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Abstract

The RADARSAT Constellation Mission (RCM) utilizes compact polarimetric (CP)
mode to provide data with varying resolutions, supporting a wide range of applications
including oil spill detection, sea ice mapping, and land cover analysis. However, the com-
plexity and variability of CP data, influenced by factors such as weather conditions and
satellite infrastructure, introduce signature ambiguity. This ambiguity poses challenges
in accurate object classification, reducing discriminability and increasing uncertainty. To
address these challenges, this thesis introduces tailored spatial models in CP SAR imagery
through the utilization of machine learning techniques.

Firstly, to enhance oil spill monitoring, a novel conditional random field (CRF) is intro-
duced. The CRF model leverages the statistical properties of CP SAR data and exploits
similarities in labels and features among neighboring pixels to effectively model spatial in-
teractions. By mitigating the impact of speckle noise and accurately distinguishing oil spill
candidates from oil-free water, the CRF model achieves successful results even in scenarios
where the availability of labeled samples is limited. This highlights the capability of CRF
in handling situations with a scarcity of training data.

Secondly, to improve the accuracy of sea ice mapping, a region-based automated classi-
fication methodology is developed. This methodology incorporates learned features, spatial
context, and statistical properties from various SAR modes, resulting in enhanced classifi-
cation accuracy and improved algorithmic efficiency.

Thirdly, the presence of a high degree of heterogeneity in target distribution presents
an additional challenge in land cover mapping tasks, further compounded by signature
ambiguity. To address this, a novel transformer model is proposed. The transformer
model incorporates both fine- and coarse-grained spatial dependencies between pixels and
leverages different levels of features to enhance the accuracy of land cover type detection.

The proposed approaches have undergone extensive experimentation in various remote
sensing tasks, validating their effectiveness. By introducing tailored spatial models and
innovative algorithms, this thesis successfully addresses the inherent complexity and vari-
ability of CP data, thereby ensuring the accuracy and reliability of diverse applications in
the field of remote sensing.
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Chapter 1

Introduction

1.1 Compact Polarimetric Synthetic Aperture RADAR

Synthetic aperture radar (SAR) is an active remote sensing technique that provides images
regardless of solar illumination and is relatively insensitive to weather conditions [1]. The
RADARSAT Constellation Mission (RCM) is a new generation set of Earth observation
SAR satellites, which was launched on June 12, 2019, and consists of three satellites [2].
The RCM data is used to support Canada’s need for enhancing the operational use of SAR
data for addressing three main key issues, namely, surveillance, disaster management,
and environmental monitoring [2]. The RCM provides nearly daily coverage of Canada
and it has dual-polarization (DP), wide-swath coverage compact polarimetry (CP), and
quad-polarization (QP) modes [3]. In the RCM CP mode, the SAR system transmits a
circularly-polarized radar signal and receives two coherent linear-polarized signals [4].

A CP SAR offers key advantages over QP SAR, including wide-swath coverage and
reduced average transmitted power [5–7]. Moreover, the data acquired from CP SAR is
expected to be of comparable quality to that obtained from a QP SAR [8]. On the other
hand, DP SAR data provide broader area coverage than QP but offer limited detailed in-
formation about scattering objects, as they only produce intensity images. While both CP
SAR and DP SAR share a wide swath width, CP SAR exhibits several benefits over DP
SAR, including decreased sensitivity to noise and cross-channel errors, ease of implemen-
tation, self-calibration, and the ability to provide more comprehensive information about
scattering objects [9].

RCM satellites offer CP data in various beam modes, ranging from high (3m) to low
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(100m) resolutions, which can be used for various environmental monitoring purposes such
as:

1. Oil spill detection. Detecting and efficiently mitigating the harmful impacts of oil
spills, caused by accidents or illegal discharges, is critical for protecting marine ecosys-
tems and human life [10,11].

2. Sea ice mapping. The interpretation of ice types and the analysis of their properties
have significant implications in various crucial applications, such as ship navigation,
global climate monitoring, and animal migration forecasting [12].

3. Land cover classification. Accurate land cover classification is essential for urban
planning, natural resource management, and environmental monitoring applications,
as it provides valuable insights into changes occurring on the Earth’s surface over
time [13,14].

Signature ambiguity, defined as the challenge of interpreting SAR data due to its in-
herent complexity and variability, poses significant challenges in classification methods.
This highlights the necessity of incorporating spatial information to mitigate the impact
of signature ambiguity and improve the accuracy and reliability of SAR data analysis and
interpretation.

1.2 Spatial Information in CP SAR Imagery

Signature ambiguity is influenced by factors like weather conditions (e.g., wind speed and
melting ponds on ice surface [15–17]) and satellite infrastructure (e.g., incidence angle
effect [18–20] and speckle noise [21–23]). The presence of signature ambiguity significantly
decreases discriminability and heightens uncertainty during data interpretation.

Spatial information allows for the consideration of neighboring pixels and their rela-
tionships, enabling the identification of coherent patterns and structures in the data [24].
By incorporating spatial information, the impact of ambiguities can be mitigated, leading
to improved accuracy and reliability in SAR data analysis and interpretation [25]. This
helps to enhance the discrimination capabilities of SAR classification algorithms.

There are various approaches to model spatial information in SAR images, including
random field models, convolutional neural network (CNN), and transformer-based models.
A conditional random field (CRF) model leverages statistical properties and similarities
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in labels and features between pixels and their neighbors. CRF can reach good results in
image classification tasks with limited labeled data [26]. Therefore, it can be used for tasks
where annotated training data is scarce or expensive to obtain. On the other hand, CNNs
extract spatial information by applying convolutional filters to capture local patterns and
features, while pooling layers downsample the feature maps to retain salient information
and capture abstract spatial patterns [27]. The ability of CNNs to effectively extract and
learn fine-grained spatial features in SAR data [28] enhances their accuracy and effective-
ness in accurately classifying various types of sea ice in SAR imagery. Another group
of methods, transformers, extract spatial information by employing self-attention mecha-
nisms to capture global dependencies, enabling the model to learn spatial relationships for
effective information extraction [29]. By considering the high rate of spatial heterogeneity
challenge in land cover classification tasks, modeling spatial information in different scales
is important.

1.3 Motivation

The primary objective of this thesis is to develop advanced classification techniques specif-
ically tailored for CP SAR imagery. By harnessing the power of spatial information within
machine learning algorithms, the goal is to effectively address the complexity and variabil-
ity encountered in CP SAR data and ultimately attain remarkably precise classification
results. The motivations behind this research stem from several challenging aspects that
warrant attention and exploration.

1. Previous approaches to oil spill detection using CP SAR have primarily relied on
pixel-based features [30–36]. Nonetheless, the accuracy of single-pixel measurements
is significantly impacted by signature ambiguity [37,38]. Furthermore, the statistical
characteristics of CP SAR data have not been adequately considered in the design
of classification methods. However, by incorporating the spatial information and
statistical properties of CP SAR data, it becomes feasible to develop a CRF model
that is specifically tailored to exploit the unique characteristics of CP SAR data
without requiring extensive labeled samples.

2. The classification of sea ice using CP SAR data has been addressed in previous
studies by incorporating various features and techniques, such as backscattering, po-
larimetric information, and texture features [4, 39–46]. However, these methods rely
on hand-crafted features, which necessitate domain expertise and time-consuming
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feature engineering [47]. In contrast, deep learning methods offer a data-driven ap-
proach that can automatically learn features and spatial patterns from the data,
eliminating the need for manual feature engineering [48]. Additionally, combining
sea ice maps generated through pixel-level classification with segmented images has
been shown to improve classification accuracy [43,49]. However, previous CP sea ice
classification approaches have overlooked the statistical properties of CP SAR data
in the generation of regions. By considering these limitations, this is necessary to de-
sign a CP sea ice classification methodology that leverages deep learning techniques
to automate feature extraction and incorporates the statistical properties of CP SAR
data to generate accurate and reliable sea ice maps.

3. The classification of land cover using CP SAR data faces significant challenges, in-
cluding signature ambiguity and spatial heterogeneity [50–52]. The limited research
in this specific area highlights the need for improved methodologies [53–55]. Existing
approaches fail to consider spatial information and learned features [53, 55], or lack
contextual information [54]. To address these limitations, it is necessary to design a
feature learning CP SAR classification that integrates spatial information in different
levels and offers computational efficiency for large-scale CP scenes.

1.4 Objectives

Based on the signature ambiguity and spatial heterogeneity challenges and the limitations
of the existing methods, this thesis aims to achieve the following three key objectives.

1. To improve the oil spill detection accuracy, this research aims to design a model based
on a CRF which reduces the impacts of speckle noise and highlights the difference
between oil spill candidates and oil-free water by effectively modeling the spatial
contextual information and taking advantage of statistical characteristics of CP SAR
data without requiring extensive training samples ( See Chapter 3). Moreover, since
solving the CRF is an ill-posed problem and optimization algorithm needs to be used
to obtain the optimum result, this thesis assesses the performance of optimization
algorithms so that the resulting CRF model can be tailored to the characteristics
of the CP SAR data for dealing with the RCM CP SAR data in oil spill candidate
detection applications.

2. To enhance the accuracy of sea ice mapping using CP SAR imagery, this thesis
aims to develop a region-based automated sea ice classification methodology that
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Figure 1.1: Different methods of modeling spatial information: CRF, Region-based CNN,
and PFC Transformer.

incorporates learned features, spatial context, and statistical properties of CP SAR
data (See Chapter4). In addition, the effectiveness of CP will be compared to DP,
reconstructed QP (RQP), and QP modes for SAR sea ice classification, enabling
the identification of the most suitable mode for improved operational algorithmic
capability.

3. To improve the accuracy of the land cover mapping using CP SAR imagery, this
thesis aims to design a novel approach called the pyramid fine- and coarse-grained
self-attention transformer (PFC transformer) method (See Chapter 5). By leverag-
ing fine- and coarse-grained spatial dependencies and integrating low- and high-level
features, the PFC transformer method enables the extraction of detailed and compre-
hensive information from CP SAR imagery, ultimately leading to improved accuracy
in land cover classification.

Fig 1.1 shows the three different methods of modeling spatial information.
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1.5 Thesis Structure

In Chapters 3, 4, and 5, three distinct classification methods for CP SAR data are proposed.
These chapters are based on three published/submitted journal manuscripts [56–58]. It is
worth noting that the introduction to each chapter and the underlying theory may contain
overlapping information.

The fundamentals of CP SAR data and their statistical properties are explained in
Chapter 2. Chapter 3 has the objective of developing a CRF classification approach to
identify oil spill candidates using CP SAR data. However, in the absence of CP SAR data
for detecting oil spills, RADARSAT-2 scenes are utilized to simulate the corresponding
CP SAR scenes. In Chapter 4, the proposed region-based sea ice classification method is
explained. The structure of the PFC transformer method along with its advantage over the
state-of-the-art attention-based methods are discussed in Chapter 5. Finally, a summary
of contributions and conclusions as well as future works are described in Chapter 6.

6



Chapter 2

CP SAR Data

This chapter starts by introducing SAR data and statistical properties of CP SAR data.
From there, the advantages of CP SAR imagery system over QP and DP ones are discussed.
Finally, the theory of reconstructing QP SAR data from CP is explained.

2.1 Synthetic Aperture Radar

Remote sensing systems can be categorized in two general groups: a) passive and 2) active.
A passive remote sensing system records electromagnetic energy emitted (e.g., thermal
infrared radiation) or reflected (e.g., blue, green, red, and near-infrared light) from Earth’s
surface [1]. In contrast to passive, active remote sensing systems rely neither on the
Sun’s electromagnetic energy nor the Earth’s thermal properties. In an active remote
sensing system, electromagnetic energy is transmitted from the sensor toward the terrain.
Interacting the transmitted wave with the terrain produces a backscatter of energy recorded
by the sensors [1]. The following active remote sensing systems are the most widely used:
RADAR, LIDAR, and SONAR. For Earth-resource observations, SAR remote sensing is
most commonly used [1].

SAR satellites of the first generation, such as SEASAT, transmit and receive intensity
data over a single channel in HH (horizontal linear transmission and reception), VV (ver-
tical linear transmission and reception), HV (horizontal linear transmission and vertical
linear reception), and VH (vertical linear transmission and horizontal linear reception) [59].
In single-polarized SAR images, intensity values and texture features are mainly used to
classify SAR scenes. Providing less information is the main limitation of single-polarized
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SAR systems, particularly in dealing with ice-covered water bodies [59]. DP SAR systems
such as RADARSAT-2 provide two intensity channels (HH/HV, VV/VH, or HH/VV).
Canadian Ice Service (CIS) experts mainly use DP RADARSAT-2 data to generate sea ice
maps [43]. The main advantage of DP SAR imagery is its wide swath width. However,
the phase information between channels is not measured in this SAR system, resulting in
incomplete information about objects [60]. In contrast to DP, QP SAR systems obtain
complete polarimetric information about objects by saving the phase information between
channels [60]. CP SAR systems provide more information than DP and less than QP. In
other words, CP SAR systems take advantage of DP and QP SAR data by providing wide
swath width and preserving phase information between channels [8].

2.2 Introduction to SAR Polarimetry

The electric field orientation of an electromagnetic (EM) wave in space is defined as po-
larization [60]. Polarization of an electric field explains the behavior of a field and can be
characterized by using the Jones vector E [60]:

E =

[
E0xe

jδx

E0ye
jδy

]
(2.1)

The Jones vector characterizes a wave by decomposing it into two orthogonal waves
with (E0x, E0y) amplitudes and (δx, δy) phases. Different values of phases and amplitudes
define different polarizations. For example, linear and circular polarizations are defined by

(δx − δy = 0) and
(
δx − δy =

π

2
, E0x = E0y

)
, respectively.

Another way to describe polarization of an EM wave is using the polarization ellipse
including three parameters, namely, the ellipse amplitude A, the orientation angle ϕ, and
the ellipticity angle τ (see Fig 2.1). Using polarization ellipse parameters, a Jones vector
can be formulated as follows [60]:

E = Aejα
[
cosϕ cos τ − j sinϕ sin τ
sinϕ cos τ + j cosϕ sin τ

]
(2.2)

where α is an absolute phase term and A=
√
E2

0x + E2
0y. By using (2.2), the unit Jones

vector associated with a canonical polarization can be calculated. Table 2.1 shows the unit
Jones vectors of different canonical polarizations.
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Figure 2.1: Polarization ellipse [60]

In the case of a SAR system, the vector E of the backscattered field is calculated as [60]:

E = Sût =

[
SHH SHV

SV H SV V

]
ût (2.3)

where ût is a unit Jones vector associated with a canonical polarization and S is scattering
matrix. Sij is a complex number which i and j show transmitted and received polar-
ization basis, respectively [60]. The diagonal elements of scattering matrix are known as
co-polarized coefficients while the off-diagonal ones are called cross-polarized coefficients.
When the same antenna is used for transmitting and receiving a wave, the reciprocal
theorem requires that SHV = SV H [60].

A QP SAR system provides a complete scattering matrix; however, it requires a higher
pulse repetition frequency than a DP SAR to transmit and receive in two orthogonal
polarizations. In a QP system, the pulse repetition frequency is twice that of a single or
DP SAR for a given coverage area [8]. However, the swath width of QP SAR imagery is
limited, making it not appropriate for ocean application, particularly generating sea ice
maps [61]. Therefore, using CP mode is more appropriate for ocean applications.

