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Abstract

The computation of large smooth-degree isogenies is considered to be the most time-
consuming task in isogeny-based cryptosystems and, to this end, recently several propos-
als have been made to speed it up. For implementation in software using a single core,
De Feo et al. presented an optimal way to compute such isogenies. The multi-core setting
is however far more intricate but offers various ways to reduce the computation time and is
an active area of research. This thesis presents a study of speeding-up large smooth-degree
isogeny computation with various forms of parallelism and consists of three contributions.

The first contribution of this thesis is two novel theoretical techniques for speeding-up
the computation with parallelism. Our proposed technique, called precedence-constrained
scheduling (PCS), transforms the isogeny computation into a task scheduling problem with
precedence constraints and utilizes several task scheduling algorithms to tackle the problem.
Another proposed technique of ours is to formulate the isogeny computation as an integer
linear program. Combining both techniques, we are able to reduce the theoretical cost of
the isogeny computation by up to 13.02% from the state-of-the-art.

The second contribution of this thesis is two software implementations of the isogeny
computation based on our PCS technique. We consider two execution environments for the
implementations: one relies only on the parallelism provided by multi-core processors, and
the other utilizes multi-core processors supporting the Intel’s Advanced Vector eXtensions
(AVX) technology. To our best knowledge, we are the first to utilize both parallelization
technologies for the isogeny computation. Also, to achieve effective implementations, we
modify PCS for each execution environments and equip both implementations with a syn-
chronization handling technique. The implementation results show up to 14.36% speed-up
for the first implementation and up to 34.05% speed-up for the second implementation.

The third contribution of this thesis is two applications of using learning-based opti-
mizations to speed-up the parallel isogeny computation. We consider the genetic algorithm
and the reinforcement learning algorithm and detail our design rationale when instanti-
ating both algorithms for our problem. From experimental results, the genetic algorithm
is able to find a better approach for the isogeny computation. The approach found is
nontrivial and is up to 9.95% faster than human’s heuristic. On the other hand, the re-
inforcement learning lags PCS by as small as 2.73%. We use the experimental results
of the reinforcement learning to argue that PCS may be nearly or even optimal for the
computation.
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Chapter 1

Introduction

Cryptography plays an important role in protecting the communication system and secur-
ing information from malicious adversaries. One particular type of cryptosystems called
public-key cryptosystems allows us to exchange or verify information without the need of
shared secrets. Two well-known public-key cryptosystems are the RSA proposed in 1978
by Rivest, Shamir, and Adleman [79], whose security is based on the integer factoriza-
tion problem, and elliptic curve cryptosystems (ECC) proposed independently in 1985 by
Koblitz [52] and Miller [69], whose security is based on the elliptic curve discrete logarithm
problem.

However, since the publication of Shor’s algorithm [86], both RSA and ECC have been
considered to be insecure against future quantum computers. With continual progress in
the design of quantum computers, researchers in cryptography have to consider other hard
problems as bases for their cryptosystems. Those cryptosystems which are constructed
to be resistant against quantum attacks are called quantum-resistant, or post-quantum,
cryptosystems. Currently, research in post-quantum cryptography focuses on six different
directions [9, 72]: code-based cryptography, hash-based cryptography, isogeny-based cryp-
tography, lattice-based cryptography, multivariate polynomial cryptography, and secret-
key cryptography.

Isogeny-based cryptography is much newer than other post-quantum cryptographic
schemes, specifically, those based on codes and lattices. Isogeny-based cryptosystems were
first proposed by Couveignes in 1996 [25] and were later independently discovered by
Rostovtsev and Stolbunov in 2006 [82, 88]. Recent isogeny-based cryptographic schemes
include hash functions [17, 26], the Supersingular Isogeny Diffie-Hellman (SIDH) key ex-
change [45], the Supersingular Isogeny Key Encapsulation (SIKE) mechanism [44], the
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Commutative SIDH (CSIDH) [15], Verifiable Delay Functions (VDFs) [19, 32], and the
Short Quaternion and Isogeny Signature (SQISign) scheme [31]. We note that a key-
recovery attack exploiting the auxiliary elliptic-curve points of SIDH/SIKE has recently
rendered SIDH/SIKE completely insecure [14, 64, 81], but there is no known way to apply
similar attacks to the general isogeny problem.

1.1 Motivation

The computation to find the curve and point images of isogenies, required by many cryp-
tosystems, is time-consuming. There have been various proposals (see below) to speed-up
the computation to obtain low-latency implementations of those protocols. Also, the speed-
up is of interest for VDFs. A VDF is a function that cannot be computed in less time than
a prescribed delay. Thus, the function must crucially be as sequential as possible, in the
sense that there should not exist any effective parallelization technique that yields a sig-
nificant acceleration in its computation. In this work, we consider the amount of effective
parallelization obtained from isogeny computations, which can be useful for a parameter
selection in isogeny-based VDFs. Our focus is on the computation of large smooth-degree
isogenies with degree ℓe, where ℓ is typically a small prime.

It is known that the best way of performing this task is through the computation
of a sequence of degree-ℓ isogenies using Vélu-like formulas and point multiplications by
[ℓ]. The first work which considered this problem is by De Feo et al. [30]. The authors
started with an abstraction of the computation called a strategy and associated a cost
with it. The cost of a strategy theoretically represents the execution time of the isogeny
computation corresponding to that strategy when it is implemented. In their paper, a
dynamic programming equation for mathematically constructing a strategy with the least
cost, called an optimal strategy, is proposed. These optimal strategies are then utilized
in many implementations to reduce execution times [59, 68]. Apart from this, several
techniques were introduced to speed-up isogeny computation taking into account various
arithmetic aspects of the underlying field [5, 23, 29, 84].

In order to speed-up the computation, one can also adopt a technology especially de-
signed for exploiting paralellism, such as vector instructions of Intel’s Advanced Vector
eXtensions (AVX). By these special instructions, multiple operations can be performed
simultaneously on vectors. For the latest generation of AVX, called AVX-512, each vector
(consisting of an array of data) is of length 512 bits and can be operated as eight 64-bit
elements, meaning that eight 64-bit operations can be performed within a similar time as
a single 64-bit operation. The advantages of AVX-512 have been exploited to speed-up the

2



isogeny computation by a few works [20, 56]. In [20], the authors proposed optimizations
in several layers, including base-field arithmetic, extension-field arithmetic, elliptic curve
arithmetic, and isogeny computation. Combining all those techniques, the execution time
of their implementation is 2.40 times faster compared to that of [68].

