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Abstract

Building large scale quantum computers is one of the most exciting ventures being
pursued by researchers in the 21st century. However, the presence of noise in quantum
systems poses a major hindrance towards this ambitious goal. Unlike the developmen-
tal history of classical computers where noise levels were brought under reasonable
threshold levels early on, the field of quantum computing is struggling to do the same.
Nonetheless, there have been many significant theoretical and experimental advance-
ments in the past decade. Quantum error correction and fault tolerance in general is
believed to be a reliable long term strategy to mitigate noise and perform arbitrarily
long quantum computations. Optimizing and assessing the quality of components in
fault-tolerance scheme is a crucial task. We address these tasks in this thesis.

In the first part of the thesis, we provide a method to efficiently estimate the per-
formance of a large class of codes called concatenated stabilizer codes. We show how
to employ noise tailoring techniques developed for computations at the physical level
to circuits protected by quantum error correction to enable this estimation. We also
develop a metric called the logical estimator, which is an approximation of the logical
infidelity of the code. We show that this metric can be used to guide the selection of
the optimal (concatenated stabilizer) code and the optimal (lookup style) decoder for a
given device. Moreover, the metric also aids in estimating the resource requirements for
a target logical error rate efficiently and reliably.

In the second part, we show how a combination of noise tailoring tools with quan-
tum error correction can improve the performance of concatenated stabilizer codes by
several orders of magnitude. These gains in turn bring down the resource overheads
for quantum error correction. We explore the gains using concatenated Steane code un-
der a wide variety of physically motivated error models including arbitrary rotations
and combinations of coherent and stochastic noise. We also study the variation of gains
with the number of levels of concatenation. For the simple case of rotations about a
Pauli axis, we show that the gain scales doubly exponentially with the number of lev-
els in the code. We analyze and show the presence of threshold rotation angles below
which the gains can be arbitrarily magnified by increasing the number of levels in the
code.

The last part of the thesis explores the testing of an important property of error cor-
recting codes - the minimum distance, often referred to as the distance. We operate in the
regime of large classical binary linear codes described in terms of their parity check ma-
trices. We are given access to these codes in terms of an oracle which when supplied an
index, returns a single column of the parity check matrix corresponding to that index.
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We derive lower and upper bounds on the query complexity of finding the minimum
distance of a given code. We also ask and (partially) answer the same question in the
property testing framework. In particular, we provide a tester which queries a sub-
linear number of columns of the parity check matrix and certifies whether a code has
high distance or is far away from all codes which have high distance. We also provide
non-trivial lower bounds for this task. Although this study is done for classical linear
codes, it has implications for designing quantum codes which are built using classi-
cal codes. This part of the thesis defines the beginning of a significant area of interest
encompassing efficiently testing important properties of classical and quantum codes.
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Chapter 1

Introduction

The idea of quantum computation originated in a talk by Richard Feynman at a confer-
ence [Fey82; Pre23] in 1981 where he proposed using a new kind of computer to sim-
ulate quantum systems. The primary roadblock in the simulation of quantum physics
using (present-day) digital computers is that the description of quantum systems us-
ing classical computers requires too many variables. Feynman was further interested
in learning which sub-classes of quantum mechanical systems could be simulated ef-
ficiently by the existing classical computers. Since then the study of quantum com-
puting as a field has intrigued not just physicists but also researchers in mathematics,
computer science, chemistry and engineering. The community developed the math-
ematical models that describe the components (quantum bits and quantum gates) of a
computation using the laws of quantum physics [Pre99; NC10]. These components have
been realized in practice using a wide variety of architectures including superconduct-
ing platform, ion-traps and photonic sources [HRP+06; CZ95; BL05]. There have been
many impressive experimental demonstrations of large quantum circuits which consist
of quantum bits and quantum gates [AAB+19; ZDQ+21].

There was a spike in the interest in quantum computing with the discovery of ex-
ponentially fast quantum algorithms for contrived problems first [Deu85; BV93; Sim97]
and soon after for factoring large numbers by Peter Shor [Sho99]. Although quantum
computing promises to revolutionize multiple domains such as cryptography, drug de-
sign, finance, and logistics [BL17; OIS+22; OML19; HGT+21], there are two big hur-
dles towards using quantum computers for performing meaningful tasks that classical
computers cannot. First, it has been established that we would require thousands of
functional quantum bits that can execute millions of quantum gates to use the quan-
tum algorithms at a scale that surpasses the capability of current day supercomputers
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[CMN+18]. Second, the presence of noise in the current day quantum devices vastly lim-
its their usefulness. Understanding the details of this noise and eliminating the same
has been an area of intense focus in the past decade. Modern noise characterization,
noise tailoring, error mitigation and quantum error correction tools have been devel-
oped to address this problem [CDDH+23; WE16; CBB+22; SER+23].

Error correction involves using redundant resources to encode information in order
to detect and correct errors when they occur. It is used widely in classical communi-
cation and the core idea dates back to 1948 when Claude Shannon published an article
titled “A Mathematical Theory of Communication” [Sha48]. The development of quan-
tum error correction borrows a lot from classical coding theory. However, the challenges
in dealing with errors and the solutions to these in the quantum computing world are
significantly different. The general header under which all the operations in a quan-
tum device are ensured to be error-free is called fault-tolerance. The resource overheads
associated with fault-tolerant quantum computation are high. Reducing these over-
heads and optimizing the components of a fault-tolerance scheme in accordance with
the physical architecture and varying noise profiles is an active area of ongoing research
[Got14; WBP15; CR18b; YK22]. Before designing and adopting a fault tolerant scheme,
it is absolutely crucial to have tools to estimate, and optimize, the performance of, and
resources required for different schemes.

The fault tolerance accuracy threshold theorem [AGP07; CTV17] is commonly over-
simplified as specifying a threshold on gate error rates that must be reached. There
are several major shortcoming to this simplification. The most significant is that each
fault tolerant threshold is derived under very strong, and often physically unrealistic,
conditions on the error model, such as the absence of correlations and coherence in the
errors. Another concern is that the metric usually invoked for assessing error rates is
the diamond distance, which can not be measured in a scalable way and measuring it
even for a single qubit is extremely resource intensive under arbitrary error models. A
third is that the resource and overhead requirements for implementing the fault tolerant
scheme depend critically on the precise relationship between the error model and the
fault-tolerant scheme.

A fault tolerant scheme relies on a quantum error correction routine – which in
essence helps to mitigate the effect of physical noise processes on logical quantum in-
formation. Hence, the task of estimating the performance of a quantum error correction
routine is inherent to the task of estimating the overhead required to build a fault toler-
ant quantum computer. It is in general a resource intensive module of a fault tolerant
quantum computer. There are several variables that specify the choice of a quantum
error correction scheme, including an error correcting code and a decoding algorithm.
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Often, a hardware architecture imposes restrictions on the local geometry of the code.
For instance, if the qubit connectivity resembles a square lattice, the structure of the
code – its stabilizer generators – must also respect the same geometry. However, there
is still a freedom to choose between codes of irregular connectivity and varying sizes.
Another quantity of interest for choosing a code is the trade-off between the number of
physical qubits per logical qubit and its distance. The role of a decoding algorithm is
also crucial to the logical error rate. The optimal choice for the various components of
a quantum error correction scheme often depends on the properties of the underlying
physical noise process. For example, the setting discussed in [TBF18], which deals with
biased noise, is best suited for a code which can correct more of one type of errors. A
bias is only one of the exponentially many parameters that describe the evolution of a
system of n qubits. The general case presents a fundamental challenge towards under-
standing the key properties of the noise process that severely impact the performance
of a quantum error correction scheme. So far, standard metrics of physical noise such as
the diamond distance and infidelity have been ruled out as critical parameters. In this
thesis, we will present an efficiently measurable quantity for concatenated codes that
can be used to accurately predict the performance of the code. This serves as a feedback
to make better choices for the components of the quantum error correction scheme.

Since the design of a fault-tolerant scheme is innately linked to noise modelling, the
following optimization cycle was proposed in Ref. [Iye18] (and references therein):

(i) Experimental noise characterization of a device,

(ii) Noise modelling,

(iii) Fault tolerant protocol design tailored to the model, and

(iv) Numerical benchmark of protocol.

The authors argued that the above cycle is not viable in general. Specifically, it
was shown in [IP18] that the performance of a quantum error correcting code depends
strongly on the microscopic details of the underlying noise process and consequently
that the logical error is not well predicted by typical figures of merit, such as aver-
age gate infidelity or diamond norm measured by randomized benchmarking [EAŻ05;
DCE+09; MGE11] or gate set tomography [BKGN+17]. A general, Markovian noise pro-
cess affecting a single qubit is completely specified already by 12 independent parame-
ters [Woo09; DZP19] and this number grows exponentially for multi-qubit operations,
due to correlated errors for instance, and hence methods for full error characterization
are impractical beyond a few qubits.
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In this thesis, we address some of the concerns raised in [Iye18] with respect to the
feasibility of the above optimization cycle for the class of concatenated stabilizer codes.
We devise methods to predict the performance of quantum error correction schemes.
This involves using partial knowledge of the noise process obtained from experiments
to efficiently approximate the logical performance. The knowledge obtained leads to a
better modelling in step (ii) of the above cycle. The efficient and reliable prediction helps
in designing better error correction schemes (thereby improving step (iii)). Finally, using
the tools developed, one can benchmark the logical performance more accurately (step
(iv)). In addition, we explore ways to tailor the physical noise to achieve better logical
performance, and we explore fast algorithms to test the minimum distance of linear
codes. These studies significantly improve step (iii) of the above cycle.

The thesis is structured as follows. To begin with, in chapter 2, we introduce the rel-
evant background material required to understand the results presented in the thesis.
The predictability of quantum error correction schemes is improved using information
about the underlying physical noise processes that can be efficiently obtained from an
experiment. To bring the problem into a more tractable form, we recall a noise tailoring
technique known as Randomized Compiling (RC) [WE16]. Here, the gates in a circuit
are compiled with random Pauli operations, thereby leading to an effective Pauli noise
on the underlying qubits. This enables us to focus our attention to predicting the per-
formance of quantum error correcting codes, under the effect of physical Pauli noise
processes. The calibration data that we have access to for the Pauli noise processes are
the probabilities of various Pauli errors, which can be efficiently extracted using noise
reconstruction techniques [EWP+19; HFW20; CDDH+23]. Chapter 3 describes the above
procedure along with other theoretical methods developed to improve the predictabil-
ity of logical performance. In chapter 4, we show how randomized compiling can be
used to improve the performance of quantum error correcting codes by several orders
of magnitude. This in turn brings down the resource overheads required for achiev-
ing fault tolerance. Chapter 5 discusses super fast classical and quantum algorithms to
test a crucial property of linear codes - the minimum distance. In this chapter, we derive
classical and quantum query complexity bounds for finding the minimum distance of
linear codes. We also derive similar bounds in the property testing framework where
the input code is promised to either have high distance or be far from the set of codes
having high distance. Finally, in chapter 6 we provide concluding remarks and list some
interesting open problems for future research.
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Chapter 2

Background

Quantum computations are performed by executing circuits which comprise a series
of quantum gates applied to a set of quantum systems. These gates are implemented
by applying unitary operations via evolution under Hamiltonians. Each Hamiltonian
has two components - a system Hamiltonian H0, and the set of control Hamiltonians
{H1, H2, . . . Hk}. Although the evolution is continuous, we can approximate it using
discrete time steps. The Hamiltonian at a time 1 ≤ j ≤ N is given by

H(j) = H0 +
k

∑
i=1

ui(j)Hi, (2.1)

where ui(j) ∈ R is the control amplitude for Hi at time step j. A common example of
system Hamiltonian is H0 = σZ with control along X and Y axis i.e., H1 = σX, H2 = σY.
The piece-wise approximation for the resulting unitary is given by

U = ΠN
i=1e−iH(j)dt, (2.2)

where T = Ndt is the total evolution time. So far we have described the evolution of a
single closed quantum system. Ideally, if we were able to control our system of interest
perfectly, we would be able to perform large-scale arbitrarily long quantum computa-
tions easily. However, the system of interest interacts with the environment in undesir-
able ways. These interactions between a quantum system and its environment manifest
as noise processes affecting the system. The sources of noise can vary depending on the
setup including imperfect pulses, unknown stray magnetic fields, photon losses, etc. In
its most general form, the dynamics of a noisy quantum computer are described by a
joint time evolution of the system and its environment. The study of these topics falls
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under the umbrella term of open quantum systems [RH12]. We will refer to everything
except the system of interest as the environment. Let us denote the density matrix of
the combined quantum state of the system and the environment by ρSE. We assume
that the system is initially decoupled from the environment initially and their respec-
tive initial states are given by ρS and |e〉〈e| so that the initial state of the joint system
is ρSE = ρS ⊗ |e〉〈e|. The initial state of the environment is assumed to be a pure state
without loss of generality since a purification always exists. The combined state after
evolution by a unitary U acting on the joint system is given by

ρ′SE = U (ρ⊗ |e〉〈e|) U †. (2.3)

The state of the system only after the evolution is obtained by tracing out the environ-
ment from the combined state i.e.,

ρ′S = trE(ρSE), (2.4)

where TrE denotes the partial trace over the subspace E (in this case the environment).
The partial trace can be expressed in terms of an orthonormal basis of the system being
traced over as

ρ′S = ∑
k
〈ek|ρSE|ek〉, (2.5)

where {|ek〉} is an orthonormal basis for the environment space. We denote the effective
evolution of our system when the combined system-environment pair evolves under U
by ρS = EU (|ψ〉〈ψ|). Assuming orthonormal bases for the Hilbert space of the system
and environment space to be {si} and {ek} respectively, we can rewrite the entries of
the evolved state of the system as

〈si|EU (ρS)|sj〉 = trE(ρSE)

= trE(U (ρS ⊗ |e〉〈e|) U †)

= ∑
m,n

∑
k
〈si, ek|U |sm, e〉(ρS)m,n〈sn, e|U †|sj, ek〉

= ∑
k

[
AkρS A†

k

]
i,j

, (2.6)

where Ak = 〈ek|U |ek〉 is an operator acting on the system only. This simple derivation
leads us to our first representation of noise processes called the Kraus representation.
The operators {Ak} are referred to as the Kraus operators and completely describe the
noise process acting on the system of interest. A Markovian model of noise assumes that
the environment is memory-less and leads to the convenient description of its effect on
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the system by completely positive trace preserving (CPTP) maps [Cho75; Hay17]. This
is a standard assumption about the noise acting in quantum systems.

In this chapter, we will describe the background information necessary to under-
stand the material presented in the rest of this thesis. We assume some familiarity with
quantum information and quantum computation. If the reader is completely unfamiliar
with notions of quantum information, we refer them to Refs. [NC10; Pre99]. This thesis
deals with two broad topics - quantum error characterization and quantum error correc-
tion. We have attempted to cover all the necessary background required for these topics.
For specific details, we refer the readers to the papers mentioned in the various sections.
In section 2.1 we describe the basic mathematical preliminaries which consist of basic
linear algebra tools to describe quantum objects such as states and channels. Next, we
describe representations of noise processes and the distance metrics associated to them
in sections 2.2 and 2.3 respectively. In section 2.4 we discuss some noise characterization
and tailoring tools. Section 2.5 provides an introduction to classical and quantum error
correction with focus on stabilizer codes and concatenated codes. Finally, in section 2.6,
we provide an introduction to the area of property testing.

2.1 Mathematical preliminaries

There are several equivalent ways to represent noise processes, each of which may prove
useful in different contexts. Before moving forward to the representations of noise pro-
cesses, it is helpful to lay down some notation. This notation is a slightly adapted ver-
sion of the notation set in Ref. [Wat18]. In this thesis, we will only deal with finite
dimensional Euclidean spaces which will be referred to as X ,Y and so on. Typically
X = Cd for some integer d ≥ 2. We will use [n] and [m, n] to denote the sets {1, 2, . . . , n}
and {m, m + 1, . . . , n} respectively.

2.1.1 Linear operators

The set of linear mappings between the spaces X and Y is denoted by L(X ,Y). Often
we will associate X and Y with Hilbert spaces which store the quantum state vectors
and hence the operator will take a state in X to a state in Y . In these cases, they will be
denoted more intuitively as H1 and H2 respectively. The set L(X ,Y) forms a complex
vector space when addition and scalar multiplication are defined as follows:

7



1. Addition: For all A, B ∈ L(X ,Y), the operator A + B ∈ L(X ,Y) is defined by:

(A + B)x = Ax + Bx (2.7)

for all x ∈ X .

2. Scalar multiplication: For all A ∈ L(X ,Y) and a scalar α ∈ C, the operator αA ∈
L(X ,Y) is defined by:

(αA)x = αAx (2.8)

for all x ∈ X .

We will abbreviate L(X ,X ) as L(X ). All linear operators will have associated matrix
representations and we may use the same name for both interchangeably. It will be clear
from context if we are talking about the abstract object or the matrix representation in
a given basis. Aab will refer to the entry in the ath row and bth column of the matrix A.
For every matrix of an operator A ∈ L(X ,Y) defined in a given basis, we define three
more operators:

1. The operator A?∈ L(X ,Y) will refer to the operator obtained by taking the com-
plex conjugate of each entry of A i.e.,

A?
ab = Aab. (2.9)

2. The operator AT∈ L(Y ,X ) will refer to the operator obtained by transposing the
matrix for operator A i.e.,

AT
ab = Aba. (2.10)

3. The operator A†∈ L(Y ,X ) will refer to the operator obtained by taking complex
conjugate of each entry and then transposing the matrix for operator A i.e.,

A†
ab = Aba. (2.11)

It is easy to see that A† = (A?)T = (AT)?.

An operator X ∈ L(X ) is said to be positive semi-definite if it holds that X = Y†Y for
some Y ∈ L(X ). We will denote the set of positive semi-definite linear operators by
Pos(X ) defined by

Pos(X ) = {Y†Y : Y ∈ L(X )}. (2.12)
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Positive semi-definite operators with unit trace are called density operators. They
belong to Pos(X ) and the set of all of them will be denoted by D(X ), where

D(X ) = {ρ ∈ Pos(X ) : Tr(ρ) = 1}. (2.13)

Let ea∈ X and eb ∈ Y be vectors with the ath and bth entry equal to 1 respectively
while all the other entries equal to 0. We will denote the elementary matrices by Ea,b

such that Ea,b = eae†
b . They form a basis of L(X ,Y) called the standard basis.

We will denote the Schatten p−norm ‖A‖p of any operator A ∈ L(X ,Y) by the
following expression:

‖A‖p = (Tr(A† A)p/2)1/p (2.14)

for all p ≥ 1.

2.1.2 Operator vector correspondence

There is a one-to-one correspondence between the space L(Y ,X ) and the space X ⊗Y .
The correspondence we will use in this thesis is given by the mapping

vec : L(Y ,X )→ X ⊗Y , (2.15)

and is defined as
vec(Ea,b) = ea ⊗ eb.

In the literature, this is sometimes referred to as row vectorization because it involves
flattening out a matrix one row at a time. It is easy to see via linearity that

vec(uv†) = u⊗ v? (2.16)

for all u ∈ X and v ∈ Y . The special cases obtained by plugging scalars u = 1 and v = 1
respectively are

vec(v†) = v? and vec(u) = u. (2.17)

The following identities are useful with respect to vectorization of operators:

1. The vec mapping is an isometry. Every u ∈ X ⊗ Y defines a linear operator A ∈
L(Y ,X ). The inner product is preserved in this mapping i.e.,

〈A, B〉 = 〈vec(A), vec(B)〉 (2.18)

for all A, B ∈ L(Y ,X ).
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2. The vec of a product of three matrices A0 ∈ L(X0,Y0), B ∈ L(X1,X0) and A1 ∈
L(Y1,X1) is given by

vec(A0BA1) = (A0 ⊗ AT
1 ) vec(B). (2.19)

This identity is called Roth’s lemma [HJ85].

3. The following are true with respect to partial traces:

TrY (vec(A) vec(B)†) = AB†,

TrX (vec(A) vec(B)†) = ATB?, (2.20)

for all operators A, B ∈ L(Y ,X ).

Apart from the row stacking convention, we consider the following two more ways of
vectorizing operators:

1. Column stacking convention: For an operator A ∈ L(Y ,X ), the vectorization in
the column stacking convention is defined by the following action on elementary
matrices:

[vec(Ea,b)]c = eb ⊗ ea. (2.21)

2. Sometimes we may choose to vectorize with respect to an orthonormal basis {Bα},
in which case the vectorization map is:

[vec(Ea,b)]B = ∑
α

Tr(B†
αEa,b)eα. (2.22)

The action on arbitrary operators can be obtained by taking a linear combination of the
actions on elementary operators.

2.1.3 Superoperators or quantum channels

Finally the maps, denoted often by E , that transform one linear operator to another i.e.,

E : L(X )→ L(Y) (2.23)

are common in quantum information. We will denote the set of all such operators by
T(X ,Y). We will again use the abbreviation T(X ) in place of T(X ,X ). A map E ∈
T(X ,Y) is said to be a completely positive trace preserving (CPTP) map or a quantum
channel (referred to as simply channel sometimes) if:
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1. E is completely positive i.e., (E ⊗ IL(Z))(P) ∈ Pos(Y ⊗ Z) for all P ∈ Pos(X ⊗ Z)
and any complex Euclidean space Z , and

2. E is trace preserving i.e., Tr(E(X)) = Tr(X) for all X ∈ X .

The set of all CPTP maps or quantum channels is denoted by C(X ,Y). Again C(X )
stands for C(X ,X ).

2.2 Representations of noise processes

In this section we will define the various representations of noise maps. Each represen-
tation has its own set of advantages and reveals interesting properties of the channels.
It is also easy to convert between different representations as needed. As we will no-
tice in later chapters, we will invoke different representations at various points to make
the best use of their characteristic traits. Let H = Cd describe the Hilbert space for a
d−level quantum system where d ≥ 2. For n-qubit systems d = 2n. For simplicity, in
this section, we will describe channels that map states between Hilbert spaces of sim-
ilar dimension. However, most of these tools can be applied in scenarios where this
condition is not true.

2.2.1 Liouville representation

Through this representation, we want to establish a map between the vectorizations of
ρ ∈ D(H) and E(ρ) i.e., we want to find a map Γ(E) such that

vec(ρ)
Γ(E)−−→ vec(E(ρ)), (2.24)

for all ρ ∈ D(H) and E ∈ C(H). It is easy to see that this map is linear. This implies the
existence of a linear operator Γ(E) ∈ L(H⊗H,H⊗H) such that the following is true:

Γ(E) vec(ρ) = vec(E(ρ)) (2.25)

for all ρ ∈ D(H). Eq.(2.25) is the defining equation for the Liouville representation Γ(E)
of the map E . The unique operator for which this condition is true for all ρ ∈ D(H) will
define the action of the map, since the equation describes a way to get the vectorized
output of the channel on all possible inputs. Note that the map in Eq.(2.25) is linear:

Γ(αE1 + βE2) = αΓ(E1) + βΓ(E2), (2.26)
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for all α, β ∈ C and E1, E2 ∈ C(H).

Now, lets turn to the advantages of this representation. The Liouville representation
allows us to seamlessly compose two different channels acting on a system i.e.,

Γ(E1 ◦ E2) = Γ(E2).Γ(E1), (2.27)

for all E1, E2 ∈ C(H), where ◦ denotes composition of channels and “.′′ denotes matrix
multiplication. This is easy to see from Eq.(2.25). Consider E = E1 ◦ E2 which implies
E(ρ) = E2(E1(ρ)) for all ρ ∈ D(H). Therefore,

Γ(E) vec(ρ) = vec (E(ρ))
= vec (E2 (E1(ρ)))

= Γ(E2) vec (E1(ρ))

= (Γ(E2).Γ(E1)) vec(ρ), (2.28)

where we invoke Eq.(2.25) multiple times in either direction. Since the above equation
holds for all ρ ∈ D(H), it implies Γ(E) = Γ(E1 ◦ E2) = Γ(E2).Γ(E1). So, to obtain the
Liouville matrix of the composed map, we need to just take a matrix product of the
Liouville matrices of the component maps. Instead of using the standard basis for vec-
torization if one alternatively chooses to use the Pauli matrices as the basis, it leads to
the representation called the Pauli-Liouville representation. It enjoys the same composi-
tional advantage and is more convenient to deal with in certain applications related to
quantum error correction. The recipe to derive the entries of the Pauli-Liouville repre-
sentation (sometimes referred to as the Pauli Transfer Matrix (PTM) [WBC15]) of a map
E ∈ C(H) is given by the following equation:[

ΓPTM(E)
]

i,j
= Tr

(
PiE(Pj)

)
, (2.29)

where Pi, Pj ∈ L(H) are Pauli matrices. Sometimes we will drop the superscript PTM in
this thesis but the vectorization basis can be inferred from the context.

Although this representation composes naturally, it sheds no light into the complete
positivity of a given map. This will be fulfilled by the next representation.

2.2.2 Choi representation

For every quantum channel E ∈ C(H1,H2), we define a corresponding Choi matrix
[Cho75] J(E)∈ L(H2 ⊗H1) as

J(E) = (E ⊗ IL(H1)
)(vec(IH1) vec(IH1)

†), (2.30)
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where IL(H1)
is the identity map and IH1 is the identity matrix of appropriate dimen-

sion. The Choi matrix can also be expressed as

J(E) = ∑
a,b∈{1,2,...,d}

E(Ea,b)⊗ Ea,b, (2.31)

where we assume that H1 = H2 = Cd. Similar to the Liouville representation, the Choi
representation of a map is a linear bijection. To recover the action of the noise map
E ∈ C(H1,H2) from its Choi matrix J(E) ∈ L(H2 ⊗ H1), one can use the following
equation:

E(ρ) = TrH1

(
J(E)(IH2 ⊗ ρT)

)
. (2.32)

The advantage of the Choi representation is that it provides a convenient method to
check if a map E ∈ T(H1,H2) is a quantum channel or not. In other words, it allows
us to check if a map is completely positive and trace preserving (CPTP) or not. A given
map E ∈ T(H1,H2) is CPTP if and only if its corresponding J(E) is positive semidefinite
i.e., J(E) ∈ Pos(H2 ⊗H1), and TrH2 (J(E)) = IH1 .

2.2.3 Chi-matrix representation

The Chi-matrix χ(E) of a channel E ∈ T(H) is defined by the following relation:

E(ρ) = ∑
ij

χ(E)ijPiρPj, (2.33)

where {Pi} are Pauli matrices. It is related to the Choi matrix by a change of basis from
the computational basis to the Pauli basis [WBC15]. The conversion is given by the
following equation:

χ(E) = Tc→σ J(E)T†
c→σ, (2.34)

where Tc→σ is the vectorization change of basis operator from standard computational
basis denoted by c to Pauli basis denoted by σ i.e.,

Tc→σ : [vec(A)]c → [vec(A)]σ, (2.35)

for all matrices A ∈ L(H⊗H). The description of the operator is given by

Tc→σ = ∑
α

eα[vec(σα)]
†
c , (2.36)

where {σα} is the Pauli basis.
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2.2.4 Kraus representation

In this representation, the noise map E ∈ C(H) is associated to a set of operators {Ak}
where Ak ∈ L(H). The action of the map on the state ρ ∈ D(H) is given by

E(ρ) = ∑
k

AkρA†
k . (2.37)

As we saw in Eq.(2.6) at the beginning of the background section, this representation
pops out naturally when we consider the action of a unitary map on the larger Hilbert
space comprised of system and the environment. Unlike Liouville and Choi represen-
tations, the set of Kraus operators [KBD+83; NC10] corresponding to a channel are not
unique. The trace preserving property of the map implies

Tr(E(ρ)) = Tr(∑
k

AkρA†
k)

= ∑
k

Tr(AkρA†
k)

= ∑
k

Tr(A†
k Akρ) (using cyclic property of trace)

= Tr(∑
k
(A†

k Ak)ρ).

(2.38)

Since the last equation holds for all ρ ∈ D(H), it implies that ∑k(A†
k Ak) = I.

2.2.5 Converting between representations

It is important to be able to understand the connection between the different representa-
tions i.e., Liouville, Choi and the Kraus representation. We omit Chi representation from
the discussion in this section as it can be obtained by a change of basis from the Choi
matrix. The following proposition [Wat18] ties all these three representations together.

Proposition 1. Consider a quantum channel E ∈ C(H), whereH = Cd and a set of operators
{Ak} where Ak ∈ L(H) for all k. The following statements which correspond to the three
different representations are equivalent.

1. (Liouville representation) The Liouville representation of E is expressed as:

Γ(E) = ∑
k

Ak ⊗ Ak. (2.39)
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2. (Choi representation) The Choi matrix is given by

J(E) = ∑
k

vec(Ak) vec(Ak)
†. (2.40)

3. (Kraus representation) The following statement is true:

E(ρ) = ∑
k

AkρA†
k (2.41)

for all ρ ∈ D(H).

