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Abstract

Fairness through proportionality has received significant attention in recent social choice
research, leading to the development of advanced tools, methods, and algorithms aimed at
ensuring fairness in democratic institutions.

Citizen-focused democratic processes where participants deliberate on alternatives and
then vote to make the final decision are increasingly popular today. While the compu-
tational social choice literature has extensively investigated voting rules, there is limited
work that explicitly looks at the interplay of the deliberative process and voting. In this
thesis, we build a deliberation model using established models from the opinion-dynamics
literature and study the effect of different deliberation mechanisms on voting outcomes
achieved when using well-studied voting rules. Our results show that deliberation gener-
ally improves welfare and representation guarantees, but the results are sensitive to how
the deliberation process is organized. We also show, experimentally, that simple voting
rules, such as approval voting, perform as well as more sophisticated rules such as propor-
tional approval voting or method of equal shares if deliberation is properly supported. This
has ramifications on the practical use of such voting rules in citizen-focused democratic
processes.

Intricately designed proportional voting rules offer robust theoretical and axiomatic fair-
ness guarantees that can prove valuable in similar scenarios beyond the realm of elections.
In the second part, we capitalize on these properties and introduce innovative fair-ranking
algorithms based on proportional voting methods. Specifically, we define the general task
of fair ranking, which involves generating a list of items that is fairly ordered with respect
to a given query, as a voting problem. Our findings reveal that proportional voting rules
deliver exceptional performance, frequently matching or surpassing the performance of ex-
isting benchmarks in terms of aggregate fairness and relevance metrics. These discoveries
present exciting avenues for further research and applications, endorsing the widespread
adoption of proportional voting rules in domains where fairness is a priority.
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Chapter 1

Introduction

Participatory democracy is a governance model that revolves around active citizen involve-
ment in decision-making processes [18, 28]. It has gained significant global popularity in
recent times and is manifested through various approaches like participatory budgeting,
citizens’ assemblies, and community forums [29, 58]. By emphasizing inclusivity and ac-
cessibility, participatory democracy aims to ensure that citizens feel heard and directly
influence routine governance choices. The goal is to foster a healthy debate between the
participants and develop a transparent form of governance, reflecting the direct will of the
people.

Deliberation and voting are two crucial parts of citizen-focused participatory demo-
cratic processes. Deliberation serves as the initial phase, promoting constructive discus-
sions among citizens. Its purpose is to facilitate a healthy exchange of ideas, enabling
voters to refine their preferences and enhancing the availability of collective information
[23]. The ultimate goal is to foster consensus-building and improve the decision-making
process. Although the deliberative process aims to foster consensus formation, it is im-
portant to acknowledge that unanimity is not always achievable in practical scenarios.
Therefore, voting becomes necessary to make decisions. Voting holds significance as it
provides everyone with an equal opportunity to express their opinions through the ballot
objectively. It also accommodates the diversity of preferences that may arise after the de-
liberation phase, which is crucial for inclusive decision-making. Hence, it is established that
both deliberation and voting are crucial aspects of participatory democracy procedures,
and it is essential to understand the relationship between them.

Having listed the key features of a participatory democratic process, it is important
to consider the desired conditions necessary to maximize the benefits of these features.
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Inclusivity, representation, and simplicity should be at the core of a healthy citizen-focused
democratic process. A simple, inclusive, and fair election mechanism goes a long way in
garnering trust and promoting citizen participation [67]. The broader scope of this thesis is
to understand the key factors contributing to favorable election outcomes in participatory
democracy. A part of this research endeavors to leverage computer science methods to take
a step toward establishing best practices for designing effective participatory democracy
protocols. We hope our findings can serve to guide the development of several practical
democratic institutions, helping them maximize and unlock the true potential of a healthy
democratic system. Well-informed democratic platforms have the power to play a pivotal
role in fostering alignment through collective decision-making and tackling pressing global
challenges like climate change, healthcare, and the economy.

Social choice theory provides a rich technical and mathematical framework to develop
a holistic understanding of participatory democracy processes, and elections in general.
Dating back to the 18th century, literature in this space has extensively studied, both
theoretically and experimentally, a wide variety of collective decision-making procedures.
Furthermore, social choice theory offers an extensive classification of various outcomes aris-
ing from collective decision-making, offering well-grounded justifications for determining
what constitutes a favorable outcome. These justifications encompass multiple dimensions
and objectives, including welfare, representation, fairness, and efficiency. To explain this
further, consider that each voter obtains some utility from the collective decision, depend-
ing on whether the decision matches the voter’s preference. Informally, the utilitarian
argument for welfare is concerned with selecting an outcome that maximizes the total util-
ity across voters, thereby selecting the most supported candidate(s). On the other hand,
the objective of diversity or representation advocates for selecting candidate(s) in a way
that maximizes the number of voters who derive some non-zero utility. Finally, propor-
tionality serves as a desirable criterion that balances welfare and diversity, embodying the
notion that sufficiently large “cohesive” voter groups deserve to be “fairly” represented [2].
Proportionality is a foundational concept in this thesis, serving as the key metric we aim
to fulfil. Within this study, we regard proportionality, defined formally through various
axioms, as the fundamental basis for achieving a fair voting outcome. As a result, our
research questions are motivated by the objective of enhancing proportionality guaran-
tees within participatory democracy processes, as well as leveraging the fairness attributes
offered by proportional voting rules beyond traditional election contexts.

In this thesis, we aim to address research questions broadly at the intersection of partic-
ipatory democracy, proportionality, and fairness, utilizing techniques in computer science
and social choice theory. The first research question revolves around the design of effec-
tive participatory democracy mechanisms. It delves into the influence of deliberation on
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voting processes and aims to explore simple, transparent, and effective designs for deliber-
ation mechanisms that optimize voting outcomes. Specifically, one of the goals is to study
whether effective deliberation can circumvent the need for complicated voting rules and
vastly improve voting outcomes even for simple, explainable voting rules. However, we rec-
ognize the axiomatic guarantees of proportionality and fairness offered by certain intricate
proportional voting rules. There is extensive scope to harness the advantageous properties
offered by these rules, extending their utility beyond electoral contexts. By preserving
their core principles, these voting algorithms can be suitably adapted to address related
problems. Thus, our second research question arises from the motivation to explore the ap-
plication of such sophisticated voting rules, known for their established fairness guarantees,
in domains beyond traditional elections. This exploration would enable us to harness the
advantageous properties of these rules while accepting a trade-off in explainability when
it is deemed acceptable. Particularly, we view the general fair-ranking problem, where the
task is to fairly rank a list of items given a query, as a voting problem. Voting is essen-
tially a ranking task, where the objective is to aggregate voter preferences and generate a
ranking of candidates. Thus, our focus lies in assessing the suitability and performance of
established proportional voting rules as algorithms for achieving fair rankings.

1.1 Contributions

In the context of the research motivation and questions discussed above, this thesis makes
the following main contributions to the social choice theory and proportionality literature:

• First, we establish the crucial interaction between deliberation and voting in partic-
ipatory democracy processes and identify a clear gap in the literature on this topic.
To address this, we construct a dynamic agent-based model of deliberation, drawing
inspiration from prevalent opinion dynamics models. Our focus is to investigate the
impact of different deliberation strategies on voting outcomes, specifically examining
approval-based multi-winner elections.

• Through our empirical analysis, we provide evidence that well-designed deliberation
strategies, which prioritize exposure to diverse groups and opinions, significantly
enhance the quality of deliberation, protect minority preferences, and achieve better
voting outcomes. Notably, our research highlights the noteworthy finding that in the
presence of effective deliberation, even simple voting rules can be as potent as more
complex voting rules that do not incorporate deliberation.
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• Finally, we provide a novel, out-of-election-domain application for proportional voting
rules: fair ranking. We investigate the connection between proportionality objectives
in voting and the statistical parity concepts commonly explored in broader fairness
research. Lastly, we develop four original fair-ranking approaches utilizing a well-
known proportional voting rule, and we empirically evaluate their performance in
various fair-ranking scenarios.

1.2 Outline

The rest of the thesis is organized as follows. Chapter 2 presents a detailed background on
social choice from the multi-winner voting and proportionality perspectives. These ideas
provide the necessary groundwork required to understand the remainder of the thesis. In
Chapter 3, we present our models, experiments, and findings to the first research question
on the interaction between deliberation and voting in participatory democracy. Chapter 4
describes the next set of methods and experiments on fair-ranking algorithms using voting
rules, addressing the question of fair ranking through proportional voting. Finally, Chapter
5 concludes the thesis, discussing the limitations, future work, and broader impact.

4



Chapter 2

Background

In this chapter, we provide relevant background on social choice from the perspective of
multi-winner voting and proportionality. First, we define the committee election problem
and cover several desired properties that motivate the selection of an optimal committee.
Next, the concept of proportionality is formally defined within the context of approval-
based multi-winner elections, using an axiomatic approach. Finally, we provide a detailed
definition of various approval-based committee voting rules. These concepts provide the
necessary foundation required to understand the remainder of the thesis.

2.1 Approval-Based Multi-Winner Elections

Social choice theory constitutes the experimental and theoretical framework employed to
examine scenarios of collective decision-making. Within these scenarios, the aim is to
aggregate individual opinions, preferences, or interests in order to attain a collective de-
cision that optimizes a predetermined social objective. Election scenarios are pervasive
within society, spanning diverse domains that include politics, scheduling, expert opin-
ion aggregation, contest outcome determination, and technological applications such as
recommendation systems. These scenarios involve the process of selecting preferred op-
tions, candidates, or outcomes through various decision-making mechanisms and play a
fundamental role in numerous social, organizational, and technological contexts.

Among these scenarios, we are concerned with multi-winner voting, where a committee
must be selected to represent the interests of some larger group. There are many settings
where a committee must be selected. For example, say faculty members in the Computer
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Voter Approval Ballot
v1 {a, b, c}
v2 {a, e}
v3 {d}
v4 {b, c, d}
v5 {b, c}
v6 {b}

Table 2.1: Sample approval-based election for the candidate set C = {a, b, c, d, e} and
n = 6 voters. The approval ballots Ai are shown.

Science department are currently engaged in a voting process to choose a committee that
will consist of the next set of board members. Furthermore, these elections see many
different applications such as facility location [34], participatory budgeting (PB) [18], search
result diversification [71], and more. Multi-winner voting has been well studied within the
social choice literature, with a focus on understanding how the “best” committee can be
selected. However, even defining what is meant by “best” is no trivial undertaking. In
some contexts, such as aggregation of expert judgments, the desired committee should
ideally be of excellent quality and consist of the highest-rated k alternatives. However, in
other tasks such as choosing k locations for constructing a public facility (e.g. hospitals,
fire stations), it is preferable to ensure diversity, such that as many voters as possible have
access to the facility. This tension between the two desired voting outcomes, excellence and
diversity [50], makes the problem challenging and interesting from the perspective of the
election designer. Thus, the desired voting objective would dictate the choice of the ideal
voting rule. Finally, the format or design used to record voter preferences is also integral
to the overall quality of the voting process. We focus on approval-based elections, where
voters express preferences by sharing a subset of approved candidates. Approval ballots
are used in practice due to their simplicity and flexibility [12, 11, 5]. They also offer scope
for deliberation as often voters are left to decide between many different alternatives.

We now provide the formal notation for approval-based committee elections. Let E =
(C,N) be an election, where C = {c1, c2, ..., cm} and N = {1, ..., n} are sets of m candidates
and n voters, respectively. Each voter i ∈ N , has an approval ballot Ai ⊆ C, containing
the set of its approved candidates. The approval profile A = {A1, A2, ..., An} represents
the approval ballots for all voters. For a candidate cj ∈ C, N(cj) is the set of voters
that approve cj and its approval score, V (cj) = |N(cj)|. Let Sk(C) denote all k-sized
subsets of the candidate set C, representing the set of all possible committees of size k.
Given approval profile A and desired committee size k ∈ N, the objective of a multi-winner
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election is to select a subset of candidates that form the winning committee W ∈ Sk(C).
An approval-based committee rule, R(A, k), is a social choice function that takes as input an
approval profile A and committee size k and returns a set of winning committees.1 For any
voting rule R(A, k), we will use WR to denote its selected committee (after tie-breaking).
A sample election is shown in Table 2.1.

2.2 Properties

As discussed in the previous section, we ideally want our voting rules to exhibit certain
desired properties, representing the principles that should govern the selection of winners
given individual ballots. In this thesis, we analyze and compare voting rules across three
dimensions: social welfare, representation, and proportionality. Intuitively, the welfare
objective focuses on selecting candidates that garner maximum support from the voters.
Representation cares about diversity ; carefully selecting a committee that maximizes the
number of voters represented in the winning committee. A voter is represented if the final
committee contains at least one of its approved candidates. The formal definitions for
these objectives are given below.

Definition 1 (Utilitarian Social Welfare) For a given approval profile A and commit-
tee size k, the utilitarian social welfare of a committee W is:

SW (A,W ) =
∑
i∈N

∑
c∈W

ui(c), (2.1)

ui(c) ∈ R is the utility voter i derives from candidate c.

Definition 2 (Representation Score) For a given approval profile A and committee
size k, the representation score of a committee W is defined as:

RP (A,W ) =
∑
i∈N

min(1, |Ai ∩W |) (2.2)

Consider the election from Table 2.1 and a winning committee W = {b, c} of size k = 2.
For this example, assume a simple setting where a voter gets unit utility from an approved
candidate being in the selected committee (0 otherwise). Now, from the above definitions,
the SW (A,W ) is equal to 7 (since b is approved four times and c is approved thrice, the
total utility is 7). Similarly, the RP (A,W ) in this case is equal to 4 (since v2 and v3 don’t
approve any candidate in W ).

1A tie-breaking method is used to pick one winning committee in cases where multiple winning com-
mittees are returned.
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2.3 Proportionality

In most real-world election scenarios, excellence and diversity depict opposite ends of a
spectrum and cannot be optimized simultaneously. Proportionality serves as an important
third objective to capture a compromise between welfare (excellence) and representation
(diversity). It requires that if a large enough voter group collectively approves a shared
candidate set, then the group must be “fairly represented”. Definitions of proportionality
differ based on how they interpret “fairly represented”.

Definition 3 (T-Cohesive Groups) Consider an election E = (C,N) with n voters
and committee size k. For any integer T ≥ 1, a group of voters N ′ is T-cohesive if it
contains at least Tn/k voters and collectively approves at least T common candidates, i.e.
if | ∩i∈N ′ Ai| ≥ T and |N ′| ≥ Tn/k.

Definition 4 (Justified Representation (JR)) A committee W of size k satisfies JR
if, for each 1-cohesive group N ′ ⊆ N , there exists at least one voter in N ′ that approves at
least one candidate in W .

Definition 5 (Proportional Justified Representation (PJR)) A committeeW of size
k satisfies PJR if for each integer T ∈ {1, ..., k} and every T-cohesive group N ′ ⊆ N , it
holds that |(∪i∈N ′Ai) ∩W | ≥ T .

