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Abstract

Deep neural networks have transformed a wide variety of domains including natural lan-
guage processing, image and video processing, and robotics. However, the computational
cost of training and inference with these models is high, and the rise of unsupervised
pretraining has allowed ever larger networks to be used to further improve performance.
Running these large neural networks in compute constrained environments such as on edge
devices is infeasible, and the alternative of doing inference using cloud compute can be
exceedingly expensive, with the largest language models needing to be distributed across
multiple GPUs.

Because of these constraints, size reduction and improving inference speed has been a
main focus in neural network research. A wide variety of techniques have been proposed
to improve the efficiency of existing neural networks including pruning, quantization, and
knowledge distillation. In addition there is extensive effort on creating more efficient net-
works through hand design or an automated process called neural architecture search.
However, there remain key domains where where there is significant room for improve-
ment, which we demonstrate in this thesis.

In this thesis we aim to improve the efficiency of deep neural networks in terms of in-
ference latency, model size and latent representation size. We take an alternative approach
to previous research and instead investigate redundant representations in neural networks.
Across three domains of text classification, image classification and generative models we
hypothesize that current neural networks contain representational redundancy and show
that through the removal of this redundancy we can improve their efficiency.

For image classification we hypothesize that convolution kernels contain redundancy
in terms of unnecessary channel wise flexibility, and test this by introducing additional
weight sharing into the network, preserving or even increasing classification performance
while requiring fewer parameters. We show the benefits of this approach on convolution
layers on the CIFAR and Imagenet datasets, on both standard models and models explicitly
designed to be parameter efficient.

For generative models we show it is possible to reduce the size of the latent repre-
sentation of the model while preserving the quality of the generated images through the
unsupervised disentanglement of shape and orientation. To do this we introduce the affine
variational autoencoder, a novel training procedure, and demonstrate its effectiveness on
the problem of generating 2 dimensional images, as well as 3 dimensional voxel represen-
tations of objects.
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Finally, looking at the transformer model, we note that there is a mismatch between
the tasks used for pretraining and the downstream tasks models are fine tuned on, such
as text classification.We hypothesize that this results in a redundancy in terms of unnec-
essary spatial information, and remove it through the introduction of learned sequence
length bottlenecks. We aim to create task specific networks given a dataset and perfor-
mance requirements through the use of a neural architecture search method and learned
downsampling. We show that these task specific networks achieve superior performance
in terms of inference latency and accuracy tradeoff to standard models without requiring
additional pretraining.
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Chapter 1

Introduction

Deep neural networks have achieved impressive performance across a wide variety of do-
mains including natural language, images and video, but their large size makes inference
costly, limiting their use for practical applications such as mobile phones or edge devices.
This issue has grown in recent years as models are becoming progressively larger to achieve
improved performance on more difficult problems. In this work we explore methods for
reducing representational redundancy in deep neural networks with the downstream goal
of improving inference latency and reducing size.

1.1 Problem Definition

Since a convolutional neural network[81] won the Imagenet[39] competition in 2012 neural
networks have progressively taken over more domains as the dominant approach. For
problem after problem the best approach changed from using hand designed features and
statistical learning to an end to end approach using neural networks with learned features.

Instead of designing feature extraction manually, the dominant approach became to
design a particular neural network for each task which automatically learns features using
gradient descent. This approach worked across a wide variety of domains. For example,
fully convolutional neural networks were used for semantic segmentation[100], a casual con-
volution based wavenet for audio generation[113], generative adversarial networks[52] and
variational autoencoders[78] for image generation, and a combination of recurrent neural
networks and attention for machine translation[104]. While these approaches consistently
improved performance over the older methods, the downside was that they were much more
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computationally expensive, making deployment to time sensitive or low power applications
such as edge devices difficult. As research progressed these issues became worse, as more
performance could be gained using ever larger models at a rate that surpassed performance
improvements from better hardware.

A new paradigm emerged with the introduction of unsupervised pretraining[67, 124,
120, 117], and the transformer[163]. Unsupervised pretraining allowed unlabelled datasets
to be used to improve performance of models which could later be fine tuned on smaller
labelled datasets. While this approach was not new in machine learning, having been
used for n-grams[17], word embeddings[106, 116], image classification[10] and even text
classification[67], the true potential of pretraining was not discovered until it was used in
conjunction with a flexible model like the transformer[163, 42], where it achieved dramati-
cally better performance on a variety of Natural Language Processing (NLP) tasks. These
developments were not limited to NLP as in the original transformer model, and it was
found that variants of the transformer were also shown to be superior on a wide variety of
tasks, including image classification[186], image segmentation[167], language modelling[18],
audio compression[38], speech recognition[192, 119] and a variety of text-image tasks[167].

These flexible models were uniquely able to leverage massive datasets to generate perfor-
mance improvements, leading to a paradigm shift where model size, data and computation
could be scaled to directly improve performance[73]. Progressively more flexible architec-
tures would be trained using more data to enable less human design at the cost of more
computation, data and model complexity[156]. Larger models perform better, but are also
more computationally expensive, causing a variety of issues related to inference latency in
time sensitive applications, power consumption in low power edge devices and high energy
consumption, resulting in high costs and negative effects on climate[83]. The largest and
best performing language models such as GPT3[18] take scaling to the extreme, contain-
ing 175 billion parameters, and require inference to be distributed across 8 Nvidia A100
GPUs[41], each costing about $10,000USD. This is because the model uses half precision,
so to store the model weights alone takes 350GB. The overhead of the intermediate repre-
sentations should add another 20% to this, so we would require over 400GB of memory in
total.

The issue of model complexity has been a focus of research efforts for many years, and
even before the rise of deep learning there were investigations into improving the efficiency
of more shallow neural networks[85]. In fact, the end of the AI winter came through the
utilization of graphics processing unit (GPU) acceleration to overcome compute bottlenecks
in neural network training[27, 81]. GPUs were designed to do massive parallel computation
of simple functions for graphics, which is similar to the large matrix multiplications used
in deep neural networks. Since then, the available compute has increased massively[138],
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and benchmarks that took weeks to train can now be done in minutes[31]. Yet we have
scaled model size even faster so the same problems with computational complexity remain,
and efficiency remains a focus in deep learning research.

There are a variety of ways in which neural networks are limited by compute con-
straints and can be made more efficient. For example, during the training process better
optimizers[76, 145, 101] can be used to speed up convergence, data augmentation[190,
43, 34, 197] or active learning[165, 47, 183] can reduce the number of labelled examples
needed. Alternatively the hardware itself can be optimized[107], as well as the development
of methods for improving distributed training across multiple GPUs[166, 122]. In this work
we instead focus on reducing redundancy in the neural network’s representations, with the
end goal of reducing the model size and increasing the speed of inference.

The two goals of small model size and fast inference are closely linked, as smaller models
tend to be faster, but this is not a consistent relationship[63] as models with the same
number of parameters can require wildly different numbers of floating point operations
(FLOPS), can be bottlenecked by memory or not have optimized software for execution
on a particular hardware. For this reason in this work we will be looking at both these
objectives to measure the downstream effects of our approach of reducing representational
redundancy.

1.2 Contributions

How can we construct deep neural networks that are more efficient in terms of inference
speed and model size while preserving their performance? Is there representational re-
dundancy in these networks that can be reduced to achieve these goals? In this work we
will approach these questions in three different domains, image classification with CNNs,
generative models with variational autoencoders, and text classification with transformer
models. While there has been extensive work on this problem, we see opportunities for
extension by reducing representational redundancy through the use of additional weight
sharing in CNNs, shape and orientation disentanglement in variational autoencoders, and
learned downsampling in transformer models, shown in Figure 1.1.

• Additional Weight Sharing in Convolutional Neural Networks - Our work on CNNs
is motivated by the fact that many of the efficient hand designed architectures use
special convolution layers with additional sparsity and weight sharing. In particular,
depth wise separable[148][25], dilated[185] and lightweight convolutions[175] all can
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be viewed as the introduction of sparsity or weight sharing on a standard convolu-
tion layer. Weight sharing not only reduces the network size in terms of parameters,
but also allows the model to be trained normally, with the benefit of fewer inde-
pendent parameters to be learned. While previous research has been effective in
removing redundant parameters through pruning[85][89], or designing more efficient
architectures more generally[159], we hypothesize that there remains additional rep-
resentational redundancy within the convolution layer, and take advantage of this
through the introduction of additional weight sharing into convolutions. We show
this can decrease model size while preserving or even increasing performance on large
scale image classification tasks such as Imagenet[39].

• Efficient Variational Autoencoders through Disentanglement of Shape and Orienta-
tion - We approach an unsupervised learning problem with the aim of creating
more compact representations through the disentanglement of shape and orienta-
tion. While there has been extensive previous work on disentangling representations,
research has focused on the more straightforward task where labels for the factors
of variation are available[77, 130, 147, 82, 40], so it is not truly unsupervised dis-
entanglement. We instead focus on the task of disentanglement where no labels are
available, in this case referring to the orientation of objects. We extend the variational
autoencoder[78] to perform unsupervised disentanglement of shape and orientation
through the addition of two affine transform layers into the model, along with an
optimization procedure enabling this disentanglement. We show this both results
in a more compact representation of the input, but also learns a more interpretable
latent space. This is demonstrated both for 2D images using 2D affine transforms,
as well as for 3D objects using 3D affine transforms.

• Fast Transformer Inference by Task Specific Learned Downsampling - Finally, we
approach the most recent and computationally intensive deep neural network ar-
chitecture, the transformer[163]. While there has been extensive work in efficient
transformer research[149, 22, 180, 97, 194, 136, 70, 155, 36, 153, 111, 53, 69], our con-
tribution distinguishes itself by addressing the redundancy arising from the mismatch
between pretraining tasks and the specific downstream tasks like text classification
these networks are commonly used for. Unlike previous work such as evolution-based
neural architecture search [149] and manual design approaches like DistilBERT [136],
MobileBERT [155], and Funnel Transformer [36], our approach introduces a unique
concept of learned sequence length bottlenecks adapted to a specific dataset, per-
formance needs, and hardware. This is accomplished through a neural architecture
search based approach, where we use Bayesian optimization to maximize inference
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speed subject to a constraint on accuracy. By focusing on text classification tasks,
our work sets a new benchmark, demonstrating a superior tradeoff between inference
speed and accuracy, thereby advancing the efficiency frontier in transformer research
[163].
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Figure 1.1: Visualizing the three proposed methods for redundancy reduction
within neural networks. The first method, on the left, is the use of additional
weight sharing in convolutional kernels. In the middle we see the Affine Varia-
tional Autoencoder, designed to disentangle orientation and shape to create a
compressed latent representation. On the right is the Classformer, a method to
learn task specific architectures for classification tasks through learned sequence
length bottlenecks.
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1.3 Thesis Outline

We first introduce background information and previous research relevant to the subsequent
chapters in Chapter 2. This includes a review of architecture search in Section 2.1 and
pruning and quantization in Section 2.2, as well as a review of the connections between
these. Background relevant for generative models, specifically variational autoencoders
along with work on disentangled representations is reviewed in Section 2.3. In Section 2.4,
we review the transformer architecture and previous work on efficient transformers.

In Chapter 3 we investigate how the use of additional weight sharing in convolutional
kernels can remove representational redundancy. We show this method can improve per-
formance on smaller datasets, and can also scale to large datasets.

In Chapter 4 we demonstrate a method to create more compact latent representations
in variational autoencoders through the disentanglement of orientation and shape. We
show this can be used to create more compact and interpretable representations, creating
more efficient generative models.

In Chapter 5 we extend transformer based models for text classification through the
use of learned downsampling, removing redundant sequence length information through
the use of task specific architectures. We show this can be used to improve inference
speed, and can also be used to tailor the architecture to a particular dataset, hardware
and performance requirements.
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Chapter 2

Background

In this chapter, we review relevant background for our goal of removing representational
redundancy in neural networks for applications in image classification, generative mod-
elling, and text classification. We will review methods for creating more parameter effi-
cient convolutional neural networks (CNN) through architecture search and neural network
compression through sparsity and quantization of the weights. For generative models we
begin with an introduction to Variational Autoencoders (VAE) as well as the most relevant
research for improving representations, particularly the research focused on disentangling
representations. In addition, we will review transformers and methods to increase efficiency
both through computationally efficient layers as well as in the architecture at a macro level.

2.1 Neural Architecture Search

The success of deep learning proved the superiority of learned features compared to hand
design, as was the norm with classical machine learning methods. A natural next step
was to learn the architecture of the network, called Neural Architecture Search (NAS),
instead of only learning the model’s weights. In this section we provide a general overview
of approaches to architecture search, provide detailed review of key research in this area,
as well as investigating the limitations of current NAS methods.
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2.1.1 Overview of Neural Architecture Search

Neural Architecture Search methods can be decomposed across three dimensions[46], (i)
Search Space, (ii) Search Strategy, (iii) Performance Estimation Strategy. While
these tasks are not totally independent (e.g. constraining the search space may result in
alternative performance estimation strategies), this is a practically useful way to break
down the problem.

Search Space

The search space is the set of all networks discoverable by the NAS method. Performance
of NAS methods are heavily dependent on good search space design to make the problem
tractable because the space of all possible neural networks is massive. In practice, even
limiting the search space to particular type of neural network, such as convolutional neural
networks, is not enough to make this efficiently searchable by known methods. Current
NAS methods use stronger restrictions on the search space, such as rearranging a number
of building blocks and their associated hyperparameters that are known to perform well,
including dilated convolutions[185], separable convolutions[148][25], as well as pooling and
identity layers. Other work has investigated more general architectures in the form of fully
connected networks[7][151], but the focus of this work will be on NAS methods that attain
strong performance on standard computer vision tasks, all of which require this constrained
search space. Common search spaces used in NAS are explained below:

1. Flexible Chain Structured Networks[198], where the network can be written
as a sequence of layers, possibly incorporating skip connections between layers. In
this case there is no fixed high level structure of the network, allowing for the entire
network to be constructed based on pre-defined building blocks, but with flexible
ordering and connections.

2. Cell Based Networks[199], where instead of searching over the entire architecture,
the higher level architecture is fixed, and the search takes place over cells, which are
then stacked together in a pre-defined way to form the full network. Cells refer to
small neural networks which are combined into a single, larger network. The higher
level architecture is hand defined, and the search happens within the cells. The
benefit of this is both the reduced search space, as well as the ability to scale up
a learned architecture to a different size by using a different higher level structure.
This method has a key limitation that the same blocks are repeated throughout the
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network, even though it may be optimal to use a different structure in different parts
of the network.

3. Other Search Spaces have also been investigated, including hierarchical search
spaces, where the network decides both the lower level cell, as well as some control
over the higher level structure of the network[92]. Other work has investigated relax-
ing the structure even further by searching over more flexible connections between
convolution layers without a fixed high level architecture or the restriction of a chain
structured network[179].

Search Strategy

A NAS method needs some way to explore the search space and find architectures with
high performance. Some common approaches are evolution, reinforcement learning, or
random search. While initial approaches framed this problem in terms of reinforcement
learning[198][199], there was a resurgence of evolution based methods when it was discov-
ered they outperform reinforcement learning based approaches in terms of training time.
Interestingly, both of these approaches only outperform random search by a small margin
of about 0.5% on CIFAR10[127].

Performance Estimation Strategy

The performance of the networks created by the search strategy must be evaluated, but
the standard method for evaluation of a discovered architecture is training the architecture
to full accuracy, which is extremely expensive. Alternative forms of performance evalua-
tion have been proposed to overcome this bottleneck. For example, some methods share
weights across models[96][118], using another model to estimate performance on an un-
trained model[93], while other methods estimate performance after the network is only
partially trained[127].

2.1.2 Key Approaches to Neural Architecture Search

Reinforcement Learning Based NAS

Architecture search can be framed as a reinforcement learning problem where we construct
an agent that aims to generate an architecture to maximize some reward, generally the
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classification accuracy. This formulation allows reinforcement learning algorithms to be
used even though architecture search is different than most reinforcement learning applica-
tions because NAS lacks a changing state. This means NAS is more similar to a stateless
multi-arm bandit problem[46]. Nevertheless, these approaches have shown some usefulness
for this problem, which we describe below.

Neural Architecture Search was first popularized with a search strategy based on re-
inforcement learning[198]. They used a recurrent neural network, called the controller to
define the network. At each time step the architecture is updated by the controller which
outputs parameters defining a convolutional layer(number of filters, filter height and width,
stride height and width), with its input being the parameters at the previous time step.
Because of the recurrent architecture, it is possible to generate convolutional architectures
with a variable number of layers. In addition, the controller can generate skip connections
in the network through an attention mechanism over the previous N − 1 layers, where the
attention is shown as:

P (Layer j is an input to layer i) = logistic(vT tanh(Wprev ∗ hj + Wcurr ∗ hi)) (2.1)

Here h represents the hidden states, while W and v are trainable parameters. These
additional inputs from the skip connections are concatenated in the feature dimension, and
if they have different spatial sizes the input is 0 padded.

The goal of this work is to optimize the parameters, θc of the controller to maximize the
expected validation accuracy of the generated CNN. In reinforcement learning terms, the
controller produces a set of actions, a1:T , which are the layers of the model, and is given a
reward, R the validation accuracy of the created model. Then we can write the expected
reward of a given set of parameters as:

J(θc) = EP (a1:T ;θc)[R] (2.2)

This is optimized using a policy gradient method, REINFORCE[172].

∇J(θc) =
T∑
t=1

EP (a1:T ;θc)[∇θclogP (at|a(t−1):1; θc)R] (2.3)

In practice, this is optimized with an empirical approximation of this expectation:

∇J(θc) ≈
1

m

m∑
k=1

T∑
t=1

EP (a1:T ;θc)[∇θclogP (at|a(t−1):1; θc)(Rk − b)] (2.4)
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In addition, they subtract a baseline, b from the reward, taken as an exponential moving
average of previous rewards. This is used to reduce the variance in gradient estimates and
can be shown to be equivalent as long as the baseline doesn’t depend on the current action.

This work achieves comparable accuracy to the best human designed networks on CI-
FAR10, and also was able to achieve SOTA for some NLP tasks. The limitation of this
method was the huge amount of compute required, because it was necessary to train a
total of 12800 architectures before the controller achieves their best results.

This method was improved on with the introduction of NASNet[199], where the search
space was redesigned to better allow the architectures to transfer to other datasets. Instead
of directly outputting the entire architecture in terms of convolution layers, they search
over cells, which are then stacked together in a pre-defined way to form the full network.
The higher level architecture is hand defined, with search only happening over the cell
structure.