2.3 Compact Polarimetry

The architectures of CP SAR are classified into (i) π/4, (ii) the circularly-circularly (CC),
and (iii) the hybrid-polarity (HP) modes [31]. In π/4 mode, a linear polarized field with
a 45◦ inclination is transmitted and two coherent linear polarizations are received. In π/4
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Table 2.1: The Jones vector of canonical polarizations

Polarization state Unit Jones vector ût Orientation angle ϕ Ellipticity angle τ

Horizontal

[
1

0

]
0 0

Vertical

[
0

1

]
π

2
0

Linear +45◦
1√
2

[
1

1

]
π

4
0

Linear -45◦
1√
2

[
1

−1

]
−π

4
0

Left circular
1√
2

[
1

j

]
[−π

2
...
π

2
]

π

4

Right circular
1√
2

[
1

−j

]
[−π

2
...
π

2
] −π

4

mode, the orientation invariance for double-bounce responses is not be ensured [9]. To
overcome this issue, a circular polarization must be transmitted. In CC mode, a circularly
polarized filed is transmitted and the response of the target is received in the same polar-
ization. In terms of hardware, the implementation of CC architecture is difficult [31]. HP
mode proposed by Raney [9] can be an alternative of CC mode. In HP mode, the recording
system transmits a circular polarization field and receives coherently both horizontal and
vertical polarizations. Since the coherency matrix is independent of the receiver’s polariza-
tion basis, then in HP architecture not only all the advantages of CC one are maintained,
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but also the implementation of hardware becomes simpler [9]. Moreover, HP mode is
rotationally robust with respect to the shape of the observed scene [31].

Considering an HP mode in which a right circular polarized wave is transmitted and

coherent dual linear polarizations are received, the unit Jones vector is [
1√
2
,
−j√

2
]T (see

Table 2.1). Therefore, EHP is calculated as follows:

EHP =

[
SHH SHV

SV H SV V

][ 1√
2

−j√
2

]
=

1√
2

[
SHH − jSHV

SHV − jSV V

]
(2.4)

Because of some reasons such as increasing the information content of polarimetric
SAR data and reducing the impacts of speckle noise, the coherency matrix is used instead
of scattering matrix [62]. The coherency matrix of a CP SAR data is a 2 × 2 positive
semi-definite Hermitian matrix which is defined as [63]:

JCP =
1

L

L∑
i=1

E · E∗T =

[
J11 J12

J21 J22

]
(2.5)

where L is the number of looks for averaging. T and ∗ stand for the transpose operator
and complex conjugate, respectively. According to (2.4) and (2.5), the coherency matrix
of JHP can be given by [64]

JHP =
1

2

[
⟨| SHH |2⟩ j⟨SHHS

∗
V V ⟩

−j⟨SV V S
∗
HH⟩ ⟨| SV V |2⟩

]
+

⟨| SHV |2⟩
2

[
1 −j
j 1

]
+

1

2

[
−2Im (⟨SHHS

∗
HV ⟩) ⟨SHHS

∗
HV ⟩ + ⟨S∗

V V SHV ⟩
⟨S∗

HHSHV ⟩ + ⟨SV V S
∗
HV ⟩ 2Im (⟨SV V S

∗
HV ⟩)

] (2.6)

where Im indicates the imaginary part of a complex number.

2.3.1 Statistical Characteristics of CP SAR Data

Statistical properties of SAR data are considered in several tasks, parametric classification
models for instance. The one look amplitude SAR image follows a Rayleigh probability
distribution while the intensity image has a negative exponential distribution [60]. In many
studies, it is assumed that a SAR image follows the mixture Gaussian distribution [65].
Assuming random variable y represents a pixel value in a SAR image, for example intensity
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value of a pixel in an HH image of RADARSAT-2, the probability density function (PDF )
of y is:

(2.7)p (y|µi, σi) =
1

σi
√

2π
exp

(
− (y − µi)

2

2σ2
i

)
.

µi and σi are the mean and standard deviation of the class i, respectively.

To reduce speckle noise and compress SAR data, multi-look processing is performed
by averaging several single-look images [60, 66]. It has been shown that an L-look SAR
intensity image has a Chi-square distribution with 2L degrees of freedom [60,67]. Therefore,
PDF of a pixel in an L-look SAR image is described by [66,68,69]:

(2.8)p (y|µi, L) =
1

Γ (L)

(
L

µi

)L

yL−1exp

(
−Ly
µi

)

where Γ (.) is gamma function and µi stand for the mean of the ith class [70]. Moreover,
L can be estimated as the ratio of the mean and the variance of the intensity [66,71].

The coherency matrix for SAR data includes complex numbers and has a complex
Wishart distribution [72]. The kth pixel in CP SAR imagery is represented by a complex
matrix Ak = LJk. The PDF of the matrix Ak is given by [73],

(2.9)P
(L)
Ak

(Ak|Ji) =
| Ak |L−q exp

[
−Tr

(
J−1
i Ak

)]
K (L, q) | Ji |L

where Ji is the coherency matrix of the ithclass . Tr(.) and | . | stand for trace of (.) and
the determinant operator, respectively. Also,

(2.10)K (L, q) = π
1
2
q(q−1)Γ (L) , · · · ,Γ (L− q + 1)

where the parameter q displays the dimension of the scattering vector of a SAR data which
for CP data is 2.
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Figure 2.2: Traverse P⊥ and incident P planes involved in reflection symmetry (This figure
is based on Fig. 1 by Souyris et al. [74].)

2.4 Reconstructing QP SAR Data from CP

Assuming reciprocity in the monostatic radar case, QP SAR data provides a 3×3 covariance
matrix as follows [73]:

CQP =

 ⟨|SHH |2⟩
√

2 ⟨SHHS
∗
HV ⟩ ⟨SHHS

∗
V V ⟩√

2 ⟨SHV S
∗
HH⟩ 2 ⟨|SHV |2⟩

√
2 ⟨SHV S

∗
V V ⟩

⟨SV V S
∗
HH⟩

√
2 ⟨SV V S

∗
HV ⟩ ⟨|SV V |2⟩

 =

C11 C12 C13

C21 C22 C23

C31 C32 C33

 . (2.11)

Based on the CP SAR data, the QP SAR data can be reconstructed to be used as
an alternative representation of the CP SAR data to utilize the full polarimetric SAR
classification methods [43] and provide access to known QP parameters whose usage and
interpretation are known [4]. To reconstruct the 3×3 coherency matrix of QP SAR data
by using the 2×2 CP coherency matrix, according to (2.5) and (2.11), there are four known
equations ( two real J11 and J22 channels, and a complex J12 channel) and nine unknown
variables ( three real C11, C22, and C33 channels and three complex C12, C13, and C23

ones). It is necessary to make some assumptions to solve this underdetermined system of
equations [74,75].

Souyris et al. [74] proposed the first QP reconstruction method based on reflection and
rotation symmetry assumptions [74, 76] and Nord et al. [75] modified it. Assume that
(ûH ⊥ P ) and (ûV ∥ P ) where plane P contains the incident wave k̂ and P⊥ is the traverse
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plane normal to the incident wave (see Fig. 2.2). When a target is symmetric about
the plane P , reflection symmetry is formed. The reflection symmetry can be observed
in various geophysical media, such as ocean water, forests, snow, and sea ice [74]. The
reflection symmetry results in an approximate zero correlation between the co- and cross-
pol coefficients, ⟨SHHS

∗
HV ⟩ = ⟨SV V S

∗
HV ⟩ = 0. Consequently, the covariance matrix of

reconstructed QP (RQP) is formed as [76]:

CRQP =

 ⟨|SHH |2⟩ 0 ⟨SHHS
∗
V V ⟩

0 2 ⟨|SHV |2⟩ 0
⟨SV V S

∗
HH⟩ 0 ⟨|SV V |2⟩

 (2.12)

and JHP with the reflection symmetry is given as:

JHP =
1

2

[
⟨|SHH |2⟩ + ⟨|SHV |2⟩ j (⟨SHHS

∗
V V ⟩ − ⟨|SHV |2⟩)

−j (⟨SV V S
∗
HH⟩ − ⟨|SHV |2⟩) ⟨|SV V |2⟩ + ⟨|SHV |2⟩

]
(2.13)

Rotation symmetry is another assumed symmetry. The covariance matrix coefficients
of a target with rotation symmetry around the incident wave are invariant to the rotation
of the orthogonal basis (ûH , ûV ) by any arbitrary angle α (see Fig. 2.2). Under rotation
symmetry assumption, Nord et al. [75] established a general relationship between the linear
HH-VV coherence and the cross-polarization ratio

⟨|SHV |2⟩
⟨|SHH |2⟩ + ⟨|SV V |2⟩

=
1 − |ρHHV V |

N
(2.14)

where ρHHV V and N are given by

ρHHV V =
⟨|SHV |2⟩ − 2jJ12√

(2J11 − ⟨|SHV |2⟩)(2J22 − ⟨|SHV |2⟩)
(2.15)

N =
⟨|SHH − SV V |2⟩

⟨|SHV |2⟩
(2.16)

The reconstruction algorithm of CRQP consists of an iterative process that involves al-
ternating between (2.15) and (2.14). The iteration begins with setting N to 4. After
computing CRQP , the value of N is estimated using (2.16) and then utilized for calculating
the new CRQP (see [74, 75] for more details).
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Chapter 3

Oil Spill Candidate Detection Using
a Conditional Random Field Model
on Simulated Compact Polarimetric
Imagery

Although the CP SAR mode of the RCM offers new opportunities for oil spill candidate
detection, there has not been an efficient machine learning model explicitly designed to
utilize this new CP SAR data for improved detection. This chapter presents a conditional
random field model based on the Wishart mixture model (CRF-WMM) to detect oil spill
candidates in CP SAR imagery. First, a “Wishart mixture model” (WMM) is designed
as the unary potential in the CRF-WMM to address the class-dependent information of
oil spill candidates and oil-free water. Second, we introduce a new similarity measure
based on CP statistics designed as a pairwise potential in the CRF-WMM model so that
pixels with strong spatial connections have the same class label. Finally, we investigate
three different optimization approaches to solve the resulting maximum a posterior (MAP)
problem, namely iterated conditional modes (ICM) [77], simulated annealing (SA) [78],
and graph cuts (GC) [79]. The results show that our proposed CRF-WMM model can
delineate oil spill candidates better than the traditional CRF approaches, and that the GC
algorithm provides the best optimization. This chapter is based on a published paper [56].
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3.1 Introduction

Protecting the environment is an important subject that has gained significant attention
across the world. One of the most damaging events to the marine ecosystem is an oil spill
which is usually caused by oil tanker accidents, illegal oily discharges from tank cleaning,
or oil pipeline breakages [80]. As a result, detecting and cleaning up oil spills play an
essential role in the lives of humans and marine life. The first step to efficiently reduce the
destructive effects of oil spills on the environment is to detect oil spills accurately.

An appropriate choice to detect marine oil spills is to use SAR systems because they can
capture images of large areas, regardless of image acquisition time and weather conditions.
Oil spill detection can be done manually by trained operators. In visual inspection methods,
an expert has to examine the entire scene and identify oil spills [81]. Although a trained
operator can identify oil spill candidates in a SAR image with sufficient certainty, processing
SAR scenes by human analysts is difficult and time-consuming. Outputs generated from
the visual inspection can vary since these are dependent on the knowledge and experience
of operators. Therefore, designing automatic models to use SAR data for oil spill detection
is essential for accurately detecting oil spills. In general, the process of detecting oil spills
from SAR imagery can be divided into three steps: 1) detection of candidate oil spill spots,
2) extraction of features from the candidate spots, and 3) classification of candidate oil
spots [82]. The first step is the most important part because if an oil spill is not detected,
it is impossible to retrieve it in the rest steps.

A number of natural phenomena can result in false oil spill detections in SAR imagery
such as marine organisms, shear zones, natural low wind zones (wind speed < 3 m/s),
internal waves, rain cells, grease ice, and microconvective cells, which are known as oil spill
look-alikes [83,84]. The normalized radar cross section (NRCS) of look-alikes and oil spills
are both low and similar making it a major problem in oil spill detection. The coherent
interference of backscattered waves from many randomly distributed scatterers within a
resolution cell causes bright and dark pixels in a radar image [1, 85]. This grainy salt-
and-pepper noise is called speckle noise. An essential challenge in SAR oil spill candidate
detection is caused by the speckle noise that creates low feature space separability between
the oil spill and oil-free water classes. Generally, to reduce the effects of speckle noise,
incoherent averaging using multiple looks or adaptive/non-adaptive signal processing filters
are utilized [86].

Only a few published papers exist on the topic of oil spill detection using CP SAR
data [30,31,34,87]. Previous studies have not used the statistical distribution of CP SAR
data in oil spill detection applications. Therefore, one of the main contributions of this
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chapter lies in incorporating statistical properties of CP SAR data to identify oil spill
candidates. Context is an important information source in analyzing SAR data. In this
chapter, the spatial context information in SAR imagery is used to improve class separa-
bility. We introduce a model based on a CRF which reduces the impacts of speckle noise
and highlights the difference between oil spills and oil-free water by effectively modeling
the spatial information. The CRF consists of the unary and pairwise potentials. The
unary potential utilizes the statistical properties of individual pixels, while the pairwise
potential represents relationships between neighboring pixels [88,89]. Nevertheless, a CRF
is traditionally built upon SAR intensity images, and we are not aware of a CRF model
designed to address the statistical properties of the complex CP SAR data. The second
aim of this chapter is to introduce a similarity measure based on CP SAR data to better
model spatial information. Since solving the CRF is an ill-posed problem, an optimization
algorithm needs to be used to obtain the optimum result. Therefore, the third aim of this
chapter is to assess the performance of optimization algorithms so that the resulting CRF
model can be tailored to the characteristics of the CP SAR data for dealing with the future
RCM CP SAR data in oil spill candidate detection applications.

In summary, the contributions of this chapter lie in the following aspects. First, a
Wishart mixture model (WMM) based on the complex Wishart distribution is designed
to implement the CRF-WMM’s unary potential to accommodate the discriminative class
statistics in the CP SAR data. Second, the pairwise potential in CRF-WMM is imple-
mented to leverage spatial information. Finally, we identify the best approach for solving
the resulting CRF-WMM model of the three popular optimization approaches.

A literature review on the related workers are presented in Section 3.2. In Section 3.3,
the details of the proposed CRF is described. Then, after introducing the study area in
Section 3.4, the results are presented in Section 3.5. The last section concludes the chapter.

3.2 Related Work

Early research on SAR oil spill detection was conducted using single-polarization SAR data,
generally using the VV (vertical transmit, vertical receive) polarization [90]. Elachi [91] is
recognized as the first to use SAR data to monitor oil spills using data from the Seasat
satellite. The enhanced capabilities of the second generation of satellite SAR sensors such
as ENVISAT, RADARSAT-1, and ERS-2 attracted further attention for oil spill moni-
toring [92–94]. Xu et al. [95] performed a comprehensive study of different classification
techniques to detect oil spills using ninety-three RADARSAT-1 ScanSAR Narrow Beam
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images. They utilized fifteen features and different classification methods to distinguish oil
spills from look-alike phenomena.