Definition 6 (Extended Justified Representation (EJR)) A committee W of size k
satisfies EJR if for each integer T ∈ {1, ..., k}, every T-cohesive group N ′ ⊆ N contains at
least one voter that approves at least T candidates in W, i.e. for some i ∈ N ′, |Ai∩W | ≥ T .

A voting rule is considered to satisfy Justified Representation (JR), Proportional Jus-
tified Representation (PJR), or Extended Justified Representation (EJR) if it consistently
generates a committee that fulfills the respective criterion. EJR is recognized as one of
the most robust axioms of proportionality, implying the fulfillment of PJR, which, in turn,
implies JR [2, 65]. Unlike EJR [2], where the focus is on a single group member, PJR
provides a more natural requirement for group representation. However, EJR provides
stronger guarantees for average voter satisfaction [65]. It is worth noting that verifying
whether a given committee satisfies EJR or PJR is computationally hard, whereas JR can
be verified in polynomial time [3].
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2.4 Approval-based Committee Voting Rules

In this section, we define the set of approval-based multi-winner voting rules that form the
basis of our analysis and describe some of their key properties. In the next chapter, we will
discuss the reasons for selecting to study these rules and their relevance to our analysis.

• Approval Voting (AV): For an approval profile A, the AV-score of committee W is
scav(A,W ) =

∑
c∈W V (c). This rule selects k candidates with the highest individual

approval scores. The formal definition is RAV (A, k) = arg maxW∈Sk(C) scav(A,W ).

• Approval Chamberlin-Courant (CC): The CC rule [20], RCC(A, k), picks com-
mittees that maximize representation score RP (A,W ). Given profile A, RCC(A, k) =
arg maxW∈Sk(C) RP (A,W ). It maximizes voter coverage by maximizing the number
of voters with at least one approved candidate in the winning committee.

• Proportional Approval Voting (PAV): [76] For profile A and committee W , the
PAV-score is defined as scpav(A,W ) =

∑
i∈N h(|W ∩ Ai|), where h(t) =

∑t
i=1 1/i.

The PAV rule is defined as RPAV (A, k) = arg maxW∈Sk(C) scpav(A,W ). Based on the
idea of diminishing returns, a voter’s utility from having an approved candidate in
the elected committee W decreases according to the harmonic function h(t). It is a
variation of the AV rule that ensures proportional representation, as it guarantees
EJR [2]. PAV reduces to AV when committee size k = 1, but computing the winning
committee for PAV is NP-hard [4].

• Method-of-Equal-Shares (MES): RMES(A, k), also known in the literature as
Rule-X [60, 61], is an iterative process that uses the idea of budgets to guarantee
proportionality. Each voter starts with a budget of k/n and each candidate is of
unit cost. In round t, a candidate c is added to W if it is q-affordable, i.e. for
some q ≥ 0,

∑
i∈N(c) min(q, bi(t)) ≥ 1, where bi(t) is the budget of voter i in round

t. If a candidate is successfully added then the budget of each supporting voter is
reduced accordingly. This process continues until either k candidates are added to
the committee or it fails. In case of failure, another voting rule is used to select the
remaining candidates.

Example 1 Considering the sample approval election in Table 2.1, we will look at the
winning committees of size k = 2 chosen by each rule defined above. AV results in the
committee {b, c}, selecting the most approved candidates. CC selects the winning commit-
tee {a, b}, maximizing the voter representation. Finally, PAV and MES also select {b, c}
(among others).
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Chapter 3

Deliberation and Voting in
Approval-Based Multi-Winner
Elections

3.1 Introduction

Citizen-focused democratic processes such as citizens’ assemblies [29] and participatory
budgeting [18] offer extensive scope for discussion over the multitude of possible alterna-
tives. For example, deliberation is an important phase in most implementations of partici-
patory budgeting as it allows voters to refine their preferences and facilitates the exchange
of information, with the objective of reaching consensus [5]. While deliberation is a vital
component of democratic processes [36, 40], it cannot completely replace voting because,
in reality, deliberation does not guarantee unanimity. Even if deliberation encourages
agreement, voting is still necessary to aggregate individual preferences post-deliberation.
Accordingly, we argue that it is essential to understand the relationship between voting and
deliberation. To this end, we use an agent-based deliberation model and study the effect of
different deliberation mechanisms on the outcomes derived from well-studied voting rules.

In practice, participatory democratic processes must be simple and explainable to en-
sure citizen trust and engagement. Lack of transparency discourages participation, espe-
cially from under-represented communities. We argue that the “complexity” of a voting
rule can be measured along three axes — computational complexity (for some voting rules
it is computationally hard to determine the winning committee [4] while for others it is
polynomial), the cognitive burden on the voter [11], and the ease of explaining the voting
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rule. The first dimension, computational complexity, is well-defined and extensively ex-
plored in social choice theory research. In contrast, the cognitive burden on the voter is
subjective and difficult to gauge, as it pertains to the mental effort required by the voter
to collect and articulate their preferences. The aim is to reduce this burden by facilitat-
ing a straightforward ballot design, which can be achieved through the implementation of
approval ballots. Lastly, the third dimension relates to the simplicity of explaining the
voting algorithm, specifically the method used to determine the winners. Complicated
rules may provide strong performance guarantees, but they are often hard to explain to
the layperson. In this work, we argue that effective deliberation can circumvent the need
for complicated voting rules and vastly improve voting outcomes even for simple rules such
as classical approval voting (AV).

We present an agent-based model of deliberation and explore various alternatives for
structuring deliberation groups. We evaluate standard multi-winner voting rules, both be-
fore and after voters have the opportunity to deliberate, with respect to standard objectives
from the literature, including social welfare, representation, and proportionality. We show
that deliberation, in almost all scenarios, significantly improves welfare, representation,
and proportionality. However, the results are sensitive to the deliberation mechanism; in-
creased exposure to diverse opinions (or agents from different backgrounds) enhances the
quality of deliberation, achieves higher consensus, protects minority preferences, and in
turn achieves better voting outcomes. Finally, our results indicate that in the presence
of effective deliberation, simple, explainable voting rules such as approval voting perform
as well as more sophisticated, complex rules. This can serve to guide the design and
deployment of voting rules in citizen-focused democratic processes.

3.2 Background

In this section, we provide a detailed background. We cover the existing research in this
area and then define the objectives utilized for comparing our methods. We then list the
approval-based committee voting rules used for our analysis and present our motivation
for choosing them. Finally, we provide a brief background of opinion dynamics models to
describe the choice and design of our deliberation model.

3.2.1 Related Work

The social choice literature has extensively studied the quality of approval-based multi-
winner voting rules. From the quantitative perspective, a recent paper by Lackner and
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Skowron provides an in-depth theoretical and empirical analysis of different approval-based
multi-winner voting rules with respect to (utilitarian) social welfare and representation
guarantees [50]. Fairstein et al. extended this work to study the welfare-representation
trade-off in the more general PB setting [32]. The traditional axiomatic approach, on the
other hand, provides a qualitative evaluation, i.e. whether a voting rule satisfies a property
or not. For approval-based rules, recent work has focused heavily on proportionality axioms
[2, 65, 3, 14, 49, 69]. We refer the reader to an extensive survey on the properties of multi-
winner rules by Faliszewski et al. [33].

Deliberation, specifically within social choice, has been studied through various ap-
proaches. From the theoretical perspective, a wide variety of mathematical deliberation
models have been proposed [21, 87]. For example, recent work has looked at iterative small-
group deliberation methods for reaching consensus in collective decision-making problems
[38, 30]. Elkind et al. propose a consensus-reaching deliberation protocol based on coali-
tion formation [27]. A recent experimental study shows that deliberation leads to meta-
agreements and single-peaked preferences under specific conditions [63]. Another paper
looks at deliberation and voting simultaneously, but their work is limited to the ground-
truth setup with ordinal preferences over three alternatives [59]. They do not study the
impact of deliberation on the quantitative and qualitative properties of voting rules.

In this chapter, we bridge the gap between deliberation and voting literature. To our
knowledge, we are the first to experimentally study the effect of deliberation on voting
outcomes across different deliberation strategies.

3.2.2 Objectives

Our analysis is based on different standard objectives [50]. In particular, we consider
objectives across three dimensions: welfare, representation, and proportionality.

Utilitarian Ratio: This ratio compares the (utilitarian) social welfare achieved by WR =
R(A, k) to the maximum social welfare achievable:

UR(R) =
SW (A,WR)

maxW∈Sk(C)SW (A,W )
(3.1)

Representation Ratio: This ratio measures the diversity of the committee WR =
R(A, k), by comparing the representation score achieved by WR to the optimal repre-
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sentation score amongst all k-sized committees:

RR(R) =
RP (A,WR)

maxW∈Sk(C)RP (A,W )
. (3.2)

Note that the CC rule maximizes representation, RR(RCC) = 1.

Utility-Representation Aggregate Score: This score captures how well a voting rule,
R(A, k) balances both social welfare and representation:

URagg(R) = UR(R) ∗RR(R) (3.3)

Voter Satisfaction: Given WR = R(A, k), the voter satisfaction is measured as the
average number of candidates approved by a voter in W :

V S(R) =

∑
i∈N |Ai ∩WR|
|N |

(3.4)

Finally, we are interested in experimentally verifying whether or not the generated
profile instances satisfy EJR, PJR, or JR. To this end, we count the number of profile
instances that satisfy these three properties.

3.2.3 Voting Rules

We study the approval-based multi-winner voting rules formally defined in 2.4: Classi-
cal Approval Voting (AV), Approval Chamberlin-Courant (CC) [20], Proportional Approval
Voting (PAV) [76], and Method-of-Equal-Shares (MES) [61]. We elect to study these rules
since they exhibit a wide range of properties, allowing for comparisons to be drawn across
several axes. The following example illustrates the difference between our chosen voting
rules and the properties used to compare them.

Example 2 Consider an election profile with n = 55 voters and m = 9 candidates, such
that 30 voters approve candidates {c1, c2, c3}, 20 voters approve {c4, c5, c6}, and 5 voters
approve {c7, c8, c9}. Let k = 3. Given this profile, the AV-winning committee is WAV =
{c1, c2, c3}, the CC-winning committee is WCC = {c2, c5, c8} (among others), the PAV-
winning committee is WPAV = {c1, c2, c4} (among others), and finally MES also results in
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WMES = {c1, c2, c4}. These committees vary significantly and cover different properties.
As per the definitions in section 2.2, WAV achieves the highest utilitarian social welfare
SW (A,WAV ) = 90 (assuming unit utilities) but a poor representation score RP (A,WAV ) =
30 and fails EJR. Contrarily, WCC achieves a poor welfare score of 55 but the optimal
representation score of 55 as it covers all voters. Both PAV and MES select a proportional
committee that satisfies EJR and reflects a compromise between the two extremes. WPAV

or WMES achieves a welfare score of 80 and a representation score of 50.

In the above example, we highlight the wide range of properties covered by these rules.
Firstly, AV is known to maximize social welfare under certain conditions on voters’ utility
functions [50, 49], however, there are no guarantees that AV satisfies proportionality as
defined by the EJR criterion [2]. Conversely, CC maximizes diverse representation, but
its welfare properties are less well understood. Both PAV and MES guarantee EJR and
maintain a balance between diverse representation and social welfare. Finally, we argue
that AV can be viewed as being simple in terms of computational complexity and ex-
plainability, whereas, PAV and MES are complex along at least one of these axes. Thus,
this collection of multi-winner voting rules covers the set of properties we are interested in
better understanding.

3.2.4 Opinion Dynamics Models

Opinion dynamics is the study of opinion or belief diffusion and spread in a population.
These models aim to formally and mathematically capture the complex interactions and
dynamics that shape the formation, diffusion, and evolution of opinions among individuals
or groups. Furthermore, these models typically consider individuals as agents with cer-
tain attributes and simulate the interaction between several agents over time, allowing for
opinion evolution and observing the factors leading to that change.

In our work, we model deliberation between voters using agent-based opinion dynamics
models and discuss two well-established models below.

DeGroot’s Classical Model

According to DeGroot’s model [22], an agent’s updated opinion is simply the weighted sum
of opinions from various sources (itself included). The weights were static, and could be
different for different agents. So, for two agents x and y, x updates its opinion as:

x(t + 1) = wxxx(t) + wxyy(t) (3.5)
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where x(t) denotes the opinion of agent x at time t, wxx and wxy denote x’s weights on its
own opinion and y’s opinion, respectively. Note that the weights should sum up to 1, and
therefore, wxy = 1− wxx.

Bounded Confidence Model

Hegselman and Krause later presented the Bounded Confidence (BC) model [44], which
introduced a global confidence level ∆. In the original paper, agents were on a network,
and agents updated their opinions based on opinions of their neighbors. In the BC model,
an agent x considered a neighbor’s (y) opinion only if the neighbor’s opinion was within x’s
confidence interval [x(t)−∆, x(t)+∆]. In the initial version, there were no distinct weights
and all opinions within the confidence interval were weighted equally. When simplified for
just two agents x and y, the opinion update for x is given by:

x(t + 1) =

{
1/2(x(t) + y(t), if y(t) ∈ [x(t)−∆, x(t) + ∆]

x(t), otherwise
(3.6)

The BC model captures the idea of confirmation bias, and BC and its several modified
versions have largely remained popular to date in the field of opinion dynamics.

3.3 Model

In this section, we describe our deliberation and voting model in detail, within the frame-
work defined in the previous sections. We first define our underlying agent population and
how we model their initial preferences. We then discuss the deliberation process, through
which agents exchange information and update their preferences. Finally, we observe that
deliberation is often done, not at the full population level, but instead in smaller subgroups.
We discuss different ways these deliberation subgroups can be created.

3.3.1 Voting Population: Preferences and Utilities

Our agent population N is divided into two sets — a majority and minority, where the
number of agents in the majority is greater than that in the minority. Agents’ initial
preferences depend on their population group. Consistent with previous work [50], our
preference model is based on the ordinal Mallows model. The rankings are then converted
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to an approval ballot using the top-ranked candidates. In particular, we assume an agent
i’s initial preference ranking, P 0

i , is sampled from a Mallows model [55], with reference
rankings, Πmaj and Πmin, for the majority and minority populations respectively.1

We further assume that agents have underlying cardinal utilities for candidates, consis-
tent with their ordinal preferences. For agent i, these utilities are represented by a vector
Ui = ⟨ui(c1), ui(c2), . . . , ui(cm)⟩, where ui(cx) ≥ ui(cy) if and only if cx ⪰i cy in P 0

i , and
ui(cx) ∈ [0, 1]. We work in this cardinal space as it allows us to leverage standard deliber-
ation models and measure welfare across voting rules in settings where voters derive some
utility from elected candidates who were not on their ballot. Our particular instantiation
of utility functions subsumes earlier work (e.g. [50]) and is consistent with utility models
used in the social choice literature (e.g. [62, 31]).

