been a major and extensively researched area within complexity theory. Roughly, a
randomized algorithm R takes an input x and executes a deterministic algorithm R(x, r)
for a randomly chosen string r. Further, for algorithm R to solve a problem S, we require
that for every possible valid input x ∈ dom(S), R(x, r) outputs a correct answer for at
least 2

3
fraction of all possible random seeds. We can often reduce the error of randomized

algorithms using folklore amplification techniques, where we execute R over several random
seeds r1, . . . , rk and verify if any of the outputs R(x, r1), . . . R(x, rk) are correct. Therefore,
a randomized algorithm can often be boosted to almost always output a correct answer.

In the Turing machine model, one can think of randomized algorithms as a method of
overcoming uniformity difficulties, where a single Turing machine has to solve the problem
on every input length. More specifically, any randomized Turing machine can be efficiently
amplified to obtain an error of 1

2poly(n) on inputs of length n. Thus, such a randomized
algorithm provides a (non-uniform) family of efficient deterministic circuits solving our
problem on every input length [Adl78]. Additionally, under the existence of complexity-
theoretic hardness assumptions, we can derandomize every randomized Turing machine
to obtain deterministic Turing machines and essentially prove P = BPP [Yao82; NW94;
IW97; HÅs+99]. These observations suggest that randomized algorithms should not be
significantly more powerful than deterministic algorithms in the Turing machine model.
Nevertheless, our understanding of randomness remains very limited as no unconditional
derandomization results are known currently, and for many important problems such as
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prime generation1 and polynomial identity testing2 we only have randomized algorithms.

The distinction between the power of randomized and deterministic algorithms is even
more prominent in certain non-uniform computational models such as query complexity.
In query complexity, we are given query access to a string x of length n, and our goal is
to find a corresponding output y within polylog(n) many queries to indices of x. Within
polylog(n) many queries, we can usually amplify a randomized query algorithm to an error
of at most 1

2polylog(n) , which is still a tremendous boost. However, given that there are O(2n)
many inputs, this error is not small enough to obtain deterministic algorithms with only a
polylog(n) query overhead. Besides, we can easily prove exponential separations for very
natural (promise) problems in query complexity, and therefore, randomized algorithms are
provably crucial in such models.

As a result, a natural question is whether we can use efficient randomized algorithms
instead whenever deterministic algorithms are unavailable. For decision problems, where
the algorithm either outputs yes or no, having only randomized algorithms is not a major
issue. This is mainly because, with the above amplifications, we can obtain a random-
ized algorithm that almost always gives the same yes or no output on any given input.
Therefore, the boosted randomized algorithm will be practically not distinguishable from a
deterministic algorithm. However, the situation is more complicated for a search problem
S, where an input x can have multiple outputs y for which (x, y) ∈ S. We denote the set
of all such correct outputs for an input x as S(x).

First, a correct randomized algorithm can output any of the valid certificate in the set
S(x); therefore, randomized search algorithms might not remain consistent when called
for multiple times. The inconsistency would especially become a problem in cryptographic
and distributed settings where the consensus of different parties is of main concern.

Furthermore, in the query model, randomized algorithms have inherent differences for
search and decision problems. For instance, for total decision problems, the determin-
istic and randomized query complexities are polynomially related to each other [Nis89];
i.e., we have BPPdt ⊂ Pdt in query complexity.3 On the other hand, for total search prob-
lems, we can obtain exponential separations for randomized and deterministic complexities
[Lás+91], which in contrast implies TFNPdt ∩ FBPPdt ̸⊂ FPdt.

Motivated by these distinctions between search and decision problems, Gat and Gold-
1Given an integer n, find a prime n ≤ p ≤ 2n.
2Given a high-degree non-zero polynomial p ̸≡ 0, output a certificate p(x) ̸= 0.
3BPPdt and Pdt denote the set of decision problems for decision trees in query complexity that have

efficient randomized and deterministic algorithms, respectively. TFNPdt, FBPPdt, and FPdt are similarly
defined as analogous versions of TFNP, FBPP, and FP in query complexity.
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wasser [GG11] introduced the concept of pseudo-deterministic algorithms, which are a
subclass of randomized algorithms that behave similarly to deterministic algorithms in
practice. In the following, we will first provide a brief overview of pseudo-deterministic
algorithms and their power in both the Turing machine model and query complexity.
Then, motivated by impossibility results in query complexity, we will relax the definition
of pseudo-deterministic algorithms to introduce faux-deterministic algorithms and sum-
marize our results for faux-deterministic algorithms in the query model. Eventually, we
introduce a new notion of dual problems for search problems and briefly mention our
motives for calling them dual problems.

1.1 An overview of pseudo-deterministic algorithms

A pseudo-deterministic algorithm for a search problem S is a randomized algorithm R that
on each input x outputs a unique output yx with high probability;

Pr
r
[R(x, r) = yx] ≥

2

3
.

Pseudo-deterministic algorithms can leverage randomness to solve search problems more
efficiently than deterministic algorithms. However, unlike general randomized algorithms,
we can still amplify pseudo-deterministic algorithms to obtain a single output with high
probability. Therefore, pseudo-deterministic algorithms can practically become indistin-
guishable from deterministic algorithms for search problems.4 As a result, we obtain an
intermediate class of search problems, psFP, that have pseudo-deterministic algorithms.

Clearly, pseudo-deterministic algorithms are more powerful than deterministic ones and
weaker than randomized algorithms; therefore, we immediately get FP ⊂ psFP ⊂ FBPP. In
the Turing machine model, Gat and Goldwasser [GG11] proved another characterization
of this class as psFP = FPBPP. In more detail, a search problem has a pseudo-deterministic
algorithm if and only if it has a deterministic algorithm that can make queries to a ran-
domized verifier. A simple yet intriguing corollary of this result is that P = BPP if and only
if FP = psFP. Generally speaking, pseudo-deterministic algorithms as the search problem
counterpart of randomized algorithms for decision problems.

In the same paper [GG11], Gat and Goldwasser also proved the existence of pseudo-
deterministic algorithms for problems such as polynomial identity testing and asked the

4Note that any randomized algorithm for decision problems is also a pseudo-deterministic algorithm as
well.
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question of whether such algorithms exist for prime generation problems. Towards the
resolution of this problem, Oliveira and Santhanam [OS17] showed the existence of sub-
exponential pseudo-deterministic algorithms for a prime generation that works on infinitely
many input lengths. Most recently, Chen et al. [Che+23] improved the previous result
to obtain a polynomial-time pseudo-deterministic algorithm in the same infinitely often
regime. However, we do not yet have a pseudo-deterministic algorithm that works on
every input length.

Besides the Turing model, there has been a lot of research on the existence or im-
possibility of pseudo-deterministic algorithms in different computational models such as
query complexity [GGR13; Gol+21; CDM23]. Here, we consider the FIND1 problem in
query complexity, which can be viewed as a complete problem for search problems having
efficient verifiers and randomized algorithms.

Informal Definition (FIND1). Given a binary string x ∈ {0, 1}n of length n with Ham-
ming weight at least |x|1 ≥ n

2
, find an index i for which xi = 1.

The deterministic query complexity of this problem is Θ(n) as in the worst-case, we
may need to make n

2
queries to find an index i with xi = 1. On the other hand, outputting

random indices will give us a randomized decision tree of depth O(1). Goldwasser et
al. [Gol+21] proved an exponential gap between randomized and pseudo-deterministic
complexity of FIND1 by proving a lower bound of Ω(n

1
2 ) and conjectured this lower bound

can be improved to Ω(n). Later, in [CDM23] a lower bound of Ω(n
1
3 ) was achieved via a

simpler proof. Nevertheless, it is still open whether we can obtain a better lower bound of
Ω(n).

The consequence of the above lower bounds is that for important problems, such as
FIND1, we do not have algorithms that are both indistinguishable from deterministic algo-
rithms and are efficient. To overcome this problem, we introduce a relaxation of pseudo-
deterministic algorithms and study their complexity for the class of problems having veri-
fiers and randomized algorithms.

1.2 Faux-determinism

As previously mentioned, deterministic and pseudo-deterministic algorithms are (statis-
tically) indistinguishable. Therefore, whenever deterministic algorithms are unavailable,
we can execute an efficient pseudo-deterministic algorithm instead. An interesting obser-
vation is that usually, in such an application, the primary algorithm calling the pseudo-
deterministic algorithm should also be efficient. Therefore, for practical purposes, it is
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too restrictive to require unconditional indistinguishability; rather, any randomized algo-
rithm that is computationally indistinguishable from a deterministic algorithm would be
sufficient. Motivated by computational indistinguishability, we introduce a new notion of
faux-deterministic algorithms as a relaxation of pseudo-deterministic algorithms. More
specifically, we want a distribution of algorithms A such that no computationally bounded
algorithm D making black-box queries to a random algorithm A ∼ A can find an input on
which A fails.

Informal Definition (Faux-determinism). Let S be a search problem andA be a distribu-
tion of algorithms A ∈ A. We say A is a faux-deterministic algorithm for S whenever any
computationally bounded adversary D making black-box queries to outputs of a randomly
chosen algorithm A ∼ A fails to distinguish A from a solution of S; i.e.,

Pr
A∼A

[x← D[A];A(x) /∈ S(x)] < ϵ,

where ϵ is a negligible error parameter and x← D[A] is a random variable corresponding
to the output of algorithm D after querying outputs of A. For an algorithm A ∈ A, we
call an input x for which A(x) /∈ S(x) an adverse input for A.

For the sake of simplicity, we assume each internal algorithm A ∈ A to be deterministic.
However, we can also allow pseudo-deterministic algorithms as internal algorithms as well.
In the latter case, any pseudo-deterministic algorithm will be a faux-deterministic algorithm
consisting of a single algorithm.

Faux-deterministic algorithms can be particularly useful in query complexity, where
pseudo-deterministic algorithms for natural problems such as FIND1 do not exist. Roughly,
we will show that in the query model, faux-deterministic algorithms exist for a large class
of search problems, including FIND1.

Further, we interpret the existence of faux-deterministic algorithms as an explanation
of why proving better lower bounds for pseudo-deterministic algorithms might be chal-
lenging. In a general proof of the lower bound of m queries, one shows that for any
pseudo-deterministic algorithm of low depth d < m, there exists a counter-example in-
put x on which the algorithm fails. However, the proof might not give an efficient way
of constructing the counter-example input x. Consequently, we call a lower bound proof
constructive if we can efficiently generate a counter-example for any pseudo-deterministic
algorithm of low depth d < m.

As mentioned earlier, a lower bound of Ω(n) has been conjectured for the pseudo-
deterministic complexity of FIND1 [Gol+21]. In both pseudo-deterministic lower bounds of

5



Ω(n
1
2 ) [Gol+21] and Ω(n

1
3 ) [CDM23] general non-constructive methods in query complexity

such as polynomial method [Bea+01] and polynomial relation of randomized and determin-
istic algorithms [Nis89] were used. These techniques generally incur quadratic and cubic
losses over Ω(n), respectively. On the other hand, the existence of a faux-deterministic
algorithm signifies constructive proofs may not exist as any such proof should be able to
“distinguish” a pseudo-deterministic algorithm from a faux-deterministic one.

1.2.1 Our results

We prove that in the query model, every verifiable search problem that has an efficient
randomized algorithm also has an efficient faux-deterministic algorithm.

Informal Theorem. Let S be a search problem with a verifier and randomized decision
trees of depths polylog(n). Then, S has a faux-deterministic algorithm of depth polylog(n)
where any adversary querying poly(n) many queries finds an adverse input with negligible
probability.

This immediately proves an exponential separation between pseudo-deterministic and
faux-deterministic complexities as the FIND1 problem has both a randomized algorithm
and a verifier.

The main idea for the construction is to create a decision tree on which we make inter-
leaving adaptive and non-adaptive queries to the randomized algorithm and the verifier.
Intuitively, the adaptive queries result in many possibilities for the adversary to check be-
fore finding an adverse input, while the non-adaptive queries prevent the adversary from
learning the pattern of which inputs correspond to which possibilities. Therefore, the mix
of adaptive and non-adaptive queries allows us to fool adversaries while maintaining a low
depth of polylog(n). We will improve our results to prove that even a quantum algorithm
cannot find an adverse input for our construction.

Informal Theorem. The faux-deterministic algorithm in the above is also secure against
quantum adversaries making poly(n) many queries in superposition.

Clearly, having a randomized algorithm is a necessary condition for the existence of
faux-deterministic algorithms. An interesting question is whether verifiers are also neces-
sary for a faux-deterministic algorithm. We initiate a discussion about this question by
considering a total variant of the FIND1 problem where on an input x with hamming weight
|x|1 < n

2
, the algorithm can output any arbitrary index.
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Informal Definition (FINDMEDIAN). Given a binary string x ∈ {0, 1}n of length n,
output an index i with xi = 1, if |x|1 ≥ n

2
. Otherwise, any index i ∈ [n] can be outputted.

By this definition, any randomized, deterministic, or pseudo-deterministic solution for
FIND1 will also be a solution for FINDMEDIAN. Therefore, solving FIND1 is as hard as
solving FINDMEDIAN. However, unlike the FIND1 problem, FINDMEDIAN is not verifiable.
More specifically, we cannot verify whether (x, i) ∈ FINDMEDIAN because this requires us
to compute the hamming weight |x|1. To emphasize the importance of verifiability, we
obtain the following result.

Informal Theorem. FINDMEDIAN problem does not have a faux-deterministic algorithm.

Finally, we revisit the hardness of constructive proofs for pseudo-deterministic lower
bounds as follows. Any pseudo-deterministic algorithm for FIND1 implements a function
f computing S. I.e.,

f : Xn → [n],

f(x) ∈ S(x),

where Xn is the set of all strings x ∈ {0, 1}n with hamming weight |x|1 ≥ n
2
. A natural

approach for a constructive pseudo-deterministic lower bound is to find a highly sensitive
input for any function f computing S [Nis89]. More specifically, for a function f , an input
x has block sensitivity at least k if there exist disjoint blocks of indices B1, . . . , Bk ⊂ [n]
such that f(x) ̸= f(xBi).5 In such a case, we say f has block sensitivity at least k and
denote bs(f) ≥ k.

Both lower bounds of [Gol+21; CDM23] prove that any function f computing FIND1
has high block sensitivity. We prove that finding such highly sensitive input is a hard task
and is essentially non-constructive. [Nis89].

Informal Theorem. Suppose an adversary is given query access to a function f computing
S. Therefore, f has has block sensitivity at least Ω(

√
n). However, no adversary making

polynomially many queries can find such a highly sensitive input x within polynomially
many queries.

5For a subset of indices B ⊂ [n] and binary string x, xB denotes the string obtained by altering x on
indices i ∈ B.
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1.3 Duality

Another approach for looking at a faux-deterministic algorithm is through the adversary’s
viewpoint. Specifically, for a hard search problem and a given deterministic algorithm A
attempting to solve S, the adversary is trying to solve yet another search problem: finding
an adverse input x such that A(x) /∈ S(x).

This motivates us to define a dual search problem consisting of pairs (A, x) where A is
an efficient algorithm and A(x) /∈ S(x). We denote this meta-complexity problem as S∗

and call it the dual of our initial search problem S. With this in mind, we can rephrase
the existence of faux-deterministic algorithms as the dual problem being hard on average;
in other words, a hard distribution exists for which S∗ cannot be solved.

Generally, we can view the complexity of S∗ as the complexity of finding a proof of
hardness for S. In other words, if S∗ is easy, we have constructive proof that S is hard.
Otherwise, S∗ is hard, and the proof of hardness for S is non-constructive. Previously,
under different terminologies, similar notions to the dual problem were introduced with a
focus on decision problems and refuting a single efficient algorithm [Kab00]. In this regard,
Gutfreund et al. [GST07] proved that under P ̸= NP, for NP-complete problems and any
polynomial-time algorithm A, we can find an adverse input of infinitely many inputs lengths
for A in polynomial-time. Later, this result was improved by Asterias [Ats06] so that the
dual algorithm only has black-box access to the algorithm A. Finally, Chen et al. [Che+22]
generalized this result to other separations in complexity theory. Roughly speaking, these
results imply that for hard separation (such as P ̸= NP or P ̸= PSPACE), the dual problem
is easy, and for easy separation (such as provable separations in query complexity), the
dual problem is hard.

We study such meta-complexity duality not just for NP-complete problems but for
arbitrary search problems (considering search instead of decision problems is natural since
the dual problem is always a search problem). The term “duality” is motivated by several
properties of these meta-complexity problems.

Informal Observation. In different computational models, some or all of the following are
correct.

i if S is verifiable, then S∗ is also verifiable;

ii if S is hard, then S∗ is total;

iii if S reduces to S ′, then S ′∗ reduces to S∗;

8



iv if S has a randomized algorithm then S∗ is hard on average;

v if S is hard on average, then S∗ has a randomized algorithm.

We will consider the query and Turing machine model and prove some of the above
observations for each of them.

1.4 Organization

Chapter 2 briefly reviews the basic notations, definitions, and preliminaries used through-
out the thesis. Most of the discussed topics covered can be found in the books [AB09]
and [Gol08]. For a more thorough introduction to quantum computing, the standard text-
book is [NC10]. The survey [Bd02] is a great introductory text for query complexity. For
quantum query complexity, one can also refer to more recent surveys [Amb17; Aar21].

