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Abstract

This thesis studies four mathematical problems in investment management. All four
problems arise from practical challenges and are data-driven.

Chapter 2 investigates the Kelly portfolio strategy. The full Kelly strategy’s
deficiency in the face of estimation errors in practice can be mitigated by fractional
or shrinkage Kelly strategies. This chapter provides an alternative, the RL Kelly
strategy, based on a reinforcement learning (RL) framework. RL algorithms are
developed for the practical implementation of the RL Kelly strategy. Extensive
simulation studies are conducted, and the results confirm the superior performance
of the RL Kelly strategies.

In Chapter 3, we study the discrete-time mean-variance problem under an RL
framework. The continuous-time problem was theoretically studied by the existing
literature but was subject to a discretization error in implementations. We compare
our discrete-time model with the continuous-time model in terms of theoretical re-
sults and numerical performance. In a daily trading market setting, we find both
discrete-time and continuous-time models achieve comparable performance. How-
ever, the discrete-time model outperforms better than the continuous-time model
when the trading is less frequent. Our discrete-time model is not subject to the
discretization error.

Chapter 4 explores the valuation problem of large variable annuity (VA) portfo-
lios. A computationally appealing methodology for the valuation of large VA port-
folios is a metamodelling framework that evaluates a small set of representative con-
tracts, fits a predictive model based on these computed values, and then extrapolates
the model to estimate the values of the remaining contracts. This chapter proposes
a new two-phase procedure for selecting representative contracts. The representa-
tives from the first phase are determined using contract attributes as in existing
metamodelling approaches, but those in the second phase are chosen by utilizing
the information contained in the values of the representatives from the first phase.
Two numerical studies confirm that our two-phase selection procedure improves upon
conventional approaches from the existing literature.

Chapter 5 focuses on the capture ratio which is a widely-used investment per-
formance measure. We study the statistical problem of estimating the capture ratio
based on a finite number of observations of a fund’s returns. We derive the asymp-
totic distribution of the estimator, and use it for testing whether one fund has a
capture ratio that is statistically significantly higher than another. We also per-
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form hypothesis tests with real-world hedge fund data. Our analysis raises concerns
regarding the models and sample sizes used for estimating capture ratios in practice.
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Chapter 1

Introduction

Investment management covers a broad range of topics in quantitative finance and
actuarial science. Many of these topics focus on practical problems and hence are
data-driven. This thesis investigates four existing tasks of investment management in
four separate chapters. All of them arise from real-world scenarios in stock, insurance
and fund markets. To study these problems, we build rigorous mathematical and
statistical frameworks which are able to work with real-world or simulated data.
Below is a summary for each chapter.

Chapter 2 revisits the Kelly criterion problem of portfolio construction (MacLean
et al., 2010) which has been well studied with theoretically optimal solutions de-
veloped. However, the practical implementation does not show the advantages of
the optimal strategy, due to estimation error. Recently, a reinforcement learning
(RL) based framework was proposed in the literature (Wang et al., 2019; Wang and
Zhou, 2020) as a new approach to improve the empirical performance of the optimal
mean-variance strategy. The learning scheme of balancing between exploration and
exploitation achieves the mean-variance criterion better than the MLE-based model
and deep deterministic policy gradient (DDPG) model, in a continuous-time setting.
The RL framework was then applied to several different problems (Wang and Zhou,
2019; Dai et al., 2020; Guo et al., 2022; Firoozi and Jaimungal, 2022). In Chap-
ter 2, we solve the continuous-time Kelly criterion problem with an RL solution.
The new RL-based strategy outperforms the MLE-based strategies in different mar-
ket scenarios. Different from the existing literature mentioned above, we develop an
online learning framework. We also test the model convergence in an offline learning
framework.

Chapter 3 investigates the RL solution for a discrete-time mean-variance port-
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folio strategy, in view of the fact that the model in Wang and Zhou (2020) is built
in a continuous-time setting but implemented in a discretized scheme. Hence the
implementation is affected by the discretization error. In this chapter, we investigate
the discretization error by studying the discrete-time mean-variance problem under
the RL framework. Through numerical examples, we find that the strategy following
the discrete-time setting performs generally better than that discretized from the
continuous-time setting.

Chapter 4 explores the problem of valuation for large variable annuities (VA) port-
folios. A VA contract has an option-type payoff structure. It is usually not possible
to calculate the value or Greeks of a VA contract analytically and one has to resort to
simulation for an evaluation. However, to achieve a high level of accuracy, extensive
simulations are required and thus computationally demanding. It is more challeng-
ing to evaluate a large VA portfolio which could contain more than 10,000 contracts.
A popular valuation framework adopts a meta-modelling framework and takes two
steps in the evaluation of a large VA portfolio (Gan (2013); Gan and Lin (2015);
Hejazi and Jackson (2016); Gan and Valdez (2016, 2018, 2020); Hejazi et al. (2017);
Xu et al. (2018); Liu and Tan (2021)). The first step is to select a small portion
of contracts: representative contracts, based on the contract attributes. Evaluating
such a small set of contracts is relatively computationally manageable. The second
step is to build an interpolation model using the evaluation results from those se-
lected representative contracts and estimate the values of the rest contracts in the
VA portfolio using the interpolation model. The majority of the literature works on
improving the estimation accuracy are subject to computational constraints. This
chapter proposes a new selection procedure that has two phases. The motivation
for the two-phase selection is to make those selected contracts more representative
of the entire portfolio. This two-phase selection is also appealing in practice when
there are existing representative contracts and the insurance company wants to select
more representatives. In our proposed framework, the first phase (initial selection
phase) is similar to the conventional selection of representative contracts in the exist-
ing meta-modelling method. The second phase (conditional selection phase) builds
a posterior model for the target values (i.e., market values or Greeks) and deter-
mines a set of VA contracts that as a whole is most representative according to the
established posterior model. We proposed a conditional k-means algorithm, which
belongs to branch of machine learning called unsupervised learning, for the selection
of the representative contracts in the second phase and proved certain convergence
properties of the algorithm. Through two numerical studies, we demonstrate that the
valuation procedure with this two-phase selection achieves significant improvement
in estimation accuracy compared to the conventional valuation procedure.
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Chapter 5 focuses on the capture ratio, a well-known performance measure used
in the finance industry for fund management. It measures the relative performance
of a fund in both the upside and downside markets. It has been used by ranking
agencies such as Morningstar as well as in the literature (Cox and Goff, 2013; Chang
and Krueger, 2013; Bello, 2014; Cline and Gilstrap, 2021). However, the heuristic
definition has never been theoretically studied, or tested for robustness. We derive
the asymptotic (joint) distributions of the capture ratio under different model as-
sumptions. We also probe into the statistical power of hypothesis tests regarding
the capture ratio. Our numerical examples raise concerns about the sample size and
model assumptions in the practical use of the capture ratio.

Chapter 6 concludes this thesis and summarizes the future work.

The main results of the thesis have been published in journals or preprints. See
Jiang et al. (2022a) for Chapter 2; Jiang et al. (2022c) for Chapter 4; Jiang et al.
(2022b) for Chapter 5.
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Chapter 2

Continuous-Time RL Kelly
Criterion Problem

2.1 Introduction

In this chapter, we focus on portfolio selection in the stock market. How to optimize
stock trading has always been an important task in practice and literature. In
the classical Merton portfolio optimization model (Merton, 1971), an investor aims
to maximize her utility by trading stocks and bonds. A common choice of utility
function is log-utility. Maximizing the expected log-utility of the terminal portfolio
value is the same as maximizing the expected log-return of the portfolio, and such
an optimality target is known as the Kelly criterion (MacLean et al., 2010). For
this criterion, the portfolio selection problem has been well studied, and closed-
form solutions have been found in many models. It is well known that the full Kelly
strategy, the optimal allocation strategy under the Kelly criterion, outperforms other
strategies in terms of capital growth (MacLean et al., 2010). However, one important
risk with the full Kelly strategy is that an investor may have to invest a large amount
of money in stocks. This fact could lead to a substantial loss given a sequence of
poor market returns.

Furthermore, the full Kelly strategy’s optimality is sensitive to estimation errors.
When estimation of model parameters is involved, the full Kelly strategy’s empirical
performance typically has a considerable deviation from the theoretical optimality
results. As a remedy to mitigate the adverse effect of the estimation errors and
improve the full Kelly strategy’s performance, the fractional Kelly strategy was in-
troduced. Under the fractional Kelly strategy, the portfolio weight is a fraction of
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that in the full Kelly strategy. Simulations and empirical evidence have shown the
advantage of the fractional Kelly strategy over the full Kelly strategy (MacLean
et al., 2010, 2011; Davis and Lleo, 2013). Although there is no universal choice for
the weight, a straightforward and common example of the fractional Kelly strategy
is the half Kelly strategy (Nekrasov, 2014; Han et al., 2019), where the portfolio
weight is half of that in the full Kelly strategy. This simple strategy can reduce the
portfolio risk in a bad scenario significantly (Ziemba, 2016). As a member of the
fractional Kelly strategy family, the shrinkage Kelly strategy is also an alternative to
adjust for parameter estimation error. One can either shrink the estimated expected
stock return towards the risk-free return (Rising and Wyner, 2012) or directly shrink
the portfolio weight (Han et al., 2019). Another potential modification to the Kelly
strategy is applying machine learning methods in portfolio selection problems. Shen
et al. (2019) improve the Kelly strategy by ensemble learning. They combine the
bootstrap aggregating algorithm and random subspace method to reduce the esti-
mation risk at a single step for multivariate portfolios. The algorithm is sequentially
applied to empirical data and shown to outperform several competing strategies.

In this chapter, we apply RL to tackle the practical challenge of the Kelly strategy
when faced with unknown model parameters. In RL, agents take action and receive
rewards from the environment. They start with knowing very little about the envi-
ronment and dynamically learn from interactions with the environment. Then they
use the knowledge to maximize their rewards or objectives, e.g., expected log-return
in the Kelly problem. The RL framework is more realistic than traditional portfolio
selection models, where market parameters are assumed known a priori to investors.
An important consideration in RL is to balance exploitation and exploration in the
action process. At each decision point, the agent can either fully use the experience
to execute the optimal action, i.e., exploiting the experience, or take a random ac-
tion, i.e., exploring the environment. The benefit for the agent to explore is that
more information about the environment is collected through the exploration to find
a better path towards higher long-term rewards. Wang et al. (2019) formulate the
exploration-exploitation trade-off in a control problem. In particular, they adopt an
entropy-regularization method to regularize the efforts in exploration and apply it
to linear-quadratic control problems.

We apply the entropy-regularization RL framework to the Kelly portfolio prob-
lem. In this problem, we assume the underlying model dynamics are known to the
investor (agent) to be a geometric Brownian motion, while the model parameters are
unknown. The reward is the investment return from a given trading strategy, and
the investor needs to learn how to find the optimal strategy to achieve the highest
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expected terminal log-return. We include a general time-varying temperature param-
eter in the regularization term to balance the degree of exploration and exploitation
in the resulting RL algorithm. We consider both the Kelly portfolio problem for
controlling the amount of investment in the stock and the portion of wealth invested
in the stock. The equivalence between the two formulations is not as apparent as
the problem under the classical formulation. Indeed, given the same temperature
parameter, they lead to different investment strategies for the two exploratory ver-
sions. We derive the optimal exploratory solution as a Gaussian distribution with
parameters depending on time and portfolio wealth. By virtue of the derived closed-
form solutions, we identify a relationship in the temperature parameter for the two
exploratory versions to yield the same exploratory investment strategy and the same
exploratory wealth process. It is worth noting that the resulting value functions
are not identical even when we set the temperature parameters to yield the same
exploratory investment strategy from both.

In our study, we consider three specific functional forms for the temperature pa-
rameter in the exploratory Kelly portfolio problems and develop implementable RL
algorithms with the aid of the obtained closed-form solutions and value functions.
The variance term in the Gaussian distribution of the optimal control under the
three functional forms of temperature parameter shows different time-varying pat-
terns: increasing, constant, and decreasing over time. We call the resulting portfolio
strategies the RL Kelly strategies. We apply the three RL algorithms in extensive
simulation studies. In particular, we conduct a simulation study to confirm the
convergence of our RL algorithms, and we then compare their performance with
the MLE-based strategies, the fully Kelly, the fractional Kelly, and the shrinkage
Kelly (by Han et al. (2019)) strategies. The simulation results show that the RL
Kelly strategies yield significantly better and more robust performance than these
benchmark Kelly strategies even under model misspecification. Thus, the RL Kelly
strategy provides a practical improvement to those existing Kelly strategies.

The entropy-regularization RL framework has been applied to several investment
problems in the recent literature including Wang and Zhou (2019, 2020) and Dai et al.
(2020). Wang and Zhou (2019, 2020) apply the RL method to a mean-variance prob-
lem. This method benefits the investor in the mean-variance space by achieving the
target expected return faster than several other estimation methods. Dai et al. (2020)
also adopt a mean-variance framework but base their analysis on the log-return of
the portfolio and study the equilibrium solution, instead of the pre-commitment so-
lution that Wang and Zhou (2019, 2020) investigate. The exploratory mean-variance
problem in Dai et al. (2020) reduces to an exploratory Kelly problem as a special
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case, but our study in this chapter differs from Dai et al. (2020) and makes contribu-
tions in several different aspects. First, while the control in Dai et al. (2020) is the
investment portion of wealth, we study the exploratory Kelly problem by considering
both the amount of investment in stock and the portion of wealth in stock as the
control. We derive explicit solutions for both formulations. Second, while the dis-
cussion in Dai et al. (2020) mainly focuses on a constant temperature parameter and
covers the case with an exponentially decaying temperature parameter, our study
for both formulations is for a general time-varying temperature parameter. Third,
we clarify the condition for the two formulations to have the same exploratory in-
vestment strategy, which otherwise is not as apparent as their equivalence under the
classical formulation. When the temperature parameters from the two formulations
satisfy a certain equation (see equation (2.29)), both formulations will yield the same
exploratory investment strategy.

The RL algorithm of Wang and Zhou (2020) addresses the minimum variance of
the terminal wealth problem when the terminal mean is targeted. The RL algorithm
of Dai et al. (2020) finds the equilibrium strategy under the log-mean-variance cri-
terion. Our RL algorithms borrow the same idea of using temporal difference error
to update parameters as in Wang and Zhou (2020) and Dai et al. (2020), but have
a different design. First, their algorithms follow an episodic framework, where the
updated values of model parameters from one episode are used as the initial values
of parameters for the next episode. The investment strategy rule is updated only at
the start of each episode and remains unchanged throughout each episode. In our
proposed algorithm, we interpret one episode as one investment time horizon con-
sidered for the Kelly problem. Our RL algorithms update the investment strategy
over each trading period to make the strategy more practical. So, our algorithm is a
one-step online algorithm. Second, in our simulation studies, we treat each episode
independently and start from the same initial guess of model parameters in simulat-
ing each episode. The independence of all episodes run in the simulation allows us
to assess the performance of an RL algorithm applied over one episode.

The remainder of the chapter is structured as follows. Section 2.2 introduces
the classical Kelly criterion problem. Section 2.3 presents the exploratory Kelly
problem that takes the dollar amount invested in stock as the control. Section 2.4
introduces the exploratory Kelly problem that uses the portion of wealth as the
control. Section 2.5 creates RL algorithms, and Section 2.6 contains the simulation
studies. Section 2.7 concludes the section.
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2.2 Kelly Criterion Problem

We consider a frictionless market and a filtered probability space (Ω,F , {Ft}0≤t≤T ,P)
in a finite time horizon [0, T ]. The market allows short-selling and leverage without
extra cost. We assume that there are only two assets in the market: one riskless
asset (bond) Bt and one risky asset (stock) St. The risk-free interest rate is r so that
dBt = rBtdt. The stock price follows a geometric Brownian motion (GBM) with
constant parameters µ and σ:

dSt = µStdt+ σStdWt

where {Wt, 0 ≤ t ≤ T} is a standard Brownian motion.

An investor with an initial wealth of x0 trades in the market to maximize her
discounted terminal wealth. Denote the discounted amount invested in the stock at
time t by ut ∈ R and the corresponding discounted wealth process by xt ≡ xu

t ∈ R+.
Under the self-financing condition, the discounted wealth process xt satisfies:

dxu
t = ρσutdt+ σutdWt

where ρ = µ−r
σ

is the Sharpe ratio of the stock. We assume the investor aims
to establish a trading strategy according to the Kelly criterion. In other words, the
investor’s optimal trading strategy is solved from the following optimization problem:

max
u∈A(0,x0)

E[U(xu
T )] = max

u∈A(0,x0)
E[log xu

T ], (2.1)

where U is the logarithmic function, i.e., U(x) = log x for x ≥ 0, and A(0, x0)
is the set of admissible controls (i.e., R-valued measurable Ft-adapted and square
integrable processes).

Through either the Hamilton-Jacobi-Bellman (HJB) equation (Merton (1971)), or
the martingale method (e.g., Goll and Kallsen (2000)), we have the optimal strategy:

u∗
t (x) =

ρx

σ
. (2.2)

and the optimal wealth process:

dx∗
t = ρ2x∗

tdt+ ρx∗
tdWt, or equivalently x∗

t = x0e
ρ2

2
t+ρWt .

Thus, the optimal expected terminal log-return is given by:

E[log x∗
T ] = E

[
log x0 +

ρ2

2
T + ρWT

]
= log x0 +

ρ2

2
T. (2.3)
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2.3 Exploratory Kelly Amount Problem

Now we extend the classical Kelly criterion problem into an RL framework. We call
it the exploratory version of the Kelly criterion problem, or simply, the exploratory
(Kelly) problem. In this section, we use the amount of investment in stock as the
control process and refer to the resulting exploratory problem as the “(exploratory
Kelly) amount problem” when it becomes necessary or helpful to distinguish the
exploratory formulation from the one using the portion of wealth as the control
process.

2.3.1 Motivation

The exploratory formulation in Wang et al. (2019), and Wang and Zhou (2019, 2020)
is motivated by the trade-off between exploitation and exploration. In RL, when an
agent is going to take an action, they will either exploit the current knowledge or
explore the environment. If exploitation is selected, they will choose an action that
maximizes the short-term rewards based on the experience so far. This optimal short-
term action is also called the greedy action. However, the greedy action is desirable
only when the knowledge about the environment so far is sufficient. Consequently, it
is preferable to occasionally explore the environment randomly to improve the level of
knowledge. The agent always faces a trade-off between exploitation and exploration
when trying to accumulate the largest long-term reward. One approach to solving
the RL problem is to employ an ε-greedy policy, i.e., choosing the greedy action with
a probability of 1− ε and random actions with a probability of ε, for some ε ∈ (0, 1).
A larger ε leads to more exploration, while a smaller ε favours employing the greedy
strategy.

For our Kelly criterion problem, it seems that there is no need to explore the
environment since the full Kelly strategy dominates other strategies. However, dom-
ination has been found to fail in a practical scenario. Indeed, fractional Kelly strate-
gies perform better than the full Kelly strategy in practice. This is partially due to
the large bets of the full Kelly strategy, which would be very risky in a short period.
Another reason is the estimation error of model parameters, i.e., µ and σ in our set-
ting. Estimation errors of mean returns affect portfolio selection problems more than
those of the covariances (Kallberg and Ziemba (1984)). A full Kelly strategy with
biased estimates would be dominated by a fractional Kelly strategy with unbiased
estimates (Han et al. (2019)). The deficient practical performance of the full Kelly
strategy motivates us to apply exploration methods for higher rewards.
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2.3.2 Exploratory Wealth Process

In the Kelly criterion problem, the greedy action is given by (2.2). In the exploratory
problem, we consider random actions which could be formulated by a control dis-
tribution π(u), i.e., every action is randomly drawn from the control distribution.
Therefore, we are now interested in finding the optimal control distribution instead
of greedy actions.

In RL, a policy is how an agent behaves in different states (Sutton and Barto
(2018)). In our scenario, the state corresponds to the current (discounted) wealth,
and the policy corresponds to the control distribution π(u). Given a control distri-
bution π, every draw from it is a classical control like one in equation (2.2). Every
classical control will receive a reward from the environment. Then, we could estimate
the rewarding mechanism of the environment by drawing N classical controls. As N
goes to infinity, we would be very close to the true rewarding mechanism.

Suppose at time t, we have a control distribution πt and N independent sample
classical controls ui, i = 1, 2, ..., N , drawn from πt. {xi

t, t ∈ [0, T ]} is the wealth
process under the control {ui

t, t ∈ [0, T ]} for i = 1, 2, · · · , N . The key idea is to view
xi
t as independent samples drawn from a new wealth process Xπ

t . We denote Xπ
t as

the exploratory version of the controlled wealth process. This new wealth process,
by the idea of RL, can be approached by sample paths xi

t, i = 1, 2, ..., N as N goes
to infinity. Following the procedure in section 2.1 of Wang et al. (2019), we get the
dynamics of the exploratory wealth process Xπ

t

dXπ
t =

∫
R
ρσuπt(u) dudt+

√∫
R
σ2u2πt(u)du dWt

= ρσµt dt+ σ
√

µ2
t + σ2

t dWt

=: α(πt) dt+ β(πt) dWt

(2.4)

where
α(πt) = ρσµt, β(πt) = σ

√
µ2
t + σ2

t (2.5)

and

µt =

∫
R
uπ(u) du, σ2

t =

∫
R
u2πt(u) du− µ2

t . (2.6)

We also assume E
[∫ T

0

√
µ2
t + σ2

t dt
]
<∞ to ensure that Xπ

t is well defined.

If an agent invests following an RL policy {πt}, then, with the highest chance, the
agent would execute µt, i.e., the mean of the control distribution, and meanwhile,
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the agent would have a chance to explore the environment by taking other possible
actions. It is worth noting, however, that the agent’s wealth is not fully explained by
the exploratory wealth process. By empirically executing an RL policy, the wealth
process is a realization from the draws of the control distribution and the stock
price process. Both are random and independent of each other. The exploratory
wealth process only incorporates the random effect from the stock price process, or
equivalently from the Brownian motionWt. The exploratory wealth process describes
the average of wealth paths from a given exploratory investment strategy πt.

2.3.3 Trade-Off Between Exploitation and Exploration

If the control distribution gives a larger probability mass to a single control rule, e.g.,
classical control, the agent will explore less and execute the single control rule more
frequently. An extreme case of the control distribution is that it gives probability
one to a single classical control. In this case, the agent would not explore anymore
and the single control would be the optimal classical control. So, the control distri-
bution needs to be regulated to maintain a certain degree of exploration in a learning
procedure.

The need of regulating the level of exploration leads to the application of differen-
tial entropy, which has been widely used in information theory to measure a random
variable’s average level of uncertainty or information (Cover and Thomas (1991)).
More uncertainty of the control distribution corresponds to a larger entropy. The
differential entropy has indeed been used by Wang et al. (2019), Wang and Zhou
(2020, 2019) and Dai et al. (2020) to regularize exploration for linear-quadratic con-
trol problems with uncertainty. In particular, it has been used by Wang and Zhou
(2020) and Dai et al. (2020) for a continuous-time mean-variance portfolio allocation
problem.

The entropy for control πt is defined as:

H(πt) = −
∫
R
πt(u) log πt(u)du. (2.7)

Because we study the problem in the time horizon [0, T ], the aggregated entropy
of the control distribution process {πt, t ∈ [0, T ]} is the integral of the differential
entropy over the whole investment time horizon [0, T ].

Our exploratory Kelly amount problem modifies the classical optimization prob-
lem (2.1) by using the exploratory wealth process and an entropy regularization term.
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It is defined as follows:

max
π∈A(0,x0)

E
[
logXπ

T +

∫ T

0

λa(t)H(πt) dt

]
= max

π∈A(0,x0)
E
[
logXπ

T −
∫ T

0

λa(t)

∫
R
πt(u) log πt(u) du dt

] (2.8)

where the exogenous parameter λa(t) > 0 regularizes the level of exploration and is
called the temperature parameter in the RL literature. The temperature parameter
balances exploitation and exploration in an RL framework. A larger λa(t) encour-
ages more exploration as the entropyH(πt) is larger for more dispersed distributional
controls πt. We attach the subscript “a” in the notation λa(t) to indicate the temper-
ature parameter is for the exploratory amount problem, as in the subsequent sections
we need to distinguish it from the temperature parameter for the exploratory portion
problem, which is formulated with the portion of wealth as the control.

A(0, x0) in (2.8) is the set of admissible control distribution processes on [0, T ].
For fixed (s, x) ∈ [0, T ] × R+, a control distribution process π = {πt, s ≤ t ≤ T}
belongs to A(s, x) if (Wang and Zhou (2020))

(1) for each s ≤ t ≤ T , πt ∈ P(R) almost surely, where P(R) denotes the set of
R-valued probability density functions;

(2) for each A ∈ B(R), {
∫
A πt(u) du, s ≤ t ≤ T} is Ft-progressively measurable;

(3) E
[∫ T

s

√
µ2
t + σ2

t dt
]
<∞, 0 ≤ s ≤ T ;

(4) E
[
| logXπ

T −
∫ T

s
λa(t)

∫
R πt(u) log πt(u) du dt|

∣∣∣ Xπ
s = x

]
<∞, 0 ≤ s ≤ T .

Since πt is a probability density for all t ∈ [0, T ], it must satisfy

πt(u) ≥ 0, for all u ∈ R and

∫
R
πt(u)du = 1.

Below we discuss the solution to the exploratory amount problem (2.8). The
value function of this optimization problem is defined as:

V a(t, x;λa(t)) = max
π∈A(t,x)

E
[
logXπ

T −
∫ T

t

λa(v)

∫
R
πv(u) log πv(u) du dv

∣∣∣∣ Xπ
t = x

]
.

12



A standard application of the Dynamic Programming Principle yields the following
HJB equation for the value function:

vt(t, x) + max
πt∈P(R)

{
α(πt)vx(t, x) +

1

2
β2(πt)vxx(t, x)− λa(t)

∫
R
πt(u) log πt(u)du

}
= 0

(2.9)
with terminal condition v(T, x) = log x. In the above, vt, vx and vxx denote the
corresponding partial derivatives of the function v(t, x).

Theorem 2.3.1. The maximization problem in equation (2.9) possesses the following
density function as a solution:

π∗
t (u;x, λa(t)) =

exp
{

1
λa(t)

[
1
2
σ2vxx(t, x)u

2 + ρσvx(t, x)u
]}

∫
R exp

{
1

λa(t)

[
1
2
σ2vxx(t, x)u2 + ρσvx(t, x)u

]}
du

. (2.10)

Proof. See Appendix A.1.1.

Equation (2.10) indicates that π∗
t (u;x, λa(t)) is a Gaussian density if vxx(t, x) < 0,

which actually holds as we can tell shortly from Theorem 2.3.2.

Now that

µ∗
t :=

∫
R
uπ∗

t (u) du = − ρvx(t, x)

σvxx(t, x)

and

σ∗
t :=

√∫
R
u2π∗

t (u)du− (µ∗
t )

2 =

√
− λa(t)

σ2vxx(t, x)
,

substituting these into the expressions for α(πt) and β(πt) in (2.5) and using the
control π∗

t (u;x, λa(t)) in equation (2.10), we can simplify the HJB equation (2.9)
into:

vt(t, x)−
ρ2v2x(t, x)

2vxx(t, x)
− λa(t)

2
log

(
−σ2vxx(t, x)

2πλa(t)

)
= 0 (2.11)

with v(T, x) = log x. The above partial differential equation (PDE) is actually the
Merton-type PDE in the classical optimization problem plus a term resulting from the
entropy penalization. A similar PDE arises in the mean-variance portfolio allocation
problem in Wang and Zhou (2020) but with a different terminal condition.

Define the real-valued function

f(t) = 1 +

∫ T

t

λa(s)ds, t ∈ [0, T ], (2.12)
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and let ga be a real-valued function with ga(T ) = 0 and derivative:

g′a(t) = −
ρ2

2
f(t) +

λa(t)

2
log

σ2f(t)

2πλa(t)
. (2.13)

Theorem 2.3.2. For the exploratory optimization problem (2.8),

(a) the value function is

V a(t, x;λa(t)) = f(t) log x+ ga(t),

(b) the optimal control follows a Gaussian distribution

π∗
t (u;x, λa(t)) ∼ N

(
ρx

σ
,
x2λa(t)

σ2f(t)

)
, (2.14)

(c) the exploratory wealth process Xπ∗
t under the optimal control π∗ satisfies

dXπ∗

t = ρ2Xπ∗

t dt+

√
ρ2 +

λa(t)

f(t)
·Xπ∗

t dWt, (2.15)

or equivalently,

Xπ∗

t = x0 exp

{
ρ2

2
t+

1

2
log

1 +
∫ T

t
λa(s)ds

1 +
∫ T

0
λa(s)ds

+

∫ t

0

√
ρ2 +

λa(s)

f(s)
dWs

}
, (2.16)

(d) the expected terminal log-return is

E[logXπ∗

T ] = log x0 +
ρ2

2
T − 1

2
log

(
1 +

∫ T

0

λa(s)ds

)
, (2.17)

(e) the relative loss of expected terminal log-return is

E[log x∗
T ]− E[logXπ∗

T ]

E[log x∗
T ]

=
log(1 +

∫ T

0
λa(s)ds)

2 log x0 + ρ2T
, (2.18)

where E[log x∗
T ] is the expected log-return of the terminal portfolio under the

classical Kelly strategy and given in equation (2.3).
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Proof. See Appendix A.1.2

The exploratory optimal control π∗ for the amount problem (2.8) is centered at
the classical optimal control u∗ given in equation (2.2). The variance term in the

optimal Gaussian distribution control depends on λa(t)
f(t)

.

λa(t)

f(t)
=

λa(t)

1 +
∫ t

t
λa(s)ds

.

The variance term determines the level of exploration. So, equation (2.14) sheds
important light on how different time-varying properties of the control distribution
can be designed by using different time-decaying λa(t), or equivalently f(t). However,
not all time-decaying temperature processes lead to a time-decaying variance, for
example, linearly decaying λa(t) (see Appendix A.1.3) and exponentially decaying
λa(t) (see next subsection). The following proposition suggests the conditions of f(t)
for an appropriate temperature process.

Proposition 2.3.3. A temperature process λa(t) can be characterized by f(t) as
λa(t) = −f ′

(t). A necessary and sufficient condition for λa(t) to be time-decaying
and lead to a time-decaying variance is that f(t) is strictly log-convex.

Proof. The proof is straightforward from the definitions of λa(t) and the variance of

the control distribution, x2λa(t)
σ2f(t)

.

2.3.4 Exploratory Solutions under Several Specific Temper-
ature Parameters

In this section, we present results for three specific forms of the temperature param-
eter. The variance term shows different time-varying patterns over time under these
three forms.

Constant λa(t)

When the temperature parameter for problem (2.8), λa(t), is a constant λ > 0,
equations (2.12) and (2.13), together with the terminal condition ga(T ) = 0, imply

f(t) = 1 + (T − t)λ
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and

ga(t) = −
∫ T

t

[
−ρ2

2
[1 + λ(T − s)] +

λ

2
log

σ2

2πλ
+

λ

2
log [1 + (T − s)λ]

]
ds.