To further improve the speed of the isogeny computation, many researchers [16, 57, 58]
turned to multi-core platforms, on which multiple operations can be performed simultane-
ously on different cores. We note that the use of vector instructions is somewhat similar to
the multi-core setting, but in the former, the same instruction is performed on all vector
elements. As the execution environment changes, strategies and the cost function have to
be revised accordingly. The earliest work that analyzes strategies and the cost functions
specifically for the multi-core setting is due to Hutchinson and Karabina [42]. Their main
contributions are a formalization of a parallel isogeny computation on multi-core platforms
called per-curve parallel (PCP) and a dynamic programming algorithm constructing opti-
mal strategies under this PCP parallel computation. The experimental results show that,
in the multi-core setting, optimal strategies under PCP lead to lower costs compared to
original optimal strategies of [30] designed for serial computation. This implies that serial
optimal strategies of [30] are not necessarily optimal in the multi-core environment. Look-
ing at the experimental results, the theoretical costs of optimal strategies under PCP are
up to 24%, 40%, and 51% cheaper than the costs of optimal strategies of [30] when the
number of cores is two, four, and eight, respectively. And when implementing the compu-
tation on a three-core platform using the techniques of [42] along with other optimizations,
Cervantes-Vázquez et al. [16] could achieve more than 35% speed-up in the execution
time compared to the serial implementation. These results clearly show an impact on the
speeding-up of isogeny computation for multi-core platforms at the strategy-level.

Apart from PCP, [42] also proposed another parallelization technique called consecutive-
curve parallel (CCP), which can be considered as an enhanced version of PCP. From their
experiments, costs of strategies under CCP are moderately less than those under PCP.
Nonetheless, to the best of our knowledge, no software and hardware implementation
utilizes CCP for the computation.

1.2 Research Problem

Although speeding-up the large smooth-degree isogeny computation at the strategy-level
is important, there is no work that attempts to do so beyond PCP and CCP. This thesis
studies the problem of constructing and parallelizing strategies for the large smooth-degree
isogeny computation at the lowest cost/latency possible.
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1.3 Contributions

The study of this thesis results in three main contributions:

Precedence-Constrained Scheduling (PCS) Technique. We propose our novel tech-
nique of computing the cost of a strategy in the multi-core setting called precedence-
constrained scheduling (PCS), which is by transforming a strategy into a precedence-
constrained scheduling problem. Then, two scheduling algorithms—Hu’s and Coffman-
Graham’s algorithms—are applied to evaluate the strategy. In addition, we formalize the
optimization problem as an integer linear program (ILP). Since the resulting ILP is large
and cannot be solved efficiently, we construct strategies by combining the ILP solutions
for smaller problems. The experimental results when integrating PCS and ILP show a
strategy cost reduction by up to 13.02%, compared to those from [42].

Two Parallel and Vectorized Implementations of PCS. We present two software
implementations of the large smooth-degree isogeny computation, based on our proposed
PCS parallelization. The first implementation solely considers multi-core parallelism, while
the second implementation considers both multi-core parallelism and vectorization technol-
ogy. To the best of our knowledge, this is the first time that two parallelization technologies
are utilized together for the isogeny computation. We provide analyses and modifications
on how to effectively apply our PCS to the unique execution environment of each implemen-
tation. From our benchmarkings, the execution times of our first implementation are up to
14.36% faster than those from [16] and the execution times of our second implementation
are up to 34.05% faster than those from [20, 68].

Two Applications of Learning-Based Optimizations. We provide two applications
of learning-based optimizations—genetic algorithms and reinforcement learning—to the
problem of constructing and evaluating strategies in the multi-core setting, respectively,
in order to achieve less cost. We discuss some possible design options that can be used
for the instantiations of these learning-based algorithms and give our design rationale on
how we select such options. Via experimental results, the genetic algorithm succeeds in
constructing strategies with lower cost compared to the heuristic provided by humans. The
cost can be reduced by up to 9.95% and the performance of the genetic algorithm tends
to be better when the number of cores is larger. Regarding the reinforcement learning, it
lags PCS for strategy evaluation. Nevertheless, the results of the reinforcement learning
are as small as 2.73% close to those from PCS, and we argue that PCS may be nearly or
even optimal for strategy evaluation.
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1.4 Applicability of Our Contributions

We would like to emphasize that our proposals in this thesis are general frameworks which
can be applied to other settings involving the computation of large smooth-degree isogeny.
We only consider SIKE, specifically SIKEp751, as our case study since SIDH/SIKE were
the main focus of the community and a high volume of research work and implementations
were presented compared to other recent isogeny-based cryptosystems. Below we briefly
discuss some possibilities of applying our contributions to other isogeny-based schemes and
implementation settings. More extensive discussion can be found in Section 5.4.

CSIDH. In terms of implementation, the main difference between SIDH and CSIDH
is isogeny degrees that need to be computed: SIDH works on degree-ℓe isogeny while
CSIDH works on degree-ℓ1ℓ2 · · · ℓn isogeny. Despite this difference, the computation of
both isogenies can be formulated similarly using the idea of strategies. Since this thesis is
interested in strategy-level optimization for the computation, we strongly believe that our
proposed frameworks have a potential to be adapted for the setting of CSIDH.

SQISign. Recently, the National Institute of Standards and Technology (NIST) has
called for additional digital signature proposals to be considered in the post-quantum
cryptography standardization process. Among all the submissions, SQISign is the only
protocol based on isogeny, and its optimization in various aspects is expected to receive
considerable attention from the research community. The source code of the NIST sub-
mission of SQISign shows the use of a strategy for its isogeny computation, and hence our
proposed techniques can potentially optimize SQISign as well.

Implementations with Large Number of Cores. The implementations presented
in this thesis considered processors with up to four cores due to the specification of our
machines. Nonetheless, the experimental and implementation results suggest greater speed-
up when utilizing processors with more cores. We note that this may result in a decrease in
the efficiency of the implementation, leading to a trade-off between the number of additional
cores used and the incremental speed-up to be achieved.

Hardware Implementations. We also expect the applicability of our contributions to
hardware implementations. Because our techniques are high-level (i.e., strategy-level) opti-
mizations, they are not dependent on the implementation technology. Nevertheless, by the
unique characteristics of hardware design, some modifications to our proposed algorithms
may be required, offering opportunities for a hardware/software co-design.

5



1.5 Organization

The rest of the thesis is organized as follows:

• Chapter 2 provides some background regarding supersingular elliptic curves, their
arithmetics, and isogenies.

• Chapter 3 explains how large smooth-degree isogenies can be computed. This chapter
also reviews the optimal strategy for the single-core setting reported in [30], and the
state-of-the-art for the multi-core setting, PCP and CCP, from [42].

• Chapter 4 proposes our first contribution which are PCS and ILP techniques.

• Chapter 5 presents our second contribution which are two parallel and vectorized
implementations of PCS.

• Chapter 6 details our third contribution which are two applications of learning-based
optimizations to the parallel isogeny computation.

• Chapter 7 concludes the thesis and suggests directions for future works.
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Chapter 2

Preliminaries

In this chapter, we review some preliminaries on supersingular elliptic curves and isogenies.

2.1 Elliptic Curves

2.1.1 Curve Equations and Arithmetics

We start with the definitions of elliptic curves and their rational points from [38] as follows.

Definition 2.1 (Elliptic curve and F -rational points). An elliptic curve E over a field F
is defined by

E/F : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

where a1, a2, a3, a4, a6 ∈ F and ∆ ̸= 0, where ∆ is the discriminant of E defined by

∆ = −d22d8 − 8d34 − 27d26 + 9d2d4d6,

d2 = a21 + 4a2,

d4 = 2a4 + a1a3,

d6 = a23 + 4a6,

d8 = a21a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a24.