3.3.2 The Deliberation Process

Deliberation is defined as a “discussion in which individuals are amenable to scrutinizing
and changing their preferences in the light of persuasion (but not manipulation, deception
or coercion) from other participants” [24]. Deliberation thus requires a group of peers
with whom to deliberate and a methodology for changing preferences. In this section, we
describe the process in which agents update their preferences, deferring details about peer
groups until later.2

Deliberation is an iterative process, involving, at each step, a speaker and listeners.
The speaker makes a report, based on their preferences, and the listeners update their own
preferences based on this information. In this work, we use a variation of the Bounded
Confidence (BC) model to capture the (abstract) deliberation process [44]. The BC model
is a particularly good match for modelling deliberation in groups because it was intended
to “describe formal meetings, where there is an effective interaction involving many people
at the same time” [19]. In the BC model, listeners consider the speaker’s report (e.g.
utilities for different candidates) and update their opinions/preferences of the candidates
independently, only if the speaker’s report is not “too far” from their own. The notion
of distance is captured by a confidence parameter for each listener, ∆i, where agents may
have different confidence levels [53, 78]. The BC model was designed for one-dimensional

1The Mallows model is a standard noise model for preferences. It defines a probability distribution over
rankings over alternatives (i.e. preferences), defined as P(r) = 1

Zϕd(r,Π) where Π is a reference ranking,
d(r,Π) is the Kendall-tau distance between r and Π, and Z is a normalizing factor.

2As is common in much of the deliberation literature (e.g [24, 59]), we assume agents are non-strategic
and truthfully reveal their utilities.
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opinion spaces. However, agents in our model discuss and update utilities derived from all
m candidates in C, making it a multi-dimensional space. We make a simplifying assumption
that agents’ utilities for all m candidates are independent of each other and apply the BC
model to each dimension (candidate) independently.3

Given time step t, some agent, x, selected as the speaker, makes its report (which reveals
x’s thoughts and utilities for the candidates). Each listener updates its own preferences
across candidates cj ∈ C according to the following rule

ut+1
i (cj) =

{
(1− wix)ut

i(cj) + wixu
t
x(cj), if |ut

i(cj)− ut
x(cj)| ≤ ∆i

ut
i(cj), otherwise

(3.7)

where wix ∈ [0, 1] is the influence weight that i places on x’s perspective. It is known
that opinions from sources similar to oneself have a higher influence than opinions from
dissimilar sources [80, 54]. To capture this phenomenon, we let wix take on one of two
values, contingent on the relationship between i and x. In particular,

wix =

{
αi, if {i, x} ⊂ Nmaj ∨ {i, x} ⊂ Nmin

βi, otherwise.
(3.8)

In words, if i and x are both members of the majority group (Nmaj) or the minority
group (Nmin) then wix = αi, otherwise wix = βi where αi ≥ βi.

3.3.3 Deliberation Groups

In the real world, deliberation typically happens in small discussion or peer groups [29, 39].
To this end, we divide the agent population into g sub-groups of approximately equal
size. The deliberation process is conducted within these sub-groups where one round of
deliberation is complete when all agents in each group have had the opportunity to speak.

We want to explore how group-formation strategies influence the deliberation process
and the final decision made through voting. Our strategies are informed by common
heuristics or rationale used in practice and none rely on private/unknown information such
as the agents’ underlying utilities or preferences. We do, however, assume that whether
an agent is a member of the majority or minority group is public information and allow

3This assumption might be restrictive in the participatory budgeting setup where voter utilities are
dependent on project costs and a total budget. However, in our case, i.e. general committee elections, this
assumption is not too restrictive as the voters could view every candidate independently.

17



group-formation strategies to use such information. Finally, we consider both single-round
and iterative group-formation strategies where agents are divided into different groups in
each round [29].

3.3.4 Single-Round Group-Formation Strategies

Homogeneous group: Each group contains only agents who are members of Nmaj or
Nmin. That is, there is no mixing of minority and majority agents. If groups formed
organically without a central planner, such structures are most likely to form. The concept
of homophily, the tendency for people to connect and socialize with those sharing similar
characteristics, beliefs, and values, dates as far back as Plato, who wrote in Phaedrus that
“similarity begets friendship”, and there is evidence that adults, in particular, preferentially
associate with those of similar political persuasions [56].

Heterogeneous group: Each group is selected such that the ratio of the number of
majority agents to the number of minority agents within the group is approximately equal
to the majority:minority ratio in the overall population. Each group created through this
strategy is diverse and representative of the overall agent population. This strategy is
already popular among practitioners in the real world. Citizens’ Assembly of Scotland
diversifies deliberation groups based on age, gender, and political affiliation [39].

Random group: Each group is created by randomly sampling agents from the popula-
tion (without replacement) with equal probability.

Large Group: This is a special case where the deliberation process runs over the entire
population of agents. Considering time constraints, limited attention spans, and other
physical limitations, such a strategy is not typically used in practice. However, we include
this strategy as a Utopian baseline because it ensures maximum exposure to the preferences
of every other agent in the system.

3.3.5 Iterative Group-Formation Strategies

Iterative random: This strategy assigns agents to groups at random, but these assign-
ments are done in each iteration or round. It is an iterative version of the random group
division discussed above.
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Iterative golfer: This strategy is a variant of the social golfer problem [43, 52] from
combinatorial optimization. The number of rounds, R, is fixed a priori, and the number
of times any pair of agents meet more than once is minimized. We refer the reader to
Appendix A for details. A similar approach is used in Sortition Foundation’s GroupSelect
algorithm [77], which is used by several nonprofits for group-formation in participatory
budgeting sessions [39].

3.4 Experimental Setup

We now describe our experimental setup. We first describe our population of agents. We
then describe the process in which agents deliberate, before discussing details about the
voting processes.

Our election setup consists of 50 candidates (|C| = 50)4 and 100 voters, with 80 agents
in the majority group (Nmaj) and 20 in the minority group (Nmin). Agents’ initial prefer-
ences are sampled using a Mallows model, with ϕ = 0.2. The reference ranking used while
sampling a preference ordering depends on whether the agent belongs to Nmaj or Nmin.
Reference rankings, Πmaj and Πmin, are sampled uniformly from all linear orders over C.
Due to this sampling process, agents in either the majority or minority group have fairly
similar preferences (as ϕ is relatively small) but the two groups themselves are distinct. To
instantiate agents’ utility functions, we generate m samples independently from the uni-
form distribution U(0, 1), sort it, and then map the utilities to the candidates according
to the agent’s preference ranking. For the BC model, all three parameters (∆i, αi, βi) are
sampled from uniform distributions over the full range for each parameter.5

When deliberating, agents are divided into 10 groups (except for the large group strat-
egy). This is similar to the Citizens’ Assembly of Scotland, which ran over 16 sessions; in
each session, the 104 participants were divided across 12 tables [39]. For iterative deliber-
ation, the deliberation continues for R = 5 rounds. We consider different approval-based
multi-winner voting rules to elect k = 5 winners. We do not use a fixed ballot size in this
work to allow agents more flexibility. Accordingly, we use a flexible ballot size, such that
each agent’s ballot is of size bi, where bi is sampled from N (2k, 1.0). Agent i’s approval
vote is then the set consisting of its bi top-ranked candidates from its preference ranking.

4Since project proposals are typically invited from the participants in PB [18, 5] there are a large
number of candidates to choose from (e.g., PB instances in Warsaw, Poland had between 20-100 projects
(36 on average).[75, 32]).

5We ran experiments where all parameters were drawn from a normal distribution. There were no
significant differences from the results reported here.
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As a baseline, we apply every voting rule to the agent preferences before deliberation.
We then run the different deliberation strategies, freezing agents’ utilities once deliberation
has concluded. We then apply every voting rule to the updated preferences. We use the
Python library abcvoting [48], and use random tie-breaking when a voting rule returns
multiple winning committees.6

To avoid trivial profiles, i.e., profiles where an almost perfect compromise between
welfare and representation is easily achievable, we impose some eligibility conditions. An
initial approval profile A0 is eligible only if RR(AV,A0) < 0.9 ∧ UR(CC,A0) < 0.9. This
is a common technique used in simulations comparing voting rules based on synthetic
datasets [50]. This entire simulation is repeated 10, 000 times and the average values are
reported. To determine statistical significance while comparing any two sets of results,
we used both the t-test and Wilcoxon signed-rank test, and we found the p-values to be
roughly similar. All pairs of comparisons between deliberation group strategies for a given
voting rule are statistically significant (p < 0.05) unless otherwise noted.

3.5 Results

We have several goals for our experiments. First, we use the metrics introduced in Sec-
tion 3.2.2 to compare voting rules where there is no deliberation. This allows us to establish
a baseline to compare against. We then explore the impact that deliberation has on the
outcome achieved by the different voting rules, including comparing different deliberation
mechanisms so as to best understand how the structure of the deliberating groups affects
the final outcome, including comparing against an idealized situation where all agents
share information and deliberate together in one large group. In the rest of this section,
we describe our findings, which we organize according to the different metrics.

3.5.1 Impact of Deliberation on Preferences

Variance

To understand how deliberation processes shape and change agents’ preferences, we com-
pare the average variance in the agents’ utilities before (initial) and after deliberation
(Figure 3.1). As expected, deliberation reduces disagreement amongst agents, moving all
towards a consensus. Processes where agents are exposed to more, diverse, agents (e.g.

6The code is available at: https://github.com/kanav-mehra/deliberation-voting.
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Figure 3.1: Average variance of agents’ utilities for candidates. Lower variance implies a
higher degree of consensus in the population.

the iterative variants and the large group) see the largest reduction in variance across the
population. While achieving greater agreement is desirable, it should not be achieved by
disregarding initial minority opinions. We delve into this topic in Section 3.6.

Inter-group Ballot Disagreement

In Figure 3.1 we introduce a measure of consensus in the population as the average variance
in agents’ utilities and show that deliberation reduces disagreement amongst agents. To
complement this analysis and further understand the impact of deliberation on agents’
preferences, we introduce another metric that computes the disagreement between the
majority and minority voters based on their ballots. More generally, given two approval
ballots Aa and Ab the disagreement score between the ballots is computed as:
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Figure 3.2: Inter-group Ballot Disagreement

Ballot Disagreement Score = 1− |Aa ∩ Ab|
min(|Aa|, |Ab|)

(3.9)

A maximum disagreement score of 1 means the approval ballots are disjoint, i.e. the vot-
ers do not approve any candidates in common. This score is computed for every majority-
minority voter pair in the population across all deliberation mechanisms and the average
results are reported in Figure 3.2.

We observe a similar trend here as well (as seen in Figure 3.1). Deliberation significantly
reduces disagreement between the two population groups and moves the overall population
toward consensus. This positive effect is stronger in deliberation methods that increase
exposure to more, diverse agents (i.e. the iterative versions and large group).

22



Figure 3.3: Ballot Drift

Ballot Drift

Trends observed from the preceding two measurements indicate that deliberation facilitates
a shift towards consensus. Nevertheless, while attaining a higher level of agreement is
preferable, it must not be pursued at the expense of disregarding minority opinions. Stated
differently, consensus should not be solely attained by influencing the minority to conform
to the majority opinions. In this section, we measure average ballot drifts compared to the
pre-deliberation ballots for both population groups across all deliberation mechanisms.

In particular, for every voter, we compute the ballot disagreement score (defined in
Equation 3.9) between their respective post- and pre-deliberation ballot for all deliberation
mechanisms. This is computed for every voter and the average results for both population
groups, minority and majority, are reported in Figure 3.3.

The results are positive and show that both groups undergo significant movement.
While deliberation encourages agreement, the burden of consensus does not just fall on the
minority population. However, it is worth noting that the minority ballot drift is higher
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Figure 3.4: Utilitarian ratio across deliberation mechanisms.

than the majority drift in magnitude. This is expected since there are a greater number of
majority agents in the population. Finally, we observe again that ballot drift is higher and
stronger for deliberation methods encouraging exposure to more, diverse agents as seen in
the previous measures.

3.5.2 Utilitarian Ratio

Figure 3.4 reports the impact of deliberation on utilitarian social welfare. First, we compare
the voting rules where there is no deliberation (see initial case denoted by the blue bars).
AV achieves the highest utilitarian ratio, i.e. the utilitarian social welfare provided by AV
is closest to the optimal social welfare. Both proportional rules (MES and PAV) are similar
and obtain utilitarian ratios that are only slightly lower than AV. Finally, CC performs
the worst in terms of welfare. In general, our results match the trends reported in previous
theoretical and experimental results [50].

We now address our main point of interest – the effect of deliberation. As seen in Figure
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Figure 3.5: Representation ratio across deliberation mechanisms.

3.4, deliberation improves social welfare over the initial baseline (blue). In single-round de-
liberation, both random (green) and heterogeneous (red) methods show similar results and
outperform homogeneous (orange) for AV, MES, and PAV. Iterative deliberation exhibits
further improvement for these rules. It is worth noting that iterative golfer (purple) and
iterative random (pink) perform similarly and match the large group benchmark (brown).
For CC, social welfare is always improved with deliberation, however, iterative deliberation
is not as powerful. This is due to the nature of the rule. We cover this in further detail
later in the thesis.

3.5.3 Representation Ratio

Figure 3.5 shows the average representation ratio of the voting rules across different de-
liberation mechanisms. Since CC optimizes for diversity by design, RR(CC) = 1.0. We
focus our analysis on the other rules so as to better understand if it is possible to achieve
comparable representation when adding deliberation. Under no deliberation, AV has the
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Figure 3.6: Utility-Representation aggregate score across deliberation mechanisms.

lowest representation ratio. Since AV simply picks the candidates with the highest ap-
proval scores, it does not care about minority preferences. The proportional rules (MES
and PAV), however, achieve much higher representation as they are designed to maintain
a balance between welfare and diversity.

The effect of deliberation is more pronounced here compared to the utilitarian ratio
results, particularly for AV. Within the single-round mechanisms, homogeneous achieves a
slight improvement over the initial setup for all rules. However, specifically for AV, both
heterogeneous and random achieve much higher representation over both initial and homo-
geneous setups. Again, both iterative mechanisms achieve further improvements compared
to the single-round setups and almost match the large group benchmark.

3.5.4 Utility-Representation Aggregate Score

This score captures how well a voting rule balances welfare and representation. Figure 3.6
shows the average results for this objective. Under no deliberation (initial baseline), we
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Deliberation Strategy
EJR% PJR% JR%

AV CC AV CC AV CC
Initial (no deliberation) 99.5 62.5 99.5 73.4 99.5 100
Homogeneous 96.4 69.9 96.4 75.1 96.4 100
Random 100 81.9 100 85.6 100 100
Heterogeneous 100 92.7 100 94.0 100 100
Iterative Random 100 31.4 100 53.6 100 100
Iterative Golfer 100 29.9 100 51.2 100 100
Large Group 100 6.10 100 23.4 100 100

Table 3.1: Proportionality Satisfaction (AV and CC).

see that the proportional rules (MES and PAV) perform the best, followed by AV, and
then CC. This is consistent with earlier findings since the proportional rules are designed
with this goal in mind. Both AV and CC perform poorly on this metric, pre-deliberation,
since they do well on either welfare (AV) or representation (CC) but not both.