In Chapter 3, we formally introduce faux-deterministic algorithms and prove our results
in the query model. Afterward, we discuss the dual problem for TFNP problems in both
query and Turing machine models in Chapter 4. Finally, Chapter 5 concludes the thesis
by discussing several open problems and outlining possible future research directions.
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Chapter 2

Preliminaries

Notation For n ∈ N, [n] denotes the set {1, ..., n}. By poly(n) and quasipoly(n), we
denote the family of all functions growing at most polynomially (f(n) = O(nc)) and quasi-
polynomially (f(n) = O(2log

c n) for some constant c). We also define negl(n) to denote the
family of all functions where the inverse grows faster than any polynomial (f(n)−1 = Ω(nc)
for every constant c). We may additionally use poly(n), quasipoly(n), and negl(n) to denote
a function in these families.

For a finite alphabet Σ, and string x ∈ Σn, we define its length as |x|
Σ
:= n. Moreover,

we define ⟨x⟩ ∈ {0, 1}c.⌈log Σ⌉×n to be the canonical binary encoding of the string x ∈ Σn

with alphabet Σ where c is a constant independent of Σ and n. For technical reasons, we
also assume that the chosen encoding is paddable where for any k ∈ N, the strings ⟨x⟩0k is
also decoded to the original string x ∈ Σn. For a setX ⊂ Σ∗, we define ⟨X⟩ := {⟨x⟩|x ∈ X}
to be the corresponding encoded set. We may use x (X) interchangeably with ⟨x⟩ (⟨X⟩)
whenever it is obvious from the context.

For a binary string x ∈ {0, 1}n, we also denote its length as |x|2 := |x|{0,1} = n and
its Hamming weight as |x|1 :=

∑n
i=1 xi. We may omit the subscripts above whenever it

is obvious from context. For index i ∈ [n], the string xi denotes the string obtained by
negating the i-th bit of x. We extend this notation for xB where B ⊂ [n] is a subset of
indices in a natural way.

Often, we denote distributions by calligraphic letters such as T , R, and A, and random
variables sampled from this distribution with corresponding bold letters T ∼ T ,R ∼ T ,
A ∼ A.
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2.1 Quantum computing

We will use the standard bra-ket notation for quantum computing. For a quantum register
X of n qubits, we denote quantum states as unit vectors

|ϕ⟩X

in Hilbert space
HX = (C2n , ⟨|⟩),

where ⟨|⟩ is the usual complex inner product. We use the notation |x⟩X for a binary string
x ∈ {0, 1}n to denote the corresponding elementary vector having a one in the x entry. We
denote a multi-register system as X = X1 . . . Xk, where

HX = HX1 ⊗ ...⊗HXk
.

We may omit X whenever it is obvious from the context.

A unitary transformation U on register X is a linear transformation preserving l2-norm;

∀ |ϕ⟩X , ∥U |ϕ⟩X ∥2 = ∥ |ϕ⟩X ∥2 .

With abuse of notation, we additionally use U to denote unitary transformations U ⊗ I
and I ⊗ U on larger registers XY and Y X, respectively.

A measurement corresponding to the computational basis

{|x⟩X |x ∈ {0, 1}
n}

of register X on state
|ϕ⟩XY =

∑
x∈{0,1}n

αx |x⟩X |ϕx⟩Y

collapses the state to |x⟩X |ϕx⟩Y with probability α2
x. The measurement of the second

register would be defined similarly. We can also consider measurements in a more general
setting of projection operators. Let M = {Π1, . . . ,Πk} be a set of projection matrices,
where

∑k
i=1Πi = I and Πi = Π2

i for i ∈ [k]. The outcome i ∈ [k] of measurement M on
state |ϕ⟩ occurs with probability ∥Πi |ϕ⟩ ∥2 , where the resulting state will become

Πi |ϕ⟩
∥Πi |ϕ⟩ ∥2

.

11



2.2 Search and decision problems

Usually, search problems are defined as relations S ⊂ {0, 1}∗ × {0, 1}∗ over all possible
input lengths. For our purposes, though, we consider them as a family of relations over
each input length.

A (search) problem over input and output alphabets Σ and Γ is a family of relations
S = (Sn)∞n=1 with Sn ⊂ Σn × Γ∗, where n denotes the input length. Later, in the duality
chapter, we generalize the definition of search problems where Σ, Γ, and input lengths can
vary with the value of n.

For each x ∈ Σn, we define the set of corresponding certificates as

S(x) := Sn(x) = {y ∈ Γ∗|(x, y) ∈ Sn},

the domain as
dom(S) :=

⋃
n

dom(Sn),

and the range as
range(S) :=

⋃
n

range(Sn).

The problem S is called a Boolean problem if range(S) = {0, 1}, single-output if |S(x)| ≤ 1
for all x ∈ dom(S), and total if dom(S) =

⋃
nΣ

n. A problem that is both single-output
and Boolean is called a decision problem.

2.3 Decision trees and query complexity

Decision trees A deterministic decision tree T over finite input and output alphabets
Σ and Γ and length n ∈ N is a rooted ordered tree where each internal node is labeled
with a variable xi, i ∈ [n], and has |Σ| children, each labeled as one of the possible values
xi ∈ Σ. Further, each leaf is labeled with a potential output in Γ∗.

For an input x ∈ Σn, the execution of the tree on x, denoted as T [x], is recursively
computed as follows. Beginning with the root, if the current node is a leaf, output its
label. Otherwise, there exists an index i ∈ [n] such that the current node is labeled with
the value xi. Query xi and continue the computation from the corresponding child until
a leaf is reached. The (query) complexity of T , denoted as Cdt(T ), is defined as its depth
which is the maximum number of queries made to the worst-case input.

12



A randomized decision tree T over alphabets Σ and Γ and length n ∈ N is a probability
distribution over a finite set of deterministic decision trees. For an input x ∈ Σn, the
execution of the tree T [x] is a random variable in Γ∗ evaluated by sampling a tree T ∼ T
and computing T [x]. Similarly, we define complexity of T , Cdt(T ), as the depth of the
deepest tree in T ; i.e.,

Cdt(T ) := max
T∈T

Cdt(T ).

To define the quantum version of decision trees, we take another approach as we want
to be able to query in superposition. For simplicity, we assume that input and output
alphabets Σ and Γ are encoded using binary fields F2⌈log |Σ|⌉ and F2⌈log |Γ|⌉ . For a string
x ∈ Σn we define the oracle unitary Ux as follows:

∀i ∈ [n], y ∈ Σ, Ux |i⟩I |y⟩Q := |i⟩I |xi ⊕ y⟩Q ,

where I and Q are index and query registers, respectively. Now, a quantum decision tree
is a sequence of unitaries

Q = (U0, U1, . . . , Ud)

that act on a multi-register system

|ϕI⟩I |ϕQ⟩Q |ϕW ⟩W |ϕO⟩O

consisting of index, query, work, and output registers of sizes ⌈log n⌉, ⌈log |Σ|⌉, m, and
k⌈log |Γ|⌉, respectively. We define the query complexity of Q as Cdt(Q) := d and the
execution Q[x] as the measurement outcome of the output register in the final state

UdU
x . . . UxU0 |0⟩I |0⟩Q |0⟩W |0⟩O .

Remark. Note that as with the quantum case, the deterministic and randomized decision
trees can also be described as circuits with access to query gates. Consequently, we can
define the query complexity of these circuits as the number of times a query gate has been
used. ▷

For a family of deterministic, randomized, or quantum decision trees

A ∈ {(Tn), (Tn), (Qn), }

we define the depth of the family as the sequence

Cdt(A)n := Cdt(An).

13



Query algorithms Let S = (Sn)∞n=1 be a search problem.

• A family of deterministic decision trees T = (Tn)
∞
n=1 is a deterministic algorithm for

problem S, if for all n ∈ N and x ∈ Σn,

Tn[x] ∈ Sn(x).

• A family of randomized decision trees T = (Tn)∞n=1 is a randomized algorithm for the
search problem S with error ε, if for all n ∈ N and x ∈ Σn,

Pr
Tn∼Tn

[Tn[x] ∈ Sn(x)] ≥ 1− ε.

• A family of randomized decision trees T = (Tn) is a pseudo-deterministic algorithm
for the search problem S with error ε, if for all n ∈ N and for all x ∈ Σn, there exists
a unique yx ∈ Sn(x) such that,

Pr
T∼Tn

[T [x] = yx] ≥ 1− ε.

• A family of quantum decision trees Q = (Qn) is a quantum algorithm for the search
problem Sn with error ε, if for all n ∈ N,

Pr[Qn[x] ∈ Sn(x)] ≥ 1− ε.

Similar to the randomized case, we can define pseudo-deterministic quantum decision
trees similarly.

• For a search problem S, we define the canonical decision problem fS to be such that
for all n ∈ N, x ∈ dom(Sn), and y ∈ range(Sn),

fS(x, y) :=

{
1 y ∈ S(x),
0 otherwise.

A family of decision trees, T = (Tn), is a deterministic verifier for S if for all n ∈ N,
x ∈ dom(Sn), and y ∈ range(Sn),

Tn(x, y) = f(x, y).
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Query complexity For the search problem S, we define query (decision tree) com-
plexities 𝔻dt(S), ℝdt(S), ℙ𝕊dt(S), ℚdt(S), and 𝕍dt(S) as the minimum complexity of an
deterministic, randomized, pseudo-deterministic, quantum, and verification algorithms for
S, respectively as

𝔻dt(S) := min{Cdt(T )|T deterministically computes S};
ℝdt

ε (S) := min{Cdt(T )|T computes S with error ε};
ℙ𝕊dt

ε (S) := min{Cdt(T )|T pseudo-deterministically computes S with error ε};
ℚdt

ε (S) := min{Cdt(Q)|Q computes S with error ε};
𝕍dt(S) := min{Cdt(T )|T deterministically computes fS}.

Whenever the error parameter ε is omitted, we assume ε = 1
3
.

2.4 Turing machine model

In the Turing machine model, it is more convenient to work with binary inputs and outputs
for a search problem S. In such scenarios, with abuse of notation, we may use strings x ∈
dom(S) and y ∈ range(S) interchangeably with their binary encoding ⟨x⟩ and ⟨y⟩ ∈ {0, 1}∗
to denote the inputs and outputs of the search problem as Boolean strings and view the
search problem as a relation

S ⊂ ⟨dom(S)⟩ × ⟨range(S)⟩ ⊂ {0, 1}∗×{0, 1}∗ .

We use the read-work-write multi-tape Turing machine (TM) model defined in [AB09] and
denote the run-time of a Turing machine M on input x as TIME(M,x).

Let S be a search problem, and T : N→ N be a time-bound1 function.

• We say Turing machine M computes S deterministically if M [x] ∈ S(x) for all
x ∈ dom(S). We say M computes S in time T if we also have TIME(M,x) ≤ T (|x|2)
for all x ∈ dom(S).

• We say Turing machine M is a verifier for S if (x, y) ∈ S if and only if M [x, y] = 1,
and M verifies S in time T if we additionally have

TIME(V, (x, y)) ≤ T (|x|2),

for all pairs (x, y) ∈ S.
1We often require T to be a time-constructable function. However, almost all of the non-artificial

functions satisfy time-constructability. Therefore, we omit further details on this condition.
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• We say M is a probabilistic Turing machine (PTM) computing S with error ϵ if there
exists a polynomial p such that for all x ∈ dom(S),

Pr
r∈{0,1}p(|x|)

[M [x, r] /∈ S(x)] ≤ ϵ.

A probabilistic Turing machine M runs in time T if

TIME(M, (x, r)) ≤ T (|x|2),

for all x ∈ dom(S) and r ∈ {0, 1}T (|x|2 ). Whenever ϵ is omitted, we assume ϵ = 1
3
.

Complexity classes in Turing machine model Having the definition of the Turing
machine and what it means to solve a search problem, we can define the classical com-
plexity classes FP, FBPP, and FNP as the class of search problems having polynomial-time
deterministic, randomized, and verification algorithms. Note that the above classes con-
tain both total and promise search problems. We define the class TFNP to consist of total
search problems in FNP. Additionally, we define decision classes P, NP, BPP as the class
of total decision search problems in FP, FNP, and FBPP.
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Chapter 3

Faux-determinism in Query Model

In this chapter, we formally introduce the notion of faux-deterministic algorithms in the
query model. To do so, we start by defining an adverse input as an input on which the
given algorithm T fails to produce a correct answer for the search problem S.
Definition 3.1 (Adverse input). For a search problem S and a decision tree T attempting
to solve S on inputs of length n, we say x ∈ dom(Sn) is an adverse input for T whenever
T [x] /∈ Sn(x). ▷

Remark. The adverse input should be inside the promise dom(Sn) since T is only attempting
to solve inputs inside the promise of S. ▷

Afterward, we can formally define a faux-deterministic algorithm as a distribution T
over decision trees for a search problem S. We further require that a randomly chosen
decision tree T ∼ T fools any computationally bounded adversary A attempting to find
an adverse input for T . Formally, we proceed as follows.
Definition 3.2 ((Classical) faux-determinism in query model). Let S be a search problem,
q = q(n) ∈ N be a query upper bound, and ε = ε(n) ≥ 0 be an error parameter. We say
distribution T = (Tn) of decision trees is a (q, ε)-faux-deterministic algorithm for S if for
all n ∈ N, any adversary An that makes less than q(n) queries to the output of a random
decision tree T ∼ Tn finds an adverse input with probability at most ε(n):

Pr
T∼Tn

[x← An[T ];T [x] /∈ S(x)] ≤ ε(n).

Similar to randomized decision trees, the complexity of a faux-deterministic algorithm is
defined as its worst-case complexity over all the possible trees in the distribution:

Cdt(T ) := max
T∈T

Cdt(T ).
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▷

Remark. Each decision tree T for the search problem S denotes an input of size [n]2
n−1 .

Thus, the adversary An is a decision tree that works on this larger input size. ▷

Remark. In the above definition, the existence of deterministic and randomized adversaries
is equivalent. If a randomized adversary succeeds with probability ε(n), we can choose the
best deterministic algorithm for each input length n to obtain a deterministic adversary
that succeeds with probability at least ε(n) as well. Therefore, without loss of generality,
we only consider deterministic adversaries. ▷

In the above definition, the input size for the adversary is O(2n). Therefore, any efficient
adversary - in terms of input size - needs to make at most polylog(2n) = poly(n) many
queries. Therefore, we are interested to know if we can find efficient faux-deterministic
algorithms where any attacker querying polynomially many inputs succeeds to find an
adverse input with only a negligible probability. In the terminology of our definition, this
means whether (poly(n), negl(n))-faux-deterministic algorithms of complexity polylog(n)
exist.

In the first section, we formally define the previously mentioned FIND1 [Gol+21] prob-
lem. Then, we construct a faux-deterministic algorithm for FIND1 by establishing classical
lower bounds on the query complexity and error probability for any adversary attacking our
algorithm. Additionally, using the hybrid method in quantum query complexity [Ben+97]
we adjust the query and error lower bounds to obtain slightly worse bounds for adversaries
making quantum queries. Finally, we investigate the optimality of our lower bounds and
present two open problems regarding faux-deterministic algorithms for FIND1 problem.

Having faux-deterministic algorithms for the FIND1 problem, we further extend our
results to a larger class of search problems in the second section. Mainly, we use the
reduction of [Gol+21] to obtain faux-deterministic algorithms for search problems that
have efficient verifiers and randomized algorithms.

Naturally, we ask whether verification assumptions of these results can be relaxed to
prove the existence of faux-deterministic algorithms for larger classes of search problems.
We introduce the FINDMEDIAN problem to suggest a negative answer for the previous ques-
tion. Finally, we conclude by considering the hardness of constructing pseudo-deterministic
lower bounds for the FIND1 problem, and the relation of constructive lower bounds with
faux-deterministic algorithms.
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3.1 Faux-deterministic construction for the FIND1 prob-
lem

Before demonstrating our results, we first give some intuition and motivation behind our
construction for the FIND1 problem as follows. For input length n, the inputs for FIND1n
are the set of strings x ∈ {0, 1}n with large hamming weight |x|1 ≥ n

2
. Further, our goal is

to find an index i for which xi = 1.

Definition 3.3 (FIND1). For n ∈ N, let FIND1n be defined as

FIND1n :=
{
(x, i) ∈ {0, 1}n × {0, 1}⌈logn⌉

∣∣ |x|1 ≥ n

2
and xi = 1

}
.

We define the search problem FIND1 over binary alphabets to be the sequence

FIND1 := (FIND1n)
∞
n=1. ▷

As previously noted, the deterministic query complexity of FIND1 problem is Ω(n). As
a result, for any given tree of depth d = o(n) there are many inputs on which the tree fails.
Thus, a single tree of depth polylog(n) cannot be effective against an adversary querying
it, as the adversary can hard-wire an adverse input for each input length n. Therefore, we
need to construct a randomized algorithm to have any chance against adversaries.

A non-adaptive randomized idea: Since the inputs have large hamming weights
|x|1 ≥ n

2
, we have a very simple and efficient randomized algorithm for the FIND1 prob-

lem that queries two randomly chosen indices i, j ∈ [n], and outputs i and j by verifying
whether xi = 1 or xj = 1. Consequently, with probability at least 3

4
either xi = 1 or

xj = 1. We can easily boost this non-adaptive algorithm to obtain a randomized algo-
rithm T = (Tn) of complexity w = polylog(n) that queries random indices i1, . . . , iw, and
outputs the first index ij for which xij = 1. As a result, we have a (non-adaptive) al-
gorithm computing FIND1 with error at most 1

2polylogn (figure (3.1)). A naive idea for a
faux-deterministic algorithm would be to choose a random tree T ∼ Tn and hope such a
tree can fool adversaries. Nevertheless, an adversary can still find an adverse input with
polylog(n) many queries.
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i1 i2 iw−1
. . . iw

x1 xn. . .