Computing the integral for ga and applying Theorem 2.3.2, we get the value function
given by

V a(t, x;λ) =[1 + λ(T − t)] log x− 1 + λ(T − t)

2
log [1 + λ(T − t)]

− λρ2

4
(T 2 − t2) +

[
ρ2

2
+

λ

2

(
ρ2T − log

σ2

2πeλ

)]
(T − t),

(2.19)

and the optimal exploratory amount control given by

π∗
t (u;x, λ) ∼ N

(
ρx

σ
,

λx2

σ2(1 + λ(T − t))

)
. (2.20)

Power-Decaying λa(t)

In practice, as the agent collects more information from the environment, their atti-
tude towards exploration may change over time. In light of this, state-dependent or
time-dependent temperature parameters have been adopted in the literature (Ishii
et al. (2002); Wang and Zhou (2020); Dai et al. (2020)). For our exploratory amount
problem, one feasible temperature process is the power-decaying λa(t) defined as
follows:

λa(t) = λ0
(T + λ1)

λ0

(t+ λ1)λ0+1
(2.21)

with constants λ0 > 0 and λ1 > 0. Its corresponding f(t) is f(t) = (T+λ1

t+λ1
)λ0 ,

which is log-convex (and therefore convex). Under this particular power-decaying
temperature process, the value function for the amount problem (2.8) is given by

V a(t, x;λa(t)) =



(T+λ1

t+λ1
)λ0 log x+ ρ2(T+λ1)

2(λ0−1)

[
(T+λ1

t+λ1
)λ0−1 − 1

]
− 1

2λ0

[
(T+λ1

t+λ1
)λ0 − 1

]
− 1

2
(T+λ1

t+λ1
)λ0 log σ2(t+λ1)

2πλ0

+1
2
log σ2(T+λ1)

2πλ0
, λ0 ̸= 1

T+λ1

t+λ1
log x+ ρ2(T+λ1)

2
log T+λ1

t+λ1
− T+λ1

2(t+λ1)
+ 1

2

− T+λ1

2(t+λ1)
log σ2(t+λ1)

2π
+ 1

2
log σ2(T+λ1)

2π
, λ0 = 1

(2.22)
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and the optimal control is given by

π∗
t (u;x, λa(t)) ∼ N

(
ρx

σ
,

λ0x
2

σ2(t+ λ1)

)
(2.23)

which has a time-decreasing variance λ0x2

σ2(t+λ1)
.

Exponentially Decaying λa(t)

Consider the optimization problem (2.8) with an exponentially decaying temperature
parameter

λa(t) = λ0e
λ0(T−t), where λ0 > 0.

Applying Theorem 2.3.2, we get the value function

V a(t, x;λa(t)) = eλ0(T−t) log x+

(
ρ2

2λ0

− 1

2
log

σ2

2πλ0

)(
eλ0(T−t) − 1

)
,

and the optimal amount control

π∗
t (u;x, λa(t)) ∼ N

(
ρx

σ
,
λ0x

2

σ2

)
which has a time-constant variance λ0x2

σ2 .

2.4 Exploratory Kelly Portion Problem

In portfolio selection problems, the investor can either control the amount of wealth
or the proportion of wealth invested in the stock. In the classical problem, these
two choices are equivalent, producing the same optimal strategy, value function, and
expected terminal log-return. In Section 2.3, the exploratory problem is formulated
in terms of controlling the amount invested in the stock and is regularized using the
differential entropy (2.7). Now, we revisit the problem with a regularization based on
the portion of wealth invested in the stock. We call the resulting control problem the
“exploratory (Kelly) portion problem” to distinguish it from the formulation based
on the amount of investment.

Recall that ut ∈ R represents the amount of wealth invested in the stock. Given
that total wealth is xt, the portion of wealth invested in the stock is therefore zt =

17



ut/xt ∈ R. We denote the associated control distribution for the portion of wealth
by ϕt(·). The entropy regularizing the new control distribution is:

H(ϕt) = −
∫
R
ϕt(z) log ϕt(z) dz = H(πt)− log xt, (2.24)

which includes the extra term “log xt”. For a solution to the exploratory problem
with the entropy applied to ϕt, we can apply the above relationship and solve the
problem via πt:

V p(t, x;λp(t)) := max
ϕ∈A(t,x)

E
[
logXϕ

T +

∫ T

t

λp(v)H(ϕv) dv

∣∣∣∣ Xϕ
t = x

]
= max

π∈A(t,x)
E
[
logXπ

T +

∫ T

t

λp(v)(H(πv)− logXπ
v ) dv

∣∣∣∣ Xπ
t = x

]
= max

π∈A(t,x)
E
[
logXπ

T −
∫ T

t

λp(v)

∫
R
πv(z) log πv(z) dz dv

−
∫ T

t

λp(v) logX
π
v dv

∣∣∣∣ Xπ
t = x

]
.

(2.25)
Thus, V p satisfies the HJB equation

vt(t, x)+ max
ϕt∈P(R)

{
α(ϕt)xvx(t, x) +

1

2
β2(ϕt)x

2vxx(t, x)− λp(t)

∫
R
ϕt(z) log ϕt(z) dz

}
= 0

or equivalently,

vt(t, x)+ max
πt∈P(R)

{
α(πt)vx(t, x) +

1

2
β2(πt)vxx(t, x)− λp(t)

∫
R
πt(z) log πt(z) dz − λp(t) log x

}
= 0

with terminal condition v(T, x) = log x.

Equations (2.24) and (2.25) demonstrate why the solutions turn out not to be
equivalent when using the amount of investment and using the portion of wealth as
the control in the exploratory Kelly problem while they are under the classical formu-
lation. The distribution for the portion variable yields a smaller entropy compared
with that for the amount variable.

Let gp be a real function with derivative

g′p(t) = −
ρ2

2
+

λp(t)

2
log

σ2

2πλp(t)
,

and terminal condition gp(T ) = 0.
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Theorem 2.4.1. For the exploratory optimization problem (2.25),

(a) the value function is
V p(t, x;λp(t)) = log x+ gp(t),

(b) the optimal control follows a Gaussian distribution

ϕ∗
t (u;x, λp(t)) ∼ N

(
ρ

σ
,
λp(t)

σ2

)
, (2.26)

(c) the exploratory wealth process Xϕ∗

t under the optimal control ϕ∗ satisfies

dXϕ∗

t = ρ2Xϕ∗

t dt+
√

ρ2 + λp(t) ·Xϕ∗

t dWt, with Xϕ∗

0 = x0,

or equivalently,

Xϕ∗

t = x0 exp

{
ρ2

2
t− 1

2

∫ t

0

λp(s)ds+

∫ t

0

√
ρ2 + λp(s)dWs

}
, (2.27)

(d) the expected terminal log-return is

E[logXϕ∗

T ] = log x0 +
ρ2

2
T − 1

2

∫ T

0

λp(s)ds,

(e) the relative loss of expected terminal log-return is

E[log x∗
T ]− E[logXϕ∗

T ]

E[log x∗
T ]

=

∫ T

0
λp(s)ds

2 log x0 + ρ2T
. (2.28)

Proof. The proof is parallel to that of Theorem 2.3.2 and hence, omitted.

Remark 1. A comparison between Theorems 2.3.2 and 2.4.1 leads to the following
interesting observations:

(a) The variance term in the optimal control distribution is more directly related
to the temperature parameter for the portion problem than the amount problem.
The variance term is proportional to the temperature parameter for the portion
problem.
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When λp(t) is set to be identical to λa(t), the variance of the investment amount
is larger in the portion problem than in the amount problem (see equations (2.14)

and (2.26)) since f(t) = 1 +
∫ T

t
λa(s)ds ≥ 1. Accordingly, the expected termi-

nal log-return is smaller, and the relative loss is larger in the portion problem.
A smaller exploratory variance for the amount solution is attributed to its rela-
tively smaller magnitude in the entropy term. As indicated in equation (2.25),
its entropy is smaller than that of the corresponding amount control by log xt,
and therefore, its inclusion in the optimality objective discourages exploration
compared with the formulation based on the amount variable.

(b) Equations (2.18) and (2.28) indicate that, as long as the temperature parameter
is set to decrease to zero over time, the relative loss in expected terminal log-
return diminishes to zero when the investment time horizon becomes infinitely
long.

(c) If we set temperature parameters in the two exploratory Kelly problems to satisfy

λp(t) =
λa(t)

1 +
∫ T

t
λa(s)ds

, t ∈ [0, t], (2.29)

then, both problems yield the same exploratory wealth process (see equations (2.16)
and (2.27)). Furthermore, under the condition (2.29), the optimal amount con-
trol is equivalent to the optimal portion control in the sense that both are Gaussian
distributions and the parameters for one are scaled by the portfolio wealth x from
the other. However, it is worth noting that the value functions differ between
the two exploratory Kelly problems even if the temperature parameters satisfy
condition (2.29).

For the three temperature processes λa(t) given in Section 2.3 for the amount
problem, the equivalent temperature process λp(t) for the portion problem is respec-
tively as follows:

1. Constant λa(t). When the temperature parameter for problem (2.8), λa(t), is
a constant λ > 0, the temperature parameter for the equivalent portion control
problem (2.25) is given by

λp(t) =
λ

1 + λ(T − t)
.
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In this case, the value function for the portion problem is given by

V p(t, x;λp(t)) = log x+
ρ2

2
(T − t) +

1

4

[(
log

σ2

2πλ

)2

−
(
log

σ2(1 + λ(T − t))

2πλ

)2
]

and the optimal exploratory portion control is

ϕ∗
t (u;x, λp(t)) ∼ N

(
ρ

σ
,

λ

σ2(1 + λ(T − t))

)
.

2. Power-Decaying λa(t). When the temperature for the amount problem is

λa(t) = λ0
(T+λ1)λ0

(t+λ1)λ0+1 with constants λ0 > 0 and λ1 > 0, the equivalent temperature

parameter for the portion problem is given by

λp(t) =
λ0

t+ λ1

.

In this case, the value function for the portion problem is given by

V p(t, x;λp(t)) = log x+
ρ2

2
(T − t) +

λ0

4

[(
log

σ2(t+ λ1)

2πλ0

)2

−
(
log

σ2(T + λ1)

2πλ0

)2
]

and the optimal exploratory portion control is

ϕ∗
t (u;x, λp(t)) ∼ N

(
ρ

σ
,

λ0

σ2(t+ λ1)

)
.

3. Exponentially Decaying λa(t). When the temperature for the amount problem
is λa(t) = λ0e

λ0(T−t) with constant λ0 > 0, the equivalent temperature parameter
for the portion problem is given by λp(t) = λ0. In this case, the value function
for the portion problem is given by

V p(t, x;λp(t)) = log x+

(
ρ2

2
− λ0

2
log

σ2

2πλ0

)
(T − t),

and the optimal exploratory portion control is

ϕ∗
t (u;x, λp(t)) ∼ N

(
ρ

σ
,
λ0

σ2

)
.
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2.5 Exploratory RL Algorithms

2.5.1 Policy Improvement

In a common RL problem, an agent learns from the environment through iterations
between policy evaluation and policy improvement (Sutton and Barto (2018)). We
previously formulated the procedure to find the optimal value function using the
exploratory version of the wealth process and entropy regularization. In this sub-
section, we study the policy improvement to complete the essential iterations in an
RL framework. We will focus on the amount problem (2.8) and consider a constant
temperature parameter because the results can be obtained in parallel for the por-
tion problem (2.25) and for both problems with a general time-varying temperature
parameter.

For a policy of a particular type, the following theorem guarantees that it could
be improved to a Gaussian policy. The theorem is modified from Wang and Zhou
(2020) to our scenario of the Kelly criterion problem.

Theorem 2.5.1. Suppose πt is an admissible control policy and V π(t, x), (t, x) ∈
[0, T ] × R+ is its corresponding value function satisfying V π

xx(t, x) < 0. Suppose a
new control policy defined as

π̃t(u;x) ∼ N
(
− ρV π

x (t, x)

σV π
xx(t, x)

, − λ

σ2V π
xx(t, x)

)
(2.30)

is also admissible under the same choice of λ. Then we have V π̃(t, x) ≥ V π(t, x).
That is, we can improve policy πt by an admissible Gaussian policy (2.30).

Proof. See Appendix A.1.4.

Since Theorem 2.5.1 suggests that the improved policy is Gaussian, below we
illustrate how exactly we improve Gaussian policies to the form of (2.20). The
improvement could be achieved by updating only the parameters of the Gaussian
control, i.e., the mean and the variance. Assume we start with a simple Gaussian
control:

π0
t (u;x) ∼ N

(
β1x,

cx2

1 + b(T − t)

)
(2.31)

with c > 0 and b > 0 guaranteeing a positive variance. To apply the update in
(2.5.1), we shall calculate the value function V π0

(t, x) and its derivatives. We start
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from the PDE:

V π0

t (t, x) +

∫
R

[
ρσuV π0

x (t, x) +
1

2
σ2u2V π0

xx (t, x)− λ log π0
t (u)

]
π0
t (u) du = 0,

with V π0
(T, x) = log x.

Substituting the form of the control distribution π0 into the above PDE yields:

V π0

t + ρσβ1xV
π0

x +
1

2
σ2

(
β2
1 +

c

1 + b(T − t)

)
x2V π0

xx +
λ

2
log

2πecx2

1 + b(T − t)
= 0 (2.32)

with the terminal condition V π0
(T, x) = log x. Following the same procedure as for

solving PDE (2.11), we can obtain a solution to the above PDE:

V π0

(t, x) = [1 + λ(T − t)] log x−
[
λ+ σ2c(1− λ/b)

2b
+

λ

2
(T − t)

]
log [1 + b(T − t)]

+

[(
ρσβ1 −

1

2
σ2β2

1

)
(1 + λT ) +

λ

2
log 2πce2 − λσ2c

2b

]
(T − t)

− λ

2

(
ρσβ1 −

1

2
σ2β2

1

)
(T 2 − t2).

(2.33)
Calculating and substituting the corresponding derivatives of the above V π0

(t, x)
into equation (2.30), we obtain the update:

π1
t (u;x) ∼ N

(
ρx

σ
,

λx2

σ2(1 + λ(T − t))

)
(2.34)

which is exactly the optimal control defined in equation (2.20).

However, it is worth noting that the above two-step procedure is not a directly
implementable scheme for policy improvement since it requires the true model pa-
rameter values. The value function V π0

depends on the true values of the parameters
σ and ρ. This motivates us to develop iterative algorithms to update our belief on
the model parameters over time. The iterative algorithms will be discussed in the
following section.

2.5.2 Temporal Difference Error Minimization Algorithm

The previous discussion about policy evaluation and policy improvement completes
the requirements of RL procedures. In this subsection, we build algorithms for ex-
ploratory optimization problems. Our discussion will be focused on the exploratory
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amount problem with a constant temperature parameter λ. Algorithms for exten-
sions to a time-varying temperature parameter and to the portion problem follow
in the same fashion. The design of the algorithms is adapted from Wang and Zhou
(2020). However, our algorithm is a one-step online algorithm, different from the
offline algorithm used in Wang and Zhou (2020).

Theorem 2.5.1 suggests that the main task is to update model parameters since
the optimal controls are from the Gaussian distribution family. We parametrize the
value function V as V π(t, x;α) and control πt(u) as πt(u;β) to facilitate the discus-
sion of parameter updating in the algorithm, where α = (α1, α2) and β = (β1, β2)
with each element of the two vectors specified later. The temperature parameter
λ represents the weight an agent puts on exploration against exploitation. So λ is
exogenous and pre-specified by the agent.

In view of the discussion following Theorem 2.5.1 in Section 2.5.1, we start with a
simple Gaussian distribution πt(u;β) parametrized by β, with mean β1x and variance

x2e−2β2−1

2π[1 + λ(T − t)]
(2.35)

for some constants β1 < 0 and β2 > 0. The parametrization for the above variance
is to get a neat expression for its entropy:

−
∫
R
πt(u;β) log πt(u;β) du = log x− 1

2
log [1 + λ(T − t)]− β2. (2.36)

Recall that the value function under the Gaussian control in (2.31) is given by (2.33).
So, for the control πt(u;β), we set c = e−2β2−1 and b = λ in (2.33) to get the value
function as follows:

[1 + λ(T − t)] log x− 1 + λ(T − t)

2
log [1 + λ(T − t)]

+

[(
ρσβ1 −

1

2
σ2β2

1

)
(1 + λT ) +

λ

2
log 2πce2 − σ2β2

2

]
(T − t)

− λ

2

(
ρσβ1 −

1

2
σ2β2

1

)
(T 2 − t2).

(2.37)

On the other hand, equation (2.19) suggests the following form for the value function:

V π(t, x;α) = [1+λ(T−t)] log x−1 + λ(T − t)

2
log [1 + λ(T − t)]+α1(t

2−T 2)+α2(t−T ),
(2.38)
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for some constants α1 and α2.

In the iterative algorithm, we start from some initialized values for the model
parameters ρ and σ. The specification of these two parameter values would give us
initial values for α and β. The initial values for β can be obtained by comparing the
mean β1x and the variance term in (2.35) with the counterparts in equation (2.20).
The initial values of α can be derived by comparing the above parametric form of
V π(t, x;α) with that of V (t, x;λ) in equation (2.19).

Given initial values for α and β, we now discuss how to update the parameters
iteratively. We update the parameter β1 using a heuristic relationship with the
other parameters α1, α2 and β2. We update α1, α2 and β2 through a minimization
procedure using the gradient descent algorithm that we will describe in detail later.

For the update of β1, we note that β1x is the mean in the proposed Gaussian
policy and ρ

σ
x is the mean in the optimal Gaussian policy. So, we work to find an

expression for ρ
σ
in terms of the parameters α and β. We first calculate the entropy

under the optimal control distribution π∗
t in (2.20):

−
∫
R
π∗
t (u;β) log π

∗
ti
(u;β) du = log x− 1

2
log [1 + λ(T − t)] +

1

2
log

2πeλ

σ2
(2.39)

and then compare its expression with (2.36) to get:

β2 = −
1

2
log

2πeλ

σ2
, or equivalently σ2 = 2πλe2β2+1. (2.40)

We consequently equate the coefficients for t2 in equations (2.37) and (2.38) to obtain

α1 =
λ

2

(
ρσβ1 −

1

2
σ2β2

1

)
which, along with (2.40), gives

ρ

σ
=

2α1

λσ2β1

+
1

2
β1 =

α1e
−2β2−1

πλ2β1

+
1

2
β1. (2.41)

Since β1x is the mean in the proposed Gaussian policy and ρ
σ
x is the mean in the

optimal Gaussian policy, we apply equation (2.41) to make the update:

β1 ←
(
α1e

−2β2−1

πλ2β1

+
1

2
β1

)
. (2.42)
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For updating the other parameters β2, α1 and α2, we follow the idea of Doya
(2000) and Wang and Zhou (2020) by minimizing the cumulative continuous-time
temporal difference (TD) error. Suppose πt is the optimal control and V π is the
corresponding value function. Then V π satisfies the following equation according to
Bellman’s principle:

V π(t, x) = E
[
V π(s,Xπ

s )− λ

∫ s

t

∫
R
πτ (u) log πτ (u) du dτ

∣∣∣∣ Xπ
t = x

]
, s ∈ (t, T ].

(2.43)
The continuous-time TD error measures the difference between the two sides of the
equation as s approaches t (Doya (2000)):

εt = V̇ π(t, x;α)− λ

∫
R
πt(u;β) log πt(u;β) du (2.44)

where V̇ π is the partial derivative of V π with respect to time t. Then, the cumulative
continuous-time TD error to time t is defined as

Ct(α,β) =
1

2
E
[∫ t

0

|εs|2 ds
]
=

1

2
E
[∫ t

0

|V̇ π(s, x;α)− λ

∫
R
πs(u;β) log πs(u;β)du|2 ds

]
.

(2.45)
which is a function of the parameters α and β.

To implement the RL algorithm numerically, we need to get an approximation
of the TD error. We partition the time interval [0, T ] into {ti, i = 0, . . . , n} with
t0 = 0, ti+1 = ti + ∆t and tn = T for a constant ∆t. Let xi denote the state value
at time ti for i = 0, . . . , n, and write Si = {(tj, xj); j = 0, . . . , i} for the information
up to time ti. We approximate the TD error up to time ti by (with a slight abuse of
notation in the subscript of C):

Ci(α,β) =
1

2

∑
(tj ,xj)∈Si

(
V̇ π(tj, xj;α)− λ

∫
R
πtj(u;β) log πtj(u;β) du

)2

∆t. (2.46)

This method that replaces the theoretical expectation by the expectation with respect
to the empirical measure called the Sample Average Approximation (SAA) method
(Kim et al. (2015)).
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The derivative of the value function V π at time ti is approximated by

V̇ π(ti, xi;α) =
V π(ti+1, xi+1;α)− V π(ti, xi;α)

∆t

=
[1 + λ(T − ti+1)] log xi+1 − [1 + λ(T − ti)] log xi

∆t

− [1 + λ(T − ti+1)] log [1 + λ(T − ti+1)]− [1 + λ(T − ti)] log [1 + λ(T − ti)]

2∆t

+
α1(t

2
i+1 − t2i ) + α2∆t

∆t
.

(2.47)
Using the parametrized control and (2.36), we take the TD error approximation as
follows:

Ci(α,β) =
1

2

∑
(tj ,xj)∈Si

(
V̇ π(tj, xj;α) + λ log xj −

λ

2
log [1 + λ(T − tj)]− λβ2

)2

∆t.

(2.48)
We then use the Gradient Descent Algorithm in Goodfellow et al. (2016) to update
α1, α2 and β2 at time ti. The gradients with respect to the parameters are calculated
as follows:

∂Ci

∂α1

=
∑

(tj ,xj)∈Si

D(tj, xj,α,β)(t2j+1 − t2j) (2.49)

∂Ci

∂α2

=
∑

(tj ,xj)∈Si

D(tj, xj,α,β)∆t (2.50)

∂Ci

∂β2

=
∑

(tj ,xj)∈Si

D(tj, xj,α,β)(−λ∆t) (2.51)

where

D(tj, xj,α,β) = V̇ π(tj, xj;α) + λ log xj −
λ

2
log [1 + λ(T − tj)]− λβ2.

Supposing θα and θβ are learning rates for updating (α1, α2) and β2, we update
them by (α1, α2)

′−θα∇αCi(α,β) and β2−θβ∇βCi(α,β). Once we obtain an update
for (α1, α2, β2), we update β1 using (2.42) and keep the iterative procedure until a
termination criterion is satisfied. The pseudocode for the online updating procedure
is summarized in Algorithm 1.
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Algorithm 1: RL Algorithm with Amount Control

Input: Market parameters (µ, σ, r, ρ), learning rates θα, θβ, initial wealth x0,
investment horizon T , discretization ∆t, exploration rate λ.
Initialization: i = 1, α and β
while i ≤ T

∆t
do

Sample (ti, xi) under π(u;β)
Update set of samples Si = {(tj, xj); j = 0, . . . , i}
Update (α1, α2)

′
as (α1, α2)

′ − θα∇αCi(α,β) using (2.49) and (2.50)
Update β2 as β2 − θβ∇βCi(α,β) using (2.51)
Update β1 using (2.42)

Update πt(u;x,α,β) as N
(
β1x,

e−2β2−1x2

2π(1+λ(T−t))

)
i = i+ 1

end

Algorithms for other exploratory problems are given in Appendix A.2.

2.5.3 Discussion

This section discusses the empirical application of the RL algorithm.

First, a multivariate problem needs to be studied to implement the strategy in
practice. The above theoretical results could be extended to the multivariate case and
the corresponding algorithms could be built in the same style. Previous literature on
RL portfolio selection problems has developed a multivariate RL mean-variance op-
timization problem and implemented the resulting algorithm with 20 and 50 S&P500
stocks (Wang and Zhou (2019)). The main challenge of implementation is parame-
ter updating in a high-dimensional framework, especially for the covariance matrix.
However, this challenge remains for all multivariate portfolio selection problems.

Second, how to choose the temperature process λ(t) is also important. As λ(t)
measures the weight between the classical optimal strategy and random actions, it
could be linked to the investor’s risk preference. A risk-averse investor may choose
a small temperature parameter. At the same time, the value of the temperature
parameter determines the value of the variance in the optimal distributional strategy
π∗
t . A smaller variance leads to a more leptokurtic optimal distributional strategy.

In this case, random trading positions are more likely to be close to the classical
optimal strategy i.e. the mean of the distributional strategy. This could be a more
conservative RL strategy.
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Third, the transaction costs or turnover should be considered when implementing
the strategy in practice. Under the RL framework, transaction costs and turnover
could largely come from independent random actions between two trading points.
One way to control that is to use a smaller temperature parameter which leads to a
more leptokurtic optimal distributional strategy as discussed above. Another way is
to add another regularization term to the objective of the optimization problem to
penalize turnover.

2.6 Simulation Studies

This section implements the RL algorithms with simulated data and compares them
with several benchmark Kelly portfolio strategies.

2.6.1 Portfolio Strategies and Simulation Setting

We consider the following seven portfolio strategies:

(1) Oracle: Kelly strategy with actual parameter values,

(2) Plug-in: Kelly strategy with maximum likelihood estimation (MLE),

(3) Shrinkage: Shrinkage Kelly strategy proposed by Han et al. (2019),

(4) Fractional: Fractional Kelly strategy with MLE,

(5) RL-Amount: RL algorithm 1 with amount control and constant λ,

(6) RL-Portion: RL algorithm 3 with portion control and constant λ, and

(7) RL-Decay: RL algorithm 4 with amount control and power-decaying λa(t).

The Oracle strategy is defined in equation (2.2) with the true values used for the
parameters ρ and σ. The Oracle strategy is not a legitimate investment strategy
because it uses true parameter values which are unknown to us in practice. This
strategy is expected to perform the best since it is subject to no estimation risk and
no cost of exploration, although its performance is not attainable for practical use.
The Plug-in strategy follows a growing window framework to form the MLE for the
parameters µ and σ (or equivalently ρ and σ), and then substitute the resulting MLE
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into equation (2.2) for the portfolio weight. In the Shrinkage and Fractional Kelly
strategies, portfolio weights are also based on MLE but multiplied with fractional
weights. The fraction in the Shrinkage Kelly strategy is defined in equation (11) in
Han et al. (2019). It is proposed to mitigate the estimation error from MLE. The
Shrinkage Kelly strategy is validated to outperform several fractional Kelly strate-
gies with empirical studies (Han et al. (2019)). When there are more sample data
for estimation, the fraction becomes closer to 1. For the Fractional Kelly strat-
egy, we test nine fractional candidates from 0.1 to 0.9 with a step size of 0.1, by
M = 2,000 independent simulations of stock returns. We consider model param-
eters (µ, σ, r, ρ) = (0.2, 0.1, 0.02, 1.8), investment time horizon T = 1 year and the
initial portfolio wealth x0 = 1 as the benchmark setting in our simulation study. We
discretize the investment time horizon into 252 sub-intervals (i.e., the discretization
length ∆t = 1/252) with each subinterval representing one trading day in the stock
market. For all the fractional candidates along with a fraction of one (i.e., the full
Kelly strategy), we plot the corresponding average terminal log-return in Figure 2.1.
For the benchmark market setting, we choose the fraction of 0.7, under which the
portfolio performance is the best, in terms of the average terminal log-return. For
other market settings, we repeat the same selection procedure to choose the best
fraction.

Other strategies are also evaluated using 2,000 independent paths of stock returns.
Over each simulated path, all the strategies (2)-(7) start with an initial estimation
of parameters and updates parameters through time based on observed data. We set
the initial estimation of the model parameters to be the MLE from 100 simulated
data points.

For the three RL based strategies, we set the default learning rates θα = θβ =
0.0005, following Wang and Zhou (2020). For strategies RL-Amount and RL-Portion
with constant temperature parameters, we set λ = 0.5 as the default. For the RL-
Decay strategy with power-decaying temperature parameter, we set λ0 = 0.1 and
λ1 = 0.236 in equation (2.21) which gives λa(0) = 0.5. Similar to the fraction
selection for the Fractional strategy, we choose the default λ from several candidates
(see Table 2.1). From 2,000 simulations, the RL-Amount strategy, with λ varying
from 0.05 to 0.5, yields similar performance in terms of the average terminal log-
return and its standard error. The default λ of 0.5 is not the best temperature
parameter for the benchmark market setting, but a fair choice in comparing with
MLE based strategies (i.e., strategies Plug-in, Shrinkage, and Fractional).
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Figure 2.1: Fraction Selection for the Fractional Strategy

λ 0.025 0.05 0.1 0.25 0.5 1
Average Terminal Log-return 1.01 1.39 1.49 1.51 1.43 1.24

Standard Error 0.12 0.07 0.05 0.04 0.04 0.05

Table 2.1: Selection of Default λ: RL-Amount Strategy

2.6.2 Model Convergence

Before comparing our RL strategies with the MLE based strategies, we first in-
vestigate the convergence of the exploratory algorithm with simulated data. We
focus on the RL-Decay strategy since it has the desirable time-decaying control vari-
ance. We run the Oracle strategy and RL-Decay strategy for different time horizons
T ∈ {10/252, 1/12, 1/4, 1/2, 3/4, 1, 5/4, 3/2, 7/4, 2, 3, 4}, with other parameters set as
default, and then calculate the loss of the RL-Decay strategy relative to the Oracle
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strategy based on 8,000 independent replications. Figure 2.2 illustrates the conver-
gence of the relative loss to zero. The relative loss diminishes quickly as T increases.
Particularly, it is close to 0 when the investment time horizon is longer than one
year. It decreases to around 2% when the time horizon is two years. These simula-
tion results mean that the relative performance of the RL strategy improves quickly
over time and it performs almost as well as if we know the true parameter values in
the Oracle strategy when the investment time horizon is as long as one year.

Figure 2.2: RL-Decay Model Convergence

We also study the convergence of the RL algorithm under an episodic framework.
In contrast to the proposed online algorithms, an episodic algorithm only updates
the model parameter values after one episode. The learned parameter values are
then used throughout the next episode. For one simulation, we start from a random
set of initial parameter values1 and run for 150 episodes of length one year to get the
terminal (year-end) utility at the end of each episode. Then in another independent
simulation, we repeat this procedure to get another 150 terminal (year-end) utility

1The initial model parameter values are chosen as the MLEs from 100 simulated data points.
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values. In total, we repeat for 4,000 independent simulations of 150 episodes. Hence,
we have 4,000 values of the terminal (year-end) utility at the end of each episode.
Their average is taken to estimate the expected terminal utility for each episode. If
the RL algorithm works, then as k increases, the average terminal utility of the kth
episode is anticipated to be close to the theoretically optimal value in (2.17). The
result of the RL-Decay model is shown in Figure 2.3. The solid line is the average
terminal utility at the end of each episode. Under the benchmark parameters, the
theoretically optimal terminal utility is 1.54 (dashed line). As indicated by the graph,
after six episodes, the average (year-end) terminal utility keeps fluctuating around
the theoretically optimal one. This validates the rapid convergence of the algorithm
under the episodic framework.

Figure 2.3: RL-Decay Model Convergence Under Episodic Framework

2.6.3 Simulation Results under the Benchmark Parameters

We now implement our RL Kelly strategies as well as some MLE based Kelly strate-
gies with the online algorithms. We carry out these experiments because they are
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closer to the situation in practice where decisions are made frequently. Figure 2.4
shows the distributions of the terminal log-return under each of the strategies (2)-(7)
compared to the Oracle strategy (1). Table 2.2 summarizes the average terminal
log-return from each strategy. The first row is the theoretically optimal value of the
expected terminal log-return in a classical Kelly criterion problem which assumes the
true model parameter values are known. We also report the standard errors of the es-
timates. The last two columns are the theoretical and estimated values of the cost of
the strategy, which is the relative difference between the average terminal log-return
of a specific trading strategy and the theoretical optimal terminal log-return. Note
that an inevitable issue in simulations is that the wealth may go negative, due to the
uncertainty in either the stochastic stock process or the unconstrained short-selling
or leverage of the RL Kelly strategy. In this case, the log-return is meaningless.
We adopt the reflection approach to replace the negative wealth with its absolute
value. The impact of the reflection method on our results is limited. Among 2,000
simulations, each with 252 values of wealth, only four values are reflected under the
MLE based strategies. Under the RL-Amount strategy, only two values are reflected,
both greater than -0.002. There are no cases for the other two RL strategies.