Proof. The equivalence between statements 1 and 3 is established by taking vec and
applying Roth’s lemma i.e.,

vec (E(ρ)) = Γ(E)ρ
= ∑

k
vec(AkρA†

k)

= ∑
k
(Ak ⊗ Ak) vec(ρ). (2.42)

Since this set of equations holds for all ρ ∈ D(H), it implies statement 1 ⇐⇒ statement 3.
The equivalence between statements 2 and 3 is established using

vec(Ak) = (Ak ⊗ IH) vec(IH). (2.43)

2.2.6 Some important quantum channels

In this section, we will describe some commonly occurring noise phenomena in quan-
tum devices and their corresponding representations.

Unitary channel

Quantum circuits are composed of quantum gates which are unitary operators. In ad-
dition, unitary noise is commonly observed in quantum systems and arises as a con-
sequence of imperfect control sequences. Recall from Eq.(2.1) that the Hamiltonian ac-
cording to which a system is evolved is a function of control parameters. When these
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parameters are applied imperfectly in practice, the resulting unitary is different from
the ideal unitary. This leads to unitary noise commonly called as overrotation errors.
The action of a unitary channel E ∈ C(H) is given by

E(ρ) = UρU†, (2.44)

where U ∈ L(H) is a unitary operator. The simplest example of unitary noise is (over
or under) rotation around the Pauli Z−axis by a small angle expressed as:

E(ρ) = RZ(θ)ρRZ(θ)
†, (2.45)

where RZ(θ) = e−i θ
2 Z.

Notice that unitary channels have only one Kraus operator namely A1 = U. It is also
easy to see that ∑k A†

k Ak = U†U = I. The other representations can be easily derived
using Proposition 1. We mention some of them here for easy readability. The Liouville
representation of a unitary operation U is given by

Γ(E) = U ⊗U. (2.46)

The corresponding Choi matrix is given by

J(E) = vec(U) vec(U)†. (2.47)

Pauli channel

The action of a generalized Pauli channel E ∈ C(H) on a state ρ ∈ D(H) is given by

E(ρ) =
d2

∑
α=1

pαPαρPα, (2.48)

where pα ∈ R is the probability of the state being acted on by the Pauli operator Pα.
Being probabilities, the coefficients obey pα ≥ 0 ∀ α and ∑α pα = 1. Note that the Pauli
operators for qubit systems are self-adjoint i.e., P†

α = Pα and they square to identity
i.e., P†

α P = P2
α = I. For a multi-qubit Pauli operator P, we will denote the number of

non-identity single qubit operators in it as the Hamming weight of P and denote it by |P|.
The Kraus operators for the Pauli channel are given by Aα =

√
pαPα. The trace

preserving property can be verified as follows:

∑
α

A†
α Aα = ∑

α

pαP†
α Pα

= ∑
α

pαI (Pα is a unitary)

= I. (2.49)
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By comparing equations (2.33) and (2.48), we conclude that the Chi-matrix elements
for E are given by

χαβ = δαβ pα, (2.50)

where δαβ = 1 if α = β and δαβ = 0 otherwise.

A common example of the Pauli channel is the depolarizing channel. The probabilities
of all Pauli errors are set to be identical in the depolarizing channel except the Identity
(assumed to correspond to α = 1). Suppose we set pα = pd/d2 for all α 6= 1. The normal-
ization condition ∑α pα = 1 gives p1 = 1− pd + pd/d2. The action of the depolarizing
channel on a state is then given by:

E(ρ) = (1− pd)ρ +
pd
d

I. (2.51)

2.3 Noise metrics

In this section, we will discuss the popular error metrics used to compare the CPTP
maps and understand the strength of the associated noise. Before describing distance
between noise maps, it is helpful to understand ways to measure the distance between
quantum states.

2.3.1 Distance between quantum states

Given two quantum states ρ, σ ∈ D(H), the fidelity between them is defined as

F(ρ, σ) = ‖√ρ
√

σ‖1, (2.52)

where
√

ρ and
√

σ are the unique positive semi-definite operators that satisfy
√

ρ
√

ρ =

ρ and
√

σ
√

σ = σ respectively. Fidelity can be thought of as the amount of overlap
between the two states. Note that fidelity is not a metric in the strict mathematical
sense. However, we will use this terminology in the first three chapters of this thesis.
Expanding the above expression leads to the following alternative expression:

F(ρ, σ) = Tr(
√√

σρ
√

σ). (2.53)

We will state some key properties about the fidelity function without proving them here.
For proofs, please refer to Ref. [Wat18]. For density operators ρ, σ ∈ D(H), the fidelity
obeys the following properties:
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1. It is symmetric in the arguments i.e., F(ρ, σ) = F(σ, ρ).

2. F(ρ, σ) ≥ 0 with equality if and only if ρσ = 0.

3. F(ρ, σ) ≤ 1 with equality if and only if ρ = σ.

The trace distance between two quantum states ρ, σ ∈ D(H) is defined as

D(ρ, σ) =
1
2
‖ρ− σ‖1. (2.54)

For pure states, ρ = |ψ〉〈ψ| and σ = |φ〉〈φ|, the trace distance evaluates to

D(|ψ〉〈ψ|, |φ〉〈φ|) =
√

1− |〈φ, ψ〉|2. (2.55)

These two measures satisfy the following Fuchs-van de Graaf inequalities [FG99]

1− F(ρ, σ) ≤ D(ρ, σ) ≤
√

1− F(ρ, σ)2. (2.56)

2.3.2 Distance between quantum channels

There are several inequivalent ways to quantify the strength of noise. Of these, two are
used widely to study fault tolerance - fidelity and diamond distance. A natural way to
define fidelity between two given quantum channels E1, E2 ∈ C(H) is to take the fidelity
of the output states when they are supplied the same input state ρ i.e.,

F(E1(ρ), E2(ρ)). (2.57)

It is helpful to take a step back and think about situations when we are likely to care
about distance or overlap between channels in experimental settings. When experi-
mentalists implement quantum gates (or unitaries) in labs, they are not perfect. We can
therefore use these metrics to quantify how close or far these imperfect implementations
are to the ideal unitaries. Consider E1(ρ) = U (ρ) = UρU† to be the ideal unitary, and
E2(ρ) = EU(ρ) to be the noisy implementation of U. Given a pure state ρ = |ψ〉〈ψ|, the
fidelity between the ideal and noisy implementation of U is given by

F(EU(ρ),U (ρ)) = 〈ψ|U†EU(|ψ〉〈ψ|)U|ψ〉. (2.58)
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The above measure is sometimes referred to as the gate fidelity in the context where U is
an implementation of a gate in a quantum circuit. The average gate fidelity is correspond-
ingly defined by the average taken over all pure states i.e.,

〈F(EU,U )〉 =
∫

dµ(ψ)F(EU(|ψ〉〈ψ|),U (|ψ〉〈ψ|)) =
∫

dµFS(ψ)〈ψ|U†EU(|ψ〉〈ψ|)U|ψ〉,
(2.59)

where dµFS(ψ) is the Fubini-Study measure which is a unitarily invariant measure on
the complex projective space. We refer the readers to Ref. [Wat18] for more details on
unitarily invariant measures. Sometimes we extract just the noisy part of the imperfect
implementation by assuming the imperfect implementation of gates to be a composition
of the perfect unitary followed by the noise channel. We want to determine the strength
of the noise by comparing the noisy part of the imperfect implementation to the identity
process i.e., we set the first noise process to be the identity map E1(ρ) = I(ρ) = ρ, and
we determine its overlap with the second map which represents only the noisy part of
the imperfect implementation i.e., E2(ρ) = E(ρ). The average fidelity of the noise is
then referred to as 〈F(E)〉 and is expressed as

〈F(E)〉 = 〈F (E(ρ), I(ρ))〉 =
∫

dµFS(ψ)〈ψ|E(|ψ〉〈ψ|)|ψ〉. (2.60)

Finally, the average gate infidelity: r(E) [Nie96; Sch96; Rag01] is defined by

r(E) = 1− 〈F(E)〉 = 1−
∫

dµFS(ψ)〈ψ|E(|ψ〉〈ψ|)|ψ〉 . (2.61)

The diamond distance [Kit97a; Kit97b; Wat09; KSV02; Gut12] between two quantum
channels E1 and E2 is defined as

‖E1 − E2‖♦ = ‖E1 ⊗ IL(H) − E2 ⊗ IL(H)‖1, (2.62)

where

‖E1 − E2‖1 := max
ρ∈D(H)

||E1(ρ)− E2(ρ)||1. (2.63)

In most cases we will be interested in the diamond distance of a noise process E to the
identity channel expressed as follows:

||E − I||♦ = max
ρ∈D(H)

||(E ⊗ I)ρ− ρ||1 . (2.64)
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The average gate infidelity in Eq.(2.61) can be efficiently estimated using experimen-
tal techniques such as randomized benchmarking [EAŻ05; KLR+08; MGE11; MGE12].
The diamond distance satisfies mathematical properties that are needed to demonstrate
fault tolerance proofs [ABO08; SDT07; AP09]. The following bounds relate these two
quantities [WF14]

d + 1
d

r(E) ≤ 1
2
||E − I||♦ ≤

√
d(d + 1)

√
r(E) (2.65)

where E ∈ C(H) is assumed to act on a d-dimensional system. The lower bound is
saturated by Pauli channels whereas the upper bound is saturated for unitary errors.
The diamond distance cannot be estimated using experimental techniques; it can only
be loosely bounded by the above expression using values of r obtained from random-
ized benchmarking. For example, consider a practically relevant error rate of r = 10−4,
and one can see that ||E − I||♦ can span several orders of magnitude from 10−4 to 10−2.
Therefore, these bounds are not very useful for the purpose of estimating the relevant
numbers required to assess whether a system meets the requirements for fault tolerance.
We highlight and address this challenge of having a metric that satisfies both desirable
properties - being experimentally measurable and being relevant for quantum error cor-
rection in chapter 3.

2.4 Noise characterization and tailoring

In this section, we will discuss some key noise characterization protocols which are
relevant to the methods proposed later in this thesis.

2.4.1 t-designs and twirling

Similar to the requirement for sampling random quantum states to calculate average
gate infidelity, there often is a requirement to sample unitaries uniformly from the uni-
tary group on finite-dimensional Hilbert spaces. Let UH denote the group of all uni-
taries acting on quantum states in D(H). A unitary t-design is defined to be a finite set
of unitary operators {Ui}, 1 ≤ i ≤ K where Ui ∈ L(H) such that for every homoge-
neous polynomial Pt,t of degree at most t in the matrix elements of a unitary operator
U ∈ L(H) and at most t in their complex conjugates, the following condition holds true:

1
K

K

∑
i=1

P(Ui) =
∫
UH

Pt,t(U)dµHaar(U), (2.66)
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where dµHaar(U) is the unitarily invariant Haar measure. We refer the reader to
Ref. [Wat18] for more details on the Haar measure. The polynomial P(U) is an explicit
polynomial constructed out of entries of the matrix U and their complex conjugates.
Essentially, t-designs provide an efficient way to evaluate integrals over polynomials
involving unitaries. In practice, to evaluate any such polynomial one can use the finite
elements from the t-design and evaluate the integral exactly using the above equation.

In particular, we are interested in the case where t = 2. Consider a quantum channel
E ∈ C(H) acting on a quantum state ρ ∈ D(H). Suppose that E is conjugated by
a random unitary operation which is chosen according to a measure µ on UH. The
composite operator is of the form U1 ◦ E ◦ U2 where

U1(ρ) = UρU†, and (2.67)

U2(ρ) = U†ρU. (2.68)

The resulting operator on average is denoted by Tµ(E) = Eµ(E), where

Tµ(E)(ρ) =
∫

U∈UH
U†E(UρU†)U dµ(U). (2.69)

The transformation of E to Tµ(E) is called twirling. Of particular interest is the twirl
corresponding to the Haar measure µHaar. In this case, sampling from the Haar measure
is equivalent to sampling uniformly at random from the elements of 2-design. In other
words, the condition in Eq.(2.66) takes the following equivalent form:

1
K

K

∑
i=1

U†
i E(UiρU†

i )Ui =
∫

U∈UH
U†E(UρU†)U dµHaar(U), (2.70)

where {U1, U2, . . . , UK} forms a 2-design.

The Clifford group on n-qubits is defined to be a group of unitaries that normalize the
Pauli group:

Clifn = {V ∈ UH|VPnV† = Pn}, (2.71)

where Pn is the n-qubit Pauli group. In simple terms, the elements of the Clifford group
map Paulis to Paulis. The Clifford group plays a central role in quantum computation
with applications to noise estimation, quantum error correction, simulation of quantum
systems, etc. In particular, a uniform distribution over Clifn forms a 2-design. Therefore,
we can use the elements of the Clifford group in Eq.(2.70) i.e.,

1
|Clifn |

|Clifn |
∑
i=1

C†
i E(CiρC†

i )Ci =
∫

U∈UH
U†E(UρU†)U dµHaar(U), (2.72)
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where Clifn = {C1, C2, . . . , C|Clifn |} is the n-qubit Clifford group. It can be shown
[EAŻ05; Nie02] that the channel ETµHaar

, which can be obtained via twirling using the
Clifford group, produces a depolarizing channel Edep ∈ C(H) with the same average
fidelity as E . Therefore, the average fidelity of the channel E in Eq.(2.60) is given by

〈F(E)〉 = p +
1− p

d
, (2.73)

where the parameter p comes from the depolarizing channel Edep defined by:

Edep(ρ) = pρ + (1− p)
I

d
. (2.74)

The depolarizing channel was introduced in section 2.2.6. In summary, twirling any
quantum channel with the Clifford group produces a depolarizing channel with the
same fidelity as the channel being twirled. In some applications of twirling such as
randomized benchmarking, we will be interested in a sequence of twirls of length m
say. In this case, the twirled channel can be expressed as the m-fold composition of Edep
with itself i.e.,

Em
dep(ρ) = pmρ + (1− pm)

I

d
. (2.75)

The resulting average fidelity of the depolarizing channel and equivalently the m-fold
twirled channel is then given by:

〈F(Em
dep)〉 = pm +

1− pm

d
. (2.76)

Finally, we want to mention that twirling using the Pauli group Pn produces a Pauli
channel [Mag08; DCE+09]. The effective twirled Pauli channel is given by:

TPn(E)(ρ) = ∑
P∈Pn

PE(PρP)P . (2.77)

We will use the notation ET in later chapters to denote the Pauli Twirl of the CPTP
map E .

2.4.2 Randomized benchmarking

The traditional way of benchmarking quantum noise processes includes standard pro-
cess tomography [CN97; PCZ97; WHE+04], ancilla/entanglement assisted process to-
mography [ABJ+03; DLP01] and Monte Carlo methods. While quantum process tomog-
raphy is able to fully characterize an unknown noise process occurring in the device, it
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is not scalable in the number of qubits n i.e., the number of experiments to be executed
and the corresponding post-processing time both grow exponentially with n. Often we
are interested in analyzing errors coming from the implementations of gates separate
from the ones from state preparation and measurements. Quantum process tomogra-
phy and Monte-Carlo methods assume negligible state preparation and measurement
errors. This is a strong assumption and hence these methods are not robust to state
preparation and measurement (SPAM) errors. Randomized benchmarking (RB) and its
variants are scalable as well as robust to SPAM errors. They help calculate quantities
such as the average gate infidelity of a gateset [MGE11], infidelity of a particular gate of
interest [MGJ+12], coherence in the noise [WGH+15], leakage in the system [WG18], etc.

Figure 2.1: The figure shows the sequence of Clifford gates applied in a standard RB
experiment. The last gate is chosen to be the inverse of the composition of the first m
gates so that the entire sequence is an identity operation in the absence of noise.

In this section, we will outline the standard RB protocol [MGE11] which estimates
the average gate infidelity of a given gate set. The protocol involves the following steps:

1. Generate a sequence of (m + 1) quantum operations where the first m operations
are chosen uniformly at random from a group G ⊂ UH. The (m + 1)th operation
is chosen to be the inverse of the composition of first m operations as shown in
Fig. 2.1. In other words, the ideal (error free) composition of these operations is
the identity operation. We will choose the group G to be the Clifford group on
n-qubits i.e., Clifn defined in Eq.(2.71). It is known that polynomial size Clifford
circuits can be simulated efficiently on a classical computer [Got97]. Therefore, it
is easy to pre-compute the (m+ 1)th operation for any set of m Clifford operations.
When implemented on a device, these Clifford operations will have errors associ-
ated to them. We imagine a noise channel Eij ∈ C(H) associated to each Clifford
operation Cij , where Cij(ρ) = Cij ρC†

ij
. The sequence of operations is represented

by:
S~im

=©m+1
j=1 (Eij ◦ Cij), (2.78)

where ~im denotes the tuple (i1, i2, . . . , im) and signifies the sequence of random
Clifford operations. For simplicity, we will assume gate-independent noise in this
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section i.e., Eij to be the same for all i, j. However, a similar protocol and analysis
holds for the gate dependent case [Wal18].

2. For each sequence S~im
we measure the survival probability of the initial state ρψ

when it is evolved through the sequence i.e., we measure Tr(EψS~im
(ρψ)). Here,

ρψ captures state preparation errors and Eψ is the POVM element that takes into
account measurement errors. In the absence of noise, ρψ = Eψ = |ψ〉〈ψ|.

3. Calculate the average sequence fidelity defined by:

Fseq(m, ψ) = Tr(EψSm(ρψ)), (2.79)

where Sm is the average sequence operation taken over several random sequences:

Sm =
1

|~im|∑~im
S~im

. (2.80)

4. Fit the results obtained for the averaged Fseq(m, ψ) into the following equation:

Fseq(m, ψ) = Apm + B. (2.81)

The parameters A, B capture the state preparation and measurement errors. The
value of parameter p obtained can be plugged into Eq.(2.73) to get the average
gate fidelity 〈F(E)〉. The average gate infidelity r(E) is then given by:

r(E) = 1− 〈F(E)〉 = 1− p− (1− p)
d

. (2.82)

For the derivation of Eq.(2.81), we refer the reader to Ref. [MGE11].

2.4.3 Randomized compiling

Randomized Compiling (RC) [WE16] is a noise-tailoring technique that transforms co-
herent errors into stochastic errors with little to no overhead. Randomized compiling
imagines a given quantum circuit as a sequence of layers called cycles. Furthermore, it
classifies them into easy and hard cycles based on the expected noise level for a given
cycle, with cycles that are expected to have low error rates being called “easy” and the
remaining cycles called “hard”. For instance, the easy cycles can comprise of all single
qubit gates and the hard cycles are composed of only entangling gates. Every quantum
circuit can be broken into a collection of alternating easy and hard cycles.
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Figure 2.2: Randomized Compiling high level - this is figure 1 in Ref. [WE16]. The top
figure shows a bare circuit with alternating easy and hard cycles. The middle figure
shows insertion of random Pauli gates in between easy and hard cycles. The bottom
figure shows that the extra randomization gates are compiled into the existing gates
resulting in a random compilation of the bare circuit.

At a high level, the basic idea is to insert Pauli randomizing gates (twirling gates)
around the hard cycles of a target circuit. To ensure that the circuit depth remains the
same, these gates are compiled into the existing ones. Moreover, it is ensured that
the circuit remains logically1 equivalent i.e., the computation being implemented is
unchanged by the insertion of random gates. Fig. 2.2 illustrates the key steps of ran-
domized compiling. This procedure is repeated for many different compilations and
the results are averaged at the end.

Now, we will describe the details of how the above technique tailors the coherent
parts of the noise to stochastic noise. Let Cj,k

2 denote the easy gate acting on qubit j
in the kth clock cycle, Gk denote the hard gate in the same clock cycle, Ee denote the
gate-independent noise on the easy gates, E(Gk) denote the gate-dependent noise on

1Note that although we use the term logical, there is no error correction involved here. We are just
referring to the net unitary operation implemented by the given quantum circuit.

2Note that this notation is unrelated to the Clifford group defined previously. The scope of this is only
within the randomized compiling subsection.
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Figure 2.3: Randomized Compiling at the clock cycle level - this is figure 2 in
Ref. [WE16]. (a) A snapshot of the kth clock cycle. (b) Twirling gates are inserted in
this step. (c) Twirling gates are commuted through the hard cycle. (d) Twirling gates
and correction gates are compiled into adjacent easy gates. (e) The tailored circuit which
contains the average noise Tk seen by the circuits over many randomization as defined
in Eq.(2.84).

the hard gate Gk and T denote the twirling set. Consider a snapshot of the kth cycle of a
given quantum circuit as depicted in Fig. 2.3(a). We replace each round of easy gates ~Ck
(comprising of all easy gates in the kth clock cycle) with a round of dressed gates i.e.,

~Ck → C̃k = ~Tk~Ck~Tc
k−1, (2.83)

where the twirling gate acting on the jth qubit in the kth clock cycle Tj,k is chosen uni-
formly at random from the twirling set T. The gates ~Tc

k−1 = Gk~TkG†
k in Fig. 2.3(c) undo

the effect of randomization from the previous cycle. Therefore, in the absence of noise,
the circuits remain logically equivalent. Finally, to ensure that the dressed gates can be
compiled into the circuit, we require that ~Tc

k is an easy gate for all choices of twirling
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gates Tk,j and hard gates Gk. One choice of a division that ensures this is T = P1
(twirling gates are all single qubit Pauli gates); easy gates come from the group gen-
erated by the phase gate R = |0〉〈0|+ i|1〉〈1| and P1; and the hard gates are either the
Hadamard gate,

√
R or the two-qubit controlled-Z gate. Note that this division ensures

that the combination of hard and easy gates form a universal gate set. Finally, notice
in Fig. 2.3 that uniformly averaging over the twirling group tailors the noise in the kth

cycle to
Tk = E~T

~T†E(Gk)E~T, (2.84)

which is a Pauli channel for any choice of T that is a unitary 1-design. Note that T = P1
has this property. Since coherent errors accumulate faster than stochastic errors, this
technique helps mitigate the effect of noise on the output of the circuit. Randomized
compiling has been applied in several mitigation [HNM+21; FHV+22] and validation
[FKD19] works. Recently, randomized compiling was also used to enforce simpler noise
models for subsystem measurements [BW23]. Later, in chapters 3 and 4, we will show
how we can use randomized compiling in the context of quantum error correction for
better diagnostics and performance.

2.4.4 Cycle error reconstruction

Cycle Error Reconstruction (CER) [CDDH+23] is a noise characterization tool that goes
beyond standard randomized benchmarking while borrowing a lot of its nice features
like robustness to SPAM for instance. It aims to characterize the noise of cycles which
are also referred to as n-qubit gates in the tomography literature. Cycles in this con-
text should be thought of as the repeating instruction blocks in any quantum algorithm
that are more complicated than individual gates and less complicated than the entire
circuit. For example, a cycle for a 5-qubit system can be {(0, 1) : CZ, (2) : H, (3, 4) : CZ}
where the tuples specify which qubit(s) the corresponding gate acts on. In this exam-
ple, Controlled-Z is applied on two pairs of qubits and a Hadamard gate is applied on
one qubit. It is important to characterize complete cycles rather than gates in isolation
to capture all the cross talk effects that can occur while implementing gates in parallel.
Typically, cycles are classified into easy and hard cycles in a spirit similar to random-
ized compiling. Hard cycles will contain a (fixed) entangling gate (say Controlled-X,
Controlled-Z, etc.) with the possibility of them being applied on disjoint pairs of qubits
simultaneously. The easy cycles contain (relatively) higher fidelity single qubit gates.

As we noticed before, when circuits are implemented with randomized compiling,
the effective noise is stochastic, i.e., a Pauli channel. CER provides a way to estimate
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Figure 2.4: Cycle error reconstruction circuit - this is figure 1 in Ref. [CDDH+23]. The
above figure describes the structure of circuits used in both Cycle Benchmarking and
Cycle Error Reconstruction. They include repetitions of pairs of easy and hard cycle
(collectively called a dressed cycle) sandwiched between state preparation and mea-
surement steps. These cycles when averaged over different randomization are called
effective dressed cycles whose error profile will be described by a stochastic map (Pauli
channel).

the Pauli error probabilities associated to this channel. It builds on a method called cycle
benchmarking (CB) [EWP+19] which provides a way to obtain the total error probability
in a cycle. In other words, while CB only estimates the probability of the identity error
(or no error), CER provides methods to estimate other dominating Pauli error probabil-
ities in the cycle. The usefulness of these methods really shine when the depolarizing
assumption doesn’t hold and characterizing one qubit at a time is insufficient due to
presence of cross talk. Accounting for cross-talk with very few assumptions makes
these techniques readily useful. Other methods similar to CER which perform cycle
centric characterization include Average Circuit Eigenvalue Sampling (ACES) [Fla21]
and Gate-Set Tomography (GST) [MGS+13; NGR+21]. Since CER type protocols rely on
implementing randomized compiling under the hood, it is more useful to characterize
the noise on average. In other words, they aim to characterize the noise on effective cy-
cles. GST on the other hand characterizes deterministic cycles. A major differentiation
between ACES and CER is the precision and the sample overhead. ACES has additive-
precision and requires O(1/ε2) runs to estimate an error rate ε whereas CB and CER offer
multiplicative precision and require only O(1/polylog(ε)) runs. This makes a huge differ-
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ence given the current error rates are close to 10−4 for which ACES will require about
108 runs whereas CER will only need a handful runs. It will make even larger difference
when in future the devices attain extremely low error rates in the order of 10−8.

In what follows, we will give a high level overview of CER and we refer the reader
to Ref. [CDDH+23] for details. The general structure of circuits that are implemented in
both CB and CER are identical and is depicted in Figure 2.4. They contain repetitions
of a combination of easy and hard cycle, referred to as the dressed cycle sandwiched be-
tween appropriate state preparation and measurement steps. The repetition idea has
the same impact as standard RB i.e., it amplifies the noise coming from the dressed cy-
cle. The key difference is that in each repetition, similar to randomized compiling, the
easy cycle component of the dressed cycles is randomized. The average of each cycle
over several randomization is called the effective dressed cycle. These effective cycles,
as a consequence of the twirling impact of randomized compiling, have a stochastic
error profile described by a Pauli channel. Let Ci and Gi be the ith easy and hard cy-
cles respectively. The corresponding effective dressed cycle averaged over all different
compilations when twirled using the Pauli group takes the form [CDDH+23]

νeff
drs(Gi, Ci) = φ(GiCi)Ei, (2.85)

where φ(GiCi) and νeff
drs(Gi, Ci) are used to denote the ideal and noisy implementations

of the ith dressed cycle respectively, and Ei is a Pauli stochastic channel of the form

Ei(ρ) = ∑
P∈Pn

pi(P)PρP† (2.86)

for some probability distribution {pi}. The above statement is true subject to the condi-
tion that at least one of the following statements hold:

1. The cycles Gi and Ci are Cliffords.

2. The easy cycles have a fixed error i.e., ν(Ci) = E ◦ φ(Ci) ∀i, where φ(Ci) and ν(Ci)
denote the ideal and noisy implementations of Ci respectively.

The second condition is more commonly known as the gate-independent noise assump-
tion in the literature and is generally (approximately) true for cycles composed of high
fidelity single qubit gates. It is possible to relax these assumption with more work and
the procedure is described in Ref. [CDDH+23]. CER provides a way to estimate the
probabilities in the distribution {pi}. Since there are exponentially many of them, it
makes sense to obtain a subset of them efficiently. Most of the times the choice of this
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subset is guided by locality constraints in the device. For instance, one can ask about the
probability of all two-qubit nearest neighbour Pauli errors. Alternatively, one can ask
about the probability of errors with Hamming weight (number of non-identity Paulis)
at most w, where w is a constant (say 3). CER provides a way to estimate the marginal
probability distribution of any subset of Paulis.

The subroutine used to characterize effectively dressed cycles is detailed in [FW20].
It will be treated here as an oracle and will be referred to as Pauli Infidelity Estimation
(PIE). The oracle’s action on a subset of Paulis S ⊆ Pn and a hard cycle G is given by

PIE(S, G) =
{

f (Porb(G)) : P ∈ S)
}

, (2.87)

where

Porb(G) :=
{

GjPG−j|j ∈N
}

, and

f (Porb(G)) :=
1

2n|Porb(G)| ∑
Q∈Porb(G)

Tr(Q E(Q)).

Porb(G) is called the G-orbit of P. Similarly, one can define the G-orbit on the subset
of qubits as the collection of G-orbits of all the Paulis within the support of the subset.
Suppose the set S has support A ⊆ [n]. We use the notation PA to denote the Pauli
group restricted to this subset of qubits. For example, if S only has non-trivial support
on qubits A = {0, 1}, thenPA is the two-qubit Pauli group. Also, we write PA to denote
the Pauli restricted to the support A. For instance, PA for XXII I when A = 0, 1 would
refer to the Pauli XX. We define the G-orbit of a set of Paulis PA as the union of the
individual G-orbits of the Paulis in the set i.e.,

P
orb(G)
A

:= {Porb(G)
A

|PA ∈ PA}. (2.88)

The marginal probability distribution over P
orb(G)
A

is defined to be the sum of marginal
probabilities of all the Paulis in the orbit as

µ(P
orb(G)
A

) := ∑
QA∈P

orb(G)
A

µ(QA), (2.89)

where µ(QA) := ∑{P∈Pn|PA=QA} p(P) is the marginal probability of QA. The following

lemma, which we state here without proof, relates the marginal probability µ(P
orb(G)
A

)

to the quantity obtained using PIE namely f (Porb(G)
A

).
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Lemma 2. Suppose PA is invariant under the action of G i.e., GPAG−1 = PA. The marginal
probability distribution µ(P

orb(G)
A

) can be obtained from f (Porb(G)
A

) using the following equation
[CDDH+23]

µ(Porb(G)
A

) =
|Porb(G)

A
|

4A ∑
QA∈PA

ζ(QA, PA) f (Porb(G)
A

), (2.90)

where

ζ(P, Q) =

{
1 if P and Q commute
−1 otherwise.