(a) A non-adaptive algorithm for FIND1
i∗...∗

i1...∗ i0...∗

i1...1∗ i1...0∗ i0...1∗ i0...0∗

i1...11 i1...10 i0...11 i0...01i0...10i1...01 i1...00 i0...00

1 0

(b) An adaptive algorithm for FIND1

Figure 3.1: In the non-adaptive algorithm, we query a set of uniformly chosen indices B = {i1, . . . , iw}
and output the first one found in x. In the adaptive algorithm, we choose an independant random index
in each of the poossible branches.

Attack sketch for a non-adaptive randomized algorithm

The adversary starts with the string x(1) = 1n and queries x from T . Consequently,
T reveals the first randomly chosen index i1 = T [x]. Next, the adversary obtains
the second string x(2) = x(1)i1 by making the index i1 zero. Now, the query T [x(2)]
has to reveal i2 as x(2)i1 = 0.
Since the queries i1, . . . , iw are made independently, the adversary can continue this
process to obtain inputs x(3), . . . , x(w) by identifying and modifying the outputted
indices i2, . . . , iw. Finally, in the input x(w), all the indices i1, . . . , iw queried by the
tree are modified to have value xij = 0 for j ∈ [w]. Therefore, x(w) is an adverse
input for T . Clearly, this algorithm only queries w = polylog(n) many inputs.

From this attack, we conclude that non-adaptive queries can easily reveal the structure
of the tree. Consequently, the next natural idea would be to make the amplification process
adaptive.

An adaptive randomized idea: Let b1 . . . bk∗d−k denote a string of length d that starts
with binary string b1 . . . bk ∈ {0, 1}k and ends with ∗ symbols so that it has length d.
Our randomized algorithm is a binary decision tree where strings in {0, 1}k∗d−k denote the
label of nodes at depth k. For each such internal label b1 . . . bk∗d−k, we assign a uniformly
independent randomly chosen index ib1...bk∗d−k . Then, our distribution produces a random
tree T ′ ∼ T ′

n.
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i∗...∗

i1...∗ i0...∗

i1...0∗ i0...1∗ i0...0∗

i0...11 i0...01i0...10i1...00 i0...00

1 0

(a) Initial path traversed for input x (blue).
i∗...∗

i1...∗ i0...∗

i1...0∗ i0...1∗ i0...0∗

i0...11 i0...01i0...10i1...00 i0...00

1 0

(b) Path generated by changing an early queried index (red).
i∗...∗

i1...∗ i0...∗

i1...0∗ i0...1∗ i0...0∗

i0...11 i0...01i0...10i1...00 i0...00

1 0

(c) Path generated by changing a later queried index (red).

Figure 3.2: When changing early queried indices, the whole path of the next queried indices changes.
However, changing a later queried index does not change the path of the tree significantly.
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We start by querying the root index i∗d to obtain b1 = xi∗d . Note that b1 denotes
whether the first query has outputted a 1-index or a 0-index. Next, based on the value of
b1 (either 0 or 1), we proceed to query either the index of right node i0∗d−1 or left node
i1∗d−1 . We can continue this adaptive query process until we reach a leaf that has a label
b1 . . . bd. Eventually, we output the last querieed index j for which xj = 1 (figure (3.1)).

Now, to find an adverse input for T ′, the adversary has to find an input x that follows
the all-zero branch (i∗d , i0∗d−1 , . . . , i0d). This is because any other possible branch find at
least one index j with xj = 1, and therefore, it leads to a correct output. Thus, the previous
attack would not work as zeroing an index can change the path of subsequent queries, and
the adversary may need to check many of the possible branches before finding the all-zero
branch. On the other hand, the adversary can still succeed by "climbing" the tree and
skipping many of the branches with each step. We explain this attack in the following
sketch.

Attack sketch for adaptive randomized algorithm

Consider an input x for which the tree has traversed the path of queried indices
(j1, . . . , jd−1, jd). If the adversary queries input y = xj

1 , with high probability, all
subsequent queries are changed to obtain another path of indices (j1, k2, . . . , kd),
where the new queried indices positions k2, . . . , kd are independent of j2, . . . , jd.
Thus, the positions of many of the queried indices in y will differ from x with high
probability. However, if the adversary switches a later index jk−1, the newly obtained
path becomes (j1, . . . , jk−1, kd) where only one new query position kd is independent
of jk. As a result, only a few of the queried indices in y will differ from x (see
figure (3.2)).
Furthermore, if an index j is queried in y, the outputs of T ′[yj] and T ′[y] will differ
with high probability, as the path of subsequent queries changes. Therefore, for any
string y we can query T ′[yj] for j ∈ [n] to learn the queried indices in y. As a result,
the adversary can learn the difference of queried indices between x and xj, and learn
for which j many of the queried indices will change. In this way, the adversary can
distinguish the initial queries from later ones, manipulate the path from the top, and
effectively skip most of the intermediate branches to find the all-zero path.

Consequently, if the tree is “too” adaptive, the adversary can again learn the queries
made in the tree. To overcome these problems, we combine both adaptive and non-adaptive
queries in the following construction.
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3.1.1 Mixing adaptive and non-adaptive queries: tree of ∨s

Let w and d be the width and depth parameters. Our construction is a distribution over
a set of deterministic trees, where each tree consists of an adaptive binary tree with depth
d and each internal node makes non-adaptive queries to w many randomly chosen indices
denoted by the block of indices B where |B| = w. Next, if any of the indices i ∈ B is a
1-index (xi = 1), the evaluation of the node is B(x) = 1, and we move to the left child.
Otherwise, the logical OR (∨) of indices in B equals B(x) = 0, and consequently, we move
to the right child (see figure (3.3)). Formally, we proceed as follows.

Definition 3.4. Suppose input length n ∈ N is given. We define strings z ∈ {0, 1}d−k∗k
with length d to denote nodes of a binary tree where,

• the root is denoted as string ∗d;

• the internal nodes at depth k are written as strings

b1 . . . bk∗d−k,

where
b1, . . . , bk ∈ {0, 1};

• and strings {0, 1}d denote the 2d possible leaves of our tree.

For each internal node
z = b1 . . . bk∗d−k

with k < d, we assign a uniformly independent random blocks of indices

Bz ⊂ [n]

of size |Bz| = w. On input x ∈ {0, 1}n, the algorithm starts at root node z = ∗d and
recursively proceeds as described below. For each input length n, our distribution Tn
would be a uniform distribution over all the possible trees in the following.
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Tree of ∨s

On an internal node z = b1 . . . bk∗d−k, we query x for each index i ∈ Bz and compute

bk+1 = Bz(x) :=
∨
i∈Bz

xi,

and move to the next node b1 . . . bkbk+1∗d−k−1. More specifically,

• If for any of indices i ∈ Bz we find xi = 1, we move to the corresponding node
b1 . . . bk1∗d−k−1 because bk+1 = 1.

• However, if for all i ∈ Bz we have xi = 0, we move to the node z0∗r−1 as
bk+1 = 0.

Eventually, we arrive at a leaf l ∈ {0, 1}d. If l = 0n, we have not found any index
with value 1 in the previously queried blocks. Therefore, we output ⊥ as an incorrect
answer. Otherwise, a unique integer k < d and binary string b1 . . . bk exist such that

l = b1 . . . bk10
d−k−1.

Therefore, the internal node z = b1 . . . bk∗d−k denotes the last node on which the tree
has found a 1 on input x. Intuitively, this is the last block on which the execution
of the tree goes to the right node. Finally, the algorithm outputs the smallest index
i ∈ Bz with xi = 1.

▷

Before proceeding to prove the effectiveness of Tn against adversaries, we first define a
few notations and prove two important lemmas for our distribution.

3.1.2 Auxiliary definitions and lemmas

Definition 3.5. For each tree T ∈ Tn and valid input x ∈ {0, 1}n with |x|1 ≥ n
2
, we define

lT (x) to be the string label corresponding to the leaf obtained by computation of T [x].
Thus, the tree T fails to find a 1-index in an input x if and only if lT (x) = 0d. ▷

Definition 3.6. Additionally, we define an ordering 1 ⪯ ∗ ⪯ 0 and extend this order to
a linear order for all of the internal and leaf labels z ∈ {0, 1}r∗d−r with 0 ≤ r ≤ d by
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B∗...∗

B1...∗ B0...∗

B1...1∗ B1...0∗ B0...1∗ B0...0∗

l1...11 l1...10 l0...11 l0...01l0...10l1...01 l1...00 l0...00

Figure 3.3: An alternating adaptive and non-adaptive algorithm. In each node z, a subset Bz of indices
are queried non-adaptively, and based on the value of

∨
i∈Bz

xi, the next subsets and queries are chosen.

B4

B2
B6

B1 B3 B5 B7

l1 l2 l5 l7l6l3 l4 l8

Figure 3.4: An example of the ordered leaves and blocks in a tree of ∨s of depth three. Whenever an input
reaches a leaf lk, the algorithm outputs an index from the set Bk which is the last block on which an index
1 has been found.
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alphabetic rule (see figure (3.4)). This ordering is very similar to the ordering used in a
binary search tree with the difference that it is reversed. More specifically,

1d ≺ 1d−1∗ ≺ 1d−10 ≺ · · · ≺ 0d−11 ≺ 0d−1∗ ≺ 0d.

For the sake of conciseness, we also define lk to be the label of the k-th largest leaf for
k ∈ [2d]; In other words, lk := (2d − k)b, where (·)b denotes the binary representation. For
instance, we have l1 = 1d, l2 = 1d−10, . . . , and l2d = 0d.

Finally, for each label z ∈ {0, 1}r∗d−r with 0 ≤ r ≤ d, we define the predecessor and
successor of z in this order to be z− and z+ whenever they exist. ▷

In the following lemma, we relate the leaf lT (x) obtained by execution T on x and
the corresponding block Bz from which the tree outputs T [x] ∈ Bz. In short, if the tree
reaches the k-th leaf lT (x) = lk, the tree outputs an index from the immediately after block
Bk = B(lk)+ in our ordering (see figure (3.4).)

Lemma 3.7. Let T ∈ T be a tree from our construction and x be an arbitrary input.

i. For every k ∈ [2d−1] and any two consecutive leaf labels lk+1 ≻ lk, there exists exactly
one internal label z = (lk+1)− = (lk)+ such that

lk+1 ≻ z ≻ lk.

Conversely, each internal node z is between two consecutive leaves

z+ ≻ z ≻ z−.

We denote the k-th largest internal block as Bk := B(lk)+.

ii. If lT (x) = lk, the algorithm outputs an index from the block Bk.

Proof. For (i), suppose lk = b1 . . . bi10
d−i−1 for some i. Then lk+1 = b1 . . . bi01

d−i−1, and the
only possible string z between lk and lk+1 is b1 . . . bi∗d−i. Therefore, z = (lk+1)− = (lk)+.
Conversely, each internal node z is between two consecutive leaves z− and z+.

To see (ii), let lT (x) = lk = b1 . . . bi10
d−i−1 for some i. Then, (lk)− = b1 . . . bi∗d−i, which

is the last block in the path of lT (x) that has value B(lk)−(x) = 1. By definition (3.4), the
output of the tree on x comes exactly from this block. Since we defined Bk = B(lk)− , the
algorithm outputs an index from Bk.
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Next, we prove the central lemma for security against adversaries. Note that the main
goal of the adversary is to find an input for which lT (x) = 0d. Knowing the first k blocks
B1, . . . , Bk, the adversary can choose a string x to ensure xi = 0 for every i ∈

⋃k
j=1B

i.
Therefore,

B1(x) = · · · = Bk−1(x) = 0.

As a result, the tree cannot output an index from the blocks {B1, . . . ,Bk−1}. Thus, by
the previous lemma, lT (x) ⪰ lk. Nevertheless, we claim that if the adversary has no
information about the remaining blocks Bk+1, . . . ,B2d , then with high probability any
such input x has lT (x) ⪯ lk.

Lemma 3.8. Let x ∈ {0, 1}n where |x|1 ≥ n
2

be a valid input and k ∈ [2d] be a fixed index.
Then,

Pr
T∼Tn

[
lT (x) ⪯ lk

∣∣∣∣B1 = B1, . . . ,Bk−1 = Bk−1

]
≥ (1− 1

2w
)d.

Proof of lemma (3.8). Let lk be the k leaf as before, and y ∈ {0, 1}r∗d−r with r ∈ [d] be
an internal label. We say y is a 1-prefix of lk if we can write lk and y as

lk = ŷ1ẑ y = ŷ ∗ ∗|ẑ|.

In the same fashion, we can also define 0-prefixes.

Consequently, an input x reaches a leaf lT (x) = lk if and only if all of the 1-prefixes of
l such as y we have By(x) = 1 and for all of the 0-prefixes such as y′ we have By′(x) = 0.
We can weaken this fact to obtain the following claim.

Claim 3.9. If for every 1-prefix y of lk we have By(x) = 1, then lT (x) ⪯ lk.

We postpone the proof of claim (3.9) until after proving the lemma. For the lemma,
we prove that with high probability for any lk the conditions of the claim hold. Let y be
an arbitrary 1-prefix of lk where

lk = ŷ1ẑ y = ŷ ∗ ∗|ẑ|.

By the defined linear order, we have y ≻ lk since ∗ ≻ 1. Therefore, by the natural ordering
of the leaves and lemma (3.7) we have

y ≻ lk ≻ (lk)− = (lk−1)+ ≻ (lk−2)+ ≻ · · · ≻ (l1)+.
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Additionally,

B1 = B(l1)+ , . . . ,B
k−1 = B(lk−1)+ .

Therefore, By /∈ {B1, . . . ,Bk−1}, and the random set By is independent of conditioned
sets B1, . . . ,Bk−1. Hence, for all x ∈ {0, 1}n with |x|1 ≥ n

2
,

Pr
T∼Tn

[
By(x) = 1

∣∣∣∣B1n = B1, . . . ,Bk−1 = Bk−1

]
= Pr

T∼Tn

[
By(x) = 1

]
≥ 1− 1

2w
,

where in the last step we used the fact that |x|1 ≥ n
2
. Thus, the probability of missing

every 1-index is at most 1
2w

. To complete the proof, let y1, . . . , yr be all the 1-prefixes of lk.
Note that since lk ∈ {0, 1}d we have r ≤ d. Since all the sets By1 , . . . ,Byr are independent
of each other and B1, . . . ,Bk−1, we can write

Pr
T∼Tn

[
lT (x) ⪯ lk

∣∣∣∣B1 = B1, . . . ,Bk−1 = Bk−1

]
≥ Pr

T∼Tn

[
By1(x) = 1, . . . ,Byr(x) = 1

∣∣∣∣B1 = B1, . . . ,Bk−1 = Bk−1

]
= Pr

T∼Tn

[
By1(x) = 1, . . . ,Byr(x) = 1

]
= Pr

T∼Tn

[
By1(x) = 1

]
. . . Pr

T∼Tn

[
Byr(x) = 1

]
≥(1− 1

2w
)r

≥(1− 1

2w
)d.

Proof of claim (3.9). For the sake of contradiction, suppose lT (x) ≻ lk, and let ŷ be the
largest common prefix of lk and lT (x) with length m. Since lT (x) ̸= lk, we know that lk
and lT (x) differ in at least one index. Additionally, we have lT (x) ≻ lk. Therefore, we can
write lk and lT (x) as

lk = ŷ1ẑ lT (x) = ŷ0ẑ′.

Now consider the 1-prefix y = ŷ∗d−m of lk; since ŷ is also a prefix of lT (x), the execution
of tree T on x must have visited the internal block By. Also, since lT (x) extends ŷ by a 0
symbol, the subset By must have not found a 1-index in the input x. Therefore, By(x) = 0,
which is a contradiction to the assumption of claim.
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3.2 Security against classical adversaries for FIND1 prob-
lem

We can now state our main result in the following theorem.

Theorem 3.10. Let T = (Tn) be the distribution in definition (3.4) with width and depth
parameters w and d. Then, Tn is a (2d, d2

d

2w
)-faux deterministic algorithm of complexity wd

for the FIND1 problem.

Immediately, we can obtain the following corollary using a single variable.

Corollary 3.11. The FIND1 problem has a (2
√
t

4 , 2−
√
t

4 )-faux-deterministic algorithm of to-
tal depth t. Specifically, for any ε > 0 and t = log2+ε(n), we have a (quasipoly(n), negl(n))-
faux-deterministic algorithm of depth polylog(n).

Proof of corollary (3.11). Letting w = 3
4

√
t and d = 1

4

√
t we obtain a tree with totap depth

3
16
t < t. By theorem (3.10), any attacker with less than 2

1
4

√
t queries will succeed at finding

an invalid output with probability at most,

d2d

2w
≤ 22d−w = 2−

1
4

√
t.

For the second part, we have 2
√

log2+ε(n)
4 = quasipoly(n) and 2−

√
log2+ε(n)

4 = negl(n).

Proof of theorem (3.10). Clearly, the tree has query complexity Cdt(Tn) = wd. Intuitively,
an arbitrary adversary A queries an initial string x and with high probability ((1− 1

2w
)d)

we have
B∗d(x) = · · · = B1d−1∗ = 1.

Thus,
lT (x) = 1d = l1,

and the tree outputs an index from the block B1 = B1d−1∗. Now, with high probability,
changing any arbitrary index does not change the current branch leading to l1, as each
of the above blocks finds a few indices with a value 1 with a high probability. Therefore,
the natural strategy for A is to alter the outputted indices until it finds all of the indices
queried in B1.