We observe a positive effect from deliberation and achieve a significant performance
improvement over the initial baseline. Within the single-round mechanisms, heterogeneous
and random perform similarly (except for CC where heterogeneous is better) and outper-
form the homogeneous setup. Iterative deliberation leads to further improvement as both
iterative methods match the performance of the large group.

3.5.5 Proportionality Satisfaction

Table 3.1 covers proportionality satisfaction and shows the percentage of EJR-, PJR-, and
JR-satisfying committees (out of 10,000 simulations) returned by AV and CC. We focus
only on AV and CC since the proportional rules MES and PAV guarantee EJR. Even under
no deliberation (initial), AV satisfies EJR in almost all profiles, which further improves to
perfect satisfaction with deliberation (except homogeneous). This is interesting since AV is
not guaranteed to satisfy EJR.7 Proportionality satisfaction for CC also improves if single-
round deliberation is supported, with heterogeneous achieving the best result. Iterative
deliberation, however, does not perform well. We believe this arises due to CC’s strong
focus on representation and discuss this in further detail later.

7Since the minority and majority agents have highly correlated approval sets, T -cohesive groups may
exist only for a small set of minority- and majority-supported candidates, thereby making the EJR require-
ment easy to satisfy. Furthermore, previous research [32, 13] shows that under many natural preference
distributions (generated elections), there are many EJR-satisfying committees.
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Figure 3.7: Voter satisfaction across deliberation mechanisms

3.5.6 Voter Satisfaction

Figure 3.7 shows the average voter satisfaction obtained by the voting rules.

AV is expected to achieve the highest satisfaction since it picks candidates with the
highest support, i.e. the average number of candidates approved by a voter will be high.
MES and PAV achieve comparable scores, just slightly lower than AV. Finally, CC achieves
the lowest satisfaction of all rules. In an attempt to maximize voter coverage, CC might
choose winning candidates that represent few voters, and as a result, have low approval
scores. Due to this, it maximizes diversity but achieves low voter satisfaction.

Compared to the initial baseline, we observe an improvement in satisfaction scores
under all deliberation mechanisms. In general, all single-round deliberation setups achieve
comparable performance, with the exception of random performing the best in some cases.
Moving on to the iterative methods, we notice a further increase in satisfaction scores for
all rules except CC. While both iterative setups perform similarly and improve over the
initial baseline, they are still outperformed by the large group benchmark.
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3.6 Discussion

As we observed in the previous section, deliberation changes the quality of the outcomes
produced by different multi-winner voting rules. In this section, we explore these observa-
tions in more detail.

3.6.1 Single-Round Deliberation

Even a single round of deliberation improved outcomes across all voting rules and all
objectives. However, the choice of the deliberation structure was also important.

For all objectives, random and heterogeneous consistently outperformed homogeneous.
We hypothesize that this improvement was due to these deliberation strategies maximizing
exposure to diverse opinions. Under homogeneous deliberation, the population sub-groups
become more inwardly focused, leading to the formation of distinct T -cohesive groups.
This was particularly problematic when used with AV, which picks candidates with the
highest approval support and fails to ‘fairly’ represent the cohesive minority agents in
some cases, thereby failing EJR (Table 3.1). By allowing majority and minority agents to
interact, there was an opportunity for minority agents to influence the majority population.
This translated to higher welfare, representation, and proportionality guarantees (Figure
3.6 and Table 3.1).

3.6.2 Iterative Deliberation

In comparison to single-round methods, iterative deliberation further supports consensus
(Figure 3.1) and improves all objectives for most voting rules. Furthermore, there was no
statistical difference between the iterative golfer and iterative random methods. We view
this as a positive result with practical design implications. While care does need to be
taken in determining group sizes, a simple, computationally inexpensive mechanism is as
effective as one that is more complex.

The exception to the observation is the CC rule. CC’s strong focus on representation
and coverage makes it unsuitable for deliberation methods that drive higher degrees of
consensus (such as iterative methods and large group) since it fails to represent population
groups proportionally.
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Deliberation Strategy Minority Opinion Preservation
Initial (no deliberation) 0
Homogeneous 0.20
Random 0.30
Heterogeneous 0.48
Iterative Random 0.65
Iterative Golfer 0.66
Large Group 0.92

Table 3.2: Minority Opinion Preservation: average number of initial (pre-deliberation)
minority-supported candidates selected by AV in the final committee after deliberation.

3.6.3 Minority Opinion Preservation

While we have been extolling deliberation, there are caveats. In particular, it is impor-
tant to ensure that deliberation processes are inclusive and encourage minority partici-
pation [37]. Care must be taken to ensure that when moving toward consensus, initial
minority preferences are not ignored. While consensus would imply better voting out-
comes, it could come at the cost of ignoring minority opinions. We measure whether this
is a concern in our experiments by studying whether minority-supported candidates were
selected by AV under different deliberation mechanisms.8

A candidate is either minority-supported or majority-supported based on the initial
approval profile. We say that a candidate c is minority-supported if (pre-deliberation) the
fraction of minority voters who include c in their approval ballot is greater than the fraction
of majority voters who include c in their approval ballot. Formally, it can be defined as
follows. The total approval of a candidate c ∈ C can be written as V (c) = Vmaj(c)+Vmin(c),
where Vmaj(c) and Vmin(c) are the number of votes from the majority and minority agents,
respectively. Candidate c is minority-supported if

Vmin(c)/|Nmin| ≥ Vmaj(c)/|Nmaj|.

Table 3.2 reports the average number of pre-deliberation (initial) minority-supported
candidates selected by AV (post-deliberation) across deliberation strategies. This serves
as an indicator of whether minority preferences are preserved.

8This is not a concern for other rules since they are designed to achieve proportionality (MES and PAV)
or diversity (CC).

30



Approval Voting MES (initial) (0.917) PAV (initial) (0.92)

Initial (0.838) 0.913 0.910
Homogeneous (0.88) 0.959 0.956
Random (0.952) 1.038 1.034
Heterogeneous (0.953) 1.039 1.035
Iterative Random (0.984) 1.073 1.069
Iterative Golfer (0.984) 1.073 1.069

Table 3.3: Average utility-representation aggregate score obtained by AV under different
deliberation setups in comparison to the proportional rules under no deliberation.

In the initial setup (no deliberation), AV does not elect any minority-supported can-
didates. However, this improves as agents interact and deliberate with the broader popu-
lation. Note that since the minority agents have similar preferences, and they constitute
20% of the population in our setup, a proportional committee would represent them with
1 (out of 5) candidate. As seen in Table 3.2, the large group setup comes close to the ideal
outcome on average. Thus, with deliberation, AV can preserve and represent minority
preferences.

3.6.4 “Simple” vs. “Complex” Voting Rules

We argue that the “complexity” of a voting rule can be measured along three axes. First,
one can ask about the computational complexity of computing a winning outcome or
committee (e.g. PAV is known to be NP-hard [4], whereas AV is polynomial). Second,
there is growing work in better understanding the ramifications of ballot design and voting
rules on the cognitive load of voters [11]. Finally, there is value in using simple explainable
voting rules. Explainability engenders trust in the system (which in turn may impact
engagement in participatory democratic processes).

While two of these dimensions are, somewhat subjective, we argue that AV can be
viewed as being simple across all three, whereas CC, PAV, and MES are complex along
at least one dimension. Specifically, the winning committee for AV can be computed in
polynomial time, and as it comprises the candidates with the maximum support, it is
straightforward to explain to the voters. On the other hand, determining the winning
committee for PAV and CC is computationally hard, and we argue that both MES and
PAV are complicated rules, making them hard to explain to the voters. Our hypothesis is
that simple rules coupled with deliberation processes can do as well as more complex voting
rules. To this end, we compare AV with deliberation to MES and PAV without deliberation,
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Figure 3.8: Average approval scores obtained by the 5 candidates in the winning committee
chosen by CC across different deliberation mechanisms.

using the utility-representation aggregate score (URagg(R)) as our measure (Table 3.3).
Values greater than 1.0 indicate that AV with the corresponding deliberation mechanism
achieves a better URagg score than MES/PAV without deliberation. These findings sup-
port our argument that “simple” rules coupled with effective deliberation strategies can be
as effective as the “complex” rules.

3.6.5 Iterative deliberation with CC

In this section, we explain the odd drop in performance observed by CC in iterative delib-
eration and the large group setting (see Figures 3.4, 3.6, 3.7 and Table 3.1). Refer to Figure
3.8 for the average approval scores obtained by the winning candidates in the committees
chosen by CC. The candidates (1 to 5) are ranked in increasing order of the number of
approval votes they get (5 is highest).

We clearly observe that as we move from single round deliberation mechanisms to
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iterative methods (and large group), the approval votes for the highest supported candidate
(5) increase and the same for the lowest supported candidate (1) decrease. For the iterative
methods, approximately 80% of the agent population approves candidate 5 (≈ 90% for
large group). This also reinforces the fact that iterative deliberation approaches consensus,
as a major proportion of voters approve a single candidate. Accordingly, CC is able to
represent approximately 80% of the voters with just one candidate. Since CC only cares
about maximizing voter coverage, it chooses the rest of the candidates to represent the
remaining voters. This leads to sub-optimal outcomes since instead of representing the
population groups proportionally, CC optimizes for coverage and chooses candidates that
might have very little support. This can be seen in Figure 3.8 as candidate 1 for the
iterative methods and large group has less than 5% support. As a result, the almost
80% of the voter population that possibly gets only one representative in the final CC
committee might be a cohesive voter group and thus, deserves more candidates for a fair
and proportional outcome.

In conclusion, we see that with deliberation mechanisms that move towards consensus,
CC exhibits a drop in welfare and proportionality guarantees since it is focused on max-
imizing representation. In general, other voting rules provide better overall performance
than CC. However, if CC should ever be used with deliberation, we must pick an appro-
priate deliberation setup (single round) for the optimal outcome. This further shows that
deliberation is not trivial and must be structured appropriately to obtain the best results.

3.7 Conclusion

In this chapter, we presented an empirical study of the relationship between delibera-
tion and voting rules in approval-based multi-winner elections. In particular, we build
a dynamic agent-based model of deliberation and investigate the performance of several
standard voting rules under different deliberation strategies. Our results indicate that
deliberation generally improves voting outcomes with respect to welfare, representation,
and proportionality guarantees. Effectively designed mechanisms that increase exposure
to diverse groups and opinions enhance the quality of deliberation, protect minority pref-
erences, and in turn, achieve better outcomes. Importantly, we show that in the presence
of effective deliberation, ‘simpler’ voting rules such as AV can be as powerful as more
‘complex’ rules without deliberation.

Our analysis provides encouraging insights to support the development of democratic
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research platforms such as Ethelo, Polis, and LiquidFeedback9. There are several promising
directions for future work. First, our work could be extended to other democratic processes
such as ranked-choice voting and participatory budgeting. Second, it would be interesting
to conduct real-world user studies to support our results and understand the feasibility of
our proposed deliberation methods. Another natural extension would be to explore other
deliberation models and investigate if our results still hold true. Lack of transparency
or complex voting procedures discourage participation in community-focused democratic
procedures, especially from under-represented communities. Despite some calls for voting
rules to revert to simplicity [67], there has not been considerable work towards improving
simple voting rules for practical use cases. This work also suggests the need to empirically
study the explainability of voting rules.

9https://ethelo.com/, https://pol.is/home, https://liquidfeedback.com/en/
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Chapter 4

Fair Ranking through Proportional
Voting

4.1 Introduction

The primary goal of an election or voting process is typically to aggregate individual
preferences over a set of candidates and produce a (or a set of) winner(s). In the process
of selecting a winner, the candidates are usually ranked using some metric based on the
voting rule and the highest-ranked candidate(s) is/are chosen. Essentially, we can see
how preference aggregation or voting is effectively a ranking task over the candidates. In
the previous chapter, we established why fairness is desirable in election outcomes, when
an outcome with multiple winners is deemed (proportionally) fair toward the voters, and
how to achieve it. The same fairness objective translates to a ranking of candidates. For
instance, consider a user population with approval preferences over a set of 30 candidates
such that 50% of the users approve the first 10 candidates, 20% the next 10, and finally,
30% the last 10 candidates. Assuming the preferences are aggregated by Classical Approval
Voting (AV), the final ranking of candidates is not proportionally fair to the voters because
half of the population does not approve any of the first 10 candidates in the ranked list.
Thus, it would be desirable to produce a fair ranking, and as seen in the previous chapter,
proportional voting rules allow us to circumvent this issue by choosing candidates in a
proportionally fair manner.

Participatory budgeting and liquid democracy are two election tasks that directly prior-
itize the need for fair ranking [5, 9]. In both scenarios, a ranked list of projects is generated
to be reviewed and deliberated upon by citizens. Although, fair ranking is a concept that
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Male Female
White A (10) B (9) C (7) D (10)
Asian E (9) F (6) G (7) H (8)

Table 4.1: Example: Set of 4 candidates belonging to different groups. The quality scores
are given in parentheses.

frequently arises outside of election domains, especially in the context of search engine
and recommender system applications, where a ranked list of items must be generated
based on some item relevance criteria and the user’s needs. However, in the case of search
or recommender systems, fairness becomes a multi-stakeholder concern [74]. Ideally, the
ranked list should be fair to both the items being ranked and the users consuming the list
(for example, artists and listeners on a music recommendation app, respectively). When
considering item-side fairness, it is desirable to achieve a balanced and equitable distri-
bution of exposure across the items presented in the list. This ensures that no specific
group or individual is unfairly disadvantaged due to disproportionate representation in the
list. An unfair ranking system would systematically and consistently assign lower rankings
to items associated with a specific group, thereby perpetuating and replicating existing
certain social biases. We explain this further with the following example.

Example 3 Consider the situation in Table 4.1 where the objective is to rank 4 out of 8
candidates based on their relevance or quality scores. A purely relevance- or utility-focused
ranking would generate a ranking of {A, D, B, E} (B/E interchangeably), having a total
utility (say, the sum of scores) of 38. However, we see that this ranking consists of only
1 Asian (E) and 1 female (D) candidate. A fair-ranking algorithm could instead generate
{A, D, E, H}, consisting of 2 Asian (E, H), 2 White (A, D), 2 male (A, E), and 2 female
candidates (D, H) and a total utility of 37. For only a slight drop in utility, this maintains
fairness across all possible groups.