(2.91)

We will use the term parallel gate supports (denoted by Ai) to denote sets of pairwise
disjoint qubit indices on which a hard cycle acts. For example, consider a hard cycle on a
5-qubit system consisting of two parallel CZ gates on the pairs A0 = {0, 2}, A1 = {1, 3}
and a Hadamard gate on A2 = {4}. Now, we are in a good position to describe the CER
protocol.

Protocol 1 Cycle error reconstruction [CDDH+23]
Input: A hard cycle G; the number of parallel gate supports m.

Output: Marginal probability distributions for errors on the union of all m distinct par-
allel gate supports.
The protocol: Let the parallel gate supports of G be A0, A1, . . . , As−1 and let Sm be the
set of all ( s

m) unions of m distinct gate supports.
For each support A ∈ Sm:

1. Invoke PIE(PA, G) and collect the output fidelities namely { f (Qorb(G)
A

) : QA ∈
PA}.

2. Use lemma 2 to obtain the marginal probabilities µ(Qorb(G)
A

) from f (Qorb(G)
A

).

In chapter 3, we will use the CER protocol as one of the key steps for designing
an efficient diagnostic technique to estimate the fidelity of quantum error correction
schemes.
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2.5 Error correction

In this section, we will briefly discuss classical error correction followed by the basics of
quantum error correction.

2.5.1 Classical error correction

Linear codes constitute a huge and important class of classical error correcting codes.
For any [n, k, d] classical linear code which encodes k logical bits in n physical bits and
has distance d, the following properties are relevant:

• rate = k/n, and

• relative distance = d/n.

It is desirable to have high rate as well as high relative distance. A code C3 is said to
be linear if any linear combination of codewords in C is also a valid codeword. In this
thesis, we will restrict ourselves to binary linear codes. Linear codes can be described
by specifying a basis for all the codewords in the form of a generator matrix GC ∈
Fk×n

2 , where each row of the matrix represents a basis codeword. The row span of the
generator matrix contains all the codewords in C. For example, the generator matrix for
the [7, 4, 3] Hamming code is given by

GC =


1 0 0 0 1 1 0
0 1 0 0 0 1 1
0 0 1 0 1 1 1
0 0 0 1 1 0 1

 . (2.92)

Therefore, any x ∈ Fn
2 is a valid codeword if there exists m ∈ Fk

2 such that mG = x.
Another equivalent representation of a linear code is in the form of parity check matrix
HC ∈ Fn−k×n

2 . A binary string x ∈ Fn
2 is a valid codeword if HCxT = 0. In other words,

the null space of the matrix HC is the code space of the code C. The parity check matrix
of the Hamming code is

HC =

1 0 1 1 1 0 0
1 1 1 0 0 1 0
0 1 1 1 0 0 1

 . (2.93)

3This notation for codes should not be confused with the one used for Cliffords earlier. We will not be
referring to Cliffords in this section.
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The number of distinct possible codewords is referred to as the size of the code. It
is denoted by |C| and is equal to 2k for a binary linear code. The code space is a k-
dimensional linear subspace of Fn

2 . For every binary linear code C, we define a dual
code C⊥ such that the codewords for C⊥ are generated by the rows of the parity check
matrix for C. In other words, the generator matrix for C⊥ is the parity check matrix
for C and vice versa. Also, note that by definition, the codewords of the two codes are
orthogonal to each other.

The minimum distance or simply the distance of a linear code is defined as the mini-
mum hamming distance between all pairs of codewords in the code i.e.,

dC = min
u,v∈C;u 6=v

d(u, v), (2.94)

where d(u, v) is the Hamming distance between vectors i.e., number of positions in
which they differ for binary codes. To calculate the distance for linear codes, it is suf-
ficient to find the codeword with the least Hamming weight i.e., least number of 1′s.
Note that, the brute force method to do this entails evaluating the Hamming weights of
all the |C| = 2k codewords of length n. Another equivalent way to find the distance is
to use the following definition which uses the parity check matrix HC :

dC = min
{x:HCxT=0}

|x|. (2.95)

Note that any x that satisfies HCxT = 0 is a valid codeword and implies the existence
of a set of dependent columns in HC . Specifically, the set of columns {HC [i] : i ∈ S} are
linearly dependent, where S = {i ∈ [n] : xi = 1} and HC [i] denotes the ith column of
HC . In other words, distance is the size of the smallest set of columns that are linearly
dependent in HC . The brute-force method to use this definition would require iterating
over all subsets of columns in increasing order of size until a dependence is detected.
In both the methods, we are essentially finding the codeword with the least Hamming
weight.

2.5.2 Quantum error correction

Quantum error correction (QEC) is one of the fundamental parts of any fault-tolerant
quantum scheme. It employs redundancy and symmetry to detect and correct errors
that may have corrupted an incoming quantum state. The process of (quantum) error
correction aims to protect (noisy) physical qubits and store them as (noise-protected)
logical qubits. A code that uses n physical qubits to produce k logical qubits is referred
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Figure 2.5: The above figure shows the key steps of a quantum error correcting scheme.
The effective channel is a virtual construct that encapsulates all of these steps into a
single process that directly acts on the logical qubit.

to as an [[n, k]] code. Fig 2.5 highlights the key steps involved in a quantum error cor-
recting circuit.

1. Encoding : In this step, the input state is padded with some blank qubits and then
encoded using a unitary operator,

ρ 7→ ρ = U
(

ρ⊗ |0〉〈0|⊗(n−k)
)

U†. (2.96)

The unitary operator U is the encoding circuit for the underlying error correcting
code.

2. Noise : Although the noise is present all throughout the computation process, we
model its effect on the encoded state ρ̄ by an explicit map E⊗n as:

ρ̄ 7→ E⊗n (ρ) (2.97)

Please note that although the figure and the above equation depicts the application
of identical noise on each qubit, in some cases we will apply correlated noise as
well.
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3. Syndrome detection : This is a crucial step where we check whether the symmetry
of the encoded state was affected by the noise or not. If the noise breaks the sym-
metry, it leaves a signature for the same, which we call a syndrome. The process
of syndrome detection involves coupling of the n physical qubits to (n− k) ancil-
lary qubits and then measuring the ancilla to detect errors. Given the outcome of
the measurement was a syndrome s ∈ {1, 2, . . . 2n−k}, the transformation of the
quantum state is described by,

E⊗n (ρ) 7→ ρs =
ΠsE⊗n (ρ)Πs

tr(ΠsE⊗n (ρ))
, (2.98)

where Πs is the projector onto the eigenspace associated to the syndrome s.

4. Decoding and recovery: This is a classical inference step wherein we attempt to
guess the error that might have led to the syndrome s in the previous step. In
general, there can be multiple errors that lead to the same syndrome. We will
discuss the popular strategies for decoding later. Given the recovery chosen is Rs,
the following transformation ensues

ρs 7→ RsρsRs. (2.99)

5. Un-encoding : This final step maps the logical state back to physical state :

RsρsRs 7→ ρ′ ⊗ |0〉〈0|⊗(n−k). (2.100)

Combining all of the above steps, we map an n qubit physical noise E⊗n to an effective
logical channel acting on k qubits, which we call E s

1. This notation implies that the
effective channel is conditioned on observing a syndrome s in the syndrome extraction
step followed my appropriate recovery application. The subscript denotes that we have
applied error correction once to the bare physical channel.

Stabilizer codes

Traditionally, quantum error correcting codes were specified by explicitly mentioning
the expansion of logical basis states in terms of 2n physical states. For instance, a pop-
ular code with n = 7 and k = 1 known as Steane code has the logical states spanned
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by

|0̄〉 = 1√
8
(|0000000〉+ |1010101〉+ |0110011〉+ |1100110〉

+ |0001111〉+ |1011010〉+ |0111100〉+ |1101001〉), and

|1̄〉 = 1√
8
(|1111111〉+ |0101010〉+ |1001100〉+ |0011001〉

+ |1110000〉+ |0100101〉+ |1000011〉+ |0010110〉).

(2.101)

To avoid the challenges associated with using an exponential number of basis vectors to
specify a code, Gottesman in Ref. [Got97] came up with a formalism to describe quan-
tum codes succinctly called the Stabilizer formalism and the corresponding codes are
called Stabilizer codes. The complexity of the description of these codes is linear in the
number of physical qubits n.

The code space for Stabilizer codes is defined to be the simultaneous +1 eigenspace of
the Stabilizer generators {Si} i.e.

Q = {|ψ〉 : Si|ψ〉 = |ψ〉 ∀ i ∈ {1, 2, . . . , n− k}} (2.102)

where {Si}’s are Pauli matrices. The corresponding Abelian subgroup S = 〈S1, . . . , Sn−k〉
is called the Stabilizer group, and its elements, the stabilizers. Logical operations on the
encoded states |ψ〉 are elements of the normalizer: N (S), where N (S) is the set of all
Pauli operators which commute with every Stabilizer generator. We will sometimes re-
fer to logical Pauli operators P ∈ N (S)/S simply as logicals. The Hamming weight of
the logical Pauli operator with least number of non-identity Paulis is called the distance
of the stabilizer code. A code with distance d can correct any Pauli error of weight up
to t = b d−1

2 c. The revised notation for such a code with n physical qubits, k logical
qubits and distance d is [[n, k, d]]. Note that, the same notation with single brackets i.e.,
[n, k, d] was used to refer to a classical error correcting code with n physical bits, k logical
bits and distance d. A classical code with distance d can correct errors of weight up to
t = b d−1

2 c bits.

For Stabilizer codes, in the syndrome detection step described above (step 2), an er-
ror P ∈ N (S)/S is detected by measuring the stabilizer generators. The error-syndrome
of E, denoted by s(E) ∈ Fn−k

2 is an (n − k) bit sequence, where (−1)si(E) denotes the
outcome of measuring the stabilizer generator Si on E|ψ〉. In other words, si(E) is 0
whenever [E, Si] = 0 and 1 otherwise. The effect of measuring s is captured by the
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projector Πs given by

Πs =
n−k

∏
i=1

I + (−1)si Si

2
. (2.103)

A Pauli error T can be decomposed with reference to a stabilizer code:

T = T ST ET , (2.104)

where ST is an element of the stabilizer group S , T is a logical Pauli operator in L =
N (S)/S , and ET is an element of N (L)/S , usually called a pure error [LB13; Pou06].
Unlike pure errors, stabilizers and logical operators commute with quantum error cor-
rection (QEC) routines. A Pauli error T can be compiled into QEC, by a simple change to
the decoder, resulting in a new quantum error correction routine QEC(T). In particular,
if the syndrome measurement outcome in QEC is s, then the decoder in QEC(T) is given
as input the error syndrome s ⊕ s(T), where s(T) is the error syndrome of T, and the
recovery it prescribes is conjugated by T. This fact will be useful in chapter 3 when we
discuss combining noise tailoring methods with quantum error correction.

While the quantum error correction formalism has been traditionally developed to
address Pauli errors, realistic noise processes are often inaccurately described by the
Pauli error model. There have been only a handful studies [RDM02; CWB+17; GSL+16;
HDF19; BEK+18; DP17; BWG+18; IP18] of quantum error correction schemes for generic
Markovian noise processes. Unlike a Pauli error model, a general Markovian process
cannot be understood as a probability distribution over several unitary errors. Instead
one is left with studying the full quantum evolution of an n qubit system. The composite
process encapsulating (i) the physical noise E0, (ii) measuring a syndrome outcome s,
and (iii) applying a recovery Rs prescribed by a decoder, is the effective logical channel E s

1
[RDM02]. Its action on an encoded state ρ is summarized by:

E s
1(ρ) =

Rs Πs E0(ρ) Πs R†
s

Pr(s)
, (2.105)

where Pr(s) is the probability of measuring the syndrome outcome s. Taking the average
over syndromes, we find the average logical channel E1 given by

E1(ρ) = ∑
s

Pr(s)E s
1(ρ) . (2.106)

Note that, in practice, to compute the average channel one can avoid the computation
of Pr(s) in equations (2.105) and (2.106). While physical error rates are measured by
noise-metrics on E0, logical error rates are measured by noise metrics on E1.

The two most popular decoding strategies for Stabilizer codes are described below.
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• Minimum weight decoding (MWD) : A correction Rs in Eq.(2.105) takes the form
Ts L? S, where Ts is the pure error corresponding to the syndrome s, L? is a logical
and S is a stabilizer. A minimum weight decoding strategy [HLG11] prescribes a
correction Rs which has the least Hamming weight.

• Maximum likelihood decoding (MLD) : This decoding strategy [HLG11] picks an
L? that maximizes the following probability

L? = arg max
L∈L

Pr(L|s) (2.107)

where Pr(L|s) = ∑S∈S Pr(Ts · L · S) is the sum of the probabilities of all the errors
in a coset of the Stabilizer group with respect to logicals.

Note that the decoder essentially only has to prescribe an appropriate L? since the sta-
bilizers leave the code space invariant and Ts is fixed by the syndrome observed in the
syndrome detection step. MLD is known to be optimal [IP15] whereas MWD is sub-
optimal.

A stabilizer code and a decoder pair are designed to correct a target set of errors,
called correctable errors [Ste06; Rau12] EC. For an [[n, k]] code, EC can be partitioned
into 2n−k disjoint subsets EC,1, . . . , EC,2n−k , each of which can be identified with a unique
syndrome measurement outcome. The construction of the set EC,s closely depends on
the choice of a decoder. Recall that the output of a decoder on input syndrome s is a
Pauli recovery operator Rs, i.e., Rs ∈ EC,s. A key observation to construct elements in
EC,s besides Rs is that any error of the form RsS where S is an element of the stabilizer
group is also correctable, so, EC,s = {RsS : S ∈ S}.

Concatenated codes

In general, logical error rates can be improved by increasing the number of physi-
cal qubits. Concatenated quantum codes are a popular family of codes of increasing
sizes [KL96], and are often used to guarantee error suppression in fault tolerance proofs
[AGP07; JOL14]. Concatenation provides a simple recipe to construct a large code from
two small codes. In this scheme, the physical qubits of a [[n2, k2]] code C2 are encoded
using a [[n1, k1]] code C1, yielding a [[n1n2, k1k2]] code. This procedure can be repeated
recursively with L code-blocks C1, . . . , CL where Ci is a [[ni, ki]] code, yielding a level−L
concatenated code. In this thesis, we consider concatenated codes where the constituent
code-blocks are described by the same code. Furthermore, the number of logical qubits
encoded in each code block is one.
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Figure 2.6 presents a schematic of the concatenated code structure. The recursive
encoding structure is depicted as a tree where a horizontal layer corresponds to a level.
The i-th node at level ` denotes a quantum error correcting code block C`,i. The sub-tree
of the node is itself a concatenated code, denoted by C?`,i, consisting of (n` − 1)/(n− 1)
code blocks. There are (n− 1) independent stabilizer measurements corresponding to
each of the code-blocks of C?`,i. The resulting error syndrome s(C?`,i) has (n` − 1) bits,
which can be grouped into subsets of (n− 1) bits that are identified by the code-blocks.
We will often identify the subset of syndrome bits obtained by measurements on a code-
block C`,j by s(C`,j).

For quantum error correction simulations in this thesis, we apply a simple, but sub-
optimal decoding strategy for concatenated codes, which functions independently on
each block [Got97]. We consider the following iterative routine for QEC in concatenated
codes. For each level ` = 1, . . . , L: (i) syndromes are extracted for each code block
C`,1, . . . , C`,n, and (ii) a minimum-weight correction [HLG11] is applied in each case. Al-
though we assume the popular choice of minimum-weight decoder in (ii), the methods
prescribed in this thesis can be adapted to any lookup table decoder [TS14]. The cor-
rection applied at any level depends on the syndrome history of the code blocks in the
lower levels.

The effective channel for a level ` concatenated code can also be computed in a recur-
sive fashion, i.e., using Eq.(2.105) where E0 is replaced by effective channel on the level
(` − 1) code blocks, i.e., E s

`−1,1 ⊗ . . . ⊗ E s
`−1,n [RDM02; Pou06]. The average of logical

channels E s
` over all syndrome outcomes, denoted by E ` is expressed as:

E ` = ∑
s
E s
`Pr(s) , (2.108)

where Pr(s) is the probability of observing the outcome s [IP18; BEK+18; CWB+17]. The
average logical channel E ` indicates how quantum error correction suppresses the effect
of physical errors, on average. We will use logical infidelity r(E `) [IP18; GSL+16] as a
measure of the logical error rate defined by:

r(E `) = ∑
s

Pr(s)r(E s
` ) . (2.109)

In general, we need to overcome two challenges to estimate r(E `). First, given a
syndrome outcome s, we need an efficient method to compute its probability Pr(s), and
the associated effective channel E s

` . Second, we need an efficient method to compute the
sum over the exponentially large set of syndrome outcomes. For instance, the number
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Figure 2.6: The above figure shows the level ` of concatenated code, resembling a tree.
Each of the horizontal layers refer to a concatenation level. While the physical qubits
are placed at level ` = 0, the encoded qubit is at the topmost level ` = L. The blocks in
the intermediate levels denote quantum error correcting codes.

of syndrome outcomes for the level ` = 2 concatenated Steane code is approximately
1014.

To circumvent the first problem, we have focused our attention to concatenated
codes, for which there exists an efficient method to compute Pr(s) and E s

` . There is
no known method to overcome the second challenge for concatenated codes.

However, our problem of approximating the average logical error rate in Eq.(2.109),
falls into the general framework of problems addressed by Monte Carlo sampling. A
sampling estimate for r(E `) is given by

r(Ê`) =
1
N ∑̂

s
r(E ŝ

` ) , (2.110)

where ŝ is an outcome sampled from the syndrome distribution Pr(s). As the number
of syndromes grow exponentially with the number of levels, Monte Carlo sampling
techniques described in section A.6 of the appendix can be used to estimate this average.

Now, we provide the expression to calculate the average logical infidelity for a code
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under a noise process E : [IJB+22]

r(E1) = 1− ∑
E,E′∈EC

s(E)=s(E′) , E=E′

φ(E) φ?(E′) χE,E′ , (2.111)

where χi,j represents the (i, j)th entry of the χ−matrix of E , EC is the set of correctable
errors, E is the logical component in the decomposition of E with respect to the Stabilizer
group and φ(E) is specified by Rs(E)E = φ(E) S for any Pauli error E and some stabilizer
S. We use this expression at various points to calculate the logical infidelity. To calculate
the entries of the χ−matrix of the effective logical channel we use the following general
expression: [IJB+22]

χ(E1)l,m = ∑
E,E′∈EC

s(E)=s(E′) , E=E′

φ(E, l) φ?(E′, m) χEPl ,PmE′ . (2.112)

where Rs(E) |E Pl| = φ(E, l) S |Pl|, for l ∈ {0, 1, 2, 3}, any Pauli error E and some
stabilizer S. Here |P| stands for the bare Pauli without any associated global phase.
The last two equations have been derived in appendix section A.1 for completeness. In
chapter 4, we will calculate the χ−matrix for logical channels at higher levels i.e., for
` > 1 by recursing the expression in Eq.(2.112) and using the entries of χ(E `−1) in the
right hand side to evaluate χ(E `).

2.6 Property testing

The field of property testing deals with investigating global properties of large objects
[Gol17]. The goal is to determine if a given object satisfies a certain property or is far
from all the objects satisfying the given property. The notion of the distance between ob-
jects depends on their nature. The nature of objects spans various categories including
strings, matrices, graphs and functions to name a few. For instance, the distance could
be the Hamming distance if one is concerned with binary strings. For functions, that
are usually supplied as oracles, the distance between any two of them is the number of
inputs on which their outputs differ. For graphs, one can define the distance to be the
Hamming distance between their adjacency matrices.

Typically, the algorithms that are interesting for this task are super fast and look at
only a tiny fraction of the input. In most cases, there is a linear time algorithm to exactly
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determine whether the object has the given property. However, we are operating in the
regime where it is impossible to look at the entire input. Therefore, we are interested
in approximating this decision by looking at a small part of the given input. Adding
the promise that the given input either has the property or is far from the set of objects
having the property i.e., it is not on the boundary, makes the problem simpler, opening
up the possibility of efficient testing algorithms. However, one needs to be careful to not
trivialize the problem entirely. We will elaborate later on this by describing situations
where this can occur.

Before looking at problems that can have efficient testers, let us define the notion of
distance between strings on some alphabet Σ. Let x, y ∈ Σn. The Hamming distance
(or discrete metric) between them is defined to be δ(x, y) = |{i ∈ [n] : xi 6= yi}|. In
other words, it is the count of locations where the two inputs differ. We will often use
the notation |x − y| to denote this quantity. Along similar lines, we will say that an
input x ∈ Σn is ε-far from a set S if δS(x) := minz∈Sδ(x, z) = εn. Therefore, the testing
algorithm distinguishes the set of input that belong to the set S from the set of inputs
that are ε-far from the set S. In other words, all inputs x : 0 < δS(x) ≤ εn are ignored.
An algorithm to do this is referred to as ε-testing algorithm or simply an ε-tester.

Formally, a property testing algorithm with proximity parameter ε is a randomized
algorithm which on input x (being tested for property P) satisfies the following condi-
tions:

• If x is in P, the tester accepts with probability at least 2/3.

• If x is ε-far from P, the tester rejects with probability at least 2/3.

Such a tester is said to have two-sided error. This is also referred to as the bounded error
setting sometimes. On the other hand, a tester with one-sided error satisfies the stronger
condition that it accepts all inputs that have the property (x in P) with certainty (prob-
ability 1). As is standard in the theory of randomized algorithms, the core idea behind
having probability > 1/2 is that the probability of success can be amplified arbitrarily
by repeating the algorithm multiple times.

2.6.1 Testing binary strings

In this section, we discuss testing properties of binary strings [Gol17]. The first prop-
erty concerns determining if a given binary string has majority 1′s. Let MAJ = {x :

∑|x|i=1 xi > |x|/2}. This property can be tested in poly(1/ε)-time whereas it can be shown
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that no sub-linear-time (randomized) algorithm can solve the exact decision version of
this problem. A general approach for most testers is to query a (small) sample from the
given input object and test if the property holds on the sample. If it does, ACCEPT the
input with high probability (> 1/2). If it does not, declare that the input is far from the
property with high probability (> 1/2). We will fix the probability of success in both the
cases to be ≥ 2/3 but any fraction more than 1/2 works since it can be amplified with
multiple repetitions and taking a majority vote of the individual runs.

Proposition 3. There exists a randomized algorithm which runs in O(1/ε2)-time and decides
where a given string x ∈ MAJ or x is ε-far from MAJ [Gol17].

Proof. The algorithm is similar to the general theme described before. It queries the
input at m = O(1/ε2) uniformly and independently distributed locations. Let the indices
queried be given by i1, i2, . . . , im. The algorithm accepts the input if the average of the
entries queried i.e., ∑j∈[m] xij /m is more than (1 − ε)/2. It can be shown using the
Chernoff bound that with probability at least 2/3, the average of the sample is close to
the true average. Precisely, the following is true:

Pri1,i2,...,im∈[|x|]

[∣∣∣∣∑j∈[m] xij

m
− ∑k∈[|x|] xk

|x|

∣∣∣∣ ≤ ε

2

]
≥ 2

3
. (2.113)

Now, lets analyze the two cases and determine the algorithm’s output on them. Sup-

pose x ∈ MAJ. This implies that ∑k∈[|x|] xk
|x| > 1/2. Therefore, according to the previous

equation, with probability at least 2/3,
∑j∈[m] xij

m > (1−ε)/2. Thus, the algorithm will accept
x in this case with high probability. On the other hand, if x is ε-far from MAJ, it implies

that ∑i∈[|x|] xi
|x| ≤ (0.5− ε). Therefore, according to the previous equation, with probabil-

ity at least 2/3,
∑j∈[m] xij

m ≤ (1−ε)/2. Thus, the algorithm will reject x in this case with high
probability.

In general, all symmetric properties of binary strings can be efficiently tested. A prop-
erty S is symmetric if it holds that x ∈ S if and only if all permutations of x are also in
S. An example of a non-symmetric property that can be efficiently tested is whether a
given string is sorted or not. Let SORTED = {x : xi ≤ xi+1}. It can be tested if a string
x ∈ SORTED or ε-far from it in O(1/ε) time.
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2.6.2 Testing functions

In this section, we briefly explore testing properties of functions. In particular, we will
describe a tester for checking whether a given function is linear [BLR93]. Suppose, we
are given two groups G and H with the same group operation denoted by +. We call a
function f : G → H a (group) homomorphism if the following condition holds for all
x, y ∈ G:

f (x + y) = f (x) + f (y) and f (1G) = 1H.

TESTING HOMOMORPHISM
Input: Function f : G → H, where G and H are groups with same group

operation denoted by +.
Promise: f is a (group) homomorphism or is δ-far from all homomorphisms.
Output: ACCEPT if f is a homomorphism, REJECT otherwise.

Recall that the distance between the two functions implied here is defined by the
fraction of inputs on which their outputs disagree. The testing procedure for the above
problem is described in Algorithm 1.

Algorithm 1: TESTING HOMOMORPHISM

Select x, y ∈ G uniformly at random;
Query f at x, y, x + y;
if f (x + y) = f (x) + f (y) then

ACCEPT;
else

REJECT;
end

It is easy to see that the tester always accepts inputs which are homomorphisms with
probability one. In what follows, we will show a partial proof that the tester will reject
homomorphisms which satisfy the testing promise with probability at least 3δ − 6δ2.
This lower bound is only meaningful for δ ∈ [0, 1/4]. For a stronger lower bound on
the probability of rejection which is valid for all δ, we refer the refer the readers to
Refs. [BLR93; Gol17].

Proposition 4. Given f : G → H is at a distance δ from the set of homomorphisms from G to
H, algorithm 1 rejects it with probability at least 3δ− 6δ2.

Proof. Let h be the homomorphism closest to f . The rejection probability Prx,y∈G[ f (x +
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y) 6= f (x) + f (y)] is lower bounded by

Prx,y∈G[ f (x) 6= h(x) ∧ f (y) = h(y) ∧ f (x + y) = h(x + y)] (2.114)

+Prx,y∈G[ f (x) = h(x) ∧ f (y) 6= h(y) ∧ f (x + y) = h(x + y)] (2.115)

+Prx,y∈G[ f (x) = h(x) ∧ f (y) = h(y) ∧ f (x + y) 6= h(x + y)], (2.116)

since these are disjoint events and the condition f (x + y) 6= f (x) + f (y) implies that
the two functions f and h must disagree on at least one of x, y, x + y (given h(x + y) =
h(x) + h(y)). We used the notations ∧ and ∨ to denote logical AND and logical OR
respectively. Since they can potentially disagree on more than one point, this lower
bound is not tight. Now, we lower bound the first of the three terms whereas the other
two can be bounded analogously.

Prx,y[ f (x) 6= h(x) ∧ f (y) = h(y) ∧ f (x + y) = h(x + y)]
= Prx,y[ f (x) 6= h(x)]− Prx,y[ f (x) 6= h(x) ∧ ( f (y) 6= h(y) ∨ f (x + y) 6= h(x + y))]
≥ Prx,y[ f (x) 6= h(x)]− (Prx,y[ f (x) 6= h(x) ∧ f (y) 6= h(y)]

+ Prx,y[ f (x) 6= h(x) ∧ f (x + y) 6= h(x + y)])

= δ− (δ2 + δ2)

= δ− 2δ2,

where in the second last equality we use the fact that x, y are independently and uni-
formly distributed in G and so are x, x + y. Adding up the contributions from the other
two terms completes the proof.

We briefly mention some other interesting properties of functions which can be
tested efficiently. Let f : {0, 1}` → {0, 1} be a Boolean function. The following proper-
ties of f have efficient testers [FKR+04; PRS02]:

1. Dictatorship: The goal is to detect if f depends only on a single Boolean variable
i.e., f (x) = xi + b for some i ∈ [l] and b ∈ {0, 1}.

2. Junta (of size k): The goal is to detect if f depends on at most k Boolean variables
i.e., f (x) = f ′(xS) for some S ⊂ [`], |S| = k and f ′ : {0, 1}k → {0, 1}.