They define two types of cells, normal and reduction, where reduction cells have a spatial
downsampling of a factor of 2. Each cell takes as input the outputs from the previous
two cells in the network, and the cell is composed of 5 blocks that the RNN generates
sequentially. For each block, the RNN first selects two inputs, either from the previous
two layers, or the outputs of previous blocks within this cell. Next the RNN outputs
two operations to apply to these inputs from a set of common operations in convolution
networks, including pooling, convolutions with various filter sizes and stride as well as
depthwise separable convolution. Next the outputs of these operations are combined using
either element wise addition or concatenation, again chosen by the RNN. The outputs of
these 5 blocks are then concatenated to get the output of the cell. Similarly to the original
NAS method, an RNN controller is used to generate the cell, and it is trained using another
policy gradient algorithm, Proximal Policy Optimization(PPO)[140].

This work achieved 2.4% top-1 accuracy on CIFAR10, which was state of the art at the
time, and 82.7% top-1 accuracy ImageNet even though the model was not directly trained
on ImageNet. They found that the best performing blocks mostly used depthwise separable
convolutions, as well as element wise addition instead of concatenation. The downside was
the extreme computational requirements. While the experiments are significantly faster
than the original NAS paper because of the smaller search space, they still take 1800 GPU
days. In addition, this is inefficient, because the results achieved with this process are only
marginally better than random search. The key take away from this work is the importance
of search space design, because with an appropriate search space even random search is
effective.
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2.1.3 Evolution Based Architecture Search

Evolutionary strategies is a black box optimization method inspired by the process of
biological evolution. The optimization process proceeds in terms of generations, where
at each generation a population of possible solutions is evaluated based on some fitness
function, and based on the fitness, the population is mutated and recombined to generate
a new population for the next generation.

Evolutionary methods for architecture search have been investigated since the 1990s,
with early work showing the effectiveness of evolutionary algorithms for constructing both
the weights and structure of recurrent networks[7]. They created a method called GNARL
(GeNeralized Acquisition of Recurrent Links), where there are two types of mutations, cor-
responding to mutating a parameter by adding Gaussian noise, and mutating the structure
of the network by adding or removing edges or nodes. These mutations are both controlled
by temperature parameters, allowing the severity of mutations to be annealed over later
generations.

Another method for simultaneously evolving weights and architectures is NeuroEvolu-
tion of Augmenting Topologies (NEAT)[151], which grows a simple network through three
mutations: modifying a weight, adding a connection between existing unconnected nodes,
or by adding a node in a given weight, splitting it into two parts. They directly encode the
entire structure of the network along with history markers allowing for recombination, as
well as using speciation, meaning that niches of individuals will compete with each other,
not the entire population.

More recent work has also used evolution based approaches for architecture search for
more modern convolutional networks. Tournament selection[128] has been used to evolve
networks, which is based on mutations, not recombination of different individuals as is
common in other evolutionary algorithms. At each step two models are randomly selected
from the population, and their performance is compared, with the worse model being
killed(removed from the population), and the better performing model being selected to
be a parent, meaning that it will undergo some mutation to produce a child model. This
child model is then added to the population, and the process is repeated. The population
is initialized with poorly performing architectures consisting of no convolution layers to
ensure that it truly is the evolution process discovering the architecture, not the result
of seeding it with a good human designed architecture. The DNA is represented as a
directed acyclic graph (DAG), where nodes represent nonlinearities, and the edges represent
convolution layers. For these mutations, there are a wide variety of commonly implemented
mutations like altering filter size, adding a convolution layer, changing stride or adding skip
connections. These mutations act on entire layers, and evolution is used on the architecture
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only; weights are trained normally given a fixed architecture using SGD.

Other work[127] extended the tournament selection based approach by adding regular-
ization in the form of removing older architectures, creating the first non-human designed
architecture to achieve SOTA on ImageNet, AmoebaNet. They use an architecture with
fixed higher level structure and search over two types of cells. Mutations are random op-
erations within the these cells, as in other work[199]. The regularization method adds the
constraint that the oldest individual in the population is killed, in addition to the standard
tournament selection process. They also noted this tends to search faster than RL[199],
and getting at least as good or better performance.

2.1.4 Efficiency Improvements in Neural Architecture Search

The extreme computational requirements of both reinforcement learning and evolution
based approaches meant that NAS was not practically useful for many problems. Because
of this, many approaches to speed up the process of NAS through search space redesign
have been proposed

Efficient Neural Architecture Search via Parameter Sharing (ENAS) aimed to speed
up architecture search by forcing models to share weights[118]. Because of weight sharing
between models, not every architecture needs to be trained fully from scratch, so compute
can be reduced by over 1000x. The key part of this work was to observe that every
architecture searchable by NAS is a subgraph in some larger graph, and the controller
should search for the optimal subgraph. This means that the same parameters can be
used for each model instead of being retrained each time. They investigate two types of
search spaces here, one designing the full architecture as is the original NAS paper[198],
where the controller RNN deciding the type of convolution and skip connections as well as
a cell-based search[199], which gave better performance.

Progressively increasing the search space for cell-based NAS was also investigated to
improve efficiency[93]. They first searched over limited cells, and by keeping only the best
performing architectures they extended the space to include more complex structures. In
addition, they train a surrogate model to estimate performance of a model based on the
architecture to avoid the expensive training process.

Other work[96] formulated NAS as a differentiable optimization problem so efficient
methods like SGD can be used for the optimization with no controller required. To make
this differentiable they use a learned softmax over all operations and alternatively train the
network parameters with SGD on training loss and the softmax parameters using SGD on
validation loss. To create the final architecture, they retain the top-k softmax activations,
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using k = 2, and retrain this network. This took only 4 gpu days of compute using a small
cell based search space.

Hierarchical representations of architectures[95] have been used to improve the search
space for tournament selection based NAS using a cell based search space. They use prim-
itives including various forms of pooling and convolution as the first level of the hierarchy,
and as search progresses these are combined to form higher level structures, which are used
as elements in higher levels of the hierarchy. This allows for more efficient search because
mutations can be applied at any level of the hierarchy, rather than only on lower level
operations. In addition, hierarchical search spaces have been used for search for semantic
segmentation[92], allowing the search over both the cell and network level. At the network
level, the search space is the amount of downsampling, and both the cells and network are
searched using a continuous relaxation of the problem[96].

Automatic search methods have also been applied across a variety of other problems. A
combination of hand designed scaling methods with base networks learned though architec-
ture search[159] has been used to design efficient networks. Reinforcement learning based
search was used to discover activation functions, resulting in the Swish activation function,
f(x) = x ∗ sigmoid(βx)[125]. Data Augmentation strategies have also been learned using
a similar reinforcement learning based strategy[33]. In addition, other work has included
objective functions in the form of inference latency to optimize the network for mobile
applications[158].

2.1.5 Limitations of Current NAS Methods

Though a comprehensive evaluation of the entire search space of discoverable architectures
using a cell based approach, it was shown that reinforcement learning based methods con-
verge more slowly than simple regularized evolution approaches[182]. In addition, random
search performs quite well, with state of the art semantic segmentation results found using
only random search[23]. Other methods such as ENAS under performed random search[3],
and other reinforcement learning or evolution based approaches provided only a small im-
provement over random search[127]. Many of the best human designed architectures lie
near the Pareto frontier of accuracy vs. network size[182], meaning that the architecture
search methods provide minimal improvement over the best human-designed models. Ar-
chitectures also exhibit locality, meaning that similar architectures attain similar accuracy
so there are many near optimally performing architectures within the search space.

Current NAS methods have limited ability to create genuinely new architectures. De-
velopments like ResNets[59], attention layers[163], dilated convolution[185] and depth wise
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separable convolution[148] could not have been discovered using current architecture search
methods. Important hand-designed innovations need to be directly added to the search
space for these NAS methods to use them. For this reason, existing NAS methods can
be best seen as rearranging existing blocks in a network to some optimal structure, not
generally searching in the space of architectures.

The key limitation of NAS is the difficulty of hand designing a search space small enough
for the inefficient search methods to work while also being large enough to include novel
components. In current NAS methods the search spaces need to be extremely limited,
mostly limited to rearranging existing hand-designed components. Because NAS search
methods remain relatively inefficient it is not possible to increase the search space enough
to be able discover novel lower-level components. To discover architectures with significant
performance improvements, NAS methods will need to use an expanded search space along
with more efficient exploration methods.

2.2 Network Compression

In this section we will focus on pruning and quantization methods for reducing network size,
instead of using hand design or NAS for efficiency. These approaches are closely related,
but instead of searching in some larger space for an optimal network like in NAS, pruning
and quantization methods start with an existing network and use methods to reduce the
size of this while preserving a certain level of accuracy. This problem turns out to have
much less computationally expensive approaches compared to the general NAS problem,
which we will discuss in detail in this section.

2.2.1 Sparsity

Sparsity refers to a model having a subset of parameters being exactly 0[48] and can be
divided into two categories, structured and unstructured. Unstructured sparsity simply
has the goal of reducing the number of parameters in the network without any concern for
how this is achieved. While unstructured pruning decreases the size of the network, this
does not necessarily correspond to a network that is more computationally efficient given
current hardware. Structured pruning overcomes this issue by forcing a particular form of
sparsity into the network that is practically useful, for example by removing entire kernels
in a convolutional network
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Figure 2.1: Comparing structured and unstructured sparsity. On the left we
see the densely connected neural network, with each node connected to every
other node. In the middle we see unstructured sparsity, where the weights are
randomly removed. On the right we see structured sparsity, where the weights
are removed in a structured way, in this case removing an entire neuron by
removing all weights connected to it.
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Unstructured Pruning

Magnitude based pruning[58] is a method for creating sparsity in a network where the
weights with the lowest absolute value are removed, and the network is retrained. This
method demonstrated that neural networks can achieve strong performance even with
a high level of sparsity. They also showed the effectiveness of l1 and l2 regularization
during pruning, finding that l1 regularization is most effective when pruning a network
without retraining, but l2 regularization is more effective when retraining is used. The
best performing method was an iterative process of training, pruning and retraining using
l2 regularization. Earlier work investigated a second-order approximation of the model’s
loss for pruning[85], but recent work has found comparable compression is possible without
this[109]. In addition, this iterative training and retraining has been improved by allowing
gradient updates to the pruned weights, letting incorrectly pruned weights to be added
back to the model[54][195].

Bayesian deep learning is another approach to creating sparse neural networks, where
a distribution, rather than a single value, is learned for each parameter. The reparame-
terization trick[78] allows these networks to be efficiently trained using standard methods.
After learning a distribution over the weights in the network, there is a principled way
to introduce sparsity by noticing that weights corresponding to distributions with high
variance are likely to be uninformative and only add noise to the model prediction, so can
be removed[108][102].

The problem of unstructured sparsity can also be framed as l0 regularization, where the
network is penalized based on the total number of non-zero weights. In contrast to l1 or
l2 regularization, this is a non-differentiable objective so it is difficult to optimize directly.
Recent work[103] has reformulated this problem using stochastic gates instead of exact l0
norm, so the expected l0 norm can be used to allow differentiability while still forcing the
weights to be exactly 0.

While variational dropout and l0 regularization can achieve state of the art sparsity on
smaller models, a recent review paper[48] showed this does not extend to larger models
such as ResNet50 on ImageNet, where modified magnitude based pruning can outperform
these methods. It was found that variational dropout can be slightly better than stan-
dard magnitude based pruning, but l0 is significantly worse. This was because variational
dropout is better able to distribute parameters across layers, retaining more in the most
important initial and final layers. With small hard-coded changes to preserve these param-
eters, magnitude based pruning is comparable to variational dropout. Interestingly this
was not the case on an NLP task, where l0 regularization performed well.
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Structured Pruning

Many unstructured sparsity methods can be transformed into structured sparsity methods
through small modifications. Magnitude based pruning[58] can be extended to structured
pruning by removing groups of weights based on any relevant summary statistic like lp
norm. The approximate l0 regularization approach can be extended to structured spar-
sity by sharing the same gate across multiple parameters[103], as well as the Bayesian
approach[102] by sharing the variance parameters between groups of weights.

In addition, group level sparsity has been introduced into simple fully connected neural
networks[137] through group l1 regularization[187], also known as group lasso. Regular-
ization using a standard lp norm shrinks the weight values independently, so the optimal
weight values can be shown as:

w⋆ = arg min
w

{
1

N

N∑
i=1

L(yi, f(xi, w)) + λ∥w∥p

}
(2.5)

Here w⋆ indicates the optimal weight values, L indicates the loss function for the net-
work’s performance, and

||w||p =

(
K∑
i=1

|wi|p
) 1

p

(2.6)

is the lp norm of the network’s weights. This can be extended to encourage group sparsity
as:

w⋆ = arg min
x

{
1

N

N∑
i=1

L(yi, f(xi)) + λ
1

J

J∑
j=1

||wj||2

}
(2.7)

Now the loss is replaced with this, which is the sum of the l2 norms of the J groups of
parameters. Because this is positive, it is equivalent to l1 norm of the losses of the groups.
Because within each group the l2 norm is used, this does not encourage sparsity within
groups, only between them.

This approach has been extended to encourage sparsity in convolutional networks[169],
where they used 2D slices of each convolution filter as groups, or by directly pruning filters
with small l1 norm[89]. Other group sparsity methods have taken the entire filter as the
group and pruned based on the expected loss change after removing it, approximated with
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the first order taylor expansion. They apply this method to iteratively remove the least
important filters and retrain the network, finding that this outperforms simple methods
such as mean activation or minimum weight. For a given feature map z with M elements,
and a sample loss, C on a minibatch of examples, this is shown as:

approximate cost =

∣∣∣∣∣ 1

M

M∑
i=1

δC

δzi
zi

∣∣∣∣∣ (2.8)

Other work created networks with individual and group level sparsity by formulating
the problem as the synthesis of a new network given some existing network[143]. They
model the creation of a network probabilistically:

P (Sg|Wg−1) =
∏
c∈C

[
P (s̄g,c|wg−1) ·

∏
i∈c

P (sg,i|Wg−1,i)

]
(2.9)

Here w refers to the weights in the network, and s to the connections. Here the right
term shows the probability of a given synapse/connection existing in the network given the
weights in the previous generation, and the left term represents the probability of a given
cluster of synapses given the network in the previous generation. Then environmental
constraints can be added to increase sparsity in the weights or clusters over generations.

2.2.2 Quantization

In addition to reducing the model size by enforcing sparsity, model compression is also
possible by quantizing weights, which means storing weights in a more compact format
than standard 32 bit float[55]. Quantization can be applied either during or after training,
with the simpler approach being after training, but this can come at the cost of reduced
performance. After training, quantization can be done through rounding or a more complex
method like k-means. In this section we will focus on learned quantization methods during
training because they have been shown to preserve performance best while reducing model
size.

A more extreme approach to quantization has shown weights can be quantized to binary
values during training by taking the sign of the weight[32]. They use this quantization
during the forward and backward pass, but the full precision is used during the update
step.
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wquantized =

{
+1, if w ≥ 0

−1, otherwise
(2.10)

Alternatively, they can be quantized probabilistically using the sigmoid of the weight:

wquantized =

{
+1, with probability p = σ(w)

−1, with probability 1 − p
(2.11)

This was extended[126] to use binary filters in addition to scaling factors for each
kernel, as well as using the proximal Newton algorithm[65] to minimize binarization loss.
In addition, this was extended to ternarization, where the weight is quantized to a set of
three values -1, 0, +1[91] and loss aware ternarization[64].

Other work has taken a different approach to quantization, using prior distribution
over weights as a mixture of k Gaussians fit using the Empirical Bayes method[161]. In
this case the main objective was model compression, because this allows the weights to be
compressed by encoding only the k cluster means and an assignment parameter, instead of
all parameters in the network. An additional component with mean fixed at 0 can be used
to learn sparsity, where its weight in the mixture will correspond to the amount of sparsity
in the network. In the final step each weight is assigned to the most likely component, and
the weight is quantized to the mean of this component. Other work[6] has also used the
end to end training approach, where parameters are quantized by being annealed gradually
from soft to hard assignment to a quantization level during training.

2.2.3 Sparsity and Weight Sharing in Convolutions

Many key advancements in convolutional neural networks can be framed in terms of in-
troducing sparsity and or weight sharing into an existing convolution. Here we will briefly
review a few of these instances.

Dilated convolutions [185] can be seen as a form of sparsity, with a dilation of a
factor of α being equivalent to a convolution with a kernel size α times as large, but
with many weights zeroed out. A more extreme form of sparsity is depthwise separable
convolutions[148, 25]. While normal convolutions take the entire feature map as input,
depth wise separable only take single 2d slice of the feature map as input, corresponding
to sparsity where weights in a convolution filter are zero except for a single channel.
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Group equivariant convolution layers[30] can be seen as a from of weight sharing, where
the same weight-shared convolution is applied at four 90 degree rotations. Also, lightweight
convolutions[175] can be seen as a case of both sparsity and weight sharing, where addi-
tional weight sharing is added to depthwise separable convolutions, forcing multiple filters
in a layer to share weights.

2.3 Generative Models

We review Variational Autoencoders [75] (VAE) to motivate our research on reducing the
size of latent representations in generative models. We also review some background on
disentangled representations which is closely related to our research question.

2.3.1 Variational Autoencoders

Variational Autoencoders are generative models where it is assumed that the data, X =
{x}ni=1 are generated from latent variables, z, with a prior distribution, pθ(z), as a centered
isotropic multivariate Gaussian. The likelihood, pθ(x|z) is assumed to be a multivariate
Gaussian, and the posterior, qϕ(z|x) is assumed to be Gaussian with diagonal covariance.
The parameters of the likelihood and posterior are represented with neural networks, as
shown in Figure2.2(b).

The VAE is trained to maximize likelihood of the data by maximizing the evidence
lower bound (ELBO) shown in equation 2.12. This entire network is differentiable, so can
be trained using stochastic gradient descent with this loss.