The third generation of SAR sensors, such as the Canadian RADARSAT-2 and Ger-
man TerraSAR-X, offer QP SAR modes, higher spatial resolution and shorter revisit times
than previous SAR missions [96, 97]. With the availability of QP SAR data, researchers
have also explored QP SAR data for oil spill selection [31, 98, 99]. Minchew et al. [100]
investigated H/A/

√
α eigenvector decomposition parameters extracted from QP UAVSAR

(uninhabited aerial vehicle SAR) data to analyze the backscattering of the Deepwater Hori-
zon (DWH) oil spill and determined that the major eigenvalue of the coherency matrix was
the most promising indicator for oil slick detection. Genovez et al. [101] proposed a multi-
source approach to utilize optical, single-channel SAR, and QP SAR data to distinguish
oil from water and classify oil into two thick and thin layers. Espeseth et al. [102] used
a series of short time revisit SAR images to identify areas with relatively thick oil slicks.
Their results showed that multiple SAR images with short repeat times could provide new
information to identify short term oil slick drifts, which is important for clean up efforts.
Skrunes et al. [103] investigated the discrimination potential of the eight well-known mul-
tipolarization features by measuring between-region contrast and within-region variance
and concluded that the pair of geometric intensity and the real part of the copolarization
cross product features could be used to determine the most promising results.

Several approaches have been proposed for oil spill candidate detection by taking advan-
tage of spatial information. One method is to employ a graphical model. Xu et al. [104] in-
troduced a stochastic fully connected CRF based on a Gaussian mixture model (GMM)
to detect dark spots on RADARSAT-1 images, demonstrating that incorporating spatial
information can improve results. Morales et al. [105] utilized a hierarchical Markov random
field (MRF) to segment SAR images into oil classes (denser and thinner) and sea water.
Pelizzari and Bioucas-Dias [106] used an MRF based on graph cuts to detect oil spills in
SAR intensity images. Martinis [107] used a hybrid Markov image model by integrating
scale-dependent and spatial information into the labeling process for near real-time oil spill
detections in high-resolution TerraSARX ScanSAR data. Parmiggiani et al. [108] used a
threshold GMM-MRF model to segment oil spills in a SAR image. Other mathemati-
cal tools which utilize spatial relationships among pixels are convolution neural networks
(CNNs). De Laurentiis et al. [83] utilized a CNN to separate mineral films from biogenic
slicks and oil-free sea surface. Guo et al. [109] employed a CNN to discriminate oil spills
from look-alikes, while Yaohua and Xudong [110] used a dense connected CNN for the
same task.

There are a limited number of published papers on oil spill detection using CP SAR
data. Salberg et al. [30] proposed a coherence measure, which relies on the Bragg scattering
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assumption, to detect oil spills in simulated HP SAR data obtained from RADARSAT-2
data. They compared the performance of their proposed measure with the degree of po-
larization (DoP), the conformity coefficient, and the correlation coefficient. According to
their results, the coherence measure suppresses some look-alikes caused by low wind. Nun-
ziata et al. [31] investigated features extracted from HP SAR data based on sea surface
scattering with or without oil spills. Moreover, they proposed a new measure called the
standard deviation of the phase difference (σ), where the value of σ for oil-covered surfaces
is larger than that for slick-free regions. Li et al. [32] proposed a new method to retrieve
the mixture ratio of oil and water in CP SAR data by using the diagonal elements of the
covariance matrix of CP SAR data. In [33], an iterative reconstruction QP SAR image
method using CP SAR data based on the different statistical behavior between oil spills
and open sea surface was proposed. Shirvany et al. [34] investigated the potential use of
DoP calculated for CP and DP SAR data to detect ships and oil spills. Their experiment
showed that using the HP CP mode and DP (HH , VV) modes result in better detection
performance. Espeseth et al. [35] compared the performance of a set of features extracted
from QP UAVSAR and simulated HP SAR data under a high wind situation, and con-
cluded that the capability of the HP data to distinguish different slicks from each other as
well as from oil-free water is comparable with that of the QP data. Collins et al. [90] inves-
tigated the potential of the RQP SAR data based on CP SAR data to create the oil/water
mixing index called Mdex [111]. According to their results, RQP SAR and QP SAR data
resulted in similar Mdex maps. Chaudhary and Kumar [112] investigated the potential of
using decomposition parameters extracted from QP UAVSAR (uninhabited aerial vehicle
SAR) and CP RISAT-1 SAR images for detecting oil slicks. Here, using Van Zyl param-
eters [113] achieved the best results for the UAVSAR dataset, and utilizing compact-pol
decomposition parameters [114] achieved the best results for the RISAT-1 dataset. A study
by Chaudhary and Kumar [115] investigated the capability of using features measured from
QP and simulated HP imagery to distinguish oil spills from oil-free water. Classification
using HP features achieved an accuracy of more than 98%. Li et al. [36] analyzed the
polarimetric properties of oil-covered ocean surface water in CP SAR data using the po-
larimetric degree m and the Poincare χ parameters [116]. They concluded that the sign of
χ is opposite for the oil spills from oil-free water, and compared to oil-free water, oil spills
reduce the value of m.

Most of the methods described above have been applied to detect oil spills by utilizing
pixel-based features. However, single-pixel measurements are strongly affected by speckle
noise resulting in noisy outputs [37,38]. In this chapter, we consider spatial information to
reduce speckle effects and the impact of intra-class variations to increase class separability
for the oil spill detection problem. Moreover, in contrast to previous studies such as [104,
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117], we investigate the use of a more appropriate statistical model to include in a CRF
model that is better able to more accurately detect oil spill candidates in CP SAR data.

3.3 Methodology

3.3.1 CRF-WMM Framework

Let S represent the discrete two-dimensional rectangular lattice and i ∈ S be a site in the
lattice (i.e., a pixel in the image). A CP SAR image is represented by Y = {yi|i ∈ S}
where Y is a random field on S. Moreover, X = {xi|i ∈ S} is a set of binary-valued random
variables which form a random field on S. For oil spill candidates xi=1, oil-free water xi=0.
Based on this formulation, the task of oil spill candidate detection from CP SAR imagery
aims to estimate X based on Y , which is achieved using a novel CRF-WMM model that
addresses both the backscattered information and the spatial context information in the
CP image.

The proposed CRF-WMM model addresses the posterior probability distribution of the
label map X given the CP SAR imagery observation Y by [104]:

p(X|Y ) =
1

Z(X)
exp{−

∑
i∈S

ψu(xi, yi) − β
∑
i∈S

∑
j∈Ni

ψp(xi, xj, yi, yj)} (3.1)

in which Z(X) is a normalization factor called the partition function. ψu and ψp are the
unary potential and the pairwise potential, respectively, and β dictates the relative weight
of the two potentials. Ni denotes a set of 4 neighbors of pixel i. Given this formulation,
the estimation of X is achieved by maximizing p(X|Y ) under the maximum a posterior
(MAP) framework. The CRF-WMM model is solved by addressing the following MAP
problem:

X̂ = argmax
X

(p(X|Y )) (3.2)

To identify the most appropriate optimization method to solve (3.2), three well-known
methods, i.e., ICM, SA, and GC are compared.

3.3.2 CP Unary Potential via WMM

The unary potential ψu in CRF-WMM is calculated by taking into consideration the sta-
tistical distribution of the CP SAR data. The unary potential in the CRF model is used
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to address the class-dependent information of different classes and is defined as:

ψu(xi, yi) = −ln(p(yi|xi)) (3.3)

where p(yi|xi) is designed based on the statistical characteristics of the data. To achieve
this, a GMM is typically used [104,117]. However, because the coherency matrix in (2.5)
follows a complex Wishart distribution, a new mixture model based on the Wishart distri-
bution is proposed.

The ith pixel in CP SAR imagery is represented by a complex matrix Ai = LJi.
Because Ji follows a complex Wishart distribution, the class-dependent distribution of Ai

given Jxi
has the following expression:

p(Ai|Jxi
) =

| Ai |L−q exp(−tr(J−1
xi
Ai))

K(L, q) | Jxi
|L

(3.4)

where Jxi
is the average of the covariance matrices of pixels from class xi. The symbols

| . | and tr denote the determinant and trace operations, respectively. Also, K(L, q) was
defined in (2.10). By substituting (3.4) into (3.3), the unary potential for the complex
Wishart distribution is represented as:

ψu(xi, yi) = Lln | Jxi
| +ln(K(L, q)) + tr(J−1

xi
Ai) − (L− q)ln(| Ai |) (3.5)

After substituting Ai = LJi into (3.5) and eliminating elements that are not a function of
xi, the unary potential in CRF-WMM will be:

ψu(xi, yi) = ln | Jxi
| +tr(J−1

xi
Ji) (3.6)

3.3.3 CP Pairwise Potential

The pairwise potential ψp in (3.1) represents the relationships between the labels and the
features of neighbouring pixels. ψp in CRF-WMM is defined by a new similarity measure
designed based on the properties of CP SAR data. ψp has been implemented using the
following expression:

ψp(xi, xj, yi, yj) = λ(yi, yj).µ(xi, xj) (3.7)

where µ(xi, xj) is considered as the multi-level logistic (MLL) model [118], and λ(yi, yj)
is a measure of feature similarity. Designing a λ(yi, yj) in ψp for CP data is necessary to
achieve the best performance since doing so can more effectively constrain pixels with a
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strong spatial correlation to have the same class label while also reducing the effects of
noise and spatial heterogeneity in SAR imagery leading to more accurate predictions.

The similarity measure λ(yi, yj) in (3.7) returns a larger value for two pixels with a
stronger spatial correlation. Although a metric defined based on the full CP information
theoretically can better reveal the similarity among pixels, using all elements in the covari-
ance matrix in (2.6) will increase the computational burden. We choose J22 because it is
suitable for oil spill detection due to its higher signal-to-noise ratio and sensitivity to the
sea surface roughness [36]. Therefore, a similarity measure is designed based on the J22

elements given in (2.6):

λ(J22
i , J

22
j ) = exp(

− | J22
i − J22

j |2

2θ2
) (3.8)

where θ controls the scale of the Gaussian kernel. λ(J22
i , J

22
j ) generates high values if

| J22
i − J22

j |2 is small; therefore, λ(J22
i , J

22
j ) constrains pixels with similar values to each

have the same class label. By substituting (3.8) in (3.7), the pairwise potential in CRF-
WMM will be:

ψp(xi, xj, yi, yj) = exp(
− | J22

i − J22
j |2

2θ2
).(1 − δ(xi, xj)) (3.9)

3.3.4 Optimization Approaches

Solving the CRF is an ill-posed problem; therefore, an optimization algorithm is necessary
to solve it. To assess the variety of optimization algorithms, it is necessary to evaluate their
performance in oil spill candidate detection by using CP SAR data. The MAP problem
in (3.2) can be reformulated as:

X̂ = argmin
X

(−ln(p(X|Y ))) (3.10)

By substituting the unary potential (3.6) and the pairwise potential (3.9) into (3.10), the
MAP problem can be expressed as:

X̂ = argmin
X

{
∑
i∈S

(ln | Jxi
| +tr(J−1

xi
Ji)) + β

∑
i∈S

∑
j∈Ni

exp(
− | J22

i − J22
j |2

2θ2
).(1 − δ(xi, xj))}

(3.11)
The parameter to be estimated, X̂, is a binary variable. So, (3.11) defines a combinato-
rial optimization problem, which can be solved by several techniques. In this study, we

22



Figure 3.1: The flowchart of the proposed method to detect oil spill candidates from
simulated RCM CP SAR data.

investigate and compare ICM, GC, and SA as optimization methods to obtain X̂.

3.3.5 Summary of the Proposed Method

Fig. 3.1 illustrates the flowchart of the proposed CRF to detect oil spill candidates. Below
we provide a summary of the CRF-WMM model which is a thresholding guided segmen-
tation approach [104]. Given a CP SAR image Y , the following steps are performed:

1. Perform binary thresholding on J22 from Y to obtain an initial estimation of X, and
use this estimate to calculate the class probabilities for oil-free water Jx0 and oil spills
Jx1 .

2. Calculate the unary potential as per (3.6).
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Table 3.1: The details of the Fine Quad (FQ) single look complex RADARSAT-2
imagery used to simulate CP SAR data. The first column shows the date of acquisition
in the format YearMonthDay. The first two images are used to simulate sub-images and

the last image is used to simulate a full scene.

Scene Beam Acquisition time (UTC) Range resolution (m) Azimuth resolution (m)

20100131 FQ6 14:09:13 4.73 4.70

20100224 FQ6 14:09:15 4.73 4.70

20090919 FQ18 02:00:52 4.73 4.95

3. Calculate the pairwise potential based on the similarity measure as per (3.9).

4. Calculate the objective function as per (3.11), and solve it using each optimization
technique (i.e., ICM, SA, and GC).

3.4 Study area

In this study, the potential of the proposed CRF in detecting oil spill candidates is investi-
gated by using simulated RCM CP SAR images. To simulate RCM CP SAR images, three
QP RADARSAT-2 images acquired over Coal Oil Point, near Santa Barbara, California,
USA are used. The details of the RADARSAT-2 images are represented in Table 3.1. These
images have been provided by the Canadian Ice Service (CIS) under the Integrated Satellite
Tracking of Pollution (ISTOP) program [119]. To simulate CP SAR data, the RCM CP
simulator is used. This simulator was developed at the Canada Centre for Mapping and
Earth Observation (CCMEO) [8]. Data was simulated for the RCM medium resolution
beam mode with 50 m range × 50 m azimuth nominal resolution and -22 dB noise floor
(noise-equivalent sigma zero (NESZ) value). A 9×9 boxcar filter was applied to all the
scenes to reduce the effects of speckle noise. A consequence of NRCS values lower than
the NESZ is the loss of information. Although utilizing spatial context information and
the coherency matrix of CP SAR data along with an appropriate statistical model make
the proposed method able to distinguish oil spill candidates from oil-free water with NRCS
above the NESZ, characterizing oil spills for NRCS values lower than -22 dB may not be
possible [35]. Fig 3.2 shows the location and Pauli color composite of Scene 20090919.
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(a)

(b) (c)

Figure 3.2: (a) Location of Scene 20090919, near Santa Barbara, California, USA. (b) The
Pauli decomposition of Scene 20090919 with | SHH − SV V |, | SHH + SV V |, and 2| SHV |.
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3.5 Experiment and discussion

This section presents the results obtained by the proposed method using the simulated
RCM CP SAR sub-images of different sizes and a simulated RCM CP SAR full scene.
Moreover, the performance of the optimization algorithms is compared in this section.

3.5.1 Quantitative Measures

In our experiments, ground truth data is generated based on visual inspection. To evaluate
the performance of the proposed CRF, we use the following error metrics [104]:

• Commission error (CE) is defined as the ratio of the number of false predicted oil
spill candidate pixels to the number of all predicted oil spill candidate pixels. CE is
calculated as follows:

CE =
AE − AT

AE

(3.12)

where AE denotes the number of all predicted oil spill candidate pixels and AT denotes
the number of pixels which are correctly classified as oil spill candidates.

• Omission error (OE) is defined as the ratio of the number of false predicted oil-free
water pixels to the number of all ground truth oil spill candidate pixels. OE is
calculated as follows:

OE =
AR − AT

AR

(3.13)

where AR indicates the total number of ground truth oil spill candidate pixels.