3. Monomial (of size k): The goal is to detect if f is a conjunction of exactly k Boolean
literals i.e., f (x) = ∧i∈S(xi⊕ bi) for some S ⊂ [`], |S| = k and b1, b2, . . . , b` ∈ {0, 1}.
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2.6.3 Graph testing

In this section, we discuss testing properties of graphs. We call any subset of graphs a
symmetric graph property if it is closed under graph isomorphism (relabelling of vertices)
i.e., if a graph G = (V, E) has the property Π, then any permutation π of vertices V
leading to π(G) also has the property Π. The graph is essentially supplied as an oracle
function to the tester. Graphs can be modelled in multiple ways when it comes to testing
their properties. The two most common models are:

1. Adjacency predicate model: In this model, the tester is given access to a function
g : V × V → {0, 1} such that g(u, v) = 1 if and only if there is an edge between
vertices u and v in the graph G, and g(u, v) = 0 otherwise. In other words, this
model helps query each entry of the adjacency matrix of the graph. Given two
graphs G = (V, E) and G′ = (V, E′) with corresponding oracle functions g and g′,
the relative distance between them is the number of pairs of input (u, v) ∈ V ×V
such that g(u, v) 6= g′(u, v). This is analogous to the notion of distance between
functions discussed in the previous section. This distance can also be interpreted
as the Hamming distance between the adjacency matrices.

2. Incidence function model: In this model, the oracle function corresponding to a
graph G = (V, E) has the structure g : V× [D]→ V ∪ {⊥}, where we assume that
the maximum number of vertices connected to any vertex (degree of the graph) is
D. Given an input (u, i) ∈ V × [D], g(u, i) returns the ith neighbour of the vertex
u. If some vertex u has j < D neighbours, then g(u, j + 1) = g(u, j + 2) = . . . =
g(u, D) =⊥. The notion of distance is similar to the previous model: the distance
is the number of inputs for which the oracle outputs are different.

Some graph properties that can be tested efficiently include:

• k-Colorability - The number of queries required to test k-colorability is poly(k/ε).
The tester has one sided error i.e., it always accepts when the graph is k-colorable
and with high probability rejects the input if it is not. The special case of k = 2
leads to testing if a graph is bipartite. For this case, the running time is O(1/ε2),
whereas for k > 2, the running time scales as epoly(1/ε).

• ρ-Clique - This property tests if a given graph G = (V, E) has a clique of size ρ|V|
for any fixed ρ > 0.

• ρ-Cut - This property tests if a given graph G = (V, E) has an edge cut of size
ρ|V|2 for any fixed ρ > 0.
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Except k-Colorability, the rest of the testers have two-sided error. All of the above are
instances of the General Graph Partition Testing problem. This problem asks whether
there exists a partition such that the number of vertices in each part and the number
of edges between each pair of parts fall between given lower and upper bounds. The
tester for this can be found in Ref. [GGR96]. A characterization of all the natural graph
properties which are testable with one-sided error is presented in Ref. [AS08].
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Chapter 3

Efficient diagnostics for quantum error
correction

This chapter consists of a literal transcription of [IJB+22] for which my con-
tribution was major. Some notation and stylistic changes have been done to
be consistent with the rest of thesis.

Noise is pervasive in quantum processing and must be overcome to achieve the dis-
ruptive capabilities of quantum computing. Fault tolerance (FT) guarantees reliable
logical quantum computation in the presence of noise under prescribed conditions of-
ten oversimplified as achieving a threshold on gate error rates. However, achieving
low logical error rates in practice is challenging, in part because of the large overheads
required in terms of the number of additional qubits and gates. Optimizing quantum
error correction (QEC) strategies for a particular platform requires accurate prediction
of its expected logical performance. For instance, in the presence of biased noise [AP08;
RGB+17; TBF18; GM19; TBF+20; BATB+21], tailored codes have been shown to outper-
form traditional codes that are designed to correct unstructured noise. However, bias
is only one of the exponentially many parameters that describe the noise on n physical
qubits. This chapter addresses the lack of tools for predicting the logical performance
of a fault tolerant architecture based on a description of noise at the physical level.

Related work. The existing framework for choosing a FT scheme is centered around
the threshold theorem [AGP07; CTV17] which provides a threshold on the physical
noise strength below which reliable quantum computation can be guaranteed. How-
ever, directly applying the theorem to realistic noise has several challenges. The FT
threshold is derived under oversimplified conditions that implicitly model a physical
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noise process as an incoherent error model with the same diamond distance. This leads
to loose estimates of the logical performance when the noise has coherence or strong
correlations. Another is that diamond distance, which is usually invoked for assess-
ing error rates in FT proofs, cannot be measured in a scalable way [MC13]. It has been
shown that the resource overheads for a fault tolerant architecture depend critically on
the precise relationship between the architecture and the underlying error model. While
there are several well-studied error metrics, none of them can accurately predict the log-
ical error rate of a QEC [IP18]. In this work we address this crucial deficiency prevalent
in all these metrics.

Our contributions. We present a new figure of merit specifically tailored to predict
the performance of a class of error correcting codes, namely concatenated codes, which
can be measured efficiently using experimental protocols. As opposed to average gate
fidelity and diamond distance, our approach captures the interplay between the phys-
ical noise model and the choice of a fault tolerant architecture. Our method leverages
Randomized Compiling (RC) [WE16] to create an effective Pauli noise on the physi-
cal qubits, and then uses cycle error reconstruction (CER) techniques [EWP+19; FW20;
CDDH+23] to estimate Pauli error probabilities. An overview of these methods can be
found in section 2.4. Using these experimental data, we design a logical estimator that
predicts the total probability of Pauli errors that a code cannot correct. While exactly
computing this quantity is inefficient for a generic code, we introduce an efficient ap-
proximation for concatenated codes. We provide a bound on the efficiency and demon-
strate the accuracy of our method through numerical simulations in several noise sce-
narios of interest. Finally, as an application, we demonstrate how the logical estimator
pinpoints the selection of a suitable error correcting code for differing noise environ-
ments.

3.1 Methods

While the special setting of Pauli errors drastically simplifies the predictability problem,
realistic noise processes are nonetheless poorly described by Pauli error models. To
circumvent this problem, we recall a straightforward application of RC [WE16] to FT
circuits, that allows us to model the effect of complex noise processes by simple Pauli
errors. In other words, RC ensures that there is no effect on the logical error rate from
parameters of the physical channel other than the Pauli error probabilities. The physical
twirling gates required to do RC can be absorbed into the logical gadgets of FT circuits
at no additional cost in overhead.

49



(a)

(b)

(c)

Figure 3.1: Compiling twirling (random physical Pauli) gates into fault tolerant gadgets.
Figure (a) shows the noisy gates in the k−th clock cycle of a fault tolerant quantum
algorithm and is an adaptation of the standard form prescribed in [WE16]. Twirling
gates are inserted in figure (b) to tailor the noise processes to Pauli errors. These gates
are compiled into existing gates by replacing easy gates by their dressed versions in
figure (c).

3.1.1 Quantum error correction with RC

We now show how randomized compiling (RC) can be performed in fault tolerant cir-
cuits. Note that a Pauli error P can be decomposed with reference to a stabilizer code:
P = P SP EP, where SP is an element of the stabilizer group S , P is a logical Pauli
operator in L = N (S)/S , and EP is an element of N (L)/S , usually called a pure er-
ror [LB13; Pou06]. Unlike pure errors, stabilizers and logical operators commute with
QEC routines. A Pauli error P can be compiled into QEC resulting in a new quantum
error correction routine QEC(P) in which the input to the decoder corresponding to a
syndrome outcome s is s⊕ s(P) [DA07; CIP18].

In fault tolerant circuits, each logical gate is sandwiched between QEC routines. Fol-
lowing the prescription in [WE16], we divide logical gates into two sets: S1 and S2,
calling them easy and hard gates respectively. A crucial requirement for S1 and S2 is

G T G† QEC = QEC(T) C (3.1)
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for some easy logical gate C ∈ S1, n−qubit Pauli gates T and all hard gates G. Recall
that QEC(T) refers to the compilation of the Pauli gate T in the QEC routine, discussed
in the background section. The previous requirement follows from

G T G† QEC = G T G† ST ET QEC (3.2)

= G T G† QEC(ET) , (3.3)

where, in eq. 3.2 we have used the decomposition of Pauli gates with reference to a
stabilizer code. Note that the expression G T G†

in eq. 3.3 is guaranteed to be an easy
gate for a choice of easy and hard gate sets in [WE16].

Fig. 3.1(a) shows a canonical presentation of a quantum circuit, where the k-th clock
cycle is composed of an easy gate Ck and a hard gate Gk, sandwiched between QEC
routines. Noise processes affecting easy and hard gates are denoted by E1,k and E2,k re-
spectively. These complex processes can be tailored to Pauli errors by inserting Pauli
gates T1,k, T†

1,k, T2,k, T†
2,k. However, to guarantee that they be applied in a noiseless fash-

ion, we compile them into the existing gates in the fault tolerant circuit. This is achieved
in two steps. First, T†

1,k and T2,k are compiled into QEC following E1,k, resulting in
QEC(T†

1,kT2,k). Second, T†
2,k is propagated across Gk, and compiled with QEC Ck+1T1,k+1,

resulting in a dressed gate CD
k+1 such that QEC(T†

2,k)C
D
k+1 = Gk T†

2,k G†
k QEC Ck+1T1,k+1.

It follows from eq. 3.1 that CD
k+1 is equivalent to quantum error correction followed by

an easy gate.

Fig. 3.1(c) shows the result of compiling all of the twirling gates into the easy gates
and quantum error correction routines. Note that the compiled circuit is logically equiv-
alent to the original circuit in the absence of noise. However, in the presence of noise,
the average output of the circuit is dictated by the performance of QEC(T) averaged
over the different choices of Pauli gates T. This is what we refer to as QEC in the RC set-
ting. In practice, this average performance can be achieved by repeating every iteration
(shot) of the algorithm with a different Pauli operation compiled into the constituent
QEC routines. With RC, the average logical performance of a QEC scheme over several
compilations with random Pauli gates can be well approximated by the performance
of the QEC scheme under an effective Pauli error model. For the purpose of numerical
simulations in this thesis, we have used the performance of the QEC routine under the
twirled noise process, as a proxy to the performance of QEC in the RC setting.
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3.1.2 Logical estimator for concatenated codes

With a noise model described by Pauli errors, we first develop the background needed
to define a logical estimator that can accurately predict the logical error rate. Uncor-
rectable errors cause the quantum error correction scheme to fail. We adopt the notation
pc to denote the total probability of correctable errors:

pc = ∑
E∈EC

χE,E , (3.4)

where EC is the set of correctable errors discussed in section 2.5.2. We also use the
notation pu to denote the total probability of uncorrectable errors: pu = 1− pc. It is easy
to note that pu is an upper bound to the standard infidelity metric which is measured
by randomized benchmarking, i.e., r = 1− χ0,0:

pu = r− ∑
E∈EC
E 6=I

χE,E . (3.5)

In particular, for Pauli noise processes the following equations show that pu is exactly
the average logical infidelity r. This follows from the fact that the off-diagonal terms
in the χ-matrix representation of Pauli noise processes i.e., χE,E′ = 0 in Eq.(3.8) for all
E 6= E′.

r = 1− ∑
E,E′∈EC

s(E)=s(E′) , E=E′

χE,E′ (3.6)

= r− ∑
E,E′∈EC , E,E′ 6=I

s(E)=s(E′) , E=E′

χE,E′ (3.7)

= pu − ∑
E,E′∈EC , E 6=E′

s(E)=s(E′) , E=E′

χE,E′ . (3.8)

A detailed derivation of eq. 3.6 is presented in section A.1 of the appendix. The ex-
pressions in eqs. 3.7 and 3.8 point out a conceptual difference between infidelity and
the uncorrectable error probability. While on the one hand, r accounts for the effect of
only the trivial correctable error I, pu on the other hand captures many more degrees of
freedom – including all other correctable errors in EC. Hence, we expect r to be a worse
predictor of the logical infidelity than pu.
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It is generally infeasible to enumerate all theO(4n−k) correctable errors for an [[n, k]]
stabilizer code; to compute pu exactly. Our logical estimator is the result of an efficient
heuristic to approximate pu, particularly for concatenated code families. In particular,
we use a coarse grained estimate of the probability of a syndrome outcome – a joint
probability distribution overO(n`) syndrome bits – calculated as a product of marginal
probability distributions over the n code blocks at level (` − 1). This procedure is re-
cursed through the ` levels of the concatenated code. Furthermore, its accuracy is prov-
ably high for uncorrelated Pauli error models.

While for concatenated codes, the number of physical qubits itself grows exponen-
tially in the size of a code block n, we can exploit its encoding structure to simplify the
complexity of computing pu. However, it turns out that despite this simplification we
cannot exactly compute pu efficiently, i.e., in time that scales polynomially in the num-
ber of physical qubits. This leads us to resort to a heuristic method for a reasonable
approximation of pu for concatenated codes. Here we present a method to measure
and compute an approximation, denoted by p̃u(C?` ), to the probability of uncorrectable
errors for a concatenated code C?` : pu(C?` ). For ease of notation we also define the quan-
tities pc(C?` ) = 1− pu(C?` ) and p̃c(C?` ) = 1− p̃u(C?` ).

An error E` for the level ` concatenated code C?` can be expressed as a tensor product
of Pauli errors E`−1,i for the level `− 1 codes C?`−1,i:

E` =
n⊗

i=1

E`−1,i . (3.9)

Let us define E` to be a correctable pattern if the above tensor product corresponds to
an encoded version of a correctable error for the code block C`. For example, E2 =

X⊗ I
⊗6 is a correctable pattern for the ` = 2 concatenated Steane code since X⊗ I⊗6 is

a correctable error for the Steane code block.

A correctable error E` for the concatenated code C?` is either (i) corrected within the
lower level code-blocks C?`−1,1, . . . , C?`−1,n, or (ii) has a non-trivial correction applied by
the decoder of the level−` code-block C`,1. Let us denote the contribution to pc(C?` ) =
1− pu(C?` ) from case (i) by Λ, while that from case (ii) by Γ; so that

pc(C?` ) = Λ(C?` ) + Γ(C?` ) . (3.10)

Case (i) implies that each of the errors E`−1,i are correctable errors for the codes C?`−1,i.
Therefore, the total probability of correctable errors in case (i) admits a recursive defini-
tion:

Λ(C?` ) = pc(C?`−1,1)pc(C?`−1,2) . . . pc(C?`−1,n) . (3.11)
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Recall that case (ii) is the total probability of non-trivial correctable patterns for C?` ,
i.e.,

Γ(C?` ) = ∑
E∈ EC\I

Pr(E`) , (3.12)

= ∑
E∈ EC\I

Pr(E`−1,1 ⊗ E`−1,2 ⊗ . . .⊗ E`−1,n) (3.13)

where we have used the fact that each correctable error corresponds to a pattern accord-
ing to eq. 3.9. A logical error E`−1,i occurs on the code-block C`−1,i whenever the decoder
fails in correcting the physical errors in such a way that the residual effect of the physi-
cal noise process affecting the qubits of C?`−1,i and the recovery operation applied by the
decoder results in E`−1,i. Let us denote the probability of the decoder for C?`−1,i to leave
a residual E`−1,i, conditioned on the syndrome measurements by PrD(E`−1,i | s(C?`−1,i)).
We can rewrite eq. 3.13 as

Γ(C?` ) = ∑
E∈ EC\I

∑
s(C?` )

Pr(s(C`)s(C?`−1,1) . . . s(C?`−1,n))
n

∏
j=1

PrD(E`−1,j|s(C?`−1,j)) , (3.14)

= ∑
E∈ EC\I

∑
s(C?` )

Pr(s(C`)|s(C?`−1,1) . . . s(C?`−1,n))

n

∏
j=1

PrD(E`−1,j|s(C?`−1,j))Pr(s(C?`−1,j)) , (3.15)

where Pr(s(C`)|s(C?`−1,1) . . . s(C?`−1,n)), is the conditional probability of measuring the
syndrome outcomes s(C`) on the code-block C` when the outcomes on the lower level
code blocks C?`−1,1, . . . , C?`−1,n are s(C?`−1,1), . . . , s(C?`−1,n), respectively. Equivalently,

Pr(s(C`)|s(C?`−1,1) . . . s(C?`−1,n)) = Pr(s(C`)|E
s(C?`−1,1)

`−1,1 . . . E s(C?`−1,n)

`−1,n )) . (3.16)

A major hurdle in computing Γ using eq. 3.15 is the sum over an exponentially large
set of syndrome outcomes for the concatenated code. To circumvent this difficultly, we
will apply an efficient heuristic to approximate the probability in eq. 3.16. In essence,

we will replace the conditional channel E s(C?`−1,i)

`−1,i by the average logical channel Ê`−1,i,
which is defined as

Ê`−1,i = ∑
s(C`−1,i)

Pr(s(C`−1,i))E s(C`−1,i)
`−1,i

[
Ê`−2,1 ⊗ . . .⊗ Ê`−2,n

]
. (3.17)
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Note that Ê0,j is the physical noise model while Ê1,j is the exact average logical channel
E1,j. However, in general for ` ≥ 2, Ê` is a coarse-grained approximation for the exact
average logical channel E `. In other words, Ê`−1,i is computed using the knowledge
of the syndrome bits measured only at level ` − 1, while assuming the noise model:
Ê`−2,1 ⊗ . . .⊗ Ê`−2,n, that accounts for the average effect of all syndrome measurements
at lower levels.

Replacing the conditional channel E s(C?`−1,i)

`−1,i in eq. 3.15 by the average channel Ê`−1,i

defined in eq. 3.17 allows us to approximate Γ by Γ̃ defined as follows:

Γ̃(C?` ) = ∑
E∈ EC\I

∑
s(C`)

∑
s(C?`−1,1)

. . . ∑
s(C?`−1,n)

Pr(s(C`)|Ê`−1,1 . . . Ê`−1,n)

n

∏
j=1

PrD(E`−1,j | Ê`−1,j)Pr(s(C?`−1,j)) , (3.18)

= ∑
E∈ EC\I

n

∏
j=1

PrD(E`−1,j | Ê`−1,j)) . (3.19)

Denote R(s(C`−1,i), P) to be the set of n−qubit errors on which a lookup table de-
coder for the code block C`−1,i leaves a residual logical error P when the error syndrome
s(C`−1,i) is encountered. Now PrD(E`−1,i | Ê`−1,j)) can be computed recursively:

PrD(E`−1,i | Ê`−1,i)) = ∑
Q∈R(s(C`−1,i),E`−1,i)

n

∏
j=1

PrD(Q`−2,j | Ê`−2,j)) . (3.20)

Note that the probability of leaving a residual error at level 0 is simply specified by
the physical noise model, i.e., PrD(P|Ê0,j) is the probability of the Pauli error P on the
physical qubit j. This concludes the method to efficiently compute Γ̃, an approximation
to Γ.

Recall that the total probability of correctable errors is given by eq. 3.10. An approx-
imation to pc(C?` ), is given by

p̃c(C?` ) = Λ̃(C?` ) + Γ̃(C?` ) , (3.21)

where Γ̃ defined in eq. 3.19 while Λ̃ is defined in a similar fashion to eq. 3.11:

Λ̃(C?` ) = p̃c(C?`−1,1) p̃c(C?`−1,2) . . . p̃c(C?`−1,n) . (3.22)
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Using the approximation in eq. 3.21, we can efficiently estimate the logical estimator
p̃u for concatenated codes. We now summarize the procedure to calculate the logical
estimator.

Protocol 2 Logical estimator for concatenated codes
Input: A level `-concatenated code C?` with constituent codes Ci and corresponding cor-
rectable error sets ECi for each level 1 ≤ i ≤ l; Probabilities of Pauli errors correspond-
ing to the twirl of the noise E0,j acting on each code block 1 ≤ j ≤ N/nC1 i.e., diagonal
entries of χ(E0,j) obtained from Cycle Error Reconstruction experiments, where nCi de-
notes the number of physical qubits used to encode one logical qubit using the code Ci
and N = Π`

k=1nCk is the total number of physical qubits.
Output: The logical estimator - p̃u(C?` ).
Procedure:
// Êi,j - Average logical channel at level i, code-block j
// Iterate over all the levels of the code.

for i← 1 to ` do
// Iterate over all the code blocks in each level.

for j← 1 to N/(Πi
k=1nCk) do

if i == 1 then
// For the first level, use Cycle Error Reconstruction data.

χ(Ê)← χ(E0,j)

else
// Use previous level’s average logical channels.

χ(Ê)← ⊗nCi
ind=1 χ(Êi−1,(j−1)∗nCi+ind)

end
// Calculate the average logical channel for each code block.

for m← 0 to 3 do
χm,m(Êi,j)← ∑ E,E′∈ECi

s(E)=s(E′) , E=E′
φ(E, m) φ?(E′, m) χEPm,PmE′(Ê),

where Rs(E) is the recovery operator for the syndrome s(E); Rs(E) |E Pm| =
φ(E, m) S |Pm| for any Pauli error E and some stabilizer S; |P| denotes the
bare Pauli without any associated global phase; P is the logical component.

end
end

end
p̃u(C?` )← 1− χ0,0(Ê`,1)
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For i.i.d Pauli error models with sufficiently small single-qubit infidelity r0, the qual-
ity of approximation is: |r` − p̃u| ≤ n`+1

C r2+b(dC+1)/2c
0 . Here, dC and nC describe the dis-

tance and the size of a code-block of a level−` concatenated code. For instance, using
an i.i.d depolarizing error model with r0 = 10−3 and the level-2 concatenated Steane
code, the above expression yields |r2 − p̃u| ≤ 5× 10−10. This is validated by numerics:
p̃u = 4.24× 10−9 and r2 = 4.20× 10−9. A detailed derivation of quality of approxima-
tion is provided in section A.2 of the appendix.

Notably, the time complexity of computing p̃u for the concatenated code: O(4nC+` n`),
scales polynomially in the total number of physical qubits n`, whereas an exact compu-
tation of pu would scale doubly exponentially in `. We will now prove this statement.

Recall that p̃u = 1− p̃c(C?` ), where p̃c(C?` ) is an approximation to the total proba-
bility of correctable errors. Note that p̃c(C?` ) = Λ̃ + Γ̃ where both Λ̃ and Γ̃ are defined
recursively. So, if computing p̃c(C?` ) takes time τ` and computing Γ̃ takes time κ`, we
have

τ` = n τ`−1 + κ` . (3.23)

The recurrence relation in eq. 3.19 for computing Γ̃(C?` ) implies

κ` = 4n κ`−1 +O(4n) , (3.24)

= O(4n+` n`) . (3.25)

Using the above solution in eq. 3.23, we find that

τ` = O(4n+` n`) . (3.26)

The last equation establishes that computing logical estimator is linear in the total
number of qubits i.e, n`.

3.2 Results and discussion

We provide numerical evidence to highlight the improvement offered by our methods
developed for optimizing FT schemes. We begin with the task of accurately predict-
ing the performance of concatenated Steane codes. We perform numerical simulations
of QEC in the RC and non-RC settings under a large ensemble of random CPTP maps
applied to the physical qubits. Following Ref. [IP18], we generate a single qubit CPTP
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Figure 3.2: The figure compares the predictive power of the (exact) logical estimator
(red) against two standard error metrics (gray): the average gate infidelity (a) and the
diamond distance (b), under a large ensemble of CPTP maps. Each point p = (xp, yp)
corresponds to a noise process; xp is its physical error metric and yp, its logical error
rate. The dispersion quantified as ∆ in the insets indicates the predictive power of the
physical metric. While the logical error rates can vary over several orders of magnitude
for standard error metrics, logical estimator is strongly correlated with the logical error
rate.



map E from its Stinespring dilation: a random unitary matrix U of size (8× 8), given by
U = e−iHt for a complex Hermitian matrix H whose entries are sampled from a Gaus-
sian distribution of unit variance, centred at 0. We vary the time parameter t between
0.001 and 0.1 to vary the noise strength.

Figure 3.2 shows that logical error rates can vary wildly across physical noise pro-
cesses with fixed infidelity and diamond distance in agreement with [IP18]. The varia-
tion, captured by the amount of dispersion in the scatter plots, is quantified using the
ratio of the maximum and the minimum logical error rates across channels of similar
physical error rate, denoted by ∆. In other words, we partition the range of physical
error rates into bins bi and use ∆(bi) to quantify the amount of dispersion: ∆(bi) =
(1/|bi|) (maxp∈bi yp)/(minp∈bi yp), where |bi| is the number of channels in the bin bi.
The large fluctuations in the logical error rates can be attributed to two extreme features
of the error-metrics. While infidelity controls only one parameter out of the many that
specify a noise process, diamond distance suffers from being sensitive to the details of a
noise process that are irrelevant to the logical error rate. In addition, standard error met-
rics can only reveal intrinsic properties of the underlying noise process that are agnostic
to the choice of an error correcting code.

Logical estimator with RC, in contrast, is highly correlated with the logical error
rate. This improvement can be attributed to two features. First, RC provides a drastic
reduction from O(12n) parameters that specify an n−qubit Markovian noise process
to O(4n) Pauli error probabilities. Second, unlike standard error metrics, p̃u carefully
accounts for Pauli error probabilities that contribute to the logical error rate. Numerical
evidence for drastic gains in predictability using the logical estimator with RC for the
class of coherent errors is presented in section A.3 of the appendix.

The special setting of i.i.d noise hides the drastic advantages provided by p̃u in
predicting logical infidelity because the dominant contribution to p̃u comes from χ0,0,
which is also well captured by r. However, for correlated error-models, given only χ0,0,
the uncertainty on the logical error rate ranges between extremities 0 and 1. While r
is completely insensitive to either of these scenarios, p̃u in contrast helps distinguish
between them, thereby providing a far more accurate estimate of the logical error rate.

We support the above argument by numerical studies of correlated Pauli error mod-
els generated from a convex combination of an i.i.d process of infidelity r0 and multi-
qubit interactions. While the i.i.d component Eiid is specified by single qubit error prob-
abilities, multi-qubit interactions are specified by an arbitrary subset S, so, Ecor(ρ) =
∑P∈S χP,PP ρ P, where χP,P is sampled from the normal distribution with mean and
variance 4nr0. The combined Pauli error model is therefore given by E(ρ) = qEiid(ρ) +
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(1− q)Ecor(ρ), where 0 ≤ q ≤ 1. Explicitly setting χ0,0 followed by appropriate nor-
malization, ensures that the infidelity of the above noise model is r0. Figure 3.3 high-
lights the importance of the p̃u over r for predicting the performance of the concatenated
Steane code under correlated Pauli noise processes.
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Figure 3.3: Predictability of logical infidelity for level-2 concatenated Steane code. The
figure compares the predictive powers of logical estimator (red) against two standard
error metrics (gray): the average gate infidelity (a) and the diamond distance (b), under
correlated Pauli maps. Each point p = (xp, yp) corresponds to a noise process; xp is its
physical error metric and yp, its logical error rate. The dispersion quantified as ∆ in the
insets indicates the predictive power of the physical metric. While the logical error rates
can vary over several orders of magnitude for standard error metrics, logical estimator
is strongly correlated with the logical error rate.
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Figure 3.4: Accuracy of the logical estimator based on limited CER data, using a level-
2 concatenated Steane code for an ensemble of about 15000 random correlated Pauli
channels. The accuracy, quantified by ∆, improves sharply with the number of Pauli
error rates (K) extracted using CER. We observe that for K = 200, which is about 1.2%
of all Pauli error rates on the Steane code block, the accuracy closely matches the logical
estimator computed using all CER data, i.e., K = 47.

3.2.1 Limited cycle error reconstruction data

Even in the absence of correlations across the n−qubit code blocks of a concatenated
code, we require O(4n) Pauli error rates from CER to compute p̃u. Extracting this expo-
nential sized CER data set is a challenge for experimentalists. Refs. [HYF21; CDDH+23]
describe how to extract the leading K Pauli error probabilities in a noise process, where
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K � 4n. We want to combine a handful of leading Pauli error rates extracted by CER
with a simple method to extrapolate the remaining ones. For a Pauli error Q that is not
given in the CER dataset we set

Pr(Q) = (1− r0)
n−wt(Q) (r0/3)wt(Q) , (3.27)

where wt(Q) is the Hamming weight of Q, and r0 is derived from the infidelity of the
noise process: r = 1− (1− r0)

n. We construct an adversarial error model where the
above extrapolation is unlikely to perform well by setting some multi-qubit error prob-
abilities that violate eq. (3.27). Furthermore, when errors are sampled uniformly from
the set of correctable and uncorrectable errors, we observe maximum fluctuations in the
logical error rate. However, Fig. 3.4 presents strong numerical evidence indicating that
the simple extrapolation works well in practice even for the adversarial example.