−LV AE = Ez∼qϕ [logpρ(x|z)] −KL(qϕ(z|x)||pρ(z))] (2.12)

An alternative motivation for VAEs can come from the autoencoder, which is a model
composed of two neural networks, an encoder and decoder that encode data x to a com-
pressed representation, z before decoding it as x′, as seen in Figure2.2(a). This model
is also trained using gradient descent to minimize the reconstruction error, the difference
between x and x′, commonly measured using mean squared error. We can see the VAE as
forcing a distribution on the latent space of the autoencoder, making it possible to sample
from the latent space and pass this through the decoder to generate samples from the
distribution.
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(a) Autoencoder

(b) Variational Autoencoder

Figure 2.2: The Autoencoder is composed of two neural networks, an encoder to
generate a compressed representation of the data, z, and a decoder reconstruct
the data from the latent representation. Variational Autoencoders also generate
a compressed representation of the data but add additional regularization to
the latent space to force it to be normally distributed, and are motivated by
Bayesian inference.
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2.3.2 Disentangled Representations

The goal of learning disentangled representations is to create a human interpretable repre-
sentation where variables correspond to an understandable category, such as color, shape
or size. Even though in general it is impossible to learn disentangled representations with-
out making some assumptions about the data [99], there has been extensive work on this
problem using relatively weak assumptions. One approach learns disentangled representa-
tions where semantically relevant variables are explicit in the latent space [130]. These are
not limited to affine transforms, and include variations such as lighting, color, or physical
attributes like shape. Another approach is based on semi-supervised learning, where im-
ages are generated based on both a latent variable and some relevant factor of variation,
which are assumed to be independent [77]. For face generation, disentangling shape and
appearance was tackled through the synthesis of appearance on a template followed by a
deformation [147]. Other work divides the latent space into explicit and implicit factors
of variation, and a training process where one factor is varied while fixing the others is
used to enforce the disentangled latent space [82]. These methods all require supervised
inputs, where they are labeled based on some factor of variation. It is also possible to
to use invertible transformations in VAEs [40] to disentangle appearance and perspective
using transformation parameters inferred from the object.

In addition to encouraging disentanglement, other work has explicitly encouraged neural
networks to generalize better to a specific factor of variation, which is also relevant to
creating better representations. In particular, Spatial Transformer Networks (STN) [72]
aim to transform images to some canonical orientation by applying an affine transform to
the input image using a differentiable three stage process:

1. Localization Network: This is a neural network taking an image as input, and
outputting the affine transformation parameters, α ∈ IR6 to be applied to this image.

2. Sampling Grid: Given a transform, the grid of coordinates in the input image
associated with each pixel in the output image

3. Image sampling: Given the grid, use bilinear sampling to apply it to the input
image.

This is differentiable, so it can be trained using stochastic gradient descent along with
the rest of the network. The STN generates a single prediction of the best transform
parameters and has no way to update them, so there is no guarantee of disentanglement.
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It is also possible to create networks that are equivariant to one specific factor of
variation to improve representations, such as CNNs that are equivariant to rotation and
reflection [30]. While this is an effective method, it is limited to 90◦ rotations, and adding
more factors of variation increases the complexity dramatically. Other work has focused on
rotations specifically using polar coordinates [157], but this is also limited to rotations only.
Another approach to ensure deep convolutional neural networks are invariant to arbitrary
affine transforms is to add a layer that applies a random affine transform to the feature
map, forcing the model to output the same classification regardless of the orientation of
the image [146], but additional methods are needed to get a disentangled representation
based on this approach.

2.4 Text Classification

In this section we will review the dominant approach to text classification, the transformer
architecture, as well as various methods to increase efficiency through shared parameters,
efficient self-attention layers, and modified architectures.

2.4.1 Transformers

The introduction of the Transformer[163] led to a paradigm shift in natural language pro-
cessing (NLP), where a variety of problems including language generation, question answer-
ing, and text classification could all be solved with a single architecture. In addition, its
flexible architecture with minimal inductive bias allowed it to be used in a variety of other
domains including vision and time series. This is all made possible by the transformer’s
use of unsupervised pretraining, allowing it to leverage large amounts of unlabelled data
to increase performance on tasks with limited amounts of labelled data.

Transformer Architecture

The architecture of most transformer style models[163, 98, 42] are composed of a stack
of identical blocks (excluding input and output layers), where each block consists of fully
connected layers, multihead attention[9], layer norm[8] and residual connections[60], shown
in 2.3.
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Figure 2.3: The high level architecture of the transformer model, specifically
a BERT style encoder-only model. The input is a sequence of tokens which
are first passed through an embedding layer, then through a stack of identical
transformer blocks. The output of the transformer blocks is passed through a
linear layer, and then through a softmax layer to generate a probability distri-
bution over the vocabulary.
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The transformer block can be shown as:

XA = LayerNorm(MultiheadSelfAttention(X)) + X

XB = LayerNorm(PositionFFN(XA)) + XA

Multihead Self Attention

We first describe single head self attention, a special case of multihead self attention.
We assume an input x of size RL × Rdk , which represents the entire sequence along with
an embedding dimension. Self-attention transforms the input sequence with three distinct
linear projections: W k, W q, and W v, which correspond respectively to the key, query, and
value in the attention mechanism. Self-attention computes a weighted sum of the values
(xWv), where the weighting is determined by the similarity of the query (xWq) with the
keys (xWk). Similarity is assessed by taking the dot product of the query with all keys
and dividing by

√
dk to scale down the magnitude. Finally a softmax is used to normalize

attention scores to between 0 and 1. These attention scores specify the extent to which
each value in the sequence should be attended to when processing the current part of the
sequence. Mathematically it is defined as:

SelfAttention(x) = softmax
((xWq)(xWk)T√

dk

)
(xWv) (2.13)

This is extended to multihead attention by dividing the input, x, into Nh vectors of

size RL×R
dk
Nh , and performing the self attention independently for each of the Nh vectors,

and finally concatenating them together again.

Position Wise Feed Forward

The feedforward part of the transformer block operates on the output of the self atten-
tion layer. Given two linear functions F1 and F2 of the form Wx + b, and a non-linear
activation act, the feed-forward layer acts independently on each position in the sequence
and is defined as:

F2(act(F1(XA)))

Tokenization

Before text is inputted to the network it must be converted from text to numbers, called
tokenization. A naive approach is to map each word or character to an integer which is
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used as a lookup for a demb dimensional embedding vector. These approaches are limited
because character level tokenization results in extremely long sequences and word level
tokenization results in large embedding sizes and limited flexibility in dealing with either
similar or rare words. An improved approach is to instead map commonly occurring parts
of words to individual tokens.

For the popular BERT[42] architecture wordpiece tokenization[176] with 30k tokens is
used. It improves on word level tokenization by dividing the input into a limited set of
subwords. Given some desired number of tokens and a training corpus, the tokenization
mapping is created by choosing a mapping to minimize the length of the training corpus
after tokenization.

Another popular approach for tokenization is Byte Pair Encoding (BPE)[142], used for
other transformer models such as Roberta[98], where it is used with a vocabulary size of
50k tokens. It is also a compromise between word and character level tokenization and is
based on subwords. It uses the byte pair encoding algorithm which works by starting off
with all individual characters as the vocabulary and iteratively merging the most frequent
instances in a sequence until the desired vocabulary size is reached.

Position Embeddings

As described above, the pure transformer architecture is translation invariant in the
tokens because position information is not introduced in the tokens or anywhere else in
the network. This would limit performance to that of a ’bag of words’ style model, which
in this case would be ’bag of tokens’. To overcome this, position information is added to
tokens through position embeddings.

One approach for position embeddings is to directly add position information to the
token embeddings at the start of the network. These can be in the form of sinusoidal
embeddings[163], where alternating sin and cos functions are used to generate an embed-
ding based on the position, pos and the dimension, i:

PE(pos,2i) = sin(pos/100002i/dmodel)

PE(pos,2i+1) = cos(pos/100002i/dmodel)

Another effective method for position embeddings is to make them fully learnable[163],
which can give similar performance in practice to the sinusoidal embeddings. In this case
there is a vector of size RL × Rdk that is directly added to the input embeddings, and
gradient updates are also performed on this vector, creating a learned position embedding.

Alternatively to absolute position embeddings discussed above, relative position embed-
dings [144] can explicitly represent positions between elements. This is implemented by
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adding position information into the key matrices at various layers of the network instead
of through direct addition only at the first layer of the network.

In self attention, the unnormalized (before softmax) attention weights are computed by
taking the dot product of the query and key. The query and key are computed by taking
the input vector, xi times the query projection WQ, and the key by multiplying the key
vector xj with the key projection WK :

eij =
(xiW

Q)(xjW
K)T√

d

For relative position embeddings an additional vector aKij is added to each of the pro-
jected keys. These are only added to a fixed number of offsets, and they find it is only
useful to add to their neighbors at some distance, k, from the query value:

eij =
(xiW

Q)(xjW
K + aKij )T

√
d

The standard attention weight as shown in equation 2.13 can be rewritten in the fol-
lowing form by making the absolute position embeddings explicit, where pi corresponds to
the absolute position embedding for input xi[170]:

eij =
xiW

QWKTxT
j + xiW

QWKTpTj + piWqW
KTxT

j + piW
QW kTpTj√

d

Other work such as Transformer XL[37] and XL Net[181] are designed to overcome the
fixed context length in standard transformers. They overcome this with a recurrent style
generalization of the transformer where hidden states between segments are reused, but to
do this a modified version of relative position embeddings is necessary to ensure the same
position embedding is not reused for multiple positions.

They replace the fixed position embedding pi with a relative position embedding ri−j.
piW

Q is separated into two learnable parameters u ∈ Rd for content and v ∈ Rd for location
based embeddings. Similarly the key weight matrix WK is split into location and content
components, WK

R and WK
E :

erelij =
xiW

qW k
E
T
xT
j + xiW

qW k
R
T
rTi−j + uW k

E
T
xT
j + vW k

R
T
rTi−j√

d
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The most promising form of position embeddings are called rotary embeddings[152],
which improve on the performance of existing position embeddings without the extra pa-
rameters required for relative position embeddings. The goal is to create a position em-
bedding where the inner product between a key and query value depends only on their
relative positions and their values, not their absolute positions. This is done by represent-
ing the vectors as complex numbers, where the absolute value represents their content, and
their orientation represents position. This ensures when taking the inner product between
vectors the position embedding of the output will only depend on their relative locations.
This can be applied to for standard self attention layers or most other efficient versions of
self attention.

Transformer Pretraining

The main advantage of the transformer is its ability to leverage large unlabelled datasets
through pretraining. The most common pretraining approaches are casual language mod-
elling (CLM), where the model is trained to predict the next words in a sentence, and
masked language modelling (MLM) where the model must fill in missing words in a
sentence[42, 120].

The masked language modelling objective for pretraining was introduced in BERT[42],
which showed state of the art performance on a variety of downstream tasks. In MLM, 15%
of tokens in a sentence are chosen for masking. Of this 15%, 80% are directly masked with
a special mask token [MASK]. 10% of the time it is replaced with a random token, and
10% with the original token. It is evaluated using cross entropy loss to predict the original
value of these masked tokens. In addition, there is a next sentence prediction objective,
where two sentences are sampled from either the same document or different documents.
These are concatenated as input to the model, and in addition to the MLM objective the
model must classify if the sentences are from the same document.

Roberta[98], is an improvement over the BERT model mostly through modified pre-
training. It uses more extensive pre-training with the MLM objective and entirely drops
the next sentence prediction objective, as they found it to be useless.

Other research has focused on more complex forms of pretraining objectives to improve
performance. Electra[28] is inspired by generative adversarial networks (GAN)[51], where
a discriminator and generator are jointly trained with opposing objectives, where the dis-
criminator’s goal is to classify if a data point is from the generator or the true distribution,
and the generator is trained to fool this discriminator. This results in a generator that
learns to generate realistic samples from the dataset.
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Electra is based on a similar principle, except it uses a fixed generator that is not
optimized jointly with the discriminator, and the focus here is on the discriminator. In
contrast to standard MLM training, where the true value of the [MASK] token is predicted,
during Electra pretraining the model is tasked with predicting if the token is from the
original data or from a smaller generator network. This means that the loss is computed
over the entire sequence length, instead of only the masked tokens like in standard MLM.
It was shown that this increases performance on downstream tasks while having faster
convergence during pretraining.

Overall, the transformer’s pretraining step dramatically improves performance on su-
pervised tasks with smaller datasets [163, 42, 120]. But these flexible architectures come
at a cost, and this is increased compute requirements and slow inference times, limiting
their use in low power applications such as mobile phones or edge devices.

2.4.2 Efficient Transformers

The high computational complexity of the transformer model[163] causes difficulty with
deployment in real world applications and has motivated a large research interest in im-
proving efficiency, especially in the expensive self attention layer. This has been achieved
through a variety of methods, including modified architectures, sparse attention, or less
computationally complex approximations to attention. In this section we will review some
of the most prominent and effective approaches to efficiency in transformers.

Efficient Self Attention Layers

One way to improve the computational efficiency of transformers is to focus on the attention
layer directly, because its quadratic complexity in sequence length is expensive, especially
for longer sequences. This has motivated a variety of approaches to efficient self attention
layers, including sparsity and lighter approximations to attention.

Transformers normally use multi-head attention, but recent work[177] has shown that
many attention heads are heavily focused on local context, meaning that attention over
the entire sequence length is unnecessarily computationally expensive. To take advantage
of this, the light transformer architecture was developed which uses a two branch design
where attention is used for global context and convolution for local context. This enables
both local and global aggregation of information without the computational complexity of
using full attention. Another approach is to replace self attention entirely with dynamic
convolution[175], which is a form of convolution with larger kernel sizes, and kernels that
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Figure 2.4: Comparing different versions of sparse self attention in the trans-
former. Each block represents a token, and the dark blue represent the token
attention is computed on, the query. On the far left we see full attention, im-
plemented in the original transformer, where every token attends to every other
token. In the center we see two versions of sparse attention, local attention,
which only attends to a fixed number of tokens on either side of the current
token, and strided attention, which attends to the nth token across the entire
sequence. On the far right we see a combination of local, fixed and random
attention used in the BigBird model.

are dynamically generated based on the input context. Additionally, weight sharing is
added in the dynamic convolution, so weights are repeated across multiple features.

Another more direct approach for efficient self attention is sparse attention, which
is applying attention to only a subset of the input tokens. There are different variants
of sparse attention, including attending a fixed sparse pattern of tokens[24], shown in
Figure 2.4 or through dynamic sparsity with an adaptive span[154] or content based with
k-means clustering[133].

The combiner[129] is motivated by the idea of treating attention as an expectation over
the sequence, and instead of computing attention directly in the combiner, attention is
factorized to achieve sub quadratic complexity. Practically this is implemented as a two
stage attention, where local chunks of the sequence are aggregated, and then these are
further aggregated. This results in a complexity of O(L

√
L) or O(LlogL depending on the

level of sparsity. Other work[94] showed that for vision and NLP problems self attention can
be replaced with gated MLP layers, called gMLP. More recent work leveraged the advances
of the combiner[129] and the gMLP[94] to enable a linear complexity model competitive
with full attention. They introduced a model called FLASH (Fast Linear Attention with a
Single Head), based on a linear approximation of the gated attention unit, a weaker single

32



head version of attention. It matches the perplexity of transformers over long (8k) and
short (512) contexts for language modelling with nearly 5x speedup in training time.

Full attention can also be approximated through locally sensitive hashing where only
the most relevant tokens are attended to, giving complexity of O(LlogL)[79]. Linear com-
plexity approximations have also been achieved, either with more complex forms of di-
rect sparsity, as in BigBird[188], or approximating the attention using orthogonal random
projections[26]. These linear complexity transformer models have high fixed costs so they
only outperform the standard transformer over longer length inputs, greater than 512[26].
This means that the speed of the standard transformer is still a strong baseline for many
text classification problems.

Efficient Transformer Architectures

Another approach is to modify the full architecture instead of just the self attention layer
itself. There are a wide variety of approaches to this, from various forms of architecture
search, to hand designed architectures, to special training procedures such as distillation.

Evolution based neural architecture search was able to improve machine translation
while reducing model size[149], and able to construct efficient task specific transformer
architectures [22]. Architectures can also be adapted dynamically during inference using
more computation for more difficult inputs. In practice, this means generating predictions
at an intermediate point in the transformer and not using the later layers. Auxiliary
classifiers can be added to each layer and early prediction can be decided by the entropy
of the predictions[180, 97], or by only predicting after the prediction hasn’t been updated
for a set number of layers[194].

Manual design of efficient architectures has also been effective in improving transform-
ers, such as in DistilBERT[136] a smaller version of BERT with 6 layers instead of 12. It
retains most of BERT’s accuracy while increasing inference speed and reducing the model
size by pretraining with knowledge distillation, where its’ objective is to match the output
of the larger model. SqueezeBERT[70] found that with lower sequence lengths of 128 the
feed forward part of the BERT model are most computationally expensive, accounting for
nearly 90% of the latency on CPU. They replace this with faster grouped convolutions,
increasing inference speed to 4.3x faster than BERT. MobileBERT[155] uses much smaller
layers with greater depth, changing from 12 to 24 blocks. In addition, they change the
form of the transformer block, changing layer norm to a linear layer, GeLU[61] to ReLU[4],
and use an inverted bottleneck layer to reduce dimension. The model is trained to copy the
outputs and layer activations of a larger teacher model which, resulting in MobileBERT
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having 25% of the parameters and up to 5.5x faster than BERT with only slightly worse
accuracy.

Other work has focused on reducing the sequence length in intermediate layers of the
network. The Funnel Transformer[36] increases efficiency by reducing sequence length in
later layers of the model with strided mean pooling on the query values. They find this
allows a deeper model while still reducing the number of flops and preserving accuracy. To
allow for standard pre-training methods, they include an optional decoder that up-samples
the sequence to the full input length. Similarly there has been research in efficiency for
language modelling by pooling tokens across multiple scales[153], and by constructing
an explicit hierarchical structure by downsampling and upsampling the sequence length
in the hourglass transformer[111], similarly to the UNet in computer vision[132]. Other
approaches use the average attention score on each token as a measure of importance for
pruning, as in PoWER-BERT[53] or aim to reduce the most redundant tokens based on
core set selection[69].

Other Methods for Efficient Transformers

Efficient neural networks have been an active area of research in a wide variety of appli-
cations and many of the innovations described previously can be applied to transformers.
Examples include pruning to remove redundant weights[85][89], quantizing weights[57],
various forms of architecture search including genetically inspired methods, reinforcement
learning and continuous relaxations to enable differentiation[143, 158, 96]. Efficient layer
design has also been popular with convolutional neural networks, including depth wise
separable[148][25] and dilated[185] convolutions.

2.4.3 Multi Task Training

It is standard for transformer based NLP models to be pre-trained on an unsupervised
objective, such as MLM or CLM before being fine-tuned on a supervised task such as text
classification. An intuitive approach is to include a third step, called multitask learning or
pre-finetuning[5], where the pre-trained model is further trained on a set of tasks with the
aim of increasing performance on the downstream task.