Model Mean Std. Error Cost Ĉost
Theoretical 1.62

Oracle 1.68 0.04 0.00 0.04
Plug-in 0.93 0.05 0.00 0.42

Shrinkage 0.98 0.04 0.00 0.39
Fractional 1.20 0.04 0.00 0.26
RL-Amount 1.43 0.04 0.13 0.12
RL-Portion 1.40 0.04 0.15 0.14
RL-Decay 1.59 0.04 0.05 0.02

Table 2.2: Model Performance: Terminal Log-Return

The results in Figure 2.4 and Table 2.2 validate the practical merit of the frac-
tional and shrinkage Kelly strategy over the full Kelly strategy. Furthermore, they
also confirm the outperformance of the RL strategies over the three MLE based
strategies. Figure 2.4 indicates that the distributions of terminal log-return from
the three MLE based strategies are shifted to the left compared to those from RL
strategies. The average terminal log-return reported in Table 2.2 also shows that
the RL strategies yield a higher terminal log-return than the MLE based strategies
on average. Moreover, the simulated results reported in Table 2.2 also confirm the
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Figure 2.4: Model performance

benefit of using time-decaying λ. With a power-decaying λ, the agent is subject to
less cost due to exploration and achieves a higher expected terminal log-return.

Table 2.3 reports the statistical summary of the terminal wealth from the 2,000
simulations: average value, standard deviation, skewness, and quantiles at levels of
0.1%, 1%, 5%, 95%, 99% and 99.9%. To obtain wealth, we modify the reflection
approach. For example, when the wealth becomes -0.1, we build an additional ac-
count to borrow 0.2 from the bank. The total wealth is still -0.1 but the investment
wealth becomes 0.1. Then we invest based on the new wealth of 0.1. At the end of
the period, we report the total wealth. It is still possible to have negative terminal
wealth. From the result, MLE based strategies have higher average terminal wealth,
as well as significantly large standard deviations. They also have thicker tails of
wealth distribution, especially the Plug-in and Shrinkage strategies. These are due
to the nature of the (fractional) Kelly strategy, in particular, that it usually bets
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a large amount of money. Hence, in a few extreme cases where a sequence of the
simulated stock returns is relatively high, the MLE based strategies benefit greatly
from the aggressive investment. However, on the other hand, aggressive investment
could lead to negative wealth when the stock returns are relatively low. The Frac-
tional strategy mitigates these effects through smaller investments. As a result, the
distribution is centred at a smaller mean and becomes more leptokurtic and skewed.
Compared with the MLE based strategies, the three RL strategies learn the entire
wealth distribution better. Their wealth distributions are closer to that under the
Oracle strategy. Particularly, the RL strategy with the power-decaying temperature
parameter has close quantiles to those under the Oracle model.

Model Mean Std. Dev. Skw. q0.001 q0.01 q0.05 q0.95 q0.99 q0.999
Theoretical 25.53 126.47 136.38 0.02 0.08 0.26 97.59 332.76 1316.09

Oracle 23.14 63.54 8.26 0.02 0.07 0.27 96.12 265.81 936.50
Plug-in 68.29 830.54 23.61 -2.48 0.02 0.15 98.51 694.85 12862.84

Shrinkage 70.14 897.16 25.70 -0.73 0.03 0.17 99.68 691.45 13208.59
Fractional 54.72 1088.69 39.64 0.05 0.16 0.46 72.02 415.23 4526.27
RL-Amount 17.80 41.21 6.33 0.00 0.03 0.16 74.36 212.80 403.23
RL-Portion 21.69 69.22 9.96 0.00 0.04 0.17 85.79 333.25 692.60
RL-Decay 22.24 77.68 18.51 0.02 0.07 0.28 89.90 302.69 765.29

Table 2.3: Model Performance: Terminal Wealth

The MLE based strategies and RL strategies are essentially updating market pa-
rameters over time. For each strategy, one simulation yields one pair of estimates
(µ̂, σ̂2) by the end of the investment time horizon. Since we have run 2,000 inde-
pendent simulations for each strategy, we obtained 2,000 pairs of estimates from
each strategy. Table 2.4 shows the mean and its standard error of those 2,000 es-
timates (for both µ and σ2) from each strategy.2 Not surprisingly, all are close to
the true parameter values after taking the average over the 2,000 estimates. But the
estimates of parameter µ from the RL strategies are consistently more robust than
those from the MLE based strategies, noting that the MLE based strategies have a
higher standard error.

2MLE based strategies (2), (3) and (4) share the same estimates. Hence, only one set of results
is reported, named Plug-in.
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Model
µ σ2

Mean Std. Error Mean Std. Error
Oracle 0.2 0.1
Plug-in 0.2030 0.0018 0.0998 0.0001

RL-Amount 0.2025 0.0004 0.1025 0.0002
RL-Portion 0.2056 0.0005 0.1024 0.0002
RL-Decay 0.2054 0.0003 0.1023 0.0001

Table 2.4: Model Performance: Parameter Estimation

2.6.4 Sensitivity Tests

To assess the robustness of the outperformance of the RL strategies over the three
MLE based strategies, we repeat simulations for all strategies under different market
settings, i.e., different values of µ and σ. We report the results in Table 2.5.

We choose four different values for σ and seven different values for µ, which
yield 28 market scenarios in total, including the benchmark setting where (µ, σ) =
(0.2, 0.1). The fractions used in the Fractional strategy are again chosen from 9
candidates, by repeating the selection procedure under the benchmark setting. The
temperature parameters for the RL strategies are still the same. For each scenario,
we compare the average terminal log-return between the RL strategies and the MLE
based strategies. The best performance under each scenario is labelled with a su-
perscript asterisk. Among all the 28 scenarios, the RL strategies outperform MLE
based strategies under 24 settings. Particularly, the RL-Decay strategy outperforms
all three MLE based strategies in all 24 cases. The other two RL strategies beat
all MLE based strategies in 19 cases, even though the fractions for strategy (4) are
chosen based on ex-post information.

Four exceptions where RL strategies do not outperform are under settings of
(µ, σ) = (−0.1, 0.01), (0.2, 0.01), (0, 0.1) and (0, 0.15) which yield extreme values
of ρ2. However, the performance of the RL-Decay strategy is still comparable with
the best one in these cases. Under the setting of (µ, σ) = (0, 0.1) and (0, 0.15), the
differences between the RL-Decay strategy and the best strategy are less than 0.004.
Under the other two cases, the relative differences are less than 5%.
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Model
σ = 0.01

µ = −0.2 µ = −0.1 µ = −0.05 µ = 0 µ = 0.05 µ = 0.1 µ = 0.2
Theoretical 242.00 72.00 24.50 2.00 4.50 32.00 162.00

Oracle 229.97 72.72 21.41 1.91 4.53 29.05 165.87
Plug-in 231.18 73.55∗ 20.86 1.12 3.61 29.12 166.63∗

Shrinkage 227.59 72.38 21.03 1.18 3.68 29.04 164.50
Fractional 216.63 68.92 21.28 1.40 3.89 28.77 155.94
RL-Amount 232.07∗ 71.05 21.75 1.80 4.17 29.39∗ 156.78
RL-Portion 230.88 70.97 21.70 1.78 4.17 28.99 157.73
RL-Decay 229.70 71.17 21.89∗ 1.97∗ 4.40∗ 28.95 158.74

Model
σ = 0.05

µ = −0.2 µ = −0.1 µ = −0.05 µ = 0 µ = 0.05 µ = 0.1 µ = 0.2
Theoretical 9.68 2.88 0.98 0.08 0.18 1.28 6.48

Oracle 9.02 2.76 0.92 0.06 0.20 1.34 6.43
Plug-in 7.80 1.92 0.19 -0.62 -0.48 0.61 5.34

Shrinkage 7.96 1.99 0.24 -0.58 -0.44 0.65 5.46
Fractional 8.34 2.18 0.53 0.00 0.04 0.88 5.73
RL-Amount 8.78 2.65 0.80 -0.13 0.00 1.09 5.94
RL-Portion 8.91 2.63 0.77 -0.14 -0.02 1.06 5.99
RL-Decay 9.23∗ 2.83∗ 0.96∗ 0.06∗ 0.16∗ 1.26∗ 6.27∗

Model
σ = 0.1

µ = −0.2 µ = −0.1 µ = −0.05 µ = 0 µ = 0.05 µ = 0.1 µ = 0.2
Theoretical 2.42 0.72 0.25 0.02 0.04 0.32 1.62

Oracle 2.31 0.67 0.22 0.01 0.06 0.35 1.68
Plug-in 1.51 -0.04 -0.47 -0.67 -0.63 -0.34 0.93

Shrinkage 1.56 0.00 -0.43 -0.63 -0.58 -0.30 0.98
Fractional 1.77 0.34 0.05 -0.01∗ 0.00 0.12 1.20
RL-Amount 2.21 0.54 0.06 -0.18 -0.14 0.15 1.43
RL-Portion 2.19 0.51 0.04 -0.28 -0.16 0.12 1.40
RL-Decay 2.38∗ 0.70∗ 0.23∗ -0.01 0.03∗ 0.30∗ 1.59∗

Model
σ = 0.15

µ = −0.2 µ = −0.1 µ = −0.05 µ = 0 µ = 0.05 µ = 0.1 µ = 0.2
Theoretical 1.08 0.32 0.11 0.01 0.02 0.14 0.72

Oracle 1.02 0.29 0.09 0.00 0.03 0.16 0.77
Plug-in 0.28 -0.41 -0.60 -0.68 -0.65 -0.52 0.06

Shrinkage 0.33 -0.36 -0.55 -0.63 -0.61 -0.48 0.10
Fractional 0.61 0.09 0.01 -0.01∗ 0.00 0.03 0.40
RL-Amount 0.89 0.16 -0.11 -0.14 -0.16 -0.02 0.55
RL-Portion 0.87 0.12 -0.12 -0.22 -0.20 -0.06 0.51
RL-Decay 1.05∗ 0.30∗ 0.09∗ -0.01 0.00∗ 0.12∗ 0.70∗

Note: ∗: the best model among MLE based and RL models.

Table 2.5: Average Terminal Log-Return under Different Market Settings
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To sum up, RL strategies have robust performance, in terms of the relatively
high average terminal log-return, under different market scenarios. In cases where
MLE based strategies fail to achieve relatively high terminal log-return, RL strate-
gies outperform them. On the other hand, in extreme cases of ρ2 where MLE based
strategies obtain relatively high average log-return, RL strategies also have compa-
rable performance.

2.6.5 Performance under Heston’s Model

The simulation studies in the preceding subsections confirm the outperformance of
our RL strategies over the MLE based strategies under the correctly specified stock
price model (i.e., the geometric Brownian motion). To test the practical feasibility
of the RL strategies, we consider Heston’s model for the stock price:

dSt = µStdt+
√
LtStdWt

dLt = κ(ν − Lt)dt+ ξ
√
LtdW̃t

where W̃t is a Brownian motion correlated with Wt: Cov(Wt, W̃t) = ρ̃t.

The experimental procedure is the same as before except that the stock price
paths are simulated from Heston’s model with parameters µ = 0.2, ν = 0.01, ρ̃ =
−0.3, κ = 2 and ξ ∈ {0.001, 0.01, 0.05, 0.1, 0.15, 0.2}. We exclude the Oracle strategy
from the analysis because we implement investment strategies derived based on the
geometric Brownian motion but test them on data from Heston’s model. We use
the Plug-in strategy as the benchmark and report the relative performance of the
average terminal log-return for the other five strategies in Table 2.6. The average
terminal log-returns are computed based on 2,000 independent replications. Zero for
the relative performance measure means an equivalent performance with the Plug-in
strategy and the larger the relative performance, the higher the average terminal
log-return for a strategy. The issue that simulated wealth goes negative is not very
significant in the results, and we reflect the negative values as we did in the previous
simulation studies. For each different ξ value, at most five wealth values out of the
2,000 simulations are reflected, and they are all greater than -0.06. The issue is even
less significant for a smaller ξ in Heston’s model. From the results, the RL-Decay
strategy still has the best performance compared to the other strategies. RL-Amount
and RL-Portion strategies have better or comparable performance to the MLE based
strategies in all scenarios.
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Strategy ξ = 0.001 ξ = 0.01 ξ = 0.05 ξ = 0.1 ξ = 0.15 ξ = 0.2
Shrinkage 0.06 0.07 0.08 0.09 0.13 0.22
Fractional 0.33 0.35 0.43 0.59 0.85 1.05
RL-Amount 0.56 0.57 0.63 0.69 0.76 1.01
RL-Portion 0.52 0.54 0.61 0.70 0.84 1.10
RL-Decay 0.66 0.69 0.78 0.92 1.12 1.53

Table 2.6: Performance Relative to the Plug-in Strategy: Heston’s Model

2.7 Conclusion

The performance of the full Kelly strategy in practice is not as superior as claimed
in theory due to estimation errors in market parameters. Two alternatives to the
full Kelly strategies are fractional and shrinkage Kelly strategies. Motivated by
the practical deficiency, we extend the classical Kelly criterion problem to an RL
framework. Based on the novel exploratory formulation (Wang et al. (2019), Wang
and Zhou (2020)), we build two exploratory Kelly criterion problems, taking the
amount of investment and the portion of wealth as the control. The resulting optimal
strategies, the RL Kelly strategies, are sequences of normal distributions that centre
on the classical optimal allocation.

We establish learning algorithms to implement the RL Kelly strategies. We use
simulated data to compare the performance of our strategies with three MLE based
strategies. Our results validate the practical advantage of the fractional and shrink-
age Kelly strategies against the full Kelly strategy with plug-in MLE. The RL Kelly
strategies perform even significantly better than the fractional and shrinkage strate-
gies. They achieve higher average terminal log-return. Particularly, the RL strategy
with a time-decaying λa(t) is the best in that it not only achieves the highest average
terminal log-return but also learns the entire terminal wealth distribution more pre-
cisely. Furthermore, the performance of the RL strategies is robust under different
market settings. When the MLE based strategies perform well, the RL strategies
also have comparable performance. When the MLE based strategies perform poorly,
the RL strategies outperform them significantly.
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Chapter 3

Discrete-Time RL Mean-Variance
Problem

3.1 Introduction

The continuous-time exploratory mean-variance (EMV) model proposed in Wang and
Zhou (2020) provides a novel approach to solve the mean-variance optimization prob-
lem, via reinforcement learning and stochastic control. The model is implemented by
discretization and achieves better performance than the MLE-based model and deep
deterministic policy gradient (DDPG) model. In this chapter, we study the EMV
problem, directly under the discrete-time framework. In a daily trading market set-
ting, both EMVmodels achieve comparable performance. However, our discrete-time
model outperforms the continuous-time model with less frequent trading e.g. weekly
or monthly trading.

3.2 Discrete-Time MV Optimization

3.2.1 Problem Setup and Classical Solution

Consider a time interval with discrete time points t = 0,∆t, . . . , T , where T = N∆t,
N ∈ Z+. An investor trades in a financial market at t = 0,∆t, . . . , T − ∆t. The
market consists of one stock and one risk-free bond. The rate of return of the bond
is r. The rate of return of the stock follows a normal distribution N(µ, σ2). We
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consider the discounted market by the bond. Hence, the discounted rate of return of
the bond from time t to t+∆t is 0. The discounted rate of return of the stock from
time t to t+∆t is

Rt ∼ N((µ− r)∆t, σ2∆t), t = 0,∆t, . . . , T −∆t.

The investor’s discounted wealth is xt, t = 0,∆t, . . . , T . At each time t, ut is the
discounted wealth invested in the stock and xt−ut is the discounted wealth invested
in the bond. A trading strategy f is a series of mappings from the wealth (x) to the
allocation in the stock (u):

f = {f0, f1, . . . , fT−∆t}, ft : R→ R, ut = ft(xt).

The investor aims to achieve the maximal mean-variance trade-off of his terminal
wealth

P (γ) : max
f

E[xT ]− γV ar(xT )

s.t. xt+1 = xt +Rtft(xt)

t = 0,∆t, . . . , T −∆t

According to Li and Ng (2000), if a strategy f ∗ solves problem P (γ), then it
solves the following auxiliary problem

A(w) : max
f

E[−(w − xT )
2]

s.t. xt+1 = xt +Rtft(xt)

t = 0,∆t, . . . , T −∆t

(3.1)

with w = 1
2γ
+E[xT |f ∗]. We focus on this auxiliary problem in the rest of the chapter.

In Li et al. (1998), the auxiliary problem A(w) is solved analytically using dy-
namic programming. At time t = 0,∆t, . . . , T −∆t, the optimal allocation is

u∗
t =

ρ

σ(1 + ρ2∆t)
(w − xt) (3.2)

where ρ = µ−r
σ

is the Sharpe ratio of the stock. The efficient frontier (EF) under the
classical framework is

V arC(xT ) =
1

(1 + ρ2∆t)
T
∆t − 1

(EC [xT ]− x0)
2. (3.3)

The subscript “C” signifies that the mean and variance of the terminal wealth are
computed under the solution from the classical setting where the model parameters
are assumed known to the investor.
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3.2.2 Exploratory Solution

The entropy regularization approach in Wang and Zhou (2020) incorporates the ex-
ploitation versus exploration philosophy in reinforcement learning. Similar to Chap-
ter 2, we consider a filtered probability space (Ω,F , {F0, . . . ,FT−∆t},P). Under the
exploratory framework, we consider a random draw for each ut and study their op-
timal sampling distributions. We denote these random variables as Ut and their
densities as ft(ut), t = 0,∆t, . . . , T −∆t, which are independent of the financial mar-
ket but may depend on the wealth state process xt. ft : Ω → R+ is Ft-measurable
and ∫

R
ft(u)du = 1.

The entropy of the distribution is

−
∫
R
log (ft(u))ft(u)du.

Modified based on the same philosophy as in Chapter 2, the auxiliary problem
A(w) leads to the exploratory version of problem:

AE(w) : max
f

E[−(w − xT )
2]−

T−∆t∑
t=0

λ∆t

∫
R
log (ft(u))ft(u)du

s.t. xt+1 = xt +Rtut

ut ∼ ft

t = 0,∆t, . . . , T −∆t

(3.4)

where ut ∼ ft means that ut is a random variable whose probability density is ft, and
the extra term is the cumulative entropy and λ > 0 is the temperature parameter.
The subscript “E” indicates that it is a problem under the exploratory setting.

At time T −∆t, given xT−∆t, the optimization problem is

max
fT−∆t

JT−∆t(fT−∆t|xT−∆t)

:= max
fT−∆t

{
E[−(w − xT )

2]− λ∆t

∫
R
log (fT−∆t(u))fT−∆t(u)du

} (3.5)

The corresponding density of the optimal sampling distribution at time T − ∆t is
(see Appendix B for the derivation):

f ∗
T−∆t(u) =

1

cT−∆t

exp

{
−
E[R2

T−∆t]

λ∆t

(
u− (w − xT−∆t)E[RT−∆t]

E[R2
T−∆t]

)2
}

43



where cT−∆t > 0 is a constant such that
∫
R fT−∆t(u)du = 1. The distribution is a

normal distribution with mean µT−∆t and variance σ2
T−∆t, respectively, defined as

follows:

µT−∆t =
(w − xT−∆t)E[RT−∆t]

E[R2
T−∆t]

=
ρ

σ(1 + ρ2∆t)
(w − xT−∆t) ,

σ2
T−∆t =

λ∆t

2E[R2
T−∆t]

=
λ

2σ2(1 + ρ2∆t)
.

Note that µT−∆t is equivalent to the optimal allocation (3.2) in the classical frame-
work.

Substituting the optimal distribution f ∗
T−∆t back into the expression for JT−∆t in

equation (3.5) yields the optimal cost-to-go given xT−∆t:

J∗
T−∆t(xT−∆t)

=− E[R2
T−∆t](µ

2
T−∆t + σ2

T−∆t) + 2(w − xT−∆t)E[RT−∆t]µT−∆t

− λ∆t

(
−1

2
log (2πeσ2

T−∆t)

)
− (w − xT−∆t)

2

=−
E[R2

T−∆t]− (E[RT−∆t])
2

E[R2
T−∆t]

(w − xT−∆t)
2

=− (w − xT−∆t)
2

1 + ρ2∆t
+ aT−∆t

where aT−∆t =
λ∆t
2

log
(
2πσ2

T−∆t

)
= λ∆t

2
log
(

πλ
σ2(1+ρ2∆t)

)
is a constant.

Using dynamic programming, we can get that, at time t, the optimal allocation
ut follows a normal distribution with mean µt and variance σ2

t defined as follows

µt =
ρ

σ(1 + ρ2∆t)
(w − xt) and σ2

t =
λ(1 + ρ2∆t)

T−t
∆t

−2

2σ2
. (3.6)

The optimal value function is given by
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V (t, x) =max
f

E

[
−(w − xT )

2 − λ∆t

T−∆t∑
i=t

∫
R
fi(u) log fi(u)du

∣∣∣∣∣ xt = x

]

=max
f

E

[
−(w − xT−∆t)

2

1 + ρ2∆t
−

T−2∆t∑
i=t

λ∆t

∫
R
log (fi(u))fi(u)du+ aT−∆t

∣∣∣∣∣ xt = x

]

=max
f

E

[
−(w − xT−2∆t)

2

(1 + ρ2∆t)2
−

T−3∆t∑
i=t

λ∆t

∫
R
log (fi(u))fi(u)du+

T−∆t∑
i=T−2∆t

ai

∣∣∣∣∣ xt = x

]
· · ·

=E

[
−(1 + ρ2∆t)−

T−t
∆t (w − xt)

2 +
T−∆t∑
i=t

ai

∣∣∣∣∣ xt = x

]

=− (1 + ρ2∆t)−
T−t
∆t (w − xt)

2 +
T−∆t∑
i=t

λ∆t

2
log(2πσ2

i )

=− (1 + ρ2∆t)−
T−t
∆t (w − x)2 +

λ

2
(log

πλ

σ2
)(T − t)

+
λ

2
log(1 + ρ2∆t)

(T − t)(T − t− 3∆t)

2∆t
(3.7)

where ai =
λ∆t
2

log (2πσ2
i ).

The exploratory EF under the exploratory framework is

V arE(xT ) =
1

(1 + ρ2∆t)
T
∆t − 1

(EE[xT ]− x0)
2 +

λT

2
,

where the subscript “E” signifies that the mean and variance of the terminal wealth
are computed under the exploratory solution. A comparison between the above
equation and (3.3) indicates that the terminal mean returns under the classical and
exploratory frameworks are equivalent but the terminal variance for the exploratory
version is larger by λT

2
, which is the cost of exploration.

3.2.3 Comparison with Continuous-time Solution

Wang and Zhou (2020) study the same problem in continuous time. However, they
implement their solution with discretization. Our solution is directly derived in a
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discrete-time setting. Here, we compare our solution with the discretized continuous-
time solution in Wang and Zhou (2020). The mean-variance optimization problem
in Wang and Zhou (2020) is

min
f

E[(xT − w)2]− (w − z)2

s.t. E[xT ] = z

dxt =

(∫
R
ρσuft(u)du

)
dt+

(√∫
R
σ2u2ft(u)du

)
dt

where w is the Lagrange multiplier such that E[xT ] = z. The admissible set of f is
defined in Wang and Zhou (2020).

A comparison between our solution derived under the discrete-time setting and
the one fromWang and Zhou (2020) under the continuous-time setting is summarized
in Table 3.2.3. As ∆t goes to zero, our discrete-time solution converges to the
continuous-time solution due to the fact that lim

∆t→0
(1 + ρ2∆t)

T−t
∆t = eρ

2(T−t). For

∆t > 0, our optimal allocation U∗
t has a smaller variance, but a larger variance of

the terminal wealth,1 since (1 + ρ2∆t)
T
∆t < eρ

2T .

Discrete-Time Continuous-Time

U∗
t ∼ N( ρ

σ(1+ρ2∆t)
(w − xt) ,

λ(1+ρ2∆t)
T−t
∆t

−2

2σ2 ) ∼ N( ρ
σ
(w − xt) ,

λ
2σ2 e

ρ2(T−t))

w z(1+ρ2∆t)
T
∆t−x0

(1+ρ2∆t)
T
∆t−1

zeρ
2T−x0

eρ2T−1

EF V ar(xT ) =
1

(1+ρ2∆t)
T
∆t−1

(E[xT ]− x0)
2 + λT

2
V ar(xT ) =

1

eρ2T−1
(E[xT ]− x0)

2 + λT
2

Table 3.1: Comparison with the continuous-time solution in Wang and Zhou (2020)

3.3 Implementation

Based on the exploratory version of optimal allocation, we build a stochastic gradient
descent algorithm and implement it with simulations in this section.

1This is also true under the classic setting, due to the natural difference (discretization) between
the discrete-time and continuous-time settings.
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3.3.1 Stochastic Gradient Descent Algorithm

We first parametrize the value function and the optimal distribution following a
similar idea in Wang and Zhou (2020), based on equations (3.6) and (3.7). Recalling
equation (3.7), the value function is

V (t, x) =− (1 + ρ2∆t)−
T−t
∆t (w − x)2 +

λ

2
(log

πλ

σ2
)(T − t)

+
λ

2
log(1 + ρ2∆t)

(T − t)(T − t− 3∆t)

2∆t

With new parameter vector α = (α1, α2, α3), the value function at time t can be
parametrized as

V (t, x;α) = −α−T−t
∆t

1 (w − x)2 + α2(T − t)2 + α3(T − t), (3.8)

where

α1 = 1 + ρ2∆t, (3.9)

α2 =
λ

4∆t
log(1 + ρ2∆t),

α3 =
λ

2
log

πλ

σ2
− 3λ

4
log(1 + ρ2∆t).

Similar to the continuous-time Bellman’s equation (2.43) in Chapter 2, we have

V (t, xt) = E
[
V (t+∆t, xt+∆t)− λ∆t

∫
R
ft(u) log ft(u)du

∣∣∣∣ xt

]
. (3.10)

The regularization term can be parametrized as

−λ∆t

∫
R
ft(u) log ft(u)du =− λ∆t

(
−1

2
log(2πeσ2

t )

)
=
λ∆t

2
log

πeλ(1 + ρ2∆t)
T−t
∆t

−2

σ2

=β1(T − t) + β2

(3.11)

where

β1 =
λ

2
log(1 + ρ2∆t)
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β2 =
λ∆t

2
log

πeλ

σ2(1 + ρ2∆t)2
. (3.12)

Now, we try to reduce the dimension of the problem by finding the relationships
among parameters. If we start from the parametrized value function (3.8) at time
t+∆t, the optimal distribution at time t becomes

ft(u) ∼ N

(
ρ

σ(1 + ρ2∆t)
(w − xt),

λα
T−t
∆t

−1

1

2σ2(1 + ρ2∆t)

)
. (3.13)

This leads to the regularization term at time t as

−λ∆t

∫
R
ft(u) log ft(u)du =

λ logα1

2
(T − t) +

λ∆t

2
log

πeλ

σ2(1 + ρ2∆t)α1

. (3.14)

This step is called policy improvement in reinforcement learning. Comparing the
above equation to equation (3.11), we have the relationships:

λ

2
logα1 = β1 (3.15)

and

σ2(1 + ρ2∆t) =
πλ

α1

e1−
2β2
λ∆t . (3.16)

On the other hand, if we start with the parametrized form of the regularization
term (3.14), solving equation (3.10) gives us the value function at time t

V (t, x) =− α
−T−t

∆t
1 (w − x2) + α2(T − t)2 + (−2α2∆t+ α3 + β1)(T − t)

− σ2∆t(1 + ρ2∆t)α1

2π
e

2β2
λ∆t

−1 + α2∆t2 − α3∆t+ β2

=− α
−T−t

∆t
1 (w − x2) + α2(T − t)2 + (−2α2∆t+ α3 + β1)(T − t)

− ∆tλ

2
+ α2∆t2 − α3∆t+ β2.

The last equality is from the relationship (3.16) between α1 and β2.

This step is called policy evaluation in reinforcement learning. From this, com-
paring the above equation with the parametrized value function (3.8), we have the
relationship

0 = −λ∆t

2
+ α2∆t2 − α3∆t+ β2
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=⇒ α3 = α2∆t− β2

∆t
+

λ

2
. (3.17)

Therefore, we are able to simplify the parametrized value function and obtain a
parametrized optimal distribution. Plugging the above equation into the parametrized
value function (3.8), the value function at time t can be further simplified as

V (t, x;α, β2) = −α
−T−t

∆t
1 (w − x)2 + α2(T − t)2 +

(
α2∆t− β2

∆t
+

λ

2

)
(T − t) (3.18)

where α = (α1, α2) is redefined.

Plugging equations (3.9), (3.12) and (3.16) into equation (3.13), the optimal
distribution at time t can be parametrized as, if we assume the Sharpe ratio ρ is
positive,

ft(u) ∼ N

(√
α1 − 1

πλ∆t
e

β2
λ∆t

− 1
2 (w − x),

1

2π
α

T−t
∆t
1 e

2β2
λ∆t

−1

)
. (3.19)

Based on the parametrized forms (3.14) and (3.18), we build the reinforcement
learning algorithm similar to that in Chapter 2. The algorithm updates parameters
(α, β2) to minimize the cumulative temporal difference (TD) error, defined by

C(α, β2) =
1

2

T−∆t∑
t=0

(
V (t+∆t, xt+∆t)− V (t, xt)− λ∆t

∫
R
ft(u) log ft(u)du

)2

=
1

2

T−∆t∑
t=0

(
− α

−T−t−∆t
∆t

1 (w − xt+∆t)
2 + α2(T − t−∆t)2 + α3(T − t−∆t)

− (−α−T−t
∆t

1 (w − xt)
2 + α2(T − t)2 + α3(T − t)) + β1(T − t) + β2

)2

=
1

2

T−∆t∑
t=0

(
− α

−T−t−∆t
∆t

1 (w − xt+∆t)
2 + α

−T−t
∆t

1 (w − xt)
2

− α2(2T − 2t−∆t)∆t− α3∆t+ β1(T − t) + β2

)2

=
1

2

T−∆t∑
t=0

(
− α

−T−t−∆t
∆t

1 (w − xt+∆t)
2 + α

−T−t
∆t

1 (w − xt)
2

− α2(2T − 2t−∆t)∆t− α2∆t2 + β2 −
λ∆t

2
− λ logα1

2
(T − t) + β2

)2

49



=
1

2

T−∆t∑
t=0

(
− α

−T−t−∆t
∆t

1 (w − xt+∆t)
2 + α

−T−t
∆t

1 (w − xt)
2

− λ logα1

2
(T − t)− α2(2T − 2t)∆t+ 2β2 −

λ∆t

2

)2

:=
1

2

T−∆t∑
t=0

C2
t .

This TD error is derived from equation (3.10) and is similar to that in Chapter 2.
See equations (2.45) to (2.48).