3.2.2 Code selection

Selecting a quantum error correcting code that has the smallest logical error rate un-
der an existing physical noise process is a crucial step in optimizing resources for fault
tolerance. To demonstrate the efficacy of the logical estimator for this problem, we con-
sider an example of an error model and two different error-correcting codes: (i) concate-
nated Steane code and (ii) concatenated version of a [[7, 1, 3]] code used in Ref. [RGB+17]
that we refer to as a Cyclic code. The error model is obtained from a Pauli twirl on
the i.i.d application of the CPTP map E : ρ 7→ pIρ + ∑Q∈{X,Y,Z} pQe−iθQρeiθQ, where
pX = rX(1− rZ), pZ = rZ(1− rX), pY = rXrZ, pI = 1− pX − pY − pZ and set a bias
specified by η = rZ/rX. Based on Ref. [RGB+17], we expect the Steane code to out-
perform the Cyclic code in one noise regime, and the converse in a different regime.
Our tool is successful if it produces a lower value of p̃u for the code with lower logical
infidelity, for any noise rate. Lastly, to compute the logical estimator as well as the log-
ical error rate estimates, we use a bias-adapted minimum-weight decoder that assigns
weights η, η, and 1 to each Pauli error of type X, Y, and Z, respectively.

Figure 3.5 shows that the logical estimator correctly identifies the optimal code for all
values of the physical error rate (bias). It also replicates the functional form of the logical
error rate, showing that the performance gain from the Cyclic code over the Steane code
increases with the bias.
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Figure 3.5: Using the logical estimator to select an optimal code. The above figure
demonstrates the use of our tool in selecting an optimal error correcting code under
a biased Pauli error model. The choices of codes include level−3 concatenated versions
of the Steane code and the cyclic code. While the solid lines depict the values of the
logical estimator, the dashed lines correspond to logical error rates estimated using nu-
merical simulations. We observe that p̃u accurately selects the optimal code for all noise
rates.

3.3 Conclusion

We have shown how experimental data from CER, even limited data, can be used to
successfully predict the logical performance of FT architectures based on concatenated
codes. It can be used to precisely and efficiently estimate the resource overhead required
to achieve a target logical error rate [JRO+17; RGB+17; NDD+19] for implementing quan-
tum algorithms. Along with informing the choice of an optimal code for an underlying
physical noise process, the logical estimator provides directives for other components
in a FT scheme, such as a decoder. Different lookup table decoders can be compared
using our logical estimator, similar to the work in Refs. [CR18a; SJG20; DPM+20].
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Our scheme relies on RC to yield a Pauli error model, and although in theory this
requires twirling with the full Pauli group, it has been observed that a handful of ran-
dom compilations of the original circuit are sufficient in practice [HNM+21; SLS+21]. A
natural question that follows is whether RC also mitigates the impact of physical noise
on the logical qubit. There is no persistent trend across the general class of Markovian
noise processes, and in some cases, RC degrades the performance of the code. Devel-
oping noise tailoring techniques that guarantee an improvement to the performance as
well as predictability is an interesting problem for future research.

Although the methods and techniques presented in the chapter address generic
noise processes, there are a number of roadblocks in broadening the scope of this study
beyond concatenated codes, where the complexity of computing the logical estimator
grows exponentially with the size of the code. We have proposed an application for
surface codes in section A.4 of the appendix. While these results are preliminary, they
demonstrate that our method may find broader application beyond concatenated codes.
Also, further research is needed to extend these ideas to the context of multiple logical
qubits.
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Chapter 4

Improved quantum error correction with
randomized compiling

This chapter consists of a literal transcription of [JIB+23] for which my con-
tribution was major. Some notation and stylistic changes have been done to
be consistent with the rest of thesis.

Noise is pervasive in present-day quantum computation. The theory of fault toler-
ance was developed to guarantee reliable computations in the presence of noise. How-
ever, fault tolerant constructions demand a large overhead in terms of additional re-
sources required to encode a logical computation in a way that is resilient to errors.
Achieving the target logical error rates as required by various applications with the
limited amount of resources in terms of the number of physical qubits is a challenging
task. Along with designing better error correcting codes, decoders and high quality
hardware components of a quantum computer, there are other ways of reducing logical
error rates. Active noise tailoring by randomized compiling (RC) [WE16] is a potential
candidate for two key reasons. First, RC significantly simplifies the form of the noise on
the encoded quantum information. Second, RC can be used to transform an unknown
error model into one that is adapted to the error correction capabilities of a particular
code.

Randomized compiling tools were leveraged to accurately predict the performance
of quantum error correction schemes in Ref. [IJB+22]. Although simplifying the form of
the noise makes the performance more predictable, it was observed that RC can some-
times degrade the performance of an error correcting code. We can understand this
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effect by using the χ-representation [WBC15] of a physical noise process. In this repre-
sentation, the action of noise on a quantum state ρ is given by: E(ρ) = ∑i,j χi,jPiρPj
where Pi denote Pauli matrices in the n−qubit Pauli group Pn without phases, i.e.,
Pi ∈ Pn/{±1,±i}. Noise tailoring methods such as RC can transform the elements
of the χ-matrix, for example by removing off-diagonal elements χi,j ∀ i 6= j. This math-
ematical transformation is commonly referred to as twirling [BDS+96; BBP+96; CB19].
If one were to remove the contribution of χi,j corresponding to Pauli errors that are cor-
rectable by the decoder, this could have a negative impact of the code’s performance.
In general, noise tailoring methods are oblivious to the details of what error terms are
relevant for quantum error correction.

Related work. The impact of twirling the noise on the performance of error correction
schemes has been explored in the literature under various settings. The performance
of surface codes under coherent and incoherent error models have been compared in
Ref. [BEK+18], and using numerical studies it was noted that while the threshold is sim-
ilar in both cases, the sub-threshold performance of the twirled channel is significantly
better than the original coherent error model. In another setting, analytical calculations
of the logical error rate of repetition codes under rotation errors reveal that coherent er-
rors can accumulate faster, leading to worse logical error rates than their corresponding
Pauli approximations [GD17]. The necessity of active coherence-suppression methods
for codes with large distances was also noted, but their impact on the code’s perfor-
mance was not explored. For the Toric code under coherent error models, a laborious
analysis has shown that the effective logical channel approaches an incoherent channel
provided the noise decreases with increasing code size [IP20]. However, in the sce-
nario where the error rate remains constant independent of the code size, there are sev-
eral challenges to arriving at a similar conclusion. A recent study computed thresholds
for the surface code under coherent rotations by mapping the problem first to a (com-
plex) Ising model, and then to a corresponding scattering network [VBB22]. The error
measure they used for maximum likelihood decoding measures how close the logical
channel is to a Pauli channel (regardless of the decoder used). They discovered that
for rotation angles below the threshold, the logical channel approaches a Pauli channel
at a rate that scales exponentially with the code distance. In Ref. [GSL+16], the poor
predictability of the logical error rate and the code’s pseudo threshold under coher-
ent errors provided by their twirled counterparts was identified, reinforcing the need
for active noise tailoring. The impact of twirling the noise for complex error models,
such as combinations of stochastic errors and rotations around an arbitrary non-Pauli
axis, is unknown. The scaling of the potential gains from twirling with increased code-
concatenation levels remains unexplored.
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Our contributions. In this chapter, we analyze the impact of RC on the performance
of quantum error correction. In particular, we show that RC improves the performance
of a concatenated Steane code under a coherent noise model (specifically, a tensor prod-
uct of arbitrary identical unitary errors). This positive result demonstrates that RC tools
can play a key role in achieving fault tolerance. We present a detailed study of the per-
formance gains with respect to changes in the axis of rotation and the number of levels
of concatenation. We identify a special axis of rotation for a given concatenation level
where maximum gains from RC are achieved. We note that this axis can be different
from the axes of rotation for which the best pseudo-threshold for the code is achieved.
It has been observed, in previous studies, that randomized compiling can also degrade
logical performance [BWG+18]. Our study shows that a wide class of physically moti-
vated error models do not exhibit such behaviour. However, we identify some complex
noise models where such degradation can occur and provide numerical results for the
same.

The chapter is structured as follows. Section 4.1 discusses the methods used to study
the impact of randomized compiling on the logical performance. In section 4.2, we
present analytical studies for gains offered by randomized compiling using realistic er-
ror models. Finally, in section 4.3 we provide concluding remarks and describe some
interesting open problems.

4.1 Methods

The goal of this chapter is twofold. First, we want to identify important scenarios for
physical errors wherein RC can be leveraged to improve the performance of quantum
error correcting codes. Second, identify settings under which such performance gains
cannot be guaranteed. For the first goal, we study the performance of concatenated
Steane code under realistic error models. We start off by simple rotations about Z−axis
and progressively move to arbitrary rotations followed by a combination of coherent
and stochastic error models. For the second goal, we generate numerical results for
a large ensemble of noise processes belonging to more complex noise models which
involve random rotations on different qubits and arbitrary CPTP maps. All the per-
formance metrics in this chapter are derived in the memory model and assume perfect
syndrome extraction. Simulations with gate dependent errors can be pursued in the
future.

For both the goals, it is crucial to understand how RC can be applied alongside
quantum error correction in practice. We follow the methods of Ref. [IJB+22]. The main
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idea can be summarized as follows. Recall that noise tailoring by randomized compiling
is achieved by inserting random Pauli gates in a circuit such that its net effect does not
change the logical output of the circuit. Consequently, the average output distribution
of the circuit over all possible Pauli random gates can be understood by studying the
response of the original circuit against Pauli noise on the individual components. In the
same spirit, we insert random Pauli gates around all the individual components of a
quantum error correction circuit. There is no need to account for sources of noise in the
extra Pauli random gates because they can be absorbed into the original elements of the
quantum error correcting circuit. In practice, only a handful compilations are sufficient
to achieve the twirling effect [HNM+21]. We assume an ideal application of RC in this
chapter for simplicity. The details of this procedure are described in section 3.1.1.

We now have two variations of the average fidelity. First, the standard notion –
average fidelity over all syndrome outcomes, r(E1), defined in Eq. (2.111). Second, the
average fidelity over syndrome outcomes as well as logically equivalent compilations
of the quantum error correction circuit, which we will denote rrc. Note that the number
of random compilations for a circuit with n elements grows as O(4n). In the ideal case,
where we have considered all of these compilations in rrc(E1), it reduces to r(ET

1 ).

While Eq. (2.111) addresses the logical channel of a block code, we can easily extend
these definitions for a concatenated code assuming a hard decoder [CWB+17; GSL+16].
In this case, the logical channel at level−` can be recursively defined in as a function
whose input physical channels are the logical channels at level−(`− 1). We will use the
notation r(E `) and r(ET

` ) to denote the error rates corresponding to logical channels of a
level−` concatenated code without RC and with RC, respectively. Their ratio, denoted
by δ`, where

δ` =
r(E `)

r(ET
`)

, (4.1)

is an indicator of the performance gain due to RC, which we will estimate for various
error models. Note that δ` > 1 indicates a performance gain whereas δ` < 1 denotes a
performance loss.

4.2 Results and discussion

This section is devoted to case studies of performance gains from RC for the concate-
nated Steane code, under various interesting classes of error models, and inferences we
can draw from these studies. Markovian errors can be broadly classified into unital
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and non-unital maps. Since non-unital components of a noise map do not impact the
error rate significantly [Wal15; GD17], we restrict our attention to unital maps in this
chapter. In particular, we choose coherent rotations which form an important class of
unital maps. In practice, these typically arise from imperfect pulses used to implement
quantum gates in the hardware. Interestingly, these are also the class of errors on which
randomized compiling has the maximum effect of turning them into purely incoherent
noise.

4.2.1 Rotation about Z−axis

While we ideally want to study the impact of RC on the performance of a quantum
error correcting code under general coherent errors, let us first start with a simple yet
interesting model – rotations about the Z−axis. Although the RC process tailors the un-
derlying physical noise, irrespective of the choice of the code, through this example we
show that in fact the gains produced from RC can be arbitrarily increased by choosing
codes of increasing distances.

Recall that the rotation about Z−axis is specified by ρ→ RZ(ω)ρRZ(−ω) where

RZ(ω) = cos(ω/2) I + i sin(ω/2) Z . (4.2)

Applying the rotation independently across all n = 7 the physical qubits of the Steane
code, is specified by the map

E(ρ̄) = R⊗n
Z (ω) ρ̄ R⊗n

Z (−ω). (4.3)

The performance of the Steane code under the above error model, can be inferred from
Eq. (2.111), where the correctable errors EC can be defined with respect to the minimum
weight decoder. Explicitly enumerating all correctable errors, we find that there are 22
correctable errors of weight at most one, and 42 two-qubit ones. Since we are confined to
rotations about the Z−axes, we can limit ourselves to the correctable errors of Z−type.
Reserving the details of our derivation to Appendix B.1, we find

r(E1) ≈ 63 (ω/2)4 − 476 (ω/2)6 +O(ω8) . (4.4)

In comparison, the logical infidelity for quantum error correction with randomized
compiling is

r(ET
1) ≈ 21 (ω/2)4 − 112 (ω/2)6 +O(ω8) . (4.5)
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Finally, the performance gain from RC quantified using the metric δ1 defined in eq. 4.1
can now be estimated as

δ1 =
r(E1)

r(ET
1)
≈ 3− 5

3
ω2 +O(ω4) . (4.6)

We now show that the above modest performance gains can be made arbitrarily
large by concatenating the Steane code with itself. It is possible to extend the analysis
above via recursion to approximate the effective logical channel for a level ` concate-
nated Steane code for ` > 1. The details of this procedure can be found in Appendix B.2.
The approximate logical channel allows us to estimate the performance of level ` con-
catenated Steane code and study the impact of randomized compiling on it. To under-
stand the impact of RC with the number of levels, we can do a leading order analysis of
the recursive relations used to construct the average logical channel, described in Ap-
pendix B.2. We find that for small rotation angle ω, the average infidelity of the logical
channel scales as

r(E `) ≈ 632`−1(ω/2)2`+1
,

r(ET
`) ≈ 212`−1(ω/2)2`+1

. (4.7)

Subsequently, the scaling of gain δ` with the levels of concatenation is given by

δ` ≈ 32`−1 − (5× 2l−1 × 32l−3)ω2 + O(ω4) . (4.8)

Figure 4.1 corroborates this scaling law for the exact value of the logical error rates of
the concatenated Steane code, in other words, showing that log(log(δ`))) is approxi-
mately a linear function of `. Note that the above analysis is accurate for small rotation
angles. Varying the rotation angles leads us to another important discovery. Figure 4.2
shows the gains from randomized compiling for a range of rotation angles for levels
1 ≤ ` ≤ 5. The gains from RC grow significantly with increase in number of levels of
the code. The figure suggests the presence of a threshold rotation angle ω? below which
arbitrary gains from RC can be achieved by increasing the size of the code (levels of
concatenation). On the contrary, for rotations ω > ω?, the trend reverses.

We now turn to more general noise models, where we will find that the presence of
a threshold in the case of rotations about the Z−axis, extends to the general case.

4.2.2 Rotation about an arbitrary axis

While the above analysis considered coherent error models described by rotations about
the Z−axis, it is straightforward to apply these ideas to rotations about any of the Pauli
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Figure 4.1: The above figure shows that the gain at level ` , δ`, scales doubly exponen-
tially with `. The rotation angle used here is ω = π/20.

axes. We now investigate average gains due to RC for a rotation about an arbitrary axis.

We consider a general error model where the physical qubits of a code undergo
rotations about an arbitrary axes of the Bloch sphere, described by the unitary matrix
U, i.e., E(ρ̄) = U⊗nρ̄(U†)⊗n. The following parameterization for U [BRS+09] is useful
for our analysis:(

cos(ω/2) + i sin(ω/2) cos(θ) ie−iφ sin(ω/2) sin(θ)
ie−iφ sin(ω/2) sin(θ) cos(ω/2)− i sin(ω/2)

)
.

where 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π define the axis (in polar angles) about which each
qubit is rotated, and ω gives the magnitude of the rotation. For example, θ = φ = 0 can
be identified with rotations about the Z−axis. The performance gain from RC can be
defined following Eq. 4.6, as a function of the parameters δ(θ, φ, ω). The average gain
for an unknown axis is computed as

δ`(ω) =
1

2π

∫ 2π

0
dφ
∫ π

0
sin(θ) dθ δ`(θ, φ, ω) , (4.9)

for ` = 1. Likewise, for concatenated codes, δ` denotes the average gain in performance
for level `. This is similar to the conclusion drawn for the case of rotations about the
Z−axis. First of all we see that for all coherent errors RC improves the performance
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Figure 4.2: Gains in logical performance, δ`, of a level ` concatenated Steane code for
rotations by angle ω about the Z−axis. The common crossover point lies at ω? ≈ 0.51,
which corresponds to a rotation angle of about 15◦, below which gains from RC can be
amplified by increasing the number of levels of concatenation.

of the Steane code. Furthermore, performance gains are largest for coherent errors that
correspond to rotations about the X, Y or Z axes.

Using the general techniques developed in the appendix to approximate the effec-
tive logical channel of a level−` concatenated code, we can estimate the gains δ` in
average performance due to RC over the various rotation axes. Similar to the case of
Z−rotations, Fig. 4.3 suggests the presence of a threshold ω? wherein for rotation an-
gles ω ≤ ω? the gains can be arbitrarily increased by choosing codes of larger distance,
whereas the trend reverses for ω > ω?.

Note that threshold angle ω? for rotations about an unknown axis is higher the
threshold for rotations about the Z−axes, i.e., ω? > ω?. This can be explained as fol-
lows. In the case of a generic non-Pauli axis, the twirled noise model, i.e., is in the pres-
ence of RC, is composed of a probabilistic mixture of X, Y and Z type errors. Whereas,
in the case of a fixed Pauli axis, we only have errors of one type (either X, Y or Z). For a
fixed error budget, specified by fidelity, the case of a non-Pauli axis results in the error
strength spread over a larger number of correctable errors than the case of a fixed Pauli
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Figure 4.3: The average gain in performance from RC, using the Haar average over all
axes of rotation, for the level ` concatenated Steane code. The average gains are larger
for small magnitudes of rotation. We observe that the gains increase significantly with
the number of levels for ω ≤ ω? ≈ 0.65, which corresponds to a rotation angle of about
19◦.

axis which would include relatively higher weight Pauli errors of one type. Hence, the
Steane code has better error correction capability. Figure 4.4 provides evidence to our
argument by showing that the threshold angle for performance gains from RC under
rotations about various axes, is higher for non-Pauli axes compares to the Pauli ones.
As a consequence, we also note that for rotation angles ω? < ω < ω?, the largest gains
from RC are achieved for rotations axes that lie between the X, Y and Z axes as opposed
to the individual Pauli axes.

4.2.3 Composition of coherent and stochastic map

So far, we have shown that RC always improves the performance of quantum error
correcting codes under coherent errors. Although theoretically we understand that RC
only impacts the coherent components, experimental characterization work in the past
[CDDH+23; HNM+21] has revealed that noise profiles in quantum devices typically
comprise decoherent and coherent components. In what follows, we show that the gains
are persistent even in cases where the noise comprises both coherent and decoherent
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Figure 4.4: The threshold angle ω? for which δ2 < δ1 for rotations about
an axis parameterized by θ, φ. Each point on the sphere has coordinates
{sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)} and the color denotes the threshold value of an-
gle ω for which the above condition holds. It shows that the cardinal axes do not have
the highest threshold.

effects. In our numerical studies, we adopt a model motivated by Ref. [CDAE19], which
shows that any non-catastrophic quantum channel i.e., a channel with unitarity and
fidelity at-least one-half, can be expressed as a composition of a unitary process and
a decoherent process. Choosing the unbiased [CDAE19] depolarizing channel as the
decoherent component, the overall noise can be expressed as

E ' (Edep ◦ Ecoh)
⊗n, (4.10)

where

Ecoh(ρ) = UρU†,

Edep(ρ) = (1− p)ρ +
p
2

I. (4.11)
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and U can be parameterized using Eq. (4.9). In what follows, we will study the im-
pact of RC under the approximation given by Eq. (4.10). Note that both the coherent
as well as the incoherent parts of the error model contribute to the strength of noise,
for instance, the average gate fidelity. While RC only affects the coherent part of the
error process, we expect that for a fixed noise strength, the performance gain due to RC
under the error model described above will diminish with increasing p. This expecta-
tion is supported by the numerical simulations presented in Fig. 4.5, where we present
numerical estimates of δ`(ω, p) for several depolarizing strengths p. Here, δ`(ω, p) is
defined analogous to Eq. (4.9) as

δ`(ω, p) =
1

2π

∫ 2π

0

∫ π

0
δ`(θ, φ, ω, p) sin(θ) dθ dφ . (4.12)
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Figure 4.5: The impact of the depolarizing component on the gains from RC. We fix the
average infidelity per qubit to be r ≈ 0.003 and increase the value of the depolarizing
strength from p = 10−4 to p = 10−3. The value of ω corresponding to each value of p is
chosen such that the total physical infidelity of the qubit remains constant. We observe
that the gains from RC diminish with increase in depolarizing strength. This is because
RC does not impact the stochastic component of the noise model.

Note that in all of the error models considered so far, we have only observed gains in
performance due to RC. However, amongst the most general CPTP maps including the
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unital as well as non-unital types, we have identified cases under which RC can lead to a
loss in the performance. Some examples of these maps are mentioned in Appendix B.3.

4.3 Conclusion

The application of randomized compiling in fault tolerance is attractive for two reasons.
First, amongst the exponentially growing number of parameters controlling a physical
noise process, RC effectively eliminates the impact of most of them on a QEC scheme.
Second, since RC removes multiple noise sources, we expect the code to perform bet-
ter. This chapter provides concrete evidence to show that RC improves the performance
of quantum error correction under a wide class of coherent errors. We have identified
noise regimes where gains are drastic for the case of concatenated Steane codes. In
particular, it grows doubly exponentially with the number of levels, under small rota-
tions about a Pauli axis. Our results can be extended to guarantee performance gains
under generic unital noise processes, leveraging tools from [CDAE19; CDWE19] that
approximate a unital noise process as a composition of a coherent and an incoherent
error model. These observations strengthen the need for active noise tailoring methods
as a crucial component of a fault tolerant scheme.

Performance gains offered by RC also depend on the strength of errors affecting
the physical qubits. We stumbled upon an interesting observation that indicates gains
decrease when the amount of coherent rotation error passes beyond a threshold value.
To the best of our knowledge a threshold of this nature hasn’t been reported in earlier
works. The threshold helps estimate the maximum possible noise that can be alleviated
on a hardware device by leveraging RC tools. We also carried out extensive studies to
analyze the variation of this threshold with the features of the underlying coherent error
model.

Beyond the paradigm of identical unital maps across all physical qubits, we argue
that unilateral conclusions about performance gains due to RC cannot be made, i.e., it
depends strongly on the microscopic details of the underlying physical noise process.
Our arguments are strengthened by numerical studies of complex physical noise pro-
cesses that revealed some cases where the code’s performance can also degrade in the
presence of RC. In Ref. [CWB+17], it was shown that twirled noise processes may im-
prove or degrade thresholds depending on the code and noise properties. In this chapter
we arrive at a similar conclusion by exploring different error models for the minimum
weight decoder.

76



Obtaining efficiently computable estimates for performance gains due to RC in dif-
ferent experimental setups would be crucial to optimizing fault tolerance resources in
near-term applications. In the absence of exact values, it would be useful to provide
bounds for the impact of RC on the code’s performance. Although RC’s impact on
performance depends strongly on the underlying noise process, it is still interesting to
see that it can provide significant gains for a wide variety of realistic error models and
relevant error regimes.

To ensure a performance gain from a noise tailoring technique, such as RC, ideally,
we want to cancel the impact of those terms in the underlying noise process, which
correspond to uncorrectable errors – since these add to the logical infidelity. It would
be worthwhile to explore ways of controlling physical noise sources to ensure that RC
always offers a gain in performance. It would also be interesting to explore different
Twirling gate sets that can tailor the noise process to suppress terms that contribute neg-
atively to the logical channel’s fidelity. Although we identified a handful of cases where
a performance loss is observed, it will be noteworthy to develop cheap experimental
protocols to ascertain whether performing error correction with RC will be significantly
beneficial for a given device.
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Chapter 5

Testing distance of codes

This chapter consists of work done in collaboration with Sathyawageeswar
Subramanian and Tom Gur. At the time of writing this chapter, its contents
aren’t posted anywhere online. I am leading this project with inputs and
assistance from the aforementioned collaborators.

In the thesis so far, we have explored how to use noise tailoring and characterization
tools to efficiently characterize and improve the logical fidelity of quantum stabilizer
codes. Another extremely fundamental and important performance metric for codes
which has a rich mathematical structure and theory behind it is minimum distance. Min-
imum distance has been widely studied both in the classical and quantum error correc-
tion literature. Inspired by the recent work on relaxed decision problems in the last two
decades, we close off the thesis by exploring the capabilities of ultra-fast algorithms to
estimate the minimum distance of codes.

The chapter is structured as follows. Section 5.1 discusses some key results in the
literature related to the computational complexity of finding the minimum distance of
a classical binary linear code. In section 5.2, we introduce concepts and notation that
are useful for this chapter. Section 5.3 derives classical and quantum query complexity
bounds for estimating the minimum distance. In section 5.4, we introduce the property
testing version of this problem and provide query complexity bounds for it. Finally, in
section 5.5 we provide concluding remarks and describe some interesting open prob-
lems.
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5.1 Related work

In a seminal paper in 1978 [BMT78], Berlekamp, McEliece, and van Tilborg initiated
the study of the computational complexity of tasks in coding theory. Where prior works
focused on information theoretic aspects [Gol49; Ham50] and applications in commu-
nication [Sha48] and compression [ANR74], the authors of Ref. [BMT78] proved NP-
hardness of some fundamental tasks in error correction. Specifically, they showed that
MAXIMUM LIKELIHOOD DECODING and computing the WEIGHT DISTRIBUTION for bi-
nary linear codes are NP-complete. In general, maximum-likelihood decoding for clas-
sical codes is concerned with finding the least weight error which is consistent with a
given error syndrome. An error syndrome is a bit string s ∈ Fn−k

2 which contains infor-
mation about the error. Specifically, if x ∈ Fn

2 is corrupted with errors, HxT = s 6= 0,
where H ∈ Fn−k×n

2 is the parity check matrix of some linear code. Weight distribution
problem involves finding the Hamming weights of the codewords. The decision ver-
sion of these problems are defined below. Please note that the original paper [BMT78]
named these problems COSET WEIGHTS and SUBSPACE WEIGHTS respectively.

MAXIMUM LIKELIHOOD DECODING

Input: A binary matrix H ∈ Fn−k×n
2 , a vector s ∈ Fn−k

2 , and an integer w > 0.
Output: ACCEPT if ∃ x ∈ Fn

2 , |x| ≤ w such that HxT = s, REJECT otherwise.

WEIGHT DISTRIBUTION

Input: A binary matrix H ∈ Fn−k×n
2 and an integer w > 0.

Output: ACCEPT if ∃ x ∈ Fn
2 , |x| = w such that HxT = 0, REJECT otherwise.

In Ref. [BMT78], the authors conjectured that finding the minimum distance of a
linear code was NP-complete too. Nearly two decades later, Alexander Vardy made an
important advancement where they proved that estimating the minimum distance of
a linear code is NP-complete [Var97]. In particular, the following decision version of
estimating the minimum distance was shown to be NP-complete.

MINDIST≤
Input: A parity check matrix H ∈ Fn−k×n

2 corresponding to an [n, k] linear code,
and a code-distance threshold w ∈ [n− k + 1].

Output: ACCEPT if there is a nonzero vector x ∈ Fn
2 of weight ≤ w such that

HxT = 0, REJECT otherwise.

Note that, MINDIST≤ can be seen as a special case of MAXIMUM LIKELIHOOD DE-
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CODING with the syndrome s fixed i.e., s = 0. The following problems which are close
variations of the above problems were also shown [NH81] to be NP-complete before
MINDIST≤.

CODEWORD≥
Input: A binary matrix H ∈ Fn−k×n

2 and an integer w > 0.
Output: ACCEPT if there is a vector x ∈ Fn

2 of weight ≥ w such that HxT = 0,
REJECT otherwise.

CODEWORD (MOD k)
Input: A binary matrix H ∈ Fn−k×n

2 , an integer w > 0 and an integer k ≥ 2.
Output: ACCEPT if there is a vector x ∈ Fn

2 of weight ≤ w such that HxT = 0 and
|x| 6≡ 0(mod k), REJECT otherwise.

CODEWORD RANGE

Input: A binary matrix H ∈ Fn−k×n
2 , and integers w2 > w1 > 0

Output: ACCEPT if there is a vector x ∈ Fn
2 such that HxT = 0 and w1 ≤ |x| ≤ w2,

REJECT otherwise.