• Averaged error (AE) is the average of CE and OE. AE measures the balanced
detection capability of different methods and it is defined as:

AE =
CE +OE

2
(3.14)

In this study, we use a grid search on J22 to find the best values for β and θ in (3.11).
Both parameters are varied from 0.5 to 5 in increments of 0.5, and the result with the
lowest AE is chosen as the output of each method.
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3.5.2 Experiment with Sub-images

Since oil spills are rare phenomena and usually appear in only small sections of a scene,
methods are usually tested using a sub-image containing oil spills [104]. Therefore, to
evaluate the performance of the proposed method, we use the two simulated scenes to
extract five sub-images of different sizes (see Table 3.1).

Because the CRF-WMM model consists of three building blocks, i.e., the unary poten-
tial, the pairwise potential, and the optimization algorithm, we use ablation experiments
to isolate their roles and test their importance. First, to justify our unary potential, we
compare the proposed WMM with the GMM model built on a vector of J11, abs(J12), and
J22. That is a common approach [65, 104, 117]. Second, to justify the use of the pairwise
potential in the CRF-WMM over the traditional isotropic homogeneous MRF model com-
monly used [106,117], we compare the proposed pairwise potential with an MRF potential
implemented by discarding the similarity measure λ(yi, yj) in (3.7) and only use µ(xi, xj).
In this experiment, we also compare different optimization methods to identify the one
which achieves the highest accuracy.

Unary Potential and Optimization Approaches

Fig 3.3 shows the results of different methods, i.e., the combination of different unary
implementations (GMM vs. WMM) and the different optimizers (ICM, SA, and GC). Re-
gardless of the optimization techniques used, the GMM model tends to incorrectly classify
oil spill candidate pixels as oil-free water. However, WMM is able to reduce the number of
false negatives. This is because the phase information helps the model more appropriately
characterize the statistical behavior of RCM CP SAR data. Table 3.2 shows the mean
values of CE, OE, and AE of the five sub-images by using the different methods. The
WMM-based methods achieve much lower OE than the corresponding GMM-based meth-
ods. Low OE is more important than low CE for oil spill candidate detection problems
because omitted potential oil spills will never be detected in the further classification of
the true oil spills and the look-alikes. These results demonstrate the importance and im-
provements of using the proposed WMM approach for implementing the unary potential
in the CRF model.

Comparing the performance of the optimization algorithms, SA outperforms ICM. We
hypothesize that this is because the solution for ICM is known to routinely become trapped
in a local minimum [120]. However, SA employs a random search scheme to overcome this
problem. Although utilizing GC increases CE, it significantly reduces OE in both WMM
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J11 GT ICM-WMM ICM-GMM SA-WMM SA-GMM GC-WMM GC-GMM

(a) h:100,w:170 AE:19.20% AE:33.17% AE:17.50% AE:23.59% AE :13.50% AE:22.16%

(b) h:250,w:420 AE:12.92% AE:12.44% AE:11.37% AE:11.49% AE :7.69% AE:9.48%

(c) h:175,w:160 AE:11.06% AE:19.42% AE:9.87% AE:20.54% AE :8.71% AE:13.53%

(d) h:760,w:340 AE:14.30% AE:16.59% AE:13.86% AE:15.68% AE :10.26% AE:11.22%

(e) h:999,w:420 AE:14.17% AE:17.04% AE:11.16% AE:14.06% AE :9.016% AE:10.16%

Figure 3.3: Detected oil spill candidates by using the Wishart mixture model (WMM)
and Gaussian mixture model (GMM) as the unary potential with different optimization
methods and the assumption that λ(J22

i , J
22
j ) = 1. The first column shows the five data

sets. The second column shows the ground truth (GT) data generated manually based on
visual inspection. The h and w stand for the number of pixels in height and width of the
sub-images, respectively. Numbers in bold indicate the lowest average error (AE) in each
sub-image.

and GMM models. We expect this is due to the fact that GC is able to preserve relevant
sharp discontinuities while enforcing the piecewise smoothness [121].
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Table 3.2: Mean values of the errors for the sub-images achieved by WMM and GMM
unary potentials using the different optimization method.

ICM-WMM ICM-GMM SA-WMM SA-GMM GC-WMM GC-GMM

CE(%) 11.46 1.44 11.32 2.83 14.04 18.09

OE(%) 17.20 38.02 14.97 31.53 5.63 9.40

AE(%) 14.27 19.81 12.75 17.18 9.83 13.31

Numbers in bold indicate the lowest error using each of the optimization methods

Pairwise Potential

So far, we have considered pairwise potentials, which depend only on the labels of neigh-
boring pixels, while the similarity among features of pixels was ignored. Also, the benefits
and improvement of using the proposed WMM approach over GMM for implementing the
unary potential in the CRF model was demonstrated, and GC was identified as the opti-
mizer that achieved the highest accuracy. This experiment further demonstrates the role
and importance of the similarity measure λ(yi, yj) defined in (3.8) by incorporating it into
the previous GC-GMM and GC-WMM models. Fig 3.4 shows the results obtained by the
CRF-WMM model and the baseline CRF-GMM model on the five sub-images using the
GC optimizer. The similarity measurement assists the model in preserving the boundaries
with higher accuracy by removing wrongly classified pixels. This effect of the similarity
measurement is more noticeable for the first, third, and fourth data sets (Fig 3.3 (a, c, d)
and Fig 3.4 (a, c, d)). Moreover, employing the feature similarity among neighborhood
pixels reduces the number of false positives. For example, some dark areas were classi-
fied wrongly as oil spill candidates by GC-GMM in the first dataset but applying λ(yi, yj)
assigns them to the correct class label.

Table 3.3 illustrates the statistics achieved by CRF-WMM and CRF-GMM on the five
sub-images. As expected, the performance of the proposed method in all data sets is
better than that of CRF-GMM. Compared to the results presented in Table 3.2, there is
a significant reduction in the mean values of CE. Specifically, the error is reduced from
14.04% using GC-WMM to 9.04% using CRF-WMM and from 18.09% using GC-GMM to
13.46% using CRF-GMM. This confirms that using λ(yi, yj) for implementing the pairwise
potential in the CRF model reduces the number of false positives. Moreover, CRF-GMM
improves OE by about 2%, while CRF-WMM increases OE by about 0.5%. Comparison of
the results in Fig 3.3 with those in Fig 3.4 demonstrates consistency with the quantitative
measures presented in Table 3.3.
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CRF-WMM

(a) (b) (c) (d) (e)

AE :7.65% AE :6.25% AE :7.84% AE :7.91% AE :8.78%

CRF-GMM

AE:17.46% AE:7.25% AE:8.75% AE:8.42% AE:9.62%

Figure 3.4: Oil spill candidates detected by using the CRF-WMM and CRF-GMM models
using the GC optimizer along with their average error (AE). The first and second rows
show the results obtained by the CRF-WMM and CRF-GMM models, respectively. Each
column shows the sub-images. Numbers in bold indicate the lowest AE in each sub-image

Table 3.3: Mean values of the errors for the sub-images achieved by CRF-WMM and
CRF-GMM using the GC optimization method.

CE(%) OE(%) AE(%)

CRF-WMM 9.04 6.29 7.68

CRF-GMM 13.46 7.13 10.30

Numbers in bold indicate the lowest error using each of the optimization methods

3.5.3 Experiment with a Simulated CP SAR Full Scene

To show that the proposed method can reliably detect oil slicks, we examined the perfor-
mance of the proposed CRF over a full scene. We used Scene 20090919 to simulate an RCM
CP SAR scene. Fig 3.5 (a) illustrates the J11 image of the study area. It contains three
classes, namely, open water, oil spill candidate, and land area. However, since the problem
is a two-class classification, a mask is used to exclude the land areas from the calculation.
Fig 3.5 (b) shows the manually generated ground truth oil spill candidate data.

Fig 3.6 shows the results obtained by the different methods and optimization algorithms.
As expected, the performance of WMM on the simulated scene of CP SAR data is better
than that of GMM. The results obtained by the GMM-based methods are less accurate
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(a) (b)

Figure 3.5: (a) 50 m resolution RADARSAT Constellation Mission right-horizontal polar-
ization imagery (J11) of an area near Santa Barbara simulated from data acquired on 19
September 2009. (b) Ground truth data of oil spill candidates generated manually based
on visual inspection.

due to more false positive being detected compared to the WMM-based methods, specially
closer to the coastline. Among WMM-based methods, the ICM-WMM method tends to
blur the boundaries by accepting pixels close to the boundaries as oil spill candidates.
The SA-WMM and GC-WMM methods effectively identify oil-free water even when the
backscatter of the open water has high variability. This is because, compared to GMM-
based methods, they utilize a more appropriate statistical model. Table 3.4 indicates the
errors obtained by the proposed and baseline GMM methods. An examination of Table 3.4
shows that the values of OE obtained by WMM-based methods are much lower than those
obtained by GMM-based ones. A high rate of CE causes a high computational cost in
removing look-alike candidates. Thus, the capability of a model to produce a balanced
OE and CE error is also important. Compared to GMM-based methods, WMM-based
methods reach lower AE. This confirms the balanced detection capability of the proposed
method. Moreover, as per the results in Subsection 3.5.2, the accuracy of the models using
GC is higher than that of the other optimization algorithms. In the next experiment, the
performance of CRF-WMM and CRF-GMM on the simulated full scene is evaluated. Since
GC achieves a higher accuracy for oil spill detection than the other algorithms, the GC
optimization method is used.

Fig 3.7 illustrates the results obtained by CRF-WMM and CRF-GMM. Visually, the
similarity measure reduces the number of misclassified pixels in both CRF-WMM and
CRF-GMM. Furthermore, CRF-GMM achieves a smaller number of false positives near
to the coastline. The statistics of the numerical measures achieved by CRF-GMM, and
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(a) ICM-GMM (b) SA-GMM (c) GC-GMM

(d) ICM-WMM (e) SA-WMM (f) GC-WMM

Figure 3.6: Oil spill candidate detection based on the WMM and GMM unary potentials
by using the different optimization methods and assumption that λ(J22

i − J22
j ) = 1.

Table 3.4: Values of the errors for the images achieved by WMM and GMM unary
potentials using the different optimization method.

ICM-WMM ICM-GMM SA-WMM SA-GMM GC-WMM GC-GMM

CE(%) 23.15 4.94 14.34 6.06 13.85 12.72

OE(%) 9.54 31.87 13.11 24.11 9.08 16.44

AE(%) 16.34 18.41 13.73 15.07 11.58 14.58

Numbers in bold indicate the lowest error using each of the optimization methods

Table 3.5: Values of the errors for the simulated full scene achieved by CRF-WMM and
CRF-GMM using the GC optimization method.

CE(%) OE(%) AE(%)

CRF-WMM 4.51 14.61 9.56

CRF-GMM 4.55 18.03 11.29

Numbers in bold indicate the lowest error using each of the optimization methods
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(a) CRF-WMM (b) CRF-GMM

Figure 3.7: Oil spill candidate detection based on the CRF-WMM and CRF-GMM.

CRF-WMM models are shown in Table 3.5, which are consistent with the visual detection
results. The values of average error are 9.56% and 11.29% for CRF-WMM and CRF-GMM,
which are almost 2% and 3% lower than those obtained by GC-WMM and GC-GMM,
respectively.

3.6 Conclusion

This chapter presented a CRF-WMM method tailored to the CP SAR statistics to utilize
both the full CP information and the spatial information in CP SAR imagery for enhanced
oil spill candidate detection. First, to utilize the statistical properties of CP SAR data,
we designed a unary potential based on the complex Wishart distribution. Second, to
take advantage of spatial information, we included a similarity measure based on J22.
Theoretically, J22 is sensitive to the sea surface roughness and has a high signal-to-noise
ratio. The empirical results prove that this similarity measure can improve the accuracy
of detecting oil spill candidates. Finally, to solve the proposed ill-posed CRF model,
we utilized three common optimization algorithms and compared their performance to
specify the most appropriate optimization algorithm for detecting oil spill candidates in
simulated RCM CP SAR data. The proposed approach is tested on both the simulated
sub-images and the full scene. The results demonstrate that the proposed CRF can better
delineate oil spill candidates than the traditional CRF and MRF approaches that do not
consider the properties of the CP data. Overall, the proposed CRF can delineate oil spill
candidates without being significantly affected by oil-free water and oil spill heterogeneities.
In addition, the number of false negatives in the CRF-WMM model is much lower than
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that in the other approaches, meaning that using the proposed CRF can decrease the risk
of misclassifying oil spill candidate pixels that will not be detected in oil spill classification
methods. Given the limitations of hand-crafted features in addressing signature ambiguity,
as they may not provide a comprehensive representation of all classes and are susceptible
to noise and changing conditions, it is crucial for future research to explore deep learning
methods that incorporate feature learning approaches. These feature learning techniques
have the potential to overcome the challenges posed by signature ambiguity and enhance
the robustness and adaptability of classification algorithms in various conditions.
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Chapter 4

Region-Based Sea Ice Mapping using
Compact Polarimetric Synthetic
Aperture Radar Imagery with
Learned Features and Contextual
Information

Operational sea ice maps are usually generated manually using DP SAR satellite imagery
but there is strong interest in automating this process. Existing sea ice scene classification
algorithms using CP imagery rely on hand-crafted features while neural networks offer the
potential of features that are more discriminating. We have developed a new and effective
sea ice classification algorithm that leverages the nature of CP data. First, a residual-based
convolutional neural network (ResCNN) is implemented to classify each pixel. In parallel,
an unsupervised segmentation is performed to generate regions based on CP statistical
properties. Regions are assigned a single class label by majority voting using the ResCNN
output. For testing, QP SAR sea ice scenes from the RADARSAT-2 are used and QP, DP,
CP, and reconstructed QP (RQP) modes are compared for classification accuracy, while
also comparing to other classification approaches. Using CP achieves an overall accuracy
of 96.86%, which is comparable to QP (97.16%), and higher than RQP and DP data by
about 2% and 10%, respectively. The implemented algorithm using CP imagery provides
an improves option for automated sea ice mapping. This chapter is based on the published
paper [57].
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4.1 Introduction

Sea ice maps are essential for applications such as climate change interpretation and ocean
navigation [12, 122]. SAR from satellites is the primary source of imagery used to gener-
ate sea ice maps. National ice centers, such as the Canadian Ice Service (CIS), rely on
trained operators to manually generate sea ice maps primarily using SAR imagery, a time-
consuming process. Automated sea ice classification methods using SAR imagery have
been sought for decades [43].

The RCM CP operates in CTLR (right circular transmit and linear receive) mode [9,
123] and generates swaths (500 km) comparable to DP imagery while preserving the phase
information between channels, thereby providing more comprehensive scene information
than DP [3, 40]. QP swaths are much smaller (20 km) and are not viable for operational
ice mapping. Compared to the more extensive literature for sea ice mapping using DP, there
exist limited publications that assess CP SAR data for automated sea ice mapping [4,39–
46]. Previous sea ice classification methods using CP utilize hand-crafted features such as
intensity images, polarimetric features, and texture features. Some classification methods
use RQP data derived from CP SAR to leverage well-known QP parameters whose usage
and interpretation are known [4, 43]. Existing CP SAR sea ice classification methods,
although successful, have limitations.

Using hand-crafted features have limitations because these cannot be assured to be a
comprehensive representation of all classes and are sensitive to noise and changes in con-
ditions [124]. In addition, feature selection processes are time-consuming and may lead to
the loss of important information or strong correlations between features [125]. In contrast,
feature learning methods allow a system to automatically extract effective features for spe-
cific data and conditions without human intervention [48]. CNNs have been used to learn
features from SAR imagery in support of ice concentration estimation [126], ice-water clas-
sification [127–131], sea ice change detection [132], and ship-iceberg discrimination [133].
ResCNN methods are able to learn effective feature representations and are highly adapt-
able to various tasks and datasets [134]. We are not aware of published research that uses
deep learning models applied to CP imagery to support sea ice mapping.