The stochastic gradients of C(α, β2) are(
T−∆t∑
t=0

Ct
∂Ct

∂α1

,
T−∆t∑
t=0

Ct
∂Ct

∂α2

,
T−∆t∑
t=0

Ct
∂Ct

∂β2

)

where

∂Ct

∂α1

=
T − t−∆t

∆t
α
−T−t

∆t
1 (w − xt+∆t)

2

−T − t

∆t
α
−T−t

∆t
−1

1 (w − xt)
2 − λ

2α1

(T − t) (3.20)

∂Ct

∂α2

= −2(T − t)∆t (3.21)

∂Ct

∂β2

= 2. (3.22)

In the algorithm, α1, α2 and β2 are updated using the gradient descent approach with
the learning rate θ. The Lagrange multiplier w is updated based on the constraint
E[xT ] = z with the learning rate θw (Wang and Zhou (2020)).

wn+1 = wn − θw

(
1

k

nk+k∑
i=nk+1

(xT )i − z

)
, n = 0, 1, . . . ,

M

k
− 1, (3.23)

where M is the number of total simulations, k is the number of simulations to update
the Lagrange multiplier and θw is the learning rate. (xT )i is the terminal wealth in the
i− th simulation. When the cumulative TD error C(α, β2) is less than a particular
threshold e.g. 1× 10−6, we stop the update and evaluate the rest of the simulations
based on the fixed parameters.
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Similar to the continuous-time RL Kelly problem in Chapter 2, we also build
an RL algorithm to implement our theoretical results. Here the algorithm is offline.
That is, the updated parameters from one simulation will be used as the initial values
for the next simulation as adopted by Wang and Zhou (2020).

Algorithm 2: RL Algorithm for Discrete-time EMV Problem

Input: Market parameters (µ, σ, r, ρ), learning rates θ, θw, initial wealth x0,
investment horizon T , discretization ∆t, exploration rate λ, target mean
return z, number of total simulations M , number of simulations to update
the Lagrange multiplier k.
Initialization: n = 0, wn = 1, α and β
while nk ≤M do

Initialization: i = 1
while i ≤ T

∆t
do

Sample (ti, xi) under ft(u)
Update set of samples Si = {(tj, xj); j = 0, . . . , i}
Update (α1, α2)

′
as (α1, α2)

′ − θ∇αCi(α,β) using (3.20) and (3.21)
Update β2 as β2 − θ∇βCi(α,β) using (3.22)
Update α3 using (3.17) and β1 using (3.15)
Update ft(u) using (3.19)
i = i+ 1

end
if n mod k = 0 then

Update wn using (3.23)
n = n+ 1

end

3.3.2 Simulation Results

We compare the numerical performance of our algorithm and that in Wang and Zhou
(2020). We use the same parameter values as in Wang and Zhou (2020):

T = 1, ∆t =
1

252
, x0 = 1, z = 1.4, r = 0.02

λ = 2, M = 10,000, k = 10, θ = 0.0005, θw = 0.05

∆t = 1
252

means that the trading is on a daily base.

In Figure 3.1, we report the performance under two scenarios, compared to
the continuous-time algorithm. Each point is the average terminal wealth over 50
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episodes. In total, we have M = 20,000 episodes. So there are 400 sample means in
each line. The black line is the target mean level z = 1.4, which is exogenous. From
the comparisons, with our discrete-time algorithm (red line), the average wealth
converges much faster to the target level (only after 5,000 episodes).

Figure 3.1: Performance comparisons with the continuous-time EMV model

Table 3.2 summarizes the average return, standard deviation and Sharpe ratio
of the terminal 2,000 episodes (same as Wang and Zhou (2020)). The results of the
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continuous-time EMV model (last three columns) are copied from Table 1 in Wang
and Zhou (2020).

µ σ
Discrete Continuous

Avg. Return SD Sharpe Ratio Avg. Return SD Sharpe Ratio
-0.5 0.1 0.400 0.074 5.122 0.396 0.078 5.107
-0.3 0.1 0.400 0.120 3.159 0.390 0.127 3.039
-0.1 0.1 0.385 0.312 1.168 0.330 0.272 1.218
0 0.1 0.173 0.825 0.185 0.204 1.130 0.180
0.1 0.1 0.351 0.439 0.753 0.318 0.414 0.769
0.3 0.1 0.400 0.140 2.709 0.385 0.138 2.785
0.5 0.1 0.400 0.082 4.632 0.394 0.084 4.772
-0.5 0.2 0.399 0.147 2.581 0.387 0.148 2.606
-0.3 0.2 0.399 0.239 1.586 0.359 0.226 1.598
-0.1 0.2 0.386 0.622 0.589 0.309 0.495 0.625
0 0.2 0.180 1.648 0.097 0.105 0.853 0.123
0.1 0.2 0.349 0.883 0.373 0.221 0.560 0.395
0.3 0.2 0.400 0.281 1.351 0.345 0.249 1.387
0.5 0.2 0.400 0.164 2.322 0.385 0.164 2.350
-0.5 0.3 0.399 0.220 1.725 0.353 0.210 1.682
-0.3 0.3 0.399 0.357 1.061 0.323 0.326 0.992
-0.1 0.3 0.387 0.929 0.396 0.317 0.834 0.380
0 0.3 0.187 2.462 0.068 0.079 0.852 0.092
0.1 0.3 0.347 1.332 0.246 0.282 0.941 0.300
0.3 0.3 0.400 0.423 0.898 0.334 0.362 0.921
0.5 0.3 0.401 0.246 1.546 0.350 0.221 1.583
-0.5 0.4 0.398 0.292 1.296 0.342 0.247 1.385
-0.3 0.4 0.399 0.475 0.797 0.320 0.382 0.839
-0.1 0.4 0.389 1.234 0.299 0.241 0.841 0.287
0 0.4 0.193 3.271 0.053 0.057 0.820 0.070
0.1 0.4 0.345 1.787 0.182 0.155 0.769 0.202
0.3 0.4 0.400 0.566 0.671 0.320 0.445 0.716
0.5 0.4 0.401 0.329 1.157 0.329 0.279 1.174

Table 3.2: Performance comparison between the discrete-time and continuous-time
EMV models

Our algorithm yields generally higher average returns and standard deviations
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than the continuous-time algorithm. These lead to comparable Sharpe ratios. Higher
average returns are consistent with the convergence result. From the above two
figures, our algorithm converges to the target level faster while the continuous-time
algorithm converges slower. The latter will hence have smaller terminal returns.
Higher standard deviations are consistent with the theoretical results in Table 3.2.3.
Under the discrete-time setting, the variance of terminal wealth is larger than that
under the continuous-time setting.

In Table 3.3.2, we also test the robustness of the two algorithms by using dif-
ferent trading frequencies ∆t. We use µ = 0.2 and σ = 0.1. Our algorithm has a
rather stable performance (terminal Sharpe ratio) with different trading frequencies.
However, the continuous-time algorithm is very sensitive to the trading frequency,
leading to a discretization error. This result particularly shows the advantage of our
discrete-time algorithm.

Algorithm Daily Weekly Monthly Seasonally
Discrete-time 1.819 1.819 1.800 1.785

Continuous-time 1.654 1.587 1.431 1.109

Table 3.3: Performance (terminal Sharpe ratio) comparison between two algorithms
with different trading frequencies

3.4 Conclusion

From our analysis, we find that there exists a discretization error in the imple-
mentation of the algorithm of Wang and Zhou (2020). By studying the problem
directly under the discrete-time framework, we derive the true optimal strategy that
can be implemented in a discretized structure. Our results converge to those in the
continuous-time setting as the discretization goes to zero. Through several numerical
examples, we find that the strategy performance based on the discrete-time solution
is generally better than that based on the continuous-time solution, in terms of a
faster convergence of the mean return, an improved Sharpe ratio, as well as robust-
ness across different trading frequencies.
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Chapter 4

Valuation of Large Variable
Annuity Portfolios

4.1 Introduction

An important investment-related task for insurance companies is to manage the
assets and liabilities of their products. To do so, companies need to know the present
values of products. In this chapter, we focus on the valuation problem of investment-
linked insurance products, particularly, variable annuities.

A variable annuity (VA) is a deferred annuity contract that allows an annuitant
to invest in the financial market via mutual funds and provides downside protec-
tion in the form of a minimum guarantee. There are different types of guarantee
riders: guaranteed minimum death benefit (GMDB), guaranteed minimum accu-
mulation benefit (GMAB), guaranteed minimum withdrawal benefit (GMWB), and
guaranteed minimum income benefit (GMIB) (Hardy, 2003). In a VA contract, the
insurance company is obligated to pay the annuitant the guaranteed amount upon
events (death, withdrawal, or survival). VAs have rapidly grown in popularity, and it
has become vital for life insurers to develop and maintain effective hedging programs
for their variable annuity portfolios. An effective hedging program routinely requires
frequent valuation of a very large number of individual VA contracts.

There is a large literature studying the valuation of VA contracts. Early research
adopted option pricing techniques, e.g., Brennan and Schwartz (1976); Boyle and
Schwartz (1977), and Bacinello and Ortu (1993). Boyle and Hardy (1997) com-
pared stochastic simulation and option pricing methods for their performance in
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pricing and reserving for VA contracts. Hardy (2000) compared three methods for
reserving for VA contracts with maturity guarantees: the simulation and value-at-
risk (VaR) method, dynamic hedging, and static hedging. Bauer et al. (2008) pro-
vided a comprehensive simulation framework for pricing different types of guarantees.
Bacinello et al. (2011) proposed a unifying framework of valuation using ordinary and
least squares Monte Carlo (LSMC) simulation techniques. Huang and Kwok (2016)
applied the LSMC method to price and hedge VA with GLWB riders. Shen and
Weng (2019, 2020) developed a backward simulation method that, employing shape-
preserving sieve estimation, provides a computationally efficient LSMC simulation
algorithm for the valuation of variable annuities with complex withdrawal options.
Yang and Dai (2013) introduced a tree model for valuing withdrawal guarantees.
Doyle and Groendyke (2018) found that the efficiency in pricing and hedging VA
guarantees is improved by using neural networks. Huang et al. (2022) used a change
of numéraire approach in valuing an accumulating guarantee. See Gan (2013) for a
review of methods for pricing individual VA contracts. See Gan and Valdez (2019)
for a review of methods for pricing VA portfolios using the two-step framework.

Despite the extensive research on the valuation of individual VA contracts, valu-
ing VA portfolios remains a challenging problem because they typically contain a
large number of VA contracts that have different attributes such as gender, account
value, maturity and guarantee type. The complexity of the guaranteed payoff lim-
its the availability of analytical formulae for valuation. A popular non-parametric
method is nested simulation (Reynolds and Man, 2008; Bauer et al., 2012), which
uses Monte Carlo simulation procedures in both outer and inner loops to determine
prices and sensitivities of interest. However, due to the complex structure of VA
portfolios, a huge number of simulations is required to ensure accurate valuation.
This raises another issue in practice, i.e., computational cost. As a VA portfolio may
contain more than 100,000 individual contracts (Gan and Lin, 2015), valuing the
entire portfolio using simulation could be extremely time-consuming, not to mention
that a large insurance company usually maintains several VA portfolios.

A practically viable solution is the metamodelling framework where a two-step
procedure is applied. The first step is to select a reasonable set of representative
contracts to be evaluated and the second step obtains valuation of the remaining
contracts through a certain interpolation procedure. The majority of the literature
on the valuation of large VA portfolios adopts this two-step framework by proposing
different methods for selecting representative contracts and/or interpolation. Gan
(2013) proposed a framework using clustering analysis for the selection of represen-
tative contracts and the ordinary kriging method to estimate the values and Greeks
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of the remaining contracts. Gan and Lin (2015) modified the framework by incorpo-
rating nested simulation to evaluate the representative contracts and the universal
kriging method to estimate values for the remaining contracts. Hejazi and Jackson
(2016) adopted a spatial interpolation framework to estimate Greeks of VA portfolios
for enhanced efficiency. Hejazi et al. (2017) then improved the method by using neu-
ral networks to search for an effective distance function in spatial interpolation. Gan
and Valdez (2016, 2018) used GB2 (generalized beta of the second kind) regression
models for the interpolation in the second step of the framework. Gan and Valdez
(2016) compared five methods in the first step of selecting representatives: the ran-
dom sampling method, the low-discrepancy sequence method, the data clustering
method, the Latin hypercube sampling method, and the conditional Latin hyper-
cube sampling method. Gan and Lin (2017) proposed a two-level metamodelling
approach for efficiently calculating the Greeks in VA portfolio hedging. Xu et al.
(2018) used moment matching Monte Carlo methods to calculate quantities (dollar
Deltas, VaRs and CVaRs) for the representative contracts and then machine learn-
ing methods such as regression trees and neural networks to estimate the quantities
for the portfolio. Gan and Valdez (2020) compared the hierarchical k-means algo-
rithm to the truncated fuzzy c-means (TFCM) algorithm in the selection and found
the hierarchical k-means algorithm is more efficient. Feng et al. (2020) proposed a
simple random sampling and clustering method to select representative contracts.
Integrating with two metamodels, they found that the proposed method improves
the estimation accuracy compared to the state-of-the-art method by Gan (2013). Liu
and Tan (2021) introduced a green mesh method for valuation and demonstrated its
efficiency in a real-time valuation application.

More recently, Lin and Yang (2020b) developed a fast and efficient nested simu-
lation procedure for the valuation of large VA portfolios using a surrogate modelling
approach. They proposed using a spline regression model to reduce the number of
outer loops and a model-assisted finite population estimation framework to reduce
the number of policies in use for the nested simulation. Their method has the merit
of being theoretically justifiable under certain modelling assumptions. Furthermore,
Lin and Yang (2020a) extended the surrogate modelling approach into a multi-period
setting for dynamic hedging problems.

In this chapter, we focus on the first step of the metamodelling framework and
propose a two-phase selection method for the determination of representative con-
tracts. In the second step, we use the universal kriging method as in Gan and Lin
(2015); Gan and Valdez (2019, 2020). The general idea of our method is to split
the selection of representative contracts into two phases: an initial selection phase,
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and a conditional selection phase. In the initial selection phase, we select a subset of
representatives based on the known attributes of all VA contracts and obtain their
values by a valuation method (for example nested simulation). While any conven-
tional selection method could in principle be employed in the first phase, we focus
on the k-prototypes and the hierarchical k-means clustering methods, which are un-
supervised learning methods. In the conditional selection phase, we make use of the
obtained contract values of these representatives from the initial selection phase in
addition to the attribute data of the VA contracts. Specifically, we model the con-
tract values as Gaussian random variables. This is also the assumption underlying
the universal kriging method. From this assumption, we have a prior distribution for
the contract values. Based on the information from the representatives selected in
the first phase, we can derive a posterior distribution for the contract values. Then,
we use a statistical distance to measure the similarity between two contracts (as
Gaussian random variables) and propose a prudently designed conditional k-means
algorithm to select the rest of the representative contracts. The conditional k-means
algorithm takes those representative contracts from the initial selection phase as
fixed centroids and searches for the remaining representative contracts as the other
centroids in the k-means clustering procedure to minimize an overall loss. It is called
so because the search for the other centroids is conditional on these fixed ones from
the initial selection phase, and this conditional search guarantees that there would
not be overlapping representations between the set of contracts from the first phase
and those from the second phase. Furthermore, we establish the local convergence
of the conditional k-means algorithm.

There are several reasons for us to use the posterior distribution for the deter-
mination of representative contracts in the second phase. First, when we model the
contract values as Gaussian random variables under the kriging regression model,
if the distributions of the two contract values are different from each other, then
their corresponding attributes must differ significantly. Hence, selecting based on
the posterior distribution of the contract values also captures the heterogeneity in
the VA contract attributes, which is usually the target to achieve in various represen-
tative selection methods in the literature. Second, selecting based on the posterior
distribution yields more similarity in the distribution of contract values between
the representative set and the whole VA portfolio. Based on the universal kriging
method, contracts with different attributes could also have similar contract values.
Hence, the conventional selection method tends to yield a more concentrated dis-
tribution of contract values in the representative set. The numerical study results
in Table 4.4.3 confirm that, compared with the conventional method, the quantiles
of the contract values of representatives from our method are closer to those of the
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whole VA portfolio.

As described above, our two-phase selection method is distinguished from con-
ventional methods in the fact that the selection of representative contracts in our
method uses information from both the contract attributes and the contract values.
In contrast, most methods previously proposed in the literature (for example, the
random sampling method, the clustering methods, the (conditional) Latin hypercube
sampling methods, and the population sampling methods (e.g., Gan and Lin (2015);
Gan and Valdez (2016, 2019, 2020)) only use the contract attributes. Lin and Yang
(2020a,b) are two exceptions in the literature. They also propose a two-phase sam-
pling procedure for the selection of representative contracts, but the motivation in
their method for the first phase sampling differs from ours. In their method, the first
phase sample is used to develop an estimate for the error standard deviation in a
linear surrogate model, as this parameter is needed for the determination of desirable
representative contracts in their nested simulation framework.

Furthermore, our two-phase selection method can be applied naturally when an
insurance company has already evaluated some representative VA contracts in their
previous hedging program and would like to increase the valuation accuracy by se-
lecting more representative contracts. In this case, these contracts with known values
can be used as the initial selection ones and the posterior distribution can be estab-
lished based on these known values for the conditional k-means procedure in the
second phase to select a set of extra representative contracts.

The remainder of the chapter is structured as follows. Section 4.2 describes the
kriging model based two-step valuation procedure used. Section 4.3 explains the
details of our two-phase selection method. Section 4.4 compares the performance of
our method with conventional selection methods, based on two numerical studies.
Section 4.5 concludes the chapter.

4.2 The Two-step Valuation Paradigm

Consider a VA contract with p + q attributes x := (x1, · · · , xp, xp+1, · · · , xp+q)
′
,

where the first p variables are numerical and the remaining q are categorical. As-
sume, for each contract i, the contract value yi can be written as yi = v(xi) for
an unknown function v. The VA portfolio valuation problem is to develop a good
estimate of the value

∑N
i=1 v(xi) for a large number (e.g. more than 100,000) of con-

tracts {xi, i = 1, · · · , N}. In principle we could evaluate v(xi) for every xi through
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nested simulations (Reynolds and Man (2008); Bauer et al. (2012)). However, this
would be computationally prohibitive for a desirable precision.

As mentioned in the introduction section, a typical alternative valuation approach
is to resort to a metamodelling framework that follows a two-step procedure to
develop an estimate for the sum

∑N
i=1 v(xi). In the first step, a selection method

is applied to find “representative contracts.” For example, the clustering method
classifies the pool {xi, i = 1, · · · , N} into a number of clusters. The centroids of the
resulting clusters are taken as representative contracts, which of course constitute
a subset of the pool {xi, i = 1, · · · , N}. In the second step, the value of v(xi) for
each selected representative contract xi is numerically computed. Then a predictive
model is established, usually by combining the information from the attribute data of
all the contracts and the computed values of these representative contracts. Methods
presented in the literature include kriging methods (Gan and Lin (2015); Gan and
Valdez (2020)) and regression models (Gan and Valdez (2016, 2018); Gan (2018)).
The established predictive model is finally applied to each remaining contract to
eventually obtain an estimate for

∑N
i=1 v(xi).

Below we describe the specific setting of the two-step metamodelling procedure
that was adopted by Gan and Lin (2015); Gan and Valdez (2019, 2020). This is
also the setting we will adopt in this chapter except that we will use a two-phase
procedure for the selection of representative contracts.

• Step 1 (Selection of representative contracts). Select k representative
contracts with attributes {xrep,1,xrep,2, · · · ,xrep,k} by a given method, e.g. the
k-prototypes clustering method (Huang (1997)) or the hierarchical k-means
method (Nister and Stewenius (2006)). Then, compute the values of the se-
lected contracts:

yrep = (yrep,1, yrep,2, · · · , yrep,k)
′
= (v(xrep,1), v(xrep,2), · · · , v(xrep,k))

′

where yrep,i = v(xrep,i) is the value of the ith representative contract, i =
1, . . . , k.

• Step 2 (Estimation of portfolio value using kriging). After the selection
and valuation of the representative contracts, the universal kriging method is
applied to estimate the values of the remaining contracts. This method views
the values of the VA contracts as a realization of a multivariate normal random
vector:

Y := (Y1, Y2, · · · , YN)
′ ∼ N

(
(g(x1), g(x2), · · · , g(xN))

′
, {Cov(Yi, Yj)}N×N

)
.

(4.1)
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The mean vector, modelled through an attribution function, and the covariance
matrix, are specified below.

We call the remaining (N−k) contracts after the selection of the representative
contracts in the VA portfolio regular contracts to distinguish them from the k
evaluated representative contracts in Step 1, and label their attributes and
values by xreg,i and yreg,i, respectively, i = 1, . . . , N − k. When the value
of a contract is treated as a random variable, we use the notation Yrep,i for
a representative contract and Yreg,i for a regular contract. For each regular
contract, the universal kriging method estimates its value through a linear
combination of representatives’ values:

Ŷreg,i =
k∑

j=1

λijYrep,j

where
k∑

j=1

λij = 1. The weight λij are obtained by minimizing the estimation

error:
min V ar(Ŷreg,i − Yreg,i)

s.t. E[Ŷreg,i − Yreg,i] = 0
(4.2)

To solve the above optimization problem, we need to first model the Gaus-
sian distribution (i.e. mean and covariance) of Y . The detailed estimation
procedure is as follows:

(2.1) Calculate the distance between xreg,i and each representative contract as
well as the distances among representative contracts. For two contracts
xi and xj, the distance is defined as (Huang et al., 2005):

D(xi,xj) =

√√√√ p∑
l=1

wl(xil − xjl)2 +

p+q∑
l=p+1

wlδ(xil, xjl) (4.3)

where δ(xil, xjl) = 1{xil ̸=xjl} and wl is the weight assigned to the l-th
attribute. The above distance is a generalization of the Euclidean distance
to incorporate categorical components. There are various choices of the
weights wl. For the numerical attributes, common choices are constant
weights (wl = 1) (Gan and Valdez (2020)) and variation-adjusted weights,

i.e., wl =
1
R2

l
where R2

l =
1

N−1

N∑
i=1

(
xil − 1

N

N∑
i=1

xil

)2

(Gan and Lin (2015)).
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For the categorical attributes, constant weights are usually used (Gan and
Lin (2015); Gan and Valdez (2020)).

(2.2) Choose a semivariogram function to model the covariance among con-
tracts:

Cov(Yi, Yj) = σ2 − γ(D(xi,xj)). (4.4)

The following are three common semivariogram functions (Stanford and
Vardeman (1994)):

(a) Exponential semivariogram function

γ(h) =

{
0, h = 0

a+ (σ2 − a)
(
1− e−

3h
r

)
, h > 0

(4.5)

(b) Spherical semivariogram function

γ(h) =


0, h = 0

a+ (σ2 − a)
(

3h
2r
− h3

2r3

)
, 0 < h ≤ r

σ2, otherwise

(4.6)

(c) Gaussian semivariogram function

γ(h) =

0, h = 0

a+ (σ2 − a)

(
1− e−

3h2

r2

)
, h > 0

(4.7)

For a valid semivariogram function, we need σ2 ≥ 0, a ≥ 0 and r ≥ 0.
The calibration of these parameter values is obtained based on the com-
puted values of the selected representative contracts; see Appendix C.1
for details.

(2.3) Model the mean vector through an attribution function (Stanford and
Vardeman (1994); Gan and Lin (2015)):

g(x) = f(x)
′
β = (1, x1, · · · , xp, f1(xp+1), · · · , fq(xp+q))β (4.8)

where f(x) = (1, x1, · · · , xp, f1(xp+1)
′
, · · · , fq(xp+q)

′
)
′
is the attribution

function and β is a parameter vector. Recall that xp+1, · · · , xp+q are
categorical. For 1 ≤ i ≤ q, suppose xp+i has m levels: L1, · · · , Lm, then
fi(xp+i) is an (m− 1)-dimensional vector

(1{xp+i=L2}, · · · ,1{xp+i=Lm})
′
.
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In this case, the mean g(x) is the linear combination of all attributes (and
categorical levels).

(2.4) Let 1 denote a vector of ones of length k. Using Lagrange multipliers to
solve the minimization problem (4.2),1 we will end up with solving the
following linear system for weights λi and Lagrange multipliers ηi under
the constraint 1

′
λi = 1:(

Brep Arep

A
′
rep 0

)(
λi

ηi

)
=

(
Breg,i

Areg,i

)
,

where Arep = (f(xrep,1), f(xrep,2), · · · , f(xrep,k))
′
is the attribution ma-

trix of the representative contracts, and Areg,i = f(xreg,i) is the attri-
bution vector of the contract xreg,i. Brep = {γ(D(xrep,j,xrep,l))}k×k is
the semivariogram matrix of the representative contracts, and Breg,i =
{γ(D(xreg,i,xrep,j))}k×1 is the semivariogram vector between the contract
xreg,i and the representative contracts.

(2.5) The estimated value of the contract xi is given by

v̂(xreg,i) = λi · yrep.

4.3 Two-Phase Selection

In this section, we introduce our two-phase selection method for determining rep-
resentative contracts to be used in the metamodelling procedure described in the
preceding section.

4.3.1 General Procedure of the Two-Phase Selection Method

The two-phase selection method breaks the first step of the metamodelling procedure
(i.e., selection of the representative contracts) into two phases, which we label as
Phases 1.1 and 1.2, as described below:

• Phase 1.1 (Initial selection): Apply the k-prototypes clustering method
(Huang (1997)) or the hierarchical k-means method (Nister and Stewenius
(2006)) to the attributes data of all the VA contracts and identify k contracts

1For details, see Stanford and Vardeman (1994).
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that are closest to these k centroids, respectively. We then further apply a
k1-clustering method to the attribute data of these obtained k contracts to
identify k1 contracts that are closest to the k1 centroids, where k1 < k. The
resulting k1 contracts constitute a subset of the k contracts from the clustering
procedure. Then, we compute the values of these identified k1 contracts.

• Phase 1.2 (Conditional selection): In this step, we use the clustering
method again to select (k− k1) representatives, out of the remaining (N − k1)
candidate contracts. Since we now have the values of the k1 contracts, which
contain useful information about the underlying model v(·), we should not
neglect their values when selecting new representative contracts. Hence, in this
conditional selection phase, we make use of the information from the computed
values of the first k1 representative contracts in addition to the attribute data
of all the VA contracts. While there might be alternative ways to incorporate
the computed values of the representatives from the first phase, the specific
conditional selection procedure in our method is described in Section 4.3.2. It is
based on the posterior distribution of the working assumption (4.1) conditional
on these computed values of k1 representative contracts.

Remark 2. The above two-phase selection procedure is also appealing in practice,
where an insurance company has valuation results for some VA contracts (which may
or may not be included in the currently prevailing VA portfolio) and decides to select
more representative contracts to develop a more reliable valuation of its VA portfolio.
In such a situation, these VA contracts with values available can be viewed as the k1
contracts in Phase 1.1, and Phase 1.2 is focused on selecting additional representative
contracts that are most conducive to improving the VA portfolio valuation, based on
the known k1 contract prices.

4.3.2 The Posterior Distribution and a Distance Measure

The conditional selection phase is conducted under the working assumption that the
value vector Y of the VA portfolio follows a Gaussian process as shown in (4.1). The
mean is described through an attribution function and the covariance is described
through a semivariogram function. We write

Y = (Ypre,Ycan)
′ ∼ N

(
(µ′

pre,µ
′
can)

′
,

(
Σpre Σ12

Σ21 Σcan

))
, (4.9)

where Ypre denotes the vector that contains the values of the k1 representative con-
tracts selected in Phase 1.1, and Ycan is the vector containing the values of all the
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remaining (N − k1) contracts. In the above, the mean vector and the covariance
matrix are also partitioned accordingly. Σ12 and Σ21 are the covariance matrices
between the two random vectors.

Under the working assumption (4.1), we can compute the posterior joint Gaussian
distribution of the N contract values conditional on the computed values of the k1
representatives selected in Phase 1.1 as follows:

(Ypre,Ycan)
′
∣∣∣ (Ypre = ypre) ∼ N

(
(y′

pre, (µ
∗
can)

′)
′
,

(
0 0
0 Σ∗

can

))
, (4.10)

where 0 denotes a matrix of all zeros in the appropriate dimension,

µ∗
can = µcan + Σ21Σ

−1
pre(ypre − µpre), (4.11)

and
Σ∗

can = Σcan − Σ21Σ
−1
preΣ12. (4.12)

For convenience, we call the distribution in (4.10) the posterior distribution and the
one in (4.9) the prior distribution.

From the kriging modelling procedure described in Section 4.2, one can see that
two contracts with similar attributes have similar mean and variance in their values.
Moreover, in this case, their values have a strong positive correlation. Furthermore,
if the distributions of two contract values are different enough from each other,
then their corresponding attributes must differ from each other significantly. This
means that the heterogeneity and homogeneity among the VA contracts in their
attributes can be captured by those in the distributions of their values. We choose
the remaining (k − k1) representative contracts by a clustering analysis based on
the posterior distribution in (4.10). A natural statistical distance for two contracts
xi and xj (with value random variables Yi and Yj, respectively) to be used in the
clustering analysis is as follows:

Ep[(Yi − Yj)
2] = Var(Yi − Yj) + (E[Yi]− E[Yj])

2

= (σ∗
i )

2 + (σ∗
j )

2 − 2σ∗
i σ

∗
jρ

∗
ij + (µ∗

i − µ∗
j)

2, (4.13)

where Ep denotes the expectation operator under the posterior distribution (4.10),
µi and σi denote the mean and the standard deviation of the value variable Yi, re-
spectively, and ρij is the correlation coefficient between Yi and Yj under the posterior
distribution. When one of the two contracts is among those preselected, its variance
is zero and thus the term involving the correlation coefficient in the above equation
is also zero.
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In the implementation, we instead use the following distance in the clustering
analysis for the conditional selection of the remaining (k − k1) representative con-
tracts:

W (θi,θj) = ||θi − θj||2 = (µ∗
i − µ∗

j)
2 + (σ∗

i − σ∗
j )

2, (4.14)

where θi = (µ∗
i , σ

∗
i ) collects the posterior distributional attributes. Such a distance

can also be viewed as the Wasserstein distance for Gaussian distributions (Kan-
torovich (1960)). The reason for us to consider such a distance is as follows. This
distance comes from (4.13) by assuming ρij = 1. In the application of large VA
portfolio valuation, the value variables turn out to have a strong positive correlation
under the kriging model. Furthermore, with this simplified distance, we only need to
compute the mean and variance of each contract value under the posterior distribu-
tion and do not need to compute the covariance. Avoiding computing the covariance
can save a considerable amount of computation time and reduce memory usage in
the computational implementation of the clustering analysis.

To implement a clustering analysis based on the distance (4.14), we need to de-
velop an estimate for the posterior mean and the posterior variance of the remaining
(N−k1) candidate contracts. The estimation is carried out using the following steps:

• First, we follow the parametric model in (4.8) and apply an Ordinary Least
Squares (OLS) regression with the data of the k1 initially selected contracts
(including both the computed contract values and the attribute data). The
OLS regression gives us an estimate of the coefficient vector β, and substituting
its value into (4.8) leads to an estimate for the mean for each contract. This
provides an estimate for the prior mean vector µcan.

• Second, noticing that each element of the prior covariance matrix is modelled
by equation (4.4), we follow the procedure described in Appendix C.1 using
the data of the k1 preselected representative contracts for the calibration.

• Finally, we substitute the estimates of the prior mean and the prior covariance
matrix into equations (4.11) and (4.12) to get the estimates for the posterior
mean vector µ∗

can and the posterior covariance matrix Σ∗
can.

4.3.3 A Conditional k-means Algorithm

To enhance the representativeness of the selected contracts, we consider applying a
conditional k-means algorithm for the determination of the (k − k1) representative
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contracts in Phase 1.2. We call it a conditional k-means algorithm because we take
the k1 initially selected contracts as k1 centroids in the clustering analysis and search
for the remaining (k − k1) centroids to minimize the total loss defined through the
distance in equation (4.14).

