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Abstract

Formal modeling is a powerful tool in requirements engineering. By modeling a system
before implementation, one can discover bugs before they appear in testing or production.
Model finding (or instance finding) for a model written in first-order logic is the problem
of finding a mapping of variables to values that satisfies a model’s specifications. Unfortu-
nately, this problem is undecidable in general. Finite model finding, the problem of finding
a mapping of variables to finite sets of values, is decidable. Thus, finite model finding
enables the automated verification of models at certain scopes (the number of elements
in the domain of discourse of the problem). While finitizing a problem makes it solvable,
as the scope of the problem increases, the problem can quickly become prohibitivly ex-
pensive to solve. Therefore, it is important to choose an efficient encoding of the problem
for satisfiability (SAT) or satisfiability modulo theories (SMT) solvers when finitizing a
problem.

We propose improvements to encodings of many-sorted finite model finding problems
for SMT solvers. We propose new encodings for finite integers and transitive closure. The
key contributions of this thesis are that we:

1. Formulate Milicevic and Jackson’s [25] method for preventing overflows in integer
problems using bitvectors as a transformation from/to a many-sorted first-order logic
formula and extend it to support additional abstractions present in MSFOL

2. Propose an integer finitization method, called overflow-preventing finite integers
(OPFI), that produces results closer to unbounded integers than Milicevic and Jack-
son’s method, improving the correctness of the finitization with respect to the same
problem over unbounded integers

3. Demonstrate that OPFI solves problems faster than our encoding of Milicevic and
Jackson’s method in an SMT solver, and does not solve problems significantly slower
than unchecked (pure) bitvectors

4. Propose and prove the validity of negative transitive closure, an encoding of the
transitive closure operator over a finite scope in first order logic for a special case of
the use of transitive closure where pairs are only checked to not be in the transitive
closure of a relation

5. Generalize existing encodings of transitive closure to relations of arity greater than two

6. Demonstrate our new encoding of transitive closure performs faster than or as fast
as existing encodings on models generated from Alloy models
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Chapter 1

Introduction

Formal modeling, which is the description of system behavior in a mathematically precise
way, is a powerful tool in requirements engineering [5]. Projects employing robust software
engineering, of which modelling is an important factor, are more likely to be delivered
successfully, on-time, and on-budget [14]. By modeling a system before implementation,
one can discover bugs before they appear in testing or production. For example, model
checking discovered five errors (including identifying major design flaws) in an execution
module of the Deep Space 1 spacecraft and revealed design flaws in the software controlling
storm surge barriers in Rotterdam [5]. Unfortunately, the verification of an arbitrary
model is undecidable [10]. When a model is finite, however, it can be verified by an
exhaustive search, making the problem decidable. The process of finding a finite mapping
of variables to values that satisfies the finite model’s specification is known as finite model
finding (FMF). So, altering a problem to be finite allows us to search a bounded model for
inconsistencies and design flaws.

When finitizing a problem, one runs into several challenges. When a problem is fini-
tized, its meaning may change. Statements of the form “For all . . . ” become akin to “For
all values between 0 and 9 . . . ” instead. Notably, while finitizing a problem makes it solv-
able, as the scope of the problem (the number of elements the model considers) increases,
the problem can quickly become prohibitively expensive to solve [18]. Daniel Jackson’s
small scope hypothesis states that most issues with a model can be found at smaller, finite
scopes [18]. Thus, these semantic changes to quantifiers are likely acceptable for the verifi-
cation of many applications. However, it is important when finitizing a problem to choose
an efficient encoding for solvers.

Fortress is a method/library that leverages satisfiability modulo theories (SMT) solvers
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for examining the validity of finite models. Fortress represents problems in many-sorted
first-order logic (MSFOL), where the domain of discourse is separated into disjoint sets of
values known as sorts. FMF for many-sorted logic is known as many-sorted finite model
finding (MSFMF). Vakili and Day originally implemented Fortress to encode finite model
finding in the logic of equality and uninterpreted functions (EUF) [30].

The goal of this thesis is to investigate optimizations and generalizations for MSFMF
to improve performance and the correctness of various axiomatizations. We implement our
work in Fortress. Finitizing integers is complicated by the many interpreted functions on
integers (+, -, *, etc.). Operations on finitely bounded integers overflow when the expected
result is not within the expected range. When a problem is finitized, the size of the problem
may be prohibitive to efficient solving [10], so integer ranges cannot simply be increased
to avoid overflows occurring. Milicevic and Jackson proposed a solution to this problem
and implement it in the Kodkod solver for Alloy using a SAT solver [25]. They finitely
represented integers as bitvectors and altered the semantics of quantifiers and predicates to
“ignore” overflows. In the first half of this thesis, we propose a new method for finitizing
integers and handling overflows that produces results theoretically closer to unbounded
integers by taking advantage of an SMT solver’s interpretation of unbounded integers.
Our method is also experimentally faster at solving problems in MSFOL.

The second half of the thesis explores various axiomatizations of transitive closure. We
examine prior work on encoding transitive closure in MFSOL. Then, we propose a new
axiomatization for transitive closure under specific conditions that requires no auxiliary
functions. We then propose a generalization for these encodings for closure over relations
of arity greater than two. We evaluate the performance of these axiomatizations at various
scopes.

1.1 Contributions

In this thesis, we:

1. Formulate Milicevic and Jackson’s [25] method for preventing overflows in integer
problems using bitvectors to represent integers as a transformation from/to an MS-
FOL formula and we extend Milicevic and Jackson’s method to support additional
abstractions present in MSFOL

2. Propose an integer finitization method that overflows less often than bitvectors, im-
proving the correctness of the finitization with regard to the same problem over
unbounded integers
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3. Compare the performance of various integer finitization methods

4. Propose and prove the validity of negative transitive closure, an encoding of the
transitive closure operator over a finite scope in first order logic for a special case of
the use of transitive closure where pairs are only checked to not be in the transitive
closure of a relation

5. Generalize existing encodings of transitive closure to relations of arity greater than
two

6. Compare the performance our encodings of transitive closure

1.2 Outline of Thesis

Chapter 2 provides background on many-sorted first-order logic (MSFOL), satisfiability
modulo theories (SMT), many-sorted finite model finding (MSFMF), existing modelling
tools, and Fortress. Chapter 3 provides a description of Milicevic and Jackson’s overflow
prevention for bitvectors as a transformation of MSFOL formulas, our new method for
integer finitization, and a performance comparison of various integer reasoning methods on
the SMT-LIB UFNIA benchmark. Chapter 4 describes existing methods for axiomatizing
transitive closure in MSFMF problems, proposes our new transitive closure axiomatization,
generalizes both to higher-arity relations, and compares their performance. We describe
related work in each of Chapter 3 and Chapter 4 as needed.
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Chapter 2

Background

In this chapter, we introduce the terminology used in many-sorted first-order logic (MS-
FOL) and the notation we will use throughout this thesis. Then, we provide a background
on satisfiability modulo theories, many-sorted finite model finding (MSFMF), and the
Fortress library.

2.1 Many-Sorted First-Order Logic (MSFOL)

Many-sorted first-order logic (MSFOL) is first-order logic (FOL) but the domain of dis-
course is partitioned into disjoint sets called sorts. Terms in MSFOL are composed of
functional symbols (fi), variables (vi), and quantifiers (∀ and ∃, which are universal and
existential respectively). The domain of discourse can change from problem to problem,
with each problem using different sorts and functional symbols. A signature, Σ, is a tuple
(Θ,F) where:

1. Θ is a finite set of symbols called sorts.

2. F is a set of functional symbols of the form f : A1×· · ·×An → B where A1 . . . An, B
are all sorts in Θ.

A functional symbol’s arity is its number of arguments. Given a functional symbol f :
A1 × . . . × An → B, one says n is the arity of f . Constants are functional symbols with
arity 0. A constant c of sort A is written c : A.
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Additionally, the Boolean sort Bool, the set of logical connectives, and the Boolean
constants are included in all MSFOL signatures. The sort Bool represents Boolean values
with constants true (⊤) and false (⊥). The logical connectives not (¬), and (∧), or (∨),
implies ( ⇒ ), and iff (⇔), are all Bool × Bool → Bool except ¬ : Bool → Bool. A
predicate p is any functional symbol of the form p : A1×· · ·×An → Bool. All of the logical
connectives are predicates. We also include the equality operator (=A: A×A→ Bool) for
every sort A. Typically, the subscript is omitted and the equality operator is written as
simply =.

A term ϕ over a signature Σ = (Θ,F) in MSFOL can be constructed as follows:

ϕ = v where v is a variable

= c where c is a constant in F
= f(ϕ1, . . . ϕn) where f is a function of arity n in F
= ∃v : A • ϕ where v is a variable and A is a sort in Θ

= ∀v : A • ϕ where v is a variable and A is a sort in Θ

A term in MSFOL must be well-sorted, meaning that functional symbols can be applied
only to arguments of the correct sort and the arguments to the equality operator must be
of the same sort. A formula in MSFOL is a term of sort Bool.

When the sort of a variable in ∃v : A • ϕ or ∀v : A • ϕ is known, the sort of v can
be omitted, allowing the term to be written as ∃v • ϕ or ∀v • ϕ. Often, the application
of a binary functional symbol is written infix (such as a ∨ b or a = b instead of ∨(a, b) or
= (a, b)), while negation is often written without parenthesis (such as ¬a instead of ¬(a)).
The term ϕ [x|y] refers to the term ϕ where every occurrence of x is replaced with y.

The free variables in a term refer to the set of variables that are not quantified. The
free variables of a term consisting of v is {v}, the free variables of f(ϕ1, . . . , ϕn) is the union
of the free variables in ϕ1, . . . , ϕn, and the free variables in ∃x • ϕ or ∀x • ϕ is the set of
free variables in ϕ excluding x. A term is closed if it contains no free variables.

A scope assignment for a signature S : Θ → Int is a mapping from each sort θ ∈ Θ
to its scope k ≥ 1. The scope of a sort is the number of distinct values in the domain of
the sort Dθ. Semantically, quantifiers quantify over the domain of a sort. Sorts cannot be
empty.

The semantics of an MSFOL term are determined by interpretations. An interpretation
I of a signature Σ = (Θ,F) with scope assignment S is a mapping that assigns values to
an MSFOL signature, where:
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1. every constant (c : A) ∈ F is assigned an element, cI in DA

2. every functional symbol (f : A1 × · · · × An → B) ∈ F of arity n > 0 is assigned a
total function, fI , over the domains of its sorts, fI : DA1 × · · · × DAn → DB.

Let I [x|v] be a mapping that contains all of the mappings in I as well as a mapping from
x to value v. In the case where xI is already mapped to a value, the previous value of x is
discarded.

Using interpretations, we can define the semantics of every closed MSFOL term. We
overload the equality operator = for use on values as well as terms. So, aI = v says the
value that the term a is mapped to by interpretation I is equal to value v. An interpretation
maps term ϕ to value ϕI , where:

1. Any constant c is mapped to cI

2. Function invocations f(x1, . . . , xn)
I = fI(x1

I , . . . , xn
I)

3. The ∀ quantifier is interpreted as

(∀x : A • ϕ)I =
I∧

v∈DA

ϕI[x|v]

4. The ∃ quantifier is interpreted as

(∃x : A • ϕ)I =
I∨

v∈DA

ϕI[x|v]

5. The Boolean constants have the same values in every interpretation: ⊤I = true and
⊥I = false

6. The logical connectives are the same in all interpretations and have their usual mean-
ing. For example,

(¬x)I =

{
true xI = false

false otherwise

(x ∧ y)I =

{
true xI = true and yI = true

false otherwise
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7. Equality is defined as (
(x = y)I

)
=
(
xI=IyI

)
where x and y have the same sort.

As logical connectives and the equality operators have the same value regardless of the
interpretation, we will often omit the ·I in this thesis, writing a∧Ib as a ∧ b and a=Ib as
a = b for example.

An interpretation I of signature Σ under scope assignment S satisfies or “models” a
formula ϕ, written I ⊩ ϕ, if and only if ϕI = true. An interpretation satisfies a set of
formulas Γ, written I ⊩ Γ, if and only if ∀ϕ ∈ Γ • I ⊩ ϕ. A formula, or set of formulas, is
satisfiable (SAT) if there exists some interpretation that satisfies it. If a formula, or set of
formulas, is not satisfiable, it is unsatisfiable (UNSAT).

Two formulas ϕ and ψ are equisatisfiable, denoted ϕ
SAT
= ψ, if either both or neither ϕ

and ψ are satisfiable. An interpretation that satisfies ϕ does not need to satisfy ψ or vice
versa for ϕ and ψ to be equisatisfiable, nor do ϕ and ψ need the same number of satisfying
interpretations.

A set of formulas ∆ is valid with respect to a set of formulas Γ (written Γ |= ∆) if and
only if for every I that satisfies Γ, I satisfies ∆.

An MSFOL problem P is a tuple of a signature Σ, a finite set of MSFOL formulas Γ, and
a domain assignment S. Sometimes, as a part of a problem, functional symbols are defined
by a body. These are referred to as interpreted functions (while the rest are uninterpreted).
If a problem includes an interpreted function f(p1 : A1, . . . , pn : An) → B = ϕ,where ϕ is
a term of sort B,

(f(a1, . . . , an))
I = (ϕ [a1, . . . , an|p1, . . . , pn])I

in order for I to be a satisfying interpretation for the problem.

2.2 Satisfiability Modulo Theories (SMT)

Satisfiability Modulo Theories (SMT) is the problem of determining if a first-order formula
is satisfiable with regards to one or more specific restrictions to the semantics of certain
symbols in an interpretation [4]. Each of these specific restrictions is called a background
theory. Theories are sets of interpreted functions. Chapter 3, for example, deals with
theories of integer arithmetic, bitvectors, and uninterpreted functions. SMT is decidable
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for terms within some fragments of MSFOL, while others are undecidable. For example,
the theory of quantifier-free uninterpreted functions with equality (EUF) is decidable [1],
while the theory of arrays with nested reads of the form a1[a2[i]] is undecidable if i is
universally quantified [6]. An SMT solver is a tool for solving SMT problems.

The SMT-LIB standard defines a language for writing MSFOL formulas, background
theories, and a command language for querying SMT solvers and examining the results [2].
SMT-LIB is also an international initiative to collect a large library of benchmarks for
SMT problems, as well as standardizing descriptions of background theories [3].

As MSFOL is generally undecidable, SMT solvers may not be able to determine if a
problem is SAT or UNSAT. The SMT-LIB standard allows for the response unknown when
a solver fails to determine if a problem is SAT or UNSAT.

2.3 Many-Sorted Finite Model Finding (MSFMF)

Given an MSFOL problem P , the problem of MSFMF is to find an finite interpretation
that satisfies every formula in the set. In an MSFMF problem, the scope of every sort
is finite. This is the many-sorted version of version of (single-sorted) finite model finding
(FMF). A practice called symmetry reduction is used to improve performance by avoiding
considering interpretations that are isomorphic (symmetric) to other interpretations [9].