Additional pre-training has been shown to be useful in a variety of settings. A domain
specific dataset can improve performance within this domain, such as in BioBERT[87],
where additional pre-training on biomedical data was used on the BERT model. This
improved performance when the model was finetuned on biomedical related tasks. In
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ToDBert[174] additional pretraining with a modified objective on task oriented dialogue
datasets improved performance on downstream tasks.

Exploring transfer between tasks has been an important research area in machine learn-
ing for a long time[19], but there has been renewed interest in transfer and multitask learn-
ing in the NLP domain since the introduction of the transformer. One approach that found
benefit from using multitask training step was UNIFIEDQA[74]. This focused exclusively
on question answering (QA) tasks, and involved converting all data into text-to-text for-
mat which enabled positive transfer between tasks. One approach is to convert a variety
of problems into a text-to-text format, enabling a single model to be used for many tasks
including QA, summarization and classification[121]. But this work also showed that naive
approaches to multitask learning in NLP does not work and can hurt performance on a
downstream task.

The Muppet[5] model trains on multiple tasks including classification, summarization,
machine reading comprehension and commonsense reasoning were all trained using the
same backbone with different heads for each type of task. They found that there are mul-
tiple keys to effective multitask training. The number of tasks used is especially important,
and 10-25 tasks are needed to improve performance depending on the downstream tasks.

While the datasets have extremely different sizes, they found adjusting the sampling
method performed worse than just sampling according to the natural distribution of the
datasets. In addition, during training it is essential to use heterogeneous batches, where
each gradient update is computed from a batch containing samples from multiple datasets.
This can be implemented efficiently through gradient accumulation to avoid the difficulty
of merging multiple tasks and objectives into a single batch.

Loss scaling is also necessary because of the different scales of the losses on each task
and dataset. This is of the form:

Lscaled
i (xi, yi; θ) =

Li(xi, yi; θ)

log n(i)
(2.14)

where Li(xi, yi; θ) indicates the loss for data i on a model with parameters θ. This loss
function L depends on the particular task being done, with cross entropy used for clas-
sification, label smoothed cross entropy for summarization, span prediction for MRC and
sentence ranking loss for commonsense reasoning. n : N → N indicates the number of
predictions each loss operates over, for example in classification this would be the number
of classes.

35



2.5 Discussion

Across these disparate fields of image processing, generative models and natural language
processing, a wide variety of approaches have been used to increase the efficiency of neural
networks. Some approaches more directly frame the problem in terms of reducing redun-
dancy, such as quantization reducing the number of bits required to represent a weight.
Others, such as neural architecture search, are indirect, but still closely related to the goal
of reducing representational redundancy. Motivated by all these previous developments
across various applications of efficient neural networks, in the next chapters we investigate
approaches to improve efficiency through the direct approach of reducing representational
redundancy in the form of weight sharing, disentangled representations, and the removal
of redundant sequence information. In Chapter 3 we begin with the problem of image
classification, and find that additional weight sharing is a way to reduce representational
redundancy within convolutional neural networks.
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Chapter 3

Efficient Convolutional Neural
Networks through Weight Sharing

As reviewed in Chapter 3, the convolutional neural network (CNN) is a powerful tool for
image classification, however, their large size can make training and deployment difficult.
A wide variety of approaches to solving this problem have been explored, but in this
chapter we propose an alternative approach centered around removing redundancy in the
convolution layer. We hypothesize that there is representational redundancy in the form of
unnecessary diversity between channel weights in a convolution filter, and take advantage of
this to develop a novel type of convolution using additional weight sharing. To demonstrate
this we show that the weights in a convolution filter can be shared across channels while
preserving or even improving classification performance, and that this method is compatible
with some of the most efficient CNNs, including those designed through neural architecture
search.

3.1 Representational Redundancy in CNNs

Previous research on improving efficiency in CNNs has focused on reducing the number of
parameters in the network, either through structured or unstructured pruning, or reducing
the size of each parameter with quantization. Architecture search is another approach but
is less flexible, being limited to rearranging predefined layers to make the problem com-
putationally tractable, as discussed in the background, Chapter 3. All these approaches
retain the original convolution layers, without investigating if there is redundancy in the
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Figure 3.1: On the left we see a visualization of convolution kernels with (bot-
tom) and without (top) additional weight sharing. Weight sharing reduces the
number independent channels and parameters in each convolution kernel. To
take the same size feature map as input, the weight shared convolution is ex-
panded through duplication in the channel dimension.
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convolution itself. In contrast, we take a novel approach and investigate redundancy in
the convolution kernel’s weights, and redesign the convolution through a constrained opti-
mization process.

We hypothesize that there exists redundancy within the convolution kernel in terms
of unnecessary flexibility between channels. By reducing this channel-wise flexibility, we
hope to reduce the overall number of parameters that need to be stored.

Our approach is to constrain the convolution kernel by forcing weights to take the same
values during the optimization process, known as weight sharing. In particular, we will be
focused on constraining the channel wise flexibility of convolution kernels, so we will be
removing the independence of parameters between channels within a convolution kernel.

3.2 Constrained Optimization and Weight Sharing in

CNNs

We introduce additional weight sharing into convolution layers in the CNN. More specifi-
cally, we apply a constraint within a layer that requires certain sets of parameters to have
identical values. This strategy particularly applies to weights in the channel dimension,
making them interdependent within a single convolution kernel. This approach can be
easily implemented using PyTorch[114], by creating copies of a convolution kernel across
the channel dimension. This ensures that during backpropagation, PyTorch automatically
enforces the weight sharing rule via gradient accumulation. This method of weight sharing
is confined within each individual layer and does not extend across different layers. We
describe the principle of weight sharing in more detail below.

Weight sharing can be formulated as a constrained optimization problem, where sets
of parameters are required to have the same value. For example, if the weights, w, were
divided into sets: {wbasis

0 }, {wbasis
1 }, .., {wbasis

Nbasis}, the weights within these sets are enforced
to take the same value. If we assume a neural network f , with inputs xi and labels yi, this
constrained optimization problem can be expressed mathematically as:

min
w

1

N

N∑
i=1

L(f(xi,w), yi)

s.t. ∀{wj} ∈ {{w0}, {w1}, ..., {wNbasis}},∀wj,k ∈ {wj}, wj,0 = wj,1 = ... = wj,k

Weight sharing is enforced during training through the use of gradient accumulation.
At each iteration, we first perform a forward pass, then compute the gradients of the loss
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function with respect to the model’s parameters. Following this, we apply the weight
sharing constraints by averaging the gradients corresponding to the weights within the
same set. This ensures that the weights in the constrained sets are updated by the same
amount, effectively maintaining the shared values throughout training. Finally, we perform
a gradient update step using an optimizer, in this case Adam[76], to adjust the model’s
parameters based on the constrained gradients.

3.3 Details of Weight Sharing Implementation

While the reduction of representational redundancy through additional weight sharing is
the focus of this work, we do not have to start from the classic convolution kernel, and we
can instead leverage previous innovations as a stronger starting point. Specifically, we can
leverage the depthwise separable convolution, which has been shown to be a more efficient
alternative to standard convolutions[25][66].

Given a feature map of size (n×n×d), where n represents the height and width of the
image and d denotes the number of feature maps, a standard convolution layer aiming to
output a feature map of identical dimensions would require (d × d × h × w) independent
parameters. The dimensions (h,w) correspond to the kernel width and height, and the
number of independent parameters arises from the fact that d convolutions of size (d×h×w)
are required for each channel.

To alleviate the issue of excessive parameters, depthwise separable convolutions were
developed, reducing the number of parameters in the convolution layer by performing
convolution independently over each input channel. This approach leads to the depthwise
separable convolution taking only a single slice of the feature map as input, as opposed to
the entire feature map used in standard convolutions. Consequently, convolutions are only
sized (1 × h× w), resulting in a total parameter count of (d× 1 × h× w) per convolution
layer. The significant parameter savings provided by depthwise separable convolutions
have made them a popular choice for efficient neural networks, particularly in mobile
applications[25][66]. This can be visualized in Figure 3.2, where the top panel illustrates a
standard convolution, and the middle panel demonstrates the parameter reduction achieved
through depthwise separable convolution.

Furthermore, the number of parameters in depthwise separable convolutions can be
reduced even more by incorporating weight sharing along the channel dimension, as we
have discussed above. This technique involves multiple filters in a single layer sharing
identical weights. By incorporating additional weight sharing at a factor of s, the number
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Figure 3.2: Comparing standard convolution (top), depthwise separable con-
volution (middle) and weight shared convolution (bottom) filters for 4 channel
inputs. Each row shows 4 convolution filters which each will output a feature
map. White portions correspond to areas with no parameters. Standard con-
volution uses independent parameters for each filter, while depthwise separable
uses only a single feature map as input to each filter. Weight shared depthwise
separable further simplifies the convolution by forcing multiple filters to share
the same parameters, as indicated by the same colors in different filters.

of parameters can be decreased to (d/s × 1 × h × w), achieved by reusing the same filter
s times. It should be noted that weight shared convolutions with s = 1 are equivalent to
depthwise separable convolutions. A summary of the details is provided in table 3.3.

Convolution Type Parameters (h× w kernel; d feature maps)
Regular Convolution d2 × h× w
Depthwise Separable
Convolution

d× h× w

Weight Shared Convo-
lution

(d/s) × h× w, where s is the amount of weight sharing

Why Weight Sharing within Convolutions? We may question why the weight
sharing is applied within the convolution layer, as opposed to between layers. In the-
ory we could implement weight sharing between layers in the CNN, such as was done in
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ALBERT[84] for transformer models. But this is more difficult for CNNs, as in a trans-
former model the same sequence length and latent dimension is preserved throughout the
entire network, making parameter sharing straightforward. In CNNs, the number of fea-
ture maps change throughout the network, generally increasing at later layers, meaning
this straightforward implementation is not possible. In addition, it has been shown that
features extracted at earlier layers of the CNN are different than those extracted at later
layers, with those from earlier layers generally corresponding to low level features like edges,
and those at deeper layers corresponding to higher level concepts like objects[189]. While
there could be benefit from sharing features between layers, it more difficult than sharing
within a layer, so we leave this for future work.

3.4 Generalizing Weight Sharing

We can also look at weight sharing more generally, and instead allow the network to learn
which parameters to share instead of it being hardcoded. Given a network with a set of
weights W = {w1, w2, ..., wN}, assume there are only N basis independent weights in the
network, with all other weights being equal to one of these: (wbasis

0 , wbasis
1 , .., wbasis

Nbasis).

Naively searching over weight sharing in a network is intractable, because the total
number of configurations of weight sharing in a network is over 2N , where N is the number
of weights in the network. To simplify this problem we will limit it to searching for weight
sharing within convolutions, which can reduce the search space to only one layer with many
fewer parameters. In addition, we will not aim to search over all possible weight-sharing
arrangements, the search will be limited to a fixed number of shared weights.

This reduces the problem significantly, so for a given layer l, we will aim to learn the
set of N basis

l basis parameters for this layer. This will be a vector of weights: wbasis
l =

wbasis
l,0 , wbasis

l,1 , .., wbasis
l,Nbasis

l
. In addition, each weight in the network will have to take on the

value of one of these basis weights. So we will also have to learn an assignment that maps
each weight in a given layer Nl to one of the weights in N basis

l . This is still computationally
intractable to brute force search, but in this form the problem is constrained enough to
approach using other methods.

3.5 Weight Sharing within Convolutions

With the problem of searching over weight sharing limited to within convolution kernels,
we take inspiration from work where seemingly intractable problems were solved directly.
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When creating sparse neural networks, there are a massive number of combinations of
weights which could possibly be removed, but a simple heuristic of removing the weights
with the smallest value is surprisingly effective. While removing weights directly is not our
goal, we can develop methods to help weights converge toward the basis weights during
training, and then quantize them directly to these basis weights. This contrasts with
pruning, which can be thought of as quantizing the weights to 0.

3.5.1 Bayesian Priors - Gaussian Mixture Model

A standard method for regularization in regression is using the l2 norm, which is equivalent
to a Gaussian prior distribution over the parameters, with the mean set to 0. In addition,
a Gaussian prior centered at any mean has the effect of encouraging the parameters to
be close to this mean. Because of this, a prior in the form of a Gaussian Mixture Model
(GMM) has the effect of encouraging parameters to become close to a fixed set of values,
the means of the mixture components. In addition, we can allow these means to be trained,
so that the network can learn both set of basis weights wbasis, which are the means of the
components, as well as encouraging weights in the network to be close to these basis weights
during training.

This strategy has been investigated in previous work[112][161], where it was used for
quantization. In addition, this method can also be used to introduce sparsity into the
network, just as with a standard Gaussian prior. We can fix one component as µj = 0,
and then all parameters that are quantized to this component can be set to 0. The level
of sparsity can be adjusted based on the probability of that component, πj.

For a mixture with J components, the probability of a set of weights w is shown as:

p(w) =
J∑

j=1

πjN (w|µj, σ
2
j ) (3.1)

There is flexibility in how this model can be trained. It is possible to train both the
model’s weights w, as well as the GMM’s parameters π, µ, σ jointly by maximum likelihood,
which is an Empirical Bayes approach. In addition, the component probabilities, π can
be trained with a hyperprior, or they can be fixed, for example fixing πj corresponding to
µj = 0 to enforce some level of sparsity. In practice, to train this model we can add the
negative log likelihood of the model parameters under this prior to the loss function along
with some factor τ to train the model:

Loss =
1

N

N∑
i=1

L(yi, f(xi)) − τ log p(w, |µ, σ, π) (3.2)
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After training, the weights of the model should become closer to the basis weights, so
they can be quantized to these values.

3.5.2 Bayesian Priors - Laplace Mixture Model

A Gaussian Prior corresponds to l2 regularization, which encourages values to be a small
distance from the mean, but not exactly equal to it. Using l1 regularization instead of
l2 regularization was first suggested for the purpose of variable selection and increasing
interpretability in standard regression models by selecting only a subset of variables to be
used for the final regression model [160]. Because l1 regularization encourages the absolute
value of the parameters to be small, it performs variable selection, compared to the more
standard l2 regularization that only encourages small values. Because of this, a more
appropriate prior to encourage weights to be exactly equal to the mean of the distribution
is the Laplace distribution, corresponding to l1 regularization:

p(w) =
1

2b
e−

|w−µ|
b (3.3)

We can also leverage the Laplace distribution to encourage better quantization of
weights. Instead of using a single component and setting the mean µ = 0 as in stan-
dard l1 regularization, we can use a mixture of Laplace distributions, and allow the means
to the learned. So instead of encouraging parameters to be exactly equal to 0, it encourages
them to be exactly equal to the means of the components. This is implemented similarly to
the Gaussian Mixture Model, but with the Laplace distribution for each of the components,
as shown below:

p(w) =
J∑

j=1

πj
1

2bj
e
−

|w−µj |
bj (3.4)

This is beneficial because at the quantization step more weights will already be identical
to the mean of the distribution, which is the basis weight these weights will be quantized
to. Because the weights will have to change less during the quantization step, we expect
the model’s performance will not be harmed as much through quantization.
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3.5.3 Loss functions

Taking inspiration form the approach of Gaussian and Laplace priors, we propose an al-
ternative approach, where we design specific loss functions to encourage the weights to
cluster in a sensible way which is useful for weight sharing. Sometimes loss functions can
be equivalent to using prior distributions, as the l2 loss is equivalent to a Gaussian prior,
and the l1 loss is equivalent to Laplace. We use loss functions in a slightly different form,
where the loss will only be a function of the distance from a weight to its nearest basis
weight.

We will use loss functions of the form:

loss =
N∑
j=1

∥min{|wj − wbasis
i |; ∀i ∈ wbasis}∥p (3.5)

Where N is the number of weights in the network, and the loss is interpreted as the
minimum distance from a given weight to the nearest basis weight.

We can also enforce similarity between kernels by using this loss over entire kernels
instead of individual weights. For example, we can use a fixed set of basis kernels, wkbasis,
corresponding to the vector of weights representing a single kernel. The l2 norm is used
to indicate similarity between kernels. This is similar to group lasso[187]. Assuming Nk is
the number of kernels in the layer, we can write this as:

loss =
Nk∑
j=1

∥min{∥wkj − wkbasis
i ∥2; ∀i ∈ wkbasis}∥p (3.6)

3.6 Experiments

We investigate if additional weight sharing within convolution layers is a useful way to re-
duce redundant parameters for image classification problems by evaluating on the CIFAR
10 and 100 datasets[80] as well as the Imagenet dataset[39]. We use standard and effi-
cient architectures with varying amounts of weight sharing within the depthwise separable
convolution layers to understand the effects of additional weight sharing.

45



3.6.1 CIFAR 10 and 100

We investigated adding additional weight sharing into Xception[25], a model that popular-
ized the use of more parameter efficient depthwise separable convolutions. We tested this
model on the CIFAR 10 and 100 datasets, both consisting of 60000 32 × 32 pixel images
with 10 and 100 classes, respectively. We train our model for 300 epochs using SGD with
momentum. A batch size of 32 is used and the learning rate is stepped down by a factor
of 5 every 50 epochs. The initial learning rate is 0.1 with a weight decay of 0.0001 and
momentum of 0.9. The model is trained on a single NVIDIA GTX Titan GPU and is
implemented using PyTorch[114].

Looking at Figure 3.3, we see how the performance of the Xception model changes as
additional weight sharing is added to the depthwise separable convolutions. This indicates
that classification accuracy increases for both the CIFAR10 and CIFAR100 datasets with
only half the number of independent parameters in the convolution layers. In CIFAR100,
this is true even with 75% of the parameters in these layers being shared. Both these models
were trained from scratch, using the standard Xception model, except changing the last
layer to correspond to the correct number of classes, as well as changing the standard
depthwise separable convolution to include weight sharing.

3.6.2 Visualization of the Effects of Weight Sharing on CIFAR

We visualize the difference between the standard Xception model and the model with
additional weight sharing. Figure 3.4 shows a comparison between the kernels in the first
layer at 4 levels of weight sharing, 100% (standard model), 50%, 25%, and 12.5%. Because
we are visualizing the kernels in the first layer, taking the image as input, we can visualize
the 3 channel input using color, although this would not be possible for any other layers
in the network. Another special aspect of this layer is that this is the only convolutional
layer in the network where weight sharing is not used. Standard dense convolutions are
used for the input layer, compared to separable convolutions used in later layers of our
version of the Xception architecture. The kernels are not presented in the order they are
found in the layer, as this ordering is meaningless. Instead we have sorted the kernels based
on cosine similarity to the baseline network (100% weight sharing). This allows an easier
comparison to see differences between kernels learned under different amounts of weight
sharing. Based on the kernels in figure 3.4, we see that the weight sharing in later layers
of the network has minimal effect on the kernels learned in the first layer of the network.