Suppose after some steps, the adversary has come to know the indices queried in the
blocks B1, . . . ,Bk−1. By lemma 3.8, any queried input x will reach to a leaf lT (x) ⪯ lk with
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high probability. Therefore, the adversary’s only chance would be to continue finding each
of the next blocks Bk+1, . . . ,B2d to finally find an input that reaches the all zero path. we
will formalize this observation as follows.

Suppose an adversary A is given a random tree T ∼ Tn, and queries q inputs

x(1), x(2), . . . , x(q)

with q ≤ 2d − 1. Without loss of generality, we assume that the adversary outputs the
string x(q) as its answer. Also, for the sake of simplicity, we assume that oracle returns
additional information as well. More specifically, when querying x(k) with lT (x(k)) = lj the
oracle returns

• all of the blocks B1, . . . ,Bj,

• and all of the first k blocks B1,. . .Bk.

We can now lower bound the probability that lT (x(q)) ̸= 0n and also the probability p that
the adversary fails as follows.

p := Pr
T∼Tn

[
lT (x(q)) ̸= 0n

]
≥ Pr

T∼Tn

[
lT (x(1)) ⪯ l1, ..., lT (x(q)) ⪯ lq

]
=

q∏
k=1

Pr
T∼Tn

[
lT (x(k)) ⪯ lk

∣∣∣∣lT (x(1)) ⪯ l1, . . . , lT (x(k−1)) ⪯ lk−1

]

=

q∏
k=1

pk,

where pk is the probability that the k-th query reaches to at most the k-th leaf conditioned
on the assumption that all of the previous k− 1 queries have resulted in a leaf larger than
lk. Therefore, each of these queries has revealed at most the first k−1 blocks B1, . . . ,Bk−1.
Additionally, we assumed that after k − 1 queries, the oracle returns all of the first k − 1
blocks. Hence, xk depends only on the first k blocks and we can write

pk = Pr
T∼Tn

[
lT (xk) ≥ lk

∣∣∣∣B1 = B1, . . . ,Bk−1 = Bk−1

]
≥ (1− 1

2w
)d,

where we have used the lemma (3.8) in the last inequality for k ∈ [q]. Therefore,

p =

q∏
k=1

pk ≥
q∏

k=1

(1− 1

2w
)d ≥ (1− 1

2w
)dq ≥ 1− dq

2w
≥ 1− d2d

2w
.
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3.3 Quantum secure faux-deterministic algorithms

Eventually, we aim to adjust the classical result of theorem (3.10) with the expected
quadratic loss to obtain security against quantum adversaries as well. However, we need to
concretely define a quantum adversary and quantum-secure faux-deterministic algorithms
before proceeding.

Let T be a decision tree attempting to solve the search problem S on inputs of length
n. As before, the goal of the adversary is to find an adverse input x ∈ dom(Sn) where
T [x] /∈ Sn(x). Additionally, we want the adversary to query outputs of T in superposition
using a unitary UT that on state |x⟩ |0⟩ outputs |x⟩ |T [x] + y⟩.

Definition 3.12. Let T be decision tree taking inputs in dom(Sn) ⊂ Σn and outputting
answers in Γm. Additionally, let I and Q be quantum input (index) and query registers
consisting of n log |Σ| and m log |Γ| qubits, respectively. We define the query unitary UT

for T on these registers to be

UT |x⟩I |q⟩Q =

{
|x⟩I |T [x]⊕ q⟩Q x ∈ dom(Sn),
|x⟩I |q⟩Q otherwise.

▷

Remark. The tree is only attempting to work on inputs x ∈ dom(Sn). Therefore, querying
inputs outside of the promise should not reveal any information about the tree. ▷

We can continue to define a quantum adversary for a decision tree T and search problem
S using the unitary UT . Informally, the adversary Q = (U1, . . . , Uq) starts with an initial
state |ψ0⟩ and applies q queries to obtain the final state,

|ψq⟩ = UqU
T . . . UTU1U

T |ψ0⟩

and output an answer based on the measurement of this |ψq⟩.

Definition 3.13. Suppose S is a search problem over input and output alphabets Σ and Γ
and input length n ∈ N. We define registers (I,Q,W,O) to be index (input), query, work,
and output registers consisting of n log |Σ|, m log |Γ|, r, and n log |Σ| qubits, respectively.
A q-query quantum adversary Q = (U1, . . . , Uq) for T prepares an initial state,

|ψ0⟩ =
∑

x,q,w,y

αx,q,w,y |x⟩I |q⟩Q |w⟩W |y⟩O ,
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and in each step, it applies unitaries UT and Ut+1 to obtain the next state,

|ψt+1⟩ = Ut+1U
T |ψt⟩ .

Next, it measures the last state |ψq⟩ to obtain |x⟩I |q⟩Q |w⟩W |y⟩O for some x, q, w, and y,
and finally outputs Q[T ] := y. ▷

Having defined the above basic notions, we can now proceed to generalize the notion
of faux-deterministic algorithms for quantum adversaries as well. Similar to the classical
definition, we want any adversary making at most q queries fails with probability at least
1−ε. However, unlike the classical setting, we also need to consider the randomness inside
the measurements of a quantum adversary as well.

Definition 3.14 (quantum-secure faux-determinism in query model). Let S be a search
problem, q = q(n) ∈ N be query upper bound, and ε = ε(n) ≥ 0 be an error parameter.
We say distribution T = (Tn) of decision trees is a quantum secure (q, ε)-faux-deterministic
algorithm for S if, for all n ∈ N, and any quantum adversary Qn making less than q(n)
quantum queries we have

Pr
T∼Tn,Q

[
x← Q[T ];T [x] /∈ S(x)

]
≤ ε(n). ▷

Remark. We can also define the quantum-secure faux-deterministic algorithm with three
parameters (q, δ, ϵ) to have

Pr
T∼Tn

[
pQ(T ) ≥ δ(n)

]
≤ ε(n),

where pQ(T ) is the probability that algorithm Q fails on T over the internal randomness
of Q

pQ(T ) = Pr
Q

[
x← Q[T ];T [x] /∈ S(x)

]
.

The alternative definition is equivalent to saying that the adversary fails with a probability
of at least (1 − δ) for at least (1 − ε) fraction of the trees. Ultimately, a (q, δ, ϵ)-secure
algorithm with the alternative definition is a (q, δ+ ϵ)-secure algorithm with respect to the
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original definition. I.e.,

Pr
T∼Tn,Q

[
x← Q[T ];T [x] /∈ S(x)

]
= Pr

T∼Tn,Q

[
x← Q[T ];T [x] /∈ S(x)

∣∣∣∣pQ(T ) ≥ δ

]
Pr

T∼Tn,Q

[
pQ(T ) ≥ δ

]
+ Pr

T∼Tn,Q

[
x← Q[T ];T [x] /∈ S(x)

∣∣∣∣pQ(T ) ≤ δ

]
Pr

T∼Tn,Q

[
pQ(T ) ≤ δ

]
≤ϵ+ δ.

Conversely, (q, ϵ) security in the original definition translates into an (q, δ, ϵ
δ
) security of

the alternative definition as well.

Pr
T

[
Pr
Q

[
x← Q[T ];T [x] /∈ FIND1(x)

]
≥ δ

]
≤ET [PrQ[x← Q[T ];T [x] /∈ FIND1(x)]

δ

≤ε
δ
. ▷

3.4 Security against quantum adversaries for FIND1

We prove the adjusted theorem for security against quantum adversaries with a similar
idea to hybrid method first introduced in [Ben+97].

Theorem 3.15. Let w and d be the width and depth parameters as before. The distribution
T = (Tn) in definition (3.4) is a quantum-secure (2d, 2(2d

√
d+ 1

2
)
2
32−

w
3 )-faux deterministic

algorithm for FIND1.

Similar to the classical case, we can obtain a simpler form with one variable as below.
Note that for the quantum security, we have the standard Grover type quadratic loss
[Gro96] where the parameter 2

√
t

4 is adjusted to

2
√
t

8 =

√
2

√
t

4 .

Corollary 3.16. The FIND1 problem has a quantum-secure (2
√

t
8 , 2−

√
t

8 )-faux-deterministic
algorithm of total depth t. Specifically, for any ε > 0 and t = log2+ε(n), we have a
quantum-secure (quasipoly(n), negl(n))-faux-deterministic algorithm of depth polylog(n).
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Proof of corollary (3.16). For large enough t, letting w = 7
8

√
t and d = 1

8

√
t in theo-

rem (3.15), any attacker with less than 2
1
8

√
t queries will succeed at finding an invalid

output with probability at most

2(2d
√
d+

1

2
)
2
32−

w
3 ≤ 2

4d
3 w−w

3 = 2
4
24

√
t− 7

24

√
t = 2−

1
8

√
t.

Proof of theorem (3.15). Let Q = (U1, . . . , Uq) be a quantum algorithm that makes q
queries to the randomly chosen decision tree T . The main idea is to construct a series
of quantum algorithms Q0 = Q, Q1, . . . , and Qq = Q′ such that for k ∈ [q − 1],

• Qk+1 has access to the first k block B1, . . . ,Bk;

• Qk+1 replaces the first query UT of Qk with a simulated query UT k+1 ;

• Qk+1 makes q − k quantum queries to UT in total.

Then, we make the following steps to prove Q fails with high probability.

1. We prove that the distance between the pre-measurement final states of Qk+1 and
Qk will be very small with high probability over the choice of trees.

2. Consequently, we will also bound the distance between the pre-measurement of Q =
Q0 and Q′ = Qq.

3. We use the above to prove the success probability of Q will be close to the success
probability of Q′;

4. Finally, we prove Q′ fails with high probability as it does not make any actual queries
to the tree T .

Consequently, Q will also fail with high probability.

We start with the definition Q1 as an illustration. Suppose Q1 knows the set B1. At
the start, Q1 prepares the same state |ψ0⟩ as in Q, and simulates the first query to tree
UT with another unitary UT 1 , where the tree T 1 is an approximation of the original tree
T . More specifically, to compute T 1[x] on input x, we start at the root of T and answer
with 1 on all of the unknown intermediate nodes until we reach the left-most node B1

(See figure (3.2b)). Now, similar to T , we output the first found index i ∈ B1 with xi = 1
whenever such i exists. Otherwise, we output a random index j ∈ [n]. Note that for any
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B1

(a) The simulated tree T 1 from T with the knowledge of B1.

B4

B2

B1 B3

l1 l2 l5 l7l6l3 l4 l8

(b) The simulated tree T 4 from T with the knowledge of B1,
B2, B3, and B4.

Figure 3.5: In both of the simulated trees T 1 and T 4 the quantum algorithm simulating them only
computes the nodes of the tree for which the blocks are known. For instance, for any input x with
lT (x) ≥ l4 the computed values of T and T 4 are equal; T [x] = T 4[x].
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input x with lT (x) = l1 we have T [x] = T 1(x). Therefore, in the new tree T 1, we assume
that all inputs |x⟩I in |ψ0⟩ with non-zero amplitudes have lT (x) ≥ l1.

We can now define the approximated unitary using our knowledge of the block B1.

UT 1 |x⟩I |i⟩O =

{
|x⟩I |T 1[x]⊕ i⟩O |x|1 ≥ n

2
,

|x⟩I |i⟩O otherwise.

By approximating the first query, Q1 obtains the state,∣∣ψ1
1

〉
:= U1U

T 1 |ψ1⟩ .

Afterward, Q1 proceeds with the regular queries to unitary UT , obtains the states∣∣ψ1
t+1

〉
= Ut+1U

T
∣∣ψ1

t

〉
.

for t > 1. Finally, Q1 measures the last state
∣∣ψ1

q

〉
to obtain a corresponding output similar

to Q0. To obtain the remaining algorithms, we proceed similarly.

Constructing Qk+1 from Qk.

Suppose Qk has been created, and Qk+1 has access to the first k + 1 first blocks,
B1, . . . ,Bk. We define T k+1[x] to simulate the tree T , where on unknown blocks we
answer with 1, and on the known blocks we answer similar to T by the knowledge
of B1, . . . ,Bk. Finally, we output a 1 from the last known block with Bi(x) = 1 if
any such i exists. Otherwise, we output a random index (see figure (3.5)).
Next, we replace the first real query UT in Qk with a simulated query UT k+1 where
for x ∈ {0, 1}n we define

UT k+1 |x⟩I |i⟩O =

{
|x⟩I

∣∣T k+1[x]⊕ i
〉
O
|x|1 ≥ n

2
,

|x⟩I |i⟩O otherwise.

Therefore, Qk+1 obtains, ∣∣ψk+1
k+1

〉
:= Uk+1U

T k+1 ∣∣ψk
k

〉
,

and for t ≥ k + 1 it continues to query regularly as∣∣ψk+1
t+1

〉
= Ut+1U

T
∣∣ψk+1

t

〉
.

Finally, Qk+1 measures the state
∣∣ψk+1

q

〉
to output a string x.
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1. Bounding the distance of Qk and Qk+1: Let lk be the k-th leaf in the tree as in
the proof of theorem (3.10). For any valid input x with |x|1 ≥ n

2
, if lT (x) ⪯ lk, the

tree only visits the blocks B1, . . . ,Bk and outputs from one of these blocks. Thus,
for any such input x,

lT (x) ⪯ lk =⇒ T k+1[x] = T [x].

Therefore, UT [x] = UT k+1[x] unless lT (x) ≻ lk. Furthermore, Qk does not have
any information about Bk+1, . . . ,B2d before its first real queries. Consequently,
employing lemma (3.8) we can prove that lT (x) ⪰ lk happens with high probability
for every input |x⟩ in the query of Qk. We conclude that the states in consecutive
algorithms remain close to each other.

Lemma 3.17. For k ∈ [q], ET

[∥∥ ∣∣ψk+1
q

〉
−
∣∣ψk

q

〉 ∥∥] ≤√
4d
2w

.

Proof. See appendix (A).

2. Bounding the distance between Q and Q′: Let |ψ⟩ =
∣∣ψ0

q

〉
and |ψ′⟩ =

∣∣ψq
q

〉
be the

final state before measurement when running the algorithms Q and Q′, respectively.
We can further bound the distance between these two states as

E
T

[∥∥ |ψ′⟩ − |ψ⟩
∥∥] = E

T

[∥∥ q∑
k=1

∣∣ψk
q

〉
−
∣∣ψk−1

q

〉 ∥∥]

≤ E
T

[ q∑
k=1

∥∥ ∣∣ψk
q

〉
−
∣∣ψk−1

q

〉 ∥∥]

=

q∑
k=1

E
T

[∥∥ ∣∣ψk
q

〉
−
∣∣ψk−1

q

〉 ∥∥]

≤ q

√
4d

2w
, (3.1)

where the second line is due to the triangle inequality, the third line is due to linearity
of expectation, and the fourth line is by lemma (3.17).

3. Relating success probabilities of Q and Q′: To compare the probability of
success for Q and Q′, we define projection Π1(T ) to be the projection to states
having input registers |x⟩I , where x is an adverse input for T . I.e., valid inputs
|x|1 ≥ n

2
on which the tree T fails to find a 1-index. Similarly, we can define Π0(T )

to be the projection to input registers on which the tree T succeeds or x is invalid.
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Consequently, Π0(T )+Π1(T ) = I, and probability of success forQ andQ′ is computed
as

p(T ) := ∥Π1(T ) |ψ⟩ ∥2 = Pr
Q

[
x← Q[T ]; |x| ≥ n

2
and T [x] /∈ FIND1(x)

]
,

p′(T ) := ∥Π1(T ) |ψ′⟩ ∥2 = Pr
Q′

[
x← Q′[T ]; |x| ≥ n

2
and T [x] /∈ FIND1(x)

]
.

Hence, for any tree T ∈ Tn,√
p(T ) =

∥∥Π1 |ψ⟩
∥∥

=
∥∥Π1 |ψ⟩ − Π1 |ψ′⟩+Π1 |ψ′⟩

∥∥
≤

∥∥Π1

(
|ψ⟩ − |ψ′⟩

)∥∥+
∥∥Π1 |ψ′⟩

∥∥
≤

∥∥ |ψ⟩ − |ψ′⟩
∥∥+

√
p′(T ),

where we have used triangle inequality in the third line and the fact that all eigen-
values of Π1 have a norm at most 1 in the last line. Getting expectations from both
sides, we obtain

E
T

[√
p(T )

]
≤ E

T

[∥∥ |ψ⟩ − |ψ′⟩
∥∥]+E

T

[√
p′(T )

]
.

4. Bounding the success probability: By eq. (3.1), the first expectation in the above
is upper bounded by q

√
4d
2w

. To upper bound ET

[√
p′(T )

]
, note that Q′ depends

only on the first q blocks, with q < 2d− 1. As a result, last block B2d is independent
from the output of Q′. Therefore, we can easily show the following lemma.

Lemma 3.18. ET

[√
p′(T )

]
≤

√
1
2w

.

Proof. See appendix (A).

Therefore, we can resume upper bounding the expectation as

E
T

[√
p(T )

]
≤ q

√
4d

2w
+

√
1

2w
= (2q

√
d+ 1)2−

w
2 .