The complex Wishart distribution is a known statistical property of the multilook CP
coherence matrix, arising from the complex Gaussian distribution of the backscattered field
in a CP SAR data [135]. Given this knowledge, it would be advantageous to include the
Wishart distribution as part of the CP sea ice classification approach to account for the
nature of the data. Furthermore, the use of spatial context enhances both the classification
accuracy and the algorithmic efficiency [136]. Therefore, the integration of spatial context
should be considered in generating sea ice maps.
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We propose a new region-based automated sea ice classification methodology that incor-
porates learned features, spatial context, and statistical properties of various SAR modes.
Uniquely, we apply the deep learning algorithm directly to the CP data to generate a
pixel-level classification. As a novel contribution, CP will be compared to DP, RQP, and
QP with regards to generating accurate sea ice maps. Identifying the most effective mode
for SAR sea ice classification supports improved operational algorithmic capability.

An ResCNN model [134] is used to obtain pixel-level sea ice maps by learning sea
ice features from CP SAR data. An existing unsupervised semantic segmentation based
on statistical characteristics of the CP data [137] is applied to obtain homogeneous and
edge-preserved regions. Similar approaches, using appropriate statistical distributions, are
implemented for each of the SAR modes under consideration. To generate region-based sea
ice maps, as supported by previous studies [43, 49], a majority voting process is employed
to combine pixel-level classified and segmented images.

Experiments are based on a pair of RADARSAT-2 QP scenes that are used to sim-
ulate corresponding RCM CP scenes. The region-based sea ice classification approach
achieves accurate sea ice maps and demonstrates that CP can achieve comparable sea ice
classification performance relative to QP and outperform DP and RQP.

A literature review of the sea ice classification methods using CP SAR data is presented
in Section 4.2. The proposed method is explained in Section 4.3. The experiments and
the corresponding results are shown and analyzed in Section 4.4, and the conclusions are
presented in Section 4.5.

4.2 Background

In general, classification algorithms utilizing CP can be divided into two categories: algo-
rithms using features derived directly from CP data and algorithms employing RQP data
derived from CP data. Each of these categories will be discussed next.

In the first category, polarimetric features such as m− χ decomposition features [116]
are extracted from the Stokes vector of CP data. Perhaps the first evaluation of CP
imagery’s ability to differentiate open water from sea ice was visually conducted by Char-
bonneau et al. [40]. They used simulated CP imagery data from QP aircraft-based SAR
images acquired over the Canadian Arctic. Subsequently, several studies then evaluated the
capability of CP polarimetric features extracted from the Stokes vector in distinguishing
different ice types and open water [39–42,45,138].
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In the second category, rather than using CP data directly, the QP covariance matrix
is reconstructed from CP data [74, 75] and used with QP scene classification methods.
Zhang et al. [44] evaluated the ability of CP modes to reconstruct QP information and they
recommended using CTLR mode for studying sea ice classification. Ainsworth et al. [139]
demonstrated that RQP’s potential in classifying crop fields is comparable to that of CP.

In addition to using backscatter measures, hand-crafted features can be used to augment
the feature set for a sea ice classification task. However, using hand-crafted features requires
domain expertise and selecting the proper parameters to generate effective features is time-
consuming [140]. Deep learning methods, in contrast, are data-driven and do not require
prior knowledge or assumptions, and can automatically learn features from data [140,141]
resulting in removing the need for manual feature engineering [141]. Thus, it is highly
advantageous to evaluate the potential of CP imagery for generating sea ice maps using
deep learning techniques.

Combining sea ice maps generated by pixel-level classification with segmented images
improves classification accuracy [43, 49]. Leigh et al. [49] utilized IRGS [65] and a glocal
approach on RADARSAT-2 images to identify homogeneous regions and an SVM classifier
to generate pixel-level sea ice maps using gray-level co-occurrence matrix (GLCM) texture
and intensity features. The basic IRGS algorithm [65,142,143] uses intensity images with
Gaussian statistics in a spatial context model. CP enhances the measurement potential
of radar illumination by providing the 2 × 2 coherence matrix of the backscattered field
which follows the complex Wishart distribution [135,137,144]. As a result, to fully utilize
the information provided by CP data, CP-IRGS [137] should be applied to segment it.
Ghanbari et al. [43] employed Polarimetric IRGS (PolarIRGS) [145] to segment RQP im-
ages with a support vector machine (SVM) pixel-level classification [146] to label regions
using CP polarimetric features.

Taking into account these motivations, we propose a region-based ResCNN method
that utilizes learned features, spatial context, and statistical characteristics of CP imagery
to classify SAR sea ice scenes. The study also evaluates and compares the potential of
CP imagery for generating sea ice maps against comparable approaches for DP, RQP,
and QP modes. This comparison is necessary as different SAR data modes have distinct
characteristics that can impact their ability to generate sea ice maps. By considering these
differences, the most appropriate data source can be assessed.

The methods proposed by Ghanbari et al. [43] and Leigh et al. [49] are used as baselines
to compare the performance of the proposed method.
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4.3 Methodology

4.3.1 Overview

The proposed region-based classification method consists of the following components
shown in Fig. 4.1.

• The various SAR modes (Subsection 4.3.2) each used as source imagery are CP, DP,
RQP, and QP as input to the region-based segmentation and pixel-level classification
methods.

• A ResCNN model is used to generate the pixel-level sea ice maps by using learned
features from each of the modes (Subsection 4.3.3).

• Unsupervised segmentation algorithms, that are mode dependent, are used to gener-
ate homogeneous, contiguous regions with accurate class boundaries (Subsection 4.3.4).

• The segmented and pixel-level classified images are combined by a region-based ma-
jority voting approach (Subsection 4.3.5).

To ensure consistency and enable comparisons with the baseline methods, we employed
the polarimetric features listed in Table 4.1 in the same manner as Ghanbari et al.[43].
Meanwhile, the same features as Leigh et al.[49] for the RH and RV CP scenes were
used. These features are intensity images as well as local average, maximum intensity,
and GLCM including applied second moment, contrast, correlation, dissimilarity, entropy,
homogeneity, inverse moment, mean, and standard deviation extracted using three window
sizes of 3×3, 9×9, and 17×17. The texture features were then averaged across the four
dominant directions, known as isotropic GLCM step directions.

4.3.2 SAR Data

The mathematical basis of the four SAR modes (QP, CP, RQP, and DP) used in this study
are described here.
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Table 4.1: List of CP polarimetric and amplitude features.

Name Description # a

RH,RV intensity values of RH and RV channels [147] 2

α scattering mechanism parameter [148] 1

µc circular polarization ratio [8] 1

u conformity coefficient [40] 1

ρ correlation coefficient of RH and RV [40] 1

m degree of polarization [116] 1

Hi Shannon entropy, intensity component [40] 1

Hp Shannon entropy, polarimetric component [40] 1

m− χ m-chi decomposition of CP data [116] 3

S0, ..., S3 Stokes vector components [149] 4

a # shows the number of features

QP SAR Data

Each pixel in the observed QP imagery is represented by four elements in a 2×2 scattering
matrix [73,150]:

S =

[
SHH SHV

SV H SV V

]
(4.1)

where Sij is complex and ij indicate the transmitted and received polarizations [73] which
can be either horizontal (H) or vertical (V). Then, a 3×3 covariance matrix is calculated
assuming reciprocity of monostatic radar [73]:

CQP =

 ⟨|SHH |2⟩
√

2 ⟨SHHS
∗
HV ⟩ ⟨SHHS

∗
V V ⟩√

2 ⟨SHV S
∗
HH⟩ 2 ⟨|SHV |2⟩

√
2 ⟨SHV S

∗
V V ⟩

⟨SV V S
∗
HH⟩

√
2 ⟨SV V S

∗
HV ⟩ ⟨|SV V |2⟩

 (4.2)

where ⟨...⟩ and ∗ indicate spatial ensemble averaging and the conjugate transpose, respec-
tively. CQP follows a complex Wishart distribution [73].
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Figure 4.1: Flowchart of the main steps of the proposed classification method.

Simulated CP SAR Data

The coherency matrix of CP SAR data is a 2×2 semi-positive definite Hermitian matrix.
For a CTLR mode, the coherency matrix is given as [4]:

JCP =

[
⟨| S2

RH |⟩ ⟨SRHS
∗
RV ⟩

⟨SRV S
∗
RH⟩ ⟨| S2

RV |⟩

]
(4.3)

where R stands for transmitted right circular polarized wave. JCP follows a complex
Wishart distribution [151]. Based on the observed QP data, CP data can be derived. To de-
rive SRH and SRV , the equations SRH = (SHH − iSHV ) /

√
2 and SRV = (SHV − iSV V ) /

√
2

are used [9].

Reconstructed QP SAR Data

Based on the CP data, the QP data can be reconstructed to be used as an alternative
representation of the CP data. To reconstruct the 3×3 covariance matrix of QP, reflection
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symmetry resulting in ⟨SHHS
∗
HV ⟩ = ⟨SHV S

∗
V V ⟩ = 0 and cross-pol ratio must be used [74].

Therefore, the reconstructed covariance matrix is expressed as [76]:

CRQP =

 ⟨|SHH |2⟩ 0 ⟨SHHS
∗
V V ⟩

0 2 ⟨|SHV |2⟩ 0
⟨SV V S

∗
HH⟩ 0 ⟨|SV V |2⟩

 (4.4)

In this paper, to calculate CRQP elements, an iterative method proposed by Nord et al. [75]
is used.

DP SAR Data

In contrast to QP and CP, DP data does not include phase information between channels.
Therefore, the covariance matrix cannot be calculated. In this study, simulated RCM HH
and HV intensity channels are used.

4.3.3 Sea Ice Classification using ResCNN Model

Due to the limited availability of annotated SAR data for sea ice classification tasks, over-
fitting can occur using deep learning models such as ResNet [134] or VGG [152]. A simpler
deep learning model is used to alleviate this problem. In this study, a four-block ResCNN
model is used and trained by minimizing the multi-class cross-entropy lost function [153].
As indicated in Table 4.2, each block consists of two convolution operators, and the number
of feature maps in each block is set to 32, 48, 64, and 80, respectively. To allow nonlinear
expression ability to the ResCNN model, a standard ReLU (rectified linear activation unit)
activation function is used [154]. After applying a global average operator on the output
of the last block, a fully connected layer is used to map the features into one of K classes.

To minimize the loss function, the Adam optimizer [155] is employed. The distribution
of layers is affected by changing the parameters of previous layers in a CNN model [156].
To overcome this limitation, the batch normalization method is used. To help reduce the
risk of overfitting, dropout is applied. After training the ResCNN model, all pixels in a
SAR image are classified to obtain pixel-level sea ice maps.

4.3.4 Obtaining Homogeneous Edge-Preserved Regions

The effective preservation of boundaries between different ice types when generating sea ice
maps is achieved through the use of unsupervised region-based segmentation. The resulting
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Table 4.2: Structure of the ResCNN model along with the operators.

Layer name Output Size Operators

Block 1 17 × 17 × 32

[
3 × 3 × 32

3 × 3 × 32

]

Block 2 9 × 9 × 48

[
3 × 3 × 48

3 × 3 × 48

]

Block 3 5 × 5 × 64

[
3 × 3 × 64

3 × 3 × 64

]

Block 4 3 × 3 × 80

[
3 × 3 × 80

3 × 3 × 80

]

Global Average 1 × 1 × 64 3 × 3 average pool

Classification K 64×K fully connected

Softmax K

regions must meet two criteria: (i) they should be homogeneous, containing only a single
class and (ii) they should preserve the boundaries between different classes accurately. The
successful IRGS algorithm is chosen because of its effectiveness in segmenting SAR imagery
and generating accurate class boundaries [43, 49,142,157].

The original IRGS method [65], designed only for SAR amplitude images, was used
for the segmentation of sea ice scenes using DP scenes. Yu et al. [145] extended IRGS to
PolarIRGS and applied it to a land cover-type data set. PolarIRGS leverages all available
information in QP by designing a feature model based on the complex Wishart distribution
and adapting the spatial context model to better capture the specific characteristics of QP.
The edge penalty term is measured using the amplitude images of HH, HV, and VV. The
PolarIRGS method is performed here to segment sea ice scenes using CQP and CRQP .
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Ghanbari et al. [137] introduced CP-IRGS by similarly modifying IRGS to accommo-
date CP data. CP scenes are segmented using CP-IRGS and the RH and RV images are
used to measure the required edge-penalty term.

4.3.5 Combining Pixel-Based Classification and Region-Based
Segmentation

The pixel-level sea ice maps generated by ResCNN are generally accurate because ResCNN
learns discriminative features during the training process. However, pixel-level sea ice
maps have many errors due to the speckle noise causing individual pixels to be assigned to
incorrect classes. Combining the pixel-level classified image with edge-preserving regions
results in high-precision sea ice maps. To do that, a majority voting process is applied to
each region to determine the sea ice class labels of regions as follows [43]:

lrs =
K

max
j=1

∑
i∈rs

V ote(li)j
(4.5)

where lrs indicates the class label of region rs. K is the total number of ice classes and
i ∈ rs represents the pixels that comprise rs. The term li indicates label of ith pixel and
V ote(li)j is defined as:

V ote(li)j =

{
1, if li belongs to class j

0, otherwise
(4.6)

4.4 Experiment

This section presents the experiments of the ice-type classification and discusses the per-
formance of the classification in two general cases. In case 1, the potential of CP data in
generating sea ice maps using the proposed method is compared against that of DP, RQP,
and QP modes. In case 2, the proposed method’s performance is compared to that of other
baseline methods.
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4.4.1 Study Area and Dataset

In this study, two QP RADARSAT-2 scenes are used to generate the RCM DP and CP SAR
data and the corresponding RQP SAR data are generated as described in Section 4.3.2.
The two QP SAR scenes were acquired in the FQ11 imaging mode with two seconds time
difference identified as Scene 56 and Scene 58 over Barrow Strait, located near Somerset
Island in the Canadian Arctic collected on May 5, 2010. The range × azimuth resolutions
of the scenes are 5.2 × 7.6 m. The incidence angle range for the scenes is between 30.20◦–
32.00◦.

Fig. 4.2 (a) illustrates the location of the two scenes. The study area covers approx-
imately 23km by 14km with five different classes: young ice (YI), first-year ice (FYI),
multi-year ice (MYI), new ice (NI), and open water (OW) identified by experts in the
Canadian Ice Service (CIS). Since the backscatter signatures of OW and NI classes are
very similar in Scene 58, they are assumed as the same class (OW/NI) [43]. Fig. 4.2 (b)
and (c) show the first element of JCP of the two simulated CP scenes along with the
overlaid labeled pixels.

To simulate CP SAR data from RADARSAT-2 QP scenes, an RCM simulator developed
at the Canada Centre for Mapping and Earth Observation (CCMEO) is used [8]. The
scenes are simulated for the 30 meters RCM medium resolution beam mode with - 24 dB
noise floor (noise-equivalent sigma zero value). A 9×9 boxcar averaging filter is applied to
the SAR data to reduce speckle noise. The RCM HH and HV intensity images are also
extracted with the same RCM beam mode and averaging filter size.