Recall that θi = (µ∗
i , σ

∗
i ) collects the posterior distributional attributes of contract

i, i = 1, 2, . . . , N . Denote θ = {θ1,θ2, . . . ,θN}, and let {c1, c2, . . . , ck1} be the k1
known centroids. We choose the remaining (k − k1) centroids {ck1+1, ck1+2, . . . , ck}
by minimizing the overall loss:

L(z, c) =
k∑

j=1

∑
zi=j

(W (θi, cj))
2,

where c := {c1, c2, . . . , ck}, z = (z1, z2, . . . , zN)
′
, zi ∈ {1, 2, . . . , k}, are the clusters

assigned to the N points so that zi = j when the point θi is assigned to the jth
cluster.

We follow a similar algorithm to the one described in Gan and Lin (2015) for
searching for the remaining (k − k1) centroids:

1. We first randomly select (k − k1) centroids from θ \ {c1, c2, . . . , ck1}. Denote

the initial centroids as c(0) = {c1, . . . , ck1 , c
(0)
k1+1, . . . , c

(0)
k }.

2. Then, each point θi is assigned to a cluster by

z
(0)
i = argmin

j=1,··· ,k
W (θi, c

(0)
j ), i = 1, · · · , N.

If θi has the same distance to more than one centroid, it will be randomly
assigned to one of those clusters.

3. For clusters with centroids c(0), we keep the first k1 centroids and update the
last (k − k1) centroids by

c
(1)
jl =

1

#Aj

∑
zi=j

θil, l = 1, 2, and j = k1 + 1, · · · , k, (4.15)

where #Aj denotes the number of elements in Aj := {i = 1, . . . N |zi = j}, i.e.,
the number among the N points that are assigned to cluster j.

4. We repeat the above two steps until the centroids do not change or until we
reach a preset upper limit of the iteration number.
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Note that the above clustering algorithm does not guarantee convergence to a
global optimum. Therefore, the output depends on the initialization of the centroids.
A common solution as for the conventional k-means clustering procedure is to try a
number of randomized initializations and take the best one.

The following results guarantee the convergence of the above clustering algorithm
with fixed centroids. That is, the algorithm finds a unique set of centroids after
finitely many iterations.

Lemma 4.3.1. Let centroids c = {c1, c2, . . . , ck} be fixed. Define the cluster assign-
ment for point θi as

βi(c) = argmin
j∈{1,2,...,k}

(W (θi, cj))
2, i = 1, 2, . . . , N.

Let β(c) = (β1(c), β2(c), . . . , βN(c)). Then, for any assignment z, it holds that

L(z, c) ≥ L(β(c), c).

Proof. The optimality of β(c) immediately implies

L(z, c) =
k∑

j=1

∑
zi=j

(W (θi − cj))
2 ≥

k∑
j=1

∑
βi(c)=j

(W (θi − cj))
2 = L(β(c), c).

Lemma 4.3.2. Let z be any fixed cluster assignment. Given the first k1 cluster
centroids fixed, define the centroid of cluster j, j = k1 + 1, k1 + 2, . . . , k, as

αj(z) =
1

#Aj

∑
zi=j

θi.

Let α(z) = (c1, . . . , ck1 , αk1+1(z), . . . , αk(z)). Then, for any c
∗ = {c1, . . . , ck1 , c∗k1+1 . . . , c

∗
k}

with c∗i ∈ R2, it holds that
L(z, c∗) ≥ L(z, α(z)).

Proof. See Appendix C.2.
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Theorem 4.3.3. The loss function of the conditional k-means algorithm, with the
first k1 centroids (c1, c2, . . . , ck1) known and fixed, converges.

Proof. Let ln−1 = L(z(n−1), c(n−1)) be the loss function at iteration (n− 1), for given
centroids c(n−1) and cluster assignments z(n−1). We also carry the same meanings of
all the notation from Lemmas 4.3.1 and 4.3.2.

The nth iteration updates z(n−1), the assignment of each point θi, to z(n) :=
(z

(n)
1 , · · · , z(n)N ) with

z
(n)
i = argmin

j∈{1,2,...,k}
(W (θi, c

(n−1)
j ))2, i = 1, 2, . . . , N.

Thus, by Lemma 4.3.1, we have L(z(n−1), c(n−1)) ≥ L(z(n), c(n−1)). Furthermore, the

nth iteration also updates the centroids to c(n) := (c1, . . . , ck1 , c
(n)
k1+1, . . . , c

(n)
k ) with

c
(n)
j =

1

#A
(n)
j

∑
z
(n)
i =j

θi, j = k1 + 1, . . . , k, (4.16)

where #A
(n)
j denotes the number of elements in A

(n)
j := {i = 1, . . . N |z(n)i = j}.

Therefore, by Lemma 4.3.2, we have L(z(n), c(n−1)) ≥ L(z(n), c(n)).

Combining the above, we obtain

ln−1 = L(z(n−1), c(n−1)) ≥ L(z(n), c(n−1)) ≥ L(z(n), c(n)) = ln,

which means that the loss sequence {ln} is non-increasing. Furthermore, the sequence
is obviously bounded from below by zero. Therefore, the sequences, {ln} converge.

Remark 3. When implementing the conditional or unconditional k-means algorithm,
although unlikely, cycling can be an issue, i.e. centroids change but the overall loss
does not reduce. In this case, the algorithm stops when the loss is no longer reduced
(after a certain number of iterations). According to Selim and Ismail (1984), this
issue does not contradict the local convergence in the above theorem.

Remark 4. This conditional k-means algorithm can be applied to higher dimensional
data. We can also derive similar conditional algorithms for other conventional algo-
rithms such as the k-prototype algorithm and mini-batch k-means algorithm. For the
conditional k-prototype algorithm, the distance is defined by equation (4.3). In the
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updating step 3, the numerical attributes are still updated by equation (4.15). Each
categorical attribute is updated by the mode i.e. the categorical level that appears
most in the cluster. For the conditional mini-batch k-means algorithm, the conver-
gence proof will be similar to that for the conventional mini-batch k-means algorithm
(Bottou and Bengio (1994); Sculley (2010)).

4.4 Numerical Examples

In this section, we implement two numerical studies based on a dataset of synthetic
variable annuities from Gan and Valdez (2017) to illustrate the performance of our
two-phase selection method for the valuation of VA portfolios.

4.4.1 Variable Annuity Contracts

Gan and Valdez (2017) build a synthetic dataset that contains 10,000 VA contracts
for each of 19 products. They use Monte Carlo simulations to obtain the fair market
values and relevant Greeks (Delta and Rho) for each contract.2 The fair market
values will be used as the “true” contract values to measure the performance of
different valuation methods in our studies. Instead of using their original attribute
data, we process the data following Gan and Valdez (2020):

(1) We convert dates in their dataset into age, maturity, and time-to-maturity for
each contract.

(2) We drop the base fee and underlying investment fund fees as they are set to be
universal for all contracts.

(3) We drop rider fees, withdrawal rates, and roll-up rates as they are determined
by the guarantee types.

Tables 4.1 and 4.2 summarize the categorical and numerical attributes of the VA
contracts. The explanations of the guarantee types are in Appendix C.3. For more
details about the design of the VA contracts, see Gan and Valdez (2017).

We normalize all numeric attributes to be distributed in [0, 1] in our analysis
as in Gan and Lin (2015); Gan and Valdez (2019, 2020). We test some bench-
mark selection procedures and our two-phase selection procedure below. We use

2These public datasets are accessible at https://www2.math.uconn.edu/~gan/software.html.
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Attribute Values Distributions

Guarantee type
DBRP, DBRU, DBSU, ABRP, ABRU, ABSU

10,000 eachIBRP, IBRU, IBSU, MBRP, MBRU, MBSU
WBRP, WBRU, WBSU, DBAB, DBIB, DBMB, DBWB

Gender Male, Female 60%, 40%

Table 4.1: Categorical attributes of VA contracts

Attribute Min. 1st Q. Median Mean 3rd Q. Max.
Age 34.52 42.03 49.45 49.49 56.96 64.46

Time-to-maturity 0.59 10.34 14.51 14.54 18.76 28.52
Guaranteed benefit 50001.72 179758.97 303524.62 313507.22 427544.13 989204.53
GMWB balance 0.00 0.00 0.00 36140.74 0.00 499708.73

Withdrawn amount 0.00 0.00 0.00 21927.80 0.00 499585.73
Fund 1 value 0.00 0.00 8299.21 26611.38 39208.90 921548.70
Fund 2 value 0.00 0.00 8394.07 26044.48 38463.42 844322.70
Fund 3 value 0.00 0.00 4941.89 17391.42 24251.44 580753.42
Fund 4 value 0.00 0.00 4225.33 14507.35 20755.88 483936.90
Fund 5 value 0.00 0.00 7247.69 21041.04 32111.72 494381.61
Fund 6 value 0.00 0.00 8555.75 26569.62 39241.12 872706.64
Fund 7 value 0.00 0.00 6602.11 21505.81 31087.78 634819.08
Fund 8 value 0.00 0.00 6254.55 19990.40 29404.16 562485.37
Fund 9 value 0.00 0.00 5943.19 19646.92 28100.22 663196.22
Fund 10 value 0.00 0.00 6738.22 21002.82 31255.73 599675.34

Table 4.2: Statistical summary of numerical attributes of VA contracts

71



two conventional clustering methods: the k-prototypes method (“k-prototypes” for
short, Section 4.4.2) and hierarchical k-means method (“hkmeans” for short, Section
4.4.3). For both methods, we apply them in our two-phase selection procedure (“TP.
SD”3 for short). For the conventional clustering procedure, we choose k initial repre-
sentative contracts. For our procedure, we use the conventional clustering procedure
to choose k1 = k/2 initial representatives and select the remaining representatives
through our conditional clustering method based on the statistical distance.

4.4.2 Numerical Study 1: k-Prototypes

In this first numerical study, we use the conventional k-prototypes method as the
benchmark method. We also use the k-prototypes method in Phase 1.1 for the initial
selection of representative contracts in our two-phase procedure. The k-prototypes
method is a conventional clustering method, feasible for categorical data. Similarly
to the k-means clustering method, the distance between two contracts (data points)
is employed to divide the dataset into clusters. For the k-prototypes method, the
distance is defined in equation (4.3), where the contribution of the categorical compo-
nent to the total distance is measured by the weight wl. We use the variation-adjusted

weights
(
wl =

1
R2

l

)
for the numerical attributes and constant weights (wl = 1) for

the categorical attributes, following (Gan and Lin (2015)).

However, the use of distance (4.3) makes the k-prototypes method computation-
ally expensive because it involves the search for the mode as we have previously
pointed out in Remark 4. Hence, for this study, we use a subset of the synthetic
data from Gan and Valdez (2017).4 In particular, we use the data for VA contracts
with DBSU (GMDB with annual ratchet), WBSU (GMWB with annual ratchet) and
DBWB (GMDB + GMWB with annual ratchet) guarantee types as examples. In
total, we have 30,000 contracts. Also, we reduce the number of attribute variables by
collecting the 10 fund values into an aggregate fund value with a statistical summary
in Table 4.3. Note that each VA contract usually can only have one non-zero value
in the 10 funds in the raw data, and this conversion of data does not lose much
information.

For the two valuation methods, we test different values of k: 150, 300, and
450, representing 0.5%, 1%, and 1.5% of the entire dataset, respectively.5 We use

3SD stands for the statistical distance - in particular the Wasserstein distance in this chapter.
4Note that the expensive computational cost is not from our framework, but from the k-

prototypes clustering method.
5Similar proportions are used in Gan and Lin (2015).
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Attribute Min. 1st Q. Median Mean 3rd Q. Max.

Aggregate fund value 0.00 63317.03 133318.13 172387.05 265302.99 865452.36

Table 4.3: Aggregate Fund Value of VA Contracts

the Gaussian semivariogram function (4.7) to model the covariance matrix of the
Gaussian distribution (4.1). In our two-phase selection procedure, we take k1 =
75, 150, and 225, respectively, which comes from setting k1 = k/2.

Both valuation procedures give us the estimated values of the entire portfolio.
We then compare the estimated values to the “true” values provided in the synthetic
dataset, measured by the absolute percentage error (APE), at the portfolio level,

APE =

∣∣∣∣ n∑
i=1

ŷi −
n∑

i=1

yi

∣∣∣∣
n∑

i=1

yi

.

We record the computational cost of each procedure, as our aim is to reduce esti-
mation error while controlling the computational cost. The computational cost has
two parts: the time to select representatives, and the time to estimate candidate
contracts’ values (similar for all methods). The biggest difference is the first part,
which originates from the different selection designs.

In the clustering methods such as k-means and k-prototypes, the initialization
of the cluster centroids is chosen randomly. This randomness could affect the final
clusters since a single run of the methods only finds a local optimum. Hence, to
mitigate the impact of the random initialization on the clustering results, we repeat
the procedure under 100 random seeds.

Table 4.4 summarizes the average estimation errors and average computational
costs of both the k-proptotype and our two-phase selection methods when applied
to the fair market value, with different values of k. The two columns “Difference”
record the percentage deduction by our two-phase selection method compared with
the k-proptotype method, in terms of average APE and average computational time
over the 100 random seeds, respectively. A negative value in the column “Difference”
means a smaller value from our two-phase method compared with the conventional
benchmark, and a positive value suggests a bigger value from our method. The
detailed estimation errors and computational costs under each random seed are re-
ported in Tables C.2-C.4, in Appendix C.4.
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On average, our two-phase selection method achieves lower relative errors for
each k, compared to the conventional k-prototypes method. This indicates that
we should not neglect the information provided by the existing representatives. In
particular, our two-phase selection method based on the Wasserstein distance reduces
the estimation error 22.36%, 38.81%, and 53.12% when k is equal to 150, 300, and
450, respectively. The standard errors are also smaller compared to those of the
conventional procedure. At the same time, our procedure costs 19.47%, 14.57%, and
8.79% more computational time, respectively. The improvement in the estimation
error compensates for the extra computational time. Moreover, when the value of k
increases from 150 to 450, the increase in the computational cost becomes less, while
the reduction in the estimation error becomes more significant. From Table 4.4, we
have another finding when comparing the two selection methods with different k’s.
Specifically, our procedure achieves 0.0184 estimation error when k is equal to 150,
which is less than that of the conventional result when k is equal to 300 (0.0201).
A similar result holds when k for our procedure is 300 and for the conventional
procedure is 450.

Average APE Average Time
k k-prototypes TP.SD Difference k-prototypes TP.SD Difference

150
0.0237 0.0184 -22.36% 2717.05s 3246.08s +19.47%
(0.0019) (0.0014)

300
0.0201 0.0123 -38.81% 3501.16s 4011.43s +14.57%
(0.0016) (0.0010)

450
0.0192 0.0090 -53.12% 5657.59s 6155.04s +8.79%
(0.0013) (0.0007)

Table 4.4: Performance of methods: Average APE and computational time with
different k’s. The values in brackets are standard errors.

We could also look at the performance under each random seed in Tables C.2-C.4.
We conduct a paired t test to test whether our procedure produces statistically sig-
nificantly smaller estimation errors than the conventional procedure. Our hypothesis
test is

H0 : APEk−prototypes = APETP.SD Ha : APEk−prototypes > APETP.SD.

The results are summarized in Table 4.5. From the results, the estimation errors from
our procedure are significantly smaller, especially when k is large. These results are
consistent with those on the average level, giving evidence of the benefits of the
conditional valuation procedure.

74



k Mean Difference t Statistics p-value Confidence Interval
150 0.0053 2.3922 0.0093 (0.0016,∞)
300 0.0077 4.5898 < 0.0001 (0.0049,∞)
450 0.0102 7.1934 < 0.0001 (0.0078,∞)

Table 4.5: Summary of the paired t tests for the APE when using the k-prototypes
method.

In addition to the APE, we also consider the percentage absolute error (PAE) of
the estimates (Liu and Tan (2021))

PAE =

∑n
i=1 |yi − ŷi|∑n

i=1 yi
.

A lower PAE means the estimation is more accurate. In contrast to the APE, the
PAE considers both the portfolio level deviation and individual level deviation, from
the true contract values. The average estimation errors for the two models and
their differences are reported in Table 4.6. The conclusions based on the PAE are
similar to those based on the APE. Our two-phase selection method produces smaller
estimation errors which decrease when k increases. When k is equal to 150, the
percentage reduction in the estimation error does not compensate for the percentage
increase in the computational cost. However, there is a promising trend that when k
is larger, the percentage reduction in the estimation error becomes larger and exceeds
the percentage increase in the computational cost.

k k-prototypes TP.SD Difference

150
0.2133 0.1874 -12.12%
(0.0328) (0.0320)

300
0.1834 0.1476 -19.51%
(0.0224) (0.0178)

450
0.1662 0.1283 -22.81%
(0.0216) (0.0153)

Table 4.6: Performance of methods: Average PAE with different k’s. The values in
brackets are standard errors.
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4.4.3 Numerical Study 2: Hierarchical k-Means

In the second numerical study, we implement another clustering method, the hierar-
chical k-means (Nister and Stewenius (2006)) method, to select representatives from
the entire synthetic VA dataset as proposed by Gan and Valdez (2020). Because the
conventional k-prototypes method spends a very large amount of time to calculate
the distances among contracts (as can be seen from the first study), it is inefficient
to deal with 190,000 contracts. The hierarchical k-means method, however, is more
efficient. It uses the k-means method to repeatedly divide the largest cluster into
two clusters until the number of clusters is equal to k. The dividing process is similar
to creating a binary tree. Hence, tree-based algorithms can be used to improve the
computational efficiency of the hierarchical k-means method.

However, as the name suggests, the hierarchical k-means method cannot han-
dle categorical data. It can only process dummy binary variables. Hence, following
Gan and Valdez (2020) we convert the categorical variable, Guarantee type, into 19
dummy binary variables, each of which represents a particular guarantee type. The
distance we use is still the one given by equation (4.3). In this study, we assume
all weights wl are equal to 1 and use a binary tree algorithm to implement the hier-
archical k-means method as in Gan and Valdez (2020). The binary tree algorithm
does not accommodate the conditional clustering feature as required in our condi-
tional selection phase (i.e., Phase 1.2). Moreover, the exact version of the conditional
k-means algorithm we proposed in Section 4.3.3 has the same limitation as the con-
ventional k-means algorithm that it is computationally expensive for a large dataset.
Therefore, in this study, we use the conditional mini-batch k-means algorithm which
is an adaptation of the mini-batch k-means algorithm (Sculley (2010)) in the same
spirit as we modify the conventional k-means algorithm to the conditional one. We
use a mini-batch size of 1,000 and 10 iterations. This needs a similar computational
time as the hierarchical k-means algorithm.

Due to the computational efficiency, we conduct more numerical experiments for
this study. We implement the conventional selection procedure and our two-phase
selection procedure with three semivariogram functions: exponential (4.5), spherical
(4.6) and Gaussian semivariograms (4.7).

In this study, we use another approach to adjust for the randomness from the
initialization in the k-means method. For each value of k, we run the hierarchical k-
means clustering algorithm to select k representatives out of 190,000 contracts under
100 different random seeds. Under each seed, we obtain k representatives and the
cluster assignments of all contracts. Then, we calculate the within-cluster distances
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and sum them up. Suppose {xi1, . . . ,xini
} are assigned to the i-th cluster whose

centroid is ci, i = 1, . . . , k. The sum of within-cluster distances6 is defined as

k∑
i=1

ni∑
j=1

D(xij, ci).

The seed that yields the smallest sum of within-cluster distances is chosen as the
best seed, in terms of clustering. The semivariogram function is not yet used in
the initial selection, so the choice of the semivariogram function will not affect the
seed selection. We only report the results under the selected seed. Note that this
approach does not benefit our two-phase selection procedure, because we would use
the distributions of the contract values to select the second batch of representatives.

Table 4.4.3 summarizes the quantiles of the representative contract values from
the conventional selection method and our two-phase selection method, as well as
the quantiles of the contract values of the whole VA portfolio when the number
of representative contracts, k is set equal to 340 and the Gaussian semivariogram
function is used in our conditional selection phase. Representatives are selected
under the best seed for both methods described above. The table indicates that the
quantiles of the representative contract values from our two-phase method are closer
to those of the whole VA portfolio. This comes from the fact that selecting based on
the posterior distribution in our method yields more similarity in the distribution of
contract values between the representative set and the whole VA portfolio, which we
have also mentioned in the introduction section.

0.05% 0.5% 1% 99% 99.5% 99.95%

hkmeans -21811.13 -19856.94 -16433.13 754018.93 852935.05 944307.75
TP.SD -31021.91 -22067.18 -20690.93 757172.07 853480.68 1187245.85

VA portfolio -36208.41 -26482.91 -22832.66 839914.48 976883.50 1384513.94

Table 4.7: Quantiles of contract values of representatives from the two selection
methods and of all the VA contracts in the portfolio

In terms of the performance measurement, we use the APE and PAE as well as
a new metric, R2 (Gan and Valdez (2019, 2020)):

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
, ȳ =

1

n

n∑
i=1

yi.

6This is also the loss function in the conventional k-means and k-prototypes methods.
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A higher R2 means the estimation is more accurate. Similar to the PAE, R2 also
considers both the portfolio level deviation and individual level deviation, from the
true contract values. We also record the computational costs of the two selection
methods. The computational time still consists of two parts: selection and estima-
tion. However, in this study, the selection time includes the time to repeat the initial
selection 100 times to select the best seed. Hence, if we would like to select the final
seed based on more experiments, the associated time is expected to increase.

Table 4.8 reports the valuation performance for different values of k and semivar-
iogram functions. Every three rows are under a particular seed, the determination
of which is discussed above. We do not report the relative differences in R2 because
they are of less interest.

The results indicate that the APEs are more volatile than the other two measure-
ments, across different values of k and semivariogram functions, for our particular
dataset. Especially for the conventional procedure, a larger k may not reduce the
APE. This is because of the cancellation of errors. Note that this measurement
will eventually decrease to zero when k increases to a large number. However, for
our method, there is a generally decreasing trend in APE in Table 4.8. The PAE
and R2 do not have the cancellation of errors issue. In terms of these two mea-
surements, the performance of the two procedures is improved when k is larger.
For our particular dataset, the Gaussian semivariogram function seems to have the
best estimation performance using our two-phase selection method, compared to the
other semivariogram functions. The computational cost is greatly reduced, com-
pared to the first study, which suggests the advantage of the hierarchical k-means
method. When comparing the two valuation procedures, our procedure outperforms
the conventional procedure in terms of all three measurements. The outperformance
is consistent across different values of k and semivariogram functions. Moreover, the
percentage reduction of the estimation error is larger than the percentage increase
of the computational time.

In Table 4.8, we could also compare the PAE and R2 across panels. We do not
consider the APE because it does not have a clear trend across k’s for the conventional
procedure. In terms of the PAE, we can compare the two methods while keeping
the computational costs at the same level. For example, we compare our method
when k is equal to 220, to the conventional method when k is equal to 280. Both
have comparable computational time, around 2,000 seconds. But the PAEs of our
procedure are consistently better than those of the conventional procedure. In terms
of the R2, when k is equal to 170 and the semivariogram function is exponential, our
method yields an R2 of 0.8890. This value is even higher than that of the conventional
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k Semivariogram
APE PAE

hkmeans TP.SD Difference hkmeans TP.SD Difference

170
Exponential 0.0124 0.0083 -32.85% 0.5510 0.3828 -30.52%
Spherical 0.0124 0.0078 -37.14% 0.5509 0.3755 -31.84%
Gaussian 0.1761 0.0408 -76.82% 0.5178 0.3288 -36.50%

220
Exponential 0.0076 0.0044 -42.03% 0.5090 0.3911 -23.18%
Spherical 0.0076 0.0007 -91.05% 0.5090 0.3734 -26.63%
Gaussian 0.0452 0.0155 -65.74% 0.3890 0.2713 -30.25%

280
Exponential 0.0021 0.0017 -17.27% 0.5086 0.3842 -24.46%
Spherical 0.0021 0.0016 -24.89% 0.5085 0.3878 -23.74%
Gaussian 0.0077 0.0049 -36.49% 0.4163 0.2193 -47.32%

340
Exponential 0.0066 0.0056 -14.92% 0.4183 0.2735 -34.62%
Spherical 0.0066 0.0054 -18.35% 0.4182 0.2604 -37.73%
Gaussian 0.0015 0.0013 -17.48% 0.2682 0.2011 -25.02%

680
Exponential 0.0138 0.0042 -69.30% 0.2265 0.1959 -13.51%
Spherical 0.0138 0.0021 -85.09% 0.2265 0.1939 -14.40%
Gaussian 0.0102 0.0020 -80.53% 0.1910 0.1335 -30.08%

k Semivariogram
R2 Time

hkmeans TP.SD Difference hkmeans TP.SD Difference

170
Exponential 0.8069 0.8890 - 1551.67s 1641.51s +5.79%
Spherical 0.8070 0.8927 - 1552.53s 1645.89s +6.01%
Gaussian 0.7921 0.9242 - 1571.11s 1653.43s +5.24%

220
Exponential 0.7963 0.8879 - 1799.44s 1950.66s +8.40%
Spherical 0.7964 0.8947 - 1798.06s 1921.82s +6.88%
Gaussian 0.8625 0.9467 - 1783.55s 1902.97s +6.70%

280
Exponential 0.7802 0.8920 - 2084.86s 2241.78s +7.53%
Spherical 0.7803 0.8875 - 2089.79s 2240.87s +7.23%
Gaussian 0.8257 0.9659 - 2095.36s 2255.56s +7.65%

340
Exponential 0.8471 0.9398 - 2574.87s 2743.82s +6.56%
Spherical 0.8471 0.9438 - 2579.59s 2750.33s +6.62%
Gaussian 0.9324 0.9699 - 2541.81s 2783.18s +9.50%

680
Exponential 0.9594 0.9650 - 6129.49s 6560.80s +7.04%
Spherical 0.9595 0.9664 - 6109.91s 6501.85s +6.41%
Gaussian 0.9707 0.9832 - 6137.96s 6541.23s +6.57%

Table 4.8: Valuation performance based on the selected seed
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method when k is equal to 340. From this perspective, our method not only achieves
higher estimation accuracy in return for more computational cost but also improves
the estimation at the same level of computational cost.

Figures 4.1-4.3 show the distributions of the estimated contract values from the
two representative selection methods, compared to that of the contract values of
the whole VA portfolio. The x-axis is truncated at −500 from the left and 1,000
from the right because the data beyond these limits are rather sparse. We use the
Gaussian semivariogram function and k equal to 170, 340, and 680 as examples.
From the graphs, our two-phase selection procedure yields much closer distributions
to the true one, especially at the tails. This is consistent with the measurements in
Table 4.8. Similar results for the quantiles are summarized in Table 4.4.3. These
results would also explain why the APE from the conventional method does not
decrease when k increases. Comparing the distribution of the conventional procedure
when k is equal to 340 and 680 in Figure 4.1, the estimated values when k is equal
to 340 deviate from the true ones at both the left and right tails, allowing for the
cancellation of errors. However, when k is equal to 680, the left tail becomes thinner
which reduces the error from the negative values, but it turns out to increase the
error for the aggregated value. Note that when k is small, there is still a noticeable
discrepancy between the distribution from our estimates and that from the true
values, around zero. In the two-step valuation framework, representative contracts
are selected to reflect heterogeneity in the whole portfolio. Hence, with a certain
number of representatives (k), if we select contracts in the tails of the distribution,
then there will be fewer contracts around zero. This leads to the discrepancy after
interpolation. When k increases, more representatives around zero will be selected,
compared to those in the tails. Therefore, the discrepancy becomes less significant
for larger k. This is a general problem using the two-step valuation framework. But
our method mitigates this issue compared to the conventional method, as attested
by Figures 4.1-4.3.

k Method 0.05% 0.5% 1% 99% 99.5% 99.95%

170
hkmeans -343510.46 -188650.90 -151991.03 759447.62 838610.10 1025983.20
TP.SD -214848.33 -123143.22 -97526.29 825569.06 941026.28 1260804.40

340
hkmeans -525002.40 -262815.49 -177997.82 788792.59 881756.17 1086587.33
TP.SD -184191.88 -99305.97 -77151.27 843470.98 972740.81 1371481.07

680
hkmeans -173347.99 -99478.87 -77934.94 790973.37 899144.84 1133066.60
TP.SD -83186.35 -47369.67 -37525.00 852815.71 986951.59 1388607.68

True Values -36208.41 -26482.91 -22832.66 839914.48 976883.50 1384513.94

Table 4.9: Quantiles of the estimated values based on two procedures and all con-
tracts’ true values.

80



Figure 4.1: Distributions of the estimated values from the conventional procedure
and the true contract values.

4.5 Conclusion

In this chapter, we study the valuation of a large variable annuity portfolio. The
majority of the literature uses a two-step metamodelling framework to address this
problem: selection of representative contracts followed by estimation based on the
representatives. This framework relies on spatial models of the contract attributes
such as the guarantee type, policyholder’s age, and underlying fund values, to select
representatives. We propose a two-phase selection method to model the contract
values and select additional representatives based on this model. In particular, we
use the Gaussian distribution to model the contract values and use the Wasserstein
distance in selection. Our valuation procedure works with different clustering meth-
ods such as the k-prototypes method and hierarchical k-means method. Based on
numerical studies, our method selects representatives that have closer distribution
quantiles to the true ones. Two extensive numerical studies confirm that our method
outperforms the conventional one in terms of estimation errors. While keeping the
computational cost at the same level, our method still achieves higher estimation
accuracy with a smaller number of representatives.
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Figure 4.2: Distributions of the estimated values from the two-phase selection pro-
cedure and the true contract values.
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Figure 4.3: Distributions of the estimated values from the conventional procedure
and the two-phase selection procedure and the true contract values. Each subfigure
is for a particular k. 83



Chapter 5

Capture Ratio in Fund
Management

5.1 Introduction

In this chapter, we investigate a performance measure for investment funds. Different
from stocks, a fund consists of several underlying assets. A fund manager chooses
the assets and their contributions to the fund. This diversity in investment provides
better protection against the potential loss of an individual asset, to the investor. Be-
cause funds are more conservative investment tools than stocks, investors care about
not only whether they yield positive returns, but also their relative performance
compared to some benchmarks.

The capture ratio is commonly used to measure fund managers’ performance
against a market benchmark, for example, the S&P 500 index. It serves as an impor-
tant criterion employed by Morningstar (Haslem (2014)) in selecting funds. Unlike
other performance metrics such as the Sharpe ratio, Treynor ratio, and Sortino ratio,
the upside and downside capture ratios aim to measure the relative performance of
the fund when the benchmark experiences positive and negative returns, respectively.
An (overall) capture ratio can be calculated as the difference or ratio between the
upside and downside capture ratios.

Even though the capture ratio is popular in practice (Cox and Goff (2013)), we
are not aware of any research regarding its statistical estimation. Investors exten-
sively use the capture ratio to measure and compare fund performance. The use of
a naive calculation/estimation of the capture ratio based on empirical data could be
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misleading if the statistical properties of the estimator are unknown. A positive or
higher capture ratio estimate does not necessarily mean a statistically better under-
lying distribution. Indeed, the literature finds little evidence that the capture ratio
predicts future performance, especially over a short time period (Coy and Robbins
(2021); Gottesman and Morey (2021)). Hence, understanding the distribution of the
estimated capture ratio is important for practical applications.