MSFMF is typically solved in one of two ways. MACE-style solvers such as MACE2 [23],
Paradox [9], Kodkod [29], and Vampire [20] reduce the problem to Boolean satisfiability
and use a SAT solver to solve the problem. MACE-style solvers must statically encode
their knowledge of the problem, including symmetry breaking, before applying the solver
to it. SEM-style solvers such as SEM [33] and MACE4 [24] explore possible interpretations
directly and recursively backtrack to find a satisfying interpretation. This exploration
of the problem allows SEM-style solvers to dynamically use symmetry breaking during
solving.

Some solvers, such as Paradox [9] and Kodkod [29] are unsorted (or single-sorted),
while others (such as SEM [33] and Vampire [20]) fully utilize multiple sorts. Alloy [18] is
a popular modelling language based on FMF using the Kodkod solver.
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2.4 Fortress

Fortress is a method/library for solving MSFMF problems using an SMT solver. It is a
MACE-style solver, as it reduces the problem to logic, then uses an off-the-shelf SMT solver
to solve the problem. It is distinct from other MSFMF solvers in that the MSFMF problem
is captured in the equality of uninterpreted functions (EUF) rather than propositional logic.
EUF is decidable [4].

Fortress transforms a MSFMF problem to an equisatisfiable problem in MSFOL. Our
presentation of Fortress follows Vakili and Day’s presentation [31]. Consider the problem
where Σ = ({A,B} , {f : A→ B}) is a signature, the set of formulas Γ contains only the
formula

∀x, y : A • f(x) = f(y) ⇒ x = y (2.1)

and the scope assignment for A is 3 and B is 2. Equation 2.1 means f is injective, so
|A| ≤ |B|. Therefore, this problem is UNSAT for this scope assignment. To reduce
the problem to EUF, we introduce distinct constants for each scope value to represent
the elements in the domain. We create a1, a2, a3 : A and b1, b2 : B. To ensure every
interpretation assigns each of these constants a different value, we add a set of constraints
to ensure the constants are distinct:

{a1 ̸= a2, a1 ̸= a3, a2 ̸= a3, b1 ̸= b2} (2.2)

and expand the remaining universal quantifiers, replacing Equation 2.1 with∧
1≤x,y≤3

f(ax) = f(ay) ⇒ ax = ay (2.3)

However, this is not an adequate reduction yet, as an instance with three domain elements
for B would be a satisfying instance for Equation 2.2 and Equation 2.1. Equation 2.2
ensures that |A| ≥ 3 and |B| ≥ 2 for any satisfying instance, but we have not added a
constraint for the maximum scope of the sorts. Adding a formula such as

∀b : B • b = b1 ∨ b = b2

is insufficient, as expanding the universal quantifier transforms the formula to

(b1 = b1 ∨ b2 = b1) ∧ (b2 = b1 ∨ b2 = b2)

which is a tautology. Instead, we add constraints called range formulas that restrict the
output of functions so that their results are always one of the domain constants. In this
example, we add

∀a : A • f(a) = b1 ∨ f(a) = b2

9



Expanding the quantifier in this equation yields∧
1≤x≤3

f(ax) = b1 ∨ f(ax) = b2

Range formulas ensure that the interpretation of any term or subterm in the set of formulas
must be one of the domain constants we enumerated so any additional domain elements
cannot affect the satisfiability of Γ.

Fortress then translates the input problem to the SMT-LIB standard version 2.6, allow-
ing it to use a variety of off-the-shelf SMT solvers that support the standard. Currently,
Fortress uses Z3, an SMT solver developed by Microsoft Research [12].

Fortress is implemented as a Scala library that uses SMT solvers to check the satisfi-
ability of MSFMF problems [28]. Fortress accepts input via its API, in Scala and Java,
and a subset of the SMT-LIB standard version 2.6 (mostly excluding commands for SMT
solvers). Fortress then finitizes the problem by applying a series of transformers (referred to
collectively as a compiler), which are transformations from and to MSFMF problems. Gen-
erally, problems are first typechecked, then put into negation normal form (NNF) before
a transformer is applied to skolemize the formulas in the problem, eliminating existential
quantification. Symmetry breaking is then introduced to avoid considering equivalent in-
terpretations. Then, universal quantifiers are expanded into a conjunction of terms, before
range formulas are added to the problem, resulting in the problem being in the logic of
equality and uninterpreted functions (EUF). The problem is then simplified to remove
terms that will always evaluate to true or false. Domain elements are encoded in SMT-LIB
as either distinct constants or as values in an algebraic datatype. In this thesis, evalu-
ations use the distinct constants method. Poremba et al. extended Fortress to support
both unbounded and finite, bitvector implementations of integers [26]. Fortress includes
the logic of bitvectors (BV) or integers, when the input problem contains bitvectors or
integers respectively. These logics are outside of EUF, though BV is still decidable [4].

Fortress can be extended by adding transformers and including them in compilers.
For example, in this thesis, we add transformers to finitize integers and expand transitive
closure.
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Chapter 3

Integer Reasoning

Integers are a common construct used in modeling. Over 35% of Alloy models contain
integers [?]. Finite reasoning about numbers within an SMT solver can be distinct from
reasoning about other uninterpreted sorts because SMT solvers include theories for un-
bounded integers. However, these theories can decide only specific subsets of integer prob-
lems (e.g., linear integer arithmetic [4]). Outside of these specific types of integer problems,
the solver is not guaranteed to be able to determine if a problem is satisfiable or not. To
avoid this issue, a problem with unbounded integers can be changed into one over a finite
set of integers. In FMF solvers, such as Kodkod, where the entire problem is mapped to
propositional logic for a SAT solver, the backend solver does not have any understanding
of integers and thus encoding integers becomes part of the process of encoding any finite
sort. The question that we examine in this chapter is how to take advantage of the integer
reasoning engines provided within an SMT solver for reasoning about finite number sets
in problems in Fortress.

A common approach to finitely representing integers is to use fixed-width bitvectors.
Bitvectors can represent a finite range (typically

[
−2b−1, 2b−1 − 1

]
where b is the bitwidth),

making the problem finite, and therefore decidable. We call this method unchecked bitvec-
tors (UBV). However, because they are finite, bitvectors behave differently from unbounded
integers. Specifically, operations can “overflow”. For example, if the bitvectors are of width
3 (representing the finite range [−4, 3]), then you cannot represent 3+ 3 as a bitvector be-
cause 6 is not within range. The result of every operation must be a value within range.
Kroening and Strichman [21] point out that bitvector overflow can alter how seemingly
obvious formulas behave. They give the example

∀x, y • (x− y > 0)⇔ (x > y) (3.1)
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which does not hold over finite-width bitvectors due to overflow in the the subtraction
operation. For example, over [−4, 3], the assignment {x = −4, y = 1} would cause x > y
to be false, but −4 − 1 > 0 might evaluate to 3 > 0 (as −5 is out of range) and then the
antecedent is true, making Equation 3.1 false.

Milicevic and Jackson [25] give an alternative semantics to quantification over integers,
integer predicates, and integer functions that “ignore” subterms that contain overflows.
For example, if a subterm contains universally quantified variables, the predicate is made
to be true when an overflow occurs. Otherwise, the predicate is false. As another example,
for the formula

∃x • x+ 10 ≤ x (3.2)

when evaluating the formula over the integers [−16, 15], an overflow allows x = 6 to be a
valid solution (due to wraparound semantics where 16 would become -16). Under Milicevic
and Jackson’s semantics, x+ 10 ≤ x evaluates to false because 6 + 10 is not representable
(causing an overflow) and x is existentially quantified. After considering all non-overflowing
values for x, the problem unsatisfiable, as one would want. This result matches the formulas
meaning in unbounded integers, because no assignment for x exists such that the formula
evaluates to true.

However, when overflows occur, a formula under Milicevic and Jackson’s method can
evaluate to true or false when evaluating the same instance over unbounded integers would
give the opposite result. For the sake of our discussion in this chapter, we call the validi-
ty/satisfiability of a formula over unbounded integers the correct result. The correctness
we are considering is of the finitization method, not of the solver’s behavior on the finitized
problem. If an incorrect result is obtained, it is assumed to be the result of the finitization
method, rather than an error in the solver.

Consider the formulas1

∃x : Int• x+ 100− 100 = x (3.3)

∀x : Int• x+ 100− 100 ̸= x (3.4)

over the range [−16, 15]. For every x in that range, the expression x + 100 causes an
overflow. Thus, this method will “ignore” every assignment to x because the x + 100
subterm overflows. Therefore, Equation 3.3 evaluates to false and Equation 3.4 evaluates
to true; in both cases the evaluation under Milicevic and Jackson’s method is incorrect
with regards to solving the problem over unbounded integers. In this chapter, we present a
new method, called overflow-preventing finite integers (OPFI), which overflows less often;

1We show a more complicated example later that cannot be fixed through simplification of the term.
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intermediate terms’ values are allowed to go outside the range without being considered
an overflow. For example, Equation 3.3 is true and Equation 3.4 is false in our method.
Our method reduces the number of MSFMF problems where these incorrect results occur.

Section 3.1 discusses the formulation of Milicevic and Jackson’s method at the MSFOL
level including extensions to support additional abstractions present in MSFOL. We will
refer to our formulation of Milicevic and Jackson’s method as No-Overflow Bitvectors
(NOBV). Section 3.2 presents Overflow-Preventing Finite Integers (OPFI), a new method
for finitizing integer MSFMF problems containing integers. Section 3.3 presents a set
of examples concerning the correctness of the integer finitization methods considered on
various problems, followed by a performance evaluation of the methods.

This chapter discusses three contributions.

1. We formulate Milicevic and Jackson’s method as NOBV, a transformation of an MS-
FOL formula using bitvectors for integer representation to another MSFOL formula
using bitvectors for a comparison with other methods and extend NOBV to support
additional abstractions present in MSFOL (Section 3.1).

2. We provide a new method for finitizing a MSFMF problem containing integers, called
Overflow-Preventing Finite Integers (OPFI), that utilizes an SMT solver’s ability
to represent arbitrary integers. OPFI theoretically gives more accurate SAT and
UNSAT results than NOBV (Section 3.2).

3. We present a performance evaluation of NOBV, OPFI, and unchecked bitvectors
(UBV) on the SMT-LIB UFNIA benchmark set (Section 3.3). Our analysis shows
OPFI is faster than NOBV when using an SMT solver.

3.1 No-Overflow Bitvectors (NOBV)

Milicevic and Jackson’s approach is applicable to integers that are already represented as
bitvectors. They describe their method at two levels: a higher-level three-valued logic,
where overflows create unknown values; and a lower-level evaluation semantics for a prob-
lem in propositional logic [25]. In both cases, integers are already represented by bitvectors.
Fortress transforms formulas from/to many-sorted first-order logic, which it then sends to
an SMT solver enabling us to use multiple sorts and MSFOL features such as uninterpreted
functions within formulas. Thus, we reformulate and generalize Milicevic and Jackson’s
method as a transformation of a problem in MSFOL with bitvectors. We call our refor-
mulation of Milicevic and Jackson’s method “no-overflow bitvectors” (NOBV).
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In both NOBV and Milicevic and Jackson’s method the formula is already using bitvec-
tors to represent integers. In Milicevic and Jackson’s evaluation semantics, integer pred-
icates are augmented with checks at the SAT level to determine if any of the subterms
overflowed, thus changing bitvector semantics. Milicevic and Jackson implement their
method in Kodkod, by transforming their input formula into a digital circuit and adding
additional overflow circuits to integer operations. The most notable change we make to
Milicevic and Jackson’s method is that we do not change bitvector semantics. We send
our results to an SMT solver that comes with its own theory for bitvectors, which we
cannot modify. Therefore, where Milicevic and Jackson describe a term overflowing as
it evaluating to an unknown value (due to overflowing), we instead include the predi-
cate overflows(f(args)) statically within a formula. overflows(f(args)) evaluates
to true if and only if the arguments to f would cause f(args) to overflow. For example,
for a range of [−16, 15], overflows(−x) ≡ x = −16 as the negation of −16 is out of
range. We implement overflows(a ∗ b) by zero-extending a and b and checking if their
product is out of bounds. Integer division will not overflow, but is undefined for x/0, so
overflows(a/b) = (b = 0).

In NOBV, when an integer predicate applied to terms contains a subterm that overflows,
it is replaced with a Boolean value to “ignore” the result of this predicate application so
the quantifier ignores the assignment causing an overflow. In

∃x • x+ 10 ≤ x (3.2 revisited)

the term x+10 ≤ x should be false when x+10 overflows, so that the entire formula does
not incorrectly become true. By including overflows(x+ 10), we obtain the formula

∃x • x+ 10 ≤ x ∧ ¬overflows(x+ 10)

which correctly evaluates to false for integers over any finite range. If the overflowing
term is universally quantified, the predicate is made true. Otherwise, such as in the above
example, the predicate is made false.

However, when terms are negated, choosing a Boolean value based solely on how the
overflowing term is quantified gives incorrect results. Consider the formula

∃x • ¬(x+ 10 > x)

which is equivalent to Equation 3.2. If x+ 10 overflows and x+ 10 > x is made false, the
entire formula incorrectly evaluates to true.

Milicevic and Jackson recursively considered the polarity of a formula with regards to its
parent formula to correctly evaluate negated formulas. The polarity of a top-level formula
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is positive. Any time a subterm is negated (i.e., inside the ¬ operator), the polarity of the
subterm is flipped. For example, given the formula ¬ϕ, ϕ has the opposite polarity of ¬ϕ.
In ϕ ∨ ψ and ϕ ∧ ψ both ϕ and ψ have the same polarity as ϕ ∨ ψ and ϕ ∧ ψ. Essentially,
whenever a negation appears, the polarity of its subterm is reversed. If the polarity is
positive, the Boolean value is chosen to “ignore” the predicate in the body of whatever
quantifier’s variable caused the overflow: true for universally quantified variables and false
otherwise. If the polarity is negative, the Boolean value chosen for an overflowing integer
predicate should be the negation of the Boolean value chosen when polarity is positive.

Our algorithm for NOBV takes a term and returns a term augmented with guards
that overwrite the value of overflowing predicates as described above. We define NOBV
recursively over the term being transformed as the function

fixOverflow(term : Term, polarity : Bool)

where polarity is the polarity of the term argument with respect to the top-level term.

First we define NOBV for integer operations (Algorithm 1), integer predicates (Algo-
rithm 2, Algorithm 3), and logical connectives (Algorithm 4 and Algorithm 5) to match
Milicevic and Jackson. Then, we cover extensions to Milicevic and Jackson’s method in-
cluded in NOBV to cover all of MSFOL.