4.4.2 Training and Testing Data

The number of labeled pixels specified by CIS experts is approximately 1000, which were
used to guide the collection of the remaining labeled pixels. CIS experts used the MAGIC
software to partition Scene 56 and 58 into a number of grids and assign a label to the
central pixel of each grid [158]. Scene 56 is used for training, while Scene 58 is used
for testing. Since Scene 56 does not include sufficient numbers of OW/NI samples, 2000
OW/NI samples were obtained from Scene 58 to train models. Table 4.3 shows the number
of training and test pixels in each class. The training samples were used to standardize
Scenes 56 and 58. F× 17×17 patches were extracted around each labeled pixel to train
the ResCNN models. F stands for the number of input feature maps. In case 1, it
corresponds to the absolute values of covariance matrix elements. Thus, F is 2, 3, 4, and
6 for DP, simulated CP, RQP, and QP SAR data, respectively. In case 2, F is 16 and 35
for polarimetric and GLCM feature-based baselines, respectively.
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Table 4.3: The number of training and testing pixels for each class.

Name Description # of train # of test

OW/NI open water and new ice 2000 3367

YI young ice 5889 6383

FYI first-year ice 6395 6383

MYI multi-year ice 5750 5637

The number of training patches in each class is not equal, which is known as an im-
balanced dataset problem. To overcome this problem, the data augmentation technique,
including horizontal and vertical flips as well as random rotation, is used to expand the
number of training patches to 7000 per class.

4.4.3 Models Settings

The learning rate, weight decay, and beta parameters in ADAM optimization [155] are set
to 1e-5, 0.05, 0.9, and 0.999 in the training phase. The batch size and training epochs are
50 and 200, respectively.

SVM is a machine learning algorithm used previously in support of sea ice map-
ping [43,49,157,159]. The hyperparameters C, Gamma, and Degree for SVM were explored
within the ranges [10−2, 102], utilizing increments of 10 for the kernel functions of linear,
polynomial, and radial basis function. The values of hyperparameters associated with the
highest overall classification accuracy (OA) were chosen.

4.4.4 Comparing CP, DP, RQP, and QP Modes

Fig. 4.3 (a)-(d) show pixel-level sea ice maps obtained only by the ResCNN models. The
images are resized to fit the page, which may result in some details being lost. In general,
the pixel-level sea ice maps appear with many erroneous pixels, probably caused by speckle
noise. It is worth noting that all models have mistakenly classified numerous YI pixels in
the upper section of the scene as MYI. This misclassification can be attributed to the
similarity in intensity values between those YI pixels and the MYI pixels, leading to an
inaccurate identification.
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(a) Location (b) Scene56 (c) Scene58 (d) IRGS (DP)

(e) Glocal (RV) (f) CP-IRGS (JCP ) (g) PolarIRGS (CRQP ) (h) PolarIRGS (CQP )

Figure 4.2: (a) The locations of the two RADARSAT-2 QP scenes acquired in the FQ11
imaging mode over Barrow Strait on May 5, 2010. The first element of the covariance
matrix of Scenes (b) 56 and (c) 58 along with the overlaid labeled pixels of open water/new
ice class (blue), young ice (violet), first-year ice (yellow), and multi-year ice (red). (d)-(h)
are the segmentation images obtained using IRGS-based methods using different SAR data
mode.
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(a) DP-ResCNN (b) CP-ResCNN (c) RQP-ResCNN (d) QP-ResCNN

(e) DP+IRGS (f) CP+CP-IRGS (g) RQP+PolarIRGS (h) QP+PolarIRGS

Figure 4.3: (a)-(d) Pixel-level sea ice maps generated by the ResCNN feature learning clas-
sifier using DP (DP-ResCNN), simulated CP (CP-ResCNN), RQP (RQP-ResCNN), and
QP SAR data (QP-ResCNN). (e)-(h) segmentation combined with ResCNN classification
results. It should be noted that the QP results have been rescaled to match CP data size
for presentation purposes.
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Table 4.4: Confusion matrices obtained by the region-based ResCNN models using the
amplitude scenes of DP, simulated CP, RQP, and QP.

Method OW/NI YI FYI MYI User’s Accuracy(%)
D
P
+
IR

G
S

OW/NI 2299 6 234 0 90.55

YI 1 5053 366 4 93.16

FYI 1067 164 5778 5 82.38

MYI 0 1160 5 5628 82.85

Overall Accuracy (%): 86.16

Kappa Coefficient: 0.8114

C
P
+
C
P
-I
R
G
S OW/NI 3327 32 1 0 99.19

YI 21 5874 119 5 97.60

FYI 19 23 6261 7 99.22

MYI 0 454 2 5625 92.50

Overall Accuracy (%): 96.86

Kappa Coefficient: 0.9575

R
Q
P
+
P
ol
ar
IR

G
S OW/NI 3307 8 4 0 99.064

YI 41 5655 287 6 94.42

FYI 19 27 6091 6 99.15

MYI 0 693 1 5625 89.02

Overall Accuracy (%): 94.98

Kappa Coefficient: 0.9320

Q
P
+
P
ol
ar
IR

G
S OW/NI 3342 14 4 0 99.46

YI 23 6155 324 2 94.63

FYI 2 26 6050 31 99.03

MYI 0 188 5 5604 96.67

Overall Accuracy (%): 97.16

Kappa Coefficient: 0.9614

The QP data generated the highest OA of 89.52%, while CP yielded a slightly lower
OA of 88.23% demonstrating that CP data has a comparable ability to provide sea ice
maps to QP data. Meanwhile, using RQP achieved an accuracy of 87.24%, which was
comparable to CP but also slightly lower than QP. This indicates that RQP did not offer
richer information for classification than CP. The lowest OA was obtained by the DP
images (80.13%) demonstrating that the polarimetric information in the other three modes
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Table 4.5: Confusion matrices obtained by the region-based baseline methods.

Method OW/NI YI FYI MYI User’s Accuracy(%)

G
h
an

b
ar
i
et

a
l.
[4
3] OW/NI 3324 7 1 0 99.76

YI 41 4666 290 3 93.32

FYI 2 26 6089 5 99.46

MYI 0 1684 3 5629 76.94

Overall Accuracy (%): 90.52

Kappa Coefficient: 0.8719

L
ei
gh

et
a
l.
[4
9] OW/NI 3206 15 4 0 99.41

YI 2 5791 554 7 91.14

FYI 159 576 5821 6 88.71

MYI 0 1 4 5625 99.91

Overall Accuracy (%): 93.90

Kappa Coefficient: 0.9171

are useful in support of accurate classification. As shown in Fig. 4.3 (a), DP-ResCNN
misclassified several OW/NI and YI pixels as FYI.

Fig. 4.3 (e)-(h) shows the region-level sea ice maps after combining segmentation and
classification maps using majority voting. Overall, the region-level results exhibit well-
defined homogeneous regions and less noise classifications when compared to the sea ice
maps at the pixel level.

Table 4.4 presents the performance of ice-type classification on the test sampled data.
It shows that the combination of QP-ResCNN and PolarIRGS (QP+PolarIRGS) generated
the highest OA (97.16%), which was slightly greater than OA of CP-ResCNN combined
with CP-IRGS (CP+CP-IRGS) that achieved an accuracy of 96.86%. This demonstrates
that CP data can effectively approximate the QP capability for sea ice mapping. The com-
bination of RQP-ResCNN and PolarIRGS (RQP+PolarIRGS) produced an OA of 94.98%,
which was lower than CP+CP-IRGS, which does not motivate its use.

The RQP+PolarIRGS method achieved an MYI user’s accuracy of 89.02% by misiden-
tifying 10.86% of the YI test samples as MYI, which mainly includes samples in the upper
portion of the scene. Both the QP+PolarIRGS and RQP+PolarIRGS methods misclas-
sify several FYI test samples as YI, leading to a decrease of approximately 6% in the YI
user’s accuracy. In contrast, the CP+CP-IRGS approach can more accurately differentiate
between YI and FYI classes.
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4.4.5 Performance Comparison of the Proposed Methodology
with the Baselines

Fig. 4.4 shows the sea ice maps generated by the baseline methods by Ghanbari et al. [43]
and Leigh et al. [49]. As can be seen in Fig. 4.4 (a) and (c), the baseline method by
Ghanbari et al. yields many YI samples misclassified as MYI, whereas the number of mis-
classified YI samples using the approach by Leigh et al. is lower. This indicates that using
GLCM features enables SVM to distinguish MYI samples from YI more effectively than
polarimetric features.

The corresponding confusion matrices are displayed in Table 4.5, which show that the
approach proposed by Leigh et al. achieving an OA of 93.90% performed better than the
method suggested by Ghanbari et al., which obtained an OA of 90.52%. In accordance
with Fig. 4.4 (b), the user accuracy of MYI obtained by Ghanbari et al. is 76.94% which
is indicative of the misclassified YI pixels at the upper part of the scene. While the user
accuracy of FYI obtained by Leigh et al. is 88.71%, mainly due to the misclassification of

(a) OA = 87.02% (b) OA = 90.52% (c) OA = 87.60% (d) OA = 93.90%

Figure 4.4: Sea ice maps indicating OA for baseline approaches. (a) is pixel-based and (b)
is region-based using the method by Ghanbari et al. [43] while (c) is pixel-based and (d) is
region-based using the method by Leigh et al. [49].
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YI samples as FYI at the upper part of the scene (Fig. 4.4 (d)).

The approach using ResCNN achieved an 88.23% OA, which was about 1.5% higher
than the OA attained by each baseline method. Notably, the ResCNN classifier utilized
only amplitude CP scenes, whereas the baseline methods incorporated GLCM and po-
larimetric features as well. Based on the results presented in Tables 4.4 and 4.5, the
region-based sea ice classification approach proposed in this study achieved the highest
OA of 96.86% compared to the performance of the baseline methods.

4.5 Conclusion

A ResCNN region-based automated sea ice classification algorithm which utilizes CP SAR
data was introduced. The proposed approach incorporates learned features and spatial
information and leverages the statistical characteristics of the CP coherence matrix to pro-
duce accurate sea ice maps. The experimental results reveal that the proposed method
yields sea ice maps with higher accuracy compared to DP and RQP, and performs com-
parably to QP. These findings suggest that CP data has greater potential than DP for
generating sea ice maps, and there is no need to reconstruct QP data from CP. Addi-
tionally, the study showed that the potential of CP data in generating sea ice maps is
comparable to that of QP.

The ResCNN classifier proposed in this chapter achieved a higher overall classification
accuracy (88.23%) compared to the baseline methods, without the need for polarimetric
and GLCM features. These results confirm that feature learning classifiers can improve
the accuracy of sea ice maps over traditional machine learning methods such as SVM.
By achieving the highest overall accuracy of 96.86%, the proposed region-based sea ice
classification method outperformed the baseline methods. This highlights the significance
of incorporating the statistical properties of CP data and learned features in the sea ice
classification process.

While CNNs excel at extracting local features, they inherently lack the ability to capture
long-distance dependencies among pixels. This limitation becomes critical for tasks that
involve a high degree of spatial heterogeneity in targets, such as land cover classifications.
Hence, the utilization of transformer-based models becomes essential in order to effectively
capture spatial information across different scales and address the challenges posed by
these tasks.
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Chapter 5

Pyramid Fine- and Coarse-grained
Attentions for Classifying Different
Land Cover Types using Compact
Polarimetric SAR Data

Land cover classification from RCM CP imagery is important but challenging due to class
signature ambiguity issues and speckle noise. This chapter presents a new land cover classi-
fication method to improve the learning of discriminative features based on a novel pyramid
fine- and coarse-grained self-attentions transformer (PFC transformer). The fine-grained
dependency inside of a non-overlapping window and coarse-grained dependencies between
non-overlapping windows are explicitly modeled and concatenated using a learnable linear
function. This process is repeated in a hierarchical manner. Finally, the output of each
stage of the proposed method is spatially reduced and concatenated to take advantage of
both low- and high-level features. Two high-resolution (3m) RCM CP SAR scenes are
used to evaluate the performance of the proposed method and compare it to other state-
of-the-art deep learning methods. The results show that the proposed approach achieves
an overall accuracy of 93.63% which was 4.83% higher than the best comparable method,
demonstrating the effectiveness of the proposed approach for land cover classification from
RCM CP SAR images. This chapter is based on the submitted paper [58].
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5.1 Introduction

Land cover classification is essential because it provides valuable information about the
Earth’s surface and its changes over time which are important for urban planning, nat-
ural resource management, and environmental monitoring [13, 14]. Due to the limited
data availability, the potential of generating land cover maps using CP SAR data remains
largely unexplored. Land cover classification is challenging due to speckle noise [25] and
ambiguities associated with backscatter and unique class discrimination [51]. To mitigate
this, conventional land cover classification methods increase the number and type of hand-
crafted features [160]. It is known that pixel-level features and spatially-based texture
features have limited capabilities for scene classification [25].

Deep learning (DL) methods provide an advantage over shallow-structured machine
learning tools (such as support vector machine [161]) by inherently extracting features [27,
124]. Due to the intrinsic 2-D structure of remote sensing images, CNNs, as a DL approach,
are widely used for image processing tasks [162]. While CNNs are able to extract local
features, they do not inherently capture long-distance dependency among pixels which is
important for land cover classification tasks due to spatial heterogeneity of targets [163].
In contrast, vision transformer methods are capable of capturing long-distance depen-
dencies [164]. As an example, the Vision Transformer (ViT) [165] utilizes the idea of
self-attention [166] to enable global receptive field processing of non-overlapping patches.

Despite successful performance on various computer vision tasks [167], ViT has limi-
tations of requiring high computational and memory costs, even for nominally-sized input
images and keeping the dimensions of the produced feature maps consistent [168]. To
enhance the accuracy and efficiency of ViT in different tasks, several transformer architec-
tures have been introduced [29, 168–170]. These approaches are local-based such as Swin
Transformer [29] or global-based such as Pyramid Vision Transformer (PVT) [168]. The
local-based approaches divide the input image patch into non-overlapping windows and
calculate the self-attention inside of each window. The Swin Transformer uses a shifting
window to describe the relationship among windows, which gradually moves the local win-
dow’s boundaries. However, the window shifting technique lacks optimization for GPU
usage and demonstrates inefficient memory utilization [169]. Global approaches such as
PVT preserve the global receptive field of ViT but lower the resolution of the key and
value feature maps to reduce complexity. However, despite this reduction, the model’s
complexity is frequently still quadratic in relation to the input image’s resolution, posing
issues for larger images [169].

Successful classification has been demonstrated by both the local self-attention meth-
ods [29, 171] and the global self-attention methods [168, 169]. However, these approaches
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impose limitations on the original full self-attention’s ability to concurrently capture short-
and long-range dependencies [167]. Land cover exhibits high spatial heterogeneity [50];
therefore, capturing both fine-grained and coarse-grained spatial dependencies simultane-
ously is important because it allows for a comprehensive understanding of the relationships
between different pixels in a given feature map. The Focal transformer [167] is designed to
integrate fine-grained and different scale coarse-grained spatial dependencies, but to accom-
plish this task requires a highly complex architecture with accompanying high computing
requirements.