The set of F -rational points on E is

E(F ) = {(x, y) ∈ F × F : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6} ∪ {∞}

where ∞ is the point at infinity.
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Definition 2.2 (Simplified Weierstrass curve). For a field F whose characteristic is not 2
or 3, an elliptic curve over F can be defined by

E/F : y2 = x3 + ax+ b

where a, b ∈ F and ∆ = −16(4a3 + 27b2) ̸= 0.

Although the simplified Weierstrass curve is commonly known, various isogeny-based
cryptosystems consider another curve called Montgomery curve as it leads to efficient
arithmetic implementations [11]. Below is the definition from [24].

Definition 2.3 (Montgomery curve). For a field F whose characteristic is not 2, a Mont-
gomery curve over F is an elliptic curve defined by

E(a,b)/F : by2 = x3 + ax2 + x

where a, b ∈ F and b(a2 − 4) ̸= 0.

The set E(a,b)(F ) forms an abelian group under an operation + as described below.
Here, ∞ is the identity of the group. When it is clear from the context or the variables a
and b are not relevant, we write E(a,b) and E as shorthand notations for E(a,b)(F ).

1. Identity : For all P ∈ E(a,b), P +∞ =∞+ P = P .

2. Negatives : If P = (x, y) ∈ E(a,b), then P + (−x, y) = ∞. The point (−x, y) ∈ E(a,b)

is denoted by −P . Note that −∞ =∞.

3. Point addition: Let P = (x1, y1) ∈ E(a,b) and Q = (x2, y2) ∈ E(a,b) with P ̸= ±Q.
Then, P +Q = (x3, y3) where

x3 = b

(
y2 − y1
x2 − x1

)2

− x1 − x2 − a and y3 =

(
y2 − y1
x2 − x1

)
(x1 − x3)− y1.

4. Point doubling : Let P = (x1, y1) ∈ E(a,b) with P ̸= −P . Then, [2]P = (x3, y3) where

x3 = b

(
3x2

1 + 2ax1 + 1

2by1

)2

− 2x1 − a and y3 =

(
3x2

1 + 2ax1 + 1

2by1

)
(x1 − x3)− y1.

From above, the formulas for point addition and point doubling involve field inversions,
which may be considered time-consuming. To avoid such computations, elliptic curves and
points can be represented in projective form.
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Definition 2.4 (Projective form of Montgomery curve). The projective form of a Mont-
gomery curve E(a,b) is obtained by replacing (x, y) by (X/Z, Y/Z) and (a, b) by (A/C,B/C).
As a result, the projective form is defined by

E(A:B:C)/F : BY 2Z = CX3 + AX2Z + CXZ2

where (x, y) ∈ E(a,b) is represented as (X : Y : Z) ∈ E(A:B:C) and ∞ is represented as
(0 : 1 : 0). Here, (X : Y : Z) is called a projective point.

Under the projective form, the formulas for point pseudo-addition and point pseudo-
doubling can be expressed, without field inversions, using (X : Z) and (A : C) coordinates.
The computations are as follows:

• Point pseudo-addition: Let P = (X1 : Z1) ∈ E(A:C), Q = (X2 : Z2) ∈ E(A:C), and
R = P −Q = (X3 : Z3) ∈ E(A:C) with P ̸= ±Q. Then, P +Q = (X4 : Z4) where

X4 = Z3[(X1 − Z1)(X2 + Z2) + (X1 + Z1)(X2 − Z2)]
2,

Z4 = X3[(X1 − Z1)(X2 + Z2)− (X1 + Z1)(X2 − Z2)]
2.

• Point pseudo-doubling : Let P = (X1 : Z1) ∈ E(A:C) with P ̸= −P . Then, [2]P =
(X2 : Z2) where

X2 = 4C(X2
1 − Z2

1)
2,

Z2 = 4X1Z1(4(A+ 2C)X1Z1 + 4C(X1 − Z1)
2).

2.1.2 Point Multiplication

By the group law, we define the following definition of point multiplication.

Definition 2.5 (Point multiplication). Let P ∈ E and ℓ ∈ Z+. Then,

[ℓ]P = P + P + . . .+ P︸ ︷︷ ︸
ℓ times

, [0]P =∞, [−ℓ]P = −[ℓ]P.

A naive algorithm of performing ℓ additions of P to ∞ is not polynomial-time in the
size of ℓ, which is b = log2(ℓ) bits. In this subsection, we describe some polynomial-
time algorithms which perform point multiplication. For these algorithms, let the binary
representation of ℓ be ℓb−1ℓb−2 · · · ℓ0.
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The first algorithm is the double-and-add algorithm [38], which is similar to the square-
and-multiply algorithm for modular exponentiation. Algorithm 2.1 below shows the com-
putation when considering the binary representation of ℓ from left to right (i.e., from ℓb−1

to ℓ0). The algorithm can be modified to perform from right to left in a similar manner.

Algorithm 2.1: Double-and-add algorithm for point multiplication.

Input : A point P and a positive integer ℓ = ℓb−1ℓb−2 · · · ℓ0
Output: [ℓ]P

1 Q←∞
2 for i = b− 1 down to 0 do
3 Q← [2]Q
4 if ℓi = 1 then Q← Q+ P

5 return Q

Algorithm 2.1 works correctly but is subjected to side-channel attacks since the number
of times point addition in Line 4 is performed depends on ℓ. The power consumed during
the calculation can be measured and provide information whether Line 4 is performed,
resulting in a power attack [54]. Likewise, the timing information of the calculation can
be utilized, resulting in a timing attack [53]. To counter these attacks, we consider the
following well-known algorithm called the Montgomery ladder algorithm [71].

Algorithm 2.2: Montgomery ladder algorithm for point multiplication.

Input : A point P and a positive integer ℓ = ℓb−1ℓb−2 · · · ℓ0
Output: [ℓ]P

1 Q0 ←∞
2 Q1 ← P
3 for i = b− 1 down to 0 do
4 if ℓi = 0 then
5 Q1 ← Q0 +Q1

6 Q0 ← [2]Q0

7 else
8 Q0 ← Q0 +Q1

9 Q1 ← [2]Q1

10 return Q0

It is not hard to prove by induction that Q0 = [ℓb−1ℓb−2 · · · ℓi]P and Q1 = Q0 +P after
considering ℓi in the for loop. The algorithm is also applicable with point pseudo-addition
of Montgomery curve, as the difference of Q0 and Q1 (which is P ) is always available.
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In addition to point multiplication [ℓ]P , we are interested in the computation of P+[ℓ]Q.
The method of firstly computing [ℓ]Q and then adding it to P works for normal point
addition but does not work for point pseudo-addition, since we need the difference of P
and [ℓ]Q. De Feo et al. in 2014 [30] proposed the following three-point Montgomery ladder,
shown in Algorithm 2.3, to perform such calculation.

Algorithm 2.3: Three-point Montgomery ladder algorithm to compute P +[ℓ]Q.

Input : Three points P , Q, R = P −Q and a positive integer ℓ = ℓb−1ℓb−2 · · · ℓ0
Output: P + [ℓ]Q

1 A←∞
2 B ← Q
3 C ← P
4 for i = b− 1 down to 0 do
5 if ℓi = 0 then
6 C ← C + A
7 B ← B + A
8 A← [2]A

9 else
10 C ← C +B
11 A← A+B
12 B ← [2]B

13 return C

Similar to (two-point) Montgomery ladder, one can show that A = [ℓb−1ℓb−2 · · · ℓi]Q,
B = A+Q, and C = A+P after considering ℓi in the for loop. For point pseudo-addition
in Lines 6 and 10, one can do so because the difference of A and C (which is P ) and the
difference of B and C (which is P −Q = R) are both available.