The example above illustrates the challenge of creating a ranking of items that achieves
both group fairness and high utility in terms of relevance. Often, there exists a genuine
tradeoff between fairness and relevance. There are various reasons why a ranked list can
exhibit bias or unfairness, such as biased annotations in the training data, bias in the
relevance scores assigned to candidates, and potentially the use of sensitive features by a
biased system to rank results. A fair-ranking system aims to address this issue by providing
a ranked list that satisfies some pre-defined fairness criterion. However, the concept of
fairness in ranking has been explored through various perspectives. Item-side fairness
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focuses on ensuring fairness to the items being ranked, while user-side fairness pertains to
fairness for the consumers of the list. Moreover, methods for guaranteeing fairness in the
ranking process can be categorized into three stages: pre-processing (mitigating bias in
training data), in-processing (training bias-free models), and post-processing (re-ranking
while adhering to fairness constraints). The fairness criteria also vary, including individual
fairness, which aims to treat each candidate fairly regardless of their background, and
group fairness, which aims to ensure proportional or equal representation for all groups.
Group membership is often determined by sensitive attributes such as race, gender, and/or
ethnicity. Informally, statistical parity refers to the notion that each group should be
represented in the final ranked list in proportion to its population share. Additionally, it is
important to consider that users typically pay more attention to the top items in a ranked
list compared to lower-ranked items, and this factor should be taken into account when
generating the final ranked list.

In this chapter, we are concerned with item-side post-processing group fairness. In the
previous chapter, we extensively study the concept of proportional fairness with respect
to voting and committee selection. Skowron et al. show that this can be naturally ex-
tended to produce a fair ranking instead of a committee [71]. However, their work explores
proportional rankings that are fair towards voters (user-side), given approval preferences.
General fair-ranking tasks either do not clearly have a voter-candidate relationship or do
not have access to voter preferences. Taking inspiration from their work, we demonstrate
that proportional voting rules can be used as strong post-processing item-side fair-ranking
algorithms. We develop novel fair-ranking algorithms on top of the sequential version of
proportional approval voting (SeqPAV) that achieve statistical parity among the groups
of candidates being ranked. To utilize voting algorithms as ranking algorithms, we re-
frame the ranking task as a voting problem. In the previous chapter, we explored the
notion that practical-use voting rules should be simple and explainable to ensure voter
participation and transparency. However, complex voting rules like PAV (or SeqPAV) offer
strong axiomatic fairness guarantees that can be advantageous for tasks where sacrificing
some explainability is acceptable. Ranking in search presents an ideal use case where these
voting algorithms can be effectively employed.

Contributions: In this chapter, we make the following contributions:

• We describe the post-processing item-side group fairness task and reformulate it
as a voting problem to explore the use of proportional voting rules as fair-ranking
algorithms.
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• We develop four modified versions of SeqPAV as fair-ranking algorithms that can
provide fairness across several sensitive attributes.

• Finally, we experimentally show that our SeqPAV-based ranking methods provide
strong performance on both fairness and utility criteria and often match or beat the
performance achieved by other standard fair-ranking algorithms.

4.1.1 Related Work

Fairness in ranking has recently gathered a lot of attention and has been extensively exam-
ined from several perspectives. Zehlike et al. present an extensive survey that comprehen-
sively covers a range of fair-ranking constructs [86]. Within their study, they outline four
major frameworks of fair-ranking algorithms and evaluate various methods within these
frameworks. Additionally, they discuss the commonly utilized datasets in this domain.

Yang and Stoyanovich were one of the first to study fairness in rankings [82]. They
focus on a single sensitive attribute and propose statistical parity-based fairness metrics
measuring the relative representation of different (protected and non-protected) groups
at different points in the list (top-10, top-20, etc.) while incorporating a position bias
discount. In follow-up work, Zehlike at al. develop FA*IR, a fair-ranking method for the
single sensitive attribute setting based on statistical tests ensuring a minimum proportion
of protected candidates in every prefix of the ranked list [83]. This was later extended
to account for multiple protected attributes per item [85]. Furthermore, Feldman et al.
address the issue of eliminating disparate impact in datasets and propose a method to
adjust the quality scores of candidates such that the resulting probability distribution of
scores for protected and non-protected groups is similar [35]. CFAθ is another fair-ranking
approach that works by modifying the score distributions for the protected candidates but
works with multiple sensitive attributes in the dataset [84]. We use these three methods
as benchmarks for comparison in the single- and multiple-attribute case.

Yang et al. later investigate the unintended reduction of in-group individual fairness
that can occur when maximizing group fairness and utility in set selection and ranking
algorithms [81]. They introduce metrics to measure in-group fairness in multiple-attribute
settings and propose methods to mitigate this problem. Burke et al. provide a systematic
overview of the multi-stakeholder nature of search and recommendation systems and also
explore the use of social choice mechanisms for fair recommendation systems [16, 17].
Furthermore, Sapiezynski et al. introduce a new group fairness metric that accounts for
user attention and position bias. We will use this metric for comparison in our experiments
[66]. Singh and Joachims propose a set of group fairness metrics that evaluate statistical
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parity based on group exposure among ranking policies rather than a single ranked list [68].
Finally, given there are several fair-ranking metrics, Raj and Ekstrand develop a common
notation to represent different metrics and enable a direct comparison among them [64].

Our work is situated within the context of addressing group fairness in ranked lists
through post-processing techniques. However, we adopt a unique perspective by draw-
ing inspiration from proportional fairness principles observed in voting or elections. By
identifying shared fairness concepts in these two domains, we establish a connection and
demonstrate the applicability of proportional voting methods to enhance fairness in general
ranking tasks.

4.2 Background

4.2.1 Preliminaries and Notation

In this section, we define the notation necessary to understand the fair ranking task from
the search system or information retrieval perspective. Following the general notation, let
C = {c1, c2, ..., cm} be a set of m candidates (also referred to as items or documents) to
rank. For each candidate ci ∈ C, qi denotes the “quality score” of candidate i, representing
the overall quality or relevance of the candidate with respect to a specific search query or
ranking task. This score is generally obtained by a pre-existing algorithm used to judge
the quality of different candidates with respect to the search query. We assume the score
is given to the ranking system. Finally, P denotes a set of protected or sensitive attributes
and each attribute p ∈ P takes one of a predefined set of values for that attribute. We
use G to represent the set of all possible groups arising out of the protected attributes in
P . For example, if the task is to rank job candidates, the protected attributes could be
P = {“race”, “gender”}, where “race” could be one of {White, Person of Color (PoC)}
and “gender” could be one of {Male, Female, Non-Binary}. In that case, G would be
{White, Person of Color, Male, Female, Non-Binary}. Each candidate ci ∈ C belongs to
one (or more) of the groups in G and the candidate’s group association is represented by
a group alignment vector Li ∈ [0, 1]g, where g = |G|. Extending this to the whole set of
candidates, L(C) is an m× g alignment matrix, where the rows correspond to candidates
or items and the columns represent the groups.

Given a ranked list, user attention is expected to decrease for documents positioned
at lower ranks in the list. This attention decay, referred to as position bias, is captured
by a position weight vector aR for ranked list R. Finally, fairness in a ranked list may be
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measured in terms of the exposure achieved by different groups in comparison to a target
group distribution p̂. This may be computed in several ways, depending on the fairness
definition. Some examples include strict group equality, and proportional distribution
according to the population demographics.

Problem Formulation: Given a list or set of candidates (or items) C belonging to
different groups in G, produce a ranked list R of k candidates such that each group g ∈ G
is “fairly” represented in the ranking and the relevance utility of the ranking is maintained.

4.2.2 Fairness Measures

In this section, we cover different group fairness criteria and formally define the group
fairness measure used in our experiments.

Fairness has been thoroughly studied in recent years and several metrics have been
proposed to measure fairness in rankings, some borrowed from the machine learning fairness
literature and others more specific to search or recommender systems and general ranking
tasks. In this domain, two concepts that hold significant importance are disparate treatment
and disparate impact. These concepts are frequently employed to address the idea of
unfairness, aligning with the concepts of direct and indirect discrimination, respectively.
Disparate treatment refers to the intentional differential treatment of various groups, either
through the explicit use of sensitive attributes or other attributes deliberately causing
discriminatory outcomes. On the other hand, disparate impact pertains to situations
where the effects of a system differ among different groups, irrespective of intent [6].

Statistical parity [45] or demographic parity is a group fairness measure that refers to
the idea of achieving comparable outcomes or proportional representation across groups.
The goal is to ensure that all groups have equal or comparable rates of receiving positive
outcomes with respect to a specific task (such as ranking). Proportional outcomes in this
domain can be compared to proportionality in voting. We delve deeper into this idea later
in this chapter. Equality of opportunity [42], on the other hand, is a fairness criterion that
promotes individual fairness. It embodies the idea that qualified candidates should receive
equal treatment regardless of their group membership.

Attention-Weighted Rank Fairness

In our work, we employ the commonly used fairness metric – Attention-Weighted Rank
Fairness (AWRF). This metric, introduced by Sapiezynski et al. [66], measures the fair-
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ness of a ranked list by comparing the cumulative exposure across groups with a target
distribution reflecting the population distribution.

Formally, the cumulative exposure across groups in a ranked list R is measured as
ϵR = L(R)TaR, where L(R) is the group alignment matrix for candidates in R and aR is
the position weight vector. The resulting fairness metric, AWRF, measures the difference
between the cumulative group exposure and the target distribution.

AWRF(R) = ∆(ϵR, p̂) (4.1)

The system’s fairness is higher if the cumulative group exposure is closer to the target
group distribution. This metric is suitable for evaluation because it allows soft association
with respect to the groups, captures categorical protected attributes, accounts for position
bias, and allows freedom to choose different decay methods for position bias. As per the
TREC 2022 Fair Ranking Task [25], we define the distance function to be the Jenson-
Shannon divergence, such that ∆(ϵR, p̂) = 1 − dJS(ϵR, p̂). The resulting metric is in the
range [0, 1], with 1 indicating a completely fair ranking as the distance between the target
group distribution and the cumulative group exposure is minimized to be 0.

4.2.3 Relevance Measure

As defined in the problem formulation above, the ranking system should not only be
fair but also produce a list that is of high relevance utility. A widely used measure of
relevance in search rankings is the Normalized Discounted Cumulative Gain (NDCG). It
is a normalized position-based performance metric that measures the cumulative gain of
each item in the ranked list, where the relevance or quality of each item i is represented by
qi. The cumulative gain is normalized with respect to the ideal cumulative gain (IDCG),
which is the highest possible gain achievable for the given set of items. For a ranked list
R of length k, the metric is formally defined as:

NDCG(R) =
1

IDCG
.

k∑
i=1

qi
log2(i + 1)

, (4.2)

where qi is the quality of candidate i, weighted by a logarithmic decay based on the position
in the list.
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The ideal ranking in terms of relevance utility, achieving an NDCG score of 1, would be
the Top-k ranking (also known as “colorblind” ranking [83]). This ranking solely focuses
on the qualifications of the candidates and arranges them based on their qualification
scores, without taking fairness considerations into account. This results in a trade-off. A
ranked list that demonstrates strong relevance performance might not fare well on fairness
metrics due to the potential presence of inherent biases reflected in the relevance scores.
Conversely, a list that prioritizes fairness alone would likely exhibit poor performance in
terms of relevance. Therefore, it is essential to redefine the fair-ranking problem in a way
that aims to generate a ranked list maximizing fair exposure according to AWRF while
minimizing the loss of relevance as measured by NDCG. Finally, we employ the following
aggregate metric to assess the performance of the ranked lists:

Metricagg(R) = AWRF(R) ∗ NDCG(R) (4.3)

4.2.4 Proportional Rankings in Voting

Until now, our focus has primarily been on fairness and proportional representation within
the context of search systems. Now, we shift our attention to a voting perspective and
explore the concept of achieving a proportional ranking from this standpoint. The goal
of our work is to bridge the gap between this literature and leverage the proportional
characteristics of voting rules to provide fairness guarantees in a general ranking task.

In the previous chapter, we extensively study proportionality in multi-winner approval-
based elections. However, the notion of proportionality, as defined for committee elections
(refer to Section 2.3), does not directly apply to rankings. This distinction arises because
the objective is not to select a committee but rather to create a ranking of candidates
that embodies the principle of proportionality. Skowron et al. [71] extend the principle of
proportional representation to rankings. Given approval ballots, the goal is to generate a
ranking of candidates such that cohesive groups of voters are proportionally represented
in each initial segment of the ranking. Drawing inspiration from Extended Justified Rep-
resentation (EJR), the objective is to generate a ranking that guarantees each cohesive
group of voters a proportional representation of their approved candidates in each initial
segment of the ranking. We provide formal definitions below.

Given a profile P with a set of m candidates, C, and n voters, N , the average satisfaction
of a group of voters N ′ ⊆ N over a set of selected alternatives S ⊆ C is defined as:
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avg(N ′, S) =
1

|N ′|
∑
i∈N ′

|Ai ∩ S| (4.4)

In the case of rankings, the subset of alternatives S is considered as the initial segment
of a given ranked list R, i.e., S = R≤k for some k ∈ {0, 1, ..,m}. The objective is to ensure
that a cohesive group of voters N ′ is represented in every segment of the ranking, with an
average representation avg(N ′, R≤k) that is proportional to the cohesiveness of the group.
Cohesiveness of a group (similar to the idea of T -cohesive group) is defined formally as:

Definition 7 (Significant Group) The cohesiveness of a voter group N ′ with proportion
α(N ′) = |N ′|/|N | is given by λ(N ′) = | ∩i∈N ′ Ai|. Given α ∈ (0, 1] and λ ∈ {0, 1, ...,m}, a
voter group |N ′| is (α, λ)-significant if |N ′| = ⌈αn⌉ and λ(N ′) ≥ λ.

The proportional representation of a voter group in the ranked list depends on the
group’s significance and cohesiveness.

Definition 8 (Justifiable Demand) The justified demand of a voter group N ′ ⊆ N
regarding the top-k positions in a ranked list is jd(N ′, k) = min(⌊α(N ′) · k⌋, λ(N ′)).

The objective of a proportional voting rule is to ensure that every voter group gets an
average representation that satisfies its justifiable demand, as defined above. However, it
may not always be feasible to fulfill the demands of every group entirely. In such instances,
the objective should be to ensure a substantial portion of the demand is met. Skowron et
al. [71] provide theoretical guarantees for several voting rules and experimentally evaluate
them in terms of average group representation. They record instances where the ranking
produced by a voting rule violates the justified demand of a voting group, i.e., where the
average representation for a voting group is less than its justified demand. Their results
indicate that the sequential variant of PAV (Proportional Approval Voting) [76] is one of
the best-suited rules to generate proportional rankings. The voting rule is defined below:

Sequential Proportional Approval Voting (SeqPAV). This rule represents the se-
quential version of PAV, where a ranking is established by progressively adding candidates
to an initially empty ranking set R = (). Recall, the PAV-score for a subset of alterna-
tives S ⊆ C is given by scpav(A, S) =

∑
i∈N h(|S ∩ Ai|), where h(t) =

∑t
i=1 1/i. At step
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k ∈ {0, 1, ..m}, it picks an unranked candidate c that maximizes scpav(A,R≤k−1∪{c}), i.e.,
the candidate that improves the ranking’s PAV-score the most. Ties are broken according
to some specified order.