Algorithm 1 describes how we transform an integer operation (+,−, /, etc.) by recur-
sively transforming its arguments. We gather overflow checks bottom up. Overflow checks
are collections of predicates that will evaluate to true if the term overflows. We collect
these overflow checks in two sets: one for terms containing universally quantified variables
and one for the rest, which we refer to as existentially quantified. There are no polarity
considerations in Algorithm 1 because this algorithm is only for integer operators (not
predicates).
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Algorithm 1 fixOverflow Where f is an Integer Operation under NOBV

function fixOverflow(f(args), polarity)
for i← 0 . . . |args| − 1 do(

args′[i], overflows∀i , overflows
∃
i

)
← fixOverflow(args[i], polarity)

end for
ϕ← f(args′)
overflows∀ ←

⋃
0≤i<|args| overflows

∀
i

overflows∃ ←
⋃

0≤i<|args| overflows
∃
i

if containsUnivVar(ϕ) then ▷ Contains free ∀ quantified var
overflows∀ ← overflows∀ ∪ {overflows(ϕ)}

else
overflows∃ ← overflows∃ ∪ {overflows(ϕ)}

end if
return (ϕ, overflows∀, overflows∃)

end function

Algorithm 2 describes how, given an integer predicate p(args), NOBV transforms it
so that it evaluates to true or false as in Milicevic and Jackson’s method. The overflow
checks collected from recursive calls on the arguments of the integer predicate are passed
to Algorithm 3, described later. Again, polarity remains unchanged as integer predicates
(=, >,<, etc.) do not affect polarity.

Algorithm 2 fixOverflow for Integer Predicate p under NOBV

function fixOverflow(p(args), polarity)
for i← 0 . . . |args| − 1 do

(args′[i], overflows∀i , overflows
∃
i )← fixOverflow(args[i], polarity)

end for
overflows∀ ←

⋃
0≤i<|args| overflows

∀
i

overflows∃ ←
⋃

0≤i<|args| overflows
∃
i

ϕ← overflowGuard(p(args′), overflows∀, overflows∃, polarity) ▷ Algorithm 3
return (ϕ, overflows∀, overflows∃)

end function

Algorithm 3 describes the process of transforming a predicate so that if any of its sub-
terms overflow, the potentially incorrect value to which the predicate evaluates is ignored
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in favor of the chosen Boolean value. We use

disjunction(A) ≡

{
⊥ if A = ∅∨

a∈A a otherwise
(3.5)

to combine the sets of overflow checks into a single term that is true if and only if a subterm
of the statement overflows existentially or universally. The polarity of an integer predicate
is used to decide how the universal and existential overflow checks should be arranged to
make the new term evaluate to true or false if the predicate would overflow.

Algorithm 3 Guarding a Predicate when Overflows Occur

1: function overflowGuard(ϕ, overflows∀, overflows∃, polarity)
2: checks∀ ← disjunction(overflows∀) ▷ Equation 3.5.
3: checks∃ ← disjunction(overflows∃)
4: if polarity then
5: ϕ′ ← (ϕ ∨ checks∀) ∧ ¬checks∃
6: else
7: ϕ′ ← (ϕ ∨ checks∃) ∧ ¬checks∀
8: end if
9: return ϕ′

10: end function

One difference in presentation between Milicevic and Jackson’s method and NOBV is
that Milicevic and Jackson combine one set of overflow checks as a conjunction of the terms
not overflowing and the other as a disjunction of the terms overflowing. For simplicity when
supporting additional language constructs (discussed later), we represent the former as the
negation of the disjunction of the terms overflowing on lines 5 and 7 of Algorithm 3.

For the sake of brevity, we do not describe fixOverflow’s exact semantics over every
logical connective. For any sort of Boolean operand (∧,∨, ⇒ ,¬, etc.) we set polarity
appropriately before calling fixOverflow on the argument subterms and recombining the
results. As an example, Algorithm 4 describes how fixOverflow inverts the polarity for
subterms of applications of ¬. Algorithm 5 describes how ∧ does not change polarity when
recursing to its subterms. Milicevic and Jackson do not change polarity when recurring
to its subterms for all of the binary logical connectives (∧, ∨, ⇔, and ⇒ ). We differ in
how polarity is considered in subterms of ⇔ and ⇒ (see Section 3.1.1), but the process
is otherwise unchanged.
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Algorithm 4 fixOverflow for ¬ in NOBV and OPFI

function fixOverflow(¬a, polarity)
polarity′ ← ¬polarity
(a′, overflows∀, overflows∃)← fixOverflow(a, polarity′)
ϕ← ¬a′
return (ϕ, overflows∀, overflows∃)

end function

Algorithm 5 fixOverflow for ∧ in NOBV and OPFI

function fixOverflow(a ∧ b, polarity)
(a′, overflows∀a, overflows

∃
a)← fixOverflow(a, polarity)

(b′, overflows∀b , overflows
∃
b )← fixOverflow(b, polarity)

overflows∀ ← overflows∀a ∪ overflows∀b
overflows∃ ← overflows∃a ∪ overflows∃b
ϕ← a′ ∧ b′
return (ϕ, overflows∀, overflows∃)

end function

3.1.1 Extensions in NOBV

Fortress operates on multi-sorted first-order logic (MSFOL) problems, which it passes to
an SMT solver. Milicevic and Jackson’s presentation (for the Alloy language) assumes
language constructs such as uninterpreted functions and quantification have already been
reduced to propositional logic. And, thus, these are not included in Milicevic and Jackson’s
presentation, which only describes evaluation for integer operations, integer predicates, and
logical predicates.

We generalize Milicevic and Jackson’s method to support these language features in
NOBV. Additionally, Milicevic and Jackson define the polarity of the subterms of appli-
cations of ⇒ and ⇔ to be the same as the polarity of the terms themselves. We provide
an alternative definition of polarity for these subterms. Finally, in NOBV we support
if-then-else over terms of arbitrary sorts (which is not supported by Alloy) and interpreted
functions (function definitions), both of which are not handled in Milicevic and Jackson’s
method.
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Uninterpreted Functions and Quantification

Milicevic and Jackson’s method applies only to a predefined set of integer operations that
take only integers as arguments. In MSFOL, uninterpreted functions can accept arbitrary
sorts for arguments and result types. A formula may be an input to an uninterpreted
function in NOBV.

In NOBV, to support all of MSFOL, a Boolean argument may contain a quantifier.
Subterms of this quantifier that contain the quantified term cannot be included in any
checks outside the scope of the quantifier. For example, with f : Bool × Int → Int and
p : Int→ Bool,

∀x • f (∃y • 0 ≤ x ∧ p(y + 5), x+ 1) = x

the check for y+5 overflowing can be applied to the predicate p(y+5), but not to f(. . . ) = x.

Algorithm 6 describes how we exclude any terms that contain variables that are not
quantified at the level of the predicate. These terms are still used for the predicates within
the quantifier’s body, so the quantifier will now have the expected value while “skipping”
values that cause an overflow. Predicates with this quantifier as a subterm will still check
subterms that do not contain these quantified variables and so will still detect overflows
caused by the quantifiers so far.

Algorithm 6 fixOverflow for Quantifiers in NOBV and OPFI

Require: Q is ∀ or ∃
function fixOverflow(Qx : A • ϕ, polarity)

(ϕ′, overflows∀, overflows∃)← fixOverflow(ϕ, polarity)
overflows∀ ←

{
c ∈ overflows∀|x /∈ freeVars(c)

}
overflows∃ ←

{
c ∈ overflows∃|x /∈ freeVars(c)

}
return (Qx : A • ϕ′, overflows∀, overflows∃)

end function

Polarity of ⇒ and ⇔

The logical connectives ⇒ and ⇔ can be defined in terms of ∧, ∨ and ¬ as

a ⇒ b ≡ ¬a ∨ b

and
a⇔ b ≡ (a ∧ b) ∨ (¬a ∧ ¬b)
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Boolean equality (a = b where a, b : Bool) is equivalent to ⇔, so for the purposes of
this discussion of polarity we will refer only to ⇔. Equality of other sorts is treated as
other non-integer functions are treated. When a = b is considered over a non-Boolean,
non-integer sort, it is treated as any other function invocation.

Milicevic and Jackson ignore the negations in the definitions of the logical connectives
⇒ and ⇔ when defining polarity, only inverting polarity for subterms of ¬, leading to
incorrect results. Consider the formula

∀x • (x+ 100 < x) ⇒ ⊥ (3.6)

For any x, x+ 100 < x is false and false⇒ Ifalse is true. Therefore, this formula is true
for unbounded integers. However, when an overflow occurs in x+ 100 < x, it evaluates to
true (as x is universally quantified and the term’s polarity is positive). As true⇒ Ifalse
is false, the formula is incorrectly false. Alloy incorrectly fails to find an instance for which
Equation 3.6 is true, but for

∀x • ¬(x+ 100 < x) ∨ ⊥

which should be equivalent, it correctly finds a satisfying instances. We correct this error
by altering the definition of polarity to include that in a ⇒ b, a has the opposite polarity
of a ⇒ b.

Milicevic and Jackson’s method also incorrectly handles the polarity of subterms of the
⇔ logical connective. Consider the formula

∀x : Int • ϕ⇔ ψ (3.7)

where ϕ and ψ are arbitrary integer predicates in terms of x. In Alloy, the polarity of ϕ
(and ψ) is incorrectly considered to be the same polarity as ϕ ⇔ ψ. In our correctness
evaluation, we demonstrate this incorrect behavior on the formula

∀x, y • (x− y > 0)⇔ x > y

If ϕ overflows, ϕ ⇔ ψ should be true so the chosen x is “skipped” in the quantifier.
In order to make ϕ ⇔ ψ true when ϕ overflows, ϕ must be equal to ψ. As we must
statically transform the problem before solving, rather than dynamically choose values
during evaluation, ϕ = ψ is insufficient; we must set ϕ to either true or false. However, we
cannot determine the value of ψ before solving, so we do not know the value ϕ should be
if an overflow occurs. If we instead transform Equation 3.7 to

∀x : Int • (ϕ ∧ ψ) ∨ (¬ϕ ∧ ¬ψ)

we can evaluate ϕ (and ψ) at both negative and positive polarity. Algorithm 7 describes
how we perform this transformation in place when recursing through subterms.
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Algorithm 7 fixOverflow for ⇔ (and Boolean Equality) in NOBV and OPFI

function fixOverflow(a⇔ b, polarity)
ϕ← (a ∧ b) ∨ (¬a ∧ ¬b)
return fixOverflow(ϕ, polarity)

end function

If-Then-Else

Alloy supports if-then-else (ITE) statements (written c implies t else f) only when
the branches are of sort Bool. Milicevic and Jackson’s method does not mention this lan-
guage construct, presumably reducing it to propositional logic beforehand. Fortress sup-
ports if-then-else statements where the branches are of an arbitrary sort. NOBV supports
ITE to avoid having to hoist the ITE construct to a predicate, which is often called if-
lifting [19]. Consider abstractly ITE(c, t, f) where c, t, and f are arbitrary terms. Ignoring
integers for a moment, semantically

ITE(c, t, f) =

{
t if c

f if ¬c

which can be simplified to (c∧ t)∨ (¬c∧ f) if t and f are Boolean. However, if c contains
an integer overflow, both c and ¬c will have the same value. For illustration, consider the
case where t and f are Boolean. If c and ¬c are both true, this simplification will act as
t ∨ f . If c and ¬c are both false, it will instead be false. Therefore, if c overflows, this
simplification is incorrect. Consider the formula

∀x • ITE(x+ 100 < x,⊥,⊤)

which is false for unbounded integers. Under the bounded integer range [−16, 15], c always
overflows. If we use the (c ∧ t) ∨ (¬c ∧ f) simplification, the body of the quantifier would
be equivalent to ⊥ ∨ ⊤ for every value (because x + 100 < x and its negation are both
true), making the entire formula incorrectly evaluate to true. If t and f are non-Boolean
terms, overflows within them still must be considered if and only if c indicates their branch
should be taken and c does not overflow.

Instead, we use Algorithm 8, which describes how we construct the overflow checks for
the ITE construct to ensure the checks for the t and f subterms are only evaluated if c
does not overflow and the respective branch is taken. The entire term is said to overflow
existentially if c overflows existentially or c does not overflow (universally or existentially)
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and the chosen branch overflows existentially (c is true and t overflows existentially or c is
false and f overflows existentially). The same is true for the term overflowing universally.

Algorithm 8 ITE Overflow Prevention

function fixOverflow(ITE(c, t, f), polarity)
(c′, overflows∀c , overflows

∃
c )← fixOverflow(c, polarity)

(t′, overflows∀t , overflows
∃
t )← fixOverflow(t, polarity)

(f ′, overflows∀f , overflows
∃
f )← fixOverflow(f, polarity)

checksc ← disjunction(overflows∃c ∪ overflows∀c ) ▷ True iff c overflows
checks∀t ← c ∧ disjunction(overflows∀t ) ▷ t is taken and overflows universally
checks∃t ← c ∧ disjunction(overflows∃t ) ▷ t is taken and overflows existentially
checks∀f ← ¬c ∧ disjunction(overflows∀f ) ▷ f is taken and overflows universally

checks∃f ← ¬c ∧ disjunction(overflows∃f ) ▷ f is taken and overflows existentially

overflows∀ ← overflows∀c ∪
{
ITE(¬checksc, checks∀t , checks∀f )

}
overflows∃ ← overflows∃c ∪

{
ITE(¬checksc, checks∃t , checks∃f )

}
ϕ← ITE(c′, t′, f ′)
if The type of t is Bool then

ϕ← overflowGuard(ϕ, overflows∀, overflows∃, polarity)
end if
return (ϕ, overflows∀, overflows∃)

end function

Interpreted Function Definitions

Fortress supports user-defined (interpreted) functions. The definition of an interpreted
function f : t1 × . . . tn → tbody is a sequence of n parameters p1 . . . pn and a body term,
ϕ : tbody, which may contain integer operations. These integer operations have the potential
to overflow. A definition of a function is written f(p1, . . . pn) := ϕ.

Algorithm 9 describes how, given a function definition f(p1, . . . pn) := ϕ of type f : t1×
. . . tn → tbody, where ϕ contains no integer predicates, we modify its invocation f(a1, . . . an).
When determining the subterms of a predicate for overflow checks, if an interpreted function
invocation is a subterm of the predicate, we add additional checks to represent terms in
the body of the function overflowing. We gather all the overflowable subterms of the body
in terms of the parameters. Then, we substitute the arguments for the parameters in the
overflowable terms. If the function is an integer predicate (its result sort is Bool and it
takes an integer as an argument), then we apply guards as with any other integer predicate.
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Algorithm 9 Overflow Prevention for Invocation of Interpreted Function f(args) where
f(params) = β in NOBV

Require: β contains no integer predicates
function fixOverflow(f(args), polarity)

for i← 0 . . . |args| − 1 do
(args′i, overflows

∀
i , overflows

∃
i )← fixOverflow(args[i], polarity)

end for
overflows∀args ←

⋃
i overflows

∀
i

overflows∃args ←
⋃

i overflows
∃
i

▷ This can be precomputed.
( , overflows∀β, overflows

∃
β)← fixOverflow(β, polarity)

▷ Substitute args for params
overflowsβ ←

{
ϕ [params|args′]

∣∣ϕ ∈ overflows∀β ∪ overflows∃β}
overflows∀β ← {ϕ|containsUnivVar(ϕ)} ▷ Repartition overflowsβ
overflows∃β ← overflowsβ − overflows∀β
overflows∀ ← overflows∀args ∪ overflows∀β
overflows∃ ← overflows∃args ∪ overflows∃β
ϕ← f(args′)
if f is a predicate then

ϕ← overflowGuard(ϕ, overflows∀, overflows∃, polarity)
end if
return (ϕ, overflows∀, overflows∃)

end function
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If the body of a function definition contains an integer predicate, we must apply guards
to determine the value that the predicate should be if an overflow occurs. However, as an
argument could be universally or existentially quantified, we cannot statically determine
if a parameter should be treated existentially or universally. Thus, for an interpreted
function that has a body that contains an integer predicate, we cannot use the above
method. Instead, we axiomatize all the function definitions that contain integer predicates
before using fixOverflow on any formulas. When axiomatized, a function definition
f(p1, . . . pn) := ϕ becomes ∀p1 . . . pn • f(p1, . . . pn) = ϕ.