Example 2.6. We give an example of a computation of P + [77]Q, given three points P ,
Q, and R = P −Q, as shown in Table 2.1. The binary representation of 77 is 10011012.

i 6 5 4 3 2 1 0
ℓi 1 0 0 1 1 0 1

A ∞ Q [2]Q [4]Q [9]Q [19]Q [38]Q [77]Q
B Q [2]Q [3]Q [5]Q [10]Q [20]Q [39]Q [78]Q
C P P +Q P + [2]Q P + [4]Q P + [9]Q P + [19]Q P + [38]Q P + [77]Q

Table 2.1: A computation of P + [77]Q using the three-point Montgomery ladder.
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We note also that there were attempts to parallelize point multiplication using several
techniques. This is beyond the scope of this work, and we refer the interested readers to
[74, 78] for more details.

Finally, we define some terminologies related to point multiplication. When the field
F is finite (i.e., F = Fpk for some prime p and k ∈ Z+), the set E(Fpk) is also finite. The
number of points in E(Fpk), denoted by #E(Fpk), is called the order of E over Fpk . The
order of a point P ∈ E(Fpk), denoted by ord(P ), is the smallest positive integer d such
that [d]P =∞. We also define an ℓ-torsion subgroup following [87].

Definition 2.7 (ℓ-torsion subgroup). Let E be an elliptic curve and ℓ be a positive integer.
The ℓ-torsion subgroup of E is defined as E[ℓ] = {P ∈ E : [ℓ]P =∞}.

2.1.3 Supersingular Elliptic Curves

The supersingularity of an elliptic curve is defined by its order as follows.

Definition 2.8 (Supersingularity). An elliptic curve E over Fpk is supersingular if p divides
pk + 1−#E(Fpk). Otherwise, E is non-supersingular.

Given a prime p, Bröker [13] presented how to efficiently construct a supersingular
elliptic curve E over Fp2 with #E(Fp2) = (p ± 1)2. This is very useful as we are able to
guarantee the order of E(Fp2). We note that it is not known in general how to efficiently
construct an elliptic curve with a given order.

2.2 Isogenies

The definition of an isogeny and its properties are given in [87].

Definition 2.9 (Isogeny). Let E and E ′ be elliptic curves over F and their identity el-
ements denoted by ∞ and ∞′, respectively. An isogeny from E to E ′ is a morphism
ϕ : E → E ′ satisfying ϕ(∞) = ∞′. Two elliptic curves E and E ′ are isogenous if there is
a surjective isogeny from E to E ′.

To specify an isogeny from an elliptic curve E, one can specify its kernel, which is a
finite subgroup of E, as a result of the following proposition.

Proposition 2.10. Let E be an elliptic curve and let Φ be a finite subgroup of E. There
exist a unique elliptic curve E ′ = E/Φ and a separable isogeny ϕ : E → E ′ satisfying
kerϕ = Φ. The degree of ϕ, denoted by deg ϕ, is equal to the size of kerϕ.
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2.2.1 Vélu’s Formulas

In [93], Vélu presented an explicit formula describing the equation of the image curve E ′

and computing ϕ(P ) for P ∈ E, given E and Φ. In this work, we focus on the case where
kerϕ is generated by a point R ∈ E of prime order (i.e., kerϕ = ⟨R⟩). We provide below
the Vélu’s formulas as described in [94].

Theorem 2.11 (Vélu’s formulas). Given an elliptic curve E/F : y2 + a1xy + a3y =
x3 + a2x

2 + a4x+ a6 and a point R ∈ E(F ) such that ord(R) is prime, the equation of the
image curve E ′ and the explicit formula of ϕ : E → E ′ where kerϕ = ⟨R⟩ can be computed
as follows:

1. If ord(R) = 2, let S = {R}. Otherwise, let S =
{
[i]R : 1 ≤ i ≤ ord(R)−1

2

}
.

2. For Q = (xQ, yQ) ∈ S, define the following quantities:

fQ,1 = 3x2
Q + 2a2xQ + a4 − a1yQ,

fQ,2 = −2yQ − a1xQ − a3,

fQ,3 =

{
fQ,1 if [2]Q =∞,

2fQ,1 − a1fQ,2 otherwise,

fQ,4 = (fQ,2)
2.

3. Let v =
∑
Q∈S

fQ,3 and w =
∑
Q∈S

(fQ,4 + xQfQ,3), the equation of E ′ is

E ′/F : y2 + a1xy + a3y = x3 + a2x
2 + (a4 − 5v)x+ (a6 − (a21 + 4a2)v − 7w).

4. For P = (x, y) ∈ E(F ), the formulas for ϕ(P ) = (x′, y′) are

x′ = x+
∑
Q∈S

(
fQ,3

x− xQ

+
fQ,4

(x− xQ)2

)
,

y′ = y −
∑
Q∈S

(
fQ,4

2y + a1x+ a3
(x− xQ)3

+ fQ,3
a1(x− xQ) + y − yQ

(x− xQ)2
+

a1fQ,4 − fQ,1fQ,2

(x− xQ)2

)
.

There is an alternative approach to compute an isogeny due to Kohel [55]. We refer
the interested readers to the mentioned work for more details.
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Example 2.12. Considering the isogeny ϕ from E/F11 : y
2 = x3+x+10 with kerϕ = ⟨R⟩

where R = (9, 0) ∈ E(F11), we follow Vélu’s formulas to compute the equation of E ′ and
ϕ(P ) where P = (4, 1):

1. Since ord(R) = 2, we let S = {(9, 0)}.

2. For Q = (9, 0), we have fQ,1 = 2, fQ,2 = 0, fQ,3 = 2, and fQ,4 = 0, respectively.

3. We have v = 2, w = 7, and thus E ′ is defined by y2 = x3 + 2x+ 5.

4. Finally, for P = (4, 1), we obtain ϕ(P ) = (8, 4) ∈ E ′/F11.

Example 2.13. Considering the isogeny ϕ from E/F11 : y
2 = x3+x+10 with kerϕ = ⟨R⟩

where R = (1, 1) ∈ E(F11), we follow Vélu’s formulas to compute the equation of E ′ and
ϕ(P ) where P = (4, 1):

1. Since ord(R) = 5, we let S = {R, [2]R} = {(1, 1), (2, 8)}.

2. For Q = (1, 1), we have fQ,1 = 4, fQ,2 = 9, fQ,3 = 8, and fQ,4 = 4, respectively.
For Q = (2, 8), we have fQ,1 = 2, fQ,2 = 6, fQ,3 = 4, and fQ,4 = 3, respectively.