While these findings offer strong guarantees for proportional voting rules, they may
not directly translate to general ranking tasks, which require considering both fairness and
relevance as essential metrics. Drawing inspiration from this analysis, we expand upon this
research in various ways. We develop fair-ranking algorithms that leverage proportional
voting rules to ensure fairness guarantees while minimizing the loss of relevance utility.

4.3 Methodology

In this section, we define our proposed fair-ranking algorithms. We first describe how we
reformulate the proportional rankings problem from the approval-based voting perspective
to the general fair-ranking task and then define our proposed fair-ranking algorithms based
on sequential PAV.

4.3.1 Fair Ranking as a Voting Task

Transforming the proportional rankings task into a suitable framework for the broader fair
ranking objective is not straightforward. The first challenge is to incorporate or translate
the voter-candidate relationship. Since the general fair ranking task is not modeled as an
election, it focuses solely on candidates and does not explicitly mention voters or voter
preferences. Second, for proportional rankings in voting, the objective is to produce a
ranking of candidates that is fair to groups of voters. In contrast, the general fair ranking
task seeks to create a ranked list that is fair towards groups of candidates with distinct
protected attributes. Lastly, when constructing the final ranked list, we must also consider
relevance criteria that account for the candidates’ quality scores, in addition to fairness
considerations.

To reformulate the general fair ranking task as a voting problem, we consider an election
E = (C,G), where the candidates to be ranked, C, are the alternatives, and their respective
protected attributes, G, forms the set of all voters. The approval ballot Agi for each voter
(attribute) gi ∈ G is the set of all candidates in C that belong to the group gi. Given
this approval-based election setup, we can now fit the problem as a proportional ranking
task as per the definitions in Section 4.2.4. A proportional voting rule, say SeqPAV, would
produce a ranked list of candidates (items), R, that proportionally represents cohesive
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groups of voters (in this case, protected attributes). The resulting list would ideally provide
intersectional fairness across different protected attributes since each attribute denotes a
voter. Finally, one of the ways we incorporate relevance in the resulting ranked list is
by breaking ties according to the quality scores for candidates. The following example
illustrates the reformulation.

Example 4 Consider the task of ranking 5 job candidates given by C = {a, b, c, d, e}, with
protected attributes “race” and “gender”, where “race” could be one of {White, Person of
Color (PoC)} and “gender” could be one of {Male, Female, Non-Binary}. In that case, G
would be {White, PoC, Male, Female, Non-Binary}. Say, candidate a is (White, Male), b
is (White, Female), c is (PoC, Male), d is (PoC, Non-Binary), and e is (White, Male).

We would now translate this into an election such that C = {a, b, c, d, e} is the set of
candidates, and the set of attributes, G, is the set of voters. The voter ballots are given by
Male = {a, c, e}, Female = {b},Non-Binary = {d},White = {a, b, e}, and PoC = {c, d}.

4.3.2 Algorithms

We now define our proposed algorithms based on SeqPAV. They take as input the trans-
formed election task defined above and return a ranked list.

Default

We begin with the default variant of SeqPAV, which does not take into account the quality
scores of the candidates explicitly. Recall that for each candidate ci ∈ C, qi denotes its
“quality score”, representing the overall quality or relevance of the candidate with respect
to a specific search query or ranking task. The quality scores are used only to break
ties between candidates. Essentially, the default variants only produce a ranked list that
provides fair representation towards the groups of voters (attributes), ignoring the relevance
utility of the ranking in the overall process. However, we consider two variations of the
default rule: Weighted and Equal (Unweighted).

• Weighted: In the weighted SeqPAV approach, voters, who in this case represent
protected groups or attributes, are assigned weights based on their respective voter
group proportion. From the definitions above, the weight of a voter (attribute)
gi ∈ G is the fraction of candidates belonging to that group, i.e., weight wgi =
|Agi |/|C|. By assigning weights to voters based on their proportions, SeqPAV ensures
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that the ranked list provides proportional representation of voters (protected groups)
according to their size or proportion. This approach generates a ranked list that
reflects the distribution of the underlying population and produces better results
when the target group distribution p̂ is defined to maintain statistical parity.

• Equal: This method represents the default variation of SeqPAV, where all voters
are assigned equal weights. In situations where the distribution of the underlying
population is uneven, but there is a desire to generate a ranked list that treats all
attributes (voters) equally, this method is suitable.

Scored

In order to generate a fair ranked list that explicitly takes into account the quality scores
of the candidates, we make modifications to SeqPAV accordingly. Recall, at step k ∈
{0, 1, ..m}, it picks an unranked candidate c that maximizes scpav(A,R≤k−1∪{c}), i.e., the
candidate that provides the maximum marginal contribution to the ranking. Specifically,
we modify the utility function such that for each candidate, the marginal utility gained by
adding it to the ranked set also accounts for its quality score qc:

marginalUtility(c) =
∑
i∈N

(h(Ai ∩ (R≤k−1 ∪ {c}))− h(Ai ∩R≤k−1)) · qc (4.5)

We consider both weighted and equal versions of the scored SeqPAV method for our
experiments. In conclusion, we get a total of four variants of SeqPAV for fair ranking. A
general algorithm pseudocode for the four methods is given in Algorithm 1.

In the following section, we will conduct experimental evaluations of the SeqPAV-based
ranking methods on various widely-used datasets. We will compare their performance, in
terms of the aggregate relevance and fairness metric (as defined in equation 4.3), with the
baseline ranking methods.

4.4 Experimental Setup

In this section, we describe our experimental setup in detail. We first describe the datasets
used in our experiments and then list the baseline ranking methods chosen for comparison.
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Algorithm 1: General SeqPAV fair-ranking algorithm

Input: Candidate Set C, Voter Set or Attribute Set G, quality scores for all
candidates: qc,∀c ∈ C, weighted ∈ {0, 1} and method ∈ {default, scored}
to indicate the SeqPAV method, and Ranked List Size k ∈ {0, 1, ...,m}.

Output: Ranked list R of size k satisfying fairness condition while minimizing
loss in relevance utility.

// creating approval ballots for voters

Ag ← set of all candidates in C that belong to group g,∀g ∈ G
if weighted is 0 then

wg ← 1,∀g ∈ G

else
wg = |Ag|/|C|,∀g ∈ G

Ranking Set R← []
j ← 0
while j < k do

C ′ ← unranked candidates
if method is default then

// Pick unranked candidate with highest PAV-score improvement.

// Break ties by higher quality score qc.

cmax ← arg maxc∈C′ scpav(A,R≤j−1 ∪ {c})
else if method is scored then

// Pick unranked candidate with highest marginal utility.

// Accounts for candidate’s quality score qc.

cmax ← arg maxc∈C′ marginalUtility(c) as per equation 4.5

Ranking Set R[j]← cmax

Remove cmax from C ′

j ← j + 1

return R

4.4.1 Datasets

We use multiple publicly available datasets for our experiments, with each dataset rep-
resenting a group of individuals characterized by specific demographic attributes. These
datasets also include a quality “score” attribute for each individual. In our experiments,
we conduct tests for various values of k on each dataset. Additionally, we test multiple ver-
sions of each dataset, where the protected attributes are varied. However, it is important
to note that the datasets (and their permutations) utilized in this study are directly based
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on those defined for the baseline methods [83, 85]. Based on prior work, we use various
versions of these datasets that encompass both single and multiple protected attributes.
This choice enables a direct comparison between SeqPAV and the baseline methods. Ad-
ditionally, we include two more datasets that represent more challenging ranking tasks.
A brief description of each dataset is given below. Table 4.2 and 4.3 present an overall
summary of these datasets.

COMPAS (Correctional Offender Management Profiling for Alternative Sanctions) [1]
is an assessment tool designed to predict the likelihood of recidivism for individuals who
have been convicted. It employs a comprehensive set of over a hundred items or questions
to score the probability of reoffending and is currently used by several jurisdictions in
the United States. However, a recent study has provided evidence that COMPAS exhibits
racial discrimination by having a higher false positive rate specifically for African Americans
[1]. The objective is to produce a fair ranked list of top-k individuals in the dataset
who are least likely to recidivate given their scores. Candidate scores are calculated as a
weighted aggregate of the columns “recidivism, “violent recidivism” and “prior arrests” in
the original dataset [85]. For single attribute methods, the attributes considered are “race”
and “sex”. In the multiple attribute case, the groups considered are a result of different
combinations of the attributes “race”, “age”, and “sex”. “Race” can be categorized as
either “white” or “PoC”, “age” is either “younger than 25”, “between 25 and 45”, or
“older than 45”, and finally, “sex” is classified as either “male” or “female”.

German Credit dataset [46] is the Statlog German Credit Dataset that contains credit
ratings for individuals given by the German agency Schufa. It reports a credit-worthiness
score, which refers to the quality score for each candidate. This score is calculated as a
weighted sum of credit duration, credit amount, and employment length. “Sex” and “age”
are used separately and in combination as the attributes.

LSAT dataset [79] was compiled to investigate potential disparities in admission criteria
for law schools in the United States. The “qualification” score for a candidate is given by
the score obtained in the US Law School Admission Test (LSAT). Group attributes in this
dataset are “sex” and “race”.

CS Rankings dataset contains information about computer science departments in the
United States1. Assembled and used by [81], this dataset considers “publication count”

1https://csrankings.org/
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Dataset # Items Ranking Size (k) Quality Score Sensitive Attribute Protected Group (%)
D1 - COMPAS 6173 1000 recidivism score race African American (51.2%)
D2 - COMPAS 6173 1000 recidivism score sex Female (19.3%)

D3 - German Credit 1000 100 credit rating sex Female (31%)
D4 - German Credit 1000 100 credit rating age <25 yr. (14.9%)
D5 - German Credit 1000 100 credit rating age <35 yr. (54.8%)

Table 4.2: Datasets and experimental settings for single sensitive attributes

Dataset # Items Ranking Size (k) Quality Score Sensitive Attributes # Groups
D1 - COMPAS 6173 1500 recidivism score race 2
D2 - COMPAS 6173 500 recidivism score age 3
D3 - COMPAS 6173 300 recidivism score race, sex, age 4

D4 - German Credit 1000 50 credit rating sex, age 6
D5 - LSAT 21,792 300 LSAT score sex, race 4

D6 - CS Rankings 51 16 publication count
department size,
geographic area

10

D7 - MEPS 960 20 utilization race, age 16

Table 4.3: Datasets and experimental settings for multiple categorical sensitive attributes

as the quality score of a candidate (department). The group attributes are “department
size”, categorized as “large” or “small”, and “geographic area”, classified as “North East”,
“West”, “Middle West”, “South Center”, and “South Atlantic”.

MEPS (Medical Expenditure Panel Survey) serves as an extensive dataset providing
individual and household-level information on health expenditures made by individuals
belonging to various demographic or socioeconomic groups. A candidate’s quality score
corresponds to the “utilization” feature in the dataset, which represents the total number
of trips requiring medical care. It is calculated by summing the number of office-based
visits, outpatient visits, ER visits, inpatient nights, and home health visits. Our analysis
is conducted on a specific subset of the dataset, which is the same portion utilized by [81] in
their study. Specifically, it is the data from Panel 20 of the calendar year 2016, consisting
of the top 960 individuals with a utilization score exceeding 5. The sensitive attributes
are “race” (with values “White”, “Black”, “Multiple races”, “Native Hawaiian”, “Asian
Indian”, “Filipino”, “Chinese”, and “American Indian”) and age (“Middle” and “Young”).

4.4.2 Baseline Methods

Below, we list the baselines utilized for comparison and briefly describe each method. We
generate top-k rankings for all the datasets mentioned earlier and evaluate the performance
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of these baselines compared to the ranking methods based on SeqPAV.

Single Attribute Methods

• Colorblind: This approach generates a top-k ranking solely based on the quality
scores of the candidates, without incorporating any group fairness constraints. As a
result, this method maximizes the relevance utility of the ranking.

• Feldman et al. [35]: Motivated by the problem of removing disparate impact, this
ranking method aims to align the probability distribution of the protected candidates
with that of the non-protected candidates. Specifically, this is achieved by replacing
the quality score of a candidate i in the protected group with a candidate j in the
non-protected group: qi ← qj, such that Fn(j) = Fp(i), where Fn(·) and Fp(·) are
the quantiles of a candidate among the non-protected and protected candidates,
respectively.

• FA*IR [83]: Designed for the binary group setting, this approach works on the as-
sumption that a ranking is fair when candidates are chosen based on a Bernoulli dis-
tribution (coin tosses) that remains unaffected by the candidate’s sensitive attributes.
In particular, this method ensures that the proportion of protected candidates in the
ranking does not significantly deviate below a predetermined minimum percentage
p. It accomplishes this by formulating a fairness condition that tests the statistical
significance of whether the generated ranking is likely to have been produced by a
Bernoulli process. The group fairness condition dictates that a ranking prefix of
length k having τp protected candidates fairly represents the protected group with
minimum proportion p and significance α if F (τp; k, p) > α, where F corresponds to
the cumulative distribution for a binomial distribution.

Multiple Attribute Methods

• Multinomial FA*IR [85]: The multinomial version of the FA*IR algorithm ex-
tends the same fairness framework to account for multiple attributes or groups by
replacing the Bernoulli distribution with a dice roll. Particularly, the process of choos-
ing candidates for each position in the ranked list is equivalent to rolling a |G|-sided
dice, where each side of the dice represents one group g ∈ G. For each group g, the
minimum proportion is given by pg. This method guarantees a minimum percentage
of representation for each group in the ranking. The multinomial FA*IR algorithm is
tested with two variants. The first variant, pstat, corresponds to the statistical parity
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setting where the minimum proportion for each group (p-value) is the same as its
respective proportion in the dataset. The second variant, peq, considers all p-values
to be equal.

• Categorical sampling (“dice roll”) [85]: This method follows the same approach
as multinomial FA*IR but does not provide any guarantees with respect to the min-
imum proportions. In other words, this procedure generates a ranking based on the
dice roll procedure described above. Repeating this process many times would result
in an approximation of the multinomial FA*IR method. This is used for compari-
son and the mean and standard deviation for 10,000 rankings created through this
method are reported. The dice roll baseline is also tested with the same two variants
(peq and pstat) as the multinomial FA*IR algorithm.

• Continuous Fairness Algorithm (CFAθ) [84]: This method introduces a frame-
work where the score distributions of the protected candidates are modified such
that they align with the Wasserstein-barycenter of all group distributions. This new
score distribution for each group is obtained by interpolating between the barycenter
and the group distribution, within the constraint of a predefined fairness parameter
θ ∈ [0, 1]. They consider the new score distribution to be the fair score representation
for each group. θ dictates the fairness emphasis as a high value corresponds to more
group fairness and a low value corresponds to more individual fairness. At θ = 1, the
algorithm achieves statistical parity. Thus, this method is compared only against the
ranking methods based on achieving statistical parity.