To our knowledge, Cox and Goff (2013) were the first researchers to define the
capture ratio analytically. The bulk of the existing literature uses the capture ratio
as a measure in comparing the performance of different funds (e.g. Chang and
Krueger (2013); Chang et al. (2013); Chen (2014); Bello (2014); Kuhle and Lin
(2018); Chang et al. (2019)). Some authors have employed the capture ratio in other
financial models. For example, Jacobsen (2009) uses an arbitrage pricing model to
analyze the “fair value” of a fund manager. At the fair value, the manager’s upside
and downside capture ratio lie on an “efficient” line. Cline and Gilstrap (2021) apply
a factor model to distinguish skilled fund managers with high future fund returns.
They use the capture ratio as a factor that represents a manager’s skill.

This chapter aims to study the statistical properties of capture ratio estimates by
deriving the asymptotic joint distribution of capture ratios of two funds. Based on
the asymptotic distribution, we test hypotheses regarding the relative performance
of two funds. The asymptotic distribution for a single capture ratio can be obtained
as the marginal of the joint one. We also compare the asymptotic method with
the non-parametric bootstrap method, which requires fewer distributional assump-
tions, in their performance of estimation and hypothesis testing. We find that the
capture ratio estimates based on different return frequencies can significantly differ
in magnitude. They can also be substantially biased when the underlying model is
misspecified or the sample size is not large enough. For hypothesis tests based on
the asymptotic distribution, our simulation study shows that a large sample size is
required to achieve a 5% (which is the test size we set in simulation) empirical size of
the test. Furthermore, only when the true capture ratio is far from the hypothesized
value can one limit the empirical false acceptance rate to 20% at a reasonable sam-
ple size (e.g. 120 for monthly data or 250 for daily data), for particular models. In
general, sample sizes of 12 and 60 for monthly data are not sufficient for statistically
reliable estimation and hypothesis tests. However, these are used in practice and
the research literature (see Cox and Goff (2013); Chang and Krueger (2013); Chen
(2014); Haslem (2014); Kuhle and Lin (2018); Cline and Gilstrap (2021)).

The remainder of the chapter is structured as follows. Section 5.2 presents the
mathematical results on the asymptotic distribution of the capture ratio estimates,
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including both the cases where returns are independently and identically distributed,
and when there is a serial correlation among the returns. Section 5.3 presents numeri-
cal results, including a simulation study on finite sample properties of the estimators,
and the application of capture ratio estimates to HFRX hedge fund index data. Sec-
tion 5.4 presents conclusions and discusses directions for future work.

5.2 Asymptotic Distribution

In this section, we investigate the asymptotic joint distribution of two capture ratio
estimates. We begin with analytical definitions of the upside, downside, and overall
capture ratios. The asymptotic distributions are then obtained under two cases in
which the underlying asset returns follow different data generating processes. The
necessary statistical techniques are similar to those found in Lo (2002), where the
asymptotic distribution of the Sharpe ratio is studied.

5.2.1 Analytical Definition

We assume the fund returns Xn and benchmark returns Bn, n = 1, 2, · · · , N , have
finite second-order moments. Xn, n = 1, . . . , N , are identically distributed and Bn is
also identically distributed with

pU = P(Bn > 0) ∈ (0, 1) and pD = P(Bn < 0) ∈ (0, 1). (5.1)

For technical convenience, we assume Xn and Bn are continuous variables. The defi-
nitions of capture ratios depend on the following indicator variables of “up markets”
and “down markets”:

Un = 1{Bn>0} and Dn = 1{Bn<0}, (5.2)

where 1A is an indicator function, returning a value of 1 if the event A occurs and 0
otherwise. Accordingly, Un = 1 indicates the benchmark has a positive return over
the nth period, and Dn = 1 means the benchmark has a negative return over the
nth period. The two variables are related by

Un +Dn = 1− 1{Bn=0},

where the second item on the right-hand side of the above equation can be ignored
since we assume Bn is a continuous variable and thus the term is equal to zero with
probability one.
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Cox and Goff (2013) defines the upside capture ratio as

RU
X,N :=

(
N∏

n=1

(1 +XnUn)

)κ/MU
N

− 1(
N∏

n=1

(1 +BnUn)

)κ/MU
N

− 1

, (5.3)

and the downside capture ratio as

RD
X,N :=

(
N∏

n=1

(1 +XnDn)

)κ/MD
N

− 1(
N∏

n=1

(1 +BnDn)

)κ/MD
N

− 1

, (5.4)

where κ is the number of periods in a year,MU
N =

∑N
n=1 Un is the number of periods in

which the benchmark return is positive, andMD
N =

∑N
n=1 Dn is the number of periods

in which the benchmark return is negative. Note thatMU
N+MD

N = N+
∑N

n=1 1{Bn=0},

where
∑N

n=1 1{Bn=0} = 0 with probability one since we assume the benchmark returns
Bn are continuous random variables.

Rigorously speaking, the above definition for the upside/downside capture ratio
is problematic, because MU

N and MD
N could be zero. When MU

N > 0, there exists
at least one period, say j, such that Uj = 1 or equivalently Bn > 0, which yields∏N

n=1(1 + BnUn) > 1 and thus the denominator in (5.3) is strictly positive. So,
RU

X,N is well defined if and only if MU
N > 0 (or equivalently MD

N < N if we ignore
a null probability set), which means there is at least one out of the N periods that
has a positive return for the benchmark. Similarly, RD

X,N is well defined if and only
if MD

N > 0 (or equivalently MU
N < N if we ignore a null probability set), which

means there is at least one out of the N periods that has a negative return for the
benchmark. When the number of periods is reasonably large, the undefinedness issue
with the above capture ratios rarely happens with stock return data because one can
always observe at least one period with a positive return and another period with a
negative return for any well-known benchmark (e.g., the S&P 500 index).

The overall capture ratio is defined as the difference between the upside capture
ratio and the downside capture ratio:

RX,N := RU
X,N −RD

X,N . (5.5)
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It is also called the capture spread in the literature, e.g., Cline and Gilstrap (2021).
Furthermore, there is also literature that uses the ratio of the upside and downside
ratios as the overall capture ratio e.g. Cox and Goff (2013) and Venugopal and
Sophia (2020).

In this chapter, we are interested in the statistical uncertainty of the quantity
RX,N as a performance metric for a fund. We will study its asymptotic distribution
under some reasonable technical assumptions. For theoretical rigour, we extend the
analytical definition of the capture ratio in (5.5) to cover the case where either MU

N

or MD
N is zero and define

R̃X,N := RX,N · 1SC
N
+ ξ1SN

=
[
RU

X,N −RD
X,N

]
· 1SC

N
+ ξ1SN

(5.6)

where ξ is a constant, SN denotes the event {MU
N = 0 or MD

N = 0}, and SC
N is

the complementary set of SN , i.e., S
C
N = {neither MU

N = 0 nor MD
N = 0}. The

inclusion of the constant ξ in the definition is to make the capture ratio well-defined
for the case when either MU

N or MD
N is zero. As we previously pointed out, when the

number of periods is reasonably large, the event SN will be extremely rare, and in
probabilistic terminology, the event has a probability of zero to occur. Though the
specification for R̃X,N in (5.6) depends on ξ, as we will see shortly, the asymptotic
distribution of RX,N is independent of the choice of ξ.

To facilitate the discussion in the sequel, we introduce some additional notation:

X̃U
n = log(1 +XnUn) and B̃U

n = log(1 +BnUn);

X̃D
n = log(1 +XnDn) and B̃D

n = log(1 +BnDn).

Then, on the event SC
N ,

R̃X,N = RX,N =

exp

{
κ

MU
N

N∑
n=1

log(1 +XnUn)

}
− 1

exp

{
κ

MU
N

N∑
n=1

log(1 +BnUn)

}
− 1

−
exp

{
κ

MD
N

N∑
n=1

log(1 +XnDn)

}
− 1

exp

{
κ

MD
N

N∑
n=1

log(1 +BnDn)

}
− 1

=

exp

{
κN
MU

N

1
N

N∑
n=1

X̃U
n

}
− 1

exp

{
κN
MU

N

1
N

N∑
n=1

B̃U
n

}
− 1

−
exp

{
κN
MD

N

1
N

N∑
n=1

X̃D
n

}
− 1

exp

{
κN
MD

N

1
N

N∑
n=1

B̃D
n

}
− 1

.

(5.7)

We will study hypothesis tests on the capture ratios of two funds based on an
asymptotic inference framework. We suppose the second fund has returns Yn, n =
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1, 2, · · · , N , and capture ratio RY,N , computed using the same benchmark as RX,N .
Further, we define R̃Y,N as the extended version of RY,N in the same fashion as we
defined R̃X,N in (5.6). Putting both capture ratios together, we consider the bivariate
capture ratio:

R̃N = (R̃X,N , R̃Y,N)
′
.

For the derivation of the asymptotic distribution of the above bivariate capture ratio,
it is helpful to further define some additional notation. We let

Zn = (X̃U
n , Ỹ

U
n , B̃U

n , X̃
D
n , Ỹ D

n , B̃D
n )

′
, n = 1, 2, · · · , N,

and put

Z̄N =
1

N

N∑
n=1

Zn.

Then, the bivariate capture ratio can be written as

R̃N = ϕ
(
CN Z̄N

)
· 1SC

N
+ ξ1SN

(5.8)

with matrix

CN = diag

{
κN

MU
N

,
κN

MU
N

,
κN

MU
N

,
κN

MD
N

,
κN

MD
N

,
κN

MD
N

}
.

and real-valued function

ϕ((x1, x2, x3, x4, x5, x6)
′
) =

(
ex1 − 1

ex3 − 1
− ex4 − 1

ex6 − 1
,
ex2 − 1

ex3 − 1
− ex5 − 1

ex6 − 1

)′

.

5.2.2 Independence Case

For the simplest case, we assume that the sequence of triplets {(Xn, Yn, Bn), n =
1, . . . , N} are independent and identically distributed (i.i.d.). The Multivariate Cen-
tral Limit Theorem implies the asymptotic distribution of the mean estimator Z̄N :

√
N(Z̄N − µ)

d−→ N(0,Σ),

where

µ = E[Zn] =
(
E[X̃U

n ],E[Ỹ U
n ],E[B̃U

n ],E[X̃D
n ],E[Ỹ D

n ],E[B̃D
n ]
)′
,

Σ = E[(Z1 − µ)(Z1 − µ)
′
]
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and “
d−→” means convergence in distribution. Furthermore, {(Un, Dn), n = 1, . . . , N}

are i.i.d. since both Un and Dn are measurable functions of Bn; see (5.2). Hence, by
the Weak Law of Large Numbers,

MU
N

N

P−→ pU and
MD

N

N

P−→ pD,

where “
P−→” means convergence in probability. Then, according to Slutsky’s Theorem,

we have √
N
(
CN Z̄N − Cµ

) d−→ N
(
0, CΣC

′
)
,

where

C = diag

{
κ

pU
,
κ

pU
,
κ

pU
,
κ

pD
,
κ

pD
,
κ

pD

}
.

For the derivation of the asymptotic distribution for the bivariate capture ratio
R̃N , we utilize its representation in (5.8), where the Jacobian matrix of ϕ is

∇ϕ =

(
ex1

ex3−1
0 − (ex1−1)ex3

(ex3−1)2
−ex4
ex6−1

0 (ex4−1)ex6

(ex6−1)2

0 ex2
ex3−1

− (ex2−1)ex3

(ex3−1)2
0 −ex5

ex6−1
(ex5−1)ex6

(ex6−1)2

)′

.

As proved in Appendix D.1, the asymptotic distribution of R̃N is given by:

√
N(R̃N −R)

d−→ N
(
0, (∇ϕ (Cµ))

′
CΣC

′
(∇ϕ (Cµ))

)
,

where 0 = (0, 0)′, and

R = (RX , RY )
′
:=


exp

{
κ

pU
E[X̃U

1 ]
}
−1

exp
{

κ

pU
E[B̃U

1 ]
}
−1
−

exp
{

κ

pD
E[X̃D

1 ]
}
−1

exp
{

κ

pD
E[B̃D

1 ]
}
−1

exp
{

κ

pU
E[Ỹ U

1 ]
}
−1

exp
{

κ

pU
E[B̃U

1 ]
}
−1
−

exp
{

κ

pD
E[Ỹ D

1 ]
}
−1

exp
{

κ

pD
E[B̃D

1 ]
}
−1

 . (5.9)

R can be viewed as the vector of theoretically true capture ratios for Xn and Yn. By
the assumptions in equation (5.1), we have E[B̃U

1 ] > 0 and E[B̃D
1 ] > 0, and thus, R

is well defined.

5.2.3 Serially Correlated Returns

In real financial markets, asset returns are unlikely to be i.i.d. Here we consider the
case where there is a serial correlation in the asset returns. Specifically, we assume
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{(Xn, Yn, Bn), n = 1, 2, . . .} are (strictly) stationary and ergodic. By definition,

{(X̃U
n , Ỹ

U
n , B̃U

n , X̃
D
n , Ỹ D

n , B̃D
n ), n = 1, 2, . . .}

are also stationary and ergodic since they are measurable functions of (Xn, Yn, Bn).
Hence, {Zn, n = 1, 2 . . .} is stationary and ergodic.

In this case, the asymptotic distribution of Z̄N , or equivalently
√
N(Z̄N −µ), can

be obtained via the generalized method of moments (GMM) estimator of Hansen
(1982). Lo (2002) uses the GMM estimator to obtain the asymptotic distribution
of the Sharpe ratio under the assumption of serially correlated returns. In our case,
Z̄N is the GMM estimator of µ. According to Theorem 3.1 in Hansen (1982), its
asymptotic distribution is given by

√
N(Z̄N − µ)

d−→ N
(
0, H−1Σg(H

−1)
′
)
= N (0,Σg) ,

where

H = lim
N→∞

E

[
1

N

N∑
i=1

∇βf(Zi, µ)

]
= −I6,

In the above equation, f(x, β) = x − β where x and β are six-dimensional column
vectors. I6 is the six by six identity matrix and

Σg = lim
N→∞

E

[
1

N

N∑
i=1

N∑
j=1

f(Zi, µ)(f(Zj, µ))
′

]
.

Following a similar procedure to the independence case, the asymptotic distribution
of RN in the serially correlated case is

√
N(RN −R)

d−→ N
(
0, (∇ϕ (Cµ))

′
CΣgC

′
(∇ϕ (Cµ))

)
. (5.10)

The estimator of Σg can be obtained by the procedure of Newey and West (1987)
(see Lo (2002)):

Σ̂g = Â0 +
m∑
j=1

a(j,m)(Âj + Â
′

j), m≪ N,

Âj =
1

N

N∑
n=j+1

f(Zn, Z̄N)(f(Zn−j, Z̄N))
′
,

a(j,m) = 1− j

m+ 1
.

(5.11)

A rule of thumb for choosing an appropriate m is m = ⌈0.75 × N1/3⌉, where ⌈x⌉
denotes the ceiling of a real number x.
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5.2.4 Hypothesis Tests and Confidence Intervals

In this section, we present the analytical results for some hypothesis tests and con-
fidence interval estimation based on the asymptotic distributions in the two cases
studied above.

Univariate Test

The first type of hypothesis test is to test whether a capture ratio is positive (or
zero):

H0 : RX = 0, Ha : RX > 0 (or RX ̸= 0).

Based on the asymptotic joint distributions, we have

√
N(RX,N −RX)

d−→ N(0, σ2
X),

where

σ2
X =

{
(1, 0) (∇ϕ (Cµ))

′
CN Σ̂C

′
N (∇ϕ (Cµ)) (1, 0)

′
, Independence case,

(1, 0) (∇ϕ (Cµ))
′
CN Σ̂gC

′
N (∇ϕ (Cµ)) (1, 0)

′
, Serial correlation case.

The test statistic is

TX =
RX,N

σ̂X/
√
N

d→ N(0, 1), as N →∞, under H0,

where

σ̂2
X =

{
(1, 0)

(
∇ϕ
(
CN Z̄N

))′
CΣC

′ (∇ϕ (CN Z̄N

))
(1, 0)

′
, Independence case,

(1, 0)
(
∇ϕ
(
CN Z̄N

))′
CΣgC

′ (∇ϕ (CN Z̄N

))
(1, 0)

′
, Serial correlation case.

Then, the rejection interval at a significance level of 5% is given by:

(RX,N + 1.645σ̂X/
√
N,+∞) when Ha is RX > 0, and

(−∞, RX,N − 1.96σ̂X/
√
N) ∪ (RX,N + 1.96σ̂X/

√
N,∞) when Ha is RX ̸= 0.

A 95% confidence interval for RX is given by:(
RX,N − 1.96σ̂X/

√
N, RX,N + 1.96σ̂X/

√
N
)
.
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Bivariate Test

Suppose we are interested in comparing the capture ratios of two funds, e.g. RX and
RY . The null and alternative hypotheses are:

H0 : RX = RY , Ha : RX > RY (or RX ̸= RY ).

According to the asymptotic joint distributions, we have the test statistic

T =
RX,N −RY,N

σ̂T/
√
N

d→ N(0, 1), as N →∞, under H0,

where

σ̂2
T =

{
(1,−1)

(
∇ϕ
(
CN Z̄N

))′
CN Σ̂CN

(
∇ϕ
(
CN Z̄N

))
(1,−1)′ , Independence case,

(1,−1)
(
∇ϕ
(
CN Z̄N

))′
CN Σ̂gCN

(
∇ϕ
(
CN Z̄N

))
(1,−1)′ , Serial correlation case.

The rejection interval at a significant level of 5% is given by:(
(RX,N −RY,N) + 1.645σ̂T/

√
N,+∞

)
when Ha is RX > 0, and(

−∞, RX,N −RY,N − 1.96σ̂T/
√
N
)
∪
(
RX,N −RY,N + 1.96σ̂T/

√
N,∞

)
when Ha is RX ̸= 0.

A 95% confidence interval for RX −RY is:(
RX,N −RY,N − 1.96σ̂T/

√
N,RX,N −RY,N + 1.96σ̂T/

√
N
)
.

5.3 Numerical Examples

In this section, we use numerical simulation and empirical data to study the perfor-
mance of the estimation of the capture ratio. In addition to applying the asymptotic
results of the previous section, we will also apply the bootstrap method for the esti-
mation of the capture ratio, and conduct a comparative analysis of the results from
both methods.
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5.3.1 Simulation Study

For the simulation study, we fit two joint distributions for the returns of two hedge
funds based on data from January 2011 to December 2020. There are in total 120
months (2517 days) over the period. The data we use is the daily and monthly return
data of HFRX1 hedge fund indexes: HFRXCA and HFRXEHG, and the S&P 500
value-weighted return including dividends. These two hedge funds are chosen be-
cause they have the highest and lowest 10-year capture ratios based on the monthly
data, respectively (see Table 5.8). During the period, HFRXCA has capture ratios
of 0.0450 and 0.0189, based on the daily and monthly data respectively. HFRX-
EHG has capture ratios of -0.0395 and -0.3778, based on the daily and monthly data
respectively. The S&P 500 index serves as the benchmark in calculating the cap-
ture ratio. We consider two capture ratios (RX and RY , respectively, for HFRXCA
and HFRXEHG), and the difference between them. For the independence returns
assumption, we consider two data generating models: multivariate normal returns
(MVN) and normal marginal distributions with a t-copula (MNT). For the serial
correlation case, we apply the multivariate autoregressive model MAR(1). We fit
the empirical data with each of the three models to get three data generating models
used in the simulation as follows:

(1) MVN-Daily: N

0.000154
0.000036
0.000495

 ,

0.000008 0.000002 0.000002
0.000002 0.000027 0.000022
0.000002 0.000022 0.000121



(2) MVN-Monthly: N

0.0030
0.0010
0.0099

 ,

0.0002 0.0003 0.0003
0.0003 0.0010 0.0009
0.0003 0.0009 0.0015


(3) MNT-Daily: Normal marginal distributions are the same as in MVN-Daily

model. Degree of freedom is 5.2770. The correlation structure is 1 0.0821 −0.0499
0.0821 1 0.4984
−0.0499 0.4984 1

 .

1The HFRX database is one of the public databases provided by https://www.hfr.com. Com-
pared to other HFR databases, the HFRX database provides more data over a longer time period.
The hedge fund data is collected from the HFR website. The S&P 500 data is from the WRDS
database.
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(4) MNT-Monthly: Normal marginal distributions are the same as in the MVN-
Monthly model. The degree of freedom is 3.8555. The correlation structure
is  1 0.5668 0.5866

0.5668 1 0.6416
0.5866 0.6416 1

 .

(5) MAR-Daily:

Xt−

0.000154
0.000036
0.000495

 =

−0.1432 0.3340 0.9297
0.0856 0.1640 0.7413
−0.0074 −0.0077 −0.3210

Xt−1 −

0.000154
0.000036
0.000495

+ϵt

where ϵt ∼ N

0
0
0

 ,

0.000008 0.000002 0.000002
0.000002 0.000026 0.000017
0.000002 0.000017 0.000096

.

(6) MAR-Monthly:

Xt −

0.0030
0.0010
0.0099

 =

 0.3845 0.1175 0.1957
0.0133 0.3042 0.4885
−0.0911 −0.3183 0.4329

Xt−1 −

0.0030
0.0010
0.0099

+ ϵt

where ϵt ∼ N

0
0
0

 ,

0.0002 0.0003 0.0003
0.0003 0.0001 0.0008
0.0003 0.0008 0.0014

.

The following table reports the theoretically “true”2 capture ratio for each model
and frequency. For daily and monthly frequencies, we use κ = 250 and κ = 12,
respectively.

MVN MNT MAR
RX RY RX RY RX RY

Daily 0.0060 -0.3205 0.0748 -0.3761 1.1852 0.3133
Monthly 0.0106 -0.4028 0.0059 -0.3530 0.4489 0.2100

Table 5.1: “True” capture ratios for each model and frequency

2The theoretically true capture ratio is difficult to calculate since the formula involves E[X̃U
n ],

E[X̃D
n ], E[B̃U

n ] and E[B̃D
n ]. We estimate the true ratio based on 107 simulations. That is, based on

the estimated parameters from empirical data, we simulate 107 pairs (Xn, Bn). Then we use all the
data points to estimate E[X̃U

n ], E[X̃D
n ], E[B̃U

n ] and E[B̃D
n ].
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From the above table, it is easy to tell that the capture ratio can be significantly
different in magnitude under different models and different frequencies. Hence, ap-
plying an appropriate model is important in practice. However, these issues are
beyond the scope of this chapter. We are more interested in the differences between
the estimated (asymptotic or bootstrapped) results and the “true” ones.

Estimation of the Capture Ratios

For each model (i.e. MVN, MNT, and MAR) and data frequency (i.e. daily and
monthly), we simulate N (see Tables 5.2 and 5.3 for the specific values of N) data
points and then use formula (5.7) to compute the capture ratios, RX,N and RY,N ,
and their difference. We independently replicate the simulation 500 times and com-
pute the mean squared error (MSE) and the mean relative error (MRE) of the cap-
ture ratio as well as the capture ratio difference estimates based on the 500 simu-
lations. The results are reported in Tables 5.2 and 5.3, respectively for MSE and
MRE. The “Empirical” estimates are computed using formula (5.7) based on N sim-
ulated data points {X1, · · · , XN} for each model and data frequency. We also adopt
bias-correction methods: bootstrap bias-corrected estimator and jackknife estimator
(Efron and Tibshirani (1994)). Let R̂N denote the empirical estimate based on the
N simulated data points. The bootstrap bias-corrected estimator is computed as
2R̂N − R̂∗

N , where R̂∗
N is the bootstrapped estimate with a bootstrap sample size

2,000. The jackknife estimate is computed as

NR̂N − (N − 1)R̂N,jack = NR̂N −
N − 1

N

N∑
i=1

R̂N−1,i

where R̂N,jack =
1
N

N∑
i=1

R̂N−1,i and R̂N−1,i is the estimate based on the sample exclud-

ing the i-th data point, i.e., {X1, · · · , Xi−1, Xi+1, · · · , XN}.

From the results, the error decreases when the sample size N increases. But
estimates may not be reliable when the model is not appropriate, e.g. MVN model
in terms of MRE. The bias-correction methods improve the estimates in most cases.
However, the small sample size is an issue in both the empirical estimation and the
estimation with bias correction (Steck and Jaakkola (2003)). Hence, in practice, to
have a less biased estimation, one needs a large sample size, e.g. larger than or
equal to 120, even when adopting a bias-corrected method. The one-year capture
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ratio based on monthly returns is provided by Morningstar© 3 and also used in
the literature (see Cox and Goff (2013); Cline and Gilstrap (2021)). However, our
simulation results in Tables 5.2 and 5.3 indicate that an estimation calculated from
12 monthly returns could be misleading.

Type I and Type II Error

We also examine the type I and type II errors of the hypothesis tests using simulation
studies. For a hypothesis test, the type I error is the probability that we incorrectly
reject the true null hypothesis. The type II error, on the other hand, is the probability
that we incorrectly accept the false null hypothesis.

Suppose we want to examine the univariate hypothesis test that one capture ratio
is positive, at a significance level of 5%. We consider the null hypothesis RX = 0 and
alternative hypothesis RX > 0. For each of the three data generating models (i.e.,
MVN, MNT, and MAR) and different data frequencies (i.e., daily and monthly),
we independently generate 2,000 simulated capture ratios and compute the type I
error as the portion of the obtained capture ratio values that are greater than the
95% quantile based on the asymptotic distribution, i.e., 1.645σX/

√
N , where σX is

estimated as explained in section 5.2.4. The type II error is computed as the portion
of simulated capture ratios less than the 95% quantile. In addition to the tests based
on the asymptotic normality, we also assess the performance of hypothesis testing
using a bootstrap method (Efron and Tibshirani (1994)) for data generated from the
MVN model. The bootstrap sample size is 2,000. The resample size for calculating
the capture ratio is N . According to Cohen (2013), an efficient hypothesis test should
achieve a type I error of no more than 5% and a type II error of no more than 20%.

In our simulations, the model parameters are calibrated from the same set of real
return data as we explained at the beginning of the section, but we tune the average
returns to get different theoretical capture ratios as indicated in Tables 5.4 - 5.7,
which correspond to true or false null hypotheses. We use different sample sizes (as
indicated in Tables 5.4 - 5.7) to calculate the sample capture ratios. We set κ = 12
and κ = 250 for monthly data frequency and daily frequency, respectively.

Table 5.4 summarizes the type I and type II errors of the univariate test. For
each model, the null hypothesis is that RX is zero. When the true value is zero (first
row in each model), the table reports the type I error of the test. When the true

3See https://www.morningstar.ca/ca/news/185421/what-are-upside-and-downside-capture-ratios.
aspx, and Kuhle and Lin (2018).
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value is greater than zero (other rows in each model), the values are type II errors.
From the results, to keep the type I error less than 5%, a sample size greater than or
equal to 120 is required, except for the MAR model.4 We have the same conclusion
for the type II error when the true RX is close to zero. However, as the true RX

deviates more from zero, fewer samples are required to achieve power (i.e., one minus
the type II error) of 80% or higher. However, this still excludes the one-year scenario
where only 12 data points are used.

Table 5.5 reports the results of the bivariate test. All models achieve a type I
error close to the target of 5% when the sample size is sufficiently large. For the type
II error, it is still large when the true value is close to zero or the sample size is not
large enough.

For the daily case, Tables 5.6 and 5.7 summarize the type I and type II errors for
different models and sample sizes. A similar pattern of how the type I and type II
errors respond to the sample size and deviation of the true capture ratio value from
the hypothetical one in testing can be observed as we do from those simulations
based on monthly data frequency.

These simulation results indicate that the hypothesis testing outcomes from both
the asymptotic limiting distribution based method and the bootstrap based method
can be misleading. When the true value is close to the value from the null hypothesis,
a large sample is required for a reliable statistical inference conclusion. The needed
sample size could be unattainable in practice. For RX = 0 under the monthly MVN
model, the corresponding asymptotic variance is around 0.7. Indeed, for a normal
distribution N(0, 0.7), when the true mean is 0.05, one needs more than 1,700 data
points to obtain power (i.e., one minus the type II error) of 80% for testing at
the 5% significance level. Furthermore, even when the true value deviates from
zero, a commonly used 1-year monthly dataset is still not enough to reach a reliable
conclusion via a hypothesis test.

5.3.2 Empirical Illustration

In this section, we calculate the empirical capture ratios of HFRX hedge fund indices.
Throughout the section, there are thirty HFRX hedge fund indexes, which are the
only HFRX indexes that have full daily and monthly data during the test period
from January 2011 to December 2020. The benchmark asset is the S&P 500 index.