3. We have v = 1, w = 1, and thus E ′ is defined by y2 = x3 + 7x+ 3.

4. Finally, for P = (4, 1), we obtain ϕ(P ) = (1, 0) ∈ E ′/F11.

The computation of Vélu’s formula takes Õ(ℓ) field operations where ℓ = deg ϕ. A more
recent work of Bernstein et al. [10] gives an improved formula called

√
élu’s formula which

takes Õ(
√
ℓ) field operations. When considering implementation aspects, Adj et al. [1]

applied the Karatsuba algorithm to
√
élu’s formula, giving a running time of O(

√
ℓlog2 3).

In this work, we call a task of finding (ϕ,E ′) from (E,Φ) as isogeny construction and a
task of computing ϕ(P ) as isogeny evaluation.

2.2.2 Isogeny-Based Cryptosystems

Although it is simple to explicitly describe ϕ given E and Φ, it is conjectured that finding ϕ
or Φ = kerϕ given E and E ′ is computationally infeasible, when deg ϕ is sufficiently large.
Below we define a computational problem which the security proofs of several isogeny-based
cryptosystems are based on.
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Definition 2.14 (Isogeny problem). Given two supersingular elliptic curves E and E ′

which are isogenous, find the description of ϕ or its kernel Φ such that ϕ : E → E ′ = E/Φ
is the isogeny between two given curves.

As previously mentioned, various cryptosystems can be built based on isogenies. For
instance, hash functions, key exchanges, VDFs, and signature schemes. Our work mainly
considers the parameter sets of SIKE, which has recently been rendered completely inse-
cure. The descriptions of SIDH and SIKE are provided in Appendix A for reference. In
Chapter 5, we explain how to generalize our work to other parameter sets defined by other
isogeny-based cryptosystems that are not vulnerable to the recent attacks.

We end this chapter by showing how implementations of isogeny-based cryptosystems
can be described by several abstraction layers. The two lowest layers are the prime-field
and extension-field arithmetic layers for Fp and Fp2 , respectively. Above these layers is
the layer for elliptic curve arithmetic, including computations of point multiplication and
(small-degree) isogeny. On top of that, we have the layer for large smooth-degree isogeny
computation, which is the main focus of this work. Finally, the highest layer is the protocol
layer. We note that each layer can be implemented and optimized independently. These
abstraction layers can be illustrated as in Figure 2.1.

Isogeny-Based Cryptosystem

Large Smooth-Degree Isogeny Computation

Elliptic Curve Arithmetic
(Point Multiplication & (Small-Degree) Isogeny Computation)

Extension-Field Arithmetic

Prime-Field Arithmetic

Figure 2.1: Layers of abstraction for implementation of isogeny-based cryptosystem.
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Chapter 3

Computing Large Smooth-Degree
Isogenies

One main operation of isogeny-based cryptosystems is to compute ϕ : E → E/⟨R⟩ for a
point R of order ℓe where ℓ is a small prime and e is a positive integer. This chapter explores
existing works of how ϕ can be computed in the single-core and multi-core settings.

3.1 Computation Paradigm

If one naively computes ϕ using Vélu’s or
√
élu’s formulas mentioned in Subsection 2.2,

then the computation will take Õ(ℓe) or Õ(
√
ℓe) field operations, respectively. Since the

degree of ϕ is smooth, it is best to decompose ϕ as a chain of degree-ℓ isogenies [30]:

ϕ : E = E0
ϕ0−−−→ E1

ϕ1−−−→ E2
ϕ2−−−→ · · · ϕe−2−−−→ Ee−1

ϕe−1−−−→ Ee = E/⟨R⟩

where, for 0 ≤ i < e, Ei+1 = Ei/⟨[ℓe−i−1]Ri⟩, Ri+1 = ϕi(Ri), and R0 = R. We note that
R′

i = [ℓe−i−1]Ri is required in order to compute ϕi and Ei+1. This suggests the following
procedure given in Algorithm 3.1 for computing ϕ0, . . . , ϕe−1.

We can describe Algorithm 3.1 using a graph with e(e+1)
2

vertices arranged in e columns
and e rows as shown in Figure 3.1(a). Each vertex represents a point where points in each
column are on the same elliptic curve. The vertex at the upper left corner represents the
point R0 and the leftmost column are points on E0. The blue top-to-bottom arrows depict
point multiplications by [ℓ] in Line 4 of the algorithm and the red left-to-right arrows depict
isogeny evaluations in Line 6. Here, ϕe−1, Ee, and Re are omitted.
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Algorithm 3.1: Multiplication-based algorithm for computing degree-ℓe isogeny.

Input : A supersingular elliptic curve E and a point R of order ℓe

Output: ϕ0, . . . , ϕe−1 and E/⟨R⟩
1 E0 ← E; R0 ← R
2 for i = 0 to e− 1 do
3 R′

i ← Ri

4 for j = 1 to e− i− 1 do R′
i ← [ℓ]R′

i

5 Use Vélu’s or
√
élu’s formulas to compute ϕi and Ei+1 from Ei and ⟨R′

i⟩
6 Ri+1 ← ϕi(Ri)

7 return ϕ0, . . . , ϕe−1, Ee

(a) (b)

Figure 3.1: The multiplicative-based and isogeny-based strategies when e = 6.

In Figure 3.1(a), one might notice that R′
1 can also be computed by R′

1 = ϕ0([ℓ
e−2]R0).

This suggests another way of computing ϕ0, . . . , ϕe−1 as shown in Figure 3.1(b). In fact,
there are several ways to compute smooth degree isogenies, as we describe next. For the
above graphs, Figure 3.1(a) is referred to in [30] as multiplicative-based algorithm since it
performs as many point multiplications as possible, while Figure 3.1(b) is referred to as
isogeny-based algorithm as it performs as many isogeny evaluations as possible.

By considering how each point in the graph can be computed from other points, we
define the graph Te following [30] which shows all possible point multiplications by [ℓ] and
isogeny evaluations among all vertices. For simplicity, vertices are referred by pairs of their
columns and rows, i.e., vertex (i, j) refers to the point [ℓj]Ri in column i and row j.
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Definition 3.1 (Graph of all operations). The graph of all possible operations for com-
puting degree-ℓe isogeny is defined as a directed graph Te = (Ve, Ee) where

• the set of vertices Ve = {(i, j) : 0 ≤ i, j < e; i+ j < e},

• the set of directed edges Ee = Ee,mul ∪ Ee,iso,

• the set of point multiplication Ee,mul = {⟨(i, j), (i, j + 1)⟩ : (i, j) ∈ Ve; i+ j < e− 1},

• the set of isogeny evaluation Ee,iso = {⟨(i, j), (i+ 1, j)⟩ : (i, j) ∈ Ve; i+ j < e− 1}.

A vertex (i, j) ∈ Ve is called a leaf if i+ j = e− 1.

Example 3.2. Below shows the directed graph T6. The directed edges in E6,mul are in blue
and those in E6,iso are in red. The set of leaves is {(0, 5), (1, 4), (2, 3), (3, 2), (4, 1), (5, 0)}.

Figure 3.2: The directed graph T6.

For the rest of this thesis, we will omit all annotations in the graph, showing only
vertices and edges. By definition, the graph Te is a directed acyclic graph (DAG). We say
that a vertex u reaches a vertex v if there exists a path from u to v (i.e., a sequence of
edges ⟨⟨u,w1⟩, ⟨w1, w2⟩, . . . , ⟨wn, v⟩⟩) in a graph. For an instance of T6, (0, 1) reaches (3, 2)
but (1, 4) does not reach (2, 1).