4.5 Results

In this section, we present and analyze the outcomes of our experiments. We generate
ranked lists for all baseline approaches mentioned in Section 4.4.2, as well as the SeqPAV
ranking methods defined in Section 4.3.2, across all datasets with the experimental con-
figurations described in Section 4.4.1. We then measure the performance of all generated
ranked lists on the relevance (NDCG), fairness (AWRF), and aggregate (NDCG*AWRF)
metrics as defined in Sections 4.2.2 and 4.2.3, respectively. For calculating AWRF, we set
the target group distribution p̂ to the statistical parity vector, i.e., it matches the group
proportions in the whole dataset. Accordingly, we expect the weighted SeqPAV methods
and the statistical parity-based baselines to perform better than their corresponding equal
versions.
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Our experiments are driven by several objectives. Firstly, we aim to investigate the
performance of various SeqPAV ranking methods on both single and multiple attribute
datasets and compare their effectiveness against the baselines. Additionally, we seek to
gain insights into the relative performance of different SeqPAV methods.

4.5.1 Single Attribute

Results for the single attribute experiments are shown in Table 4.4. First, we observe that
SeqPAV’s scored methods perform the best on all datasets as they achieve the maximum
aggregate relevance-fairness scores. It is worth noting that the weighted SeqPAV version
consistently beats the FA*IR baseline on the aggregate metric across all datasets.

Within the SeqPAV methods, we expect the weighted method to achieve higher scores
since it is designed to achieve statistical parity and result in a cumulative exposure that is
closer to the target distribution. However, in cases where the target group distribution is
nearly equal across groups (D1 and D5), the SeqPAV equal methods demonstrate compa-
rable performance. Finally, we observe that the scored method consistently outperforms
the corresponding default method on the aggregate metric as it manages to improve the
relevance utility (NDCG) by explicitly accounting for the marginal utility gained by candi-
date quality scores in the ranking, with minimal loss of fairness. However, if fairness is the
only criterion, the default methods usually achieve a better AWRF score compared to the
corresponding scored method. This is expected since the default methods do not account
for relevance utility and manage to maximize fairness by following the default proportional
approval voting principles.

While these results are promising for the use of SeqPAV ranking methods, we must
note that the experimental setup might not be challenging enough. This is evident from
the fact that the relevance and fairness values across all methods are quite comparable,
exhibiting only minor differences. Furthermore, except for datasets D1 and D5, even the
baseline colorblind ranking produces quite high fairness scores, indicating that the top-k
ranking itself is quite fair. However, SeqPAV does show a promising direction in terms
of performance and utility. In [83], the authors highlight FA*IR’s versatility in producing
rankings for multiple values of p, enabling flexibility in controlling fairness guarantees for
different groups. We emphasize that SeqPAV offers a similar level of flexibility by adjusting
the weights assigned to voters (groups) in the election setup.

In the following section, we explore the more challenging multiple-attribute setup.
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4.5.2 Multiple Attributes

We now report results for the datasets with multiple sensitive attributes. To allow for a
meaningful comparison, the results in Tables 4.5 and 4.6 are reported such that comparable
methods are grouped together. The weighted SeqPAV ranking methods are comparable to
the pstat methods for multinomial FA*IR and the dice roll baseline, and CFAθ. The equal
SeqPAV versions, on the other hand, are comparable to the peq methods.

The general trend of results follows from the single attribute methods. SeqPAV’s scored
and weighted methods perform the best on almost all datasets in terms of the aggregate
fairness-relevance metric. Both SeqPAV-weighted methods consistently outperform the
multi FA*IR pstat method on the fairness metric (AWRF) while achieving comparable rel-
evance (NDCG) scores. This improvement is highest for dataset D4, where the weighted
SeqPAV methods achieve an AWRF score that is 2.7% higher than that for FA*IR pstat.
CFAθ exhibits strong fairness performance (except D2) but is outperformed by the Seq-
PAV’s scored weighted method in all cases, with the default weighted method achieving
comparable performance. Since the dice roll pstat baseline follows the same process as
FA*IR pstat but without minimum fairness guarantees, it usually performs the worst among
the statistical parity methods (except in D5)2. The benefit of providing fairness guarantees
in FA*IR pstat is also highlighted by the authors in [85].

We now move our attention to the peq methods. Following the experimental setup, they
are expected to achieve worse performance on AWRF compared to the pstat methods since
the target distribution is based on statistical parity. However, we focus on the comparison
between the equal SeqPAV versions and the peq FA*IR baseline. We notice that the scored
SeqPAV equal method beats FA*IR peq on the aggregate metric across all datasets except
D1 where the performance is comparable. Again, the highest improvement is observed
for D4 where SeqPAV scored equal is higher on the aggregate metric by 20.3%. SeqPAV
default equal also achieves comparable performance and even beats FA*IR peq on D5.

Datasets D6 & D7

Observing the results for datasets D1 to D5, we take the benchmark baseline method,
FA*IR, and compare its performance with SeqPAV methods on more challenging datasets
D6 and D7. These datasets present a greater challenge due to their inclusion of a significant
number of intersectional groups (10 and 16, respectively). Results are shown in Table 4.7.

2The results for dice roll baseline were not available for D2 in the codebase shared by the authors.
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For the CSRankings dataset (D6), we observe that the SeqPAV default equal method
achieves the highest fairness (AWRF) score, comfortably beating the other methods. This
emphasizes the strength of the default voting method in terms of fairness guarantees,
especially when the statistical parity target distribution is close to equal. However, this
comes at the cost of lower relevance scores (NDCG). The scored versions, on the other hand,
achieve the desirable balance between relevance and fairness and outperform the FA*IR
baselines on the aggregate metric. A similar comparison between the SeqPAV methods can
be made for D7, where the default versions achieve higher fairness but the scored variants
perform much better on the aggregate fairness and relevance metric. However, in this case,
since the statistical parity distribution is close to equal, the overall best performance on
the aggregate metric is observed by SeqPAV scored equal method, closely followed by the
corresponding weighted version. Finally, we again observe that SeqPAV-based methods
outperform the corresponding FA*IR baselines.

4.6 Discussion

Based on the findings in the preceding section, it is evident that ranking methods based on
SeqPAV exhibit robust fairness and relevance performance when compared to the baselines.
In this section, we will emphasize the key points of comparison and delve into a more
detailed analysis of their performance.

4.6.1 SeqPAV vs. FA*IR

Starting with the simple single attribute tasks, Table 4.4 clearly demonstrates that SeqPAV-
scored methods surpass FA*IR in all datasets on the aggregate fairness-relevance metric.
However, it is evident that the performance between the two is highly comparable, display-
ing only marginal variances. The purpose of our analysis is to showcase the adaptability
of a voting rule designed for proportional outcomes in elections, which can be effectively
repurposed as a robust ranking algorithm with minimal adjustments. The positive results
noticed in single attribute setups allow us to extend our analysis to the more challenging
multiple attribute scenarios.

The multiple attribute setup poses a more challenging requirement to provide inter-
sectional fairness across groups. Through Tables 4.5, 4.6, and 4.7 we notice that SeqPAV
replicates the strong performance exhibited in the single attribute setup. For all multiple
attribute datasets (D1 to D7), SeqPAV-scored methods either match or outperform the
multinomial FA*IR baseline.
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In conclusion, our experiments show that SeqPAV exhibits strong fair-ranking proper-
ties that match and often outperform the baselines on both single and multiple attribute
setups. Additionally, SeqPAV provides the same flexible advantage as FA*IR as it also
allows the creation of rankings with fairness guarantees beyond statistical parity. How-
ever, SeqPAV holds an additional advantage over FA*IR. While FA*IR requires modifying
the input dataset to consolidate multiple categorical group attributes into a single group
attribute using combinations of individual values, SeqPAV can handle input datasets with
multiple categorical attributes without the need for preprocessing the data. Finally, it
is worth noting the computational advantages of SeqPAV-based ranking methods as they
are polynomial time computable. These methods prove to be lightweight in computation
compared to the overwhelming computational burden observed in the baselines. Our aim
is to further develop upon these findings by carrying out a comprehensive analysis of the
computational complexity, comparing SeqPAV-based ranking methods with the baselines.

4.6.2 Comparison among SeqPAV methods

Now, we delve deeper into the variations in performance among the various SeqPAV meth-
ods. It is worth noting that for most datasets, even the SeqPAV default equal method
exhibits strong performance, especially on fairness guarantees. It achieves a significantly
higher fairness score compared to the corresponding multinomial FA*IR peq (5.88%) and
SeqPAV scored equal methods (9.26%) on D6. We now explore the comparison in more
detail.

First, we focus on the comparison between the weighted and equal versions. We repeat
that our experimental setup is designed to judge fairness according to statistical parity.
Thus, unless the target group distribution is close to equal, we expect the weighted methods
to outperform the equal methods on fairness. However, we notice that when the target
distribution is close to equal across groups (see D1 and D5 for single attribute setup and D6
and D7 for multiple attribute setup), the SeqPAV-equal methods match or even outperform
the corresponding weighted method. We believe this arises due to the strong proportional
guarantees provided by the default SeqPAV voting rule. In situations where it is desirable
to maintain an equal distribution across groups, the off-the-shelf (equal) SeqPAV rule can
serve as a useful fair-ranking algorithm.

The comparison between the default and scored SeqPAV versions is more straight-
forward. For all datasets, we observe that the scored variant performs better than its
corresponding default variant on the aggregate fairness-relevance metric. However, we do
notice that the default version provides better fairness scores when the fairness criteria are
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more challenging (see AWRF for D6 and D7, Table 4.7). This is because the default Seq-
PAV version creates a ranking driven solely by the fairness requirements and does not take
into account the qualification scores of candidates. However, this results in high fairness
scores but lower relevance scores compared to the scored SeqPAV variants. Contrarily, the
scored SeqPAV methods offer a favorable trade-off between fairness and relevance utility.
These scored methods consistently outperform their respective default counterparts in the
aggregate metric by effectively enhancing relevance utility (NDCG). This improvement is
achieved by explicitly considering the marginal utility gained from candidate quality scores
in the ranking process while maintaining a minimal loss in fairness.

4.7 Conclusion

In this chapter, we reformulate the fair-ranking problem as a voting task and present a novel
use case for sequential proportional approval voting rules. We illustrate the applicability of
committee voting rules designed for proportional outcomes as post-processing fair-ranking
algorithms, using SeqPAV as a case study. We develop four modified versions of SeqPAV
that can explicitly account for both relevance and fairness demands.

Through experimentation on diverse datasets covering scenarios with a single sensi-
tive attribute as well as more complex scenarios involving multiple sensitive attributes, we
empirically evaluate the performance of SeqPAV-based ranking methods against various
baselines. Our findings demonstrate that SeqPAV-based algorithms consistently achieve
strong performance on the aggregate fairness-relevance metric, often matching or surpass-
ing the performance of FA*IR and other baseline methods.

Importantly, these modified algorithms can cater to a range of use cases, accommodat-
ing different fairness-relevance trade-off requirements specified by the ranking task. The
degree of fairness guarantees can be controlled by assigning appropriate weights to voters,
while the relevance criterion can be adjusted by selecting the suitable method (default or
scored). The flexibility offered by these methods proves highly valuable for regulatory agen-
cies in tackling a wide array of fair-ranking tasks. Additionally, it is important to highlight
that the default SeqPAV method offers robust axiomatic fairness guarantees. Although the
modified SeqPAV methods may sacrifice some of these properties, there is a possibility that
certain theoretical guarantees could still be maintained. Exploring the changes in these
theoretical guarantees resulting from the modifications would be an intriguing direction
for future research.
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Dataset Method NDCG AWRF NDCG*AWRF
% Prot.
Output

D1 (51.2%) - COMPAS,
k=1000, race

SeqPAV scored equal 0.9852 0.9988 0.984 0.461
FA*IR 0.9858 0.9979 0.9837 0.463

SeqPAV scored weighted 0.9837 0.9993 0.983 0.472
SeqPAV default equal 0.9799 0.9999 0.9798 0.5

SeqPAV default weighted 0.978 1 0.978 0.512
Feldman et al. 0.9779 1 0.9779 0.512

Colorblind 1 0.9586 0.9586 0.252

D2 (19.3%) - COMPAS,
k=1000, gender

SeqPAV scored weighted 0.998 1 0.9979 0.203
SeqPAV default weighted 0.9973 1 0.9973 0.192

Feldman et al. 0.9972 1 0.9972 0.194
Colorblind 1 0.9966 0.9966 0.278

FA*IR 1 0.9966 0.9966 0.278
SeqPAV scored equal 0.9877 0.9576 0.9459 0.461
SeqPAV default equal 0.9825 0.9469 0.9303 0.5

D3 (31%) - German Credit,
k=100, gender

SeqPAV scored weighted 0.9993 0.9997 0.999 0.3
SeqPAV default weighted 0.9991 0.9999 0.9989 0.31

FA*IR 0.9994 0.9994 0.9989 0.3
Colorblind 1 0.9976 0.9976 0.26

Feldman et al. 0.9976 1 0.9975 0.31
SeqPAV scored equal 0.9909 0.9876 0.9786 0.46
SeqPAV default equal 0.9881 0.9824 0.9707 0.5

D4 (14.9%) - German Credit,
k=100, age <25

SeqPAV scored weighted 0.9992 0.9992 0.9984 0.13
SeqPAV default weighted 0.9982 0.9998 0.998 0.15

FA*IR 0.9983 0.9997 0.998 0.15
Feldman et al. 0.9953 0.9996 0.9949 0.15

Colorblind 1 0.9948 0.9948 0.09
SeqPAV scored equal 0.9677 0.9486 0.9179 0.43
SeqPAV default equal 0.9575 0.9292 0.8897 0.5

D5 (54.8%) - German Credit,
k=100, age <35

SeqPAV scored equal 0.9927 0.997 0.9897 0.47
SeqPAV default equal 0.9908 0.9985 0.9893 0.5

SeqPAV scored weighted 0.9883 0.9995 0.9878 0.51
FA*IR 0.9914 0.9961 0.9876 0.5

Feldman et al. 0.9854 1 0.9853 0.55
SeqPAV default weighted 0.9853 1 0.9853 0.55

Colorblind 1 0.9523 0.9523 0.24

Table 4.4: Results for single attribute datasets and methods on fairness, relevance, and
aggregate metrics with the percentage of the protected group in the output ranked list.
The best-performing method on the aggregate fairness-relevance metric is bolded.
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Dataset Method NDCG AWRF NDCG*AWRF

D1 - COMPAS, k=1500,
race, 2 groups

multi FA*IR pstat 0.996 0.9993 0.9954
SeqPAV scored weighted 0.9954 0.9999 0.9953