When NOBV is implemented as a transformer in Fortress, it is applied directly after
the transformation of integers to bitvectors.

3.2 Overflow Preventing Finite Integers (OPFI)

When expressions overflow in NOBV, certain expressions can be evaluated incorrectly with
regards to unbounded integers. Consider the obviously false formula

∀x • x+ 100− 100 ̸= x (3.8)

over the integer range [−16, 15]. In NOBV, every possible value of the universally quantified
variable x within range will cause the expression x+100 to overflow, forcing x+100−100 ̸= x
to evaluate to true, making the entire formula evaluate to true. Similarly,

∃x • x+ 100− 100 = x (3.9)

should evaluate to true, but in NOBV overflows cause the formula to incorrectly evaluate
to false. In both cases, if even a single value for x does not cause an overflow, the formulas
will evaluate correctly. This incorrect behavior is observable in more complicated problems.
Consider

∃x1 . . . xi+1 •

( ∧
1≤k≤i+1

xk > 1

)
∧ (x1 + · · ·+ xi+1)

i
> 1 (3.10)

where i is the maximum value in the finite range of integers. Simplification cannot be used
to obtain the correct result. In unbounded integers, the assignment where every xk = 1 is
in range would make the formula evaluate to true. However, any assignment that would
make (x1 + · · ·+ xi+1)/i > 1 true will cause an overflow when using bitvectors. We checked
these problems in the Alloy Analyzer and got the expected incorrect results.

When no overflows occur, a formula in NOBV will have the same value as it would
for unbounded integers, and thus be correct. Therefore, a similar approach that overflows
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in fewer cases will get incorrect results in fewer cases as well. SAT solvers must always
represent values finitely, such as using bitvectors to represent integers. Unfortunately,
by the nature of bitvectors, if any subterm is out of range, an overflow occurs and the
result is unknown. However, SMT solvers can represent integers symbolically, avoiding
this limitation of bitvectors. If a finite range for integers is used wherever a solver needs
to search through values, the problem is decidable. By using unbounded integers except
for the search range, we can reduce how often overflows occur.

Based on this insight, we present our novel method for handling integer overflow, called
overflow preventing finite integers (OPFI). We begin by finitizing the problem using a new
finite sort I to represent integers wherever the solver must search for values, much in the
same way that we convert the problem to fixed-width bitvectors when using NOBV. Then,
we guard predicates with overflow checks to avoid any incorrect behavior our finitization
introduced. However, we do not need to check for overflows of integer operations. In
OPFI, bit vectors are not used. Rather, the original formula is transformed to one that
uses unbounded integers within value operations and a new, finite sort for the range of
integer values for quantified variables.

In order to have a finite representation of integers in the search space, we create a finite
sort I with scope size equal to the number of values in our finite range r = [MIN,MAX].
We denote the value in our new sort that represents the integer x as vx.

In order to use SMT solvers’ infinite representation of integers when performing op-
erations, we then construct two total interpreted functions to cast values between I and
unbounded integers. We define toInt : I→ Int as

toInt(vx) := x

We define the reverse similarly: fromInt : Int→ I is

fromInt(x) =

{
vx if MIN ≤ x ≤MAX

vMIN otherwise

where we use vMIN as a default so that fromInt is a total function, although any value
within the range [MIN,MAX] can be used. Whenever fromInt is called on a value out
of range, we lose information in the same way as an overflow in a bitvector operation.
NOBV detects the loss of information from bitvectors (so that it can “ignore” the current
variable assignments) by checking each term that can overflow. We use this method as
the basis for OPFI, only instead of every bitvector operation needing to be checked for
overflow, we only need to check for values out of range when we coerce unbounded integers
back to our finite sort. We are able to leave interpreted functions over unbounded integers.
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In order to finitize the problem, the search space of the MSFMF problem we give to the
SMT solver must be finite. The two places unbounded integers would prevent this from
happening is quantifiers (including the implicit existential quantification of constants) and
uninterpreted functions (both as parameters and result sorts). Outside of a decidable
fragment of integer logic, a solver cannot check that a formula is true for every possible
value of a universally quantified variable. Nor can a solver finitely enumerate every possible
value to determine if a formula is true for a single possible value of an existentially quantified
variable. Similarly, the MSFMF problem implicitly existentially quantifies uninterpreted
functions, searching for some interpretation where the set of formulas given is satisfiable.
If an uninterpreted function has an argument of sort Int, or if an uninterpreted function
has a result sort of Int, then that function has infinitely many possible value assignments,
potentially making any MSFMF problem that contains it undecidable.2

2If an uninterpreted function has a result sort with scope size one, its values are finitely enumerable as
all inputs are mapped to the single possible output value.
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Algorithm 10 Recursive Elimination of Int in OPFI

function replaceInt(ϕ)
match ϕ do

case v where v is a variable
return v

case Qx : A • ψ where Q is ∀ or ∃
if A = Int then ▷ We will quantify over I instead

ψ′ ← ψ [x|toInt(x)] ▷ x will be I, so we cast x to Int for arithmetic
ψ′ ←replaceInt(ψ′)
return Qx : I • ψ′ ▷ Quantify over I

else
ψ′ ←replaceInt(ψ)
return Qx : A • ψ′

end if
case f(a1, . . . an) where f : A1 × . . .× An : B ▷ Including 0-arity constants

for x ∈ [1, n] do
ax ← replaceInt(ax)
if Ax = Int and f is uninterpreted then ▷ Cast args if needed

ax ← fromInt(ax)
end if

end for
if B = Int then ▷ We will replace Int with I

return toInt(f(a1, . . . an)) ▷ So, we must cast back to Int
else

return f(a1, . . . an)
end if

end function

To ensure we finitize the search space of the problem, we replace the Int sort with I in
quantifiers and uninterpreted functions. Algorithm 10 explains how, given a (universally
or existentially) quantified term of the form ∃v : Int • ϕ, we replace it with ∃v : I •
ϕ [v|toInt(v)]. For example, ∀x : Int • x+ 1 < 0 becomes ∀x : I • toInt(x) + 1 < 0.

For uninterpreted functions, if any parameters are Int, we replace Int with I and cast
its arguments to I using fromInt any time the function is invoked. Similarly, if the result
sort of an uninterpreted function is Int we replace it with I to ensure the search space is
finite. We then must cast the result of these invocations back to Int to continue operating
on the result. The case for f(a1, . . . , an) in Algorithm 10 covers all the interpreted functions
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also. If a function is interpreted, the transformation recurses into the arguments, but we
do not change the sorts of the parameters or the result. So, toInt and fromInt are not
used.

Algorithm 11 Finitization of Integers in OPFI

Require: P = (Σ,Γ,S) is an MSFOL problem
Require: Σ = (Θ,F)
Let I be a new sort symbol.
Θ← Θ ∪ {I} ▷ Add I to the set of sorts in P
S ← S ∪ {I→ |[MIN,MAX]|} ▷ Set the scope for I
Γ′ ← ∅ ▷ Replace Int with I in Γ
for γ ∈ Γ do

Γ′ ← Γ′ ∪ {replaceInt(γ)} ▷ Algorithm 10
end for
Γ← Γ′

F ′ ← ∅ ▷ Replace Int with I in uninterpreted functions
for f : A1 × . . .× An : R ∈ F do

if f is an uninterpreted function then
Replace any occurrences of Int in A1 . . . An, R with I in f
F ′ ← F ′ ∪ {f}

end if
end for
F ← F ′

F ← F ∪ {toInt , fromInt }

Algorithm 11 describes how, given an MSFMF problem P containing integers, we fini-
tize the use of integer for a given range [MIN,MAX]. We introduce I, use Algorithm 10
to eliminate integer uses in P ’s formulas, and replace Int with I for uninterpreted functions
in P ’s signature. We then add fromInt and toInt to the signature of the problem.

As mentioned previously, whenever fromInt is invoked, if the argument is out of range
we lose information in an “overflow”. Algorithm 12 describes how we check for overflows
in the arguments to fromInt by gathering checks to later use in applying guards to
predicates much in the same way as we do for NOBV.

For an integer predicate in OPFI, the values of its arguments are unbounded integers
rather than just the values in range. So, we check the arguments to integer predicates for
overflows. We could cast the arguments to integer predicates to I using fromInt and
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Algorithm 12 Checking fromInt for Overflow in OPFI

function fixOverflow(fromInt(ϕ), polarity)
(ϕ′, overflows∀, overflows∃)← fixOverflow(ϕ, polarity)
overflowCheck = ϕ′ < MIN ∨ ϕ′ > MAX ▷ True iff ϕ′ is out of range
if containsUnivVar(ϕ′) then

overflows∀ ← overflows∀ ∪ {overflowCheck}
else

overflows∃ ← overflows∃ ∪ {overflowCheck}
end if
return (fromInt(ϕ′), overflows∀, overflows∃)

end function

only check arguments of fromInt , but this would require writing definitions for integer
predicates over elements of set I. As we use unbounded integers to represent values in value
computations, we no longer need to check if integer operations overflow as in Algorithm 1.
Instead, Algorithm 13 describes how we alter Algorithm 2 to include overflow checks for
arguments to integer predicates. We no longer check for overflows in integer operations, so
Algorithm 1 is not used. Instead we simply recurse into the arguments of integer operations
without generating overflow checks.

Algorithm 13 fixOverflow for Integer Predicate p under OPFI

function fixOverflow(p(args), polarity)
for i← 0 . . . |args| − 1 do

(args′[i], overflows∀i , overflows
∃
i )← fixOverflow(args[i], polarity)

overflowCheck ← args′[i] < MIN ∨ args′[i] > MAX ▷ Alter Algorithm 2
if containsUnivVar(args′[i]) then

overflows∀i ← overflows∀i ∪ {overflowCheck}
else

overflows∃i ← overflows∃i ∪ {overflowCheck}
end if ▷ End alterations of Algorithm 2

end for
overflows∀ ←

⋃
1≤i<|args| overflows

∀
i

overflows∃ ←
⋃

1≤i<|args| overflows
∃
i

ϕ← overflowGuard(p(args′), overflows∀, overflows∃, polarity)
return (ϕ, overflows∀, overflows∃)

end function
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Table 3.1 lists the algorithms discussed in this chapter by approach for easier reference.

Table 3.1: Algorithms by Approach

Case considered NOBV OPFI

Integer operation f(args) Algorithm 1 –
Integer predicate p(args) Algorithm 2 Algorithm 13
Guarding predicate from overflow Algorithm 3
¬a Algorithm 4
a ∧ b Algorithm 5
Quantifiers Qx • ϕ Algorithm 6
a⇔ b Algorithm 7
ITE(c, t, f) Algorithm 8
Interpreted function f(args) Algorithm 9 –⋆

Recursive elimination of Int – Algorithm 10
Finitization of integers – Algorithm 11
fromInt(a) – Algorithm 12
⋆ OPFI axiomatizes interpreted functions containing integer predicates.

By continuing to use unbounded integers for integer operations, we are able to gain
several advantages over NOBV.

1. NOBV requires checking for an overflow for every integer operation, while OPFI only
checks the results of the top-most integer operations that are arguments to predicates
and uninterpreted functions.

2. The overflow checks are simpler to write. For a given expression ϕ we can check if
it overflows with the term ϕ < MIN ∨ ϕ > MAX. Compared to NOBV, there are
fewer terms in the problem we send to the solver, and it is simpler to implement than
static overflow checks for fixed-width bitvectors.

3. Bitvectors are never used for integers in OPFI. Together with the quantifier expansion
step in the Fortress method for MSFMF, the problem contains EUF and unbounded
integers for values. Additionally, constants outside the finite range remain repre-
sentable.

4. By not relying on bitvectors to represent integers, we are not constrained to a range
of the form [−n, n − 1]. Thus, if the problem uses only about natural numbers, we
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can effectively halve the search space by instead using the range [0, n − 1] or keep
the search space the same but search twice as many useful values with the range
[0, 2n− 1].

3.3 Evaluation

We evaluate the unchecked bitvector (UBV), NOBV, and OPFI methods implemented in
Fortress for correctness and performance. For correctness evaluation, we constructed a
set of problems and compared each result to that of the same problem using unbounded
integers. The correctness evaluation consists of problems specifically chosen to highlight the
differences between methods. This set is not intended to be indicative of typical problems.
For performance evaluation, we compared the performance of the methods on problems
in the SMT-LIB UFNIA (uninterpreted functions and non-integer arithmetic) benchmark
set [3].

3.3.1 Correctness Evaluation

Table 3.2: Integer Methods Correctness Evaluation

Correct Alloy Unbounded OPFI NOBV UBV

∀x • x+ 100− 100 ̸= x UNSAT SAT UNSAT UNSAT UNSAT UNSAT
∃x • x+ 100− 100 = x SAT UNSAT SAT SAT SAT SAT∨4

i=1 xi > 1 ∧ (
∑4

i=1 xi)/3 > 1 SAT UNSAT SAT SAT UNSAT UNSAT
∀x, y • (x− y > 0)⇔ (x > y) SAT UNSAT SAT SAT SAT UNSAT
∀x • (x+ 100 < x) ⇒ ⊥ SAT UNSAT SAT SAT SAT UNSAT
∀x • ¬(x+ 100 < x) ∨ ⊥ SAT SAT SAT SAT SAT UNSAT
∀x • ITE(x+ 100 < x,⊥,⊤) SAT UNSAT SAT SAT SAT UNSAT

∀x∃y • x+ 1 < y SAT SAT SAT SAT SAT SAT
∀x • f(x) = ITE(x > 0, x2,−x) SAT SAT TO SAT SAT UNSAT

∀x • x+ 100 < x UNSAT SAT UNSAT UNSAT UNSAT UNSAT
∀x • f(x) = 2x ∧ g(x) = x/2 ∧ g(f(x)) = x SAT UNSAT SAT UNSAT UNSAT UNSAT

TO represents a timeout after 20 minutes

We review the correctness of various methods on 11 problems described in Table 3.2.
The evaluation compares the methods’ returned SAT or UNSAT result with regards to the
correct result over unbounded integers for the purpose of providing examples to discuss the
improvements made in this thesis. Table 3.2 presents the results of our correctness tests.
Each finite method returns SAT or UNSAT for each problem in under a minute.
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The problem
4∨

i=1

xi > 1 ∧
∑4

i=1 xi
3

> 1 (3.11)

was evaluated over the finite integer range [−4, 3]. The rest of the problems were evaluated
over the finite integer range [−8, 7]. The problem ∀x • f(x) = ITE(x > 0, x2,−x) caused
the unbounded integers method to timeout. This problem demonstrates the effectiveness
of finite methods because it could not be solved for unbounded integers.