Next, we define a strategy for computing degree-ℓe isogeny as follows.

Definition 3.3 (Strategy). A strategy S for computing degree-ℓe isogeny is a subgraph of
Te containing vertices (0, 0) and all leaves where (0, 0) reaches all leaves. A strategy S is
well-formed if removing any edge from S results in a graph that is not a strategy.
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Example 3.4. Two graphs shown in Figure 3.1 are well-formed strategies. Below shows
three more subgraphs of T6. The graph (a) is not a strategy as (0, 0) does not reach
(3, 2), (b) is a strategy but not well-formed since the edge ⟨(1, 3), (1, 4)⟩ and one in the
set {⟨(3, 1), (4, 1)⟩, ⟨(4, 0), (4, 1)⟩} can be removed. Removing the edges ⟨(1, 3), (1, 4)⟩ and
⟨(3, 1), (4, 1)⟩ from (b) results in (c) which is a well-formed strategy.

(a) (b) (c)

Figure 3.3: Examples of subgraphs of T6.

Example 3.5. Figure 3.4 shows all well-formed strategies for computing degree-ℓ4 isogeny.

Figure 3.4: All well-formed strategies for computing degree-ℓ4 isogeny.

Since strategies that are not well-formed have some unnecessary edges, we will consider
only well-formed strategies in order to find an efficient strategy. We note that any well-
formed strategy gives a valid algorithm to compute degree-ℓe isogeny, and in any well-
formed strategy, a path from (0, 0) to any leaf is unique.
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Now we look at how a strategy can be evaluated which defines the cost, i.e., the compu-
tation time, of a strategy. In this thesis, we consider two settings: the single-core setting as
described in [30] and the multi-core setting as described in [42]. Both works were interested
in the cost of a single point multiplication by [ℓ] (i.e., Q ← [ℓ]P ) and the cost of a single
degree-ℓ isogeny evaluation (i.e., Q ← ϕ(P )). We denote the costs of these operations as
cmul and ciso, respectively.

3.2 Single-Core Setting

When only a single core is provided, we have to perform all operations sequentially. For a
strategy S, let S = (VS , ES) with ES,mul = ES ∩ Ee,mul and ES,iso = ES ∩ Ee,iso. We state the
cost in the single-core setting as follows.

Definition 3.6 (Strategy cost in the single-core setting). The cost of a strategy S in the
single-core setting, denoted by C1(S), is computed by

C1(S) = #ES,mul · cmul +#ES,iso · ciso.

Example 3.7. Consider three strategies for computing degree-ℓ6 isogeny. The cost of the
multiplicative-based strategy (Figure 3.1(a)) is 15cmul+5ciso, the cost of the isogeny-based
strategy (Figure 3.1(b)) is 5cmul+15ciso, and the cost of the strategy given in Figure 3.3(c)
is 9cmul + 9ciso.

When the cost of a strategy is defined, it is natural to ask for a strategy that gives the
least cost. We first state the definition of an optimal strategy.

Definition 3.8 (Optimal strategy). Let cmul and ciso be fixed. A strategy S, computing
degree-ℓe isogeny, is optimal in the single-core setting if for any strategy S ′ computing the
same degree isogeny, we have C1(S) ≤ C1(S ′).

Example 3.9. Let cmul = ciso = 1. Figure 3.5 shows two optimal strategies for computing
degree-ℓ6 isogeny with a cost of 16.

The problem of constructing an optimal strategy given e, cmul, and ciso has been ex-
tensively studied in [30]. We report some lemmas and an algorithm for constructing the
optimal strategy derived from that work. We begin by giving the definition of a canonical
strategy.
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(a) (b)

Figure 3.5: Some optimal strategies for computing degree-ℓ6 isogeny when cmul = ciso = 1.

Definition 3.10 (Canonical strategy). A canonical strategy for computing degree-ℓe isogeny
is defined recursively as follows:

• If e = 1, then T1 is canonical.

• Otherwise, let Sn, where 1 ≤ n < e, be a canonical strategy for computing degree-ℓn

isogeny. If S = (VS , ES) is constructed from Sn = (VSn , ESn) and Se−n = (VSe−n , ESe−n)
by the following steps, then S is canonical.

1. Rename all vertices (i, j) in Sn to (i, j + (e− n)).

2. Rename all vertices (i, j) in Se−n to (i+ n, j).

3. Construct VS = VSn ∪ VSe−n ∪ {(0, j) : 0 ≤ j < e− n} ∪ {(i, 0) : 0 ≤ i < n} and
ES = ESn ∪ ESe−n ∪ {⟨(0, j), (0, j + 1)⟩ : 0 ≤ j < e− n} ∪ {⟨(i, 0), (i+ 1, 0)⟩ : 0 ≤
i < n}.

In brief, a canonical strategy with e leaves can be split into two canonical strategies
with n leaves and n− e leaves. Figure 3.6 depicts the process explained in Definition 3.10.
We note that the number of all possible canonical strategies with e leaves is equal to the
e-th Catalan number Ce =

1
e+1

(
2e
e

)
. Next, we state two lemmas from [30] regarding optimal

strategies and canonical strategies.

Lemma 3.11. All optimal strategies in the single-core setting are canonical.

Lemma 3.12. Let S be an optimal strategy, constructed from Sn and Se−n as in Definition
3.10. Then, Sn and Se−n are optimal strategies.

We note that a canonical strategy is not necessarily optimal.
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Figure 3.6: A canonical strategy for computing degree-ℓe isogeny.

Lemma 3.12 from [30] states the optimal substructure of the problem. As a result,
the cost of an optimal strategy for computing degree-ℓe isogeny can be calculated by the
following recurrence. We abuse the notation C1 by defining C∗

1(e) as the cost of an optimal
strategy with e leaves. The recurrence for C∗

1(e) is

C∗
1(e) = min

1≤n<e
{C∗

1(n) + C∗
1(e− n) + (e− n) · cmul + n · ciso}, C∗(1) = 0

which can be transformed into a dynamic-programming algorithm as given in Algorithm
3.2. In addition, the description of a strategy is also required for an implementation. It
is mentioned in [44] that a canonical strategy S constructed from Sn and Se−n can be
represented by its linear representation L(S), which is the list of e− 1 integers, where

L(S) = [e− n] ∥ L(Sn) ∥ L(Se−n), L(T1) = [ ].

Algorithm 3.2 also provides the linear representation of an optimal strategy.

Example 3.13. The linear representation for the multiplicative-based strategy in Figure
3.1(a) is [5, 4, 3, 2, 1], that for the isogeny-based strategy in Figure 3.1(b) is [1, 1, 1, 1, 1],
that for an optimal strategy in Figure 3.5(a) is [3, 1, 1, 2, 1], and that for another optimal
strategy in Figure 3.5(b) is [2, 2, 1, 1, 1].

3.3 Multi-Core Setting

In this setting, we are provided with K ≥ 2 cores. At first, a K-time speedup from the
single-core setting might be expected. However, since we need to compute R′

i in order to
continue to the next column, the computation is quite restricted and we are not able to
fully utilize all cores at all times during the computation. Nevertheless, having multiple
cores helps us reduce the cost as discussed next.
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Algorithm 3.2: Computing the cost and linear representation of a single-core
optimal strategy for computing degree-ℓe isogeny.