In figure 3.5 we visualize the kernels in the second layer of the network. Weight sharing
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Figure 3.3: Test set classification accuracy of the Xception model with addi-
tional weight sharing on the CIFAR10 & CIFAR100 datasets. Performance
increases with additional weight sharing, and reaches a maximum at 50% of
original parameters for CIFAR10, and 25% for CIFAR100.
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Figure 3.4: Visualization of the first layer kernels with varying amounts of
weight sharing. Because this layer takes RGB images as input, we can visualize
the full 3 channel kernel using color, and see that the amount of weight sharing
has a minimal effect on the kernels learned.
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Figure 3.5: Visualization of the second layer kernels with varying amounts of
weight sharing. The duplicated weights are clearly visible in the network, but
there is no consistent change in the types of learned kernels through the addition
of weight sharing.
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is used at this layer so we see fewer unique kernels, but there is no consistent change in
the types of kernels we see.
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Figure 3.6: Visualization of class activation maps of a convolutional neural
network using weight sharing with 25% convolution parameters compared to
one using standard convolution layers with no additional weight sharing.
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We also visualize the most relevant areas of the image used by the model for classi-
fication with and without weight sharing using GradCam[141]. This is an extension of
Class Activation Maps[193], which generates heatmaps by multiplying the global average
pooling layer’s activations by the weights of the last linear layer that correspond to the
class we are interested in. This allows us to see which parts of the image are most relevant
to the classification. GradCam extends this method by looking at the gradients of the class
of interest, and so is more flexible and can be used to create visualizations for different
layers and different structured CNNs. Figure 3.6 shows visualizations created using Grad-
Cam for the CIFAR10 dataset, looking at the third convolutional layer and the activations
corresponding to the correct class. We see that the class activation maps may be more
diffuse for the model with additional weight sharing, but further investigation is needed to
determine if this is a consistent effect.

3.6.3 Imagenet

We also investigated this method on a more difficult benchmark, Imagenet[39], contain-
ing 1.2 million high resolution images divided into 1000 classes. For this we use a much
stronger baseline architecture called EfficientNet[159]. This is a model explicitly designed
to be parameter efficient by building on a variety of previous developments. These in-
clude depthwise separable convolutions[148, 25], inverted bottleneck residual blocks[135],
squeeze-and-excitation blocks[68] all optimized using a multi objective neural architecture
method designed to optimize accuracy and model size jointly[158].

There are a variety of EfficientNet architectures trading off model size and accuracy,
but we use the smallest version of this model, B0, containing 5.3 million parameters.
It is trained from scratch using RMSprop optimizer[62], a learning rate of 0.072 and a
linear learning rate warmup. A batch size of 120 is used and it is trained for 550 epochs
using distributed training on 8 NVIDIA V100 GPUs. The model is implemented using
PyTorch[114].

% of Weights Remaining in Separable Con-
volution

Accuracy
(top1)

Accuracy
(top5)

100% (Original implementation) 76.3% 93.2%
100% (PyTorch implementation) 77.2% 93.4%
50% 77.1% 93.4%
25% 76.8% 93.3%
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Figure 3.7: Using a subset of Imagenet and the Resnet50 model, we compare the
performance when removing channels from the model vs. using weight sharing.
We see that weight sharing is more effective than channel removal across all
levels of weight sharing.

Table 3.6.3 shows the results of these tests, indicating that 50% of the convolution
parameters can be removed through weight sharing with no significant loss in accuracy,
and at 25% of the original convolution parameters the model still performs competitively.
We note that accuracy here is slightly higher than in the original implementation because
we modified the training schedule to train for more epochs (550 vs. 300).

3.6.4 Weight Sharing vs. Channel Removal

We also compare weight sharing to removing channels entirely from the network. This is
to ensure that the improvement is not simply due to the fact that it is possible to use
a much smaller model and achieve the same results, but rather that weight sharing is a
useful technique in its own right.
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In figure 3.7 we see that weight sharing is more effective than channel removal across
all levels of weight sharing, although weight sharing is less effective on the Resnet50 model
compared to other efficient models such as Xception[25] and EfficientNet[159]. This is
demonstrated on a subset of the Imagenet dataset with 50 classes compared to the standard
1000, and using the Resnet50[60] model.

3.6.5 Generalized Weight Sharing

Experiments in generalizing weight sharing were less successful than fixed weight sharing,
and suffered from an unacceptable level of accuracy loss. We include results of some
experiments using loss functions to encourage a different distribution of weights during the
process of training the model.

In Figure 3.8 we see that the approach of using loss functions introduced in section 3.5.3
to encourage a certain distribution of weights works well, as the weights learn to cluster
around these basis weights during the training process. The top half of the figure shows
the initial distribution of weights before training, and the bottom half shows the final
distribution after training 75 epochs on CIFAR10. In this case there was no component
fixed at 0, but this could be added to encourage sparsity. Also, there was no constraint
placed on the number of weights mapped to a given basis weight, but this is another
constraint that can be added. For these more complex constraints, viewing the problem in
terms of using a prior distribution introduced in section 3.5.1 is another option.

In addition, we have done some preliminary work on using loss functions to encourage
redundancy between kernels. As shown in Figure 3.9, the addition of the group lasso
based loss function (3.6) using l2 for both the within and between group norms shows a
clear advantage over not using this loss before quantization. Unfortunately this harmed
performance too much to be practically useful, but it could be possible to overcome these
difficulties using alternative techniques.

3.6.6 Discussion

This chapter proposed that convolution kernels used for image classification tasks contained
representational redundancy in terms of unnecessary flexibility between channels. We
tested this hypothesis by adding additional weight sharing within convolution kernels, and
showed this can preserve or even improve performance.

Using the Xception architecture, which was designed to be more parameter efficient
compared to regular convolution networks, we further reduced the number of parameters
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Figure 3.8: Distribution of weights before and after training using the loss
function with 16 basis weights with the l2 loss. This clearly encourages the
values to cluster near the basis weights, forcing a weight distribution that is
useful for weight sharing.
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Figure 3.9: Comparing the effect of l2 regularization and quantization CIFAR10
performance. The addition of the l2 group norm reduces loss during quantiza-
tion, but still performs quite poorly overall. Comparing the blue and green
lines, we see that quantization after training the model normally destroys the
model’s performance. In contrast, comparing the orange and purple lines we see
that the additional loss harms performance, but also results in less performance
drop after quantization.
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needed through the use of additional weight sharing and we found accuracy can be increased
on the CIFAR10 and CIFAR100 datasets with a reduction in the number of convolution
parameters of 50% and 75%, respectively. On the Imagenet dataset we see that even with a
more complex and already heavily optimized model, EfficientNet, additional weight sharing
within convolutions can also be used to reduce the number of parameters in convolution
layers by 50% with almost no decrease in accuracy.

In addition, we investigated extending this approach to fully learning the weight shar-
ing assignments, and showed our proposed loss functions can encourage weight clustering
during training and reduce loss during a quantization step. While we find value in these
explorations, the fact remains that in this case, as in many others, simple approaches can
outperform more complex ones. Similarly to how simple magnitude based pruning tends
to outperform more complex algorithms[48], we find the simple hard coded approach to
weight sharing outperforms more complex approaches.

Having found a general form of representational redundancy inside convolutional kernels
in the form of weight sharing, we now turn to the question of removing representational
redundancy in the latent space of generative models in Chapter 4. We aim to demonstrate
a specific form of representational redundancy through the disentanglement of shape and
orientation parameters, leading to a more efficient latent representation of data.
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Chapter 4

Compressed Representations with
Affine Variational Autoencoders

In this chapter we extend our work on the reduction of representational redundancy to the
domain of generative models. Here we focus on the latent space of generative models, in
this case Variational Autoencoders, instead of the parameters of the convolution as in the
last chapter. We aim to create a more compressed representation of the data itself, and
our approach will not only lead to more efficient representations, but also to a more human
interpretable and disentangled representation as well.

4.1 Affine Variational Autoencoder

In this section we describe the Affine Variational Autoencoder (AVAE) [14], as well as the
novel training procedure used to encourage disentanglement of shape and orientation.

4.1.1 Affine Transforms

The key innovation in the proposed AVAE architecture is the introduction of two affine
layers on top of the VAE architecture. Unlike the spatial transformer network, the proposed
AVAE architecture does not output the parameters of the transform through a localization
network. As a result, each affine layer in the AVAE consists of two parts: (i) a sampling
grid, where the grid of coordinates in the input associated with each pixel in the output
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Figure 4.1: Affine Variational Autoencoder (below) compared to the original
Variational Autoencoder (above). The AVAE is trained create a more com-
pressed latent representation by disentangling shape and orientation through
the use of affine transform layers and a novel training procedure.
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is determined for a given transform, and (ii) image sampling, where bilinear sampling is
applied to the input given the derived grid.

More specifically, the affine layers in the AVAE architecture both take an affine trans-
form as input, parameterized by an 3 × 3 affine transform matrix, α.

α =

α1 α2 α3

α4 α5 α6

α7 α8 α9

 (4.1)

For example, in the case of rotations, the resulting transform can be represented as:

α =

 cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1

 (4.2)

The key difference between the two affine layers in the AVAE is that the first affine
layer performs an affine transform on the input directly based on α, while the second affine
layer performs an affine transform on the input based on the inverse of α.

4.1.2 Affine Variational Autoencoder Architecture

The AVAE extends the conventional VAE architecture with the introduction of two affine
layers. More specifically, the input data is fed into the first affine layer, which performs
an affine transform on the input before passing it into an encoder to create a latent space
representation. The output of the decoder in the AVAE architecture is fed into a second
affine layer, which performs the inverse affine transform to the output of the decoder,
producing the final output. The parameters of the affine layers are learned such that the
resulting AVAE can effectively encode input images at canonical orientations, which results
in a more compressed representation of the latent variables and a disentangled latent space.
Similar to the VAE, we assume the data X = {x(i)}Ni=1 are generated by an unobserved
latent variable z. In this case we assume the prior distribution of z = [z1, z2, ..., zk] can be
written as:

p(z) = p(z1, z2, ..., zp, zp+1, ..., zl) = p(z1, z2, ..., zp)p(zp+1)...p(zk) (4.3)

We then relabel p(z) as p(z1, z2, ..., zp)p(α1)...p(αk). We consider z to be latent vari-
ables representing shape, α to be those representing orientation, and assume these are
independent.
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With a fixed orientation, y, this would further simplify the problem because we could
model the conditional distribution p(z1, z2, ..., zp)p(α1 = y1)...p(αk = yk) = p(z1, z2, ..., zp).
But this is limited to a single orientation, and we would like a model that generalizes.
Assuming we have a standard VAE to model p(x, α = y) for the distribution with fixed
orientation, how could we make it generalize to more orientations?

We would like a transform, τα that can transform an object x to the correct orientation
for our VAE, y, along with a corresponding inverse transform τ−1

α to transform the object
back to its original orientation. This is an affine transform, so both of these are straightfor-
ward to implement, and can be added to the standard VAE, resulting in the AVAE shown
in figure 4.2.

Assuming we have a trained AVAE for a single orientation, how can we apply this to
a randomly oriented input and find the right affine transform parameters? We can take
advantage of the fact that the VAE indirectly learns a distribution over the data, p(x).

The VAE is trained to maximize a lower bound on the log-likelihood of the data, so for
a image x, we can use the loss to approximate p(x). Assuming the VAE was trained on
a distribution with fixed orientation y, samples at any other orientation should have low
p(x). To find the correct orientation, we should optimize the transform parameters, α to
minimize the VAE’s loss. Given a VAE with encoder qϕ, and decoder pρ, and the invertible
transformation τα, we optimize α to maximize the likelihood of x under the model:

α⋆ = argmin
α

{
LV AE[τ−1

α (pρ(qϕ(τα(x))))]
}

(4.4)

Affine transforms can be made differentiable [72], so this can be optimized using gradient
descent. In practice, this optimization is difficult and likely to be caught in a local optima,
so random restarts are required.

4.1.3 Disentangling Orientation and Shape

Given a dataset X = {x(i)}Ni=1 distributed randomly over affine transforms, we use the ob-
servation that the conditional distribution of z given a fixed orientation, p(z1, z2, ..., zp|α1 =
y1, ..., αk = yk), is less complex than the full distribution. This means that given a limited
capacity model, the most efficient solution is to encode the objects at a fixed orientation
because this simplifies the distribution to be modelled. But how can we do this when we
have a dataset with objects at random orientations?
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Figure 4.2: Affine Variational Autoencoder (AVAE) extends the conventional
VAE by introducing two affine layers, the first performing an affine transform
to the input, parameterized by α. This is encoded and decoded by the VAE,
and finally the second affine layer does the inverse transform, producing the
final output, x′.

We train the AVAE on this dataset, but before each step of SGD, the affine parameters
are optimized using the above procedure. The goal is that as training progresses, the
representation will be progressively more disentangled as the model learns to transform
the data to a fixed orientation.

4.1.4 2d and 3d AVAE

We use a version of the AVAE for both 2 and 3 dimensional inputs. This extension to 3d
is straightforward by substituting the 2d convolutions with 3d convolutions and extending
the affine transform layer to a 3d affine transform. In addition, we have to change the form
of the likelihood to accommodate the different formats for 2d and 3d datasets.

For the 2d MNIST dataset, we take the likelihood, pθ(x|z), to be an isotropic Gaussian
distribution with the variance fixed as 1. For the 3d ModelNet dataset, because we take
the voxels as representing the volume of an object, we assume each voxel should take values
in {0, 1}. For this reason we use a Bernoulli distribution for the likelihood.
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4.1.5 Design Choices

For optimization of the affine transform, we use 32 random restarts. We select the 8 best pa-
rameters and perform 20 steps of gradient descent on them using the Adam optimizer [76],
finally selecting the one with lowest loss.

We use a VAE architecture based on a previously successful implementation[139], which
uses and encoder composed of four convolutional layers of sizes [32, 32, 64, 16], and a de-
coder composed of transposed convolutions of sizes [32, 16, 16, 1]. For the first three layers
of both the encoder and decoder, Exponential Linear Unit activation functions (ELU)[29]
are used as well as batch normalization[71].

4.2 Experimental Results

In this section we perform experiments to verify that affine transformed data is more
complex than data at a fixed orientation, and that standard VAEs do not generalize well
to affine transformed data unless they are explicitly trained on it using data augmentation.
We show a standard VAE requires a higher capacity in terms of a greater latent dimension
to encode affine transformed data. We also show how the AVAE is comparatively more
efficient at encoding these distributions, giving a more compressed latent representation
with better reconstruction error. In addition, we show the AVAE learns disentangled
representations of shapes and orientations. Experiments are done on both a 2 dimensional
image and 3 dimensional objects dataset, and all experiments were implemented using
PyTorch [114].

4.2.1 Datasets

We include datasets from both 2d and 3d domains. For the 2d domain we use the MNIST
dataset, and for the 3d domain we use the ModelNet dataset.

MNIST

The MNIST dataset is a set of grayscale numbers between 0 and 9, sized 28 × 28. We do
standard preprocessing by normalizing pixel values and also pad the image with zeroes to
a size of 40 × 40 to ensure there is no distortion under rotation or translation, shown in
figure 4.3(a).
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(a) MNIST Dataset (b) ModelNet Dataset, chair class

Figure 4.3: Examples from the MNIST and ModelNet object datasets, both
shown with random orientations. MNIST is represented as a 2 dimensional
grayscale image, while ModelNet is a 3d voxel object.

ModelNet

To show the performance of the AVAE on 3d objects we use the ModelNet dataset [178].
It is composed of 3d voxel images of common objects, shown in figure 4.3(b). For this
work we use the 10 class version of the dataset, and focus in particular on the sofa and
chair classes. The images are padded to 48× 48× 48 to allow for rotation and translations
without distortion.

4.2.2 Complexity of Affine Transformed Data

VAEs can only encode data into a latent representation when they were trained on that
type of data. While a VAE can easily encode and generate examples of digits, the model is
unable to generalize to rotated digits unless it was explicitly trained on it. Here we explore
the generalization of VAEs under rotations, and will later show that the standard solution
to this problem of using rotation augmentation requires a higher latent capacity.

As shown in Fig. 4.4, the performance of a conventional VAE architecture decreases
as they are forced to encode images that deviate from the training set, in this case in the
form of a rotation. The loss reaches a maximum around 100 degrees, with it decreasing
after this. This is because many digits look similar when vertically flipped, like 1 or 8, so
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Figure 4.4: Average loss of a VAE over the MNIST validation set while varying
rotation. Model was trained without data augmentation, so does not generalize
well to novel orientations as the input image deviates from the training set.

models can effectively reconstruct those digits with a 180 degree rotation. Fig. 4.5 visually
shows the inability of the VAE to encode and decode images after they have been rotated.

Now we directly evaluate the complexity of encoding the full distribution of rotation
augmented data with a VAE. We compare the standard VAE on rotation augmented data
to one on data of a single orientation and show for a given latent dimension the loss is
higher with rotation augmented data compared to data at a fixed orientation. This is to
verify our hypothesis that the rotation augmented data is a more complex distribution so
will require a higher capacity model.

For the MNIST dataset, in figure 4.7, we vary the latent capacity for the VAE while
comparing rotation augmented data to the single orientation. We see that reconstruction
error in terms of mean squared error is greater for the rotation augmented data for any
given latent size. At smaller latent sizes this difference is most pronounced, but as latent
dimension increases performance converges. This also fits with our assumption, as we would
expect that in theory a very high capacity model could achieve the same performance on
randomly rotated and single orientation data, as latent capacity is not a limiting factor.

We demonstrate a similar result when also adding shear transformations. As shown in
Fig. 4.6, it can be observed that there is a clear improvement in the performance of the
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Figure 4.5: Examples of reconstructed images from a VAE trained on MNIST
with no rotation, 45 deg. rotation, and 90 deg. rotation. It can be clearly ob-
served that the quality of the reconstructed images degrade significantly under
rotation.
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Figure 4.6: Comparison of the performance of the VAE and AVE under shear
perturbations of various angles. AVAE shows overall improved performance
compared to the VAE.

proposed AVAE architecture compared to the conventional VAE architecture in terms of
loss for a given latent size across most shear perturbations. The improvement of AVAE
over VAE is not as significant as in the case of rotational perturbations due to the fact that
the conventional VAE architecture tends to generalize better to shear perturbations than
rotational perturbations, but in general the AVAE works well when applied to a variety of
affine transforms.