Using Markov’s inequality [Ros98; AS16], we have

Pr
T
[p(T ) ≥ δ2] ≤

ET

[√
p(T )

]
δ

≤ (2q
√
d+ 1)2−

w
2

δ
,
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and therefore,

p := Pr
T ,Q

[
x← Q[T ];T [x] /∈ FIND1

]
= Pr

T ,Q

[
x← Q[T ];T [x] /∈ FIND1

∣∣∣∣p(T ) ≥ δ2
]
Pr
T ,Q

[
p(T ) ≥ δ2

]
+ Pr

T ,Q

[
x← Q[T ];T [x] /∈ FIND1

∣∣∣∣p(T ) ≤ δ2
]
Pr
T ,Q

[
p(T ) ≤ δ2

]
≤Pr

T

[
p(T ) ≥ δ2

]
+ Pr

T ,Q

[
x← Q[T ];T [x] /∈ FIND1

∣∣∣∣p(T ) ≤ δ2
]

≤(2q
√
d+ 1)2−

w
2

δ
+ δ2.

Minimizing the righ hand side for δ, we have 2δ = (2q
√
d+1)2−

w
2

δ2
and thus, δ = (q

√
d+

1
2
)
1
32−

w
6 . Finally, since q ≤ 2d − 1

p ≤2(2d
√
d+

1

2
)
2
32−

w
3 .

3.5 Upper bounds on breaking faux-deterministic algo-
rithms for FIND1

Thus far, we have constructed (2
√

t
4 , 2−
√

t
4 ) and (2

√
t
8 , 2−
√

t
8 ) faux-deterministic algo-

rithms of depth t for classical and quantum adversaries, which proves an exponential gap
between the complexity of our construction t and our lower bounds, 2O(t

1
2 ). From the

viewpoint of the adversary, there exists 2n−1 many different possible inputs in {0, 1}n
that have hamming weight at least n

2
, and the given input length for the adversary is

N = 2n−1. As a result, an efficient adversary in terms of its input size needs to make at
most polylog(O(2n)) = poly(n). Therefore, for t = polylog(n), an efficient adversary has
to make at least quasipoly(n) many queries to have a non-negligible chance of finding an
adverse input, and our lower bounds are secure against any efficient adversaries.

On the other hand, in terms of query complexity, the quasipoly(n) lower bound is still
very far from the adversary’s input size of O(2n). Therefore, a natural question is whether
such a lower bound is achievable and, if not, how tight our lower bounds are. In the
following proposition, we give a negative answer to the first question by proving that with
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at most O(2t) many queries we can find an adverse input with constant probability for any
given initial distribution. Consequently, for t = polylog(n), we get a quasipoly(n) upper
bound, which roughly matches our lower bound.

Proposition 3.19. Let Tn be any distribution of decision trees with total depth t ≤
√
n
2

attempting to solve FIND1 on inputs of length n. Then, for k ∈ N, Tn cannot be (k, 1 −
e

k
22t+1 )-faux-deterministic. Specifically, there exists an adversary that makes k = 2t+1 many

queries and finds an adverse input for 1
2

fraction of the trees in the distribution.

Proof. Let T be any fixed decision tree of depth t ≤
√
n
2

. We define I := {i1, . . . , it} as the
queries made by T in the all-zero branch. Thus, an string x with |x| ≥ n

2
is an adverse

input if and only if xi = 0 for every i ∈ I. Let k be a natural number to be determined
later. We consider a simple randomized adversary A that for j ∈ [k], chooses uniformly
random independent strings Xj with |Xj| = n

2
and queries these strings to obtain T [Xj ].

Eventually, A outputs any string on which T fails to output a 1 index.

For a fixed j ∈ [k], consider one of the strings Xj . We define Sj ⊂ [n] to be the set
of indices in Xj with value 0. Therefore, for Xj to be an adverse input we need to have
I ⊂ |Sj|. In total, we can choose any n

2
− t of the remaining n− t indices for Xj to be an

adverse input. On the other hand, we have
(
n
n
2

)
possible choices for Xj . Consequently, the

probability that I ⊂ |Sj| can be lower bounded as

Pr
Xj

[T [Xj ] /∈ FIND1(Xj)] = Pr
Xj

[I ⊂ Sj ]

=

(
n−t
n
2
−t

)(
n
n
2

)
=

n
2
. . . (n

2
− t+ 1)

n . . . (n− t+ 1)

≥
(n
2
− t)t

nt

=
1

2t
(1− 2t

n
)t

≥ 1

2t
(1− 2t2

n
)

≥ 1

2t+1
,

where in the sixth line we have used Bernoulli’s inequality and in the last line we have
used the assumption t ≤

√
n
2

. Since X1, . . . ,Xk are independent, the probability that the
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adversary succeeds in one of its queries is at least

Pr
X1,...,Xk

[ k∨
j=1

T [Xj ] /∈ FIND1(Xj)
]
≥ 1− (1− 1

2t+1
)k ≥ 1− e−

k
2t+1 .

Thus, for any tree T , after k iterations the algorithm succeeds with probability 1− e−
k

2t+1 .
Now, for a fixed distribution T and a random tree T ∼ T we can write

Pr
X1,...,Xk

[
Pr

T∼Tn

[ k∨
j=1

T [Xj ] /∈ FIND1(Xj)
]]

= Pr
T∼Tn

[
Pr

X1,...,Xk

[ k∨
j=1

T [Xj ] /∈ FIND1(Xj)
]]

≥ 1− e−
k

2t+1 .

Finally, maximizing the outer probability over the choices of X1, . . . ,Xk, we obtain fixed
strings X1, . . . , Xk and a deterministic adversary that succeeds with probability at least
1− e−

k
2t+1 on the distribution Tn.

Remark. The adversarial upper bound given in proposition (3.19) is a non-adaptive al-
gorithm that works on any distribution. However, in many cases - such as the examples
discussed in the previous sections - for any fixed distribution Tn, we can usually find much
more efficient heuristic adversaries that learn the given tree in fewer queries. It is also
important to note that this observation is not limited to distributions with a lot of struc-
ture, such as our construction. For example, a similar climbing method of finding earlier
queries can be used to find an adverse input for the distribution of a uniformly random tree
of depth t. As a result, the error probability in the above upper bound does not behave
robustly to the number of queries. For instance, by querying only 2

t
2 many inputs, the

probability of error would be doubly exponential, (1
e
)(

1
2
)
t
2 . ▷

3.6 Faux-determinism for search problems

As previously discussed, for input length n ∈ N, the FIND1 problem has a simple random-
ized algorithm R = {T1, . . . , Tn} where the tree Ti on input x queries xi and if xi = 1, it
outputs i. Thus, each query in the tree construction of definition (3.4) can be viewed as
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• querying a random tree Ti ∼ R;

• verifying whether (x, Ti[x]) ∈ FIND1;

• and continuing to branch according to the above verification.

With a similar idea, we can generalize our results to obtain faux-deterministic algorithms
for the class of all query search problems having efficient randomized and verification
algorithms.

Theorem 3.20. Let S be a search problem over alphabets Σ and Γ that has verifier V =
(Vn) of complexity v(n) and a randomized algorithm R = (Rn) with complexity r(n). Then
S has a (2

√
t

4 , 2−
√
t

4 )-faux-deterministic algorithm of complexity (r(n) + v(n))t.

Corollary 3.21. If the search problem S has polylog(n) depth verifier and randomized
algorithm, then S has a (quasipoly(n), negl(n))- faux deterministic algorithm of complexity
polylog(n).

Proof. We will directly use the reduction from [Gol+21] to reduce this problem to the
FIND1 problem using the following lemma.

Lemma 3.22. Given randomized algorithm R = (Rn) and verifier V = (Vn) for S, there
exists a large enough constant c depending only on |Σ| and a randomized algorithm R′ =
(R′

n) such that,

• |R′
n| = cn,

• Cdt(R′
n) = Cdt(Rn) = r(n),

• PrR∼R′
n
[T [x] /∈ S(x)] ≤ 1

2
.

Proof. This lemma can be obtained using union bound and Chernoff’s bound. For the sake
of conciseness, we postpone the proof to appendix (A).

Let R1, . . . , Rm be all of the decision trees in R′
n where m = cn. Given an input string

x, the main idea is to implicitly create a new binary string y that assigns 0 or 1 to each
decision tree Ri and run the faux-deterministic algorithm for FIND1 on y. Formally, we
define y as follows:

(y(x))i :=

{
1 Vn[x,Ri[x]] ∈ S(x),
0 otherwise.
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In other words, y(x)i = 1 if and only if Ri outputs a correct answer on x. Note that by
lemma (3.22), len(y) = cn = O(n) and |y|1 ≥ cn

2
.

Let the distribution T = (Tn) be the (2
√

t
4 , 2−
√

t
4 )-faux-deterministic algorithm in theo-

rem (3.10), and let T ∼ Tm be a random decision tree from our construction. Consequently,
our algorithm simulates T on the string y, and on each query yi of T , it runs Ri[x] and
outputs Vn[x,Ri[x]] ∈ {0, 1}. In the end, we output Ri[x] where i is the index outputted
by T . Consequently, we define F = (Fn) be the final distribution over these simulations.
By definition, T makes at most t many queries, and in each query, we run a decision tree
Ri and the verifier V of depths at most r(n) and v(n). Therefore, the total complexity of
Fn is at most (v(n) + r(n))t.

It only remains to prove that F is a (2
√

t
4 , 2−
√

t
4 )-faux deterministic algorithm for S.

Suppose for the sake of contradiction that there is an integer n and adversary An that
finding an invalid input x for δ > 2−

√
t
4 fraction of trees in Fn after at most q < 2−

√
t
4

many queries. Consequently, we can define a new adversary A′
m for Tm as follows. Given

query access to a random tree T ∼ Tm, we simulate An. In other words, whenever An

queries x, we construct y(x) by using R1, . . . , Rm and Vn, query y(x) to obtain i = T [y(x)],
and output Ri[x] to An. Now, from the perspective of An, a tree F ∈ F corresponding to T
is being queried. Therefore, for δ fraction of trees T ∼ Tn our simulation returns an input
x̄ for which F [x̄] /∈ S(x). Hence, for the input y(x̄) and the output i = T [y(x̄)], we must
have (y(x̄))i = Vn(x̄, Ri[x̄]) = 0, which means, y(x̄) is an adverse input for T . But this
contradicts the assumption about T , and therefore, F is a (2

√
t
4 , 2−
√

t
4 )-faux deterministic

algorithm for S.

3.7 Verifiers and sensitivity problem

Trivially, any faux-deterministic algorithm is a randomized algorithm itself, and therefore,
having a randomized algorithm is a necessary condition in the theorem (3.20). On the
contrary, the relation between the existence of faux-deterministic algorithms and verifiers
is not as clear. Still, we can make interesting observations about the necessity of verifiers.
We consider a modified version of the FIND1 problem with the same randomized and
deterministic algorithm as FIND1 but does not have an efficient verifier.
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3.7.1 FINDMEDIAN problem

In the FINDMEDIAN problem we are given any binary string x ∈ {0, 1}n and,

• if |x| ≥ n
2
, we need to find an index i with xi = 1,

• otherwise, |x| < n
2

and we can output any arbitrary index.

Definition 3.23 (FINDMEDIAN). For n ∈ N, let

FINDMEDIANn = {(x, i)|xi = 1 or |x| < n

2
}.

We define the search problem FINDMEDIAN over binary alphabets to be the sequence
FINDMEDIAN := (FINDMEDIANn). ▷

For inputs with |x|1 < n
2
, an algorithm solving FINDMEDIAN can output any index i ∈ [n]

and be correct. Therefore, any solution for FIND1 also solves the FINDMEDIAN problem.

On the other hand, an index i with xi = 0 can still be a valid certificate if x does not have
a large hamming weight. In other words, FINDMEDIAN has high certificate complexity.
Therefore, unlike FIND1, FINDMEDIAN does not have an efficient verifier.

In the following, we prove that for any function f : {0, 1}n → [n] that can succesfully
compute FINDMEDIANn, we can efficiently find an input with high sensitivity for f .

Proposition 3.24. Let f : {0, 1}n → [n] be a given function attempting to solve the total
problem FINDMEDIAN. In at most n2

2
many queries to f , we can

• either find an input x and indices i1, . . . , in
2
∈ [n] with f(x) ̸= f(x)ij for j ≤ n

2
,

• or find an input x for which f(x) /∈ FINDMEDIAN(x)

Therefore, we get the following corollary that gives us an efficient adversary for the
FINDMEDIAN problem.

Corollary 3.25. Suppose we are given any tree T of depth t < n
2

that claims to solve
FINDMEDIAN on inputs of length n. Then, there exists a classical adversary that finds an
adverse input for T in at most n2

2
queries to T .

Proof of corollary (3.25). Given tree T , we consider the function defined by f(x) := T [x]
and run the adversary in proposition (3.24) on f . Since T has depth at most n

2
, for any

input x, at most n
2

many indices of x are queried in T [x]. Therefore, the adversary finds
an input x for which T [x] /∈ FINDMEDIAN(x) and this completes the proof.

44



Proof of proposition (3.24). We start with the string x(0) = 0n where x(0)f [x(0)] = 0. To
obtain the next string x(k+1) from the current string x(k) we use the following algorithm
for the adversary.

Obtaining x(k + 1) from x(k)

For each 0-index j ∈ [n] with x(k)j = 0,

1. we first flip the j-th bit to obtain the string z = x(k)j, where

zt =

{
1 t = j

x(k)t otherwise;

2. next, we make a query to f on z to obtain the index

i := f(z) = f(x(k)j);

3. if zi = 0, f still outputs a 0-index and we define

x(k + 1) = (x(k))j

so that we still have
(x(k + 1))f(x(k+1)).

4. If zi = 1, f changes value from x(k) to x(k)j and we continue with the next
possible j with x(k)j = 0.

5. If the string x(k) is sensitive to all of its 0-indices, we define x = x(k) and stop
the algorithm.

In each step, the hamming weight of the string increases by 1 and therefore at the k-th
step, we have |x(k)|1 = k. Thus, if the algorithm takes more than n

2
steps, we reach a

string x where |x|1 = n
2
, and xf(x) = 0. In this case, we have found an input for which f

does not compute FINDMEDIANn.

Otherwise, the algorithm gives a string x with |x|1 < n
2

such that,

i. xf(x) = 0,

ii. For every 0-index i ∈ [n] with xi = 0 and we have f(xi) ̸= f(x).
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Since |x|1 < n
2
, we have found at least n

2
many sensitive indices for f on x.

3.7.2 Pseudo-deterministic lower bounds for FIND1

In the proof of proposition (3.24), we introduced a new problem of finding a sensitive input
for a function computing a hard problem, and in corollary (3.25) we reduced the problem
of finding an adverse input to this problem. Subsequently, we can ask the same question
for the FIND1 problem and any function f : Xn −→ [n] computing f(x) ∈ FIND1n(x) where
Xn = {x ∈ {0, 1}n||x|1 ≤ n

2
} is the set of valid inputs for our problem.

Problem 3.26. Given f : Xn −→ [n] such that for all x, f(x) ∈ FIND1(x), find an input
x and disjoint blocks of indices B1, . . . , Bk such that f(x) ̸= f(xBj) for j ∈ [n].

Via polynomial-degree lower bounds and the Huang’s resolution of sensitivity conjecture
[Hua19], Goldwasser et al. [Gol+21] gave an existential proof that if f computes FIND1,
then there exists an input that is sensitive on Ω(n

1
2 ) disjoint blocks. On the other hand,

even though such input exists, our faux-deterministic construction proves that solving
problem (3.26) is not possible even for k = polylog(n).

Proposition 3.27. For f discussed in the above, no adversary can find such an input that
has ω(polylog(n)) sensitivity within poly(n) many queries.

Proof. We prove that if such an adversary exists, we can design another adversary that
finds an adverse input for any given decision tree of depth polylog(n). So, suppose we are
given such a decision tree T . We define f to compute FIND1 with minimal distance to T .
I.e.,

f(x) :=

{
T [x] T [x] ∈ FIND1(x)

i xi = 1 ∧ T [x] /∈ FIND1(x)

Next, we simulate querying to f by querying T by

• outputting T [x] if T [x] ∈ FIND1(x)

• and returing an arbitrary index i with xi = 1 otherwise.

Since f computes FIND1, it must have an input x and sensitive blocks B1, . . . , Bk where
k = Ω(

√
n). Thus, the original adversary makes poly(n) queries to find an input x and
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disjoint blocks of indices B1, . . . , Bk with k = ω(polylog(n)) such that f(x) ̸= f(xBj) . If
T [x] ̸= f(x), we have found an adverse input for T . So suppose T [x] = f(x). Since T has
depth polylog(n), it only queries polylog(n) many indices from x. Therefore, T queries
from at most polylog(n) of the blocks. Then, for at least one of the blocks Bj, we must
have,

f(xBj) ̸= f(x) = T [x] = T [xBj ]

As a result, we find an adverse input for T as f(xBj) ̸= T [xBj ].

Now, consider a pseudo-deterministic algorithm T computing FIND1, and let f be the
function computing f(x) := T [x]. By above, even though f has high sensitivity, this sensi-
tive input is not constructive in polynomial time. We view this observation as an evidence
pointing towards the fact that any sensitivity lower bound for a pseudo-deterministic com-
plexity of FIND1 should be non-constructive, whilst the usual non-constructive methods of
lower bounding sensitivty such as polynomial method, induce at least a quadratic loss.
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Chapter 4

Duality in TFNP

Previously, we studied the distribution of efficient algorithms A for a search problem S
that can fool any efficient adversary attempting to find an adverse input for a randomly
sampled A ∼ A. Notice that in this setting, the problem of finding an adverse input
for a faulty algorithm is itself a search problem. Therefore, shifting our viewpoint to the
adversaries’ side, we can ask whether there exists an adversary that can find an adverse
input for any efficient algorithm purporting to solve S. We call this new search problem
the dual of the original problem and denote it by S∗.