Let us pause for a moment and appreciate the deep significance of proving the hard-
ness of finding minimum distance. It not only implies the hardness of a host of other
coding theory problems, but also makes designing codes with high minimum distance
challenging. If finding minimum distance were easy, one could iterate over a large num-
ber of random linear codes and pick the best one by efficiently checking their distance.
We mention the following example of a computational problem whose hardness fol-
lows from the fact that MINDIST≤ is NP-hard. This problem is related to determining
the trellis complexity of a linear code where the task is to find a permutation of coor-
dinates that minimizes the number of vertices in the minimal trellis for a binary linear
code [HK96]. It is important in the theory of block-code trellises [Var98]. The trellis
complexity decides the amount of resources need to implement maximum likelihood
decoding for a given code. Although permuting symbols leaves the properties of the
code invariant, it does impact the time and resources required to decode them using a
Viterbi algorithm [Vit67] . One should imagine trellises as the different graph represen-
tations of equivalent codes which have their unique time and resource complexities for
decoding. For more details on trellises and their relation with linear codes, we refer the
readers to Ref. [Mas78]. The NP-hardness of the following problem was first proved in
Ref. [HK96] via a reduction from the SIMPLE MAX CUT problem.
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PARTITION RANK

Input: A binary matrix H ∈ Fm×n
2 , and integers i, w > 0

Output: ACCEPT if there is a column permutation that takes H into H′ = [Ai|Bn−i]

such that Ai ∈ Fm×i
2 , Bi ∈ Fm×n−i

2 and rank(Ai) + rank(Bn−i) ≤ w, RE-
JECT otherwise.

Here rank(A) is defined as the maximal number of linearly independent columns
in A. We will now describe a reduction [Var97] from MINDIST≤ to PARTITION RANK.
Note that the smallest integer i for which

rank(Ai) + rank(Bn−i) < rank(H) + i (5.1)

is equal to min{d, d⊥}, where d is the minimum distance of the binary linear code de-
fined by H, and d⊥ is the minimum distance of the corresponding dual code. Note that
since we are taking a minimum of d and d⊥, H can be interpreted both as a parity check
matrix and a generator matrix. An intuition for the previous statement is as follows.
The statement

rank(Ai) + rank(Bn−i) ≤ rank(H) + i (5.2)

holds for all i ∈ [n] since rank(Ai) ≤ i and rank(Bn−i) ≤ rank(H). First, let us think
of H as the parity check matrix. Note that Ai will be a full rank matrix for all values
of i < d since all column subsets of H of size < d are linearly independent. This fol-
lows from the definition of minimum distance. Therefore, d is the minimum number of
columns for which rank(Ai) < d. The same argument can be recycled by thinking of
H as the generator matrix for the dual code leading to the above conclusion. Next, we
will describe a recipe to use the above fact to compute the minimum distance of a code
using access to a (hypothetical) polynomial time algorithm for PARTITION RANK.

Let C be an [n, k, d] code whose distance d we wish to determine. We construct a
binary Reed-Muller code C ′ with parameters (n′, k′, d′), where

n′ = 22dlg ne+1,

k′ = n′/2 ≤ 4n2, and

d′ = 2dlg ne+1 ≥ 2n.

One can then use the Kronecker product construction [MS77] to obtain the generator
matrix for the code C? = C⊥⊗C ′. The parameters for C? obey the following inequalities:

n? = nn′ ≤ 8n3, and

d? = d⊥d′ ≥ 2nd⊥ ≥ n > d.
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The dual distance of C? is the minimum of the dual distances of C⊥ and C ′ i.e.,
min{d, d′} = d. Therefore, we can use the generator matrix for C? in the PARTITION
RANK algorithm for determining d. Since computing minimum distance in NP-hard,
this reduction proves the NP-hardness of the PARTITION RANK problem. Note that the
clever construction of C? ensures that the the minimum distance of the input code is the
minimum of the distances d? = dC? and (d?)⊥ = d(C?)⊥ i.e., min{d?, (d?)⊥} = d. More-
over, the reduction constructs a code with parity check matrix of size O

(
(n?)2

)
= O(n6)

and hence takes poly(n) time.

More connections to linear algebra. As a side note, a quantity similar to minimum dis-
tance in a parity check matrix with respect to the rational field is called the spark of a
matrix. Spark is defined to be the minimum number of columns in a matrix required
to form a dependent set. It is known that computing spark of a matrix is NP-complete
[TP14]. It was also shown under some complexity theoretic assumptions that the min-
imum distance cannot be approximated up to within any constant factor in random
polynomial time (RP) and to within an additive error that is linear in n [DMS99]. The
hardness of computing minimum distance in the context of low-density parity-check
(LDPC) codes was explored in Ref. [HFE04].

Equivalent problems for quantum codes. One can define quantum equivalents of all the
problems mentioned so far. The analogue of maximum likelihood decoding for quan-
tum stabilizer codes involves finding the most probable error coset. This is because we
only care about correcting errors up to a stabilizer. It was shown in Refs. [HLG11; Fuj12]
that decoding stabilizer codes is NP-hard under different assumptions for the distance
metric. Ref. [KL20] proves that the hardness results hold even when the error model is
restricted to the depolarizing model and the class of codes is restricted to a small class
of stabilizer codes with low full-rank check matrices. A stronger hardness result was
shown in Ref. [IP15], where the authors proved that finding the most likely equivalence
class of errors in degenerate quantum maximum likelihood decoding is #P-complete.
Although there was significant progress on the decoding of quantum stabilizer codes,
the hardness of computing the minimum distance for these codes was unknown un-
til recently. In Ref. [KK22], the authors show that computing the minimum distance
of a quantum stabilizer code is NP-hard. In particular, they show that computing or
even approximating (to an additive/multiplicative precision) the minimum distance of
a CWS code is NP-complete. CWS codes are a class of quantum codes specified by a
classical code and a graph. When the classical code is linear, they are exactly equivalent
to the class of stabilizer codes. For details, please see Ref. [CSS+09]. Their reduction
from classical to quantum involves the construction of a non-degenerate code. There-
fore, this implies that the hardness results hold true even for the case when restricted
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to the subclass of non-degenerate codes. Finally, using the mapping in Ref. [BTL10],
which takes an [[n, k, d]] stabilizer code to [[4n, 2k, 2d]] CSS code in poly(n) time, their
results can be extended to show that computing/approximating the minimum distance
of CSS codes is NP-hard as well. CSS codes are a special class of stabilizer codes where
the stabilizer group is a product of two subgroups SX and SZ containing Pauli operators
of only X-type and Z-type respectively.

Our setting. We reimagine the aforementioned line of work by first investigating the
query complexity of finding the minimum distance of a code given access to the adja-
cency list oracle for the parity check matrix of the code. Further, we extend the problem
to the setting of property testing algorithms for the distance of classical linear codes. We
started this project wanting to address this problem for quantum codes but soon dis-
covered that the simpler case of classical codes has not been addressed. Therefore, in
this chapter we will restrict ourselves to studying the classical and quantum complexi-
ties of the problem of testing minimum distance of classical linear codes. In particular,
the theme of our work is captured by the following central question: Is it possible to
test whether a given classical linear code has large distance by looking at only a small
fraction of the input representing the code?

We remark that Ref. [Kir18] has also previously considered a similar problem, in the
context of information set decoding, under the name of the k-list matching problem.
Another closely related problem is the k-list problem or generalized birthday problem
[Wag02; GNPS18], which has been studied in the context of cryptanalysis, and primarily
in a probabilistic setting where average-case computational complexity is the primary
interest. However these settings do not concern us at the moment in this chapter.

Comparison with locally testable codes. At this point, it is crucial to mention and distin-
guish our setting from the one of locally testable codes [FS95; RS96; GS06; GGK19]. In
the decoding step of error correction, checking whether a given string is a valid code-
word is an important task. In case it is corrupted by errors, suitable correction needs to
be applied. Locally testable codes are error correcting codes that allow super fast testing
of this property. In particular, they have testers which can check with high probability
of success whether a string is a valid codeword or it is far (in Hamming distance) from
all codewords. These testers run in sub-linear time and are local i.e., they only look at
small number of bits of the given input string. In this setting, we fix a code and test
whether a given input string is a valid codeword. However, in the setting we consider,
we are testing a global property of the code itself i.e., the minimum distance, where the
input is the code itself. The code is specified using an oracle to the columns of its parity
check matrix.

Our contributions. We study the query complexity of the decision version of finding
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the minimum distance of a code i.e., MINDIST≤, under the model where each query
returns a column of the parity check matrix of the code. One can iterate this procedure
to calculate the distance using a binary search. We provide classical and quantum lower
and upper bounds for this task. We also define a property testing version of the same
problem and study the query complexity under the same model. We provide non-trivial
lower bounds for this variant. Although the upper bound from the decision version
holds for this variant, we conjecture that it can be improved using the extra structure
in the testing version. We discuss some potential approaches and leave this open for
future research. The results are summarized in table 5.1. In this chapter, we will restrict
ourselves to binary codes. However, some of the methods discussed can be generalized
to codes defined over higher dimensions.

Query complexity of DEPSETw
Lower bound Upper bound

Classical Ω(n) [Lemma 6] O(n) [trivial]
Quantum Ω(n2/3) [Lemma 6] O(nw/(w+1)) [Lemma 7]

Query complexity of TEST MINDIST≥
Lower bound Upper bound

Classical Ω(n1/2) [Lemma 9] O(n) [trivial]
Quantum Ω(n1/3) [Lemma 9] O(nw/(w+1)) [Lemma 8]

Table 5.1: The above tables summarize the results presented in this chapter for the
query complexity of estimating and testing the minimum distance of binary linear
codes. The classical and quantum bounds for DEPSETw build upon results from
Refs. [Yao94; GKH+96; BSS+03] and [BKT18; Amb04] respectively. The bounds for the
TEST MINDIST≤ problem use results from Refs. [Aar02; Shi02; Kut05; Amb05; Amb04].

5.2 Preliminaries and notation

Classical query complexity. Informally, query complexity is a way to measure the amount
of information about the input required to compute any function on it. The access to
the input is provided via an oracle. For instance, oracle access to n-bit input string
x ∈ {0, 1}n is a simple map i→ xi. The classical randomized query complexity of a function
f : {0, 1}n → {0, 1} is the total number of oracle calls made by the best (randomized)
classical algorithm to compute f with error ε = 1/3, and will be denoted by R( f ).
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Quantum query complexity. We will adopt the notion of quantum query complex-
ity as described in, e.g Ref. [Kot14]. In quantum algorithms, the oracle access to the
input is facilitated by a unitary whose action is described by Qx|i, b〉 → |i, b ⊕ xi〉.
Any quantum algorithm with query complexity T can be described by T + 1 unitaries
U0, U1, . . . UT which act on m ≥ (log n + 1) qubits. It can perform any unitary Vx =
UTQxUT−1Qx . . . U1QxU0, where we assume Qx is implicitly tensored with identity if
any Ui acts on more qubits than Qx. A quantum algorithm is said to compute a function
f : {0, 1}n → {0, 1} on an input x i.e., f (x) with error ε if the probability of obtaining
f (x) by measuring the first qubit of Vx|0m〉 is at least (1− ε). The bounded-error quan-
tum error complexity of a function f is defined to be the quantum query complexity
of the best quantum algorithm that computes f with error ε = 1/3. We will denote the
quantum query complexity of f by Q( f ). Note that O(n) is a trivial upper bound to
both classical and quantum query complexities i.e., R( f ) and Q( f ). In this chapter, we
will use more complex oracles to access our input but the essential concept to measure
the query complexity remains identical.

Input models and distance measures. We briefly describe some options for the input
models and some distance measures between parity check matrices. The parity check
matrix H ∈ Fn−k×n

2 can be queried in the following ways:

1. Adjacency matrix model: In this model, each query simulates an access to one entry
of the matrix. The action of the classical oracle can be described as

OH
mat(i, j) = Hij ∀ i ∈ [n− k], j ∈ [n], (5.3)

where Hij is the entry of the matrix at the ith row and jth column. The action of the
analogous quantum oracle is given by

OH
mat(|i, j〉|t〉|z〉) = |i, j〉|Hij ⊕ t〉|z〉 ∀i ∈ [n− k], j ∈ [n], t ∈ {0, 1}, (5.4)

where |i, j〉 is the index register, |t〉 is the target register, and |z〉 is the work register
that is not affected by the query operation.

2. Adjacency list model: In this model, each query simulates an access to one column
of the matrix. The action of the classical oracle can be described as

OH
col(i) = H[i] ∀ i ∈ [n], (5.5)

where H[i] is the ith column of the matrix. When queried by a quantum algorithm,
the oracle is a unitary whose action is given by

OH
col(|i〉|t〉|z〉) = |i〉|H[i] + t ( mod 2n−k)〉|z〉 ∀ i ∈ [n], t ∈ [2n−k], (5.6)
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where |z〉 is the work register that is not affected by the query operation. It would
be helpful to imagine the columns of H as explicit bit strings as opposed to integers
in [2n−k]. An equivalent definition for the above oracle is:

OH
col(|i〉|t1, . . . , tn−k〉|z〉) = |i〉|H1i⊕ t1, . . . , H(n−k)i⊕ tn−k〉|z〉 ∀ i ∈ [n], t ∈ {0, 1}n−k.

(5.7)

Please note that the quantum oracles can potentially be queried in superposition. When
we talk about quantum query complexity, we will refer to the number of queries made
to the quantum versions of the oracles whereas for the classical query complexity, we
will count the number of queries made to classical versions of the same oracle.

The distance between two parity check matrices H, H′ ∈ Fn−k×n
2 can be measured in

the following ways:

1. Hamming distance: It is defined as the number of dissimilar entries in the two ma-
trices and calculated as:

δHam(H, H′) = ∑
i∈[n−k],j∈[n]

Hij ⊕ H′ij. (5.8)

2. Discrete or column distance: We imagine the parity check matrices of the codes to be
multisets of their columns i.e., H = {H[i]} and H′ = {H′[i]}, where 1 ≤ i ≤ n.
The column distance between them is defined as:

δcol(H, H′) =
|H \ H′|+ |H′ \ H|

2
, (5.9)

where A \ B = {a : (a ∈ A) ∧ (a 6∈ B)} is the set difference along with multi-
plicities. For example, when H = {v1, v2, . . . , vn} and H′ = {v1, v1, . . . , v1} (v1
repeated n times), δcol(H, H′) = (n − 1). Note that when H, H′ are of the same
size, we have δcol(H, H′) = |H \ H′| = |H′ \ H|. We will overload the notation
H to mean the parity check matrix as well as the multiset (to be inferred from the
context). Given three parity check matrices H1, H2, H3 of the same size imagined
as multisets of columns, the following statements about the column distances be-
tween any pair are true.

(a) δcol(H1, H2) = 0 if and only if H1 = H2.

(b) It is symmetric i.e., δcol(H1, H2) = δcol(H2, H1).
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(c) The triangle inequality holds i.e.,

δcol(H1, H3) ≤ δcol(H1, H2) + δcol(H2, H3). (5.10)

An easy way to see this is to observe that to go from H1 to H3, one (potentially
sub-optimal) strategy is to first go from H1 to H2 by changing δcol(H1, H2)
columns and then go from H2 to H3 by changing δcol(H2, H3) columns.

In this chapter, we will primarily use the adjacency list oracle and the column distance
measure. The other options will be considered in future research. Going forward, we
will drop the subscript C from the notation dC to denote the minimum distance of the
code C. We will instead overload the notation and use dH to denote the minimum
distance of the code whose parity check matrix is H.

5.3 Estimating the minimum distance of a linear code

Recall that if for two problems A, B there exists a many-one reduction such that A re-
duces to B (denoted A ≤ B), i.e. every instance of problem A can be transformed into
an instance of problem B, then the solution to the former can be obtained from the solu-
tion to the latter. If the reduction itself has query complexity q, then it follows that any
query complexity upper bound qB for B translates into an upper bound qA = q + qB for
A; similarly, a lower bound qA for A translates into a lower bound qB = qA − q for B.

In this section, we will explore some relations between the variants of the MINDIST
problem defined in section 5.1, and well-known problems in the literature, with the aim
of obtaining upper and lower bounds on the classical and quantum query complexities
of the former. Towards that aim, we first identify some problems of interest, before
proceeding to elucidate local many-one reductions that map between these problems
and variants of MINDIST.

Recall that the problem of determining whether a given parity check matrix H,
thought of as a list of its column vectors, contains a dependent subset of columns of car-
dinality at most w exactly captures the problem of deciding whether the code described
by H has distance at least w. Accordingly, we first define the following problem.

DEPSETw
Input: Adjacency list oracle OH

col for a parity check matrix H ∈ Fn−k×n
2 , thresh-

old parameter w ∈ [3, n− k + 1].
Output: ACCEPT if ∃ a dependent set of size < w, REJECT otherwise.
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A common source of problems used to prove lower bounds on query complexity
comes from the rich theory of communication complexity. To motivate the first problem
of interest, consider the case of a code that has distance two. The parity check matrix
of such a code must have a dependent subset of columns of size two. That is, there
must exist two identical columns (over F2). A central problem in the communication
complexity setting is detecting whether two players hold disjoint sets of inputs. Using
the intuition about parity check matrices of distance two, we can achieve a (weak) lower
bound on DEPSETw by solving an instance of the famous SET-DISJOINTNESS problem
in the two-way communication model defined below.

t-SET-DISJOINTNESS
Input: A, B ⊂ U for some ground set with |U| = n and |A| = |B| = t.
Output: ACCEPT if A ∩ B = φ, REJECT otherwise.

In the two-way communication model, Alice and Bob receive sets A, B of size t from
a universe of size n in the form of bit strings a, b ∈ {0, 1}n such that ai = 1 iff the
element of U indexed by i is included in A and so on, under some predecided ordering.
The players have access to shared random bits, are allowed two-way communication,
and must decide whether or their inputs are disjoint. We refer to [She14] for a review of
results on disjointness. We have the following warm up reduction.

Lemma 5. t-SET-DISJOINTNESS ≤ DEPSET3, and hence R(DEPSETw)= Ω(n/log n).

Let U = [n] and let the indicator bit strings for Alice’s set be x ∈ {0, 1}n such that
x[i] = 1 ⇐⇒ Alice’s set contains the element i. Similarly, let the corresponding string
for Bob be y. Let SA = {i1, i2, . . . , it}, SB = {j1, j2, . . . , jt} be sets of indices such that
x[s] = 1 ∀s ∈ SA and y[s] = 1 ∀s ∈ SB, where 1 ≤ t ≤ n/2 is the number of elements
in each set. Given these input strings, Alice and Bob can privately construct matrices
HA = {~v1,~v2, . . . ,~vt} and HB = {~w1, ~w2, . . . , ~wt} where for each a, b ∈ [t],

~va = ~eia , ~wb = ~ejb ,

where~ei is the ith standard basis vector, having 1 in the ith co-ordinate and zero every-
where else. Alice and Bob can both construct another matrix HC = {~u1,~u2, . . . ,~un−2t+1}
where ~ui = ∑i+1

a=2~ea, and the input matrix for DEPSETw is defined as H = [HA|HB|HC].

Claim: Alice and Bob have overlapping sets ⇐⇒ ∃ a dependent set of size two in
H. Moreover, the number of queries made to H is Ω(t/ log(n)).

Proof. We describe the protocol first and analyze its correctness and complexity below.
Alice and Bob sample column index i ∈ [2t] uniformly at random. The following cases
are possible:

88



1. 1 ≤ i ≤ t : Alice queries H and conveys the index for the non-zero element in the
vector to Bob using log(n) bits.

2. t + 1 ≤ i ≤ 2t : Bob queries H and conveys the index for the non-zero element in
the vector to Alice using log(n) bits.

Note that all the columns of H are distinct when Alice and Bob have disjoint sets. There-
fore, there does not exist any dependent set of size two. However, if there is an overlap-
ping element, it’ll lead to two identical columns in H, thereby creating a dependent set
of size two. This proves the first part of the claim.

The number of bits to be communicated to solve SET-DISJOINTNESS is at most log(n)
times the number of queries made to DEPSETw. Since, it is known [KS92; BYJK+04;
Raz92] that t-SET-DISJOINTNESS requires Ω(t) bits, the number of queries to solve
DEPSETw is Ω(t/ log(n)). Considering the extreme value of t = n/2 establishes the lower
bound in statement of the lemma.

Another problem which involves detecting whether a list of items contains a dupli-
cate is the well-studied element distinctness problem.

ELEMENT DISTINCTNESS
Input: Function f : [n]→ [N], n ≤ N.
Output: ACCEPT if ∃ x1, x2 ∈ [n] distinct such that f (x1) = f (x2), REJECT other-

wise.

A reduction from this problem helps improve the classical lower bound achieved
using t-SET-DISJOINTNESS previously to Ω(n), which is optimal.

Lemma 6. ELEMENT DISTINCTNESS ≤ DEPSET3. Hence R(DEPSETw) = Ω(n), and
Q(DEPSETw) = Ω(n2/3).

Proof. Assume N = 3n/2 and let f : [n] → [N] be the input instance of ELEMENT
DISTINCTNESS. We construct an N × 2n matrix [~v1,~v2, . . . ,~vN,~vN+1, . . .~v2n] where each
column ~vi ∈ FN

2 and

~vi =


~e f (i) 1 ≤ i ≤ n

i−n+1

∑
a=1

~ea n + 1 ≤ i ≤ 2n
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Here~ei is the ith standard basis vector, having 1 in the ith co-ordinate and zero every-
where else. Notice that by construction, for n + 1 ≤ i ≤ 2n, the Hamming weight of
~vi is exactly 2 ≤ i− n + 1 ≤ n + 1. Hence none of these vectors can form a dependent
subset of size less than three with any other set of vectors in H.

We can see that ∃i1, i2 ∈ [N] distinct indices such that f (i1) = f (i2) iff ∃ a dependent
set of size two in H = {~v1, . . . ,~v2n}—

∃i1 6= i2 ∈ [N] s.t. f (i1) = f (i2)
⇐⇒ ~vi1 = ~vi2
⇐⇒ {~vi1 ,~vi2} is a dependent set, (5.11)

since as observed above, any pair of vectors {~vi1 ,~vi2} in H that is dependent must have
i1, i2 ≤ n, because {vi ∀i ∈ [n + 1, 2n]} are distinct and unique by construction.

The lower bounds on the query complexities of DEPSETw follow from the above
reduction and known classical [Yao94; GKH+96; BSS+03] and quantum results [Amb04].

A more general variant of the element distinctness problem is that of detecting whether
a list of items contains one item that repeats at least k times.

K-ELEMENT DISTINCTNESS
Input: Function f : [n]→ [N], n ≤ N.
Output: ACCEPT if ∃ x1, x2, . . . , xk ∈ [n] distinct such that f (x1) = f (x2) = . . . =

f (xk), REJECT otherwise.

In an important paper, Ambainis [Amb04] showed that ELEMENT DISTINCTNESS,
which has a worst-case randomized query complexity of Θ(n) [Yao94; GKH+96; BSS+03],
can be solved with quantum query complexity Θ(n2/3). In the same paper, he extended
his quantum walk algorithm to the case of k-ELEMENT DISTINCTNESS for any constant
k = O(1) that does not scale with n, obtaining an O(nk/k+1) upper bound on its quantum
query complexity. There is a long and ongoing line of work on upper [BL11; Bel12a;
Bel12b] and lower bounds [BKT18; MTZ20; She20; JZ22] on the quantum query and
time complexities of the k-ELEMENT DISTINCTNESS problem. We note that all known
lower bounds and algorithms are given for the regime of constant k, and little is known
when k is allowed to vary with n. It will become clear below that for our MINDIST
problem, k can naturally depend on n, and in fact regimes of large k are of particular
interest to us.
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However k-ELEMENT DISTINCTNESS does not directly capture the case of a code
with distance at most k, since k repeating columns in H would still mean that the dis-
tance of the code is only two. On the other hand, what we need to detect is the presence
of a linearly dependent subset of at most k columns. This is, as is k-distinctness itself,
an instantiation of the k-subset finding problem.

K-SUBSET FINDING
Input: (i) Function f : D → R, for some finite domain D and range R, and

|D| = n defines the problem size; (ii) a property P ⊂ (D× R)k.
Output: ACCEPT if ∃ x1, x2, . . . , xk ∈ D such that ((x1, f (x1)), . . . , (xk, f (xk))) ∈ P,

and REJECT otherwise.

It was realized soon after Ambainis presented his algorithm for k-ELEMENT DIS-
TINCTNESS that the same algorithm can in fact address any problem that has 1-certificate
complexity equal to k [CE05]. Loosely speaking, the 1-certificate complexity of a func-
tion f is the minimal size of a certificate that shows that an input satisfies f ; taking the
example of f being the k-Element Distinctness decision function, notice that a subset
of size k of domain elements that all map to the same point in the range definitionally
constitutes a 1-certificate for the problem. With this observation, it becomes clear that
searching for size k dependent subsets of a given set of vectors has 1-certificate complex-
ity k and can be solved by Ambainis’ quantum walk algorithm. Using this intuition, we
have the following reduction. Although proven using F2, the statement and the proof
for the following lemma is true for Fq for all integers q ≥ 2.

Lemma 7. DEPSETw ≤ K-SUBSET FINDING. Hence Q(DEPSETw) = O(nw/(w+1)) for w =
O(1).

Proof. Given a matrix H = [~v1~v2 . . .~vn] where each column ~vi ∈ Fn−k
2 is a vector of

length (n− k), interpret H to also mean the multiset {~v1,~v2, . . . ,~vn} and let f : [n]→ H
be an indexing function that maps i 7→ ~vi. Let g : 2H → {0, 1} be a function that maps
a subset S ⊆ H of |S| = w vectors to g(S) = 1 if S is dependent, i.e. there exist non-
zero coefficients α1, . . . , αw ∈ F2 such that ∑w

i=1 αisi = 0. Otherwise g(S) = 0. Notice
in particular that such a dependent subset S of size w exists if and only if H contains a
dependent subset of size at most w; in other words, every dependent subset S′ ⊂ H with
|S′| ≤ w gives rise to (multiple) dependent subsets S with |S| = w.

Hence, to solve an instance of DEPSETw we solve the instance f of W-SUBSET FIND-
ING. Since we are not concerned with the computational complexity of checking whether
a given set of vectors is dependent, we bundle this complexity aside inside the oracular
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function g. We thus get an upper bound of O(nw/(w+1)) by applying Ambainis’ quantum
walk algorithm [Amb04; CE05].

The O(nk/(k+1)) query complexity of Ambainis’ quantum walk algorithm is tight for
some kinds of problems with 1-certificate complexity of constant size—for instance, the
k-sum problem [BS13].

K-SUM
Input: A list of n + 1 elements t, x1, . . . , xn ∈ G of a finite Abelian group G, and

an arbitrary but fixed and constant positive integer k.
Output: ACCEPT if there exists a subset of k elements in x1, . . . , xn that sum up to

t, and REJECT otherwise.

The K-SUM problem almost captures the essence of DEPSETw problem. If we fix the
group G to be Fn

2 and set t = 0, the subset of k elements that add up to 0 will represent
a dependent set in the matrix H = {x1, x2, . . . , xn}. Therefore, the instances that are
accepted for K-SUM would be accepted by DEPSETk under this reduction. However,
there can exist dependent sets of size < k which will lead to acceptance of erroneous
instances for the K-SUM problem. Therefore, the analogous problem that would exactly
capture DEPSETk is the following problem.

≤K-SUM
Input: A list of n + 1 elements t, x1, . . . , xn ∈ G of a finite Abelian group G, and

an arbitrary but fixed and constant positive integer k.
Output: ACCEPT if there exists a subset of up to k elements in x1, . . . , xn that sum

up to t, and REJECT otherwise.

Deriving non-trivial lower bounds for the quantum query complexity of ≤K-SUM is
an interesting open problem which will also help close the gap in bounds for DEPSETw.

5.4 Testing the minimum distance of a linear code

In this section, we will define two property testing variants of estimating the minimum
distance of a linear code and discuss subtle differences between them.
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TEST MINDIST≥
Input: Adjacency list oracle OH

col for a parity check matrix H ∈ Fn−k×n
2 , a code-

distance threshold w ∈ [3, n− k + 1] and a proximity parameter ε > 0.
Promise: Either dH ≥ w or dH < w with the condition that δcol(H, H′) ≥

εn ∀H′ s.t. dH′ ≥ w.
Output: ACCEPT if dH ≥ w, REJECT otherwise.

TEST MINDIST≤
Input: Adjacency list oracle OH

col for a parity check matrix H ∈ Fn−k×n
2 , a code-

distance threshold w ∈ [2, n− k] and a proximity parameter ε > 0.
Promise: Either dH ≤ w or dH > w with the condition that δcol(H, H′) ≥

εn ∀H′ s.t. dH′ ≤ w.
Output: ACCEPT if dH ≤ w, REJECT otherwise.

Note that a tester for TEST MINDIST≤ can trivially accept all inputs since by chang-
ing just one column of any given parity check matrix, the distance of the code it gen-
erates can be changed to two. Therefore by changing only one column, one can obtain
a code with low distance. In other words, every code is close to a code with distance
two for ε = O(1) under the distance metric δcol and for ε = O(1/n) under the Hamming
distance metric δHam. Therefore, this testing variant is not interesting and we will focus
on TEST MINDIST≥ for the rest of this chapter.

The main results in this section are summarized below:

1. We provide a tester for TEST MINDIST≥with quantum query complexity O(nw/(w+1)).

2. We show that any classical algorithm to solve TEST MINDIST≥will require Ω(n1/2)
queries to the classical oracle and any quantum algorithm requires Ω(n1/3) queries
to the corresponding quantum oracle.