OPFI and NOBV are able to correctly solve several problems that Alloy and the UBV
method fail to solve correctly. Equation 3.11 demonstrates that there are problems for
which OPFI obtains the correct result and NOBV obtains an incorrect result. The first
two problems, which both use x+100−100 evaluate correctly for NOBV and UBV, which
was unexpected. We believe this result is due to Z3 simplifying the expression before
evaluation. Notably, the problem

∀x • f(x) = 2x ∧ g(x) = x

2
∧ g(f(x)) = x

caused OPFI and NOBV to both give an incorrect result. So, while OPFI and NOBV
correctly solve a number of problems that Milicevic and Jackson’s method, implemented
in Alloy, fails to correctly solve, they do not completely solve the problem of overflows
causing incorrect results.

3.3.2 Performance Evaluation

We evaluate the performance of UBV, NOBV, and OPFI methods on the SMT-LIB UFNIA
benchmark set, which consists of problems containing uninterpreted functions and non-
linear integer arithmetic in formulas containing quantifiers. We chose this benchmark as
linear integer arithmetic is needlessly restrictive for these methods, and we do not support
real numbers. Additionally, we include uninterpreted functions, as both NOBV and OPFI
support them. We constrain ourselves to files in the benchmark set with only one command
to check for satisfiability.

First, we randomize the order of the files in the benchmark set. We run the problem
given by each file with a timeout of 30 minutes and a scope size of 16 for all sorts (this
is equivalent to a bitwidth of 4 for integers). We record the first 100 problems where all
three methods return a result of SAT and the first 100 problems where all three methods
return UNSAT without timing out. We run each method three times over these recorded
problems and took the mean time for each file as its result time. We evaluate the times
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taken for each problem over each method to determine which method(s), if any, solve the
problems faster than the others. The performance evaluation is conducted on an Intel®
Xeon® CPU E3-1240 v5 @ 3.50GHz x 8 machine running Linux version 4.4.0-210-generic
with up to 64GB of user-space memory.

As the times we record are not normally distributed, and we have two independent
variables (problem and method) and one dependent variable (running time), we perform a
Friedman rank sum test on the running times of the methods across the various problems.
The test ranks of each method on every problem (1st, 2nd, or 3rd fastest as 1, 2, or 3) in
order to normalize the data. The null hypothesis is that all three of the methods have the
same average rank across problems. In these tests, the p-value is the probability that our
tests results occurred, supposing the null hypothesis to be true. A small p-value indicates
that it is likely that the null hypothesis is false. If a p-value is smaller than a significance
level α, then there is statistically significant evidence (at α) to conclude that the null
hypothesis is false. We chose α = 0.05. Table 3.3 shows that for the SAT and UNSAT
problems considered separately and together we can reject the null hypothesis and conclude
that at least one method has a different average rank than the others.

Result p-value

SAT < 2.2e−16
UNSAT < 2.2e−16
Both < 2.2e−16

Table 3.3: Friedman Rank Sum Results for Finite Integer Methods

Since we reject the null hypothesis for the Friedman rank sum test, we use a Pairwise
Wilcoxon Rank Sum Test with Bonferroni adjustment as a post-hoc test to compare the
ranks of methods pairwise. We do the Friedman test and adjust the Wilcoxon test to be a
post-hoc test (rather than simply running the Wilcoxon test pairwise) to avoid compound-
ing errors. The null hypothesis for each pair of methods is that the methods have the
same average rank. Table 3.4 shows that there is statistically significant evidence to claim
that the NOBV method has a different average rank than OPFI and unchecked bitvectors
(UBV). We do not find statistically significance evidence that OPFI performs differently
from UBV.

Figure 3.1 shows problems are consistently solved faster when using OPFI than when
using NOBV. Figure 3.1c, Figure 3.1a, and Figure 3.1b are box plots of the running times of
problems for each of the three methods. OPFI has a faster median time to solve a problem
than NOBV, as well as faster first and third quartiles. In Figure 3.1d, every problem is
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Result OPFI vs NOBV OPFI vs UBV NOBV vs UBV

SAT 0.00177 0.18530 0.00092
UNSAT 0.041 1.000 0.045
Both 0.0076 0.7086 0.0025
Highlighted values are statistically significant at α < 0.05.

Table 3.4: Wilcoxon Post-Hoc p-values for Finite Integer Methods

plotted as a point with its x and y coordinates being its running time using OPFI and
NOBV respectively. The dashed line is where the running times for the two methods
are equal. Most points are above the dashed line, indicating that for the given problem
OPFI runs faster. The statistical tests used consider only the ranks of the methods across
problems, disregarding the magnitude of differences in running time.
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Figure 3.1: Running Times for Finite Integer Methods

We ran the same 100 SAT and 100 UNSAT problems with unbounded integers. We
checked that all methods (including unbounded integers) returned the same SAT or UNSAT
result as unbounded integers. Unbounded integers solved the problems faster than the finite
methods, which means a future research direction is a hybrid approach using finite and
infinite integers within a problem.
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3.3.3 Threats to Validity

A potential threat to internal validity is that we consider only problems for which all
finite methods solve the problem in the 30-minute timeout. One or more methods may
perform better on problems for which some other method times out. A possible threat
to external validity is that the SMT solver can solve all problems included in the study,
which could indicate the benchmark set is biased toward including problems solvable using
uninterpreted integers, and the finite methods may behave differently on other sets of
problems. Another possible threat to external validity is that we tested using a single
finite integer range. The effectiveness of these methods may change at higher scopes.

3.4 Summary

OPFI is a theoretically more correct integer finitization method than NOBV. On average,
OPFI solves problems faster than NOBV within the SMT solver Z3. OPFI introduces
minimal performance cost, as it does not solve problems significantly slower that UBV.
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Chapter 4

Transitive Closure

Transitive closure is an operation on relations. The transitive closure of a relation is the
minimal relation containing every pair in the original relation and additional pairs to make
the resulting relation transitive. A relation R is transitive if and only if

∀x, y, z • (x, y) ∈ R ∧ (y, z) ∈ R ⇒ (x, z) ∈ R

It is common to use closures in modeling for graph reachability in networks and reasoning
about temporal logic. Models in languages like Alloy frequently make use closures. An
analysis of over 2000 Alloy models found that over 35% of models used transitive closure
operators, and of those that did, the median number of usages per model was 6 [?]. This
common usage makes it useful that libraries such as Fortress include options for solving
transitive closure.

Section 4.1 provides background on the transitive closure operator and the notation we
use in this chapter. Section 4.2 discusses several existing methods for finitely representing
transitive closure. In Section 4.3, we present our novel representation of transitive closure
in FOL for the special case where the problem includes only checking if pair is not a member
of the transitive closure. We call this negative transitive closure. Section 4.4 provides a
generalization of existing methods to relations of arbitrary arity. Section 4.5 presents a
performance evaluation of the methods presented in this chapter.

This chapter presents several contributions:

1. A representation of transitive closure for a finite scope in MSFOL for the special case
where the problem only includes checking if a pair is not in the transitive closure
(negative transitive closure) (Section 4.3)
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2. A generalization of existing MSFOL axiomatizations of transitive closure to include
relations of higher arity (Section 4.4)

3. A performance evaluation comparing negative transitive closure to existing axioma-
tizations (Section 4.5)

4.1 Background

The join operator (;) defined as

A;B = {(x, y)|∃m : (x,m) ∈ A ∧ (m, y) ∈ B}

is used frequently in this chapter. The repeated join of a relation with itself is notated as
Rn where n is the number of times R is joined with itself. For example, R3 = R;R;R

Transitive closure is an operator on relations. A relation R+ : A × A is the transitive
closure of R : A× A if and only if:

R+ contains R : R ⊆ R+ (4.1)

R+ is transitive : R+;R+ ⊆ R+ (4.2)

R+ is the smallest : ∀T •R ⊆ T ∧ T ;T ⊆ T ⇒ R+ ⊆ T (4.3)

In addition to the normal transitive closure operator, there is also the reflexive transitive
closure of R, called R∗, which additionally makes R reflexive.

R∗ = R+ ∪ {(x, x)|x ∈ A}

While Equation 4.1 and Equation 4.2 are expressible in MSFOL, Equation 4.3 is not
expressible in MSFOL, as it requires quantifying over a relation. When the sort being
closed over has a finite bound, a variety of methods exist to express the transitive closure
of a relation via auxiliary functions and axioms in MSFOL.

We use set theory notation to discuss properties of relations, however Fortress and SMT
solvers use MSFOL as input and do not support set theory. As such, we must axiomatize
any relational properties we wish to express in MSFOL. In set notation, a relation is
represented as a set of pairs. To represent the fact that the pair (x, y) is in relation
R : A×B, (x, y) ∈ R, using MSFOL, we make R a function R : A×B → Bool and write
R(x, y). Similarly, ¬R(a, b) is sometimes written as (a, b) /∈ R. Using this translation, we
refer to auxiliary functions and auxiliary relations interchangeably in this chapter. The
auxiliary functions (and relations) are used only to help define the transitive closure of a
relation.
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4.2 Existing Methods for Expressing Finite Transitive

Closure in First-Order Logic

A variety of methods for expressing the transitive closure, R+, of a relation R : A × A
over a finite sort A of scope n in first-order logic already exist. This section follows the
presentation of Tariq [28]. These methods differ in the number of axioms and auxiliary
functions used to define the transitive closure of a relation. These methods also differ in
the depth of quantifiers they use, which is important for solving MSFMF problems in SMT
solvers, as increasing the depth of quantifiers can lead to an explosion in term size when
expanding quantifiers.

4.2.1 Simple Iterative

A simple encoding of R+ is
R+ = R ∪R2 ∪R3 ∪ . . . (4.4)

In this encoding, each join of R with itself will contain all sets of pairs connected by a path
of length equal to the number of times the relation is joined with itself. For example if
(x, y) ∈ R5 then there is a path of exactly length 5 from x to y in R. The union of all of
these joins is all pairs for which a path exists between two points in R; i.e., the transitive
closure of R. The closure of a function over a sort with a scope n can be represented in n
steps [17]:

R+ = R ∪ (R;R) ∪ (R;R;R) ∪R4 . . . Rn (4.5)

where Rk represents all pairs connected by a path of length k, and no more than n edges
are needed to connect all pairs of points.

To turn the problem into EUF in Fortress, we expand universal quantifiers so ∀x : A•ϕ
is equivalent to ∧

y∈A

ϕ [x|y]

When quantifiers are expanded, the number of terms in a formula grows exponentially with
regard to the number of nested quantifiers. In order to avoid an explosion in term size
from nested existential quantifiers when representing the intermediate values in every join,

39



Equation 4.5 can be rewritten using a series of auxiliary relations.

R2 = R;R

R3 = R2;R

· · ·
Rn = Rn−1;R

R+ = R ∪R2 ∪ . . . ∪Rn

These statements can be axiomatized to MSFOL as

∀x, y •R2(x, y)⇔ ∃c •R(x, c) ∧R(c, y)
∀x, y •R3(x, y)⇔ ∃c •R2(x, c) ∧R(c, y) · · ·
∀x, y •Rn(x, y)⇔ ∃c •Rn−1(x, c) ∧R(c, y)

∀x, y •R+(x, y)⇔ R(x, y) ∨
n∨

i=2

Ri(x, y)

The reflexive transitive closure is then defined in terms of R+as

∀x, y •R∗(x, y)⇔ R+(x, y) ∨ x = y (4.6)

This method requires n−1 auxiliary functions and n formulas, and it limits the nesting
of quantifiers in the additional axioms to depth three.

4.2.2 Iterative Squaring

Burch et al. [7] describe a method called iterative squaring to define R+using only ⌈log n⌉
formulas. Instead of using n − 1 auxiliary relations to represent paths of a fixed length,
Burch et al. use ⌈log n⌉ auxiliary relations to represent all paths up to and including a
given length. Given auxiliary relation Ri that represents all paths in R of length x ≤ 2i,
the auxiliary relation Ri+1 that represents all paths in R of length x ≤ 2i+1 is defined as

Ri+1 = Ri ∪Ri;Ri

which can be axiomatized as

∀x, y •Ri+1(x, y)⇔ Ri(x, y) ∨ ∃z •Ri(x, z) ∧Ri(z, y)
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The auxiliary relation Ri represents all paths of length ≤ 2i in R. We define auxiliary
relations for i = 1 through i = ⌈log n⌉, where R0 = R and R⌈logn⌉ = R+.

The closure operators are encoded as

∀x, y •R+(x, y)⇔ R⌈logn⌉(x, y) ∨ ∃z •R⌈logn⌉(x, z) ∧R⌈logn⌉(z, y)

∀x, y •R∗(x, y)⇔ x = y ∨R+(x, y)

This method uses ⌈log n⌉ auxiliary relations and ⌈log n⌉+2 formulas. This method has
a maximum quantifier depth of three, the same as the simple iterative method.

4.2.3 Claessen’s Method

Claessen was the first to introduce an axiomatization of reflexive transitive closure in first-
order logic over finite domains, rather than the transitive closure [8]. This method requires
a constant number of formulas and auxiliary functions, regardless of scope size. Claessen
introduces two auxiliary functions:

� s : A× A→ A which represents the “next step” along the path from the first input
to the second

� C : A× A× A→ Bool where C(a, x, z) is true if and only if x is closer to z than a

For example, given R = {(a, b), (b, c), (c, d), (x, y)},

C = {(a, b, b), (a, b, c), (a, b, d), (a, c, c), (a, c, d), (b, c, c), (b, c, d), (b, d, d), (c, d, d), (x, y, y)}

The “next step” function s must be a total function, so when a path does not exist between
two values x and y, s(x, y) can be any arbitrary value. The pairs for which smust be defined
are

{(a, b)→ b, (a, c)→ b, (a, d)→ b, (b, c)→ c, (b, d)→ c, (x, y)→ y} ⊂ s

Using these auxiliary functions, Claessen axiomatizes the reflexive transitive closure R∗

of R using nine formulas. First,

∀x, y, z, u : A • C(x, y, u) ∧ C(y, z, u) ⇒ C(x, z, u) (4.7)

∀x, y : A • ¬C(x, x, y) (4.8)
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where Equation 4.7 means that “closeness” to a given point u is transitive, and Equation 4.8
means that any point x is never closer than itself to a point y.

∀x, y : A •R∗(x, y) ∧ ¬(x = y) ⇒ R(x, s(x, y)) (4.9)

Equation 4.9 states that if two distinct points x and y are in R∗, then x and the next step
on the path from x to y (s(x, y)) must be in R.

∀x, y : A •R∗(x, y) ∧ ¬(x = y) ⇒ C(x, s(x, y), y) (4.10)

∀x, y : A •R∗(x, y) ∧ ¬(x = y) ⇒ R∗(s(x, y), y) (4.11)

Equation 4.10 and Equation 4.11 state that if a non-reflexive pair (x, y) is in R∗, the next
step from x towards y is closer to y than x and there is a path from that next point to y
respectively.