Roughly speaking, an algorithm A∗ for a hard problem S∗ takes another (efficient)
algorithm A for S and has to output an input x such that A[x] /∈ S(x). In this chapter, we
will discuss interesting meta-complexity relations between the primal and dual problems,
and we will provide several pieces of evidence for why the dual problem is analogous to the
primal one.

We begin by recalling the observations mentioned in the introduction. Next, we briefly
discuss why these observations should hold at an intuitive level and why proving these
observations could be a challenging task in different computational models. Afterward, we
will prove partial results for the Turing machine model and query model by formalizing
some of the below observations.
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Informal observation

Let S and R be two hard search problems. In different computational models, some
or all of the following hold:

i. if S is verifiable, then S∗ is also verifiable;

ii. if S is hard, then S∗ is total;

iii. if S reduces to R, then R∗ reduces to S∗;

iv. if S has a randomized algorithm then S∗ is hard on average;

v. if S is hard on average, then S∗ has a randomized algorithm.

4.1 Intuitive overview

i. Suppose that for a hard search problem S we have a verifier V where y ∈ S(x) if and
only if V (x, y) = 1. Also, let the input A of S∗ be an efficient algorithm and let x be an
arbitrary input for S. Having the verifier V for S, we can verify whether (A, x) ∈ S∗

by checking if V [x,A[x]] = 0. Therefore, on an informal level the dual should also be
verifiable;

ii. Additionally, if the primal problem S is hard, then any efficient algorithm A should
fail to solve S. This means that for any input A of S∗ there exists a certificate x such
that (A, x) ∈ S∗, and S∗ is in this sense total.

As a result, for (hard) TFNP problems, we expect the dual problem to inherit characteristics
of TFNP as well. Furthermore, as in observations (iii)-(v), we can relate the complexity of
the primal and dual problems as follows.

iii. Suppose for two hard search problems S1 and S2 we have S1 ⪯ S2. Then, intuitively,
it should be more difficult to construct efficient algorithms that can fool algorithms
of S∗

2 compared to algorithms for S∗
1 . This is because, by the given reduction, from a

faulty algorithm A2 that is hard for S∗
2 , we can construct a faulty algorithm A1 that

is hard for S∗
1 . More specifically, suppose a general reduction (f, g) as in figure (4.1)
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x1 x2 y2 g y1f S2

(a) Initial reduction from S1 to S2

A2 A1
x1 G x2F S∗

1

(b) Constructed reduction from S2 to S1

Figure 4.1: Given a reduction (f, g) from S1 to S2, we can obtain another reduction (F,G) from S∗2 to S∗1 .

is given, where we have

∀x1 x2 = f(x1)

∀y2 ∈ S2(x2)

}
=⇒ g(x1, y2) ∈ S1(x1). (4.1)

Then, we can construct a new reduction (F,G) such that

A1 := F (A2),

x2 = G(A2, x1) := f(x1),

where

∀x1, A1(x1) = (F (A2))(x1) := g(x1, A2(f(x1))). (4.2)

Now, any x1 ∈ S∗
1 (A1) is an adverse input for A1. Therefore,

A1(x1) /∈ S1(x1). (4.3)

Additionally, if for y2 := A2(f(x1)) we have y2 ∈ S(x2), we will have

A1(x1) = F (A2)(x1) (by definition (4.2))
= g(x1, A2(f(x1))) (by y2 := A2(f(x1)))

= g(x1, y2) ∈ S1(x1) (by (4.1))

But this contraditcs eq. (4.3). Consequently,

∀A1 A1 = F (A2)

∀x1 ∈ S∗
1 (A1)

}
=⇒ G(A2, x1) ∈ S∗

2 (A2).
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iv. As seen in the faux-determinism chapter, having a randomized algorithm for S is
closely related to having a faux-deterministic algorithm which is equivalent to saying
S∗ is hard on average.

v. Additionally, if S is hard on average, then there exists a distribution of inputs for
which every algorithm A for S fails with high probability. Therefore, a randomized
algorithm for S∗ can randomly sample from such a distribution for any given algorithm
A to find an adverse input with high probability.

4.2 Formalization challenges

Up to this point, we have not yet talked about any exact formulation of the mentioned
properties. Even though these rough observations seem natural, making them accurate in
any computational model can quickly become a complicated and confusing task. This is
mainly due to the fact that any choice in the definition of the dual problem faces compat-
ibility issues with the primal problem.

Specifically, the notions of verifiability, hardness, totality, randomized algorithms, and
reductions are not necessarily robust enough to be extendable to the dual problem. There-
fore, we may need to adjust or restrict the usual definitions to account for such issues. For
example, consider the notion of hardness for a search problem S. If S is partially hard
only on a few input sizes, then S∗ will not be total since we may have efficient algorithms
that solve S for infinitely many input lengths. On the other hand, problems of interest
are often continuously hard or easy on different input lengths, and such non-continuous
problems are usually artificial.

To make this worse, the usual definitions of the above notions can be very fragile when
subjected to small changes in computational models, especially when considering a meta-
complexity problem. As a result, we have to be very careful about the implications of any
change or restrictions to the regular definitions. This ultimately makes the task of finding
the proper definitions much harder. For instance, adapting to some non-uniform models,
such as circuits, might completely collapse the distinctions between randomized and deter-
ministic algorithms. Additionally, in uniform computational models, the description size
of an input A for S∗ does not encapsulate its complexity.

As a result, it is currently unclear to us how to prove all of the above in the usual
computational models, and we do not know if a computational model satisfies any formal-
ization of these observations simultaneously. However, we can still obtain partial results in
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the usual non-uniform query and uniform Turing machine models that we present in the
following sections.

4.3 Turing-machine model

In the white-box model, we consider the dual problems for a hard search problem S ∈
TFNP, where TFNP is the class of search problems that are both total and verifiable.
Roughly, in the dual problem S∗, we are given a polynomial time Turing machine M
purporting to solve S along with an integer m. Then, our goal is to find an input x with
a length of at least m such that M [x] /∈ S[x]. For proper interpretations of the previously
mentioned observations in the Turing machine model, we will be able to prove the following.

Informal Theorem. Let S1 and S2 be two “hard” search problems in TFNP. Then, we
have

i. S∗
1 is also in TFNP, and

ii. If S1 reduces to S2, then S∗
2 also reduces to S∗

1 .

In the following, we first provide and adapt preliminary definitions such as a hard search
problem for the Turing machine and formally define the dual problem. Then, we will prove
each item in the above separately.

4.3.1 Preliminaries for dual problem in Turing machine model

Search problems in Turing machine model and binary encodings When work-
ing with Turing machines, it is more convenient to work with binary inputs and outputs.
Therefore, as previously discussed in chapter 2, we can view search problems S as binary
relations

S ⊂ {0, 1}∗×{0, 1}∗,

where we interchangeably denote input x ∈ dom(S) and output y ∈ range(S) with their
binary encodings ⟨x⟩ and ⟨y⟩.1

1For more information on the chosen binary encoding, please refer to chapter 2.
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For complexity theory purposes, paddable encodings simplify a lot of unnecessary com-
plex details of dealing with Turing machines and their uniform nature. Therefore, we
choose a paddable encoding for which strings ⟨x⟩ and ⟨x⟩0r denote the same input for our
search problem. One can consider such padding as a comment that does not affect the
actual meaning of the string. Therefore, for our search problem and integers r and s, we
will have

(⟨x⟩, ⟨y⟩) ∈ S ⇔ (⟨x⟩0r, ⟨y⟩0s) ∈ S.

Further, without loss of generality, we assume that correctly formatted Turing machines
respect such an encoding. In other words, for a padded string ⟨x⟩0r, a correctly formatted
Turing machine ignores the padding and just runs on input ⟨x⟩.2

Complexity classes We use the standard complexity classes FP, FBPP, and FNP as the
class of search problems having polynomial time deterministic, randomized, and verification
algorithms. Consequently, TFNP will be the class of total search problems in FNP.

We note that in complexity theory, hard problems are generally considered to be prob-
lems that do not have polynomial time deterministic algorithms (S /∈ FP). For the pur-
pose of dual problems, however, a mere super-polynomial lower bound makes the job of
the dual algorithm extremely hard. Therefore, for the purpose of our results, we consider
quasipoly(n) lower bounds for the primal problems.

Therefore, we use quasiFP to denote the class of search problems having Turing machines
computing them in time 2polylog(n).

Continuity If a Turing machine M cannot solve S, it will fail to solve S on infinitely
many output lengths. Therefore, for any integer m, there exists an input with |x| ≥ m
such that M [x] /∈ S(x). However, the gap between the input lengths on which M fails
might be too large. In such scenarios, an algorithm for S∗ might not even be able to write
such an input in polynomial time.

This issue mainly arises when our initial search problem is not continuous in the sense
that its complexity varies with input lengths. Such problems are mostly artificial, however,
they still satisfy the definition of search problem. For instance, consider a variant of finding
a satisfying assignment problem where on even input lengths, any possible output is correct.
To discard such manufactured problems, we introduce a notion of continuity for search
problems.

2Note that this assumption does not change the complexity of a search problem as the algorithm still
needs to solve the problem for non-padded strings over all input lengths as well.

53



Definition 4.1 (Continuity in TM model). Let S be a search problem and C be a com-
plexity class of search problems. Then, a search problem S /∈ C is C-continuous if every
algorithm in C fails to solve S on infinitely many input lengths. More specifically, S /∈ C
is C-continuous if for all infinite subsets I ⊆ N,

S ∩ ({x ∈ {0, 1}∗| |x| ∈ I} × {0, 1}∗) /∈ C.

▷

Reductions For the sake of reductions in the Turing machine model, we consider a
generalized notion of Karp reductions as follows.

Definition 4.2. Let S1 and S2 be two search problems. We say S1 is poly-time Karp
reducible to S2 and denote S1 ⪯poly S2, whenever there exists Boolean functions f, g :
{0, 1}∗ → {0, 1}∗ such that,

i. f and g are computable in polynomial time, i.e.,

f, g ∈ FP;

ii. For all x1 ∈ dom(S1), the string x2 = f(x1) is an input for S2,

x2 ∈ dom(S2);

iii. For any corresponding output of x2 such as y2 ∈ S2(x2), g computes a correct certificate
for x1 based on y2,

g(x1, y2) ∈ S1(x1). ▷

4.3.2 Dual problem in Turing machine model

Having rigorously formalized the definitions of continuity, hard problems, and reductions,
we begin defining the dual problem by first considering correct input and output formatting.

Definition 4.3 (Input formatting). Suppose S ∈ TFNP is a search problem in the Turing
machine model. The dual problem S∗ takes inputs of the format,

X = (⟨M⟩, 1k, 1m, 1kmk

),

where
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i. ⟨M⟩ is the canonical binary encoding of a correctly formatted Turing machine M ;

ii. k is a natural number denoting the polynomial pk(n) = knk;

iii. m is a natural number such that m ≥ 2k|M |.3

We can interpret the above input asM claiming to solve S in time pk and the dual algorithm
has to find a counterexample input of length at least m. Therefore, given an input

X = (⟨M⟩, 1k, 1m, 1kmk

),

the goal of S∗ is to either,

• prove that M does not run in time pk;

• or find an input of length m on which M fails to output a correct answer.

▷

Remark. To have any chance of finding such an input, the dual algorithm would need to
simulate M for at least pk(m) many steps. Therefore, we give the dual algorithm a string
of length kmk as part of the input.

Also, note that if m is not sufficiently large compared to |M |, a Turing machine can be
constructed to solve S using brute force on inputs of length m. Adding the last condition
m ≥ 2k|M | guarantees such inputs are not valid and eases the task of the dual algorithm to
find a counterexample input of length at least m. ▷

With respect to the above input, we can now define the correct output formatting as
well.

Definition 4.4 (Output formatting). For an input

X = (⟨M⟩, 1k, 1m, 1kmk

)

formatted as above, a correctly formatted output Y is a tuple

Y = (y, 1k|y|
k

),

such that |y| ≥ m. ▷

3For simplicity, we denote the binary length |⟨M⟩| as simply |M |.
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Remark. The reason why we additionally add the string 1k|y|
k is that any possible verifier

for S∗ should be able to run M on y and check if it takes more than pk(y) many steps. ▷

Finally, we define the dual problem as follows.

Definition 4.5 (Dual problem in Turing machine model). Let S be a search problem. If a
binary string X is not correctly formatted as in definition (4.3), we define S∗(X) to include
everything:

S∗(X) = {0, 1}∗.

On the other hand, for any correctly formatted input string X = (⟨M⟩, 1k, 1m, 1kmk
) and

correctly formatted output string Y = (y, 1k|y|
k
), we have Y ∈ S(X) if and only if either

• y is a counterexample to M running in time pk: TIME(M, y) > k|y|k,

• or y is a counterexample to M solving S: M [y] /∈ S(y).

▷

4.3.3 Totality and verifiability of S∗

We begin by proving that the dual of a hard TFNP problem remains in TFNP as well.

Proposition 4.6. Let S ∈ TFNP\quasiFP be a quasiFP-continuous search problem. Then,
S∗ is also a problem in TFNP.

Proof. We first prove that S∗ also has a verifier and then prove it is total.

S∗ is verifiable: Let V be a polynomial time verifier for S running in time q(n) such
that

V (x, y) = 1⇔ y ∈ S(x).

We will construct a verifier V ∗ for S∗ such that we get

V ∗(X, Y ) = 1⇔ Y ∈ S(X).

To construct V ∗, suppose the pair of input-output (X, Y ) for S∗ is given. Next, we will
give a verifier algorithm as follows.
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Verifier for S∗

1. If X is not formatted correctly, every output Y is a correct certificate, and we
accept. Thus, we have V ∗(X, Y ) := 1.

2. Suppose X is formatted correctly, and for some M , k, and m we have

X = (⟨M⟩, k, 1m, 1kmk

),

where m ≥ 2k|M |. Now, if Y is not formatted correctly, it cannot be a correct
certificate, and we reject it: V ∗(X, Y ) := 0.

3. Otherwise, Y is also formatted correctly and for some y we have

Y = (y, 1k|y|
k

),

where |y| ≥ m.

Now, if the computation of M [y] does not halt after k|y|k many steps or if
V (y,M [y]) = 0, we accept, and otherwise, we reject.

V ∗(X, Y ) = (M [y] does not halt in k|y|k) or (V (y,M [y]) = 0)

Clearly, this algorithm is a verifier for S∗. For the run-time, the first two steps take
the most linear time. Additionally, the third step takes time at k|y|k = O(|Y |) for running
M [y] and q(|(y,M [y])|) = O(q(|Y |)) for computing V (y,M [y]). Therefore,

TIME(V ∗, (X, Y )) = O(|X|+ |Y |) +O(|Y |) + q(|Y |) = O(|(X, Y )|).

Thus, we have S∗ ∈ FNP.

S∗ is total: It only remains to prove that S is total. By definition, for an incorrectly
formatted input X, any string is a certificate in S∗(X). Thus, without loss of generality, we
only consider correctly formatted inputs. We will utilize and prove the following lemma.

Lemma 4.7. There exists a finite set of correctly formatted inputs T = {X1, . . . , Xt}
such that for any other correctly formatted input X /∈ T we have a linear size certificate
Y = (y, kmk), where |Y | = O(|X|) and

(X, Y ) ∈ S∗.

57



Additionally, for the finitely many remaining inputs X1, . . . , Xt, the algorithm can find
certificates Y1, . . . , Yt by brute force. Therefore, we prove that for every input X, there
exists a Y of size at most O(|X|) such that (X, Y ) ∈ S∗. This completes the proof of
totality for S∗.

Proof of lemma (4.7). Suppose this is not the case. Then, there are infinitely many cor-
rectly formatted strings

Xi = (⟨Mi⟩, ki, 1mi , 1kim
ki
i ),

for i ∈ N such that,

• mi ≥ 2ki|Mi|;

• X does not have any certificate of type Y = (y, kim
ki
i ).

By the definition (4.5), this means that for any input of length |y| = mi,

i. Mi[y] ∈ S(y));

ii. TIME(Mi, y) ≤ kim
ki
i .

Now, consider the Turing machineM defined below where on any input y,

1. enumerates over every pair (M,k) with k|M | ≤ log |y|;

2. simulates M [y] for k|y|k many steps;

3. Checks whether M [y] outputs a correct answer in S(y) by calling the verifier V .

By (i) and (ii), this algorithm solves S on infinitely many input lengths mi for i ∈ N.
Furthermore, on each input y, there are at most |y|2 many possible pairs |M |, k ≤ log |y|,
and on each pair, the algorithm takes time poly(k|y|k). Thus, the algorithm runs in total
quasi-polynomial time

poly(k|y|k).|y|2 = poly((log y)|y|log y).|y|2 = quasipoly(|y|).

But this contradicts the quasiFP-continuous assumption for S. This completes the proof
of the lemma (4.7).
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4.3.4 Comparing complexities of S1 and S2

Proposition 4.8. Let S1 and S2 be two search problems in TFNP\quasiFP that are quasiFP-
continuous. Then, if S1 ⪯poly S2 we have S∗

2 ⪯poly S∗
1 .

Proof. Suppose there exists polynomial time functions f : {0, 1}n → {0, 1}l(n) and g such
that,

i. f maps an input x1 of S1 to an input x2 = f(x1) of S2;

ii. g finds a certificate for x1 based on a certificate y2 ∈ S2(x2):

g(x1, y2) ∈ S1(x); (4.4)

iii. f, g ∈ FP.