4Indeed, the type I error of the MAR model only reduces to 5% when the sample size is extremely
large, more than 60,000.
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Model True RX N = 12 N = 60 N = 120 N = 240 N = 360

MVN

0 0.1040 0.0655 0.0570 0.0595 0.0425
0.05 0.8628 0.8605 0.8190 0.7720 0.7005
0.1 0.8226 0.7475 0.6225 0.4240 0.2905
0.2 0.7382 0.4120 0.1790 0.0295 0.0025
0.3 0.6156 0.1530 0.0180 0.0000 0.0000
0.4 0.4784 0.0330 0.0000 0.0000 0.0000

MNT

0 0.1063 0.0770 0.0585 0.0545 0.0540
0.05 0.8591 0.8510 0.8225 0.7590 0.6915
0.1 0.8195 0.7400 0.6055 0.4195 0.2615
0.2 0.7213 0.4000 0.1650 0.0190 0.0030
0.3 0.5990 0.1490 0.0160 0.0000 0.0000
0.4 0.4757 0.0290 0.0000 0.0000 0.0000

MAR

0 0.1520 0.1270 0.1250 0.1210 0.1150
0.05 0.8180 0.8210 0.7910 0.7570 0.7370
0.1 0.8020 0.7645 0.6875 0.6010 0.5205
0.2 0.7510 0.5920 0.4435 0.2525 0.1440
0.3 0.6935 0.4055 0.2145 0.0640 0.0145
0.4 0.6145 0.2370 0.0830 0.0105 0.0005

Boot
-strapped
MVN

0 0.1076 0.0730 0.0595 0.0625 0.0570
0.05 0.8624 0.8535 0.8225 0.7485 0.6750
0.1 0.8249 0.7460 0.6345 0.4175 0.2605
0.2 0.7359 0.4250 0.1755 0.0265 0.0020
0.3 0.6088 0.1535 0.0150 0.0000 0.0000
0.4 0.4642 0.0340 0.0000 0.0000 0.0000

Table 5.4: Type I and type II errors of the univariate test in the monthly case: The
first row in each panel displays type I errors and the remaining rows show type II
errors under different levels of true capture ratio.
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Model True RX −RY N = 12 N = 60 N = 120 N = 240 N = 360

MVN

0 0.0692 0.0500 0.0440 0.0425 0.0495
0.05 0.9082 0.9075 0.8885 0.8525 0.8265
0.1 0.8867 0.8450 0.7755 0.6490 0.5390
0.2 0.8270 0.6510 0.4460 0.1860 0.0750
0.3 0.7497 0.4170 0.1690 0.0205 0.0030
0.4 0.6670 0.2080 0.0330 0.0005 0.0000

MNT

0 0.0691 0.0520 0.0460 0.0420 0.0455
0.05 0.9194 0.9165 0.9050 0.8755 0.8570
0.1 0.8988 0.8765 0.8160 0.7445 0.6690
0.2 0.8673 0.7470 0.5820 0.3590 0.2035
0.3 0.8037 0.5570 0.2945 0.0920 0.0215
0.4 0.7371 0.3605 0.1065 0.0080 0.0005

MAR

0 0.0425 0.0325 0.0380 0.0450 0.0405
0.05 0.9460 0.9435 0.9210 0.8935 0.8825
0.1 0.9280 0.9085 0.8615 0.7955 0.7230
0.2 0.8950 0.7970 0.6585 0.4650 0.2965
0.3 0.8525 0.6305 0.3950 0.1605 0.0475
0.4 0.8000 0.4460 0.1820 0.0260 0.0035

Boot
-strapped
MVN

0 0.0797 0.0530 0.0590 0.0480 0.0450
0.05 0.9042 0.9015 0.8895 0.8395 0.8030
0.1 0.8721 0.8375 0.7685 0.6460 0.5400
0.2 0.8044 0.6370 0.4355 0.1930 0.0755
0.3 0.7337 0.3920 0.1555 0.0160 0.0015
0.4 0.6379 0.1920 0.0270 0.0015 0.0000

Table 5.5: Type I and type II errors of the bivariate test in the monthly case: The
first row in each panel displays type I errors and the remaining rows show type II
errors under different levels of true capture ratio.
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Model True RX N = 21 N = 63 N = 125 N = 250 N = 500

MVN

0 0.0915 0.0715 0.0640 0.0495 0.0455
0.05 0.8765 0.8650 0.8600 0.8385 0.7755
0.1 0.8445 0.7905 0.7385 0.6350 0.4500
0.2 0.7070 0.5495 0.3465 0.1275 0.0125
0.3 0.5925 0.3360 0.1220 0.0095 0.0000
0.4 0.4765 0.1710 0.0295 0.0005 0.0000

MNT

0 0.0905 0.0650 0.0510 0.0600 0.0440
0.05 0.8775 0.8755 0.8785 0.8350 0.7515
0.1 0.8355 0.7915 0.7555 0.6265 0.4370
0.2 0.7520 0.5830 0.4440 0.1855 0.0270
0.3 0.6105 0.3280 0.1225 0.0100 0.0000
0.4 0.4840 0.1790 0.0350 0.0000 0.0000

MAR

0 0.1515 0.1165 0.0970 0.0755 0.0650
0.05 0.8390 0.8675 0.8895 0.8990 0.8950
0.1 0.8265 0.8490 0.8645 0.8680 0.8485
0.2 0.8010 0.8160 0.8085 0.7815 0.7090
0.3 0.7805 0.7775 0.7575 0.6900 0.5700
0.4 0.7540 0.7300 0.6870 0.5635 0.3890

Boot
-strapped
MVN

0 0.0985 0.0785 0.0650 0.0645 0.0530
0.05 0.8660 0.8690 0.8565 0.8155 0.7550
0.1 0.8250 0.7975 0.7480 0.6160 0.4225
0.2 0.7020 0.5505 0.3445 0.1150 0.0125
0.3 0.5885 0.3270 0.1145 0.0120 0.0000
0.4 0.4640 0.1650 0.0255 0.0000 0.0000

Table 5.6: Type I and type II errors of the univariate test in the daily case: The first
row in each panel displays type I errors and the remaining rows show type II errors
under different levels of true capture ratio.
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Model True RX −RY N = 21 N = 63 N = 125 N = 250 N = 500

MVN

0 0.0375 0.0325 0.0365 0.0375 0.0500
0.05 0.9450 0.9330 0.9100 0.8760 0.8195
0.1 0.9250 0.8825 0.8365 0.7285 0.5665
0.2 0.8630 0.7330 0.5825 0.3520 0.1180
0.3 0.7760 0.5540 0.3240 0.1035 0.0095
0.4 0.6650 0.3530 0.1345 0.0140 0.0010

MNT

0 0.0365 0.0270 0.0375 0.0375 0.0315
0.05 0.9400 0.9340 0.8985 0.8740 0.8085
0.1 0.9090 0.8705 0.8015 0.7185 0.5245
0.2 0.8315 0.6650 0.4855 0.2510 0.0495
0.3 0.7395 0.4745 0.2610 0.0625 0.0020
0.4 0.6400 0.2915 0.0895 0.0050 0.0000

MAR

0 0.1275 0.0985 0.0750 0.0545 0.0505
0.05 0.8585 0.8820 0.8915 0.9080 0.8930
0.1 0.8455 0.8585 0.8650 0.8570 0.8055
0.2 0.8140 0.8045 0.7885 0.7300 0.5790
0.3 0.7770 0.7355 0.6740 0.5265 0.2880
0.4 0.7505 0.6635 0.5630 0.3655 0.1140

Boot
-strapped
MVN

0 0.0395 0.0415 0.0455 0.0405 0.0485
0.05 0.9425 0.9180 0.9025 0.8755 0.8135
0.1 0.9195 0.8710 0.8160 0.7250 0.5670
0.2 0.8520 0.7335 0.5625 0.3455 0.1315
0.3 0.7585 0.5370 0.3145 0.1110 0.0090
0.4 0.6550 0.3455 0.1255 0.0145 0.0000

Table 5.7: Type I and type II errors of the bivariate test in the daily case: The first
row in each panel displays type I errors and the remaining rows show type II errors
under different levels of true capture ratio.
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10-Year Capture Ratios

Table 5.8 summarizes the capture ratios of the thirty indexes, calculated based on the
monthly data for the period January 2011 to December 2020. The rows are ordered
decreasingly in terms of the 10-year estimated capture ratio (the first column). The
second and third columns are the 95% confidence intervals of the estimation, under
the independence and serial correlation assumptions, respectively. The fourth column
is the bootstrapped 95% confidence interval.

The results suggest that only two indexes (HFRXCA and HFRXMA) have pos-
itive 10-year capture ratios.5 Even in these cases, the confidence intervals indicate
that their deviations from zero are not statistically significant. For some funds with
negative capture ratios, their confidence intervals exclude zero. However, in view of
the simulation results,6 the statistical power may not be significant when the estimate
is not far from zero. Comparing the confidence intervals under the independence and
serial correlation cases, both lead to the same conclusion when the test’s statistical
power is large, though values of the lower and upper bounds are different.

Table 5.9 summarizes the 10-year capture ratios calculated from the daily data.
All 95% confidence intervals exclude zero. However, the exclusion may also lack
statistical power when the estimate is close to zero.

Comparing Tables 5.8 and 5.9, we have the following observations. First, different
data frequencies yield different rankings for funds when we use the capture ratio to
measure the performance of funds. Second, only when the sample size is large and the
estimated capture ratio is far from zero could we reject that the capture ratio is not
zero (or non-negative) with statistical significance. Third, the confidence intervals
of the bootstrap method are similar to those of the asymptotic method when the
sample size is large.

Rolling Window Estimates

We now calculate the capture ratios based on a rolling window. For each fund, we
calculate the 1-year and 5-year rolling capture ratios based on the monthly and daily
data. The results are shown in Tables 5.10-5.13. In each column, the bold value is

5It should be noted that many hedge fund strategies do not aim for relative performance against
a benchmark e.g. the HFRXAR (HFRX Absolute Return Index) and HFRXEHG (HFRX EH:
Fundamental Growth Index). We select all available hedge fund indices for a complete analysis.

6Even though the simulation tests have different designs, similar results can be obtained for the
two-sided tests.
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Ticker RX CI.ind CI.sc CI.boots
HFRXCA 0.0189 (-0.1125, 0.1503) (-0.1293, 0.1670) (-0.1026, 0.1509)
HFRXMA 0.0132 (-0.1351, 0.1614) (-0.1365, 0.1628) (-0.1301, 0.1510)
HFRXAR -0.0256 (-0.1256, 0.0744) (-0.1190, 0.0678) (-0.1256, 0.0649)
HFRXSDV -0.0830 (-0.3847, 0.2186) (-0.3453, 0.1792) (-0.3857, 0.2145)
HFRXRVMS -0.0961 (-0.2172, 0.0250) (-0.2102, 0.0180) (-0.2257, 0.0270)
HFRXM -0.1103 (-0.2789, 0.0583) (-0.2674, 0.0469) (-0.2912, 0.0682)
HFRXEMN -0.1207 (-0.2698, 0.0283) (-0.2897, 0.0482) (-0.2607, 0.0355)
HFRXRVA -0.1253 (-0.2437, -0.0069) (-0.2474, -0.0033) (-0.2383, -0.0082)
HFRXEW -0.1351 (-0.2267, -0.0435) (-0.2367, -0.0335) (-0.2255, -0.0432)
HFRXMREG -0.1510 (-0.3122, 0.0102) (-0.3588, 0.0568) (-0.3208, 0.0187)
HFRXED -0.1539 (-0.3081, 0.0004) (-0.3491, 0.0413) (-0.3130, 0.0053)
HFRXSS -0.1594 (-0.3391, 0.0204) (-0.3714, 0.0526) (-0.3449, 0.0239)
HFRXME -0.1674 (-0.3377, 0.0029) (-0.3301, -0.0047) (-0.3509, 0.0006)
HFRXEWG -0.1700 (-0.2633, -0.0767) (-0.2710, -0.0690) (-0.2685, -0.0768)
HFRXEWJ -0.1820 (-0.2711, -0.0928) (-0.2800, -0.0839) (-0.2687, -0.0946)
HFRXGL -0.1850 (-0.2798, -0.0902) (-0.3015, -0.0684) (-0.2833, -0.0927)
HFRXRVAE -0.1860 (-0.3017, -0.0704) (-0.3013, -0.0707) (-0.2954, -0.0670)
HFRXGLCD -0.1880 (-0.2844, -0.0916) (-0.3032, -0.0727) (-0.2798, -0.0853)
HFRXEWE -0.2005 (-0.2901, -0.1109) (-0.2969, -0.1041) (-0.2931, -0.1104)
HFRXEDE -0.2198 (-0.3743, -0.0653) (-0.4138, -0.0257) (-0.3720, -0.0563)
HFRXEWC -0.2320 (-0.3216, -0.1424) (-0.3330, -0.1309) (-0.3185, -0.1425)
HFRXGLJ -0.2355 (-0.3273, -0.1437) (-0.3466, -0.1243) (-0.3291, -0.1433)
HFRXGLG -0.2448 (-0.3390, -0.1506) (-0.3505, -0.1391) (-0.3381, -0.1489)
HFRXEHV -0.2743 (-0.4420, -0.1065) (-0.5097, -0.0389) (-0.4480, -0.1213)
HFRXGLE -0.2770 (-0.3681, -0.1859) (-0.3808, -0.1732) (-0.3681, -0.1823)
HFRXGLC -0.3086 (-0.4008, -0.2164) (-0.4180, -0.1992) (-0.4023, -0.2204)
HFRXEH -0.3096 (-0.4419, -0.1773) (-0.4933, -0.1258) (-0.4401, -0.1641)
HFRXMD -0.3656 (-0.5565, -0.1747) (-0.6172, -0.1139) (-0.5725, -0.1727)
HFRXEHE -0.3730 (-0.5004, -0.2456) (-0.5465, -0.1994) (-0.4987, -0.2407)
HFRXEHG -0.3778 (-0.6813, -0.0744) (-0.6867, -0.0690) (-0.6565, -0.0548)

Table 5.8: Summary of HFRX hedge fund capture ratios from 2011 to 2020 based
on monthly data (κ = 12)
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Ticker RX CI.ind CI.sc CI.boots
HFRXCA 0.0948 ( 0.0384, 0.1512) ( 0.0268, 0.1628) (0.0369, 0.1526)
HFRXRVMS -0.0617 (-0.0898, -0.0336) (-0.1032, -0.0203) (-0.0914, -0.0341)
HFRXRVA -0.0690 (-0.0972, -0.0408) (-0.1110, -0.0269) (-0.0966, -0.0423)
HFRXAR -0.0731 (-0.0992, -0.0469) (-0.1112, -0.0349) (-0.0996, -0.0465)
HFRXRVAE -0.0842 (-0.1126, -0.0558) (-0.1256, -0.0428) (-0.1118, -0.0556)
HFRXEMN -0.1068 (-0.1461, -0.0674) (-0.1466, -0.0669) (-0.1463, -0.0659)
HFRXMA -0.1233 (-0.1738, -0.0727) (-0.2020, -0.0446) (-0.1755, -0.0745)
HFRXSDV -0.1341 (-0.2150, -0.0532) (-0.2297, -0.0385) (-0.2100, -0.0527)
HFRXEW -0.1696 (-0.1926, -0.1466) (-0.2087, -0.1304) (-0.1929, -0.1472)
HFRXM -0.1704 (-0.2201, -0.1208) (-0.2241, -0.1168) (-0.2177, -0.1207)
HFRXMREG -0.1763 (-0.2082, -0.1445) (-0.2266, -0.1260) (-0.2088, -0.1440)
HFRXEWG -0.1815 (-0.2060, -0.1570) (-0.2219, -0.1411) (-0.2056, -0.1573)
HFRXEWJ -0.1828 (-0.2060, -0.1595) (-0.2200, -0.1455) (-0.2059, -0.1599)
HFRXME -0.1831 (-0.2326, -0.1337) (-0.2370, -0.1293) (-0.2327, -0.1350)
HFRXEWE -0.1851 (-0.2079, -0.1623) (-0.2230, -0.1472) (-0.2078, -0.1632)
HFRXEWC -0.1958 (-0.2194, -0.1722) (-0.2330, -0.1586) (-0.2197, -0.1734)
HFRXGL -0.2383 (-0.2626, -0.2139) (-0.2763, -0.2002) (-0.2619, -0.2133)
HFRXGLCD -0.2437 (-0.2697, -0.2176) (-0.2833, -0.2040) (-0.2694, -0.2183)
HFRXGLJ -0.2491 (-0.2732, -0.2251) (-0.2855, -0.2128) (-0.2716, -0.2261)
HFRXED -0.2529 (-0.2877, -0.2181) (-0.3034, -0.2024) (-0.2867, -0.2180)
HFRXGLG -0.2533 (-0.2790, -0.2276) (-0.2925, -0.2142) (-0.2775, -0.2283)
HFRXGLE -0.2593 (-0.2833, -0.2352) (-0.2958, -0.2227) (-0.2826, -0.2359)
HFRXGLC -0.2656 (-0.2896, -0.2417) (-0.3017, -0.2296) (-0.2891, -0.2415)
HFRXEDE -0.2677 (-0.3020, -0.2333) (-0.3170, -0.2183) (-0.2995, -0.2357)
HFRXSS -0.2888 (-0.3281, -0.2494) (-0.3420, -0.2355) (-0.3271, -0.2464)
HFRXEHG -0.3340 (-0.3908, -0.2772) (-0.4101, -0.2579) (-0.3862, -0.2768)
HFRXEH -0.3715 (-0.4029, -0.3400) (-0.4212, -0.3218) (-0.4023, -0.3412)
HFRXMD -0.3715 (-0.4149, -0.3280) (-0.4277, -0.3152) (-0.4143, -0.3263)
HFRXEHE -0.3843 (-0.4153, -0.3532) (-0.4327, -0.3358) (-0.4141, -0.3514)
HFRXEHV -0.3898 (-0.4217, -0.3580) (-0.4375, -0.3422) (-0.4222, -0.3573)

Table 5.9: Summary of HFRX hedge fund capture ratios from 2011 to 2020 based
on daily data (κ = 250)
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the highest capture ratio among all the thirty funds. From the results, the relative
performance of funds using the capture ratio as the measure is rather unstable across
years, especially when we use only 12 monthly data to compute the measure (see
Table 5.10). In Tables 5.11-5.13, even though the top two, HFRXCA and HFRXMA,
remain on the top for most periods, overall ranking for all the thirty funds is rather
volatile. Considering the fact that the estimation from a small sample is subject to
large estimation error, the reliability of the commonly-used 1-year capture ratio is
doubtful.

5.4 Conclusion

The capture ratio is a popular measurement of fund performance. We study the
asymptotic joint distributions of two capture ratios under the independence assump-
tion and a serial dependence structure, respectively, for the underlying asset return
process. The asymptotic multivariate normal distributions provide useful informa-
tion on the statistical properties of the capture ratio when the sample size is large.
For the 1-year monthly sample size (i.e., 12 data points only) which is commonly
used in practice and the literature, we find that there are serious concerns regarding
the statistical estimates and we caution that using capture ratio for fund ranking
could be severely misleading. To properly apply the metric and asymptotic results,
a large enough sample is necessary.

Furthermore, our study using a real-world hedge fund return data set indicates
that the estimates of the capture ratio from the monthly and daily data can be
significantly different. Last but not least, the estimation from a small sample is
rather volatile through time and deviates from the long-term capture ratio. These
observations raise questions about the practical use of the capture ratio.
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2016-2020 2015-2019 2014-2018 2013-2017 2012-2016 2011-2015

HFRXCA 0.1287 0.0855 -0.0394 0.0140 0.0123 -0.1102
HFRXMA -0.0227 0.1403 0.1814 0.2894 0.2121 0.0534
HFRXAR -0.0099 0.0784 0.0485 0.0707 0.0342 -0.0460
HFRXSDV -0.1016 -0.1120 -0.1300 -0.0544 -0.1008 -0.0658
HFRXRVMS -0.0164 -0.0811 -0.1764 -0.2927 -0.2380 -0.1891
HFRXM -0.0964 -0.1547 -0.1240 -0.1096 -0.1002 -0.1315
HFRXEMN -0.2197 -0.0193 0.0571 0.1167 0.0054 -0.0073
HFRXRVA -0.0001 -0.0748 -0.1811 -0.2717 -0.2322 -0.2682
HFRXEW -0.0785 -0.0886 -0.1270 -0.0773 -0.0886 -0.2043
HFRXMREG -0.0054 -0.0749 -0.1198 -0.0637 -0.0122 -0.3159
HFRXED -0.0558 -0.1949 -0.3228 -0.1729 -0.1460 -0.2700
HFRXSS -0.0909 -0.2319 -0.3755 -0.1657 -0.1586 -0.2410
HFRXME -0.1983 -0.2623 -0.2231 -0.1733 -0.1390 -0.1363
HFRXEWG -0.1479 -0.1580 -0.1864 -0.1056 -0.0981 -0.1993
HFRXEWJ -0.1483 -0.1738 -0.2098 -0.1356 -0.1263 -0.2246
HFRXGL -0.0917 -0.1528 -0.2257 -0.1957 -0.1806 -0.2966
HFRXRVAE -0.0992 -0.1847 -0.2837 -0.3455 -0.2830 -0.2859
HFRXGLCD -0.1248 -0.1847 -0.2357 -0.1805 -0.1554 -0.2649
HFRXEWE -0.1848 -0.2082 -0.2392 -0.1557 -0.1396 -0.2222
HFRXEDE -0.1591 -0.3098 -0.4312 -0.2538 -0.2021 -0.2930
HFRXEWC -0.2051 -0.2432 -0.2800 -0.1978 -0.1755 -0.2667
HFRXGLJ -0.1701 -0.2481 -0.3053 -0.2515 -0.2160 -0.3149
HFRXGLG -0.2116 -0.2535 -0.2921 -0.2315 -0.1980 -0.2876
HFRXEHV -0.1031 -0.1175 -0.2110 -0.1507 -0.0956 -0.4701
HFRXGLE -0.2457 -0.3025 -0.3404 -0.2756 -0.2337 -0.3172
HFRXGLC -0.2700 -0.3424 -0.3863 -0.3169 -0.2696 -0.3571
HFRXEH -0.2087 -0.1906 -0.2411 -0.1871 -0.1955 -0.4323
HFRXMD -0.2333 -0.3835 -0.3521 -0.3502 -0.2801 -0.5247
HFRXEHE -0.3070 -0.3020 -0.3473 -0.2634 -0.2500 -0.4550
HFRXEHG -0.3597 -0.2766 -0.2900 -0.2901 -0.3661 -0.3990

Table 5.11: 5-year rolling capture ratios based on monthly data
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2016-2020 2015-2019 2014-2018 2013-2017 2012-2016 2011-2015

HFRXCA 0.1253 0.2082 0.1556 0.1857 0.1296 0.0635
HFRXMA -0.1418 -0.0433 -0.0312 0.0039 -0.0209 -0.1068
HFRXAR -0.0651 -0.0234 -0.0597 -0.0454 -0.0445 -0.0815
HFRXSDV -0.2008 -0.1912 -0.2197 -0.1868 -0.1711 -0.0484
HFRXRVMS -0.0474 -0.0800 -0.1217 -0.1096 -0.0871 -0.0770
HFRXM -0.1837 -0.1942 -0.2135 -0.2046 -0.1864 -0.1551
HFRXEMN -0.1252 -0.0786 -0.0696 -0.0463 -0.0495 -0.0853
HFRXRVA -0.0329 -0.0602 -0.1073 -0.0931 -0.0817 -0.1045
HFRXEW -0.1485 -0.1407 -0.1788 -0.1415 -0.1494 -0.1907
HFRXMREG -0.1430 -0.1614 -0.1994 -0.1454 -0.1381 -0.2091
HFRXED -0.1760 -0.2239 -0.3081 -0.2536 -0.2691 -0.3204
HFRXSS -0.2145 -0.2715 -0.3539 -0.2865 -0.3028 -0.3512
HFRXME -0.2075 -0.2201 -0.2353 -0.2181 -0.1949 -0.1564
HFRXEWG -0.1708 -0.1645 -0.1959 -0.1521 -0.1546 -0.1928
HFRXEWJ -0.1711 -0.1678 -0.1965 -0.1540 -0.1574 -0.1952
HFRXGL -0.2050 -0.2265 -0.2725 -0.2328 -0.2358 -0.2704
HFRXRVAE -0.0585 -0.0893 -0.1324 -0.1114 -0.0947 -0.1098
HFRXGLCD -0.2197 -0.2374 -0.2769 -0.2304 -0.2313 -0.2673
HFRXEWE -0.1748 -0.1711 -0.2036 -0.1584 -0.1605 -0.1958
HFRXEDE -0.2012 -0.2522 -0.3307 -0.2699 -0.2799 -0.3257
HFRXEWC -0.1874 -0.1888 -0.2147 -0.1696 -0.1700 -0.2050
HFRXGLJ -0.2237 -0.2493 -0.2880 -0.2435 -0.2421 -0.2739
HFRXGLG -0.2345 -0.2528 -0.2886 -0.2431 -0.2411 -0.2718
HFRXEHV -0.3707 -0.3436 -0.3692 -0.3290 -0.3291 -0.4107
HFRXGLE -0.2421 -0.2628 -0.2969 -0.2495 -0.2469 -0.2761
HFRXGLC -0.2473 -0.2727 -0.3065 -0.2586 -0.2547 -0.2836
HFRXEH -0.3473 -0.3399 -0.3597 -0.3056 -0.3223 -0.3950
HFRXMD -0.3424 -0.3797 -0.3799 -0.3361 -0.3411 -0.4019
HFRXEHE -0.3675 -0.3635 -0.3803 -0.3198 -0.3319 -0.4005
HFRXEHG -0.3061 -0.3301 -0.3371 -0.2474 -0.2999 -0.3588

Table 5.13: 5-year rolling capture ratios based on daily data
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Chapter 6

Conclusion and Future Work

In the previous chapters, we study four different investment problems. Chapters 2
and 3 revisit two portfolio selection problems: the Kelly criterion problem and the
mean-variance optimization problem, under the reinforcement learning framework.
Chapter 4 proposes a new selection method in the valuation of large variable annuity
portfolios. Chapter 5 studies the statistical properties and estimation of the capture
ratio. Following we summarize the main results and directions of future work.

In Chapter 2, we build an entropy-regularization framework to study the Kelly
criterion problem, inspired by Wang et al. (2019) and Wang and Zhou (2020). The
aim is to improve the empirical performance of the full Kelly strategy and mitigate
the impact of the estimation error. In the study, we include a general time-varying
temperature parameter in the regularization term to balance the degree of exploration
and exploitation. We consider three specific functional forms for the temperature
parameter. Different temperature parameters lead to different time-varying patterns
of the variance term in the Gaussian distribution of optimal control: increasing,
constant, and decreasing over time. We call the resulting optimal strategies the
RL Kelly strategies and implement them by RL algorithms. In particular, We use
simulations to prove the convergence of the RL algorithms. We compare the RL Kelly
strategies to several MLE-based strategies, based on extensive simulation studies.
The results show that the RL Kelly strategies yield significantly better and more
robust performance than the benchmark strategies under different market settings.
Particularly, the RL strategy with a time-decaying temperature parameter is the
best in that it not only achieves the highest average terminal log-return but also
learns the entire terminal wealth distribution more precisely. The outperformance
is also robust under model misspecification. Thus, the RL Kelly strategy provides a
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practical improvement to those existing Kelly strategies.

In Chapter 3, we study the discrete-time mean-variance optimization problem.
The continuous-time problem under the RL framework has been studied by Wang
and Zhou (2020). They study the theoretical problem under the continuous-time set-
ting and implement it under the discrete-time setting, with discretized time intervals.
This is a realization of a continuous trading strategy in a, say daily, trading frequency.
They find the entropy-regularization framework does improve the performance of the
optimal strategy. We directly study the problem under the discrete-time setting and
derive the optimal strategy. The optimal strategy also follows a Gaussian distribu-
tion, with parameters depending on time, wealth and discretization step. We find
that our strategy converges to the discretized strategy in Wang and Zhou (2020),
as the discretization step tends to zero. The optimal strategy can be implemented
using a stochastic gradient descent algorithm. Through simulation examples, we
find that the continuous-time strategy is subject to discretization errors, especially
when the trading frequency is large. However, our discrete-time strategy performs
generally better than the continuous-time strategy, in terms of a faster convergence
of the mean return, an improved terminal Sharpe ratio, as well as robustness across
different trading frequencies.

For the above RL portfolio selection problems, there are several possible directions
of future work. First, a natural extension of Chapter 2 is to study the discrete-time
Kelly criterion problem. Based on the results from Chapter 3, the discrete-time
RL Kelly strategy could potentially further improve practical performance. Sec-
ond, both problems assume a basic asset price process: geometric Brownian motion.
Even though the resulting algorithms work under model misspecification (Jiang et al.
(2022a)), it is interesting to study more realistic underlying asset models such as the
local volatility model. Based on our preliminary investigations, with more compli-
cated asset models, solving the optimization problem through the Hamilton-Jacobi-
Bellman (HJB) equation is not feasible. Hence, other approaches could be helpful.
For example, Dai et al. (2020) adopt the backward stochastic differential equation
(BSDE) techniques to solve the exploratory mean-variance problem of the log return.
Third, under the RL framework, the optimal strategy follows a time-varying Gaus-
sian distribution. The Gaussian mean and variance are continuous in time. However,
when implemented, the trading actions are drawn from the distributions, and hence
not continuous in time. This sometimes gives rather volatile actions over time. It
will be an interesting topic to study how to smooth the empirical action sequence or
impose an action range to reduce the volatility. This direction is related to the im-
provement in terms of transaction costs and turnover. As discussed in Section 2.5.3,
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another regularization term could be added to the problem to penalize transaction
costs or turnover.

The valuation problem in Chapter 4 has drawn the attention of researchers and
practitioners because of the popularity of variable annuity products. A popular
valuation procedure to balance the accuracy and computational cost is a two-step
framework. In the first step, a reasonable set of representative contracts is selected
through clustering methods or sampling methods, based on the contract attributes.
Their values are obtained through nested simulation. The second step builds an
interpolation model to estimate the values of all remaining contracts. Methods com-
monly used are spatial interpolation methods such as the kriging method. We study
the selection part of the valuation from another perspective. Instead of selecting
all contracts based on the attributes, We propose a two-phase selection procedure.
We first select a sub-sample of the representative contracts based on the attributes.
Using their values from the nested simulation, we build a model for the candidate
contracts’ contract values. Then, the remaining representatives are selected from
the candidate contracts, based on the model of the contract values. In our study, we
model the contract values as Gaussian random variables, which is also assumed in the
universal kriging method. To diversify the second subset of representative contracts
from the first part, we calculate the conditional distributions of the contract values,
on the first part of representatives’ values. The second part of the selection is then
based on the Wasserstein distance among conditional Gaussian distributions, using
our proposed conditional clustering algorithm. Using public VA data (attributes
and fair market values), we compare our proposed method with the conventional
two-step framework. Using either the k-prototype clustering method or the hierar-
chical k-means clustering method, our procedure produces more accurate estimates
of the fair market values of large VA portfolios, with a similar computational cost.
A further benefit is that the procedure is robust with respect to model inputs.

The future work on this topic has two possible directions. With the flexibility of
the above proposed valuation procedure, we could incorporate more selection meth-
ods to improve accuracy, for example, the simple random sampling and clustering
method proposed by Feng et al. (2020). On the other hand, we model the candidate
contracts’ contract values as Gaussian random variables and calculate their condi-
tional distributions. The original and conditional distributions can be viewed as
the prior and posterior distributions in Bayes’ theorem, respectively. Hence, if more
representative contracts are gradually selected, the posterior distribution for the can-
didate contracts can be updated gradually. In this case, the Bayesian optimization
methods could be adopted, with a specific objective to measure the similarities among
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the contracts. This could be helpful to determine the size of representatives as well
as to find better representatives.

Chapter 5 studies the capture ratio. The capture ratio is commonly used to
measure fund managers’ performance against a market benchmark, for example, the
S&P 500 index. It serves as an important criterion employed by Morningstar (Haslem
(2014)) in selecting funds. Even though the capture ratio is popular in practice (Cox
and Goff (2013)), we are not aware of any previous research regarding its statistical
estimation. Investors extensively use the capture ratio to measure and compare fund
performance. The use of a naive calculation/estimation of the capture ratio based
on empirical data could be misleading if the statistical properties of the estimator
are unknown. Hence, in this chapter, we study the asymptotic joint distributions
of the ratios and test hypotheses regarding the relative performance of two funds.
Using simulations, we find that the capture ratio estimates based on different return
frequencies can significantly differ in magnitude. They can also be substantially
biased when the underlying model is misspecified or the sample size is not large
enough. Using a real-world hedge fund return dataset, we find that the estimates of
capture ratios from monthly and daily data can be significantly different. Moreover,
the estimation from a small sample is rather volatile through time and deviates from
the long-term capture ratio. All our findings raise questions about the practical use
of the capture ratio. If the sample size is not reasonably large or the underlying
model assumption is not appropriate, the selection or ranking based on the capture
ratio would be misleading and hence increase the risk in fund management. Based
on our findings, future work could focus on bias-corrected estimations such that an
estimation based on a small sample size could still be informative in practice.
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Appendix A

Chapter 2 Appendices

A.1 Proofs of Results

A.1.1 Proof of Theorem 2.3.1

The Lagrangian function for the maximization problem is given by

L(πt, η) := ρσvx(t, x)

∫
R
uπt(u)du+

1

2
σ2vxx(t, x)

∫
R
u2πt(u)du

−λa(t)

∫
R
πt(u) log πt(u)du+ η

∫
R
πt(u)du

=:

∫
R
L(u, πt(u))du, (A.1)

where η denotes the Lagrangian multiplier, and L(u, πt(u)) is given by

L(u, πt(u)) = ρσvx(t, x)uπt(u) +
1

2
σ2vxx(t, x)u

2πt(u)− λa(t)πt(u) log πt(u) + ηπt(u).

By a standard Lagrangian duality argument (e.g., see Lemma 4.3 of Weng and
Zhuang (2017)), if π∗ := π∗

η∗ ∈ P(R) maximizes L(π, η∗) for some η∗ ∈ R satisfying∫
R π

∗(u)du = 1, then π∗ is a solution to the maximization problem in equation (2.9).
Consequently, we focus on analyzing the optimizer(s) of L(·, η) before we show the
optimality of π∗

t in equation (2.10).