∀x, y, z : A •R∗(x, y) ∧R∗(y, z) ⇒ R∗(x, z) (4.12)

∀x, y : A •R(x, y) ⇒ R∗(x, y) (4.13)

∀x : A •R∗(x, x) (4.14)

Lastly, the reflexive transitive closure is defined: Equation 4.12 axiomatizes Equation 4.2,
Equation 4.13 axiomatizes Equation 4.1, and Equation 4.14 ensures that R∗ is reflexive.

The transitive closure is defined in terms of the reflexive transitive closure.

∀x, y : A •R+(x, y)⇔ ∃z : A •R(x, z) ∧R∗(z, y) (4.15)

Claessen’s method uses two auxiliary functions and nine formulas with a maximum
quantifier depth of four.

4.2.4 van Eijck’s Method

Inspired by Claessen’s work, van Eijck provided an alternative axiomatization of reflexive
transitive closure [32]. Van Eijck’s axiomatization uses a single auxiliary function C :
A× A× A→ Bool where C(a, x, z) is true if and only if x is closer to z than a along the
shortest path between a and z. In this way, the auxiliary functions C and s from Claessen’s
method are combined into one auxiliary function. The reflexive transitive closure is then
axiomatized in fewer formulas:
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∀x, y, z, u : A • C(x, y, u) ∧ C(y, z, u) ⇒ C(x, z, u) (4.16)

∀x, y : A • ¬C(x, x, y) (4.17)

As in Claessen’s method, Equation 4.16 and Equation 4.17 axiomatize that being closer
to the third point is transitive and a point is never closer than itself to a point. Trivially,
the end of a path is closer to itself than the start of the path (when the start and end are
distinct), so C(x, y, y) means that a path from x to y exists in R.

∀x, y : A •R(x, y) ∧ ¬(x = y) ⇒ C(x, y, y) (4.18)

Equation 4.18 ensures every path of length one in R is included in C by ensuring every
non-reflexive edge (x, y) is included in C as C(x, y, y).

∀x, y, z : A • C(x, y, y) ∧ C(y, z, z) ∧ ¬(x = z) ⇒ C(x, z, z) (4.19)

Equation 4.19 axiomatizes the fact that if a path exists from x to y and y to z (and x ̸= z),
then a path must exist from x to z.

∀x, y, z : A • C(x, y, z) ∧ ¬(y = z) ⇒ C(y, z, z) (4.20)

Equation 4.20 describes the fact that for every point y between x and z along the shortest
path from x to z, there must be a path from y to z.

∀x, y : A • C(x, y, y) ⇒ ∃z : A •R(x, z) ∧ C(x, z, y) (4.21)

Equation 4.21 axiomatizes the fact that, given a path from x to y (C(x, y, y)), there must
be some edge in R from x to a point z that is closer to y than x is.

∀x, y : A •R∗(x, y)⇔ C(x, y, y) ∨ x = y (4.22)

Lastly, Equation 4.22 defines the reflexive transitive closure as exactly all pairs (x, y) such
that a path exists from x to y (C(x, y, y)) or x = y because R∗ is reflexive.

The transitive closure is defined, as in Claessen’s axiomatization, using Equation 4.15.

Van Eijck’s method requires only a single auxiliary function and only eight formulas,
with a maximum quantifier depth of four.
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4.2.5 Liu et al.’s Method

Liu et al. proposed an axiomatization independent of scope size for reflexive transitive
closure using integers [22] based on Claessen’s work. Liu et al. introduce auxiliary function
P : A× A → Int where P (x, y) is the length of the shortest path from x to y. Note that
P also includes paths that start and end at the same point, and thus are technically not
paths, but we will refer to them as paths for the remainder of this chapter. For example,
if (a, a) ∈ R then P (a, a) = 1.

P is axiomatized in three formulas

∀x, y : A •R(x, y)⇔ P (x, y) = 1 (4.23)

∀x, y, z : A • P (x, y) > 0 ∧ P (y, z) > 0 ⇒ P (x, z) > 0 (4.24)

∀x, y : A • P (x, y) > 1 ⇒ ∃z : A • P (x, z) = 1 ∧ P (x, y) = P (z, y) + 1 (4.25)

Where Equation 4.23 states that if an edge between two points exists in R, then the length
of the shortest path between those points is one. If P (x, y) > 0, there exists a path from
x to y in R. So, Equation 4.24 axiomatizes the fact that if a path exists from x to y and y
to z then a path exists from x to z. Equation 4.25 states that if the shortest path between
x and y is longer than a single edge, then there must be a point z one edge from x along
the shortest path from x to y.

The transitive closure is encoded as every value where P is positive.

∀x, y : A •R+(x, y)⇔ P (x, y) > 0 (4.26)

The reflexive transitive closure also includes every case where the start and endpoint
are the same.

∀x, y : A •R∗(x, y)⇔ R+(x, y) ∨ x = y (4.27)

Liu et al.’s method uses one auxiliary function and only five formulas, with a maximum
quantifier depth of three. However, this method relies on some encoding of integers

4.3 Negative Transitive Closure

In the context of model checking, Vakili and Day [31] identified a subset of computational
tree logic (CTL) [15], called CTL-Live, which contains temporal operators commonly used
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to express liveness properties and is expressible in FOL. The basis for their method is an
encoding of transitive closure to check the validity of ∆ |= R+(a, b).

The first two parts of the definition of transitive closure (Equation 4.1 and Equation 4.2)
are not a complete definition of transitive closure, but they are sufficient for certain prob-
lems. We use defTC(R, T ) to describe the incomplete axiomatization of R+ as relation T ,
where, without loss of generality, T is a fresh symbol, not used elsewhere.

defTC (R, T ) =(∀a, b • (a, b) ∈ R ⇒ (a, b) ∈ T )
∧ (∀a, b • (a, b) ∈ T ;T ⇒ (a, b) ∈ T )

Written in MSFOL,

defTC (R, T ) =(∀a, b •R(a, b) ⇒ T (a, b))

∧ (∀a, b, c • T (a, b) ∧ T (b, c) ⇒ T (a, c))

Vakili [30] shows that this incomplete axiomatization defining the transitive closure of
a relation is sufficient for checking the validity of whether a pair is in a transitive closure.
Because R+ is a subset of all the possible values for T in Equation 4.3, T can contain
pairs not in R+ but it cannot omit a pair (i.e., (a, b) /∈ T and (a, b) ∈ R+ is impossible).
Vakili [30] proved that given a set of MSFOL formulas ∆,

∆ |= R+(a, b) ⇔ ∆ ∪ {defTC(R, T )} |= T (a, b) (4.28)

Checking the validity of ∆ |= R+(a, b) is the same as checking that the satisfiability of
∆ ∪ {¬R+(a, b)} is UNSAT. For the rest of this section we will examine this encoding of
transitive closure through the lens of satisfiability, rather than validity.

Vakili’s work focused on the special case of checking satisfiability where R+ is used
negatively in conjunction with a set of other formulas ∆ in the form ∆ ∪ {¬R+(a, b)}.
We prove that this axiomatization of transitive closure is more generally applicable. Let
TC(ϕ,R) be the transformation defined as:

TC (ϕ,R) = ϕ
[
R+
∣∣T ] ∧ defTC(R, T )

where ϕ is a term in negation normal form and T is a fresh symbol that does not appear
in ϕ. Next, we present a proof that TC(ϕ,R) is equisatisfiable to ϕ under the conditions
that

1. membership in R only occurs negatively (i.e., ¬R+ (a, b)) in the formula
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2. ϕ is in negation normal form (NNF)

3. R+ does not appear in the conditional of an ITE term or an argument of an uninter-
preted function

4. R+ does not appear in the body of an interpreted function definition

We denote a formula ϕ that satisfies these conditions for a relation R as applicable(ϕ,R).
The formula ϕ must be in NNF because ¬((a, b) /∈ R+) is equivalent to (a, b) ∈ R+ and
our transformation TC is only applicable to negative membership in R. Similarly, if R+

appears in the conditional of an ITE term or the argument of an uninterpreted function, a
T including a pair that is not in R could affect the satisfiability of top-level formula. For
example,

ITE(¬R+(a, b), false, true)

and
∀x : Bool • f(x) = ¬x ∧ f(¬R+(a, b))

are equivalent to (a, b) ∈ R.

Theorem 4.1. If applicable(ϕ,R), then ϕ
SAT
= TC(ϕ,R).

We break apart the proof of Theorem 4.1 into two parts: when applicable(ϕ,R), ϕ is
SAT implies TC(ϕ,R) is SAT (Theorem 4.2) and vice versa (Theorem 4.3).

Let ϕ be an arbitrary MSFOL formula and R be a relation.

Theorem 4.2. If applicable(ϕ,R) and ϕ is SAT, then TC(ϕ,R) is SAT.

Proof of Theorem 4.2. We assume applicable(ϕ,R) and ϕ is SAT. Therefore, there exists
some I such that I ⊩ ϕ. We begin by expanding TC(ϕ,R) to ϕ [R+|T ] ∧ defTC(R, T )
where T is a fresh symbol. We define I ′ to be the interpretation I extended with the value

assignment (T → (RI)
+
). So, I ′ = I

[
T
∣∣∣(RI)

+
]
. Because T I′

= (RI)
+
and defTC(R, T )

is a subset of the axioms that assert T = (RI)
+
, we know I ′ ⊩ defTC(R, T ).

We prove if applicable(ϕ,R) and I ⊩ ϕ, then I ′ ⊩ ϕ [R+|T ]∧defTC(R, T ) by structural
induction on ϕ.

Case 1 (Base Case 1: R+ is not in ϕ).
T is not present in ϕ, so

ϕI = ϕI′

46



As I ⊩ ϕ, this means I ′ ⊩ ϕ. As R+ is not in ϕ,

ϕ = ϕ
[
R+
∣∣T ] (4.29)

Therefore, we can use Equation 4.29 to substitute for ϕ in I ′ ⊩ ϕ, giving us

I ′ ⊩ ϕ
[
R+
∣∣T ]

As we know I ′ ⊩ defTC(R, T ),

I ′ ⊩ ϕ
[
R+
∣∣T ] ∧ defTC(R, T )

Case 2 (Base Case 2: ϕ = ¬R+(A,B)).
Recall that I ′ ⊩ defTC(R, T ).

We apply the substitution in ϕ [R+|T ] to get(
¬R+(A,B)

) [
R+
∣∣T ] = ¬T (A [R+

∣∣T ] , B [R+
∣∣T ]) (4.30)

From applicable(ϕ,R), we know that R+ is not in A or B. Therefore, A = A [R+|T ] and
B = B [R+|T ]. We substitute into Equation 4.30 to get(

¬R+(A,B)
) [
R+
∣∣T ] = ¬T (A,B)

Because I ⊩ ¬R+(A,B),(
¬R+(A,B)

)I
= ¬

(
RI)+(AI , BI) = true (4.31)

As R+ is not in A or B, we know that AI = AI′
and BI = BI′

. Substituting into
Equation 4.31 yields

¬
(
RI)+(AI′

, BI′
) = true

Because I ′ maps T to
(
RI)+, T I′

=
(
RI)+. So,

¬T I′
(AI′

, BI′
) = true (4.32)

Equation 4.32 means that I ′ ⊩ ¬T (A,B). Thus, I ′ ⊩ ¬T (A,B) ∧ defTC(R, T ) and

I ′ ⊩
(
¬R+(A,B)

) [
R+
∣∣T ] ∧ defTC(R, T )
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Case 3 (ϕ = A ∧B).
I ⊩ A ∧ B implies I ⊩ A and I ⊩ B. As applicable(A ∧ B), both applicable(A) and
applicable(B) must hold. By the inductive hypothesis, there exist IA and IB such that

IA ⊩ A
[
R+
∣∣TA] ∧ defTC(R, TA) and IB ⊩ B

[
R+
∣∣TB] ∧ defTC(R, TB) (4.33)

where TA and TB are fresh, unique symbols. Therefore,

(A
[
R+
∣∣TA])IA ∧ (defTC(R, TA))

IA = true (4.34)

(B
[
R+
∣∣TB])IB ∧ (defTC(R, TB))

IB = true (4.35)

We construct IAB to be the interpretation I extended by the value assignments{(
TA →

(
RI)+) ,(TB → (

RI)+)}
By the construction of IAB we know that

T IAB
A = T IAB

B (4.36)

From Equation 4.36 we can conclude that

(defTC(R, TA))
IAB = (defTC(R, TB))

IAB (4.37)

and (
B
[
R+
∣∣TB])IAB =

(
B
[
R+
∣∣TA])IAB (4.38)

which we will use later in this proof.

As TB is not in A [R+|TA] ∧ defTC(R, TA) and TA is not in B [R+|TB] ∧ defTC(R, TB)

(A
[
R+
∣∣TA])IAB ∧ (defTC(R, TA))

IAB = true (4.39)

(B
[
R+
∣∣TB])IAB ∧ (defTC(R, TB))

IAB = true (4.40)

Therefore,

(A
[
R+
∣∣TA])IAB ∧ (defTC(R, TA))

IAB

∧ (B
[
R+
∣∣TB])IAB ∧ (defTC(R, TB))

IAB = true
(4.41)

Because of Equation 4.37, Equation 4.41 becomes

(A
[
R+
∣∣TA])IAB ∧ (B

[
R+
∣∣TB])IAB ∧ (defTC(R, TA))

IAB = true (4.42)
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Using Equation 4.38 we can make the following simplifications

(A
[
R+
∣∣TA])IAB ∧ (B

[
R+
∣∣TA])IAB ∧ (defTC(R, TA))

IAB = true (4.43)(
(A ∧B)

[
R+
∣∣TA])IAB ∧ (defTC(R, TA))

IAB = true (4.44)

Now, as TB is not in Equation 4.44, we can drop it from our interpretation and conclude
that (

(A ∧B)
[
R+
∣∣TA])IA ∧ ((defTC(R, TA)))

IA = true

IA is I ′ when TA is T , so

I ′ ⊩ (A ∧B)
[
R+
∣∣TA] ∧ (defTC(R, TA))

Case 4 (ϕ = A ∨B).
From applicable(A ∨B), we know applicable(A) and applicable(B). We know I ⊩ A ∨B,
which means I ⊩ A or I ⊩ B. Without loss of generality, we choose I ⊩ A. We
know that for the interpretation I ′ (which extends I with the assignment T → R+)
I ′ ⊩ A [R+|T ] ∧ defTC(R, T ) by the inductive hypothesis. Therefore, I ′ ⊩ A [R+|T ] and
I ′ ⊩ defTC(R, T ) separately. Thus,

I ′ ⊩ A
[
R+
∣∣T ] ∨B [R+

∣∣T ] (4.45)

We simplify Equation 4.45 to
I ′ ⊩ (A ∨B)

[
R+
∣∣T ]

Thus,
I ′ ⊩ (A ∨B)

[
R+
∣∣T ] ∧ defTC(R, T ) (4.46)

A case for ϕ = ¬A is covered by the above cases because ϕ is in negation normal form
and applicable(ϕ,R) means Case 1 and Case 2 are the only places a negation can appear
in ϕ. We do not need cases for the universal and existential quantifiers because these are
equivalent to a finite conjunction and disjunction respectively.