Input : e, cmul, and ciso
Output: The cost and linear representation of an optimal strategy for computing

degree-ℓe isogeny

1 C∗
1[1]← 0; L[1]← [ ]

2 for e′ = 2 to e do
3 C∗

1[e
′]←∞

4 for n = 1 to e′ − 1 do
5 c← C∗

1[n] + C∗
1[e

′ − n] + (e′ − n) · cmul + n · ciso
6 if c < C∗

1[e
′] then

7 C∗
1[e

′]← c
8 L[e′]← [e′ − n] ∥ L[n] ∥ L[e′ − n]

9 return C∗
1[e], L[e]

3.3.1 Computation Model

Before getting into the computation cost, we review the implicit restrictions of the degree-
ℓe isogeny computation. Unlike the single-core setting, timing plays a crucial role here.
Because now we can perform more than one operations at the same time, we have to be
careful of which operations are performed first and when they are finished, as they depend
closely on each other. This is very important for achieving the minimal cost in this setting.
In this thesis, we state two restrictions of how a strategy is evaluated in parallel:

1. To perform a point multiplication by [ℓ] corresponding to an edge ⟨(i, j), (i, j + 1)⟩,
the vertex (i, j) corresponding to the point [ℓj]Ri must have been computed.

2. To perform an isogeny evaluation corresponding to an edge ⟨(i, j), (i + 1, j)⟩, two
vertices (i, j) and (i, e− 1− i) corresponding to the point [ℓj]Ri and R′

i, respectively,
must have been computed.

Even though the computation is restricted, there are still several ways of evaluating a
strategy in parallel. To the best of our knowledge, even finding the optimal cost of a given
strategy in a parallel setting is not an “easy” task, let alone finding an optimal strategy
in the set of all well-formed strategies. We discuss these two problems in more detail in
Chapter 4.
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To have a clearer picture of the problem, we consider the following example of how a
strategy is evaluated. In order to specify which operations are performed at which time,
each edge is labeled with its finish time. The cost of evaluating a strategy is then labeled
on the edge ⟨(e− 2, 0), (e− 1, 0)⟩, which must be performed as the last operation.

Example 3.14. Suppose we are provided with K = 2 cores and let cmul = ciso = 1. In
the strategy below, at time 0, we only have the point R0 corresponding to the vertex
(0, 0). Although we have two cores, the only operation we are able to perform is the edge
⟨(0, 0), (0, 1)⟩, hence we can utilize only one core for this operation. This operation is
finished at time 1 as it takes time cmul = 1. Again, at time 1, we can only take the edge
⟨(0, 1), (0, 2)⟩. We continue in this fashion until the edge ⟨(0, 3), (0, 4)⟩ is done at time 4
and we obtain R′

0. This first part of the evaluation is illustrated in Figure 3.7(a).

(a) (b) (c)

Figure 3.7: Examples of parallel evaluations of a strategy with K = 2.

At time 5, we now have three options: ⟨(0, 0), (1, 0)⟩, ⟨(0, 2), (1, 2)⟩, and ⟨(0, 3), (1, 3)⟩.
Because we have two cores, we can choose up to two operations. In Figure 3.7(b), we
choose the last two. Here, at time 7, we cannot perform ⟨(1, 0), (2, 0)⟩ and ⟨(2, 0), (2, 1)⟩
in parallel as R2 is not yet computed. After performing the remaining operations, the last
operation is done at time 10. Thus, the cost of the evaluation in Figure 3.7(b) is 10.

On the other hand, at time 5 Figure 3.7(c) chooses ⟨(0, 0), (1, 0)⟩ and ⟨(0, 3), (1, 3)⟩. At
time 7, we can then perform two operations ⟨(2, 0), (2, 1)⟩ and ⟨(1, 2), (2, 2)⟩ simultaneously.
This is allowed as all required points are already computed. The cost of the evaluation in
Figure 3.7(c) is only 9.

We point out that among all well-formed strategies and all ways to evaluate them, an
optimal strategy with its optimal evaluation has the cost of 9. This implies that Figure
3.7(c) is one of optimal strategies and evaluations. In Chapter 4, we explain how we (in-
efficiently) obtain this information. Also, we note that the strategy shown in this example
is non-canonical.
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The above example demonstrates that the multi-core setting is much more compli-
cated than the single-core setting. In the rest of this subsection, we present the result of
Hutchinson and Karabina [42] on constructing low-cost strategies and evaluations under
some constraints called per-curve parallel (PCP) and consecutive-curve parallel (CCP).

3.3.2 Per-Curve Parallel

For the purpose of analysis, Hutchinson and Karabina started with a simple evaluation of
a strategy called per-curve parallel (PCP). Under this evaluation,

(i) only operations of the form ⟨(i, j), (i + 1, j)⟩ and ⟨(i, j′), (i + 1, j′)⟩ (i.e., isogeny
evaluations from the same elliptic curve Ei) can be performed in parallel, and

(ii) point multiplications have to be done as the only operation during one time interval.

When there are n isogeny evaluations from Ei, the cost of performing these isogeny
evaluations is ⌈ n

K
⌉ · ciso. Let ES,iso,i = {⟨(i, j), (i + 1, j)⟩ ∈ ES,iso} be the set of isogeny

evaluation edges from Ei in a strategy S, the cost of evaluating S under PCP having K
cores is

CPCP
K (S) = #ES,mul · cmul +

e−2∑
i=0

⌈
#ES,iso,i

K

⌉
· ciso.

Example 3.15. Consider the strategy given in Figure 3.7 with K = 2. Under PCP,
the isogeny evaluations from E0 take time ⌈3

2
⌉ · ciso = 2ciso, those from E1 and E2 take

time ⌈2
2
⌉ · ciso = ciso, and that from E3 takes time ⌈1

2
⌉ · ciso = ciso. Including five point

multiplications performed separately, its cost under PCP is 5cmul+5ciso. We note that the
order in which isogeny evaluations from the same curve are performed does not matter.

Even though PCP does not provide the least cost in the multi-core setting, it allows
an extensive analysis to find an optimal strategy with smallest CPCP

K (S). For example,
when K ≥ e − 1, the only optimal strategy under PCP is isogeny-based with the cost of
(e − 1)cmul + (e − 1)ciso. While not stated in [42], it can be proved that there exists an
optimal strategy under PCP that is canonical. Hence, we can find an optimal strategy
under PCP by finding a least-cost canonical strategy.

Example 3.16. Consider all well-formed strategies for computing degree-ℓ4 isogeny in
Figure 3.4. Under PCP when cmul = ciso = 1 and K = 2, four out of seven strategies shown
in Figure 3.8 are optimal with a cost of 7. Notice that there exists an optimal strategy
that is canonical, but not all optimal strategies are canonical. When K = 3 = e− 1, only
the isogeny-based strategy is optimal with a cost of 6.
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Figure 3.8: All optimal strategies under PCP when cmul = ciso = 1 and K = 2.