For the ModelNet dataset, in figure 4.8 we vary the dimension of the latent space
used to encode the objects. We consistently see the model for all rotations has higher
mean squared error (MSE) compared to the model for a single orientation, confirming the
hypothesis that the distribution of rotation augmented data is more complex. This is true
for all latent vector sizes, but becomes less large as the latent size increases and model
capacity is less of a limitation.

We note that for both classes the difference between the rotation augmented and the
single orientation data is larger than what was seen that on the MNIST dataset. The loss
is twice as high when using the latent size of 4 on the ModelNet dataset compared to only
15% higher on MNIST. This is because rotations added greater complexity to ModelNet
than MNIST, which also indicates there is more room for improving performance with the

67



5 10 15 20 25 30
Latent Size

200000

220000

240000

260000

280000

300000

M
ea

n 
Sq

ua
re

d 
Er

ro
r

No augmentation
Rotation augmentation

Figure 4.7: Average reconstruction error (MSE) of the VAE with and without
rotation augmentation on MNIST. MSE is greater for the rotation augmented
data with any latent size, and the difference is most significant with limited
latent capacity
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Figure 4.8: Average MSE of a VAE over the ModelNet validation set (sofa
class) for different latent sizes, compared to the same dataset with rotation
augmentation. Performance is lower on rotation augmented data, indicating
rotation augmented data has a more complex distribution.

introduction of the AVAE.

These experiments clearly show that a larger latent size is needed to encode the more
complex affine transformed data compared to data at a single orientation, both for 2d
and 3d objects. We next show that the AVAE can leverage this observation to reduce
redundancy in the representation by disentangling the affine transform parameters from
the shape parameters.

4.2.3 Compressed Representations with AVAE

In this section, we evaluate the performance of the AVAE in generalizing to affine trans-
formed data. We aim to show for a given latent size, the AVAE outperforms the standard
VAE in terms of reconstruction error, indicating a more compressed latent representation.
We intentionally use models with small latent dimension to make the differences between
the models more clear.

In the AVAE the latent space is explicitly separated into the affine transform parameters
for affine transform layers and the shape parameters from the VAE part of the model.
Because of this we have to add additional dimensions to the latent space of the standard
VAE model to make the comparison equivalent. For rotation augmented data we use a
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latent size of 7 which is composed of a 6 dimensional VAE and the single rotation parameter,
[r]. For rotation & translation augmentation we use a size of 9, which is composed of the
6 dimensional latent space, the rotation parameter and translation parameters, [r, tx, ty].

In table 4.1, we see that the AVAE outperforms the standard VAE for both rotation
and rotation & translation augmentation by decreasing MSE by 12% and 10% respectively.
It is more efficient to explicitly use a parameter for the rotation angle which is learned by
the AVAE rather than to leave it to the model to learn its own mapping.

Table 4.1: Improvement of AVAE over VAE on MNIST (MSE)

Augmentation Validation set (all classes)
Rotation 12%
Rotation & Translation 10%

Table 4.2: Improvement of AVAE over VAE on ModelNet (MSE)

Augmentation Sofa class Chair class
Rotation 30% 48%
Rotation & Translation 38% 18%

We also compare the AVAE to the standard VAE on a rotation augmented version of the
ModelNet dataset. Because the AVAE uses 3 additional rotation [rx, ry, rz] parameters, we
compare the AVAE with 3 orientation parameters and 16 shape parameters to a standard
VAE with 19 dimensional latent space.

We also test this procedure using rotations and translations. Here there is an additional
6 parameters, 3 for rotation and three for translation, [rx, ry, rz, tx, ty, tz], so we compare the
16 dimensional AVAE to a VAE with latent size 22. As shown in Table 4.2 for both the sofa
and chair classes the AVAE shows significant improvement over the standard VAE. This is
also true for augmented with both rotation & translation, and here we see a significantly
larger improvement compared to the MNIST dataset.

Fig. 4.9 shows specific examples of the poor reconstruction performance of the con-
ventional VAE architecture when generalizing to rotation perturbations, while the AVAE
performs well under such perturbations. Overall this indicates that by leveraging the pro-
posed AVAE architecture, one can construct generative models that can generalize well to
images under rotations.
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Figure 4.9: Examples of reconstructed images using conventional VAE archi-
tecture (top row) and the proposed AVAE architecture (bottom row) under
rotational perturbations.

These experiments have clearly shown the superiority of the AVAE over the VAE in
terms of a more compressed latent space through better generalization to affine transformed
data. Next we further investigate why this is the case, and show it is the result of the
AVAE’s ability to disentangle orientation and shape during training.

Training Dynamics of the AVAE

We investigate the training dynamics of the AVAE by comparing its loss to that of the
standard VAE for a given number of optimization steps for the MNIST dataset, as shown
in figure 4.10. We see the standard VAE has a normal loss curve, where the loss quickly
goes downward for the first few epochs, and decreases more slowly after. In contrast, the
AVAE’s loss remains high for the first few epochs, before it eventually decreases quickly
to a lower value than the standard VAE. Looking to the ModelNet dataset, we see this
same training behavior, with the VAE first outperforming the AVAE before converging to
a lower loss, as shown in figure 4.11

This is because the AVAE is initially limited by having its latent space divided between
shape and orientation parameters. Initially the rotation optimization process is useless
because the model has not learned to encode any orientation well, so the AVAE is forced
to encode all orientations with its more limited latent size. As the training progresses
the model learns to encode only a single orientation so the loss drops quickly. By looking
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Figure 4.10: Training of VAE vs. AVAE on the MNIST dataset with rotation
augmentation. AVAE takes longer to converge to a low loss because it takes a
few epochs for the model to learn encode digits at a particular orientation.
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Figure 4.11: Training of VAE vs. AVAE on the ModelNet dataset with the
sofa class, similarly to MNIST the AVAE first has higher loss before it learns
to encode data at a particular orientation.
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further into the distribution of orientations during training for a single class on the MNIST
dataset we can see this disentanglement more clearly.

Disentanglement During Training

The AVAE’s improvement over the standard VAE in terms of training loss that we dis-
covered above corresponds to the point where the AVAE learns to disentangle orientation
and shape. In practice this means the AVAE learns to use its affine transform layer to
transform objects to a fixed orientation, so the encoder is able to tackle the easier task of
encoding shape alone, which is demonstrated by looking at the rotations digits are encoded
at during training of the AVAE.

When training a VAE normally with rotation augmentation, we should expect the
model see images distributed uniformly over [0◦, 360◦]. But the AVAE optimizes rotation
before encoding, so this is no longer the case. Optimizing the affine transform during the
training process allows the AVAE to learn a more efficient representation by changing the
distribution of rotations that digits are encoded at.

We look at how digits are rotated by the AVAE during the training process, in this case
looking at the ’1’ digit. At the first epoch of training the model encodes each digit at a
relatively uniform distribution over rotations, as seen in the top graph of figure 4.12. The
model hasn’t learned to encode any rotation better than another, so the optimization of
rotation during training is useless, returning a random distribution over rotations. This is
what we would expect to see when training a standard VAE.

As training progresses, shown in the lower graphs in figure 4.12, the model becomes
biased towards encoding digits at particular orientations. It learns that it is better to
encode only a subset of the true distribution to better utilize the limited latent capacity
of the model. This is consistent with our earlier observation that it takes a lower capacity
model to encode a single rotation compared to all possible orientations of images.

In figure 4.13, we are comparing the digits ’6’ and ’9’. Because these digits have no
rotational symmetries, they are encoded at a single orientation, leading to the unimodal
distribution seen for both digits. But these digits are quite similar, nearly being 180◦

rotations of one another. Because we train the AVAE to jointly encode all classes of
MNIST, we see it learned a more efficient representation between digits too, encoding the
”6” and ”9” digits at 180◦ rotations of one another to simplify the data distribution.
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Figure 4.12: These histograms show the orientation that digits are rotated to
by the affine transform layer in the AVAE. We show the ’1’ digit during training
of the AVAE at epochs 1, 5 and 30. Initially the AVAE rotates them randomly,
but as training progresses it learns to encode most digits at two orientations
180◦ apart.
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Figure 4.13: Distribution of rotations of the ”6” and ”9” digits during training
of the AVAE at epochs 1, 5 and 30. As training progresses the AVAE learns to
encode most digits at the same orientation, but additionally these numbers are
encoded as 180◦ rotations of one another.
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4.3 Discussion

In this chapter we proposed a method to reduce the representational redundancy present
in the latent space of Variational Autoencoders through the disentanglement of orientation
and shape parameters. We introduced the Affine Variational Autoencoder, a novel exten-
sion of the Variational Autoencoder including affine layers which transform an object to
a canonical orientation before it is encoded, and inverting this transform after decoding.
We demonstrated it can perform the unsupervised disentanglement of shape and orienta-
tion through an optimization process which finds the best orientation to encode objects by
minimizing the AVAE’s loss. This can be seen as approximately maximizing the likelihood
of the object under our AVAE. We demonstrated this disentanglement of orientation and
shape learns more compressed representations compared to a standard VAE on the 2d
MNIST and 3d ModelNet datasets.

In Chapter 5 we will again look at a different form of representational redundancy, in
this case the redundancy arising from a mismatch between the form of data models are
pretrained on and the downstream task they are fine tuned on. We look at the domain
of text classification, and find this mismatch and associated representational redundancy
appears in the form of redundant sequence information being preserved throughout the
network for a task where this is not required.
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Chapter 5

Classformer: Efficient Transformer
Architectures for Text Classification
with Optimized Sequence-Length
Bottlenecks via Neural Architecture
Search

In this chapter we aim to reduce representational redundancy within transformer models
applied to the problem of text classification. Standard approaches for text classification
problems involve using a large pretrained model which is later fine tuned on a specific task.
We hypothesize that this results in representational redundancy because of a mismatch
between the pretraining objective and the fine tuning objective, where the pretraining
objective requires a full sequence length output and the fine tuning output requires no
sequence information.

We aim to reduce this inefficiency by generating an architecture based on the specific
attributes of each task, the hardware used for inference, and the performance requirements.
We introduce an architecture search method to design a domain specific transformer where
sequence length bottlenecks are introduced, and this is implemented in a fully learnable
way. An overview of this approach is shown in Figure 5.2. We also investigate a novel
pretraining objective to further increase performance. We focus exclusively on tasks that
can be framed as a classification problem, although this approach could be more widely
applicable. We show this process produces models with a superior inference speed and
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Figure 5.1: The Classformer (bottom) compared to a standard Transformer
architecture (top). In the Classformer the latent size is reduced through a
task specific learned downsampling, reducing the amount of computation and
memory required.

accuracy tradeoff on the GLUE benchmark compared to existing efficient architectures.

5.1 Classformer Architecture

Transformers are a stack of alternating self attention and fully connected blocks which
preserve the full input sequence length throughout the model. Preserving the full sequence
length is necessary because transformers are designed to be used with a pretraining objec-
tive, such as masked language modelling, that requires the full sequence be preserved at
the final layer of the model. But transformers are commonly fine tuned on tasks where
no sequence information is required, so is preserving the full length of the sequence nec-
essary? For example, in text classification sequence information is not needed at the final
layer, so there could be redundancy in preserving this full length representation throughout
the model. Previous research has shown that tokens at later layers of the network gener-
ally have higher correlation with one another[53], reinforcing this view that there may be
redundancy in the later layers.
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Figure 5.2: Illustration of the Classformer’s neural architecture search proce-
dure. Given performance requirements, hardware, and a dataset the procedure
iteratively trains and evaluates the model, and based on its performance gener-
ates another Classformer configuration.

In this work we reduce this redundancy in transformers with sequence length bottlenecks
that are optimized using neural architecture search. Specifically, we generate transformers
to maximize inference speed conditional on the performance reaching some threshold, given
some dataset and hardware. This is done by optimizing fully learnable sequence length
bottlenecks within the transformer. To accomplish this we use a Bayesian optimization
based approach to search for the best architecture through varying these bottlenecks, and
show the Classformer has a favorable performance speed tradeoff compared to other models
on the GLUE benchmark.

This is in contrast to most research on efficient transformer models which don’t take into
account performance requirements, the hardware used for inference or the characteristics of
the classification task itself. Creating an efficient architecture or layer independent of the
problem in question can improve performance, but will always have a limitation compared
to creating a problem specific architecture, which is the approach we take in this work.

5.1.1 Sequence-Length Bottlenecks

The architecture of the transformer model is a stack of alternating fully connected and self
attention layers. The self attention layer has quadratic complexity in the input length, so
reducing this sequence length will be the focus of our work. Given three linear projections
W k, W q, W v for key, query and values, and tokens of dimension dk, attention is defined
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as:

Attend(x) = softmax
((xWq)(xWk)⊤√

dk

)
(xWv) (5.1)

There are many approaches to reduce sequence length in transformers, including hand
designed rules for dropping tokens[69], dropping tokens based on attention score[53], or
downsampling between layers[36]. In contrast, we will use a fully learned approach by
modifying the attention mechanism, reducing the sequence length without introducing any
extra operations.

We will use a modified version of attention designed to downsample the sequence length.
Assuming we would like to downsample the sequence by a factor of γ, we will reduce
the query by selecting every γth element. Given an input X and a connectivity pattern
S = {S1, . . . , SL} where these indicate the query positions that will be preserved, we can
define downsampled attention as:

Attend(X, S) = softmax
((xjW

q)j∈S(xWk)⊤√
dk

)
(xWv) (5.2)

This uses the original full length key and value matrices, so while the output length is
reduced it still computes attention over the full sequence for each query. This is similar to
the implementation in the Funnel Transformer[36], but instead of using mean pooling to
reduce the sequence we select every γth token. We do not alter any other parameters of
the base model, preserving the same number of layers, hidden dimension, linear projection
dimension and embedding dimension.

For all Classformer models we use a common base architecture, Roberta[98]. By using
a common architecture for the base model it allows us to load pretrained weights from the
original Roberta model into the Classformer. While the reduced sequence length reduces
computation and memory required in the forward pass, it involves the same number of
parameters as a model without sequence length reduction.

In addition to the above mentioned method for sequence reduction, we also introduce
another method where the first η tokens are kept throughout the entire depth of the net-
work, (denoted η = 8 in the case of preserving 8 tokens) with no downsampling performed
on them. In figure 5.3 we compare this method to the default approach of reducing the
entire sequence. This results in a longer sequence because the reduction is not performed
on the first 8 tokens, but also improves performance on some of the GLUE tasks.
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Figure 5.3: Comparison between the standard sequence reduction in Class-
former (left), and Classformer with η = 8 (right). The η = 8 model preserves
the first η tokens throughout the network, so during downsampling these to-
kens are ignored. We find this improves performance significantly, but with the
downside of additional sequence length. This is a simplification of a standard
transformer, with only 6 transformer blocks, 3 downsampling layers and an in-
put length of 128
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5.1.2 Architecture Search

Architecture Search Objective

Our objective is to create an optimal transformer for a given classification task, where we
trade off the inference speed δ with our performance requirement, αreq. Given a trans-
former, Tγ1,γ2,...,γn,,η;θ, we characterize our search space to be a set of reductions along each
layer of the network, γ = γ1, γ2, ..., γn where n is the number of layers in the network and
a number of tokens to be preserved throughout the network, η. We denote the validation
dataset Dj, and Lj(xi, yi; θ, γ, η) a dataset specific loss on data point i from dataset j.
Given required performance for this dataset, αreq

j , we can write this formally as:

min
γ=γ1,γ2,...,γn,η

1

N

N∑
i=1

time(Tγ,η;θ(xi))

s.t. αj ≥ αreq
j

where αj =
1

N

N∑
i=1

Lj(xi, yi; θ, γ, η)

(5.3)

In practice our approach is to use a softer constraint during the optimization process
to reflect the preference that higher performance is better when the desired performance
is not reached. We choose the reward r for our optimizer as:

r =

{
αj αj < αreq

j

αreq
j + 1

δ
, otherwise

(5.4)

Bayesian Optimization

We need to choose an architecture to maximize this reward by selecting hyperparameters
γ, η. Based on the characteristics of our, problem, we use Gaussian Process based Bayesian
Optimization. It performs well in scenarios where function evaluations are expensive and
there are few hyperparameters. This is because it uses an expensive surrogate function to
model the loss, and only evaluates at the most promising parts of the parameter space.
This is appropriate for our problem because function evaluations are equivalent to fine
tuning the model, which is extremely expensive and the total hyperparameters is quite
low at 13. We use the implementation from Scikit-Opt[115]. To speed up convergence of
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Figure 5.4: Comparison between different methods for optimizing the Class-
former’s accuracy on the RTE dataset. On the x axis we see the number of
function evaluations, in this case the number of architectures fine tuned. The y
axis shows the score, which is the reward defined in equation 5.4. We clearly see
the superiority of Gaussian Process based optimization over the Tree-structured
Parzen estimator and Random search optimizers as it is much more efficient in
improving performance for a given number of function evaluations.
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the algorithm we can select an initial population to be evaluated before the optimization
is ran. We use a set of 8 random configurations, but also include 10 hard coded ones.
We select these based on our intuition of what architectures are likely to perform well,
in addition to selecting a variety to better span the search space. In this set we include
the default Roberta architecture, and 9 others representing a range of architectures with
sequence reduction at progressively earlier layers.

In figure 5.4, we compare this Gaussian Process based optimization to random search
and the Tree-structured Parzen estimator[12] implemented in Hyperopt. For this exper-
iment we remove the hand designed initial population used to speed up converge. Over
50 iterations we see it clearly outperforms both alternatives, so we use this method for all
architecture search experiments.

5.1.3 Fine Tuning

Performance on text classification tasks is heavily dependent on the fine tuning procedure,
especially when fine tuning on datasets with a small number of examples[86]. Performance
is also dependent on the weight initialization of the classifier layer, as well as the order
the data is fed to the model during training[44]. Multiple related papers have attempted
to overcome these difficulties[191] [110], and to reduce the variance in results during fine
tuning. The most useful changes to the standard fine tuning procedure were to train the
model for a longer number of epochs as well as to use the debiased version of the Adam
optimizer.

There is an inherent conflict between the pre-training and fine-tuning tasks. Previous
work has shown that earlier features in earlier layers of the network are the most general,
while those in later layers are specific to a particular task[184]. Recent work has shown
this is also the case when pretraining and fine tuning BERT[191]. They found that re-
initialization of the last 1-6 layers in BERT large before fine tuning improves performance.
On the other hand this is not the case with the smaller base size models we use for our
work, so we do not consider this finding to be relevant.