In a DL model, the shallow layers primarily focus on capturing low-level and fine fea-
tures. On the other hand, the deep layers of the model are responsible for extracting
deeper, coarse, and semantic features that encapsulate higher-level features, including ab-
stract representations and complex relationships within the data [27]. Consequently, by
integrating both low-level and high-level features, the DL model can leverage the comple-
mentary nature of these features and achieve a more robust and accurate performance in
classification tasks [172].

To the best of our knowledge, there is currently no published research specifically ad-
dressing the generation of land cover maps in CP SAR imagery using a self-attention
method. As a result, this paper proposes a novel classification method called PFC trans-
former (Pyramid of Fine- and Coarse-grained attentions transformer), which utilizes a
pyramid of window-based vision transformers to measure both fine-grained attention within
a window and coarse-grained attention between windows. In summary, this study makes
the following contributions in CP SAR land cover classification:

• Our proposed method simultaneously utilizes fine- and coarse-grained spatial depen-
dencies, enabling the method to extract more discriminative and detailed features by
capturing spatial relationships at different scales. This attribute effectively addresses
spatial heterogeneity present in land covers, ultimately leading to more accurate land
cover classification.

• Our proposed method incorporates the outputs of different stages and leverages in-
formation across multiple scales, resulting in enhanced accuracy for land cover clas-
sification. By addressing the challenges of signature ambiguity, this integration of
low- and high-level features improves the accuracy of land cover classification.

• The potential of state-of-the-art (SOTA) DL methods in generating accurate land
cover maps using CP SAR data is evaluated and compared with that of the pro-
posed method. This thorough assessment not only advances the understanding of
DL techniques in this domain but also provides valuable insights for decision-makers
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and researchers aiming to utilize SOTA DL method for land cover classification and
monitoring in CP SAR data.

Experiments are based on a pair of high-resolution RCM CP SAR scenes. The proposed
PFC transformer surpasses SOTA methods, including Swin, Focal, PVT, Twins [169],
CAT [173], SepViT [170], and residual-based CNN (ResCNN) [134], in terms of generating
accurate land-cover maps. This chapter is organized as follows. Section 5.2 provides
a literature review of land cover classification methods utilizing SAR data. Section 5.3
describes the proposed method, and the study area as well as datasets are introduced in
Section 5.4. Section 5.5 presents and analyzes the experimental results, and Section 5.6
provides the conclusions of the study.

5.2 Background

5.2.1 Land cover classification using CP SAR data

Most of the existing land cover classification methods using SAR data are based on QP or
DP. There are only a few known published papers on land cover classification using CP SAR
data [53,55,174]. Robertson et al. [174] utilized hand-crafted features derived from CP SAR
data and employed a random forest (RF) classifier for producing crop maps. Nonetheless,
the creation of efficient hand-crafted features necessitates expertise in the field and a deep
comprehension of the particular domain. Furthermore, the RF classifier does not consider
spatial information. Roy et al. [53] proposed a MapReduce-based multi-layer perceptron
algorithm to distinguish different land cover classes. However, the algorithm did not utilize
contextual information, and only numerical results are reported without a classified land
cover map, so visual evaluation is not possible. Ghanbari et al. [55] proposed a region-based
semi-supervised graph network land cover classification using RCM CP SAR data. Despite
achieving reliable outcomes, the utilization of hand-crafted features and uncertainty in the
homogeneity of generated regions may impact the results. Therefore, it is imperative to
focus on designing a feature learning-based land cover classification method for large CP
SAR scenes that reduces reliance on hand-crafted features and effectively addresses the
issue of signature ambiguity by incorporating spatial information.
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5.2.2 Land cover classification using CNNs

CNNs are widely used to generate SAR land cover maps [175]. Zhou et al. [176] applied a
CNN for QP SAR land cover classification, employing a method that included two convo-
lutional layers and two fully connected layers. Then, several methods for land cover clas-
sification based on CNNs were proposed [14,51,177–181]. For example, Zhang et al. [177]
proposed a complex-valued CNN that was tailored to accommodate the arithmetic features
of complex data. To extract both spatial- and channel-wise information, Dong et al. [178]
utilized 3-D convolution. Liu et al. [51] considered the statistical distribution of the mid-
level features generated by a CNN model to increase the generalization of the model.
Although CNNs reached reliable results, they can introduce artifacts along the edges of
adjacent patches, leading to the over-smoothing of object boundaries and losing of useful
spatial resolution detail [182]. Moreover, despite their proficiency in organizing local fea-
tures, CNNs encounter challenges in capturing spatial dependencies that extend over long
distances [164,183].

In several recent studies [25, 27, 184–187], fully convolutional networks (FCNs) have
been identified as another common approach that exhibits promising land cover results.
Wang et al. [25] proposed an integration of FCN with sparse and low-rank subspace features
network to classify QP SAR images. Li et al. [188] suggested the utilization of an FCN with
a sliding window technique to alleviate the computational burden and minimize memory
usage. Mohammadimanesh et al. [27] proposed an FCN network including inception and
skip connection to utilize richer contextual information and more detailed information
in QP SAR data to classify. Henry et al. [185] evaluated the potential of three FCNs
in extracting roads from high-resolution SAR images. However, the utilization of FCN
methods faces a significant hurdle due to the requirement of whole or dense labeled scenes
for their training. The scarcity of labeled SAR data, especially in RCM CP data, makes
it infeasible to utilize FCN methods [25]. Given the limitations of CNNs and FCNs in
capturing fine- and coarse-grained spatial dependencies and the requirement for dense
labeled scenes, it is necessary to explore a method that can effectively capture both levels
of spatial dependencies in CP SAR data without relying on whole labeled scenes.

5.2.3 Land cover classification using transformers

Recently, the effectiveness of transformer models in remote sensing applications has cap-
tured the attention of remote sensing researchers [175,183,189–194]. While several studies
have employed transformer models to merge optical and SAR images and leverage the ben-
efits of both data types [188,195–197], the absence of clear optical images of the same area

57



Figure 5.1: Architecture of the PFC-Attention Transformer.

due to cloud cover impedes progress. Other studies have combined CNNs and ViT methods
to utilize local and global information for land cover mapping [190,192,193]. To integrate
the outputs of each branch, various fusion methods have been proposed [192,195,198,199].
However, these methods have certain limitations, such as increased complexity compared
to individual models, requiring more time and data for training

To address the limitations discussed, we propose a hierarchical fine- and coarse-grained
attentions transformer for land cover classification. Our approach integrates fine and coarse
attentions, capturing spatial dependencies, within the same layer using a learnable mecha-
nism. This integration leads to richer information integration. Additionally, our approach
leverages a pyramid of low- and high-level features to accommodate varying levels of com-
plexity. By combining these techniques, we aim to overcome the limitations of existing CP
SAR land cover approaches and improve accuracy.

5.3 Methodology

Fig 5.1 shows the architecture of the proposed PFC transformer. The proposed approach
consists of four stages that produce four feature maps of varying scales. The structure
of all stages is similar, comprising of a downsampling layer, except for the stage 1 which
includes linear embedding, and Ni times FC block attention. Each part of the architecture
is described separately.
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5.3.1 Linear Embedding

The linear embedding is a linear transformer that is applied to reduce the spatial size of
the image patch and increase the dimension of the raw-valued features into an arbitrary
dimension [29, 165]. Since, in this study, the size of the input image patch is not very
big, linear embedding is used to increase the dimension of features. Assume that xin ∈
RH×W×C0 is the input image patch where H and W are the spatial dimension and C is the
feature dimension, the linear embedding projects xin into z ∈ RH×W×C1 .

5.3.2 FC Transformer Block

The main core of the proposed approach is the FC transformer block (see Fig 5.2 (a)).
Since the proposed approach is window-based, an input feature map (z) is divided into non-
overlapping M ×M windows, and a layer normalization (LN) is applied. Then, by using a
linear function, query (Qf ), key (Kf ), and value (Vf )∈ R(M×M)×d matrices are calculated
where f stands for fine-grained and d is the depth equals to the feature dimension of z
divided by the number of heads [29].

To calculate fine-coarse attention (Fattn), similar to the approach employed by the Swin
transformer, the self-attention within each window is computed as follows:

Fattn = softmax(QfK
T
f /

√
d+Bf )Vf (5.1)

As described by Liu et al. [29], Bf is the learnable relative position bias which its values

are taken from B̂f ∈ R(2M−1)×(2M−1). Fig 5.2 (b) shows the structure of the Fattn.

In addition to the fine-grained attention, the PFC transformer introduces an approach
for calculating the coarse-grained attention (Cattn). To compute Cattn, a learnable window
pooling is applied to reduce the size of Kf and Vf matrices from their original dimensions
of (M ×M) × d to a compact (1 × 1) × d representation, called Kc and Vc where c stands
for coarse-grained. This reduction in size not only helps to alleviate the complexity and
computational costs associated with the model but also enables the consideration of far
spatial dependencies. Then, the attention between each fine-grained query matrix, Qf ,
and coarse-grained Kc and Vc are calculated as follows:

Cattn = softmax(QfK
T
c /

√
d+Bc)Vc (5.2)

Bc is the relative position bias among fine- and coarse-grained windows; however, since the
size of the Kc and Vc are not the same as Qf , to represent the relative position bias between
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them, values in Bc are taken from B̂c ∈ R(NW+M−1)×(NW+M−1) where NW stands for
the number of coarse-grained windows [167]. By leveraging this coarse-grained attention
mechanism, the model gains the ability to capture broader contextual information and
long-range dependencies. The structure of the Cattn is depicted in Fig 5.2 (c).

Finally, to take advantage of both fine- and coarse-grained spatial dependencies and
utilize them simultaneously, both attentions are concatenated. Nevertheless, this concate-
nation operation leads to a doubling of the feature dimension. As a result, to restore
the number of features to its original value in the input, a projection step becomes nec-
essary. This projection ensures compatibility and coherence in subsequent stages of the
computation. The fine- and coarse- attention (FCattn) is computed as:

FCattn = Concat(Fattn, Cattn)Wfc (5.3)

where Wfc is the learnable linear projection.

The rest of the FC transformer block is followed by a skip connection with the input
feature map, an LN, and a 2-layer multi-layer perceptron (MLP) with GELU nonlinearity
in between and again a skip connection, following the same procedure as [29, 165]. In
general, the FC transformer block is computed as

α = LN(zl−1) (5.4)

ẑl = FCattn(Fattn(α), Cattn(α)) + zl−1 (5.5)

zl = MLP (LN(ẑl)) + ẑl (5.6)

in which zl−1 is the input feature map from the previous layer.

5.3.3 Downsampling

As the network becomes deeper, reducing the spatial dimensions of the feature maps to
produce a hierarchical representation is necessary. Therefore, the downsampling layer
which is a convolutional operator compromised of a 2×2 kernel with stride 2 along with
an adjustable number of output features is employed to reduce the spatial size of feature
maps by a factor of 2. The downsampling reduces the computational cost and allows the
network to learn a hierarchical representation of the input.
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(a) (b) (c)

Figure 5.2: (a) Fine- and Coarse-grained Attention Block, (b) Fine-grained Attention, (c)
Coarse-grained Attention.

5.3.4 Fusion

Unlike previous methods which only utilized the output of the last stage, our proposed
method employs a pyramid of FC transformer blocks’ outputs to aggregate information
from all stages, allowing for more comprehensive characterization of land cover types (see
Fig. 5.1). Given an input image patch of size H ×W × 3, the linear embedding is applied
to increase the number of features to C1. Then, it is passed through an FC transformer
block with N1 layers resulting in F1 with the shape of H ×W × C1. Next, F1 is used as
the input of the next stage and this process is repeated to obtain feature maps of F2, F3,
and F4. To combine F1, F2, F3, F4, a learnable linear function is applied to decrease their
spatial sizes to that of the final stage’s output, which is H/8 ×W/8, as follows:

Ft = Concat(F1W1, F2W2, F3W3, F4W4) (5.7)
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(a) (b)

Figure 5.3: (a) Google Earth image of Quebec City scene, (b) the first element of CP
coherency matrix along with manually selected samples.

in which W1, W2, W3, and W4 are convolutional operators with strides of 8, 4, 2, and 1
respectively. The size of Ft is H/8 ×W/8 × (C1 + C2 + C3 + C4). Then, a global average
pooling layer is applied to Ft followed by a fully connected layer with nodes equal to the
number of classes to determine the land cover class.

5.4 Study Area and Dataset

Two very high-resolution (3m) SLC RCM CP SAR scenes with the sampled pixel and
line spacing of 1.39 and 2 meters were used to evaluate the performance of the proposed
approach and compare it with other approaches. Captured on August 9th, 2022, over
Quebec City in Canada, the first scene covers approximately 43 km × 13 km and has
a size of 10954 × 8146 pixels, with an incidence angle range of 47.50 to 48.67 degrees.
Fig 5.3 (a) presents the Google Earth image of this scene. The second scene, acquired on
June 27th, 2020, has a size of 9344×21942 pixels, covering around 43 km×130 km over the
city of Ottawa in Canada. Its incidence angle ranges from 38.48 to 39.90 degrees, and its
corresponding Google Earth image is shown in Fig 5.4 (a).

The study area has five primary classes: forest, water, two distinct urban areas, and
agricultural lands (farms). The urban areas are divided into two groups because some
buildings appear bright (Urban 1) while other ones are a mixture of trees and buildings
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(a) (b)

Figure 5.4: (a) Google Earth image of Ottawa scene, (b) the first element of CP coherency
matrix along with manually selected samples.

(Urban 2) and their backscattering is not as bright as the first group. The samples were
chosen manually by visually examining the SAR scenes and the corresponding Google
Earth images.

A 7×7 boxcar filter is applied on both datasets to reduce the impact of speckle noise.
Since the images are large and this leads to exceptional computational cost, we reduce this
cost by taking a 4×4 non-overlapping block-wise average of the pixels.
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Table 5.1: Detailed architecture of the proposed PFC transformer.

Output PFC Transformer

Stage 1 32×32×16

Linear Embedding, LN{
window size : 4 × 4

#heads : 1

}
× 2

Stage 2 16×16×32

Downsampling, LN{
window size : 4 × 4

#heads : 4

}
× 2

Stage 3 8×8×64

Downsampling, LN{
window size : 4 × 4

#heads : 4

}
× 2

Stage 4 4×4×128

Downsampling, LN{
window size : 4 × 4

#heads : 8

}
× 2

Global Average 1×1×128 4×4 average pool

Classification 5 128×5 fully connected

Softmax 5

5.5 Experiments

In this section, the performance of the proposed method in classifying land type covers is
discussed and compared to that of the SOTA methods. To assess the efficacy of combining
features with different levels, the proposed method was applied both with (PFC trans-
former) and without (FC transformer) using the pyramid of features. Table 5.1 indicates
the structure of the proposed method. It includes 4 stages where the FC transformer block
is repeated twice in each stage. The number of feature maps in each stage is set to 16,
32, 64, and 128, respectively. The size of non-overlapping windows is set to 4×4, and the
number of heads for each stage is 1, 4, 4, and 8, respectively.

The performance of the methods was examined using several metrics, namely, overall
accuracy (OA), kappa coefficient (κ), f-1 scores of each class (F1), and averaged f-1 score
(F1avg). OA is determined by dividing the number of correctly classified test samples by
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Table 5.2: The number of training and testing pixels for each class selected from the
Quebec and Ottawa scenes, respectively.