We now prove satisfiability in the opposite direction.

Theorem 4.3. If applicable(ϕ,R) and TC(ϕ,R) is SAT, then ϕ is SAT.
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If TC(ϕ,R) is SAT, there exists some interpretation Iv that maps T to a value v and
Iv ⊩ TC(ϕ,R). We cannot assume v is R+ for this direction of the proof. Let I be the
interpretation Iv without a value assignment assignment for T . Let I ′ be an interpretation
that extends I with the assignment T →

(
RI)+.

We utilize two lemmas, which we will prove below, to aid in the proof of Theorem 4.3.

Lemma 4.3.1. If applicable(ϕ,R) and Iv ⊩ ϕ [R+|T ] ∧ defTC(R, T ), then

I ′ ⊩ ϕ
[
R+
∣∣T ] ∧ defTC(R, T )

Lemma 4.3.2. If applicable(ϕ,R) and I ′ ⊩ ϕ [R+|T ] ∧ defTC(R, T ), then I ⊩ ϕ.

Proof of Theorem 4.3. We are given applicable(ϕ,R) and TC(ϕ,R) is SAT. Because TC(ϕ,R)
is SAT, we know there exists some Iv that maps T to a value v and Iv ⊩ TC(ϕ,R). We
expand TC to obtain

Iv ⊩ ϕ
[
R+
∣∣T ] ∧ defTC(R, T )

By Lemma 4.3.1, we then know

I ′ ⊩ ϕ
[
R+
∣∣T ] ∧ defTC(R, T )

By Lemma 4.3.2, we can conclude I ⊩ ϕ. As there exists an interpretation I that satisfies
ϕ, ϕ is SAT.

We now prove the lemmas utilized in our proof of Theorem 4.3. Recall

Lemma 4.3.1. If applicable(ϕ,R) and Iv ⊩ ϕ [R+|T ] ∧ defTC(R, T ), then

I ′ ⊩ ϕ
[
R+
∣∣T ] ∧ defTC(R, T )

Proof of Lemma 4.3.1. Since Iv ⊩ ϕ [R+|T ]∧defTC(R, T ), we know that Iv ⊩ defTC(R, T ).
Because Iv ⊩ defTC(R, T ), T must be transitive and contain every pair in R. As R+ is the

smallest relation that satisfies those two conditions, we know that
(
RI)+ ⊆ T Iv . There-

fore, if any pair is not in T Iv , that pair is not in
(
RI)+. Because in I ′, T is mapped to(

RI)+, I ′ ⊩ defTC(R, T ). Additionally, as I ′ explicitly maps T to
(
RI)+,

T I′
=
(
RI)+ (4.47)

We prove Lemma 4.3.1 by structural induction on ϕ.
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Case 1 (Base Case 1: ϕ does not contain R+).

Iv ⊩ ϕ
[
R+
∣∣T ] ∧ defTC(R, T )

So,
Iv ⊩ ϕ

[
R+
∣∣T ]

Given ϕ does not contain R+, we know that ϕ = ϕ [R+|T ]. Therefore,

Iv ⊩ ϕ

ϕIv = true

As ϕ does not contain T , we know that

ϕIv = ϕI′

Thus,
ϕI′

= true

and
I ′ ⊩ ϕ

We know that ϕ = ϕ [R+|T ], so
I ′ ⊩ ϕ

[
R+
∣∣T ]

Allowing us to conclude
I ′ ⊩ ϕ

[
R+
∣∣T ] ∧ defTC(R, T )

Case 2 (Base Case 2: ϕ = ¬R+(A,B)).
We know Iv ⊩ (¬R+(A,B)) [R+|T ] and Iv ⊩ defTC(R, T ).

We simplify Iv ⊩ (¬R+(A,B)) [R+|T ] to Iv ⊩ ¬T (A [R+|T ] , B [R+|T ]). As we know
applicable(ϕ,R), R+ is not in A or B, so A [R+|T ] = A and B [R+|T ] = B allowing us to
further simplify Iv ⊩ ¬T (A [R+|T ] , B [R+|T ]) to

Iv ⊩ ¬T (A,B)

Therefore,
¬T Iv(AIv , BIv) = true

Because we know that if a pair is not in T Iv then it is not in
(
RI)+, we can conclude

¬
(
RI)+(AIv , BIv) = true
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As A and B both do not contain T , AIv = AI′
and BIv = BI′

. Therefore,

¬
(
RI)+(AI′

, BI′
) = true

From Equation 4.47,
(
RI)+ = T I′

. So,

¬T I′
(AI′

, BI′
) = true

Therefore,
I ′ ⊩ ¬T (A,B)

As I ′ ⊩ defTC(R, T ),
I ′ ⊩ ¬T (A,B) ∧ defTC(R, T )

Both A and B do not contain T , so ¬R+(A,B) [R+|T ] = ¬T (A,B), giving us

I ′ ⊩ ¬R+(A,B)
[
R+
∣∣T ] ∧ defTC(R, T )

Case 3 (ϕ = A ∧B).

Iv ⊩(A ∧B)
[
R+
∣∣T ] ∧ defTC(R, T )

Iv ⊩A
[
R+
∣∣T ] ∧B [R+

∣∣T ] ∧ defTC(R, T )

So, separately,

Iv ⊩A
[
R+
∣∣T ] ∧ defTC(R, T )

Iv ⊩B
[
R+
∣∣T ] ∧ defTC(R, T )

applicable(A,R) and applicable(B,R) must both hold, as if either does not then applicable(A ∧B,R)
must be false. Therefore,

applicable(A,R) and Iv ⊩ A
[
R+
∣∣T ] ∧ defTC(R, T )

applicable(B,R) and Iv ⊩ B
[
R+
∣∣T ] ∧ defTC(R, T )

By the inductive hypothesis, this becomes

I ′ ⊩A
[
R+
∣∣T ] ∧ defTC(R, T )

I ′ ⊩B
[
R+
∣∣T ] ∧ defTC(R, T )
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We can combine these statements to prove

I ′ ⊩ A
[
R+
∣∣T ] ∧ defTC(R, T ) ∧B

[
R+
∣∣T ] ∧ defTC(R, T )

which we can simplify to

I ′ ⊩A
[
R+
∣∣T ] ∧B [R+

∣∣T ] ∧ defTC(R, T )

I ′ ⊩(A ∧B)
[
R+
∣∣T ] ∧ defTC(R, T )

Case 4 (ϕ = A ∨B).

Iv ⊩ (A ∨B)
[
R+
∣∣T ] ∧ defTC(R, T )

Separately, we obtain

Iv ⊩ defTC(R, T ) (4.48)

Iv ⊩(A ∨B)
[
R+
∣∣T ] (4.49)

We can expand the substitution in Equation 4.49 to obtain

Iv ⊩ A
[
R+
∣∣T ] ∨B [R+

∣∣T ]
which means Iv ⊩ A [R+|T ] or Iv ⊩ B [R+|T ]. Without loss of generality, we choose
Iv ⊩ A [R+|T ]. Given Equation 4.48, we then know

Iv ⊩ A
[
R+
∣∣T ] ∧ defTC(R, T )

As applicable(A ∨ B,R), applicable(A,R) must also be true. If applicable(A,R) was
not true, applicable(A ∨B,R) could not be true. By the inductive hypothesis, we know

I ′ ⊩ A
[
R+
∣∣T ] ∧ defTC(R, T )

which separates to become

I ′ ⊩ defTC(R, T ) (4.50)

I ′ ⊩A
[
R+
∣∣T ] (4.51)

If I ′ satsifies a formula, it will satisfy the disjunction of that formula and any other formula.
Thus, we can conclude from Equation 4.51 that

I ′ ⊩ A
[
R+
∣∣T ] ∨B [R+

∣∣T ]
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which simplifies to
I ′ ⊩ (A ∨B)

[
R+
∣∣T ] (4.52)

Given both Equation 4.52 and Equation 4.50, we conclude

I ′ ⊩ (A ∨B)
[
R+
∣∣T ] ∧ defTC(R, T )

Next, we prove

Lemma 4.3.2. If applicable(ϕ,R) and I ′ ⊩ ϕ [R+|T ] ∧ defTC(R, T ), then I ⊩ ϕ.

Proof of Lemma 4.3.2. We assume I ′ ⊩ ϕ [R+|T ]∧defTC(R, T ). Therefore, I ′ ⊩ ϕ [R+|T ].
This gives us (

ϕ
[
R+
∣∣T ])I′

= true (4.53)

We constructed I ′ to include the assignment T →
(
RI′)+

and interpretation I to be
I ′ without that assignment. Therefore,

T I′
=
(
RI)+ and RI′

= RI

Therefore,
(
RI)+ = (R+)

I
= (R+)

I′
= T I′

. So,

ϕI′
=
(
ϕ
[
R+
∣∣T ])I′

as anywhere T appears in ϕ [R+|T ], R+ would appear in ϕ and under I ′, T and R+ have
the same value. We use the equality to substitute ϕ for ϕ [R+|T ] in Equation 4.53 to obtain

ϕI′
= true

As ϕ does not contain T , ϕI′
= ϕI . Therefore,

ϕI = true

I ⊩ ϕ

As we have proved both Theorem 4.2 and Theorem 4.3, we can conclude that Theo-
rem 4.1 is true.

When the transitive closure of a relation is only used negatively, our encoding of transi-
tive closure uses no auxiliary relations and two formulas with a maximum quantifier depth
of three.
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4.3.1 Use of Negative Transitive Closure Transformation for MSFMF
Problems

As the negative transitive closure over any arbitrary relation can be removed and replaced
by an equisatisfiable formula via TC, the process can be repeated for every applicable
relation to create a formula equisatisfiable to the original without the transitive closure
operator. Relations that contain a positive closure ((a, b) ∈ R) can be transformed by
other methods.

Our transformation of transitive closure, uses fewer terms than the other, more general,
substitutions examined earlier in this chapter. While our method reduces the size of the
input to the SMT solver, it is less restrictive on the search space, as it allows the function
representing R+ to be any superset of R+ instead of exactly R+, so it may not benefit
solving time.

Algorithm 14 Negative Transitive Closure Elimination

Require: ϕ is in NNF

Ensure: ϕ
SAT
= ψ

rels← {r| r is a relation used in ϕ}
ψ ← ϕ
for r ∈ rels do

if applicable(ψ, r) and r+ is used in ψ then
ψ ← TC (ψ, r)

end if
end for

4.4 Closure over Relations of Arbitrary Arity

When modeling a system, relations may be dependent on more than just an “input” and an
“output”. For example, given a relation Go : Location×Location×TransitType→ Bool,
Go(a, b, t) might represent that there is direct access from location a to location b via
a given type of transportation t. Go(a, b, CAR) being false would represent that a car
cannot go directly from a to b, but Go(a, b, BIKE) would be true if there is a bike trail or
promenade connecting the locations.

To specify that there is a car-based path between two locations a and b, one could
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define an auxiliary relation GoCAR : Location× Location→ Bool as

∀a, b : Location •GoCAR(a, b)⇔ Go(a, b, CAR) (4.54)

and represent the existence of a driving path from a to b as simply GoCAR
+(a, b). However,

this method is not always practical, as representing the idea that there is some type of
transportation you can use to get from a to b using auxiliary functions like Equation 4.54
would require defining an auxiliary function for every possible TransitType. Furthermore,
if the relation is of higher arity, an auxiliary function would be needed for each value in
the cross product of the fixed arguments, which results in an explosion in the number of
formulas needed to axiomatize the fact.

Instead, we extend the axiomatizations of transitive closure to contain the values which
will be fixed during the closure (in this case a TransitMethod). Given a relation R : A×
A×B1×. . .×Bn, every auxiliary function for transitive closure described as f : C1×. . .×Cn

becomes f : C1× . . .×Cm×B1× . . .×Bn. Algorithm 15 describes how the axioms defining
transitive closure of a relation are generalized for higher order relations.

Algorithm 15 Generalize Axiom ϕ Defining Transitive Closure of R with arity ≥ 2

Require: R : A× A×B1 × . . .×Bn : Bool has arity greater than 2
Let b1, . . . , bn be fresh symbols
ψ ← ∀b1 : B1 • . . . ∀bn : Bn • ϕ
for each function invocation f(a1, . . . , am) do

ψ ← ψ [f(a1, . . . , am)|f(a1, . . . , am, b1, . . . , bn)]
end for

For example, in van Eijck’s method, described in Section 4.2.4, a single auxiliary
function C : A × A × A → Bool is used. Using the example, we alter C to be C :
Location× Location× Location× TransitMethod→ Bool, where C(a, x, z,m) indicates
that x is closer to z than a along the shortest path between a and z using method m.
Any formula axiomatizing the transitive closure is wrapped in ∀m : TransitMethod. For
example, Equation 4.18 becomes

∀m : TransitMethod • ∀x, y : Location •R(x, y,m) ∧ ¬(x = y) ⇒ C(x, y, y,m)

4.5 Evaluation

Table 4.1 describes the number of formulas added, auxiliary functions added, and the
maximum quantifier depth of formulas added for the various methods of axiomatizing
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transitive closure. The table also shows if the method requires the use of integers. The
number of formulas and auxiliary functions required for the simple iterative method scales
linearly with the scope of the sort being closed over and logarithmically for the iterative
squaring method. The other methods improve on this with a constant number of formulas
and auxiliary functions. Negative transitive closure requires only two additional formulas
and zero additional auxiliary functions and is tied for the lowest maximum quantifier
depth at three. We have separate columns for the depth of all quantifiers (∀∃ Depth) and
the depth of only universal quantifiers (∀ Depth) because existential quantifiers can be
skolemized, avoiding the increase in term size caused by quantifier expansion.

Table 4.1: Syntactic Analysis of Transitive Closure Methods over Sort of Scope n

Method Formulas Aux. Functions ∀∃ Depth ∀ Depth Ints

Simple Iterative n n− 1 3 2 No
Iterative Squaring ⌈log n⌉ ⌈log n⌉ 3 2 No
Claessen’s Method 9 2 4 4 No
van Eijck’s Method 8 1 4 4 No
Liu et al.’s Method 5 1 3 3 Yes
Negative T.C. 2 0 3 3 No

We implement negative transitive closure (Section 4.3) and the methods discussed in
Section 4.2 as transformers in Fortress to compare their performance on MSFMF problems
in an SMT solver. These implementations of transitive closure elimination utilize our gen-
eralization for transitive closure over higher-arity relations. The transformers are applied
after the problem is converted into negation normal form. Any new axioms created are
converted into negation normal form before they are added to the problem, to ensure the
problem remains in negation normal form.

Liu et al.’s method requires integers to be used in the problem to count every edge in R+.
Liu et al.’s method will never count higher than the scope of the sort being closed over. We
use OPFI (Section 3.2) to handle overflows, so we do not actually use bitvectors. For each
problem, we must choose a finite scope for integers. We used the range [−2n−1, 2n−1 − 1],
with n = 4 as a default. To avoid overflows, we increment n until the scope of every sort
in the problem is within the finite range [−2n−1, 2n−1 − 1].