For our fine tuning procedure we follow the best practices for reducing variance and
use the debiased Adam version along with training for 10 epochs with early stopping.
We also preserve the same data order and weight initialization by setting the seed in
PyTorch, although some randomness is still injected into the training process through non
determinism in some CUDA functions[196].

A learning rate warmup of 10% of the total steps is used, along with a decay to 0 over
the 10 epochs of training. We use these hyperparameters for all tasks because they have
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been shown to give good performance in previous work and because fine tuning tasks can
be sensitive to changes in hyperparameters[86, 44, 191, 110]. There are other more complex
methods to improve fine tuning performance such as mixout[86], where the parameters of
two models are stochastically mixed, but in our work we focus on the more standard and
less computationally expensive form of fine tuning. FP16 is used for all models, with the
exception of Squeezebert which was faster using FP32. All results were obtained using
Nvidia V100 and A6000 GPUs.

We verify the effectiveness of this fine tuning procedure in table 5.1. In the first row we
see we can reproduce the results of the Roberta paper well, so our fine tuning procedure
is generally effective. In the last line we demonstrate the importance of pre-training,
showing there is a massive drop in performance when Roberta is fine tuned using randomly
initialized weights instead of the weights from the pre-training objective. For all models
we ensure they are initialized with pretrained weights based on a standard implementation
found on HuggingFace[173].

Model MNLI QNLI QQP RTE SST MRPC CoLA STS AVG
Roberta paper 87.6 92.8 91.9 78.7 94.8 90.2 63.6 91.2 86.4
Roberta pretrained 87.0 92.9 88.8 83.4 94.8 91.8 63.0 90.9 86.6
Roberta; random 64.5 60.4 72.0 52.7 79.8 83.4 60.4 45.8 64.9

Table 5.1: Comparison of the performance of different Roberta model config-
urations on various GLUE tasks. Performance is evaluated using a number of
benchmarks, including MNLI, QNLI, QQP, RTE, SST, MRPC, CoLA, STS,
with an average score (AVG) calculated for overall performance assessment.

5.2 Experiments

We compare our search method for finding the optimal architecture to a variety of alterna-
tive transformer models on the GLUE dataset. We explicitly include efficient transformer
models in this comparison to ensure we are comparing to other models designed to have
fast inference speed. In addition, we individually investigate our hypothesis of generating
an architecture conditional on dataset, hardware and accuracy requirements and also look
at a synthetic dataset to evaluate inference speed on different sequence lengths.
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5.2.1 GLUE Dataset

We aim to evaluate how the Classformer performs in terms of inference speed and accuracy
compared to a variety of efficient transformer models. To do this we use a variety of
tasks in the General Language Understanding Evaluation (GLUE) benchmark. GLUE
is a set of 9 tasks designed to evaluate natural language understanding, including tasks
in sentiment analysis, English grammar, question answering and sentence similarity[164].
We used this benchmark because the wide variety of tasks will better inform how the
Classformer will perform in real world applications. Also, because it is widely used we can
compare performance to other popular models. Following previous work[42], we exclude
the WNLI dataset from our analysis because of its adversarial validation set construction.
More information on the individual datasets is found in the table 5.2.

1. CoLA - Corpus of Linguistic Acceptability[168] is a classification task to categorize
sentences as grammatically correct or incorrect.

2. SST-2 - The Stanford Sentiment Treebank[150] is a classification task consisting of
sentences from movie reviews where the objective is to predict sentiment.

3. MRPC - The Microsoft Research Paraphrase Corpus [45] is composed of sentence
pairs with the binary objective of classifying if the pair are semantically equivalent.

4. QQP - Quora Question Pairs[2] is also a binary task of classifying if sentences are
semantically equivalent, in this case questions from Quora.

5. STS-B - The Semantic Textual Similarity Benchmark[20] is another sentence simi-
larity benchmark but with a 5 category classification objective representing varying
degrees of similarity.

6. MNLI - The Multi-Genre Natural Language Inference Corpus[171] is a textual en-
tailment prediction task where given a premise and hypothesis sentence, the task is
to predict whether the premise entails the hypothesis.

7. QNLI - The Stanford Question Answering Dataset[123] is a question answering
dataset framed as a binary classification problem where there are two sentences and
it must be determined if one contains the answer to the other.

8. RTE - Recognizing Textual Entailment is a binary classification textual entailment
prediction task consisting of a combination of the data from RTE1[35], RTE2[56],
RTE3[49], and RTE5[11].
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9. WNLI - The objective of the Winograd Schema Challenge[88] is to determine the
referent of a pronoun but it is framed in terms of a binary classification problem of
textual entailment. The ambiguous pronoun is replaced with a correct or incorrect
pronoun, and the task is to predict if the original sentence entails this modified
sentence. There is an adversarial split between train and validation split because if
two examples contain the same sentence they will usually have opposite labels, but
because the train and validation set share examples it is difficult to prevent overfitting
to the sentences themselves. This means that classifying as the majority class tends
to be most successful[1], so we exclude it from our experiments.

Dataset Train Examples Validation Examples
COLA 8,551 1,043
SST2 67,349 872
MRPC 3,668 408
QQP 363,846 40,430
STSB 5,749 1,500
MNLI 392,702 9,815
QNLI 104,743 5,463
RTE 2,490 277

Table 5.2: The number of training and validation examples available for each
dataset in the GLUE benchmark.

5.2.2 Accuracy Dependent Architecture Optimization

Our search method optimizes an architecture to have the lowest inference speed for a
given desired accuracy. In this section we confirm our hypothesis that this optimization is
possible through the addition of sequence reductions inside the model, and investigate how
the architecture discovered by our search method changes as the desired accuracy changes.

To show that lower accuracy requirements can enable a greater level of downsampling
and faster inference speed, we experiment with varying the desired accuracy in the Class-
former’s optimization process. On the RTE dataset we vary the desired accuracy between
60% and 85% of the full model’s accuracy and investigate how this affects the inference
speed and architecture of the Classformer. Looking at figure 5.5 we see that changing the
desired accuracy changes the optimal architecture discovered, with lower desired accuracy
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Figure 5.5: Demonstrating the relationship between required accuracy and in-
ference speed. With a lower required accuracy simpler architectures can be
used, allowing for faster inference. For the labels, Classformer x% refers to a
Classformer with a required accuracy of x% of the full model.
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enabling greater inference speedup. This indicates conditioning the creation of the Class-
former on the desired accuracy is useful to enable the maximum inference speedup. To
more clearly visualize how the architectures differ as accuracy requirements change, Ta-
ble 5.3 compares the sequence length reductions across all layers using an example sequence
of length 512.

Layer 60 % 65 % 70 % 75 % 80 %
0 512 512 512 512 512
1 128 256 512 512 512
2 32 256 512 512 512
3 8 256 512 512 512
4 4 128 512 512 512
5 2 128 256 512 512
6 1 64 256 512 512
7 1 64 256 512 512
8 1 64 256 512 512
9 1 64 256 512 512
10 1 64 256 512 512
11 1 64 256 256 512

Table 5.3: Layer sizes in intermediate layers of the Classformer after being
optimized for a given accuracy on the RTE dataset. Lower performance re-
quirements enable greater downsampling throughout the network.

5.2.3 Dataset Dependent Architecture Optimization

Our proposed method assumes performance and optimal architecture are dataset depen-
dent, and in this section we verify this assumption. In contrast, if all datasets exhibited the
same performance properties this optimization would be a waste of resources and the op-
timal architecture could be computed independently of the dataset, optimizing only based
on performance requirements and hardware.

We compare how downsampling affects performance across datasets in the GLUE
benchmark for a variety of levels of downsampling. For consistency, here we remove the
optimization procedure and instead use a fixed downsampling schedule so we can compare
performance across datasets using the exact same architecture. We use a fixed downsam-
pling schedule where the sequence length of the last n layers of the network are reduced
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Figure 5.6: Effect of sequence length reduction on GLUE performance. The x-
axis indicates the number of layers removed from the original model. The y-axis
indicates the percentage of the original model’s performance. The reduction is
done in a systematic way, where the sequence length in the last n layers of
the network are reduced by a factor of 4x. Across all datasets the performance
drops with more sequence length reduction, but for some such as RTE this drop
off happens quickly, while for others such as QNLI it happens more gradually.
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by a factor of 4x. Downsampling more layers results in a model with faster inference, but
also with more degraded performance.

Looking at figure 5.6, we see how the performance of the GLUE datasets is affected by
this increased downsampling, with the total number of downsampled layers on the x axis,
and the normalized performance on the y axis. On the far left we see the model with no
downsampling, and we normalize the performance of all other models to this. While all
models exhibit the trend of decreasing performance with increased downsampling, perfor-
mance drop varies widely across datasets for a given amount of downsampling, confirming
our hypothesis.

We can focus directly on the performance drop across datasets for a given amount of
downsampling, to see a more clear view of the difference between datasets, as shown in
figure 5.7. Here we see more clearly how downsampling harms the performance of RTE
and MNLI, while QNLI and MRPC perform well even under high downsampling. This
indicates the degradation of performance differs across the GLUE datasets, confirming the
usefulness of a dataset dependent architecture search.

5.2.4 Hardware Dependent Architecture Optimization

We investigate how the optimal architecture changes with different hardware. As with con-
ditioning the optimal architecture on the dataset, we should verify that different hardware
requirements result in different optimal architectures being discovered, otherwise hardware
would not be a relevant variable, and the Classformer architecture could be computed inde-
pendently of any particular hardware used for inference. For this we will compare optimal
architecture for CPU and GPU, comparing an AMD Ryzen Threadripper 3960X 24-Core
CPU (limited to 8 cores) with 256GB of memory to an NVIDIA RTX A6000 GPU with
48GB of memory. Although we compute inference speed using the CPU, the training is
still ran on the GPU, as training speed is not a concern for this experiment.

In figure 5.8, we run this optimization for the CPU and GPU on the RTE dataset, and
see that different architectures are discovered based on the hardware used for inference.
This process finds the model with greatest inference speed conditional on the performance
requirement being met (in this case 70%), with the left model corresponding to GPU
and the right to CPU. The architecture designed for CPU seems to optimize for lowering
overall FLOPS more than the one for GPU, possibly because the GPU is able to run more
computations in parallel, but further investigation is needed to know exactly what makes
a model perform well on different hardware.
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Figure 5.7: Directly comparing how performance varies between datasets de-
pending on the amount of sequence reduction used in the Classformer. Datasets
on the left, such as MNLI or RTE face a large performance drop under sequence
reduction, while for datasets such as QNLI or MRPC the drop is much smaller.
This is consistent across different levels of sequence reduction, shown in the
graph with lines corresponding to 5 and 9 layers with a reduction of 4x in both
cases.

92



Figure 5.8: Comparing best architectures found on RTE dataset when running
inference on GPU(left) and CPU(right). The Classformer’s optimization pro-
cess is done for specific hardware, so the architecture is created based on the
hardware’s specific constraints.
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5.2.5 Classformer Performance on GLUE

We aim to compare the performance of the Classformer to standard models on the GLUE
benchmark in terms of inference speed and accuracy to determine if the Classformer is a
viable alternative to standard models. For this work we limit our exploration to a single
hardware type, CPU, although this could be applied to other hardware types as well.

For all experiments we follow the evaluation method outlined in the BERT paper[42].
We report accuracy for all tasks with the exception of Spearman correlation for STSB,
Matthew’s correlation for COLA and F1 scores for QQP and MRPC. The matched MNLI
dataset is used and we evaluate on development set. All models are fine tuned using
pretrained models, and the initialization for the Classformer is from the pre-trained Roberta
model. All are fine tuned using the method described in section 5.1.3 in order to reduce
variance. In addition, for smaller datasets like COLA, MRPC, STSB and RTE we do fine
tuning 3 times and report the average performance.

We compare model inference using CPU and batch size of 1. This is representative of
many real world applications because higher batch sizes are only possible in online appli-
cations where there is high enough demand that multiple requests can be batched together
in real time. CPU inference is also relevant in practice because while GPU inference is
faster than CPU, it is also much more expensive, with the greatest benefits at higher batch
sizes which are not relevant for many real time applications.

Model CoLA MNLI QNLI QQP SST2 MRPC RTE STSB AVG
BERT 52.1 71.2 88.9 85.8 66.4 93.5 84.6 90.5 79.1
Mobilebert 51.1 70.5 88.8 84.8 70.4 92.6 84.3 91.6 79.3
Distilbert 51.3 88.5 87.5 86.9 59.9 91.3 82.2 89.2 79.6
Classformer 95% 57.3 84.7 90.4 89.7 73.7 93.0 85.5 88.7 82.9
Squeezebert 53.7 90.9 92.0 90.3 80.9 92.2 82.5 89.2 84.0
Classformer 99% 58.1 87.3 91.0 89.8 73.7 94.4 85.4 92.2 84.0
Funnel Small 62.8 91.3 89.2 89.2 74.3 93.6 86.0 91.6 84.8
Funnel Medium 63.9 91.4 90.2 91.0 77.6 94.2 87.0 92.2 85.9
Roberta 63.6 91.9 90.2 91.2 78.7 94.8 87.6 92.8 86.3

Table 5.4: Performance of Classformer and other models on all GLUE datasets.
Values are based on our experimental results for the Classformer model, and
the performance of the other models is from the original papers.
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Figure 5.9: Comparing inference speed and accuracy across all GLUE datasets
for our architecture search based Classformer to standard models. Our models
are denoted Classformer α, where α represents the desired minimum perfor-
mance compared to a baseline model, in this case Roberta. We compare stated
results in the papers to our empirical results.

95



Comparing the Classformer to Other Efficient Models

The results of designing the Classformer conditional on different GLUE datasets are visual-
ized on figure 5.9, where we investigate two variants of the Classformer, using an objective
of 99% and 95% of the full model’s performance. For this set of experiments we are compar-
ing the Classformer’s performance to the performance stated in the other papers, instead
of rerunning the experiments ourselves.

We see that for most datasets the Classformer lies at a point on the Pareto frontier,
meaning it represents some optimal trade off between accuracy and inference speed. The
performance differs quite significantly across datasets, for example on COLA, STSB, SST2,
and MNLI our method clearly lies at a point with an optimal inference time / performance
trade off. On MRPC the Classformer is slightly inside the Pareto frontier, improved on
by Squeezebert, similarly to QNLI where is is improved on by MobileBERT. On QQP and
RTE the Classformer is beaten by both Distilbert and Squeezebert. Overall performance
of the Classformer is superior, it being on the Pareto frontier for 4/8 datasets, and the
next best models, Squeezebert and Distilbert, only succeeding on 2/8.

To better visualize the performance, we also look at the average performance and
inference speed of the Classformer across all GLUE datasets, shown in figure 5.10(a). We
see that the Classformer is able to achieve a good average performance, with both the 99%
and 95% models lying on a point on the Pareto frontier for inference speed performance
tradeoff. Compared to the Classformer, Bert, MobileBert and Distilbert are harmed by
their overall low performance. While they have good performance relative to the number
of parameters in the model, Funnel style models tend to have excessively slow inference
speed. Detailed results for all models can be found in table 5.4.

Empirical Performance of Other Efficient Models

We also investigate training these other models instead of simply citing the performance
from the papers. We compare the Classformer to the empirical performance we find after
finetuning each of the efficient transformer models individually. We do this because pre-
trained models that were fine tuned on the GLUE datasets were not available, and there
was possible inconsistency in the exact evaluation metric used for some datasets, such as
whether Mathew’s correlation or accuracy is used on the COLA dataset.

As expected based on the above results comparing the Classformer to the stated perfor-
mance from papers, the Classformer also lies on a point on the Pareto frontier of inference
speed and accuracy tradeoff here, which can be seen in Figure 5.11. We found we could
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(a) Comparing Inference Speed and
Accuracy on all GLUE Datasets

(b) Comparing Empirical Inference Speed
and Accuracy on all GLUE Datasets

Figure 5.10: Comparing the average inference speed and accuracy across all
GLUE datasets for the Classformer to standard models. We compare the results
from papers (left) to the performance we find empirically (right). In both cases
the Classformer lies at a point on the Pareto frontier of inference speed accuracy
tradeoff.
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generally reproduce the results quite well, although this was not the case with one model in
particular, MobileBERT. We do not doubt the results of these models, but in practice effi-
cient models with unusual architectures can be difficult to train properly. Detailed results
are shown in Table 5.5.

Model CoLA MNLI QNLI QQP SST2 MRPC RTE STSB AVG
BERT 54.8 84.3 90.8 87.7 91.7 88.4 75.6 90.0 82.9
Mobilebert 16.8 81.4 90.8 85.7 90.3 29.5 57.8 87.7 67.50
Distilbert 47.7 81.3 88.0 86.2 90.0 89.9 70.6 88.7 80.30
Squeezebert 39.3 80.8 89.3 86.5 89.6 89.9 71.8 90.0 79.65
Roberta 52.7 87.6 91.4 88.2 94.2 89.8 82.4 90.9 84.7
Funnel Small 62.6 87.7 91.2 88.0 94.3 90.7 80.1 90.6 85.65
Funnel Medium 64.8 88.1 93.3 89.0 94.6 90.1 81.7 91.3 86.61

Table 5.5: Empirical performance of models on the GLUE dataset

Constrained Architecture Search

Initial experiments used a more constrained search space where instead of using flexible
amounts of downsampling across all layers, we used a fixed downsampling schedule with a
single parameter to choose. Downsampling layers were spaced evenly throughout the net-
work, enabling a simple optimization procedure where we only had to choose the first layer
where 2x downsampling was performed. Two other downsampling layers of 2x were evenly
spaced between this layer and the output layer. This meant that the search space could
be described by a single number, and because increasing this single parameter would have
a monotonic effect on performance and inference speed, binary search could be used. The
amount of downsampling could be either reduced or or increased at each step depending
on if performance requirements α are satisfied until the minimal amount of downsampling
that still satisfied α is found.