Class # of train # of test

Forest 15381 11690

Water 14853 8093

Urban 1 12032 11263

Urban 2 15098 10206

Farm 10773 20022

the total number of test samples. κ measures the level of agreement between the test
samples and the final labeled map [27]. F1 is a harmonic mean of precision and recall,
which is particularly useful for imbalanced classes [27]. The highest and lowest possible
values of F1 are 1 and 0 and it is calculated as:

F1 = 2 × Precision× Recall

Precision + Recall
(5.8)

where

Precision =
True Positives

True Positives + False Positives
(5.9)

and

Recall =
True Positives

True Positives + False Negatives
(5.10)

Precision metric measures the accuracy of detected pixels in each class while Recall indi-
cates the number of true pixels identified in each class.

5.5.1 Training and Testing

In this study, the labeled pixels of the Quebec scene were used for training the models
that were evaluated using the labeled pixels chosen from the Ottawa scene. Moreover, to
better evaluate the performance of the models, three different regions have been selected
and shown in Fig 5.5. Regions A and B show agricultural, forest and urban areas, while
Region C includes forest and agricultural areas.

Table 5.2 represents the number of training and testing samples. The training samples
were used to standardize the Quebec and Ottawa scenes. To train the models, patches of
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Figure 5.5: The Google Earth image of the test scene with three regions of interest along
with their corresponding |SRH |2 scene. Regions A and B primarily consist of urban, farm
and forest classes, while Region C displays both forest and farm classes.

size 32×32×3 were extracted around each labeled pixel, where 3 represents the absolute
value of the coherency matrix elements in (2.5). In addition, the models were trained using
ADAMW optimization [200] with the learning rate, weight decay, and beta parameters set
to 1e-5, 0.05, 0.9, and 0.999 as well as the batch size and training epochs are 32 and 100,
respectively. In the training step, 80% of the training samples were utilized to adjust the
model’s weight values by minimizing the multi-class cross-entropy lost function [153], while
the remaining 20% were used for validation purposes. The weight values of the model that
achieved the highest validation accuracy were selected.

5.5.2 Results

Fig. 5.6 shows the results obtained by the different models along with their OA. Due
to resizing the images to fit the page, finer details present in the original images are not
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Table 5.3: Assessment of the results obtained by the different models by using overall
accuracy (OA), kappa coefficient (κ), averaged f-1 score (F1avg), and f-1 score of each

class. the bold numbers indicate the highest accurate results.

Name OA(%) κ F1avg Forest Water Urban1 Urban2 Farm

CAT [173] 86.92 0.8343 0.8696 0.9116 0.7723 0.8843 0.9234 0.8574

Focal [167] 88.48 0.8544 0.8852 0.9248 0.7812 0.9208 0.9278 0.8715

PVT [168] 86.92 0.8351 0.8694 0.9218 0.7596 0.8955 0.9138 0.8561

ResCNN [134] 88.22 0.8500 0.8780 0.8835 0.8246 0.9215 0.8820 0.8984

SepViT [170] 88.80 0.8579 0.8850 0.9049 0.8219 0.9046 0.8971 0.8970

Twins [169] 88.49 0.8538 0.8788 0.9181 0.8153 0.8531 0.8931 0.9144

Swin [29] 87.14 0.8372 0.8707 0.9049 0.7881 0.9076 0.8866 0.8661

FC 91.25 0.8885 0.9054 0.9346 0.8564 0.9087 0.8844 0.9428

PFC 93.63 0.9185 0.9285 0.9491 0.8864 0.9191 0.9179 0.9701

apparent. Upon visual inspection of the outputs, the CAT, Focal, PVT, Swin, and ResCNN
models appear to overestimate the water class in the lower portion of the scene. Twins
misclassifies many forest and farm samples into Urban 1 class in the upper part of the
scene. SepViT and Twins exhibited poor detection of the river in the middle of the scene
and it is narrow than that detected by the other models as well as the proposed ones.

The FC and PFC transformer models have a higher accuracy and improved spatial
representation in specifying the type of land covers than the SOTA ones. This is because
the proposed models, unlike the other approaches, utilize close and far dependency among
pixels simultaneously and combine different feature levels resulting in reducing the rate of
misclassification.

As shown in Table 5.3, we compared the quantitative results obtained by the proposed
models to those of the SOTA ones. The CAT and PVT models were found to have the
lowest OA among the SOTA ones, with both achieving of 86.92%. In contrast, the SepViT
model achieved a reliable overall accuracy of 88.80%. While the Swin, CAT, and PVT
models showed comparable κ and F1avg, the Focal, ResCNN, SepViT, and Twins models
obtained higher accuracies, albeit still lower than those achieved by the FC and PFC
transformer models.
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(a) |SRH |2 (b) CAT(86.92%) (c) Focal(88.48%) (d) PVT(86.92%) (e) ResCNN(88.22%)

(f) SepViT(88.80%) (g) Twins(88.49%) (h) Swin(88.02%) (i) FC(91.25%) (j) PFC(93.63%)

Figure 5.6: (a) shows the |SRH |2 image of the test scene and (b)-(j) are the results obtained
by the SOTA models and the proposed ones along with their OA.
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(a) Google Earth (b) CAT (c) Focal (d) PVT (e) ResCNN

(f) SepViT (g) Twins (h) Swin (i) FC (j) PFC

Figure 5.7: (a) shows the Google Earth image of Region A including urban, farm, and
forest classes. (b)-(j) are the results obtained by each model.

The proposed FC transformer model achieved an OA of 91.25%, which is about 3-
4% higher than those achieved by the SepViT and CAT models. The higher values of
κ and F1avg obtained by the FC transformer model provide additional evidence of the
effectiveness of the proposed attention mechanism in improving the accuracy of generating
land cover type maps. These findings identify that the SOTA models have limitations that
prevent them from achieving the same level of performance as the FC transformer.

When comparing the performance of the FC and PFC transformer models, we found
that the PFC transformer outperformed the former, with a higher accuracy. By fusion
of the different feature levels in a learnable manner, the OA value reached 2% higher.
Moreover, the higher values of κ and F1avg obtained by the PFC transformer suggest that
leveraging the outputs of all stages can lead to improved accuracy of the balanced and
imbalanced classes [160].

The FC and PFC transformers yield higher F1 for the forest, water, and farm classes
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(a) Google Earth (b) CAT (c) Focal (d) PVT (e) ResCNN

(f) SepViT (g) Twins (h) Swin (i) FC (j) PFC

Figure 5.8: (a) displays a Google Earth image of Region B, which includes agricultural
lands, forests, and a few buildings. (b)-(j) are the results obtained by each model.

than the SOTA models, demonstrating the significance of fine- and coarse-grained depen-
dencies among pixels and the benefits of utilizing features at different levels. The ResCNN
and Focal models achieved slightly higher F1 for the urban classes compared to the pro-
posed models, but the difference is negligible.

Fig. 5.7 shows the outputs of the models on Region A which is a mixture of buildings,
forest, and agricultural areas. Notably, the CAT, Focal, PVT, ResCNN, and Swin models
exhibited a higher rate of misclassifying water in this region, while the SepViT, Twins, and
proposed models yielded more accurate outcomes. The output of the models for Region B
is shown in Fig. 5.8. Among the SOTA models, the CAT, Focal, PVT, SepViT, and Swin
models misclassified a significant portion of the agricultural lands as water class while the
ResCNN and Twins performed better. Moreover, the FC transformer exhibited perfor-
mance over ResCNN and Twins, but the PFC transformer achieved the best classification
performance in Region B. Using fine- and coarse-grained spatial information decreased the
rate of water misclassification in particular for the left agricultural land. By adding the
pyramid of low- and high-level features to the FC transformer, the rate of misclassification
was reduced significantly. This is because the integration of different level features enables
the model to capture a wide range of features across different scales. Fig. 5.9 shows the
output of the models on Region C, which includes forest and farm classes. All models,
except the proposed ones, had a high rate of misclassifying agricultural areas as forests.
The proposed models exhibited significantly better classification performance for forests.
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(a) Google Earth (b) CAT (c) Focal (d) PVT (e) ResCNN

(f) SepViT (g) Twins (h) Swin (i) FC (j) PFC

Figure 5.9: (a) shows the Google Earth image of Region C including forest and farm classes.
(b)-(j) are the results obtained by each model.

5.6 Conclusion

A new transformer approach was introduced in this chapter for automated generation of
land cover maps using high-resolution SAR scenes. To the best of our knowledge, this
is the first study that leverages spatial attention information in CP SAR data for land
type classification. The proposed attention mechanism captures both fair- and coarse-
grained dependencies among pixels within a feature map, resulting in richer information.
This attribute endows the method with the ability to consider the spatial relationship
among the pixels, resulting in more accurate outputs. The qualitative and quantitative
comparison of the results obtained by the proposed attention method and the well-known
SOTA methods confirms the efficiency of using short and long dependencies simultaneously
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in increasing the accuracy of the generated land cover maps.

Furthermore, we take into account the outputs from all stages and exploit the infor-
mation across various scales to utilize more detailed information. By utilizing this fusion
methodology, the proposed method’s capability to identify land cover types is enhanced.
Comparing the outputs of the proposed method with and without feature fusion reveals
that features at various levels contain valuable information that must be taken into con-
sideration.

The limited availability of RCM data has led to a shortage of annotated CP scenes.
As training deep learning methods demand a large number of samples, it is essential to
consider semi-supervised techniques in studies. The proposed method can potentially be
applied for dense semantic segmentation purposes by increasing the availability of RCM
CP SAR scenes and ground truth samples in the future.
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Chapter 6

Conclusion and Future Work

The primary objective of this thesis was to develop classification algorithms specifically
designed for CP SAR data. The emergence of the RCM, which provides access to CP
data, highlights the significance of automating CP classification methods for a wide range
of applications, particularly in environmental monitoring tasks such as oil spill detection,
sea ice mapping, and land cover mapping.

To address the challenges posed by signal ambiguities influenced by factors like weather
conditions (e.g., wind speed) and satellite infrastructure (e.g., incidence angle or speckle
noise), this thesis proposes three classification algorithms tailored to CP SAR data, utilizing
spatial modeling techniques.

In Chapter 3, the proposed CRF model incorporates the statistical characteristics of
CP SAR data and effectively models spatial interactions between pixels by measuring sim-
ilarities in features and labels. The CRF model demonstrates superior accuracy compared
to the baseline MRF and CRF models.

Chapter 4 introduces a developed sea ice classification methodology that eliminates the
need for hand-crafted features and instead employs feature learning methods to harness the
spatial information inherent in CP SAR data. Additionally, the sea ice maps are integrated
with regions obtained through a tailored CP SAR segmentation method., resulting in
improved performance compared to previous CP sea ice classification techniques.

Finally, a novel transformer classification approach was proposed to capture both fine
and coarse spatial dependencies between pixels and leverage information at different scales.
This approach, discussed in Chapter 5, addressed the challenge of high heterogeneity in
target distribution and signature ambiguity commonly encountered in land cover mapping
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tasks. By effectively modeling spatial dependencies and incorporating multi-scale features,
the proposed transformer classification approach significantly improved the accuracy of
land cover type detection.

The experimental results showcased the superiority of the proposed methods over com-
monly used and state-of-the-art approaches when evaluated on diverse datasets. The con-
tributions and outcomes of each chapter were summarized, highlighting the advancements
achieved in CP SAR data classification for various applications.

In conclusion, this thesis has made significant contributions to the field of CP SAR data
classification by introducing tailored algorithms that effectively address signal ambiguities
and leverage spatial modeling techniques. The proposed methods have demonstrated su-
perior performance and have the potential to enhance the accuracy and reliability of CP
SAR data analysis for environmental monitoring tasks and beyond.

6.1 Summary of Contributions and Results

This thesis improved CP SAR classifications in three key applications, i.e, oil spill candidate
detection, sea ice mapping, and land cover mapping by modeling spatial information. This
thesis has the following main contributions.

• In Chapter 3, a CRF model was designed to enhance the detection of oil spill candi-
dates. This CRF model stands out by leveraging the statistical properties of CP SAR
data. Moreover, it incorporates the similarities between labels and features of pixels
to effectively capture and integrate spatial information into the detection process.
By combining these properties, the proposed CRF model offers a comprehensive and
tailored solution for improving oil spill candidate detection in CP SAR data. The
obtained results clearly demonstrated the superior performance of the proposed CRF
model compared to traditional MRF and CRF models in accurately identifying oil
spill candidates. These findings highlight the criticality of leveraging appropriate
statistical characteristics of the data and integrating spatial information within the
modeling process.

• In Chapter 4, a methodology for CP sea ice classification was developed as another
contribution of this thesis. The methodology involves multiple steps to enhance the
accuracy of sea ice mapping. First, a full scene segmentation is performed to generate
class-homogeneous regions. Depending on the type of SAR data, either IRGS (in the
case of DP or CP intensities) or CP-IRGS (in the case of CP coherence matrix),
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or PolarIRGS (in the case of RQP and QP coherency matrices) are performed to
generate regions. Next, a ResCNN model is employed to obtain pixel-level sea ice
maps by effectively learning sea ice features and spatial patterns from CP SAR data.
Finally, the regions and pixel-level sea ice maps are integrated using a majority
voting approach, enabling the assignment of accurate ice labels to each region. This
integration process significantly enhances the resulting sea ice map, contributing
to improved sea ice classification performance. Based on the experimental results,
the proposed methodology produces sea ice maps with higher accuracy compared
to DP and RQP methods, while demonstrating comparable performance to the QP
approach. Furthermore, the ResCNN classifier reached a higher overall classification
accuracy (88.23%) compared to the baseline methods (87.02% and 87.60%), without
the need for polarimetric and GLCM features. These findings provide compelling
evidence that feature learning classifiers have the potential to enhance the accuracy
of sea ice maps beyond the capabilities of traditional machine learning methods like
SVM.

• In Chapter 5, as the third contribution of this thesis, a novel transformer approach
is proposed for the automated generation of high-resolution land cover maps using
SAR scenes. The proposed attention mechanism effectively captures both fine- and
coarse-grained dependencies among pixels within a feature map, thereby incorpo-
rating richer spatial information. This attribute empowers the method to consider
the complex spatial relationships among pixels, resulting in more accurate outputs.
Through qualitative and quantitative comparisons with well-known SOTA methods,
the results validate the effectiveness of the proposed attention method in enhancing
the accuracy of generated land cover maps, particularly through its ability to handle
long dependencies.

6.2 Future Work

In this thesis, the utilization of spatial information in CP SAR imagery was shown to be
advantageous. Although the proposed methods achieved superior results, there are several
areas that warrant further investigation and can be explored in future work.

• Semi-Supervised Methods: Given the limited availability of annotated CP SAR data,
exploring and developing semi-supervised learning methods can be a promising di-
rection for future research. These techniques can leverage the available labeled data
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along with a larger pool of unlabeled data to improve the performance of classifi-
cation and mapping algorithms. Investigating techniques such as active learning or
self-training can help effectively utilize the limited annotated data and expand the
training set.

• Region-based Techniques: Considering the time-consuming nature of training deep
learning methods, exploring region-based techniques can be beneficial. These ap-
proaches focus on extracting relevant features and modeling spatial relationships
within segmented regions, reducing the computational burden and enhancing the
efficiency of classification algorithms.

• Availability of Annotated CP SAR Data: With the expectation of more available
annotated CP SAR data in the future, there is an opportunity to explore advanced
techniques such as semantic segmentation. Leveraging larger annotated datasets
can facilitate the training of deep learning models specifically designed for semantic
segmentation tasks.
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