We will design a tester for TEST MINDIST≥ using tools similar to the one used for
DEPSETw. The core idea is to use Ambainis’ quantum walk algorithm to search for
a dependent set of size at most (w − 1) in a subset of columns queried uniformly at
random. If the search is successful, the set found serves as a certificate that the minimum
distance is at most (w − 1). If the search is unsuccessful, we conclude that with high
probability, the minimum distance of the given code is ≥ w. Using this intuition, we
have the following lemma.

Lemma 8. Q(TEST MINDIST≥) = O(nw/(w+1)) for w = O(1).
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Proof. A tester for TEST MINDIST≥ is described by the following steps.

1. Let r = O(nw/(w+1)).

2. Run Ambainis’ quantum walk algorithm [Amb04] on the Johnson graph J(n, r)
whose nodes are subsets of size r.

3. If the walk finds a dependent set of size < w REJECT, else ACCEPT.

Correctness of the algorithm. Note that the tester always accepts inputs H with dH ≥ w
because, by definition, it is impossible to find a dependent set of columns of size < w
in such instances. In other words, this tester has one-sided error as described in section
2.6. Note that having one sided error is an important feature. For instance, they appear
in the context of proximity oblivious testers [Gol17] and are useful for amplifying the
success probability. Using the reduction in section 5.3 without the additional promise
of the testing variant, we see that the tester will also reject inputs H with dH < w with
high probability.

Query complexity. Note that the number of queries made by the tester to the quantum
version of the oracle OH

col is O(nw/(w+1)) and therefore Q(DEPSETw)=O(nw/(w+1)) for w =
O(1).

It is important to pause here and note that we have not used the additional promise
provided by the testing variant i.e, TEST MINDIST≥ compared to the DEPSETw problem.
Therefore, we conjecture that the upper bound in the previous lemma can be improved.
Next, we establish lower bounds for the TEST MINDIST≥ problem.

Lower bounds. We now show that any classical algorithm for TEST MINDIST≥ re-
quires Ω(n1/2) queries whereas any quantum algorithm requires Ω(n1/3) queries to the
adjacency list oracle. We will achieve this by reducing COLLISION problem [Aar02;
Shi02; Kut05; Amb05] to TEST MINDIST≥. The COLLISION problem is defined as fol-
lows:

COLLISION
Input: A function f : [n]→ [n].
Promise: Either f is one-to-one or f is two-to-one.
Output: ACCEPT if f is one-to-one, REJECT otherwise.

Lemma 9. COLLISION ≤ TEST MINDIST≥. Hence R(TEST MINDIST≥) = Ω(n1/2), and
Q(TEST MINDIST≥) = Ω(n1/3).
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Proof. Given an input function f for the COLLISION problem, we describe a recipe to
construct the corresponding instance for TEST MINDIST≥.

Consider any binary linear code C with parameters nC , kC , dC where dC > 2. Let HC ∈
F

nC−kC×nC
2 be the parity check matrix for C. There are several options for picking such a

code ranging from the Hamming code [Ham50] with distance 3 to asymptotically good
codes (Justesen code [Jus72] for instance) with constant relative distance. We choose any
one such code with nC = n (the length of the input sequence in the collision problem).
Let HC [i] denote the ith column of the matrix HC where 1 ≤ i ≤ nC . The parity check
matrix corresponding to the input function f is given by H f where H f [j] = HC [ f (j)]
for all 1 ≤ j ≤ nC = n. Now, we provide H f to a tester for TEST MINDIST≥ with the
parameter w = dC . If the tester accepts the input H f , we conclude that f is one-to-one.
If the tester rejects the input, we conclude that f is two-to-one.

Correctness of the reduction. Suppose the input sequence f is one-to-one. In this case,
H f is equivalent to HC up to a permutation of columns. Since permuting the columns
of a parity check matrix does not change the distance of the code, we have dH f = dC .
Therefore, the tester will accept this input with certainty. On the other hand, when f
is two-to-one, H f will contain (n/2) columns repeated twice. This implies dH f = 2 for
this case. To show that the H f constructed in this case is a valid REJECT instance for the
testing problem, we need to show that δcol(H f , H′) ≥ εnC for some ε = O(1) > 0 and
for all H′ such that dH′ ≥ dC .

Consider the set of pairs of indices {(i1, j1), (i2, j2), . . . (in/2, jn/2)} for which H f has
identical columns i.e., H f [il] = H f [jl] for all 1 ≤ l ≤ n/2. The column distance, defined
in section 5.2, between H f and H′ follows

δcol(H f , H′) =
nC/2

∑
l=1

(|H f [il]− H′[il]|+ |H′[jl]− H f [jl]|)

=
nC/2

∑
l=1

(|H f [il]− H′[il]|+ |H′[jl]− H f [il]|)

(∵ due to collision, H f [il] = H f [jl])

≥
nC/2

∑
l=1
|H′[il]− H′[jl]| (using the triangle inequality)

≥ nC
2

.

(5.12)
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Therefore, H f is 1/2-far with respect to column distance from all matrices H′ for which
dH′ ≥ dC . Combined with the fact that dH f = 2 < dC makes it a valid REJECT instance.
The lower bounds follow from the corresponding classical [Mun77; DM89; BH07; Fel91]
and quantum [Aar02; Shi02; Kut05; Amb05] results in the literature.

We have established that the testing version of the minimum distance problem is at
least as hard as the collision problem. Although the collision problem comes with the
promise of containing n/2 matching pairs, finding any one of these is not trivial. To find a
match for any entry, one has to search through (n− 1) elements. Therefore, although the
corresponding parity check matrix has n/2 dependent sets of size two each, finding them
requires Ω(n1/2) classical queries and Ω(n1/3) quantum queries. Note that this is weaker
than the Ω(n2/3) quantum lower bound for the decision version i.e., DEPSETw, where
we derived the lower bound via reduction from ELEMENT DISTINCTNESS. These two
bounds are related to each other. For further discussion on this, please see Refs. [AS04;
Amb05].

In this section, we derived lower and upper bounds for the TEST MINDIST≥ prob-
lem. We believe that these bounds can be improved from both ends. Specifically, for
the upper bounds, we need to find a way to use the extra promise structure imposed by
the testing variant whereas for the lower bound, it’d be good to derive a bound that de-
pends on the threshold weight parameter w. These are interesting directions for future
research.

5.5 Conclusion and future work

In this chapter, we explored the query complexity of estimating the minimum distance
of a linear code given access to the parity check matrix as an adjacency list oracle. We
showed that this is maximally hard classically and requires Ω(n2/3) queries using a quan-
tum algorithm. We also show that O(nw/(w+1)) queries are sufficient for this task when
using a quantum algorithm. We define and explore a property testing variant of the
same task where we wish to certify if a given code has high distance or is far from all
codes having high distance for a natural notion of distance between codes defined via
their parity check matrices. We show that Ω(n1/2) queries are required classically and
Ω(n1/3) queries are required when using a quantum algorithm to solve the testing vari-
ant with bounded-error. The upper bound for the non-testing variant holds trivially but
we conjecture that this can be improved.

96



The quantum query complexity upper bound obtained for DEPSETw only holds for
constant w. It would be interesting to generalize the lower and upper bounds to the
setting of w = polylog(n) and even w = Θ(n). This would enable testing codes with
distance linear in the number of bits. Some preliminary work in this direction has been
done in Refs. [BKT18; MTZ20] but the problem remains largely open. This problem
has likely not received much attention in the field of mathematics due to the lack of an
important application. We now highlight, through this work, that resolving these ques-
tions for non-constant w would help answer fundamental questions in coding theory.

It would also be interesting to consider promise versions of this problem whereby we
are guaranteed that either a certain threshold number of dependent sets exist or there
are no dependent sets of size at most w. Formally, the following problem is interesting
and comes close in some sense to the property testing setting.

Pr-DEPSET(w, ε)
Input: H ∈ Fn−k×n

2 , threshold parameter w ∈ [3, n− k + 1], threshold parame-
ter ε > 0.

Promise: Either ∃ at least εnw−1 dependent sets of size< w or @ any dependent
set of size< w.

Output: ACCEPT if ∃ a dependent set of size < w, REJECT otherwise.

The motivation to solve the above promise version comes from a belief that the in-
stances which are far away from the set of codes having high distance will likely contain
many dependent sets of size at most (w− 1). Therefore, solving the above promise ver-
sion will lead to taking advantage of the additional structure in the TEST MINDIST≥
problem, and improving the upper bound we derived in this chapter. The major ob-
stacle in this approach is translating the Hamming/column distance promise in TEST
MINDIST≥ to the guaranteed existence of a large number of dependent sets of size at
most (w− 1). We believe this is a promising direction to explore nonetheless.

We feel that this chapter serves as the beginning of posing and answering a long
line of interesting property testing questions for classical codes, quantum codes and
quantum fault-tolerant gadgets more generally.
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Chapter 6

Summary and conclusion

While quantum computing is one of the most exciting endeavours of this century, scal-
ing quantum systems to achieve fault tolerance and perform meaningful quantum com-
putation is one of the biggest challenges. The methods developed in the first part of the
thesis attempt to push our understanding of how noise tailoring and noise characteriza-
tion methods can be used to improve and diagnose the performance of quantum error
correction schemes. These methods not only help us in validating fault tolerant systems
efficiently but also reduce the resource overhead required to implement them in prac-
tice. The second part aims to understand the query complexity of testing fundamental
properties of an error correcting code. This study opens a wide range of open problems
relevant to the study of error correcting codes. It also opens some interesting problems
around property testing of structured functions.

In chapter 3, we describe how to use noise tailoring, randomized compiling in par-
ticular, in the context of quantum error correction to enforce a stochastic noise model.
Furthermore, we develop an efficient metric called the logical estimator which can use
the data obtained from scalable noise characterization protocols such as cycle error re-
construction to reliably predict the performance of concatenated stabilizer codes. We
show that this reliable prediction can not only to be used to assess the resource over-
head required to achieve a target logical error rate, but can also be utilized to guide
the optimal selection of the different components of a quantum error correction scheme
such as the code and the decoder. This opens up avenues to further explore the role
of modern noise characterization and noise tailoring tools for efficient diagnostics of
other families of codes and fault-tolerant gadgets in general. In particular, it would be
interesting to develop similar approximations for other families of codes such as the
topological codes. Combining ideas from Ref. [DCP10] and the tools developed in this
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chapter seems to be a promising direction. Moreover, going beyond the memory model
for quantum error correction for a single logical qubit, and developing such benchmarks
for logical operations that include multiple logical qubits would be useful.

Chapter 4 explores the role of using randomized compiling to improve the performance
of concatenated codes. We show that under a wide range of physically motivated error
models, randomized compiling can improve the performance of concatenated Steane
code by several orders of magnitude. The noise models we study include pure Z-
rotations, rotations about arbitrary axes and a combination of stochastic and unitary
noise. For the simple case of Z-rotations, we analytically show that the gain in per-
formance increases doubly exponentially with the increase in levels of concatenation
for small rotation angles. For other complex noise models, we show the existence of
a threshold error rate below which the gains from randomized compiling can be arbi-
trarily magnified. We also study the variation of the gain and the threshold angle with
the rotation axis. Since randomized compiling is a code agnostic method, this study
acts as a necessary precursor to the interesting problem of designing code-dependent
noise tailoring strategies to further maximize gains and consequently bring down the
resource overheads. It will be worthwhile to perform realistic simulations of random-
ized compiling to assess how many compilations are enough in practice. Moreover,
adding some noise to all the components of the quantum error correction scheme in-
cluding the encoding and syndrome extraction circuits in the simulations will move
these studies closer to a real-world application.

In chapter 5, we study the classical and quantum query complexity of finding the
minimum distance of large binary linear codes. We prove non-trivial lower and upper
bounds for this task by reducing to and from other well known problems in the lit-
erature. Furthermore, we explore a property testing variant of the same problem and
provide an efficient (quantum) tester. We derive non-trivial lower bounds by reducing
the COLLISION problem to the task of testing the minimum distance of a given code. To
the best of our knowledge, this is a first attempt at exploring property testing of proper-
ties of codes. This opens up several interesting testing questions both for classical and
quantum codes, and fault-tolerant gadgets in general. In particular, one can extend all
the results presented in this chapter to the context of quantum stabilizer codes. Using re-
cent results on the hardness of minimum distance for quantum stabilizer codes derived
in Ref. [KK22] is a natural link for this problem. For testing more general fault-tolerance
structures, results obtained in Ref. [YS22], which test large scale graph states, can serve
as a good starting point.
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and Steffen J. Glaser. Optimal control of coupled spin dynamics: design
of nmr pulse sequences by gradient ascent algorithms. Journal of Magnetic
Resonance, 172(2):296–305, 2005 (p. 126).

[KS92] Bala Kalyanasundaram and Georg Schintger. The probabilistic commu-
nication complexity of set intersection. SIAM Journal on Discrete Mathe-
matics, 5(4):545–557, 1992. eprint: https://doi.org/10.1137/0405044
(p. 89).

[KSV02] A.Y. Kitaev, A. Shen, and M.N. Vyalyi. Classical and Quantum Computation.
Graduate studies in mathematics. American Mathematical Society, 2002
(p. 19).

[Kut05] Samuel Kutin. Quantum lower bound for the collision problem with small
range. Theory of Computing, 1(1):29–36, 2005 (pp. 84, 94, 96).

[LB13] D.A. Lidar and T.A. Brun. Quantum Error Correction. Cambridge Univer-
sity Press, 2013 (pp. 37, 50).

[MAB20] Swarnadeep Majumder, Leonardo Andreta de Castro, and Kenneth R.
Brown. Real-time calibration with spectator qubits. npj Quantum Informa-
tion, 6(1), 2020 (p. 126).

110

https://arxiv.org/abs/2203.04262
https://arxiv.org/abs/2203.04262
https://doi.org/10.1137/0405044


[Mag08] Magesan, Easwar. Gaining Information About a Quantum Channel Via Twirling.
Master’s thesis, 2008 (p. 22).

[Mas78] James L Massey. Foundation and methods of channel encoding. In Proc.
Int. Conf. Information Theory and Systems, volume 65, pages 148–157. NTG-
Fachberichte, 1978 (p. 80).

[MB14] J. True Merrill and Kenneth R. Brown. Progress in compensating pulse se-
quences for quantum computation. In Quantum Information and Computation
for Chemistry. Stuart A. Rice Aaron R. Dinner, editor. Advances in Chem-
ical Physics. John Wiley & Sons, Ltd, 2014, pages 241–294. eprint: https:
//onlinelibrary.wiley.com/doi/pdf/10.1002/9781118742631.ch10

(p. 126).

[MC13] Easwar Magesan and Paola Cappellaro. Experimentally efficient methods
for estimating the performance of quantum measurements. Phys. Rev. A,
88:022127, 2, 2013 (p. 49).

[MGE11] Easwar Magesan, J. M. Gambetta, and Joseph Emerson. Scalable and ro-
bust randomized benchmarking of quantum processes. Phys. Rev. Lett.,
106:180504, 18, 2011 (pp. 3, 20, 23, 24).

[MGE12] Easwar Magesan, Jay M. Gambetta, and Joseph Emerson. Characterizing
quantum gates via randomized benchmarking. Phys. Rev. A, 85:042311, 4,
2012 (p. 20).

[MGJ+12] Easwar Magesan, Jay M. Gambetta, B. R. Johnson, Colm A. Ryan, Jerry
M. Chow, Seth T. Merkel, Marcus P. da Silva, George A. Keefe, Mary B.
Rothwell, Thomas A. Ohki, Mark B. Ketchen, and M. Steffen. Efficient
measurement of quantum gate error by interleaved randomized bench-
marking. Phys. Rev. Lett., 109:080505, 8, 2012 (p. 23).

[MGS+13] Seth T. Merkel, Jay M. Gambetta, John A. Smolin, Stefano Poletto, Antonio
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Appendix A

Extending logical estimator to surface
codes and faster simulations

The purpose of the appendix is to aid and enhance the understanding of the content in
chapter 3. It is organized as follows. Section A.1 presents a derivation of an expression
for the logical fidelity for a generic stabilizer code, as a function of the code proper-
ties as well as the parameters of the underlying physical noise process. In section A.2,
we derive the accuracy of the logical estimator in estimating the logical error rate. In
section A.3, we show how our tool improves the predictability of logical performance
under coherent errors. While all of the above mentioned studies focus on the family
of concatenated codes, section A.4 discusses how our studies can be applied to predict
the performance of surface codes. Sections A.5 and A.6 describe techniques used for
numerical simulations, including importance sampling to yield accurate estimates of
average logical error rates with a reasonable number of syndrome samples.

A.1 Logical fidelity and correctable errors

The average logical channel E1, defined in chapter 3, summarizes the effect of quantum
error correction on a physical noise process E0 affecting an encoded state ρ. In this
section, we derive a closed form expression for the average logical channel in terms
of the physical channel and the error correcting code parameters. Similar derivations
have appeared in [CWB+17; GB15; RDM02], however, we present ours for the sake of
completeness.
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The action of the average logical channel on the logical state is

E1(ρ) =∑
s

Pr(s)E s
1(ρ),

=∑
s

RsΠsE0(ρ)ΠsRs

=∑
s

∑
i,j

χi,jRsΠsPiρPjΠsRs

=∑
s

∑
i,j

s(Pi)=s(Pj):=s

χi,jRsPiρPjRs , (A.1)

where in the last line we used the fact that ΠsPi = PiΠs⊕s(Pi)
. In other words, whenever

s 6= s(Pi), the corresponding projector Πs⊕s(Pi)
annihilates the encoded state ρ.

The chi matrix χ of the effective logical channel defined by

E1(ρ) = ∑
l,m

χlmPlρPm, (A.2)

where Pl and Pm are logical operators of the code; can be extracted from eq. A.1.

The total probability of errors successfully corrected by the decoder: χ00, can be
estimated from the following observation. An error whose syndrome is s is corrected
if the net effect of applying the error along with a recovery prescribed by the decoder
results in an effective action of a stabilizer. In other words, all the terms in eq. A.1 where
RsPi and PjRs are stabilizers contribute to χ00. So,

χ0,0 = ∑
E,E′∈EC

s(E)=s(E′) , E=E′

φ(E) φ?(E′) χE,E′ , (A.3)

where E is the logical component in the decomposition of E with respect to the Stabilizer
group and φ(E) is specified by Rs(E)E = φ(E) S for any Pauli error E and some stabilizer
S. The average logical infidelity r is then given by 1− χ00.

When a Pauli error is not correctable, the effect of applying a recovery yields a logical
operator. Hence, in general

χl,m = ∑
E,E′∈EC

s(E)=s(E′) , E=E′

φ(E, l) φ?(E′, m) χEPl ,PmE′ . (A.4)

where Rs(E) |E Pl| = φ(E, l) S |Pl|, for l ∈ {0, 1, 2, 3}, any Pauli error E and some
stabilizer S. Here |P| stands for the bare Pauli without any associated global phase.
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A.2 Approximation quality for the uncorrectable error prob-
ability

In this section, we will quantity the accuracy of the approximating the uncorrectable
error probability using p̃u for concatenated codes. For simplicity, we will assume that
the code-blocks in the concatenated code are all identical, and equal to a [[n, 1, d]] quan-
tum error correcting code, with d ≥ 3. Recall that the distance of a level ` concatenated
code scales as d`. We will use t` = b(d` + 1)/2c to denote the Hamming weight of
the smallest uncorrectable error. Recall that p̃u is defined recursively as the sum of two
quantities: Q̃1 and Q̃2. We will use δ` to denote the inaccuracy in computing pu for a
level ` concatenated code:

δ` = |pu(C?`,1)− p̃u(C?`,1)| , (A.5)

and γ` to denote the inaccuracy in computing Γ:

γ` = |Γ̃(C?` )− Γ(C?` )| . (A.6)

Then it follows that

δ` ≤ nδ`−1 + γ` . (A.7)

The most important ingredient in computing δ` is γ`, defined in eq. A.6. For simplicity
we will compute γ` for the i.i.d depolarizing error model. However, for generic i.i.d
Pauli error models, we can replace the depolarizing rate p in our analysis by the physical
infidelity of the single qubit error model, r0. The extension to correlated Pauli error
models remains unclear.

An i.i.d application of the depolarizing channel on n−qubits can be described by

E(ρ) = ∑
P∈Pn

χP,PP ρ P ,

such that χP,P = (1− p)n−|P|
( p

3

)|P|
, (A.8)

where Pn is the n−qubit Pauli group, 0 ≤ p ≤ 1 is the depolarizing rate and |P| is the
Hamming weight of the Pauli error P. In this case, we will show that

γ` = O(n`−1pt`−1+2) , (A.9)

for a level ` concatenated code.
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Combining eq. A.9 with eq. A.7, we arrive at an expression for δ`:

δ` = O(n`−1p2+b(d+1)/2c) , (A.10)

where d is the distance of a code block.

In the rest of this section, we will derive eq. A.9. Recall the following equation A.12
that outlines the approximation made by the heuristic to compute Γ(C?` ).

Γ̃(C?` ) = ∑
E∈ EC\I

∑
s(C`)

∑
s(C?`−1,1)

. . . ∑
s(C?`−1,n)

Pr(s(C`)|Ê`−1,1 . . . Ê`−1,n)

n

∏
j=1

PrD(E`−1,j | Ê`−1,j)Pr(s(C?`−1,j)) , (A.11)

= ∑
E∈ EC\I

n

∏
j=1

PrD(E`−1,j | Ê`−1,j)) . (A.12)

It involves replacing the knowledge of conditional channels E s
`−1,j by the average

channel, Ê`−1,j. We will prove the scaling in eq. A.9 two steps. First, is an observation
that

n

∏
j=1

PrD(E`−1,j|Ê`−1,j) = O(pt`−1) . (A.13)

This follows from the fact that at least one of the errors E`−1,j in the error pattern
E`−1,1 ⊗ . . .⊗ E`−1,n must be non-identity. Note that a non-identity logical error is left
as a residual when the decoder for the subsequent lower level fails. Such an event will
not occur for errors whose weight is below t`−1.

Second, by showing that

Pr(s(C`,i)|E
s(C?`−1,1)

`−1,1 . . . E s(C?`−1,n)

`−1,n )
n

∏
i=1

Pr(s(C?`−1,j)) =

Pr(s(C`,i)|Ê`−1,1 . . . Ê`−1,n)
n

∏
i=1

Pr(s(C?`−1,j)) +O(n`−1p2) .

(A.14)

Recall from the following equation that the average channel Ê`,i is defined recursively
in terms of Ê`−1,j.

Ê`−1,i = ∑
s(C`−1,i)

Pr(s(C`−1,i))E s(C`−1,i)
`−1,i

[
Ê`−2,1 ⊗ . . .⊗ Ê`−2,n

]
. (A.15)

122



While the term corresponding to s(C`,i) = 0 describes the effect of stabilizers on the
input state, the other terms include the effect of non-trivial errors. Note that the a non-
trivial error E` has weight at least t`−1, equal to the weight of the smallest uncorrectable
error of the concatenated code C?`−1,j. Carrying this idea from level `− 1 to level 1, we
find:

Ê`,i = E s(C`,i)=0
`,i

[
Ê`−1,1 ⊗ . . .⊗ Ê`−1,n

]
+O(pt`−1) , (A.16)

=
(
Ê`−1,1 ⊗ . . .⊗ Ê`−1,n

)
+O(pt`−2) , (A.17)

=
(
Ê1,1 ⊗ . . .⊗ Ê1,n`−1

)
+O(pt1) , (A.18)

where in eq. A.17 we have used the fact that the leading contribution to the conditional
channel for the trivial syndrome, is the physical channel itself. Equation A.18 describes
the recursion until level ` = 1 where Ê1,j = E1,j.

Recall that the conditional channel for an error-syndrome s(C?`−1,i),

E s(C?`−1,i)

`−1,i = E s(C`−1,i)s(C`−2,1)...s(C`−2,n)...s(C1,1)...s(C1,n`−1 )

`−1,i , (A.19)

is defined by applying quantum error correction routines corresponding to the syn-
drome outcomes in the respective code-blocks of C?`−1,i. Note that an error is detected
(by means of a non-trivial syndrome outcome) in a code block at level ` when the de-
coder operating on the code block at level `− 1 leaves a non-trivial residue. Hence, for a
leading order analysis, we will consider conditional channels that correspond to trivial
syndromes in all the code-blocks except for those at level one, i.e., s(C`,i) = 0 for all
` > 1 in eq. A.19. In other words, we will consider errors that are corrected within the
code blocks in level one:

E s(C`−1,i)=0, s(C`−2,1)=0, ..., s(C`−2,n)=0, ..., s(C1,1)...s(C1,n`−1 )

`−1,i = E s(C1,1)
1,1 ⊗ . . .⊗ E s(C1,n`−1 )

1,n`−1 +O(pt1) .
(A.20)

Using eqs. A.18 and A.20, we note that the quality of the approximation in eq. A.14
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can be bounded as follows:(
Pr(s(C`)|E s(C1,1)

1 . . . E s(C1,n`−1 )

1 )− Pr(s(C`)|Ê1,1 . . . Ê1,n`−1)

) n`−1

∏
j=1

Pr(s(C1,j))

= tr

[
Πs(C`) ·

(
(E s(C1,1)

1 ⊗ . . .⊗ E s(C1,n`−1 )

1 )(ρ)− (Ê1,1 ⊗ . . .⊗ Ê1,n`−1)(ρ)

)] n`−1

∏
j=1

Pr(s(C1,j)) ,

(A.21)

= ∑
i

[(
χ

s(C1,1)
1,1 ⊗ . . .⊗ χ

s(C1,n`−1 )

1,n`−1

)
i,i
−
(
χ̂1,1 ⊗ . . .⊗ χ̂1,n`−1

)
i,i

]

tr
[
Πs(C`) · PiρPi

] n`−1

∏
j=1

Pr(s(C1,j)) , (A.22)

≤ n`−1 max
s∈Zn−k

2

||χs
1 − χ̂1||∞Pr(s) , (A.23)

where χs
1 refers to the chi matrix of the conditional channel E s

1 while χ̂1 refers to the chi
matrix of the average channel Ê1. In eq. A.23, we have used the matrix norm ||A||∞ to
refer to the maximum absolute value in the matrix.

To establish the scaling in eq. A.14 it remains to show that

max
s∈Zn−k

2

||χs
1 − χ̂1||∞Pr(s) = O(p2) . (A.24)

Recall that the effective channel for a given syndrome s: E s
1, describes the composite

effect of the physical noise process and quantum error correction conditioned on the
measurement outcome s. Comparing eq. A.1 to the general form in eq. A.2, we find an
expression similar to eq. A.4:

[χs
1]i,i =

1
Pr(s) ∑

E∈EC
s(E)=s

χPiE,PiE
. (A.25)

For the specific case of the depolarizing channel in A.8 we can express
[
χs

1
]

i,i, Pr(s)
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and χ̂i,i as polynomials in the depolarizing rate p:

[χs
1]i,i =

1
Pr(s)

n

∑
w=1

As
i,w(1− p)n−w

( p
3

)w
, (A.26)

Pr(s) = ∑
i

n

∑
w=1

As
i,w(1− p)n−w

( p
3

)w
, (A.27)

χ̂i,i = ∑
s

n

∑
w=0

As
i,w(1− p)n−w

( p
3

)w
, (A.28)

where As
i,w is the number of Pauli errors Q of Hamming weight w on which the action

of the decoder leaves a residual logical error Pi. In other words, Q = PiRsS where Rs
is the recovery operation prescribed by the decoder for the error-syndrome s and S is
any stabilizer. We can use two simple facts about errors to simplify the coefficients As

i,w.
First, since the only error of Hamming weight zero is the identity which has s = 0, we
find As

i,0 = δs,0δi,0. Second, since all errors of Hamming weight up to b(d− 1)/2c are
correctable, we find As

i,w = δi,0As
0,w for all w ≤ b(d− 1)/2c. Using these simplifications,

[χs
1]i,i =

1
Pr(s)

[
(1− p)n−1

( p
3

)
As

0,1 +O(n2p2)
]

, (A.29)

Pr(s) = As
0,1(1− p)n−w

( p
3

)
+O(n2p2) , (A.30)

χ̂i,i = δi,0(1− p)n + 3n(1− p)n−1
( p

3

)
δi,0 +O(n2p2) . (A.31)

It is now straightforward to see that eq. A.24 follows from the above set of equations.