The results of the architecture search method are visualized in figure 5.12 where we see
that for most datasets the constrained architecture search method shows good performance
or even lies at a point on the Pareto frontier. Yet for many datasets the performance of
Distilbert is superior. This is because the architectures were excessively constrained, and
not flexible enough to adapt to requirements of different datasets. This limitation was
overcome by widening the search space and the addition of our Bayesian optimization
based approach to search over it.
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Figure 5.11: Comparing the performance of standard models achieved empiri-
cally through fine tuning with the Classformer on the GLUE datasets. We were
unable to fine tune Mobilebert successfully, but it is included for completeness.
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Figure 5.12: Full details of inference speed vs. accuracy tradeoff for all baseline
models and all architectures with fixed sequence reduction schedule. Class-
former architectures are labelled with an integer representing the first layer
that is downsampled. This experiment was ran on different hardware than the
experiments with full architecture search so inference speeds are not consistent.
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Inference Speed vs. Sequence Length

To better understand how sequence length affects inference speed we compare the Class-
former to other models when varying inputs length. In figure 5.13 we see how efficient
models improve on the full size BERT and Roberta models, with the height indicating
latency on CPU, and and the x axis representing the length of sequence in terms of to-
kens. We note that there will be slight differences in lengths for the same text due to
differences in tokenizers between models. The slope of the line can be interpreted as how
the model scales to longer sequence lengths. We include a comparision to the Classformer
with reductions of 2x at layers 3 and 8, and retaining 8 tokens throughout the network
(γ3 = 2, γ8 = 2, η = 8). We see that the main benefit of the Classformer is that it scales
more favourably to longer sequences compared to other models. We can roughly divide
these models into three categories:

1. Standard Models - BERT[42] and Roberta[98] both are relatively slow and scale
poorly with increasing sequence lengths because of the full attention mechanism and
the preservation of the full sequence length throughout the network.

2. Smaller Standard Models - SqueezeBERT[70] and DistilBERT[136] both have
overall faster inference time than the standard BERT models. Their performance is
most impressive at shorter sequence lengths, while scaling to longer sequences is less
impressive because they retain the same sequence lengths throughout the network.

3. Sequence Reduction Models - MobileBERT[155] and the Classformer both re-
duce the sequence length throughout the network, which allows them to scale more
favourably to longer sequences. This means that these models tend to outperform
their larger counterparts at longer sequence lengths. The funnel models[36] also be-
long to this category but because of space constraints and their slow inference speed
we do not include them in this comparison.

Predicting Optimal Model For Architecture Search

While our approach to architecture optimization is effective, it is still computationally ex-
pensive because of the requirement to retrain the model multiple times. We investigate
whether we can predict the optimal model for a given dataset without performing the
architecture search. We use the number of training examples in the dataset and average
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Figure 5.13: Sequence length vs. Inference Speed for a variety of models. We see
that the Classformer has favorable scaling properties with increasing sequence
length, but other models such as Distilbert and Squeezebert perform well with
very short sequences.
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Figure 5.14: GLUE Tokenized Sequence Length Distribution: Distribu-
tion of lengths of training examples in the GLUE dataset after tokenization
with the Roberta tokenizer.
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sequence length to train a linear regression model to predict the optimal model. Unfortu-
nately these results were inconclusive, and we did not find a straightforward way to predict
optimal architecture from the dataset size or average sequence length.

We hypothesized that datasets with more samples may face less performance degrada-
tion with additional downsampling but empirically we see this is not the case, and there is
a correlation coefficient of -0.25 but a p-value of .59 between dataset size and performance.
We also look at the average length of the samples, hypothesizing that shorter sentences
may face less performance drop under downsampling, but again we find this is not the case,
with a correlation coefficient of -0.17 and a p-value of 0.71. More details on the length
distributions in the GLUE dataset can be seen in figure 5.14.

5.2.6 Comparison of Pretraining Objectives

Our downsampled architectures are initialized with pretrained weights, but this results
in a mismatch when using these weights with a different, downsampled architecture. An
intuitive approach would be to use additional pretraining, but the sequence length reduc-
tion used in the Classformer means this isn’t possible with the standard MLM objective
because it requires input and output sequences of the same length. In figure 5.16 we see
the standard transformer outputs a sequence length that is the same length as the input
sequence, while the Classformer uses a downsampled sequence length. This necessitates an
alternative form of pretraining, either using an upsampling layer as in the Funnel trans-
former, or through a modified MLM objective on the downsampled sequence length as in
the Classformer. We investigated a variety of MLM objectives on downsampled sequences

1. First k - Masked language modelling objective but only evaluated on the first Lreduced

tokens. Evaluation is not performed on remaining tokens.

2. Last k - Similar to First k, but instead evaluation is performed on the last Lreduced

tokens.

3. γth token - We select tokens evenly along the sequence to evaluate on.

4. Funnel - Similarly to the funnel transformer, we add an upsampling layer so that
the standard MLM objective can be used. Also has a residual connection to the first
layer to add fine grained position information.

5. Dense - Predict all the masked tokens, or the first Lreduced if total dowsampling
performed is greater than a factor of 4. Here locations of tokens are not preserved in
the output, so each output does not directly correspond to an input token.
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Figure 5.15: Comparison of different methods for masked language modelling.
Red tokens represent the tokens the loss is calculated on, while missing tokens
mean the token is dropped. For the standard loss the entire sequence is pre-
served, but with ’first k’, ’last k’, and γth a fixed set are dropped based on
position, while with dense objective all non-masked tokens are dropped.

Looking at figure 5.15, these MLM methods are visualized. Key differences are that
the ’first k’ and ’last k’, and γth objectives work by preserving relative input locations
but reducing the number of tokens that are evaluated on. The dense objective differs
because each token in the input does not correspond to a specific location in the output.
This means the model must both learn which token to mask, but also must remember the
relative location. The benefit of this is that many more tokens are predicted, but because
of the variable locations the overall loss is about 3x higher compared to standard MLM.

In addition to these novel methods, following the approach of the Funnel Transformer[36]
we investigate using an upsampling layer to convert the Classformer output to the size of
the input layer, allowing the standard MLM objective to be used. Here we repeat each
element of the tensor lengthwise until the full length is reached. For example, if the Class-
former reduces the sequence length by a factor of 4, after the output each token will be
duplicated 4 times to create an output equal to the input size. To add more fine grained
positional information to this, the full length hidden states of the 1st layer are added to
the upsampled sequence, similarly to a residual connection[60]. Following this there are
two standard attention layers before the final MLM layer.

We investigate the effectiveness of these modified pretraining objectives for overcoming
the weight mismatch introduced by downsampling in the Classformer architecture. We use
the performance of the model on downstream classification tasks as the objective, since we
do not consider the MLM loss to be a relevant objective. For all tests we first initialize
the Classformer with the weights from a pretrained Roberta model of comparable size,
and also include this model with no additional pretraining as a baseline, which is the
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Figure 5.16: Comparison between the transformer (left), Classformer (middle),
and Funnel transformer (right) architectures. The original transformer pre-
serves the full sequence length through the entire model, while the Classformer
and Funnel transformer both use downsampling to reduce the sequence at inter-
mediate layers, with the key difference being the type of downsampling used and
that the Funnel transformer also has an upsampling layer to allow for standard
pretraining to be used.
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CoLA MNLI QNLI QQP SST2 MRPC RTE STSB AVG
None 6.0 74.3 80.0 78.9 85.6 85.5 65.7 78.2 69.3
first k 7.1 75.8 83.9 81.1 85.9 86.1 65.6 83.9 71.2
last k 3.1 76.1 83.4 81.2 87.4 86.7 64.3 84.7 70.9
γth 0.0 35.4 50.5 0.0 50.9 81.2 52.7 -5.5 33.2
dense 13.2 77.4 85.5 82.0 88.0 87.7 69.3 83.6 73.3
funnel 23.1 79.0 86.4 81.8 88.6 88.1 73.4 83.6 75.5

Table 5.6: Comparison of various pretraining objectives for the models on the
GLUE dataset. Models are initialized with weights from Roberta-base, and
additional pretraining is done on the WikiText103 dataset. Consistent with
BERT, we use the matched MNLI dataset, evaluate on development set, and
report accuracy for all tasks with the exception of Spearman correlation for
STSB, Matthew’s correlation for COLA and F1 scores for QQP and MRPC.
The model finetuned for MNLI is used for RTE, STS and MRPC.

first row of table 5.6. This Classformer uses sequence reduction of 50% at layers 1 and 3
(γ1 = 2, γ3 = 2).

We evaluate our pretraining methods on the GLUE dataset[164] after pretraining with
WikiText103[105], a set of articles from Wikipedia with over 100 million tokens. We
followed the pretraining hyperparameters used in the Roberta paper, and ran it for 1.5
days using 4 32GB V100 GPUs. This is relatively small for pretraining, but we did this
to reduce compute time so we could run multiple tests to evaluate the best pretraining
objective. It also takes much less time to converge compared to standard pretraining
because we initialize using pretrained weights from the standard Roberta model.

Looking at table 5.6, we see first k and last k are quite bad, which could be expected
because they bias the model to focusing on only one part of the text, while the entire
sequence is important for the classification problem. The γth method was entirely useless,
being much worse than no additional pretraining. The dense method shows promising re-
sults, improving over the baseline of using Roberta’s pretrained weights with no additional
pre-training. We also investigated the objective used in the funnel transformer, and found
this to be most effective, but also has an additional cost during training compared to other
methods because of the additional upsampling layers.
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Figure 5.17: Classformer accuracy on MNLI while varying sequence reductions
over layers. This shows using sequence reduction of 2x, 4x and 8x on various
layers

5.2.7 Investigating the Dense Objective

Given pretraining with the Dense objective was able to improve performance on down-
stream tasks, we further investigate this on the GLUE dataset while varying the layer and
amount of reduction. We compare reductions of 2x, 4x, and 8x with models initialized
with Roberta pretrained weights, and those with additional pretraining using the dense
objective, as seen in figure 5.18.

Here we focus exclusively on sequence reduction at lower layers because this has a
greater effect on performance and inference speed than later layers. We demonstrated
this with a more extensive study on the effect of downsampling on performance without
additional pretraining on MNLI, shown in Figure 5.17. We compared reductions of 2x,
4x, and 8x across layers. The most dramatic effects are at the earlier layers, with the
accuracy loss being largest with larger downsampling of 4x and 8x. After the 8th layer
even a downsample of 8x has minimal harm to the performance, indicating that for the
last few layers high downsampling can be used.
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Figure 5.18: Performance on GLUE datasets with models using additional dense
MLM pretraining compared to using only pretrained Roberta weights. The solid
lines refer to models with no additional pretraining, and the dotted lines refer
to models with additional pretraining. The x-axis refers to the layer at which
sequence reduction is applied, and the y-axis refers to the performance on the
GLUE dataset.
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Results of using additional pretraining on the GLUE dataset are shown in figure 5.18.
The dotted lines represent performance with the modified dense pre-training, and we can
see it gives a consistent performance improvement across all reductions when used on the
first layer of the network. It is also generally positive on the second layer, but has minimal
benefits for later layers. In general reduction at later layers does not harm performance
nearly as much as at earlier layers, so there is less room for improvement from this additional
pretraining. Reduction at the input layer completely ruins the performance of the model
both with and without pretraining.

We note that performance is highly variable the COLA, RTE, STSB and MRPC
datasets because of their relatively small size. Because of this we train each of these
datasets three times using a different random initialization each time for the linear layer
and take the mean. For this we also follow the Roberta paper’s approach to pretraining,
using the same hyperparameters and using the model trained on MNLI as initialization for
the RTE, STSB and MRPC datasets. We omit running experiments on later layers of the
network because it is computationally expensive, and downsampling on higher layers has
minimal performance impact.

5.3 Discussion

In this chapter, we approached the problem of reducing representational redundancy in
transformer models applied to downstream tasks that have different requirements in terms
of sequence information than the tasks the networks were pretrained on.

We introduced the Classformer, a novel transformer architecture using sequence-length
bottlenecks for efficient text classification, along with a neural architecture search based
approach for adapting it to a specific dataset, hardware and performance requirement. The
architecture is created by optimizing sequence-length bottlenecks within the model using
Bayesian optimization, maximizing inference speed while satisfying performance require-
ments.

We individually demonstrated that generating dataset, hardware and performance re-
quirement specific models results in different optimal architectures, providing increases in
inference speed. We also demonstrated the Classformer’s impressive performance, out-
performing transformer models explicitly designed for efficiency on the GLUE benchmark
in terms of the inference speed - performance tradeoff. In addition, we introduced MLM
based pretraining objectives for the Classformer and demonstrated their effectiveness in
instances of large sequence length downsampling.
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Chapter 6

Conclusion

This thesis presented three methods for improving the efficiency of deep neural networks
across the domains of image classification, generative models, and text classification through
the reduction of representational redundancy. In this chapter we summarize the contri-
butions of this thesis, and discuss future work that can be done to further improve deep
neural networks along these research directions.

6.1 Summary of Contributions

6.1.1 Weight Sharing

In Chapter 3 we hypothesized there was representational redundancy in convolutional
neural networks used for image classification in terms of unnecessary flexibility within
the convolution kernels. We created an approach to test this hypothesis through the
introduction of additional weight sharing, which can be seen as modifying the optimization
process, formulating it as a constrained optimization problem where multiple channels
within the same convolution filter are forced to take the same values.

Experiments on both small scale and large scale image classification datasets showed
that our method can improve classification performance while reducing the total number
of parameters in the model. We show this can be combined with existing methods for
creating parameter efficient neural networks without harming performance on Imagenet,
and can even improve performance on the CIFAR10 and CIFAR100 datasets
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6.1.2 Affine Variational Autoencoder

In Chapter 4 we approached the problem of reducing representational redundancy in gen-
erative models, specifically in the latent space of variational autoencoders. We aim to
generate a disentangled representation of shape and orientation within the latent space,
which can be used to reduce the size of the latent space and improve the quality of the
generated images. To do this we introduced the affine variational autoencoder, a vari-
ational autoencoder extended through the introduction of two affine layers along with
a novel training procedure that enables the unsupervised disentanglement of shape and
orientation. More specifically, an initial affine layer performs an affine transform on the
input before passing it into an encoder to create a latent space representation which is
then decoded normally. This output is fed into a second affine layer, inverting the ini-
tial affine transform. The affine transform parameters are learned such that the resulting
AVAE can effectively encode input images at canonical orientations, which results in a
more compressed representation of the latent variables and a disentangled latent space.

We demonstrate this on the MNIST dataset, showing that this procedure results in
a latent space where shape and orientation are disentangled, as well as overall reducing
the size of the latent space. We also extend this to 3d affine transforms and show this
procedure works for objects in the Shapenet dataset.

6.1.3 Classformer

In Chapter 5 we aim to reduce redundancy in terms of unnecessary sequence information in
transformer models. Because transformers are optimized to perform well on a specific task
for pretraining, there is a mismatch between the standard transformer architecture and the
optimal one for a downstream task, in this case text classification. To overcome this we
introduced the Classformer, a novel transformer architecture using learned sequence-length
bottlenecks designed to improve inference speed for text classification tasks, along with a
neural architecture search based approach for adapting it to specific dataset, hardware and
performance requirements.

We individually showed that generating dataset, hardware and performance require-
ment specific models through this optimization process result in different architectures
which are tailored to the specific problem. We also demonstrated the Classformer’s im-
pressive performance in terms of inference speed - accuracy tradeoff compared to trans-
former models explicitly designed for efficiency on the GLUE benchmark. In addition,
we introduced a MLM based pretraining objectives for the Classformer and demonstrated
their effectiveness in instances of large sequence length downsampling.
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6.2 Future Work

In this section, we discuss future work in reducing representational redundancy that can
be done to further improve the efficiency of deep neural networks.

6.2.1 Weight Sharing

In this work, we demonstrated the effectiveness of using additional weight sharing in con-
volutional neural networks, but this can be extended in multiple ways. A straightforward
extension is to share weights across multiple layers, similarly to the ALBERT[84] model.
This approach was straightforward in ALBERT because transformer models use a set of
identical layers, so the same weights could be replicated across layers directly. For convo-
lutional neural networks later layers tend to use larger numbers of filters, so this approach
would require partial weight sharing, where only a subset of weights are shared across
layers. For example, the first layers weights would be duplicated across all layers, and
whenever the filter size was increased additional non-shared weights would be added.

6.2.2 Affine Variational Autoencoder

While the Affine Variational Autoencoder was effective for the MNIST and Shapenet
datasets, in its current form it cannot generalize to other datasets where there is more
than one object in the image. The AVAE learns a single affine transform for the entire
image, so if there are multiple objects in the image, the affine transform will not be able to
account for the different orientations of each object. In the case of a 2d image, a complex
background would also render the AVAE ineffective. To generalize to this case, it would
be necessary to extend the AVAE to learn a separate affine transform for each object in
the image, or even for each rigid component of each object.

A possible solution to this would be to apply the AVAE across the image similarly
to a convolution, where the affine transform is learned for each patch of the image but
the VAE’s parameters are shared across all parts. This would perform similarly to the
CapsuleNet[134] architecture, but instead of predicting the orientation directly and using
routing by agreement, the AVAE would learn the affine transform parameters at the bottom
layer based on this disentanglement of shape and orientation. For higher layers, the AVAE
would have to act on the latent parameters of the lower level VAE, which would then be
mapped back to the original image space to compute a loss. This would be closely related
to work on hierarchical VAEs[131, 13, 162] extended to do disentanglement through the
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procedure proposed by the AVAE. While this could handle multiple objects in the image,
it would not be able to handle a complex background, and would still not be able to
fully disentangle real world images, because they are a 2 dimensional projection of a 3
dimensional object. To approach this it would be necessary to map a real world image
to a 3d representation[90, 50, 21], before finally using the 3 dimensional AVAE in this
hierarchical manner.

6.2.3 Classformer

While the Classformer has achieved impressive performance on a wide variety of text
classification tasks, it could be possible to further improve its efficiency through combining
it with current methods for efficient transformers. For example, there are some models with
sub quadratic or even linear complexity in the sequence length such as the Bigbird[188] or
Performer[26] model. We note that many language tasks such as GLUE involve relatively
short sequences of length less than 512. These linear complexity transformer models have
high fixed costs so they only outperform the standard transformer over longer length inputs,
greater than 512[26]. This means that for proper evaluation of these methods we would
have to use tasks with much longer sequences.

Another possibility would be to use a more intelligent method to decide which tokens
should be dropped from the sequence, instead of dropping every nth token as was done
in our work. This could take the form of a better but still fixed pattern of tokens that
are dropped, or an approach where tokens are dynamically dropped according to some
characteristics during the inference process, as in the PowBERT[53] model where tokens
are dropped based on attention scores.

To further improve the performance of the Classformer it may be possible to use more
extensive additional pretraining. For example, we could do multitask training on a variety
of objectives formulated as language modelling, which was shown to improve performance
in T5[121]. Alternatively, we could train on multiple tasks that are very close to the
downstream task, which has been shown to improve performance on standard transformer
architectures[5].
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