CFAθ 0.995 0.9998 0.9948
SeqPAV default weighted 0.9944 1 0.9944

dice roll pstat 0.993 0.9999 0.9929
multi FA*IR peq 1 0.9886 0.9886

colorblind 1 0.9884 0.9884
dice roll peq 1 0.9878 0.9878

SeqPAV scored equal 1 0.9871 0.9871
SeqPAV default equal 0.9999 0.9868 0.9867

D2 – COMPAS, k=500
age, 3 groups

SeqPAV scored weighted 0.9694 0.9987 0.9682
multi FA*IR pstat 0.9646 0.9979 0.9626

SeqPAV default weighted 0.9616 1 0.9616
CFAθ 0.962 0.9244 0.8892

SeqPAV scored equal 0.9484 0.976 0.9256
multi FA*IR peq 0.942 0.9666 0.9106

SeqPAV default equal 0.9352 0.9716 0.9087
colorblind 1 0.8748 0.8748

D3 - COMPAS, k=300,
race, age, sex, 4 groups

multi FA*IR pstat 0.982 0.9959 0.9779
SeqPAV scored weighted 0.9784 0.9983 0.9768

CFAθ 0.9764 0.9986 0.975
SeqPAV default weighted 0.9727 0.9997 0.9724

dice roll pstat 0.9647 0.9989 0.9636
colorblind 1 0.9356 0.9356

SeqPAV scored equal 0.8349 0.8524 0.7116
multi FA*IR peq 0.8191 0.8532 0.6989

SeqPAV default equal 0.7913 0.8004 0.6333
dice roll peq 0.7917 0.7947 0.6291

Table 4.5: Results for multiple attribute datasets (D1 to D3) and methods on fairness,
relevance, and aggregate metrics. The best-performing method (non-colorblind) on the
aggregate fairness-relevance metric is bolded. Comparable results are grouped together.
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Dataset Method NDCG AWRF NDCG*AWRF

D4 — German Credit, k=50
sex, age, 6 groups

SeqPAV scored weighted 0.9732 0.9961 0.9694
CFAθ 0.9574 0.9989 0.9563

multi FA*IR pstat 0.9815 0.9698 0.9518
SeqPAV default weighted 0.946 0.996 0.9422

dice roll pstat 0.944 0.9749 0.9204
colorblind 1 0.9806 0.9806

SeqPAV scored equal 0.9361 0.9445 0.8842
multi FA*IR peq 0.8315 0.8838 0.7348

SeqPAV default equal 0.8295 0.883 0.7325
dice roll peq 0.7685 0.8395 0.6452

D5 — LSAT, k=300
sex, race, 4 groups

SeqPAV scored weighted 0.9979 0.9998 0.9977
SeqPAV default weighted 0.9977 0.9999 0.9976

dice roll pstat 0.9972 0.9992 0.9964
CFAθ 0.9991 0.9964 0.9955

multi FA*IR pstat 0.9947 0.9807 0.9755
colorblind 1 0.9822 0.9822

SeqPAV scored equal 0.9804 0.9405 0.9221
SeqPAV default equal 0.979 0.935 0.9154

dice roll peq 0.9736 0.9116 0.8875
multi FA*IR peq 0.9793 0.9013 0.8827

Table 4.6: Results for multiple attribute datasets (D4 and D5) and methods on fairness,
relevance, and aggregate metrics. The best-performing method (non-colorblind) on the
aggregate fairness-relevance metric is bolded. Comparable results are grouped together.
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Dataset Method NDCG AWRF NDCG*AWRF

D6 — CSRankings, k=16
size, area, 10 groups

SeqPAV scored weighted 0.9746 0.8942 0.8715
multi FA*IR pstat 0.9689 0.8783 0.851

SeqPAV default weighted 0.8371 0.8952 0.7494
SeqPAV scored equal 0.9652 0.8961 0.865

multi FA*IR peq 0.9316 0.9247 0.8615
SeqPAV default equal 0.836 0.9791 0.8186

colorblind 1 0.807 0.807

D7 — MEPS, k=20
race, age, 16 groups

SeqPAV scored weighted 0.9118 0.8566 0.781
multi FA*IR pstat 0.9357 0.816 0.7635

SeqPAV default weighted 0.8048 0.9253 0.7447
SeqPAV scored equal 0.8639 0.9055 0.7823

multi FA*IR peq 0.8433 0.8761 0.7388
colorblind 1 0.718 0.718

SeqPAV default equal 0.6836 0.9738 0.6657

Table 4.7: Results for multiple attribute datasets (D6 and D7) and methods on fairness,
relevance, and aggregate metrics. The best-performing method (non-colorblind) on the
aggregate fairness-relevance metric is bolded. Comparable results are grouped together.
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Chapter 5

Conclusion

Proportional representation fairness emphasizes that sizable groups of individuals sharing
similar preferences should be adequately represented. It serves as a crucial objective that
should be embraced in various election or voting scenarios to ensure fair outcomes in any
democratic setting, regardless of its scale. This thesis works within the diverse definitions
and frameworks of proportionality in multi-winner elections. Our primary objective is to
examine the influence of deliberative democracy on voting and develop inclusive deliber-
ation strategies that enhance fairness in election outcomes while preserving simplicity in
the overall process. Subsequently, we broaden our scope to leverage the robust fairness
guarantees offered by intricate proportional voting rules and explore their potential as fair-
ranking algorithms. In this section, we present a summary of our findings, acknowledge
the limitations of our work, and discuss potential avenues for impact and further research.

5.1 Deliberation and Voting

5.1.1 Summary of Results

In Chapter 3, we empirically study the impact of deliberation on voting outcomes, specif-
ically in approval-based multi-winner (or committee) elections. We design an abstract
agent-based model of deliberation to simulate several deliberation scenarios involving dif-
ferent voter types. Using this model, we explore several simple, heuristic-driven group
deliberation strategies and study the performance of various standard voting rules un-
der these deliberation methods. Our findings reveal that deliberation generally enhances
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voting outcomes in terms of welfare, representation, and proportionality assurances. Delib-
eration mechanisms designed to promote exposure to diverse groups and opinions elevate
the quality of deliberation, protect minority preferences, and consequently achieve better
voting outcomes. Additionally, we demonstrate that, in the presence of effective delibera-
tion, “simpler” voting rules like classical Approval Voting (AV) can achieve proportionality
guarantees comparable to those promised by “complex” voting rules in the absence of delib-
eration. Thus, by placing greater emphasis on deliberation, we can achieve higher welfare
and representation while maintaining a straightforward and transparent voting procedure.

5.1.2 Limitations & Future Work

This work gave us valuable insights into the significance of deliberation in participatory
democracy and the key factors contributing to the design of effective deliberation mech-
anisms capable of facilitating favorable voting outcomes. However, we must acknowledge
the limitations of our study and highlight the areas that require further investigation.

First, our work measures proportional representation outcomes solely through popular
qualitative, axiomatic guarantees. However, due to the binary nature of these axioms,
which categorize voting rules as either satisfying or failing the proportionality conditions,
it becomes challenging to gauge the degree to which a voting rule may yield proportional
outcomes without consistently meeting the axiomatic criteria. Investigating the extent of
proportionality provided by these voting rules from a quantitative perspective is an in-
teresting direction for future research [69]. Second, although bounded confidence models
offer a suitable representation of small-scale deliberation by incorporating dynamic agent
types, it is valuable to consider alternative opinion dynamics models. Conducting empirical
comparisons among these models to determine which ones effectively capture real-world
deliberation dynamics would enhance our analysis of the influence of deliberation on vot-
ing outcomes. Barrett et al. [8] present a comparison of various opinion dynamics models
concerning the attainment of consensus in citizens’ assemblies. It would be intriguing to
leverage the insights from their work to develop more robust deliberation models and ex-
plore their impact on voting outcomes. In addition to empirical work, it is essential to
carry out real-user studies to validate whether the positive effects of deliberation and our
proposed deliberation strategies yield similar outcomes when implemented with human
participants. Additionally, we only consider simple, heuristic-based group division strate-
gies for deliberation mechanisms. While it might come at the cost of increased complexity
in the democratic process, experimenting with more advanced group division mechanisms
could provide interesting insights. Barrett et al. explore this idea in citizens’ assemblies
where repeated interactions between participants lead to diminishing returns [7].
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In our experiments, we split the voting population into two sets – a majority and a
minority, to experimentally verify how favorable the voting outcomes are towards each
population set. Since this is an initial step in the direction of fully understanding the
impact of deliberation on voting, we restrict our analysis to a simple scenario of just two
group types. Incorporating multiple minority/majority groups would increase complexity,
thereby making it difficult to clearly understand the impact of deliberation on voting out-
comes. However, our model is designed to accommodate different population splits and it
would be interesting to explore this in future work. Our intuition is that since our model
is designed to provide proportional results, it would scale proportionally to multiple mi-
nority groups. Moreover, there is potential for extending our research to other dimensions
of democratic processes. Exploring diverse ballot types or investigating election domains
like ranked-choice voting and participatory budgeting present intriguing avenues for future
research. Finally, throughout Chapter 3, we consistently emphasize the importance of pro-
moting simplicity and explainability in democratic processes to ensure citizen participation
and trust. However, there is a noticeable absence of well-defined, quantifiable metrics to
assess these aspects. Consequently, it is imperative to conduct a systematic examination
of the explainability of standard voting rules in order to draw more concrete conclusions
in this regard.

5.1.3 Broader Impact

The findings presented in this chapter contribute to the overarching objective of lever-
aging computer science techniques to create improved, inclusive, fair, and user-friendly
participatory democracy platforms. The advancement of computer science research in this
direction can greatly support the endeavors of practitioners aiming to enhance democratic
institutions for the future. There is substantial potential for delivering algorithmic exper-
tise, both from theoretical and experimental standpoints. The diverse tasks within the
democratic process necessitate different types and degrees of algorithms, depending on the
desired levels of complexity, explainability, and simplicity. By comprehending the specific
requirements and continuously refining and implementing these algorithms, practitioners
can make significant strides forward.

As highlighted earlier in the thesis, traditionally, the focus of social choice literature has
been the aggregation of preferences. However, the results observed in this thesis and other
related work have demonstrated the remarkable effectiveness of deliberative democracy in
producing favorable election results. Considering deliberation as the pillar of success, fur-
ther research should aim to develop better models of deliberation tailored to both small-
and large-scale democratic processes. These models and mechanisms should be designed

63



with the overarching objectives of fostering broad societal participation and facilitating
meaningful conversations. Moreover, these methods hold value in wider research domains,
including deliberative alignment. The core concept behind deliberative alignment is to
drive progress in governance, diplomacy, technology, and various other fields by leveraging
the collective opinions and desires of society as a whole. By employing the methods dis-
cussed, advancements can be made in these areas, fostering a more inclusive and democratic
approach to decision-making and problem-solving. Since language is at the core of deliber-
ation, some recent research has already investigated the potential of using large language
models in scaling deliberation through effective moderation [73]. Similarly, Polis, a real-
time system designed and maintained by the Computational Democracy Project has been
used for facilitating and scaling deliberation forums [72]. These examples exemplify the
ongoing efforts aimed at leveraging technology to construct improved democratic systems,
while simultaneously employing democratic principles to enhance technological advance-
ments. We aspire that our work can contribute to the development of these platforms and
aid in the construction of better democracies for the future.

5.2 Fair Ranking through Proportional Voting

5.2.1 Summary of Results

In Chapter 4, we explore the use of proportional voting rules as fair-ranking algorithms.
We reframe the fair-ranking problem as a voting task and demonstrate that committee vot-
ing rules designed for proportional outcomes in elections exhibit robust performance when
applied to general fair-ranking tasks. We introduce four modified versions of SeqPAV,
which explicitly consider both relevance and fairness requirements. Through extensive ex-
perimentation on diverse datasets, encompassing scenarios with single or multiple sensitive
attributes, we consistently observe that algorithms based on SeqPAV deliver impressive
results in terms of the aggregate fairness-relevance metric. In fact, they often match or
even surpass the performance of FA*IR and other baseline methods.

5.2.2 Limitations & Future Work

While this chapter establishes a potential new application domain for proportional voting
rules, we must be aware of the shortcomings or limitations of our experimental setup.
First, we note that the scores achieved on most datasets for all methods are considerably
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high, and the performance advantage of SeqPAV-based ranking methods over baselines is
relatively modest. For the purpose of this thesis, we limit our analysis to these datasets to
enable a direct comparison with the baselines. Although consistent outcomes are observed
across datasets, it is essential to augment our findings by conducting experiments on more
demanding datasets. Such experiments would provide insights into the scalability of our
SeqPAV-based ranking methods when confronted with more challenging ranking tasks.
Moreover, we emphasize the necessity for a thorough examination and comparison with a
broader range of baseline methods, including those that consider ranking policies rather
than solely focusing on individual ranked lists.

In our experiments, we only implement simple modifications to the SeqPAV rule for
developing ranking algorithms. Although the results have shown promise, future research
could explore more nuanced modifications based on the foundational principles and proper-
ties of proportional voting methods. Finally, an intriguing avenue for future work involves
expanding beyond post-processing fairness and reranking techniques. It would be valuable
to explore the integration of these methods with retrieval techniques, considering a holistic
approach that encompasses both stages of the ranking process.

5.2.3 Broader Impact

This chapter emphasizes the advantageous axiomatic fairness guarantees of proportional
voting rules and discusses the possibility of using these rules outside of election domains,
presenting fair ranking as a use case. The importance of algorithmic fairness has signifi-
cantly increased, becoming essential in various applications involving algorithmic decision-
making. The broader scope of this work includes the application of voting algorithms
outside of election domains and the further advancement of these voting mechanisms for
diverse purposes. As demonstrated in Chapter 4, the guarantees and flexibility offered
by voting methods could be highly valuable for regulatory agencies in addressing a wide
array of fairness-specific tasks. Further research in this direction would bridge the gap
between proportionality and fairness, leading to a shared mathematical framework that
can be applied to diverse problem domains.
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Appendix A

Iterative Golfer

Iterative golfer strategy is a weaker version of the popular social golfer problem [43, 52] in
combinatorial optimization.

Social golfer problem: n golfers must be repeatedly assigned to g groups of size
s. Find the maximum number of rounds (and the corresponding schedule) such
that no two golfers play in the same group more than once.

Social golfer problem maximizes the number of rounds with a hard constraint that no
two golfers should meet again. The iterative golfer strategy is a weaker version of this
where we fix the number of rounds R, and minimize the number of occurrences where any
pair of agents meet more than once. Given some group assignment Gr = {Gr

1, G
r
2, . . . , G

r
g}

at round r, we introduce a cost given by:

cost(Gr) =
∑

Gx∈Gr

∑
a,b∈Gx

f 2(a, b) (A.1)

where f(a, b) is the number of times a and b have been in the same group in the previous
rounds G1 through Gr−1. The number of prior meetings is squared to ensure an even
number of conflicts among all possible pairings (as opposed to one specific pair meeting
repeatedly). We use an existing approximate solution [15] that creates group assignment
for each round such that the cost given by (A.1) is minimized. The iterative golfer can
thus be seen as a more efficient strategy than iterative random if the objective is to ensure
each agent has the highest possible exposure to others’ preferences.
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