In summary, this section establishes that the approximation used by the heuristic to
compute p̃u(C?`,1), is accurate to O(n`+1p2+b(d+1)/2c) for the i.i.d depolarizing physical
error model with error rate p. To get a sense for this approximation quality, we can plug
in relevant numbers for an i.i.d Pauli error model and level-2 concatenated Steane code:
p = 10−3, n = 7, ` = 2, d = 3. Numerical simulations of quantum error correction yield
an estimate of the logical infidelity given by 4.2× 10−9. The analytical bound suggests
that the logical estimator derived from the our heuristic method agrees with the logical
infidelity up to O(10−11). However, the scaling suggests that the heuristic may not
be not accurate for large codes in the high noise regime. Nonetheless we have strong
numerical evidence to support that the logical estimator predicts the functional form of
logical infidelity.
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A.3 Predictability results for concatenated codes under co-
herent errors

Numerical results presented in chapter 3 highlight the predictive power of the tools de-
veloped in this work with respect to the standard error-metrics, under random CPTP
maps. Although CPTP maps encompass a wide range of physical noise processes, our
method of generating random CPTP maps does not draw attention to an important
class of noise processes – coherent errors – a special case of CPTP maps under which
the evolution of a qubit is described by a unitary matrix. They occur due to imperfect
control quantum devices and calibration errors [MB14; MAB20]. Various methods such
as dynamical decoupling [YWL10; PSL13], designing pulses using optimal control the-
ory [KRK+05] and machine learning approaches [NBS+19] are used to mitigate these
errors. However, each of these methods have their shortcomings and unitary errors
continue to form a major part of the total error budget [GD17; HDF19; BEK+18]. The
methods presented in chapter 3 will be particularly advantageous in these cases.

In this section we highlight the predictive power of our tool, over standard error
metrics, under different coherent noise processes. We choose a simple class of coherent
errors modeled by an unknown unitary Ui on each physical qubit i, of the form U =

e−i π
2 δn̂·~σ , where δ is the angle of rotation about an axis n̂ on the Bloch sphere. With a

slight loss of generality, we will consider n−qubit unitary errors of the form ⊗n
i=1Ui.

We control the noise strength by rotation angles δi drawn from a normal distribution of
mean and variance equal to µδ where 10−3 ≤ µδ ≤ 10−1.

Figure A.1 shows that logical error rates vary over several orders of magnitudes
across coherent errors with noise strength as measured by standard error-metrics such
as infidelity and the diamond distance. In contrast, our tools provide an accurate predic-
tion using the logical estimator. Moreover, we observe a drastic gain in in predictability
using our tools for this case of unitary errors, when compared to CPTP maps in Fig. 3.2
of chapter 3.

A.4 Predicting the performance of surface codes

In this section we outline an extension of the techniques to predict the performance
of concatenated codes using the logical estimator to surface codes. In summary, we
make a crucial ansatz of a concatenated structure for surface codes. This assumption is
motivated by a renormalization group based decoding algorithm developed in [DCP10]
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Figure A.1: Figures (a) and (b) compare the predictive powers of our tool (red) with
the standard error metrics: infidelity and the diamond distance, respectively, under an
ensemble of 16000 random unitary channels. These are similar to the ones in Fig. 3.2.
The dispersion in the scatter corresponding to a metric (∆ in the insets) is indicative of
its predictive power. The gains in predictability offered by our tool is drastic for the
above case of unitary errors when compared to CPTP maps.



whose threshold is comparable to the optimal decoder. Hence, in order to define the
logical estimator for surface codes, we must first specify a concatenated code structure
for it.

For simplicity, we will illustrate the definition of the logical estimator using the
square lattice rotated planar code in [Tuc20]. Let us consider the rotated planar code
on a 3` × 3` lattice for some integer ` > 0, denoted by S3`×3` . The 3` × 3` square lat-
tice has a self-similar structure in the bulk (ignoring boundaries) where a choice for the
unit cell is the 3× 3 lattice that specifies the smallest non-trivial code S3×3 shown in
Fig. A.2a. Based on this observation, we will construct a concatenated code shown in
Fig. A.2b that will serve as a proxy for the surface code to compute the logical estima-
tor. The surface code on the 3× 3 unit cell, S3×3 forms the smallest code-block of the
concatenated code, and there are ` levels in total. Following the notation introduced in
the background section, the resulting concatenated code is: S3×3 × . . .× . . .S3×3.

(a) Stabilizer generators for a
3× 3 rotated planar code.

(b) Rotated planar code as a concatenated code.

Figure A.2: Figure A.2a shows the stabilizer generators for the 3 × 3 rotated planar
code denoted by S3×3. The Fig. A.2b depicts an enforced concatenated structure on a
rotated planar code. The blue, red and the green lattice depict levels 0, 1 and 2 of the
concatenated code corresponding to the underlying rotated planar code. For concate-
nated levels ` > 1, the generators in Fig. A.2a are replaced by the corresponding logicals
at level `− 1.

It is important to iterate that the concatenated code S3×3 × . . . × . . .S3×3 and the
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surface code S3`×3` have fundamentally different encoding structures. Despite this dif-
ference, we use the former concatenated code to define the logical estimator for the
latter surface code. Not to our surprise, we find that the logical estimator for the con-
catenated code S3×3 × . . .× . . .S3×3 is significantly different from the average logical
fidelity of the corresponding rotated planar surface code S3`×3` . In contrast, we find
that our heuristic for computing logical estimator for the surface codes plays a crucial
role in selecting an optimal code. Recall that in the code selection section, we discussed
how the logical estimator is crucial for selecting an optimal concatenated code for an un-
derlying error model. In what follows, we have a similar illustration comparing logical
estimators computed for two different surface codes along with their logical infidelities
estimated through numerical simulations [Tuc20]. The underlying error model is iden-
tical to the error model in Fig. 3.5 – the twirl of a convex sum of rotations with a bias
η between X and Z errors. We now consider two surface codes, one, S9×12 – with the
ability to correct more X than Z errors, and another, S16×9 – which corrects more Z than
X errors. The logical estimator verifies the expectation that the S16×9 performs better
as the bias for the Z errors increases relative X errors. Our results are summarized in
Fig. A.3.

129



��� ��� ��� ���

������ � ������

��
�

��
�

��
�

��
�

�
�
�
��
��
��
��
��
��

��
��

�������������������� �����

������������������� ���� ����

�������������������� �����

������������������� ���� ����

Figure A.3: Using the logical estimator to select optimal surface code. The above figure
demonstrates the use of our tool in selecting an optimal surface under a biased Pauli
error model. The choices of codes include rotated planar code of dimensions 9× 12 and
16× 9. While the solid lines depict the values of the logical estimator, the dashed lines
correspond to the logical error rates estimated using numerical simulations. We observe
that p̃u helps select the optimal code for all noise rates.

It is important to note that these results are preliminary and a first step towards
efficiently and accurately estimating the performance of surface codes. We believe that
some of the ideas presented here using the logical estimator would guide the future
research in this direction.
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A.5 Numerical simulation details

The key steps involved in the simulation of an error correcting circuit include encoding,
syndrome detection and application of recovery. In our simulations we assume each of
these steps to be perfect and model the noise as an explicit step after encoding. Since
we deal with coherent errors, we perform a full density matrix simulation. After appli-
cation of the noise E to the encoded state ρ, a syndrome s is sampled with probability
tr(ΠsE (ρ)) where Πs is the syndrome projector. The state after syndrome detection is
given by

E (ρ) 7→ ρs =
ΠsE (ρ)Πs

tr(ΠsE (ρ))
. (A.32)

Followed by this, we apply a recovery based on minimum weight decoding and pass
the resulting channel to the next level of the concatenated code. At the last level `, we
calculate the infidelity of the average logical channel. We report the mean of the infi-
delity over a large number of syndrome samples. More details about this procedure can
be found in [IP18; Iye18]. Finally, we employ importance sampling for faster conver-
gence detailed in section A.6.

So far, we discussed the simulation details for concatenated codes. Simulating sur-
face codes require a slightly different machinery due to the difference in code structure.
For deriving the logical error rates in the appendix section A.4, we used a software
package called qecsim [Tuc20], which is also based on Monte Carlo simulation of error
correcting circuits. The package also assumes perfect encoding, syndrome extraction
and recovery application similar to the setting for concatenated codes. We used the
minimum weight perfect matching (MWPM) decoder to obtain these results.

A.6 Importance sampling

A straightforward technique to estimate the logical error rate involves sampling syn-
drome outcomes according to the syndrome probability distribution for a quantum
error correcting code and a physical noise process pair. However, there are serious
drawbacks to this sampling method, due to the presence of rare syndromes – whose
probability is typically less than the inverse number of syndrome samples. A detailed
account of this can be found in [IP18] and in section 3.3 of [I18]. We briefly review the
technique here for completeness.

In summary the average logical error rate is grossly underestimated unless an un-
reasonably large number of outcomes are sampled. We will resort to an importance

131



102 103 104 105 106 107

N

10 7

10 6

10 5

10 4
r 2

r = 1.4 × 10 2

r = 9.9 × 10 3
r = 7.5 × 10 3

r = 4.5 × 10 3
r = 3.5 × 10 3

r = 2.6 × 10 3
Direct sampling
Importance sampling

(a)

102 103 104 105 106 107

N

10 10

10 9

10 8

10 7

10 6

10 5

10 4

r 2

r = 8.2 × 10 3

r = 6.9 × 10 3
r = 7.3 × 10 3

r = 4 × 10 3
r = 3.5 × 10 3

r = 1.9 × 10 3
Direct sampling
Importance sampling

(b)

Figure A.4: The above figures highlight the rapid convergence rate of the importance
sampler as compared to the direct sampler, under CPTP noise processes in Fig. A.4a
and coherent errors in Fig. A.4b. Each trend line in the figures is associated to a physical
noise rate. While different colors are used to identify different physical error rates, the
solid and dashed lines are used to distinguish between the sampling techniques. Note
that while the direct sampler takes a large number to syndrome samples to provide
a reliable estimate of r(E `), the importance sampler achieves this task with far lesser
syndrome samples. The speedup offered by importance sampling is quite drastic. The
case for r = 4× 10−3 in Fig. A.4b is a good example. The direct sampler shows signs of
convergence around 107 syndrome samples, whereas the importance sampler converges
with just 104 samples. Notice however that with only 104 samples, the direct sampler
underestimates r(E `) by almost two orders of magnitude.



sampling technique proposed in [IP18], to improve our estimate of the average logi-
cal error rate. Previously, similar techniques have also been discussed for Pauli noise
processes in [BV13; TLG+18]. Instead of choosing to sample the syndrome probability
distribution, we sample an alternate distribution Q(s), which we will simply refer to as
the importance distribution. The corresponding sampling methods with Pr(s) and Q(s)
will be referred to as direct sampling and importance sampling respectively.

The expression for the average logical error rate estimated by the importance sam-
pler takes a form:

r(Ê`) = ∑̂
s

r(E ŝ
` )

Pr(s)
Q(s)

, (A.33)

where ŝ is a random syndrome outcome drawn from the importance distribution Q(s).
The average estimated by importance sampling coincides with r(E `) which is estimated
by the direct sampling technique. The crucial difference between the two sampling
techniques is that the variance of the estimated average can be significantly lowered by
an appropriate choice for the importance distribution Q(s), which in our case, takes the
form

Q(s) =
P(s)1/k

Z
, (A.34)

where Z is a normalization factor

Z = ∑
s

P(s)1/k , (A.35)

and k ∈ (0, 1] is chosen such that the total probability of non-trivial syndrome outcomes,
s 6= 00 . . . 0, is above a fixed threshold λ0, i.e.,

∑
s 6=00...0

Pr(s)1/k

Z
≥ λ0 . (A.36)

Figure A.4 shows that our heuristic for the importance distribution provides a rapid
convergence to r(E `), when compared to the direct sampling method. Note that the
noise processes in these figures are the same as those used to compare the predictive
powers of physical error metrics in Fig. 3.2 of chapter 3 and Fig. A.1. Hence, the
employment of importance sampling is key to an honest comparison of the predictive
powers of the physical error metrics.
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Appendix B

Impact of randomized compiling for
general noise models

The purpose of the appendix is to aid and enhance the understanding of the content
in chapter 4. It is organised as follows. Section B.1 presents a derivation of the logical
error rate when each qubit of the Steane code unergoes a small rotation about Z−axis.
In section B.2, we generalize these expressions to derive logical error rates for higher
levels. Section B.3 presents numerical results for impact of randomized compiling on
the logical performance under complex noise models.

B.1 Logical fidelity calculation for rotation about Z-axis

In this appendix section, we will derive the logical performance of Steane code under a
unitary noise process described by a small over-rotation about the Z−axis, i.e. E(ρ) =
RZ(ω)ρRZ(−ω) where

RZ(ω) = cos(ω/2) I + i sin(ω/2) Z . (B.1)

Recall that the Steane code is a [[n, k]] quantum code with n = 7, k = 1, whose
encoded states are fixed by the Stabilizer group S generated by n− k generators:

S = 〈ZZZZII I, ZZIIZZI, ZIZIZIZ, XXXXII I, XXIIXXI, XIXIXIX〉 . (B.2)
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The effect of the unitary noise in Eq.(4.2) on each of the n qubits in the encoded state
can be written as

E⊗n(ρ̄) = R⊗n
Z (ω) ρ̄ R⊗n

Z (−ω)

= ∑
w∈Z2n

2

(−1)∑2n
j=n+1 wj(cos(ω/2))2n−|w|(i sin(ω/2))|w|

(
⊗n

j=1Zwj
)

ρ̄
(
⊗2n

j=n+1Zwj
)

.

(B.3)

where |w| is the Hamming weight of the binary sequence w ∈ Z2n
2 .

To understand the effect of RC on performance, we need to estimate the total con-
tribution to logical fidelity from terms in the noise process whose effect is rendered
useless by RC. Since the noise model in Eq.(B.3) only applies Z−type errors, it suffices
to consider the effect of correctable errors E and E′ that are purely Z−type, besides the
identity. In other words, E, E′ ∈ 〈Z1, Z2, . . . , Zn〉. Table B.1a shows the contribution to
the logical fidelity that is eliminated by RC. Each of the four rows in the table is associ-
ated with a χ−matrix element of a particular form, labelled by γi for 1 ≤ i ≤ 4.

Table B.1b provides all the ingredients necessary to compute the logical infidelity of
the Steane code under the RC setting:

r(ET
1) = 1− (κ1 + 7κ2 + 7κ3 + 7κ4) , (B.4)

=
1

512
(256− 231 cos(ω)− 49 cos(3ω) + 21 cos(5ω) + 3 cos(7ω)) . (B.5)

Note that the coefficient appearing alongside each φi in Eq.(B.4) corresponds to its mul-
tiplicity, i.e., the number of combinations of errors E, E′ that result in the same value of
φi. In the absence of RC, the logical infidelity can be calculated using both tables B.1a
and B.1b:

r(E1) = 1− (κ1 + 7κ2 + 7κ3 + 7κ4 + 14γ1 + 14γ2 + 42γ3 + 14γ4) ,

=
1

64
(32− 21 cos(ω)− 14 cos(3ω) + 3 cos(7ω)) . (B.6)

The above expressions describe the logical infidelities for level−1 concatenated Steane
code in the RC and non-RC settings. The gain δ1 can be calculated as the ratio of the
above quantities. The appendix section B.2 discusses the recursion to compute the aver-
age logical channel for level−` concatenated Steane code followed by the computation
of the different metrics at level−`.
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E E′ Condition on E and E′ χE,E′

I⊗7 S S ∈ S \ {I} cos10(ω/2) sin4(ω/2) = γ1

Zi ZiS S ∈ S \ {I} , 1 ≤ i ≤ 7 cos8(ω/2) sin4(ω/2)
(3 sin2(ω/2)− 4 cos2(ω/2))

= γ2

S S′ S, S′ ∈ S \ {I} , S 6= S′ cos6(ω/2) sin8(ω/2) = γ3

ZiS ZiS′ S, S′ ∈ S \ {I} , S 6= S′ , 1 ≤ i ≤ 7
6 cos8(ω/2) sin6(ω/2)
−12 cos6(ω/2) sin8(ω/2)
+3 cos4(ω/2) sin10(ω/2)

= γ4

(a)
E E′ Condition on E and E′ χE,E′

I⊗7 I⊗7 cos14(ω/2) = κ1
S S S ∈ S \ {I} cos6(ω/2) sin8(ω/2) = κ2
Zi Zi 1 ≤ i ≤ 7 cos12(ω/2) sin2(ω/2) = κ3

ZiS ZiS S ∈ S \ {I}, 1 ≤ i ≤ 7
4 cos8(ω/2) sin6(ω/2)

+3 cos4(ω/2) sin10(ω/2)
= κ4

(b)

Table B.1: The above table describes the contribution to logical fidelity from different
types of elements of the physical channel. While table B.1b describes the contribution to
the logical infidelity from the diagonal (Pauli) terms, table B.1a specifies that from the
off-diagonal terms in the physical channel. In each of the tables, the total contribution
to logical infidelity is divided into four categories: (i) labelled γ1, γ2, γ3 and γ4 for the
off-diagonal terms and (ii) κ1, κ2, κ3 and κ4 for the diagonal terms.

B.2 Logical channel for the concatenated Steane code

In this appendix section, we will describe the computation of the average logical chan-
nel for the level−` concatenated Steane code under rotations about the Z−axis de-
scribed in section 4.2. Ideally, we would like to take an exact average over conditional
channels corresponding to all possible syndromes of the level−` concatenated Steane
code. However, the number of syndromes and hence the number of conditional chan-
nels grow exponentially with the number of physical qubits and the analysis becomes
intractable beyond a few levels. Instead, in this section we compute an approximation
wherein we recurse over the individual entries of the level−1 logical channel to arrive
at the level−` logical channel. We will achieve this in two broad steps:

1. Computation of level−1 logical channel.
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2. Establish a recursion to compute level−(`+ 1) from level−` logical channel.

For a given noise process E , we refer to its χ−matrix as χ(E) and the corresponding
logical χ−matrix as χ(E1). The following equation prescribes a way to calculate the
entries of χ(E) from χ(E) [IP18].

χ(E1)l,m = ∑
E,E′∈EC

s(E)=s(E′) , E=E′

φ(E, l) φ?(E′, m) χEPl ,PmE′ . (B.7)

where EC refers to the set of correctable errors, Pi denotes the logical version of Pauli
Pi, and Rs(E) |E Pl| = φ(E, l) S |Pl|, for l ∈ {0, 1, 2, 3}, any Pauli error E and some
stabilizer S. Here |P| stands for the bare Pauli without any associated global phase.
Note that, since the error model is a rotation about the Z−axis, we have EC = 〈{SjZi :
1 ≤ i ≤ n , Sj ∈ SZ}〉. Here Zi refers to a single qubit Z error on qubit i and SZ =
〈ZZZZII I, ZZIIZZI, ZIZIZIZ〉.

It is easy to see that the average logical channel for the level−` concatenated Steane
code χ(E `) takes the form [HDF19]:

χ(E `) =


[χ(E `)]0,0 0 0 [χ(E `)]0,3

0 0 0 0
0 0 0 0

([χ(E `)]0,3)
∗ 0 0 1− [χ(E `)]0,0

 , (B.8)

where ([χ(E `)]0,3)
∗ denotes the complex conjugate of [χ(E `)]0,3.

First, we compute the entries for the level−1 matrix χ(E1). Using table B.1a, we have

[χ(E1)]0,0 = κ1 + 7
3

∑
i=1

φi + 28 χ3 + 14
4

∑
j=1

χj ,

=
1

64
(21 cos(ω) + 14 cos(3ω)− 3 cos(7ω) + 32) . (B.9)

Table B.2 provides all the ingredients necessary to compute [χ(E1)]0,3. Taking into
account the multiplicities of terms of each kind, we have

[χ(E1)]0,3 = ζ1 + 42 ζ4 + 7
8

∑
i=2

ζi , (B.10)

= −1
8

i sin3(ω)(9 cos(2ω) + 3 cos(4ω) + 2) . (B.11)
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E ZE′ Condition on E and E′ χE,ZE′

I⊗7 Z i sin7(ω/2) cos7(ω/2) = ζ1
I⊗7 ZS S ∈ SZ \ {I} i sin3(ω/2) cos11(ω/2) = ζ2
S Z S ∈ SZ \ {I} i sin11(ω/2) cos3(ω/2) = ζ3
S ZS′ S, S′ ∈ SZ \ {I} , S 6= S′ i sin7(ω/2) cos7(ω/2) = ζ4
Zi ZZi 1 ≤ i ≤ 7 −i sin7(ω/2) cos7(ω/2) = ζ5

Zi ZZiS S ∈ SZ \ {I}, 1 ≤ i ≤ 7 4i sin5(ω/2) cos9(ω/2)
−3i sin3(ω/2) cos11(ω/2)

= ζ6

ZiS ZZi S ∈ SZ \ {I}, 1 ≤ i ≤ 7
4i sin9(ω/2) cos5(ω/2)
−3i sin11(ω/2) cos3(ω/2)

= ζ7

ZiS ZZiS′ S, S′ ∈ SZ \ {I} , S 6= S′, 1 ≤ i ≤ 7
12i sin5(ω/2) cos9(ω/2)
−25i sin7(ω/2) cos7(ω/2)
+12i sin9(ω/2) cos5(ω/2)

= ζ8

Table B.2: The above table describes the contribution to χ0,3(E) from different types of
elements of the physical channel. Note that none of these contributions come from the
diagonal part of χ(E).

In the second step, we establish a recursion to compute the individual entries of
χ(E `) from the entries of χ`−1(E) under hard-decoding algorithm. After massaging the
expressions in equations B.9 and B.11, we observe that

[χ(E `+1)]0,0 = f0,0([χ(E `)]0,0), and (B.12)

[χ(E `+1)]0,3 = f0,3([χ(E `)]0,3), (B.13)

where

f0,0(z) = z2(63− 434z + 1260z2 − 1848z3 + 1344z4 − 384z5), and

f0,3(z) = −2z3(7 + 84z2 + 192z4). (B.14)

Combining the above two steps, we compute all the entries of [χ(E `+1)].

For small rotation angle ω, we observe from equations B.9 and B.14 that up to lead-
ing order

[χ(E `)]0,0 ≈ 1− 632`−1 (ω/2)2`+1
, and

[χ(E `)]0,3 ≈ −i14
3`−1

2 (ω/2)3` . (B.15)
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Note that with increase in number of levels `, for small angle ω, [χ(E `)]0,0 → 1 and
[χ(E `)]0,3 → 0. This is expected because for small angles, the channel is close to the
identity channel and the error correction procedures is able to correct all the errors.
Also, note that the off diagonal entry approaches 0 faster than the diagonal entry ap-
proaches 1. This is a consequence of the process of error correction decohering the
physical channel [BWG+18].

Now, we compute the logical χ−matrix corresponding to the noise process under
RC i.e. χ(ET

`). The matrix in this case takes the form:

χ(ET
`) =


[χ(ET

`)]0,0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1− [χ(ET

`)]0,0

 . (B.16)

Similar to the nonRC case, we first compute the entries for the level−1 matrix χ(ET
1).

Using the ingredients from table B.1b, we have

[χ(ET
1)]0,0 =

1
512

(256 + 231 cos(ω) + 49 cos(3ω)− 21 cos(5ω)− 3 cos(7ω)) .

The recursive relation to calculate the above quantity for higher levels is given by:

[χ(ET
`+1)]0,0 = g0,0([χ(ET

`)]0,0) ,

where

g0,0(z) = z2(21− 98z + 210z2 − 252z3 + 168z4 − 48z5) .

For small rotation angle ω, up to leading order

[χ(ET
`)]0,0 ≈ 1− 212`−1 (ω/2)2`+1

.

The above expression indicates that [χ(ET
`)]0,0 → 1 with increase in number of concate-

nation levels ` provided the angle of rotation is below the threshold.

Having arrived at an expression for the average logical channel for a level−` con-
catenated code, we can now define the logical error rate using the infidelity and dia-
mond distance metrics. The logical infidelity takes the simple closed form:

r` = 1− [χ(E `)]0,0 .
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B.3 Numerical results for complex noise models

In this appendix section, we will present numerical studies of the performance of con-
catenated Steane codes under two distinct models of general Markovian noise. The re-
sults are presented as scatter plots formatted as follows. Each point is associated to the
performance of a physical noise process. While the X− coordinate is used to denote the
physical error rate, its Y−coordinate denotes the ratio between the performance in the
non-RC setting and the RC setting, measured by δ` in Eq.(4.1). Note that RC can either
improve or degrade the code’s performance. We have used a dashed line at δ` = 1 to
identify the break-even region where RC has no impact on the performance. Points that
lie below the dashed line, coloured in red, identify physical channels where a degra-
dation in performance is observed. On the other hand, points in green that lie above
the dashed line identify physical channels where RC provides a performance gain. The
points in grey, that lie close to the dashed line should be ignored since they correspond
to cases where the relative difference between the logical error rates for the non-RC and
RC cases is negligible: less than 10%.

The first complex error model is a unitary model where each qubit experiences a
different random rotation about an arbitrary non-Pauli axis n̂, specified by U of the
form

U = e−i π
2 δn̂·~σ, (B.17)

where δ is the angle of rotation. Hence, the n−qubit unitary errors in our model are
of the form ⊗n

i=1Ui, where Ui in prescribed by Eq.(B.17). We control the noise strength
by setting the rotation angles δi drawn from the normal distribution: N (µδ, µδ), where
10−3 ≤ µδ ≤ 10−1. Fig. B.1 shows the performance gain metric under this error model.
It demonstrates that there exist some instances where RC provides a performance gain
of 10x, as well as others where RC causes a performance degradation of 10x.

The second error model is described by the i.i.d action of a random single qubit
CPTP map, on each of the physical qubits of the code. The random CPTP map on a sin-
gle qubit is derived from unitary dynamics U on a Hilbert space of three qubits [IP18].
The unitary matrix U is generated form a random Hermitian matrix H using U = e−iHt,
where 0 ≤ t ≤ 1 provides a handle on the strength of noise described by the resulting
CPTP map. We vary the noise strength by controlling t in the range [0.001, 0.1]. Figure
B.2 shows RC’s impact on the performance of concatenated Steane codes under physical
CPTP maps. The absence of a clear trend showing a performance gain or degradation
is evident for level-2 in Fig. B.2b. Even across physical CPTP maps with similar fidelity,
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while for one instance, RC induces a performance gain of up to three orders of magni-
tude, for another, it inflicts a loss in performance of similar magnitude.

The case of level-1 performance under physical CPTP maps in Fig. B.2a is rather dif-
ferent from the level-2 case in Fig. B.2b. Over the large ensemble of 18000 physical CPTP
maps, we observe that RC always leads to performance gains for the level-1 Steane code.
These performance gains can be explained as follows. First of all, a CPTP map can be
well approximated by its leading Kraus operator K, which is derived from the largest
eigenvector of its Choi matrix [CDAE19]. Furthermore, in an i.i.d physical error model,
K can be expressed as a tensor product. In terms of K, the leading contributions to
infidelity come from chi-matrix entries χi,j expressed as:

χi,j = tr(KPi)tr(K†Pj) , (B.18)

where Pi is a single qubit of one type (X, Y or Z), and Pj = PiS for some stabilizer S, is a
three-qubit error of the same type as Pi. In the low noise regime, the off-diagonal entries
of K are small, especially for incoherent CPTP maps, where K is close to a Positive semi-
definite matrix [CDAE19]. Using the fact that the trace inner product between K and
the Pauli matrix Z is a real number d given by d = K1,1 − K2,2, we can conclude that
χi,j in Eq.(B.18) for Z−type errors Pi and Pj of weights 1 and 3 respectively, is always
positive. In other words, the χi,j ∼ d4 for some d � 1. Removing such terms should
degrade the performance of the code. On the contrary, removal of χi,j for uncorrectable
errors Pi, Pj leads to performance gains. The largest of these chi-matrix entries can be
identified with two Z−type Pauli errors Pi, Pj, each having weight two. This property
can be associated with the fact that the Steane code is degenerate: there exists a logical
operator whose weight is smaller than that of a stabilizer. Repeating a similar analysis
as before, we find that the corresponding χi,j for these uncorrectable errors, also scale
as d4 for some d � 1. Their removal leads to performance gains. Note that there
are more uncorrectable errors than correctable ones and the corresponding chi-matrix
elements have comparable magnitudes. Hence, we find that RC is more likely to induce
performance gains. Note that higher concatenation levels of the Steane code do not
correspond to degenerate codes. Hence, we cannot guarantee a performance gain or
degradation in those cases, as shown in Fig. B.2b.
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(a)

(b)

Figure B.1: The above figures highlight the strong dependence of the impact of RC on
the details of the physical noise process, for concatenated Steane codes. The ensemble of
noise processes considered here comprises of 16000 samples of unitary rotations about
a fixed random axis. Red and green points are used to identify physical noise processes
that lead to a performance gain and a performance loss, respectively, in the presence of
RC. The magnitude of performance gains and losses are measured by the ratio of logical
error rates in the non-RC and RC settings, i.e., δ1 for level-1 concatenated Steane code
in Fig. B.1a, and δ2 for level-2 in Fig. B.1b.
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(a)

(b)

Figure B.2: The above figures highlight the strong dependence of the impact of RC on
the details of the physical noise process, for concatenated Steane codes. The ensemble of
noise processes considered here comprises of 18000 random CPTP maps. Red and green
points are used to identify physical noise processes that lead to a performance gain and
a performance loss, respectively, in the presence of RC. The magnitude of performance
gains and losses are measured by the ratio of logical error rates in the non-RC and RC
settings, i.e., δ1 for level-1 concatenated Steane code in Fig. B.2a, and δ2 for level-2 in
Fig. B.2b.
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