Without loss of generality, we can pad f(x) with enough zeros to always have length
l(n) = dnd for a constant d ≥ 1. Additionally, we assume that f(x) and g(x, y) run in time
q(n) = rnr, where n is the input size and r ≥ d ≥ 3.

We construct functions F and G such that,

I. F maps an input X2 of S∗
2 to an input X1 = F (X2) of S∗

1 ;

II. G finds a certificate for X2 based on a certificate Y1 ∈ S∗
1 (X1):

G(X2, Y1) ∈ S∗
2 (X2); (4.5)

III. F,G ∈ FP.

Constructing F : We start by defining F and stating some of its important properties
below.
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F (X2)

For an incorrectly formatted input X2, we define F (X2) = ⊥ to output an empty
string. For a correctly formatted input X2 of S∗

2 , where

X2 = (⟨M2⟩, k2, 1m2 , 1k2m
k2
2 ),

we define F (X2) to be such that,

X1 := F (X2) = (⟨M1⟩, k1, 1m1 , 1k1m
k1
1 ).

Moreover, M1, k1, and m1 are obtained as follows.

• The new Turing machine M1 on input x1 outputs M1[x1] = g(x1,M1[f(x1)]);

• k1 = r3k2;

• m1 = max{2k1|M1|,m2}.

Clearly, the above definition satisfies (I).

Properties of F : The following lemma summarizes all of the other properties of F that
is needed to make our reduction work. For conciseness, we postpone the proof of the lemma
to the end of this section.

Lemma 4.9. There exists a large enough integer N ∈ N, such that for a correctly formatted
input

X2 = (⟨M2⟩, k2, 1m2 , 1k2m
k2
2 ),

with m2 ≥ N , and
X1 := F (X2) = (⟨M1⟩, k1, 1m1 , 1k1m

k1
1 )

as above we have

a. |M1| ≤ c logm2

k2
for some fixed c independent of X2;

b. k1mk1
1 ≤ poly(k2m

k2
2 );

c. For n ≥ N we have k1nk1 ≥ nk2r2 + k2(dn
d)k2 ;

d. For an input x2 with |x2| ≥ m2 ≥ N , either
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• M2[x2] does not halt after k2|x2|k2 many steps,

• or TIME(M1, x1) ≤ TIME(M2, f(x1)) + |x1|k2r
2.

Now, we can proceed to define G as follows and prove that for F and G (II) holds.

Constructing G: Suppose we are given an input X2 of S∗
2 and have computed the new

input X1 = F (X2). Additionally, let Y1 ∈ S∗
1 (X1) be a certificate for X1.

G(X2, Y1)

1. If X2 is not correctly formatted, any arbitrary string Y2 is a correct certificate
for X2. Therefore, we output an arbitrary string.

2. Otherwise, we have

X2 = (⟨M2⟩, k2, 1m2 , 1k2m
k2
2 ),

X1 = (⟨M1⟩, k1, 1m1 , 1k1m
k1
1 ).

3. If m2 < N in lemma (4.9), we can find a counterexample input Y2 for X2 with
brute force. Thus, we can additionally assume m2 > N .

4. Now, let Y1 = (x1, k1|x1|k1) be the certificate of X1 in the above, where we have
|x1| ≥ m1 and either

• TIME(M1, x1) > k1|x1|k1 ,
• or M1[x1] /∈ S(x1)

Now, consider the string x2 = f(x1). We claim that

Y2 := (x2, 1
k2|x2|k2 )

is in S∗
2 (X2). Consequently, (II) will hold for all of the above cases.

Proof of claim. If M2[x2] does not halt after k2|x2|k2 , we are done as x2 is a counterexample
to M2 running in time k2nk2 . Therefore, suppose M2[x2] halts after k2|x2|k2 many steps.
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• If TIME(M1, x1) > k1|x1|k1 , we have

TIME(M2, x2) = TIME(M2, f(x1)) (By x2 = f(x1))

≥ TIME(M1, x1)− |x1|k2r
2

(By (d))

> k1|x1|k1 − |x1|k2r
2

(By TIME(M1, x1) > k1|x1|k1)
≥ |x1|k2r

2

+ k2(d|x1|d)k2 − |x1|k2r
2

(By (c))
= k2(d|x1|d)k2

= k2|x2|k2 . (by |x2| = d|x1|d)

This means that M does not halt in time k2|x2|k2 , which contradicts our assumption.

• Therefore, we must have M1[x1] /∈ S(x1). But then M2[x2] cannot be in S(x2) as
otherwise we should have g(x1,M2[x2]) ∈ S1(x1) by the condition (ii). However,

g(x1,M2[x2]) =M1[x1] /∈ S(x1),

which is a contradiction.

F and G are in FP: It only remains to prove (III). First, we have finitely many possible
correctly formatted inputs X2 with m2 < N as we always have k2|M2| ≤ logm2. Therefore,
for such inputs, the brute force method takes at most constant time. Otherwise, we have
m2 ≥ N . Consequently, for X1 = F (X2) we have the followings hold.

1. by (a), M1 can be constructed in time logm2 = poly(|X2|);

2. Since r is a fixed integer, k1 = r3k2 is also easily obtainable and we can write 1r
3k2

in time poly(k2) = poly(|X2|);

3. by (b), k1mk1
1 = poly(k2m

k2
2 ). Therefore, we can write 1m1 and 1k1m

k1
1 in polynomial

time as well.

Therefore, X1 = F (X2) is computable in polynomial time. Now, let

Y = (x1, 1
k1|x1|k1 )

be a correct certificate for X1. We can obtain x2 = f(x1) in polynomial time as well.
Additionally, by (c), k1|x1|k1 ≥ k2|x2|k2 . Therefore, we can write (x2, 1k2|x2|k2 ) in polynomial
time as well. This proves that G is also computable is polynomial time, and (III) is
proven.
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Proof of lemma (4.9). We find integers N0, N1, N2 for each element and take the maximum
value N = max{N0, N1, N2} to obtain the results simultaneously.

a. Note that M1 in the above can be described with length

|M1| = |M2|+ |f |+ |g|+O(1).

Since f and g are fixed Turing machines, we obtain

|M1| = |M2|+O(1).

Additionally, since X2 is correctly formatted, we have m2 ≥ 2k2|M2|. Therefore,

|M2| ≤
logm2

k2
.

Now, there exists a large enough N0 and constant c such that for m2 > N0, we have,

|M1| ≤
logm2

k2
+O(1) ≤ c

logm2

k2
.

b. We know that m1 = max{2k1|M |1 ,m2}. Therefore, we either have m1 = 2k1|M |1 or
m1 = m2.

• If m1 = 2k1|M1|, then for n ≥ N0 in (a) we have,

k1m
k1
1 = k1

(
2k1|M1|

)k1
(by m1 = 2k1|M1|)

= r3k2(2
k1|M1|)r

3k2 (by k1 = r3k2)

≤ r3k2
(
2
(k1c

logm2
k2

))r3k2
(by (a))

= r3k2
(
2
(r3k2c

logm2
k2

))r3k2
(by k1 = r3k2)

≤ r3k2
(
2(r

3c logm2)
)r3k2

≤ r3k2
(
mcr3

2

)r3k2
≤ r3k2

(
mk2

2

)cr6
≤ r3

(
k2m

k2
2

)cr6
= poly(k2m

k2
2 ).
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• If m1 = m2, then,

k1m
k1
1 = k1m

k1
2 = (r3k2)m

r3k2
2 = poly(k2m

k2
2 ).

Therefore, for n ≥ N0 we have,

k1(m1)
k1 ≤ poly(k2m

k2
2 ).

c. Let p1(n) and p2(n) be the polynomials,

p1(n) = k1n
k1 = r3k2n

r3k2 ,

p2(n) = nk2r2 + k2(dn
d)k2 ≤ nk2r2 + k2(rn

r)k2 .

We know that r ≥ 3. Additionally, for n ≥ r ≥ 3 we have,

p1(n)− p2(n) = r3k2n
r3k2 − (nk2r2 + k2(rn

r)k2)

≥ r3k2n
r3k2 − nk2r2 − k2(n.nr)k2)

= r3k2n
r3k2 − nk2r2 − k2n(r+1)k2

≥ r3k2n
r3k2 − (k2 + 1)nk2r3

≥ 0.

Therefore, there exists a large enough integer N1 ∈ N such that for n ≥ m2 ≥ N1, we
have p1(n) ≥ p2(n).

d. If M2 takes more than k2|x2|k2 many steps on x2 we are done. Otherwise, we assume

TIME(M2, x2) ≤ k2|x2|k2 .

Note that f outputs string of length l(|x1|). Thus, we have

|x2| = |f(x1)| = l(|x1|) = d|x1|d ≤ r|x1|r,
|M2[x2]| ≤ k2|x2|k2 ≤ k2(r|x1|r)k2 ,

where we have used the fact that d < r in the first line. Additionally, since g and f run
in time rnr, we have,

TIME(M1, x1) = TIME(f, x1) + TIME(M2, x2) + TIME(g, (x1, |M2[x2]|))
≤ r|x1|r + TIME(M2, f(x1)) + r(|x1|+ |M2[x2]|)r

= TIME(M2, f(x1)) + o(|x1|k2r
2

).
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Therefore, there exists an integer N2 such that for any x2 and

|x2| = |f(x1)| ≥ |x1| ≥ m1 ≥ m2 ≥ N2,

we have,

TIME(M1, x1) ≤ TIME(M2, f(x1)) + |x1|k2r
2

.

By taking N = max{N0, N1, N2}, we can satisfy all the requirements of the lemma.

4.4 Query model

Similar to the faux-deterministic setting, we define the dual problem in the query model
to also be yet another query problem. As a result, an algorithm for the dual problem is a
decision tree that can query the outputs of an another given tree T . To formally define the
dual problem as a query search problem, we first need to generalize notions such as search
problems and reductions in the query model.

4.4.1 Preliminaries for dual problem in query model

Search problems in query model

One initial difficulty for the rigorous formalization of dual in the query setting is that
the problem S∗

n has inputs and alphabets that can depend on n. Precisely, the inputs
for S∗

n are strings of length 2O(n) corresponding to outputs of decision trees where each
index corresponds to an input x for the tree. Thus, we generalize the definition of search
problems to allow Σ, Γ, and input lengths to grow as n increases.

Definition 4.10 (Generalized search problems). A (search) problem is a tuple S =
(S,Σ,Γ, l) where

• Σ = {Σn}∞n=1 and Γ = {Γn}∞n=1 denote the finite inputs and output alphabets corre-
sponding to each n ∈ N,

• l : N→ N is a length function determining the input length l(n) for each n ∈ N,

• S = {Sn}∞n=1 is a family of relations where Sn ⊆ Σ
l(n)
n × Γn denotes the input-output

pairs for the n-th problem instance.
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For technical reasons, we also require that for all n ∈ N we have

1. l(n+ 1) ≥ l(n),

2. log |Σn| = O(l(n)),

3. |Γn| ≤ |Σn|l(n)

The first constraint requires the length l not to decrease as n grows, the second condition
is there so that alphabet size does not increase faster than the input length, and the third
property means that number of possible outputs is at most as much as the number of
possible inputs.

Whenever Σ, Γ, and l are obvious from the context, we denote a search problem sim-
ply with S. For each natural number n ∈ N, with abuse of notation, we denote the
corresponding n-th instance relation as Sn := Sn. ▷

Remark. As before, for each x ∈ Σ
l(n)
n we define the set of corresponding certificates as

S(x) := Sn(x) = {y ∈ Γn|(x, y) ∈ Sn}, the domain as dom(S) :=
⋃

n dom(Sn), and the
range as range(S) :=

⋃
n range(Sn). Also, we call a problem total if dom(S) =

⋃
nΣ

l(n)
n .

The definitions of decision trees and algorithms such as T = (Tn) remain as before, where
Tn solving Sn has input-output alphabets Σn and Γn with input length l(n). ▷

We also need to modify the definition of efficient algorithms as we cannot expect to
have polylog(n) complexity while the input length for Sn is exponential in n. Therefore, we
call a deterministic, randomized, or verification algorithm efficient whenever it has polylog
depth in the size of its input length l(n). Subsequently, we can define complexity classes
in the query model as follows.

Definition 4.11. For k ∈ N, we define the classes FPdt(k), FBPPdt(k), and FNPdt(k) as
the class of search problems S = (S,Σ,Γ, l) having deterministic, randomized, and verifier
decision trees of complexities logk(l(n)) for large enough n. Moreover, we define the class
TFNPdt(k) to be the class of total search problems in FNPdt(k). Accordingly, we define the
polylog(n) variant of of the above classes as,

FPdt =
⋃
k∈N

FPdt(k) FBPPdt =
⋃
k∈N

FBPPdt(k)

FNPdt =
⋃
k∈N

FNPdt(k) TFNPdt =
⋃
k∈N

TFNPdt(k)

▷
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Reductions

We also will formalize the definition of reductions in the query model. For the sake of
simplicity, we only consider reductions where we efficiently transform inputs of a search
problem x ∈ Sn to inputs of another problem x ∈ S ′

n and then use the output of y′ ∈ S ′
n(x

′)
to obtain an output fn(y′) ∈ S(x). We call such reductions in query model Karp reductions
and formalize them as follows.

Definition 4.12 (Decision forest). We call a list of decision trees L = (T 1, . . . , TM) on
input-output alphabets Σ, Σ′ with input lengths N a decision forest. For any input x ∈ ΣN

we define L[x] to be a string in ΣM defined as,

L[x] := T 1[x] . . . TM [x] ∈ Σ′M ,

and define the complexity of L as the maximum depth of all trees in the list,

Cdt(L) := max
i∈[M ]

Cdt(T i).

▷

Definition 4.13 ((Karp) reduction in query model). Now, let S = (S,Σ,Γ, l) and S ′ =
(S ′,Σ′,Γ′, l′) be two search problems. We say S reduces to S ′ and denote S ⪯polylog S ′ if
there exists

• Natural numbers N, d ∈ N

• a family of decision forests L = (Ln) over input-output alphabets Σn and Σ′
n

• a family of functions f = (fn) where fn : Γ′
n → Γn,

such that for all n ≥ N

1. Cdt(Ln) ≤ logd l(n)

2. l′(n) = θ(l(n))

3. For all x ∈ dom(Sn), fn(S ′
n(L[x])) ⊂ Sn(x)

More accurately, we can write S ⪯d S ′ to denote the complexity of the decision forest in
the above definition as well. ▷
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Intuitively, we transform each input x of S to an input x′ = L[x] of S ′ where x′i is
determined by running the i-th decision tree in L on x. (i) ensures that transformation
of x to x′ = Ln[x] is efficient, (ii) means the length of x′ is not far from length of x, and
(iii) means that for any output y ∈ S ′

n(L[x]), the obtained value for S ′, fn(y), is a correct
certificate for Sn. Therefore, for n ≥ N , having an algorithm T for S ′, we can answer the
queries of T to x′ by running Ti’s on x, and use the transformation f to obtain a result
for S(x) from S ′(x′).

Lemma 4.14. Suppose S ⪯d S ′. If S ′ is in FPdt(k) (FBPPdt(k)), then S ∈ FPdt(k + d)
(S ∈ FBPPdt(k + d)).

Continuity of search problems

For the dual problem to be definable, we also need a notion of continuity for a search
problem S that states Sn and Sm are fundamentally equally hard with respect to their
input sizes for different values of m,n ∈ N. We proceed with a similar definition to the
Turing machine section.

Definition 4.15 (Continuity). Let C be a complexity class. A search problem S /∈ C is a
C-continuous search problem if any algorithm in C fails to solve S on infinitely many input
lengths. More specifically, S /∈ C is C-continuous if for all infinite subsets I ⊆ N,

S ∩ (
⋃
n∈I

dom(Sn)× range(Sn)) /∈ C.

for every infinite subset I ⊂ N, S is polylog(l(n)) solvable on inputs n ∈ I if and only
if it is polylog(l(n)) solvable on all the inputs n ∈ N. ▷

This definition ensures that we are not dealing with a problem that, for instance, is
hard on even instances n = 2k, yet is easy on the odd instances n = 2k + 1. Therefore,
almost every natural problem in query complexity satisfies this property as obtained lower
bounds usually correspond to every input length n ∈ N.

4.4.2 Dual problems in query model

Since query complexity is a non-uniform model, restrictions such as Cdt(T ) = polylog(n)
do not make sense as a given decision tree T for the dual problem has a fixed depth.
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Additionally, having only a black-box query access to the tree T , the algorithm does not
know Cdt(T ) to be able to refute it if Cdt(T ) > 𝔻dt(S). Thus, we need a promise that only
trees that cannot solve S are valid inputs S∗. Because of these reasons, we consider fixed
depths of type logk(n) where k is a constant.

Definition 4.16. We define Treen,k(Σ,Γ, l) to be the set of all decision trees with input and
output alphabets and length Σ, Γ, and l(n), and has depth at most logk(l(n)). Additionally,
for T ∈ Treen,k(Σ,Γ, l) with abuse of notation, we use T to denote a string in Γ|Σ|l(n) as
well. ▷

Definition 4.17 (Dual problem in query model). Let S = (S,Σ,Γ, l) be a search problem
and k ∈ N be an integer. We define the relations Sk

n as

Sk
n := {(T, x)|T ∈ Treen,k(Σ,Γ, l),C

dt(T ) < 𝔻dt(Sn), x ∈ dom(Sn), T [x] /∈ Sn(x)}

For any k ∈ N, the dual problem has input alphabet Σ∗
n := Γn, output alphabet Γ∗

n = Σ
l(n)
n ,

and length l∗(n) = |Σn|l(n). Therefore, for n ∈ N,

i log |Σ∗
n| = log |Γn| = O(log |Σn|l(n)) = O(log l∗(n)) = O(l∗(n)),

ii |Γ∗
n| = |Σ

l(n)
n )| = |Σn|l(n) = l∗(n) ≤ |Σn|l(n),

iii l(n) ≤ l(n+ 1).