To derive a maximizer of L(·, η), we apply a pointwise maximization procedure
and analyze the integrand in (A.1), L(u, πt(u)). Since π log π is convex in π while
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the other items in the expression of L(u, π) are linear in π, L(u, π) is concave as
a function of π. Accordingly, the first-order optimality condition is sufficient to
determine its maximizers, whereby we take the partial derivative of L(u, πt(u)) with
respect to πt(u) and equate it to zero to get:

ρσvx(t, x)u+
1

2
σ2vxx(t, x)u

2 − λa(t) log πt(u)− λa(t) + η = 0,

which gives

πt(u) = exp

(
1

λa(t)

[
1

2
σ2vxx(t, x)u

2 + ρσvx(t, x)u

]
− λa(t) + η

)
.

Taking η to scale πt(u) to satisfy the constraint
∫
R πt(u)du = 1 yields the desired

optimality of π∗
t in (2.10).

A.1.2 Proof of Theorem 2.3.2

We start from conjecturing the solution to the PDE (2.11) in the form v(t, x) =
f(t) log x+ga(t) for some functions f and ga defined on [0, T ] with conditions f(T ) =
1 and ga(T ) = 0. This yields vx = x−1f(t), vxx = −x−2f(t) and vt = f ′(t) log(x) +
g′a(t). It is straightforward to use equation (2.10) to verify equation (2.14) for the
optimal control π∗

t (u;x, λa(t)). Furthermore, substituting the expressions of vt, vx
and vxx (in terms of f and ga) into the PDE (2.11) yields:

vt(t, x)−
ρ2(vx(t, x))

2

2vxx(t, x)
− λa(t)

2
log

(
−σ2vxx(t, x)

2πλa(t)

)
=f

′
(t) log x+ g′a(t) +

ρ2

2
f(t)− λa(t)

2
log

σ2x−2f(t)

2πλa(t)

=f
′
(t) log x+ g′a(t) +

ρ2

2
f(t)− λa(t)

2
log x−2 − λa(t)

2
log

σ2f(t)

2πλa(t)

=(f
′
(t) + λa(t)) log x+ g′a(t) +

ρ2

2
f(t)− λa(t)

2
log

σ2f(t)

2πλa(t)

=0.

The above equation implies the following ordinary differential equations (ODEs):{
f

′
(t) + λa(t) = 0,

g′a(t) +
ρ2

2
f(t)− λa(t)

2
log σ2f(t)

2πλa(t)
= 0,
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with terminal conditions f(T ) = 1 and ga(T ) = 0, which are the same as equa-
tions (2.12) and (2.13).

Using equations (2.4)-(2.6), it is easy to get the SDE in equation (2.15) for the
exploratory wealth process under the optimal control, and the verification for results
in equations (2.17) and (2.18) also follows trivially.

A.1.3 Linearly Decaying λa(t)

Theorem A.1.1. Consider the optimization problem (2.8) with a linearly time-
decaying λa(t):

λa(t) = −2λ0t+ λ1

with λ0, λ1 > 0 and 2λ0T < λ1 to ensure λa(t) > 0, ∀t ∈ [0, T ]. Then, the value
function is given by

V a(t, x) =f(t) log x+
λ0ρ

2

6
(T 3 − t3)− λ1ρ

2

4
(T 2 − t2) +

ρ2

2
(−λ0T

2 + λ1T + 1)(T − t)

+

(
1

2
− log

σ2

2π

)
f(t)− 1

2
− f(t)

2
log f(t) +

λ2
a(t)

8λ0

log λa(t)−
λ2
a(T )

8λ0

log λa(T )

where f(t) = −λ0(T
2 − t2) + λ1(T − t) + 1, and the optimal control is given by

πλ∗
t (u;x) ∼ N

(
ρx

σ
,
x2

σ2

−2λ0t+ λ1

−λ0(T 2 − t2) + λ1(T − t) + 1

)
for which the variance

(1) increases in [0, T ] if (2λ0T − λ1)
2 − 2λ0 ≥ 0;

(2) decreases in [0, T ] if (λ1 − λ0T )
2 + λ2

0T
2 − 2λ0 ≤ 0;

(3) first increases then decreases in [0, T ], otherwise.

Proof. We apply Theorem 2.3.2 and only show how we derive the expression for f
and ga in the conjectured value function V a(t, x;λa(t)) = f(t) log x + ga(t) and the
variance in the optimal Gaussian control distribution.

By virtue of Theorem 2.3.2, we apply f
′
(t) = −λa(t) to get

f(t) = −λ0(T
2 − t2) + λ1(T − t) + 1.
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Therefore, the variance of the optimal control is given by

x2λa(t)

σ2f(t)
=

x2

σ2

−2λ0t+ λ1

−λ0(T 2 − t2) + λ1(T − t) + 1
=:

x2

σ2
ζ(t)

for which the derivative is

ζ
′
(t) =

κ(t)

(−λ0(T 2 − t2) + λ1(T − t) + 1)2

with
κ(t) := 2λ2

0t
2 − 2λ0λ1t+ λ2

1 + 2λ2
0T

2 − 2λ0λ1T − 2λ0.

Therefore, we can focus on the function κ(t) and investigate its sign for the changing
pattern of the variance term. Clearly κ is decreasing in t ∈ [0, T ] since λ1 > 2λ0T .
Furthermore, we observe that κ(0) = (λ1− λ0T )

2 + λ2
0T

2− 2λ0 and κ(T ) = (2λ0T −
λ1)

2 − 2λ0. So, we have
ζ

′
(t) ≥ 0, ∀t ∈ [0, T ], if (2λ0T − λ1)

2 − 2λ0 ≥ 0,

ζ
′
(t) ≤ 0, ∀t ∈ [0, T ], if (λ1 − λ0T )

2 + λ2
0T

2 − 2λ0 ≤ 0,

ζ
′
(t) ≥ 0 in [0, t̃] and ≤ 0 in [t̃, T ] for some t̃ ∈ (0, T ), otherwise.

The above properties of ζ
′
(t) immediately imply the desired monotonicity of the

variance of the optimal control as stated in the theorem.

For ga(t), we also apply Theorem 2.3.2 to get

g
′

a(t) =−
ρ2

2
f(t) +

λa(t)

2
log

σ2f(t)

2πλa(t)

=− ρ2

2
f(t)− f

′
(t)

2
log f(t)− f

′
(t)

2
log

σ2

2π
− λa(t)

2
log λa(t).

Then the expression for ga(t) follows from the facts that∫
f(t) log f(t) dt = f(t) log f(t)− f(t) + C

and ∫
λa(t) log λa(t) dt = −

λ2
a(t)

4λ0

log λa(t) +
λ2
a(t)

8λ0

+ C.
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A.1.4 Proof of Theorem 2.5.1

Since π is admissible, we have, for ∀ (t, x) ∈ [0, T ]× R+,

V π
t (t, x) +

∫
R

(
ρσuV π

x (t, x) +
1

2
σ2u2V π

xx(t, x)− λ log πt(u)

)
πt(u) du = 0.

From the results in and after Theorem 2.3.1, the control π̃ satisfies

V π
t (t, x)+

∫
R

(
ρσuV π

x (t, x) +
1

2
σ2u2V π

xx(t, x)− λ log π̃t(u)

)
π̃t(u) du

=V π
t (t, x) + max

π̂∈P(R)

{∫
R

(
ρσuV π

x (t, x) +
1

2
σ2u2V π

xx(t, x)− λ log π̂t(u)

)
π̂t(u) du

}
≥V π

t (t, x) +

∫
R

(
ρσuV π

x (t, x) +
1

2
σ2u2V π

xx(t, x)− λ log πt(u)

)
πt(u) du = 0.

(A.2)
Let {X π̃

t , 0 ≤ t ≤ T} denote the exploratory wealth process under the control π̃.
For a fixed pair (t, x) ∈ [0, T ]× R+ and n ≥ 1, define stopping times

τn := inf

{
s ≥ t :

∫ s

t

σ2

∫
R
u2π̃vdu(V

π
x (v,X

π̃
v ))

2 dv ≥ n

}
, n = 1, 2, · · ·

and apply Itô’s lemma to obtain, for s ∈ [t, T ],

V π(s ∧ τn, X
π̃
s∧τn) =V π(t, x) +

∫ s∧τn

t

V π
t (v,X

π̃
v ) dv

+

∫ s∧τn

t

∫
R

(
ρσuV π

x (v,X
π̃
v ) +

1

2
σ2u2V π

xx(v,X
π̃
v )

)
π̃v(u) du dv

+

∫ s∧τn

t

σ

√∫
R
u2π̃vdu · V π

x (v,X
π̃
v ) dWv.

Rearranging the above equation and applying the inequality in (A.2), we get

V π(t, x) =E

[
V π(s ∧ τn, X

π̃
s∧τn)−

∫ s∧τn

t

V π
t (v,X

π̃
v ) dv

−
∫ s∧τn

t

∫
R

(
ρσuV π

x (v,X
π̃
v ) +

1

2
σ2u2V π

xx(v,X
π̃
v )

)
π̃v(u) du dv

∣∣∣∣ X π̃
t = x

]

≤E
[
V π(s ∧ τn, X

π̃
s∧τn)−

∫ s∧τn

t

∫
R
λπ̃v(u) log π̃v(u) du dv

∣∣∣∣ X π̃
t = x

]
.
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At time s = T , the above inequality holds since s ∈ [t, T ]. As n→∞, T∧τn → T .
By the Dominated Convergence Theorem, we have, as n→∞,

V π(t, x) ≤E
[
V π(T ∧ τn, X

π̃
T∧τn)−

∫ T∧τn

t

∫
R
λπ̃v(u) log π̃v(u) du dv

∣∣∣∣ X π̃
t = x

]
=E

[
V π(T,X π̃

T )−
∫ T

t

∫
R
λπ̃v(u) log π̃v(u) du dv

∣∣∣∣ X π̃
t = x

]
=E

[
logX π̃

T −
∫ T

t

∫
R
λπ̃v(u) log π̃v(u) du dv

∣∣∣∣ X π̃
t = x

]
=E

[
V π̃(T,X π̃

T )−
∫ T

t

∫
R
λπ̃v(u) log π̃v(u) du dv

∣∣∣∣ X π̃
t = x

]
=V π̃(t, x).

A.2 RL Algorithms

A.2.1 RL Algorithm with Portion Control

For the exploratory problem controlling the investment portion, we parametrize the
value function as

V π(t, x;α) = log x+ α(T − t).

We also have the mean of the Gaussian control parametrized as β1 =
ρ
σ
and

−
∫
R
πt(u;β) log πt(u;β)du = −β2 =

1

2
log

2πeλ

σ2
.

The updating scheme for β1 goes as follows:

β1 ←
(
2α + 2λβ2 + λ

4πλβ1

e−2β2−1 +
β1

2

)
. (A.3)

The gradients of the TD error in α and β2 at time ti are

∂Ci

∂α
=

∑
(tj ,xj)∈Si

(
V̇ π(tj, xj;α)− λβ2

)
(−∆t) (A.4)

∂Ci

∂β2

=
∑

(tj ,xj)∈Si

(
V̇ π(tj, xj;α)− λβ2

)
(−λ∆t). (A.5)
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The algorithm is summarized by the pseudocode in Algorithm 3.

Algorithm 3: RL Algorithm with Portion Control

Input: Market parameters (µ, σ, r, ρ), learning rate θα, θβ, initial wealth x0,
investment horizon T , discretization ∆t, exploration rate λ.
Initialization: i = 1, α and β
while i ≤ T

∆t
do

Sample (ti, xi) under π(u;β)
Update set of samples Si = {(tj, xj); j = 0, . . . , i}
Update α as α− θα∇αCi(α,β) using (A.4)
Update β2 as β2 − θβ∇βCi(α,β) using (A.5)
Update β1 using (A.3)

Update πt(u;x,α,β) as N
(
β1,

e−2β2−1

2π

)
i = i+ 1

end

A.2.2 RL Algorithm with Power-Decaying λ

For the exploratory problem with a power-decaying λ and λ0 ̸= 1, we parametrize
the value function as

V π(t, x;α) =

(
T + λ1

t+ λ1

)λ0

log x+ α1

(
T+λ1

t+λ1

)λ0−1

− 1

λ0 − 1
+ α2

(
T + λ1

t+ λ1

)λ0

− 1

2

(
T + λ1

t+ λ1

)λ0

log (t+ λ1) + α3.

We also have the mean of the Gaussian control parametrized as β1 =
ρ
σ
and

−
∫
R
πt(u;β) log πt(u;β)du = log x− 1

2
log (t+ λ1)− β2

where β2 = −1
2
log 2πeλ0

σ2 . The updating scheme for β1 goes as follows:

β1 ←
(

α1e
−2β2−1

2πλ0(T + λ1)β1

+
β1

2

)
. (A.6)

The updating scheme for α3 also applies the terminal condition and goes as follows:

α3 ←
(
−α2 +

1

2
log (T + λ1)

)
. (A.7)
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The gradients of the TD error in α1, α2 and β2 at time ti are

∂Ci

∂α1

=
∑

(tj ,xj)∈Si

(
V̇ π(tj, xj;α)− λ(tj+1)β2

) (
T+λ1

tj+1+λ1

)λ0−1

−
(

T+λ1
tj+λ1

)λ0−1

λ0−1
(A.8)

∂Ci

∂α2

=
∑

(tj ,xj)∈Si

(
V̇ π(tj, xj;α)− λ(tj+1)β2

)((
T+λ1

tj+1+λ1

)λ0

−
(

T+λ1

tj+λ1

)λ0
)

(A.9)

∂Ci

∂β2

=
∑

(tj ,xj)∈Si

(
V̇ π(tj, xj;α)− λ(tj+1)β2

)
(−λ(tj+1)∆t). (A.10)

The algorithm is summarized by the pseudocode in Algorithm 4.

Algorithm 4: RL Algorithm with Power-Decaying λ

Input: Market parameters (µ, σ, r, ρ), learning rate θα, θβ, initial wealth x0,
investment horizon T , discretization ∆t, exploration rates λ0, λ1.
Initialization: i = 1, α and β
while i ≤ T

∆t
do

Sample (ti, xi) under π(u;β)
Update set of samples Si = {(tj, xj); j = 0, . . . , i}
Update (α1, α2)

′
as (α1, α2)

′ − θα∇αCi(α,β) using (A.8) and (A.9)
Update α3 using (A.7)
Update β2 as β2 − θβ∇βCi(α,β) using (A.10)
Update β1 using (A.6)

Update πt(u;x,α,β) as N
(
β1x,

e−2β2−1x2

2π(t+λ1)

)
i = i+ 1

end
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Appendix B

Chapter 3 Appendix

B.1 Solving EMV via Dynamic Programming

Now solve the exploratory auxiliary problem AE(w) by dynamic programming. At
time T −∆t, given xT−∆t, the optimization problem is

max
fT−∆t

JT−∆t(fT−∆t|xT−∆t)

= max
fT−∆t

{
E[−(w − xT )

2]− λ∆t

∫
R
log (fT−∆t(u))fT−∆t(u)du

}

= max
fT−∆t

{
E[−(w − xT−∆t −RT−∆tuT−∆t)

2]− λ∆t

∫
R
log (fT−∆t(u))fT−∆t(u)du

}

= max
fT−∆t

{
− E[R2

T−∆t]E[u2
T−∆t] + 2(w − xT−∆t)E[RT−∆t]E[uT−∆t]

− λ∆t

∫
R
log (fT−∆t(u))fT−∆t(u)du− (w − xT−∆t)

2

}
.
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The maximization part over fT−∆t is

max

{
− E[R2

T−∆t]E[u2
T−∆t] + 2(w − xT−∆t)E[RT−∆t]E[uT−∆t]

− λ∆t

∫
R
log (fT−∆t(u))fT−∆t(u)du

}
= max

∫
R

[
−E[R2

T−∆t]u
2 + 2(w − xT−∆t)E[RT−∆t]u− λ∆t log (fT−∆t(u))

]
fT−∆t(u)du.

A quick calculation gives us the optimal allocation distribution at time T −∆t

f ∗
T−∆t(u) =

1

cT−∆t

exp

{
−
E[R2

T−∆t]

λ∆t

(
u− (w − xT−∆t)E[RT−∆t]

E[R2
T−∆t]

)2
}

where cT−∆t > 0 is a constant such that
∫
R fT−∆t(u)du = 1. The distribution is a

normal distribution with mean µT−∆t and variance σ2
T−∆t defined as follows

µT−∆t =
(w − xT−∆t)E[RT−∆t]

E[R2
T−∆t]

=
ρ

σ(1 + ρ2∆t)
(w − xT−∆t) ,

σ2
T−∆t =

λ∆t

2E[R2
T−∆t]

=
λ

2σ2(1 + ρ2∆t)
.
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Appendix C

Chapter 4 Appendices

C.1 Estimation of the Semivariogram Function

The semivariogram function is an important element in both the conventional clus-
tering procedure and our proposed one. It is used to model the covariance structure
of the Gaussian process in the universal kriging method, and to obtain the condi-
tional distributions of the value random variables. In practice, we need to estimate
the parameters in the semivariogram function γ(h), i.e. σ2, a, and r. For our method
with the Wasserstein distance, we need to estimate the parameters twice, when cal-
culating the conditional distribution and applying the universal kriging method.

When we have selected representatives, we calculate the empirical semivariogram
function with their values y,

γ̂(h) =
1

2|N(h)|
∑

(i,j)∈N(h)

(yi − yj)
2

where N(h) =
{
(i, j) : h− ∆h

2
≤ D(xi,xj) ≤ h+ ∆h

2

}
. The interval size ∆h could

be fixed, e.g. 0.1, or be set such that the number of intervals is fixed, e.g. 100
intervals.

Robust estimates of the parameters σ2, a, and r could be obtained by minimizing
the following loss function (Stanford and Vardeman (1994))

L(σ2, a, r) =
∑

|N(h)|≥30

[
γ(h)− γ̂(h)

γ(h)

]2
|N(h)|.

136



Note that we only consider h such that |N(h)| ≥ 30 to assure the reliability of the
empirical function γ̂(h). We use the “NLoptr” package in R (Johnson (2022)) with
the COBYLA (constrained optimization by linear approximations) algorithm (Powell
(1994, 1998)) to estimate the parameters.

C.2 Proof of Lemma 4.3.2

For any j ∈ {k1 + 1, k1 + 2, . . . , k} and i such that zi = j, we have

(W (θi, c
∗
j))

2 = ||θi − c∗j ||2

= ||θi − αj(z) + αj(z)− c∗j ||2

= ||θi − αj(z)||2 + ||αj(z)− c∗j ||2 + 2⟨θi − αj(z), αj(z)− c∗j⟩
≥ ||θi − αj(z)||2 + 2⟨θi − αj(z), αj(z)− c∗j⟩
= (W (θi, αj(z)))

2 + 2⟨θi − αj(z), αj(z)− c∗j⟩.

Hence,

∑
zi=j

(W (θi, c
∗
j))

2 ≥
∑
zi=j

(W (θi, αj(z)))
2 + 2

〈∑
zi=j

(θi − αj(z)), αj(z)− c∗j

〉
=
∑
zi=j

(W (θi, αj(z)))
2.

Therefore, we have

L(z, c∗) =

k1∑
j=1

∑
zi=j

(W (θi, cj))
2 +

k∑
j=k1+1

∑
zi=j

(W (θi, c
∗
j))

2

≥
k1∑
j=1

∑
zi=j

(W (θi, cj))
2 +

k∑
j=k1+1

∑
zi=j

(W (θi, αj(z)))
2 = L(z, α(z)).

C.3 Guarantee Types

This appendix explains the abbreviations of the guarantee types. They are also in
Table 1 of Gan and Valdez (2017).
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Abbreviation Explanation
GMDB Guaranteed minimum death benefit
GMAB Guaranteed minimum accumulation benefit
GMIB Guaranteed minimum income benefit
GMMB Guaranteed minimum maturity benefit
GMWB Guaranteed minimum withdrawal benefit
DBRP GMDB with return of premium
DBRU GMDB with annual roll-up
DBSU GMDB with annual ratchet
ABRP GMAB with return of premium
ABRU GMAB with annual roll-up
ABSU GMAB with annual ratchet
IBRP GMIB with return of premium
IBRU GMIB with annual roll-up
IBSU GMIB with annual ratchet
MBRP GMMB with return of premium
MBRU GMMB with annual roll-up
MBSU GMMB with annual ratchet
WBRP GMWB with return of premium
WBRU GMWB with annual roll-up
WBSU GMWB with annual ratchet
DBAB GMDB + GMAB with annual ratchet
DBIB GMDB + GMIB with annual ratchet
DBMB GMDB + GMMB with annual ratchet
DBWB GMDB + GMWB with annual ratchet

Table C.1: Explanations of guarantee types

C.4 Tables of Study 1

This appendix provides more numerical results for the first study in Section 4.4.2.
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Seed k-prototypes TP.SD Seed k-prototypes TP.SD
1 0.0505 0.0144 51 0.0280 0.0002
2 0.0100 0.0225 52 0.0283 0.0611
3 0.0041 0.0010 53 0.0024 0.0153
4 0.0371 0.0473 54 0.0257 0.0202
5 0.0507 0.0113 55 0.0022 0.0283
6 0.0248 0.0411 56 0.0162 0.0030
7 0.0131 0.0212 57 0.0033 0.0084
8 0.0367 0.0020 58 0.0091 0.0083
9 0.0119 0.0039 59 0.0375 0.0017
10 0.0464 0.0171 60 0.0683 0.0089
11 0.0217 0.0155 61 0.0034 0.0036
12 0.0063 0.0236 62 0.0210 0.0088
13 0.0309 0.0185 63 0.0322 0.0083
14 0.0074 0.0361 64 0.0101 0.0060
15 0.0251 0.0408 65 0.0129 0.0099
16 0.0723 0.0332 66 0.0524 0.0179
17 0.0059 0.0096 67 0.0461 0.0240
18 0.0039 0.0339 68 0.0153 0.0191
19 0.0283 0.0089 69 0.0181 0.0196
20 0.0555 0.0144 70 0.0205 0.0002
21 0.0295 0.0212 71 0.0488 0.0209
22 0.0025 0.0252 72 0.0428 0.0387
23 0.0247 0.0106 73 0.0555 0.0419
24 0.0163 0.0254 74 0.0205 0.0209
25 0.0180 0.0002 75 0.0552 0.0027
26 0.0145 0.0050 76 0.0181 0.0498
27 0.0144 0.0359 77 0.0040 0.0168
28 0.0079 0.0195 78 0.0322 0.0299
29 0.0631 0.0016 79 0.0068 0.0149
30 0.0025 0.0120 80 0.0139 0.0132
31 0.0089 0.0075 81 0.0354 0.0376
32 0.0021 0.0275 82 0.0310 0.0064
33 0.0031 0.0110 83 0.0097 0.0224
34 0.0364 0.0146 84 0.0052 0.0017
35 0.0185 0.0007 85 0.0009 0.0403
36 0.0039 0.0029 86 0.0442 0.0076
37 0.0509 0.0205 87 0.0351 0.0304
38 0.0532 0.0016 88 0.0117 0.0073
39 0.0327 0.0114 89 0.0054 0.0281
40 0.0134 0.0205 90 0.0158 0.0073
41 0.0224 0.0056 91 0.0653 0.0302
42 0.0359 0.0076 92 0.0088 0.0134
43 0.0108 0.0296 93 0.0257 0.0542
44 0.0016 0.0101 94 0.0204 0.0128
45 0.0028 0.0116 95 0.0209 0.0170
46 0.0411 0.0045 96 0.0149 0.0002
47 0.0726 0.0437 97 0.0148 0.0315
48 0.0155 0.0202 98 0.0098 0.0386
49 0.0144 0.0350 99 0.0239 0.0067
50 0.0414 0.0481 100 0.0000 0.0158

Avg. 0.0237 0.0184 Avg.
2717.05s 3246.08s

Error (0.0019) (0.0014) Time

Table C.2: Performance of methods: fair market value with k = 150. The values in
parentheses are standard errors.
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Seed k-prototypes TP.SD Seed k-prototypes TP.SD
1 0.0430 0.0088 51 0.0109 0.0056
2 0.0163 0.0025 52 0.0024 0.0074
3 0.0496 0.0100 53 0.0169 0.0003
4 0.0242 0.0374 54 0.0424 0.0145
5 0.0102 0.0088 55 0.0040 0.0040
6 0.0033 0.0310 56 0.0095 0.0085
7 0.0442 0.0290 57 0.0260 0.0095
8 0.0208 0.0110 58 0.0207 0.0165
9 0.0154 0.0280 59 0.0057 0.0009
10 0.0182 0.0030 60 0.0080 0.0020
11 0.0238 0.0017 61 0.0218 0.0328
12 0.0017 0.0166 62 0.0158 0.0109
13 0.0234 0.0164 63 0.0181 0.0074
14 0.0297 0.0122 64 0.0096 0.0254
15 0.0108 0.0135 65 0.0222 0.0191
16 0.0242 0.0003 66 0.0418 0.0199
17 0.0580 0.0438 67 0.0014 0.0249
18 0.0470 0.0064 68 0.0244 0.0078
19 0.0134 0.0176 69 0.0016 0.0115
20 0.0123 0.0178 70 0.0001 0.0111
21 0.0489 0.0192 71 0.0219 0.0141
22 0.0220 0.0200 72 0.0043 0.0310
23 0.0057 0.0026 73 0.0108 0.0055
24 0.0254 0.0046 74 0.0023 0.0050
25 0.0219 0.0139 75 0.0414 0.0041
26 0.0103 0.0262 76 0.0496 0.0203
27 0.0151 0.0039 77 0.0220 0.0225
28 0.0054 0.0078 78 0.0151 0.0071
29 0.0049 0.0098 79 0.0796 0.0098
30 0.0031 0.0001 80 0.0263 0.0151
31 0.0135 0.0076 81 0.0029 0.0006
32 0.0037 0.0036 82 0.0104 0.0128
33 0.0066 0.0057 83 0.0633 0.0077
34 0.0143 0.0060 84 0.0070 0.0214
35 0.0423 0.0246 85 0.0122 0.0005
36 0.0104 0.0066 86 0.0096 0.0306
37 0.0310 0.0091 87 0.0372 0.0263
38 0.0012 0.0188 88 0.0177 0.0060
39 0.0298 0.0009 89 0.0071 0.0032
40 0.0079 0.0001 90 0.0143 0.0070
41 0.0261 0.0045 91 0.0298 0.0156
42 0.0150 0.0230 92 0.0454 0.0010
43 0.0299 0.0174 93 0.0369 0.0253
44 0.0138 0.0065 94 0.0440 0.0089
45 0.0180 0.0021 95 0.0202 0.0120
46 0.0087 0.0051 96 0.0070 0.0105
47 0.0034 0.0010 97 0.0064 0.0313
48 0.0052 0.0001 98 0.0271 0.0020
49 0.0137 0.0101 99 0.0283 0.0196
50 0.0361 0.0282 100 0.0194 0.0111

Avg. 0.0201 0.0123 Avg.
3501.16s 4011.43s

Error (0.0016) (0.0010) Time

Table C.3: Performance of methods: fair market value with k = 300. The values in
parentheses are standard errors.
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Seed k-prototypes TP.SD Seed k-prototypes TP.SD
1 0.0295 0.0080 51 0.0227 0.0114
2 0.0104 0.0209 52 0.0122 0.0028
3 0.0484 0.0300 53 0.0092 0.0001
4 0.0225 0.0002 54 0.0029 0.0196
5 0.0260 0.0071 55 0.0389 0.0114
6 0.0114 0.0002 56 0.0152 0.0004
7 0.0442 0.0066 57 0.0153 0.0069
8 0.0271 0.0059 58 0.0030 0.0103
9 0.0163 0.0049 59 0.0006 0.0058
10 0.0263 0.0084 60 0.0066 0.0038
11 0.0017 0.0118 61 0.0086 0.0048
12 0.0049 0.0042 62 0.0392 0.0125
13 0.0166 0.0029 63 0.0312 0.0006
14 0.0135 0.0014 64 0.0189 0.0005
15 0.0155 0.0188 65 0.0114 0.0264
16 0.0170 0.0117 66 0.0174 0.0014
17 0.0233 0.0080 67 0.0167 0.0061
18 0.0203 0.0065 68 0.0013 0.0177
19 0.0403 0.0005 69 0.0162 0.0196
20 0.0216 0.0229 70 0.0073 0.0118
21 0.0431 0.0148 71 0.0351 0.0009
22 0.0087 0.0074 72 0.0438 0.0054
23 0.0150 0.0073 73 0.0213 0.0021
24 0.0462 0.0015 74 0.0082 0.0040
25 0.0510 0.0018 75 0.0074 0.0094
26 0.0257 0.0013 76 0.0131 0.0166
27 0.0208 0.0261 77 0.0170 0.0131
28 0.0122 0.0000 78 0.0368 0.0212
29 0.0027 0.0004 79 0.0197 0.0033
30 0.0033 0.0138 80 0.0080 0.0204
31 0.0327 0.0220 81 0.0099 0.0018
32 0.0087 0.0048 82 0.0147 0.0122
33 0.0312 0.0135 83 0.0081 0.0071
34 0.0416 0.0183 84 0.0023 0.0053
35 0.0066 0.0048 85 0.0347 0.0123
36 0.0381 0.0146 86 0.0040 0.0039
37 0.0059 0.0096 87 0.0344 0.0084
38 0.0042 0.0068 88 0.0088 0.0043
39 0.0128 0.0127 89 0.0071 0.0161
40 0.0049 0.0079 90 0.0171 0.0083
41 0.0268 0.0117 91 0.0133 0.0029
42 0.0282 0.0137 92 0.0348 0.0083
43 0.0255 0.0066 93 0.0445 0.0258
44 0.0218 0.0041 94 0.0117 0.0110
45 0.0227 0.0068 95 0.0034 0.0069
46 0.0090 0.0120 96 0.0431 0.0025
47 0.0083 0.0113 97 0.0047 0.0156
48 0.0287 0.0201 98 0.0122 0.0047
49 0.0035 0.0047 99 0.0216 0.0046
50 0.0229 0.0020 100 0.0341 0.0055

Avg. 0.0192 0.0090 Avg.
5657.59s 6155.04s

Error (0.0013) (0.0007) Time

Table C.4: Performance of methods: fair market value with k = 450. The values in
parentheses are standard errors.
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Appendix D

Chapter 5 Appendix

D.1 Proof of the Asymptotic Distributions of Cap-

ture Ratio Estimators

We prove the asymptotic distribution of R̃N in the independence case. From (5.8),

R̃N = ϕ
(
CN Z̄N

)
· 1SC

N
+ ξ1SN

We claim that 1SN

P−→ 0 or equivalently 1SC
N

P−→ 1. Indeed, for any ϵ > 0,

P(|1SN
− 0| ≥ ϵ) ≤P(SN) = P(MU

N = 0 or MD
N = 0)

≤P(Un = 0 for all n = 1, · · · , N) + P(Dn = 0 for all n = 1, · · · , N)

=(pU)N + (pD)N

→0, as N →∞.

For the first term in R̃N , since we have the asymptotic distribution of CN Z̄N , by
applying the Delta method (Theorem 3.1, Van der Vaart (2000)), we have

√
N(ϕ(CN Z̄N)− ϕ(Cµ))

d−→ N
(
0, (∇ϕ (Cµ))

′
CΣC

′
(∇ϕ (Cµ))

)
.

By Slutsky’s Theorem, we have

√
N(R̃N −R) =

√
N(ϕ(CN Z̄N)1SC

N
−R · 1) d−→ N

(
0, (∇ϕ (Cµ))

′
CΣC

′
(∇ϕ (Cµ))

)
.
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