Because there are no benchmark sets for MSFOL and TC, we gather problems con-
structed by other members of the WATForm lab at the University of Waterloo using Dash+
that have instances of negative transitive closure to compare the methods. We created a
small extension of SMT-LIB, called SMTTC, that includes the transitive and reflexive
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transitive closure operators. Dash+ is a modelling language for hierarchical, concurrent
state machines implemented as an extension of Alloy [27]. Using the Dash+ translation
to Alloy [16] and the translation of Alloy to SMTTC (work in progress), we create 18
problems from existing Dash+ models written in SMTTC, each with at least one use of
the negative transitive closure operator. These problems are all UNSAT.

We run the performance evaluation on an Intel ® Xeon ® CPU E3-1240 v5 @
3.50GHz x 8 machine running Linux version 4.4.0-210-generic with up to 64GB of user-
space memory. We average the running time of each method on each problem at scope
5, 7, and 9 for the scope of Dash Snapshots, which represent states in the transition sys-
tem. We use a 20 minute timeout. The expected result of every problem is UNSAT. We
did not consider the simple iterative method as it performs significantly worse than the
other methods and frequently ran out of memory in preliminary testing. Some problems
contained negative transitive closure over some relations and positive transitive closure
over others. We use van Eijck’s method to eliminate the transitive closure of any relations
used positively after eliminating closures with negative transitive closure. We choose van
Eijck’s method as it performed consistently and seemed less prone to explosions in running
time during preliminary experimentation. Tariq did a small performance evaluation of
these methods (including iterative and excluding the negative transitive closure method)
on three models, which supports these preliminary results [28].

We perform statistical analysis on the results, considering only the largest scope for each
model where no method timed out, or the next highest scope if at least one method did
not timeout. Timeouts were treated as the maximum 20 minutes, which biases the dataset
in favor of the methods that timed out. The resulting data set is presented in Appendix A.
As the times we record are not normally distributed, and had two independent variables
(problem and method), we perform a Friedman rank sum test on the running times of the
methods across the various problems. The test ranks each method’s performance on each
problem in order to normalize the data. The null hypothesis for this test is that all of
the methods have the same average rank across problems. In these tests, the p-value is
the probability our test results occurred, supposing the null hypothesis is true. A small
p-value is evidence that the null hypothesis is likely false. If a p-value is smaller than a
significance level α, then there is statistically significant evidence (at α) to conclude that
the null hypothesis is false. We choose α = 0.05. We obtain a p-value of 0.01997, which
means that there is statistically significant evidence that not all of the models perform the
same over the problems considered.

We perform a pairwise Wilcoxon test with a Bonferroni adjustment as a post-hoc test
to compare the transitive closure elimination methods pairwise. As the results in Table 4.2
show, this test did not provide statistically significant evidence that any two particular
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Table 4.2: Wilcoxon Post-Hoc p-values for Transitive Closure Elimination Methods

Liu et al. Squaring Claessen van Eijck

Squaring 1.00 - - -
Claessen 0.52 1.00 - -
van Eijck 0.91 1.00 1.00 -
Negative 0.38 1.00 1.00 1.00

Table 4.3: Quade Post-Hoc p-values for Transitive Closure Elimination Methods

Liu et al. Squaring Claessen van Eijck

Squaring 0.739 - - -
Claessen 0.029 0.051 - -
van Eijck 0.140 0.194 0.485 -
Negative 0.011 0.015 0.193 0.522

Highlighted cells are significant at α = 0.05

methods performed differently than one another.

These statistical tests are limited by their inability to consider the magnitude of the
difference in running time, as they rely on ranking the running times to normalize the
data. Our results showed various methods ranking and performing very differently. So,
we perform a Quade test [11], which is used for the same conditions, but considers the
magnitude of the difference in the running times between methods on a given problem.
The Quade test gave us a p-value of 0.00351, which indicates that there is statistically
significant evidence that at least one of the methods performs differently than the others.

We perform a Quade all-pairs post-hoc test with an adjustment to the p-value for the
false discovery rate as our original Quade test provides evidence that at least one method is
different. Table 4.3 shows that there is statistically significant evidence that negative tran-
sitive closure and Claessen’s method each performed differently than Liu et al.’s method
and the iterative squaring method. The Quade test is limited in its consideration only of
the magnitude of the differences. The test is weak at detecting differences in methods when
their performance metrics have a small magnitude of difference, even if one consistently
performs better.

As another way of comparing the methods, Table 4.4 displays the sum of the times
recorded across models for each transitive closure elimination method we considered at
the scopes considered for our statistical analysis. Negative transitive closure is the fastest
method by this metric, but this result puts greater emphasis on models with longer running
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times.

Table 4.4: Total Running Time for Transitive Closure Methods across All Models

Negative Claessen van Eijck Squaring Liu et al.
4017 5052 5694 7499 11100

Time in seconds

Negative transitive closure and Claessen’s method both clearly outperform iterative
squaring and Liu et al.’s methods by this metric. This metric is biased towards methods
that perform well on problems that take take longer to solve, as larger proportional differ-
ences in faster problems are valued less than smaller proportional differences in problems
that take more time to solve.

4.5.1 Threats to Validity

One threat to internal validity is that negative transitive closure is not applicable to every
relation in every problem. For problems where this is the case, we use van Eijck’s method
to encode the relations for which negative transitive closure was not applicable. Another
threat to internal validity is the limited number of problems considered. A threat to
external validity is the fact that the problems examined were all created from Dash+ models
and (at least in part) by members of the WATForm lab at the University of Waterloo.
Biases in Dash+ models, or in how members of the WATForm lab create models may limit
the broader applicability of these results. Another potential threat to external validity is
that we consider only UNSAT problems. The encodings considered may behave differently
than observed on problems that are SAT. Unfortunately, at this time, to the best of our
knowledge, there is not existing benchmark for problems consisting of FOL and transitive
closure.

4.6 Summary

Negative transitive closure uses fewer formulas than the other methods for transitive clo-
sure elimination considered in this thesis. It additionally requires no auxiliary functions
and is tied with several methods for the smallest maximum quantifier depth. We find sta-
tistically significant evidence that negative transitive closure and Claessen’s method solve
the problems considered faster than iterative squaring and Liu et al.’s methods over the
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problems considered. When considering every scope cand problem considered, negative
transitive closure solves the problems fastest. Negative transitive closure is the fastest
method for 7 of 18 problems considered, and spread over the corpus it performs better
than the other methods considered.
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Chapter 5

Conclusions

This thesis provides improvements to finite representations of integers for MSFMF prob-
lems in SMT solvers. This thesis provides a formulation, called no-overflow bitvectors
(NOBV), of Milicevic and Jackson’s [25] method for preventing overflow when using bitvec-
tors to represent integers in MSFOL. This thesis then presents a number of extensions to
NOBV, generalizing it to support additional abstractions present in MSFOL. This thesis
also introduces overflow-preventing finite integers (OPFI). OPFI is a method for finitizing
integers that utilizes the theory of integers built into SMT solvers. OPFI is theoretically
more correct than NOBV (and unchecked bitvectors). This thesis then provides a per-
formance evaluation of unchecked bitvectors, NOBV, and OPFI. This thesis shows OPFI
outperforms NOBV in the SMT solver Z3 and does not perform significantly differently
than unchecked bitvectors.

This thesis introduces the negative transitive closure method as an encoding of uses
of negative transitive closure in an arbitrary MSFOL formula. Negative transitive closure
reduces the number of formulas needed to axiomatize the transitive closure of a relation
and uses no auxiliary functions. This thesis also provides a generalization of transitive
closure over higher-arity relations that avoids using additional auxiliary functions. This
thesis provides a performance evaluation of negative transitive closure and several existing
axiomatizations of transitive closure over finite domains. Negative transitive closure solved
the problems considered overall faster than the other methods considered and is statistically
significantly faster than Liu et al.’s method and the iterative squaring method. However,
research is needed to look at additional datasets and more problems.

Both OPFI and negative transitive closure depend the polarity of terms when translat-
ing them. When terms are contained within function definitions they have the potential to
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be used both positively and negatively. In OPFI, if an integer predicate is within a func-
tion definition, we axiomatize the function using ⇔, which allows us to treat the function
as positive in one subterm and negative in a separate subterm. Axiomatizing a function
definition containing a closure will not allow negative transitive closure to eliminate that
closure. While OPFI needs to know the polarity of a term, it still functions regardless of
what that polarity is. Negative transitive closure, conversely, requires that the polarity of
terms of the form (x, y) ∈ R+ are negative. Therefore, axiomatizing the function defini-
tion using ⇔ will guarantee that the relation in consideration is used both positively and
negatively, preventing negative transitive closure from being used to axiomatize it.

5.1 Future Work

There are several opportunities for improving MSFMF using SMT solvers.

5.1.1 Portus

Work is currently ongoing to translate Alloy models to Fortress for MSFMF via a tool
called Portus built within the Alloy Analyzer. Both integers and the transitive closure
operator are commonly used in Alloy models [13]. The improvements this thesis provides in
representing integers and transitive closure are useful for efficiently encoding Alloy models
in MSFOL for SMT solvers.

5.1.2 OPFI for Natural Numbers

Bitvectors represent values in a fixed range [−2n−1, 2n−1 − 1] for a value n. However,
negative values may not be needed to express certain models. For example, Liu et al.’s
axiomatization of transitive closure and counting the number of values for which a predicate
is true both require only non-negative integer values. As a result, half of the search
space is unused. OPFI can represent the range [0, 2n − 1] just as easily as it represents
[−2n−1, 2n−1 − 1].
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5.1.3 Reduction of Overflow Checking in OPFI

Currently, OPFI checks both arguments to the built-in integer predicates (=, <,>, etc.)
to ensure overflows do not occur in equations like

∀x • ∃y • x+ 1 < y

because values can only be chosen from inside the range of integers. In the above example,
when x = MAX, there does not exist a y in [MIN,MAX] such that x + 1 < y is
true. Without checking the arguments to the integer predicate for overflows, this would
incorrectly evaluate to false. If both arguments do not contain any quantified integers,
either in the form of variables or uninterpreted functions, this problem does not occur.
However, OPFI will still look for an overflow in cases like

MAX + 1 =MAX + 1

which incorrectly evaluates to false under OPFI. Detecting these unquantified terms to
avoid checking them for overflow could increase the correctness of OPFI.

5.1.4 Hybrid Bounded and Unbounded Integer Problems

In our performance evaluation of bounded integer methods on the SMT-LIB UFNIA bench-
mark set, unbounded integers solved problems faster than the bounded methods. However,
SMT solvers cannot solve some problems for unbounded integers. One could replace some
instances of unbounded integers with finitized integers while leaving others unbounded.
This would yield more theoretically correct results and potentially faster than converting
every usage of unbounded integers to bounded integers.

5.1.5 Solver-Specific Implementations of Transitive Closure

Currently, Fortress can use any off-the-shelf SMT solver that can take input in the SMT-
LIB format. Individual solvers perform differently and can support different theories and
operations directly. Notably, Z3 supports transitive closure of binary relations [34]. Fortress
may benefit from using a direct reference to transitive closure in Z3’s API. However, this
would require using a different generalization for closure over higher-arity.

64



5.1.6 SMT Algebraic Datatypes

For our evaluations of integer methods and transitive closure, Fortress uses distinct con-
stants to represent sort elements in SMT. Quantifiers are removed from the problem, to
produce a decidable problem in EUF, through skolemization and quantifier expansion.
However, SMT solvers have added algebraic datatypes. If algebraic datatypes are used
to represent domain elements, quantifiers may not need to be removed from the problem
because there is a finite search space for the quantified variables. Methods for transitive
closure elimination may perform differently when using algebraic datatypes rather than
distinct constants to encode domain elements.
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Appendix A

Results for Performance Evaluation
of Transitive Closure Elimination
Methods

Times considered are in seconds. TO is used to represent a test has timed out. Rows
highlighted in gray are the rows considered for evaluation. Rows highlighted in green
are the best method for the given problem-scope combination.

Model Scope Negative Claessen van Eijck Squaring Liu et al.

bit-counter 5 4.30 4.19 3.57 13.15 18.40
bit-counter 7 15.66 12.91 11.53 84.23 198.14
bit-counter 9 76.94 162.26 198.35 86.63 TO
parametric-bitcounter 5 52.61 94.16 48.46 100.36 54.13
parametric-bitcounter 7 98.26 281.44 387.11 370.71 TO
parametric-bitcounter 9 549.88 1096.05 872.15 923.87 TO
chord 5 TO TO TO TO 574.62
chord 7 TO TO TO TO 578.22
chord 9 TO TO TO TO 577.23
digital-watch 5 247.70 490.34 1106.23 TO TO
digital-watch 7 TO TO TO TO TO
digital-watch 9 TO TO TO TO TO
distributed-spanning-tree 5 198.77 217.03 207.37 291.79 176.55

Continued on Next Page
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Continued from Previous Page
Model Scope Negative Claessen van Eijck Squaring Liu et al.

distributed-spanning-tree 7 TO TO TO TO TO
distributed-spanning-tree 9 TO TO TO TO TO
ehealth 5 4.75 4.48 4.61 18.67 3.83
ehealth 7 9.95 14.99 5.64 28.45 83.11
ehealth 9 20.26 22.62 319.45 123.29 219.39
elevator 5 530.45 915.55 632.55 TO TO
elevator 7 TO TO TO TO TO
elevator 9 TO TO TO TO TO
farmer 5 3.56 10.27 7.24 17.19 43.80
farmer 7 90.92 33.10 58.50 92.28 30.75
farmer 9 201.66 240.47 242.03 353.35 TO
musical-chairs 5 4.66 4.28 3.70 4.90 6.82
musical-chairs 7 5.94 6.39 5.56 11.60 14.04
musical-chairs 9 8.10 10.34 8.08 516.01 7.70
mutex 5 5.53 21.54 9.27 51.28 4.27
mutex 7 12.10 14.49 50.58 33.06 11.55
mutex 9 57.73 104.57 27.48 701.92 16.22
rdt 5 111.96 19.30 40.46 173.14 TO
rdt 7 TO TO TO TO TO
rdt 9 TO TO TO TO TO
ref4 5 1.81 1.90 1.82 1.95 1.86
ref4 7 2.33 2.24 2.13 5.47 7.77
ref4 9 2.72 4.31 4.63 14.46 499.43
snapshot-ui 5 1.87 1.91 1.98 3.86 1.85
snapshot-ui 7 2.23 4.60 3.02 2.33 223.78
snapshot-ui 9 7.72 4.21 7.71 51.17 TO
traffic-light 5 16.13 19.75 4.82 30.10 10.24
traffic-light 7 57.99 10.57 37.31 162.66 352.95
traffic-light 9 54.44 179.13 112.32 16.52 6.53

Total (TO=1200) 4016.72 5051.57 5693.77 7498.99 11100.44

Model Scope Negative Claessen van Eijck Squaring Liu et al.
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