Thus, Sk satisfies the conditions of a generalized search problem. ▷

4.4.3 Duality results in query model

We can now state our results in the query model as follows.

Theorem 4.18. Let S and S ′ be two search problems in TFNPdt(v) \ FPdt that are FPdt-
continuous. In other words, S and T have verifiers of depth v, but do not have any
deterministic algorithm of depth logk(n) for any fixed k. Then,

i For k ∈ N, the dual problem Sk is in FNPdt(0),

ii If S ∈ FBPPdt(r), then for any k > r + v + 3, we have Sk /∈ FBPPdt (Sk is hard on
average).

iii If S /∈ FBPPdt (S is hard on average), then Sk ∈ FBPPdt(1) for any k.
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iv If S ⪯d S ′ then for every fixed k, S ′k ⪯polylog Sk+d+1

Proof. Given query access to outputs of decision tree T and an input x, we can simply
query x from T and check whether T [x] ∈ S(x) or not; therefore, we have a verifier of
depth one to check (T, x) ∈ Sk and (i) holds. We prove (ii) using Yao’s principal[Yao77]
in query complexity and our construction of faux-deterministic algorithms.

Suppose S has a randomized algorithm and verifier of depths logr(l(n)) and logv(l(n)).
Now, by proposition (3.20), we have a family of decision trees T = (Tn) that have depths
logr+v+3(l(n)) where any deterministic adversary of depth poly(l(n)) fails to find an adverse
input for a randomly chosen tree T ∼ T . Additionally, we have,

polylog(l∗(n)) = polylog(|Σn|l(n)) = poly(l(n) log |Σ(n)|) = poly(l(n))

Therefore, there exists a distribution of inputs for Sr+v+3 such that no deterministic algo-
rithm of depth polylog(l∗(n)) can solve it with non-negligible probability. Consequently,
by Yao’s minimax theorem, Sr+v+3 does not have a polylog(l∗(n)) randomized algorithm,
and Sr+v+3 /∈ FBPPdt. Conversely, if S /∈ FBPPdt, then for any k and a large enough
n ≥ N0 we have we have logk l(n) ≤ ℝdt(Sn). Now, again by Yao’s principal[Yao77], for
n ≥ N0, there exists a distribution of inputs Dn such that for any deterministic decision
tree Tn with Cdt(Tn) < logk l(n) ≤ ℝdt(Sn) we have,

Pr
x∼Dn

[Tn[x] /∈ S(x)] ≥
2

3
.

Therefore, the adversary sampling a random query from Dn can solve Sk
n for n ≥ N0 with

one query, and for n < N0, we can solve Sk
n by a simple randomized algorithm of depth

O(1). Therefore, Sk ∈ FBPPdt(1).

For (iii), suppose S ⪯d S ′, and let L, N0, f be given as in the reduction definition.
Then, for n ≥ N

• Cdt(Ln) ≤ logd l(n),

• l′(n) = θ(l(n)),

• For all x ∈ dom(Sn), fn(S ′(L[x])) ⊂ S(x).

Now, given tree T ′
n for S ′∗

n where T ′ is a decision tree from Treesn,k(Σ
′,Γ′, l′) we define a

new tree Tn for S as,

Tn[x] := f(T ′[Ln[x]])
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Note that, for large enough n > max{N0, N1},

Cdt(T ) ≤ Cdt(T ′).Cdt(Ln) ≤ logk(l′(n)). logd(l′(n)) ≤ logk+d(θ(l(n))) ≤ logk+d+1(l(n))

Thus, for at most finitely many n, the tree Tn obtained from T ′
n solves Sn. Otherwise, S has

a polylog depth algorithm by the continuity condition. Therefore, there exists an integerN2

such that for n ≥ max{N0, N1, N2}, Tn is in the promise of Sk+d+1
n and Sk+d+1

n (Tn) is non-
empty. Now for any x ∈ Sk+d+1

n (Tn), where Tn[x] /∈ S(x), we must have Ln[x] /∈ S ′k
n (T

′
n)

as otherwise

Tn[x] = f(Ln[x]) ∈ f(S ′(Ln[x])) ⊂ S(x)

which is a contradiction. Therefore, we have our reduction.
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Chapter 5

Conclusion

We conclude this thesis by summarizing our results and outlining possible future directions
for research on faux-deterministic algorithms and duality within TFNP.

5.1 Faux-determinism

In chapter 3, we proved existence of (2O(t
1
2 ), 2O(t

1
2 ))-faux deterministic algorithms for the

FIND1 problem in the query model. In our construction, we utilized
√
t of the total queries

in the non-adaptive blocks to hide sensitive indices from the adversary. However, our simple
randomized attack on faux-deterministic algorithms of depth t gave an upper bound of 2O(t)

for the adversary’s complexity. Therefore, a natural question would be whether a better
construction matches the trivial upper bound in proposition (3.19).

Problem 5.1. Is there a (O(2t), O(2−t))-faux-deterministic algorithm for FIND1 problem?

Additionally, we generalized our construction in query complexity for a family of search
problems in TFNPdt∩FBPPdt. We observed that the condition of the randomized algorithm
is necessary. We also suggested that construction is heavily dependent on the verification
algorithm by providing a natural extension of the FIND1 problem to the FINDMEDIAN
problem that did not have a verifier and a faux-deterministic algorithm. However, we
did not prove any general relation between faux-deterministic complexity and verification
complexity.

Problem 5.2. What are the relations between faux-deterministic complexity and verifi-
cation, sensitivity, and certificate complexities of problems in TFNPdt \ FPdt?
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Besides query complexity, we can extend definition of faux-deterministic algorithms to
other computational models such as communication complexity. An interesting direction
would be to improve or lift the results in query complexity to communication complexity.

Problem 5.3. Can we extend the results for faux-determinism in query complexity to
communication complexity as well?

5.2 Duality

In Chapter 4, we gave an intuitive overview of why our observations are natural for the
dual problem, and formalized several of those observations for the dual problem in the
purely white-box Turing machine model and the purely black-box query model. However,
several questions remained unanswered.

• In the Turing machine model, we did not prove any relation between average-case
hardness and having a randomized algorithm for the primal and dual problems. For
appropriate definitions of average-case hardness, we ask the following problem.

Problem 5.4. Do the following observations hold for the dual problem in Turing
machine model?

iv if S has a randomized algorithm then S∗ is hard on average;

v if S is hard on average, then S∗ has a randomized algorithm.

• Additionally, our results in Turing machine model require a lower-bound of a S ∈
TFNP\quasiFP. An interesting next step would be to see if we can relax the require-
ment to S ∈ TFNP \ FP.

Problem 5.5. Can we prove the same duality results in Turing machine model for
search problems in TFNP \ FP?

• In the query model, for an integer k, we defined the corresponding dual problem of
S as Sk where only decision trees of depth logk n are inside the promise. However,
a more general definition for dual problem can accept any decision tree T of depth
d < Cdt(S). As a result, we ask the following question.

Problem 5.6. Can the duality properties be proven for the more general definition
of the dual problem in query complexity?
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• Finally, another direction for studying duality within TFNP is considering different
computational models. Specifically, we can have any combination of uniform or non-
uniform, black-box, gray-box, or white-box computational models.

Problem 5.7. Is there a natural computational model for which all of the duality
properties are satisfied simultaneously?
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Appendix A

Remaining Proofs

In this appendix, we will provide the postponed proofs in the main body.

Proof of lemma (3.17). First, we can remove the equal unitaries in both
∣∣ψk+1

q

〉
and

∣∣ψk
q

〉
to obtain∥∥∥∥ ∣∣ψk+1

q

〉
−
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q
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T . . . Uk+1U
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− UT

∣∣ψk
k

〉 ∥∥∥∥
=
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〉 ∥∥∥∥.
Now, for x ∈ {0, 1}n, we define Πx to be the projection to the states having input register
|x⟩I . Consequently, we have

∑
x∈{0,1}n Πx = I, and we can write∥∥∥∥ ∣∣ψk+1

q

〉
−

∣∣ψk
q

〉 ∥∥∥∥ =

∥∥∥∥(UT k+1 − UT )
∣∣ψk

k

〉 ∥∥∥∥
=

∥∥∥∥(UT k+1 − UT )
( ∑
x∈{0,1}n

Πx

∣∣ψk
k

〉 )∥∥∥∥
=

∥∥∥∥ ∑
x∈{0,1}n

(
UT k+1 − UT )Πx

∣∣ψk
k

〉 ∥∥∥∥. (A.1)
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Note that if T k+1[x] = T [x] we have (UT k+1 − UT )Πx

∣∣ψk
k

〉
= 0, as the unitaries UT k+1

and UT k+1 are equivalent when applied to |x⟩. Therefore, we can continue (A.1) as∥∥∥∥ ∣∣ψk+1
q

〉
−

∣∣ψk
q

〉 ∥∥∥∥ =

∥∥∥∥ ∑
x∈{0,1}n

T k+1[x]̸=T [x]

(
UT k+1 − UT )Πx

∣∣ψk
k

〉 ∥∥∥∥
=

∥∥∥∥UT k+1
∑

x∈{0,1}n
T k+1[x]̸=T [x]

Πx

∣∣ψk
k

〉
− UT

∑
x∈{0,1}n

T k+1[x]̸=T [x]

Πx

∣∣ψk
k

〉 ∥∥∥∥
≤

∥∥∥∥UT k+1
∑

x∈{0,1}n
T k+1[x]̸=T [x]

Πx

∣∣ψk
k

〉 ∥∥∥∥+

∥∥∥∥UT
∑

x∈{0,1}n
T k+1[x]̸=T [x]

Πx

∣∣ψk
k

〉 ∥∥∥∥
=

∥∥∥∥ ∑
x∈{0,1}n

T k+1[x]̸=T [x]

Πx

∣∣ψk
k

〉 ∥∥∥∥+

∥∥∥∥ ∑
x∈{0,1}n

T k+1[x] ̸=T [x]

Πx

∣∣ψk
k

〉 ∥∥∥∥
= 2

∥∥∥∥ ∑
x∈{0,1}n

T k+1[x]̸=T [x]

Πx

∣∣ψk
k

〉 ∥∥∥∥. (A.2)

Now, consider the state
∣∣ψk

k

〉
; by definition, this state has been obtained by applying

unitaries T 1, . . . ,T k, and therefore all the coefficients in
∣∣ψk

k

〉
only depend on sets

B1, . . . ,Bk. Consequently, conditioned on B1 = B1, . . . ,Bk = Bk, we can write∣∣ψk
k

〉
=

∑
x∈{0,1}n

αx |x⟩I |ϕx⟩Q,W,O ,

where all coefficients αx are fixed complex numbers. Therefore, conditioned on
B1 = B1, . . . ,Bk = Bk from (A.2) we get,∥∥ ∣∣ψk+1

q

〉
−
∣∣ψk

q

〉 ∥∥2 ≤ 4
∑

x∈{0,1}n
T k+1[x] ̸=T [x]

α2
x.
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Thus, we have

µB1,...,Bk := E
T

[∥∥ ∣∣ψk+1
q

〉
−
∣∣ψk

q

〉 ∥∥2
∣∣∣∣B1 = B1, . . . ,Bk = Bk

]
≤ 4E

T

[ ∑
x∈{0,1}n

T k+1[x] ̸=T [x]

α2
x

∣∣∣∣B1 = B1, . . . ,Bk = Bk

]

≤ 4
∑

x∈{0,1}n
α2
x Pr

T

[
T [x] ̸= T k+1[x]

∣∣∣∣B1 = B1, . . . ,Bk = Bk

]
.

Now, note that for each x, if lT (x) ≥ lk, then the simulation of T k+1 is faithful to T and
we obtain the same value T k+1[x] = T [x]. Therefore, we can now use lemma (3.8) to
obtain the following:

Pr
T

[
T [x] ̸= T k+1[x]

∣∣∣∣B1 = B1, . . . ,Bk = Bk

]
≤Pr

T

[
lT (x) ≺ lk+1

∣∣∣∣B1 = B1, . . . ,Bk = Bk

]
=1− Pr

T

[
lT (x) ⪰ lk+1

∣∣∣∣B1 = B1, . . . ,Bk = Bk

]
≤1− (1− 1

2w
)h

≤ h

2w
.

As a result, we get the upper bound

µB1,...,Bk ≤ 4
∑

x∈{0,1}n
α2
x Pr

T

[
T [x] ̸= T k+1[x]

∣∣∣∣B1 = B1, . . . ,Bk = Bk

]
≤ 4h

2w

∑
x∈{0,1}n

α2
x

=
4h

2w
.
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Hence, we can compute the total expectation using the conditional expectations to get

E
T

[∥∥ ∣∣ψk+1
q

〉
−

∣∣ψk
q

〉 ∥∥2
]

=
∑

B1,...,Bk

E
T

[∥∥ ∣∣ψk+1
q

〉
−

∣∣ψk
q

〉 ∥∥2
∣∣∣∣B1 = B1, . . . ,Bk = Bk

]
Pr
T

[
B1 = B1, . . . ,Bk = Bk

]

=
∑

B1,...,Bk

µB1,...,Bk Pr
T

[
B1 = B1, . . . ,Bk = Bk

]
≤ 4h

2w
.

Finally, we finish the proof by using Jensen’s inequality to obtain,

E
T

[∥∥ ∣∣ψk+1
q

〉
−

∣∣ψk
q

〉 ∥∥] ≤√
E
T

[∥∥ ∣∣ψk+1
q

〉
−
∣∣ψk

q

〉 ∥∥2
]

≤
√

4h

2w
.
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Proof of lemma (3.18). First, we can condition the possible values for the blocks to
obtain

E
T

[
p′(T )

]
=

∑
B1,...,Bq

E
T

[
p′(T )|B1 = B1, . . . ,Bq = Bq

]
Pr
T

[
B1 = B1, . . . ,Bq = Bq

]
.

Note that the output of Q′ is independent of B2d as the algorithm Q′ has only access to
the first q < 2d blocks and does not make any real queries to the tree. Therefore, we can
further condition on output of Q′ to obtain

E
T

[
p′(T )|B1, . . . ,Bq

]
=

∑
y∈{0,1}∗,|y|1≥n

2

E
T

[
p′(T )|y ← Q′[T ],B1, . . . ,Bq

]
Pr

[
y ← Q′[T ]|B1, . . . ,Bq

]
=

∑
y∈{0,1}∗,|y|1≥n

2

E
T

[
T [y] /∈ FIND1(y)|y ← Q′[T ],B1, . . . ,Bq

]
Pr

[
y ← Q′[T ]|B1, . . . ,Bq

]
.

(A.3)

Additionally, if we have B2d(x) = 1, then we get T [x] ∈ FIND1(x). Moreover, since
B2d(x) = 1 is independent of the first q blocks, at most 1

2w
all the random indices in B2d

miss 1 values in x. Thus,

E
T

[
p′(T )|B1, . . . ,Bq

]
≤

∑
y∈{0,1}∗,|y|1≥n

2

1

2w
Pr

[
y ← Q′[T ]|B1, . . . ,Bq

]
=

1

2w
.

Finally, from (A.3) we get

E
T

[
p′(T )

]
≤ 1

2w
,

and by Jensen’s inequality

E
T

[√
p′(T )

]
≤

√
1

2w
.
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Proof of lemma (3.22). For S, let Rn and Vn be the randomized distribution and verifier
of complexity polylog(n) on inputs of length n. Let R1, . . . ,Rm ∼ Rn be m uniformly
random independent trees chosen from Rn. For each input x ∈ Σn and index i ∈ [m], we
define the random variable Xx

i := Vn[x,Ri(x)] to denote whether Ri computes a correct
output for x or not. By the definition, for each input x ∈ Σn, the random variable
Xx :=

∑
i X

x
i denotes number of decision trees outputting a correct answer for x. Our

goal is to show that with non-zero probability over the choice of Ri’s, for all inputs
x ∈ Σn, we have Xx ≥ m

2
.

Let x ∈ Σn be a fixed input. Using linearity of expectation for all x ∈ Σn, we have

E
R1,...,Rm

[
Xx

]
=

m∑
i=1

E
Ri

[
Xx

i

]
=

m∑
i=1

Pr
Ri

[
Xx

i = 1
]
≥ 2m

3
,

where in the last step we used the fact that the randomized algorithm Rn succeeds with
probability at least 2

3
. Moreover, since R1, . . . ,Rm are independent, the Xx1 , . . . ,Xxm

are independent as well, and by the multiplicative form of Chernoff’s bound, we have

Pr
R1,...,Rm

[
Xx ≤ m

2

]
= Pr

R1,...,Rm

[
Xx ≤ (1− 1

4
)
2m

3

]
≤ e

− 2m
3 ( 14 )2

2 = e−
m
48 .

Thus, by union bound we can get

Pr
R1,...,Rm

[
∃x,Xx ≤ m

2

]
≤

∑
x∈Σn

Pr
R1,...,Rm

[
Xx ≤ m

2

]
≤ |Σ|ne−

m
32 .

For m > 32n. ln |Σ|, the above probability is non-zero, and there exists R1, . . . , Rm ∈ Rn

such that for every x ∈ dom(Sn) at least m
2

of Ri’s output a correct answer. Consequently,
a uniform distribution over R′ := {R1, . . . , Rm} will complete the proof of lemma.
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