Since we can now focus on canonical strategies, we can make use of their substructures.
The optimal substructure of the problem was exploited in [42]. This time, however, the
subproblem is slightly different from its original problem. Referring to Definition 3.10 and
Figure 3.6, some red edges above Sn can be performed in parallel with operations in Sn.
Hutchinson and Karabina took this into account and presented a recurrence describing
CPCP
K (S) as follows. Again, we abuse the notation and use CPCP∗

K (e, k) to denote the cost
under PCP for an optimal canonical strategy with e leaves and we can use only k out of
K cores in the first evaluation for the edges in all ES,iso,i, 0 ≤ i < e− 1.

Theorem 3.17. Let K, cmul, and ciso be fixed. The cost of an optimal strategy under
PCP for computing degree-ℓe isogeny is CPCP∗

K (e,K), which can be computed recursively
using the following recurrence

CPCP∗

K (e, k) =
0 if e = 1,

min
1≤n<e

{CPCP∗

K (n, k − 1) + CPCP∗

K (e− n, k) + (e− n) · cmul + ciso} if e > 1 and k > 0,

CPCP∗

K (e,K) + (e− 1) · ciso otherwise.

We briefly describe the idea behind this recurrence. For the base case of e = 1, the
cost is obviously 0 since T1 has no edges. For the second case, we split a strategy with
e leaves in two with n and e − n leaves following Definition 3.10. This time, the cost is
computed as a sum of four parts shown in Figure 3.9. For each column of Sn, there is
an edge above it which is performed by one core, thus this leaves k − 1 cores for the first
parallel execution of each column of Sn. On the other hand, Se−n is not affected and still
has k cores for its first parallel execution of each column. The single red edge connecting
the front and back parts takes time ciso as we can perform it in the first parallel execution
of that column (since k > 0) and there is no more edge in that column. The blue edges
take time (e − n) · cmul as usual. For the third case where e > 1 and k = 0, we have no
core left and each column of S is performed in the second parallel execution. The cost of
the first parallel execution is ciso for each of the e− 1 columns.
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Figure 3.9: The cost CPCP∗

K (e, k) when e > 1 and k > 0.

Theorem 3.17 can be translated into a dynamic-programming algorithm as shown in
Algorithm 3.3. It outputs the cost and the linear representation of an optimal strategy
under PCP that is canonical. We note that in the case of K = 1, CPCP∗

K (e,K) equals
C∗
1(e). In addition, an algorithm calculating the cost under PCP was also presented in [16],

however the results are suboptimal.

Algorithm 3.3: Computing the cost and linear representation of an optimal
strategy for computing degree-ℓe isogeny with K cores under PCP.

Input : K, e, cmul, and ciso
Output: The cost and linear representation of an optimal strategy for computing

degree-ℓe isogeny with K cores under PCP

1 for e′ = 1 to e do
2 for k = 1 to K do
3 if e′ = 1 then CPCP∗

K [e′][k]← 0; L[e′][k]← [ ]; continue
4 CPCP∗

K [e′][k]←∞
5 for n = 1 to e′ − 1 do
6 if k > 1 then c← CPCP∗

K [n][k− 1]+CPCP∗

K [e′−n][k] + (e′−n) · cmul + ciso
7 else c← CPCP∗

K [n][K] + CPCP∗

K [e′ − n][k] + (e′ − n) · cmul + n · ciso
8 if c < CPCP∗

K [e′][k] then
9 CPCP∗

K [e′][k]← c
10 if k > 1 then L[e′][k]← [e′ − n] ∥ L[n][k − 1] ∥ L[e′ − n][k]
11 else L[e′][k]← [e′ − n] ∥ L[n][K] ∥ L[e′ − n][k]

12 return CPCP∗

K [e][K], L[e][K]
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3.3.3 Consecutive-Curve Parallel

Under PCP, we cannot perform any operation in ES,iso,i+1 while performing operations in
ES,iso,i, even though it is allowed to do so and some cores are idle. By this observation,
[42] considers another constraint called consecutive-curve parallel (CCP). Let ES,mul,i =
{⟨(i, j), (i, j + 1)⟩ ∈ ES,mul} be the set of point multiplication by [ℓ] edges for points in
Ei in a strategy S. Under CCP, while performing operations in ES,iso,i, we are allowed to
perform operations in ES,iso,i+1 and ES,mul,i+1 if they are ready to be done.

Because it is more flexible to perform operations in parallel under CCP, it is thus
harder to analyze a strategy under this constraint. For this reason, [42] decided to con-
sider only canonical strategies under CCP. As discussed before, operations in ES,iso,i+1 can
be performed after R′

i+1 is computed. In the case that R′
i+1 is computed by point multipli-

cation edges in ES,mul,i+1, all operations in ES,mul,i+1 must be done first to obtain R′
i+1. By

this, CCP use a greedy approach to choose which operations will be performed first while
considering operations in ES,iso,i as follows:

(i) Operations in ES,iso,i are performed from bottom to top.

(ii) If an operation in ES,mul,i+1 is available, then perform one operation in ES,mul,i+1 and
K − 1 operations in ES,iso,i.

(iii) If operations in ES,mul,i+1 are all done or there is no operation in ES,mul,i+1, start
performing operations in ES,iso,i+1 as soon as all in ES,iso,i is finished.

(iv) If operations in ES,iso,i are all done before ES,mul,i+1 is exhausted, then perform the
remaining operations in ES,mul,i+1 before starting ES,iso,i+1.

We provide an example below for a better understanding of CCP.

Example 3.18. In Figure 3.10, we find the cost of the following strategy under (a) PCP
and (b) CCP with K = 2 and cmul = ciso = 1. The cost under PCP is 25. For CCP,
at time 8, two operations in ES,iso,0 at the bottom are performed. At time 9 and 10,
following (ii), one operation from ES,iso,0 and ES,mul,1 are done. At time 11, following (iv),
the last operation in ES,mul,1 is computed. At time 17, following (iii), ⟨(2, 0), (3, 0)⟩ and
⟨(3, 3), (4, 3)⟩ are performed simultaneously. The same happens at time 19. Following the
greedy approach above, the cost under CCP is 22, which is less than that under PCP.

Given a canonical strategy S, its cost under CCP, denoted by CCCP
K (S), can be computed

by Algorithm 3.4. We define #ES,mul,e−1 = 0 so that our notations work with the algorithm.
When K = 1, [42] noted that Line 15 needs to be changed to r ← r +#ES,mul,i+1.
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(a) (b)

Figure 3.10: The evaluations of a strategy under PCP and CCP.

K 2 3 4 5 6 7 8

PCP
Cost 25942.2 22521.6 20373.0 19197.0 17941.2 16978.8 16617.0
% speedup 24.27 34.26 40.53 43.96 47.63 50.44 51.49

CCP S.O.
Cost 24247.2 21784.8 20941.2 20781.6 20781.6 20781.6 20781.6
% speedup 29.22 36.41 38.87 39.34 39.34 39.34 39.34

CCP A.C.
Cost 25440.6 22200.6 20880.6 19825.2 19606.2 19218.6 18739.2
% speedup 25.73 35.19 39.05 42.13 42.77 43.90 45.30

CCP P.O.
Cost 23890.2 20515.2 18252.6 17555.4 16482.0 16021.2 15294.6
% speedup 30.26 40.11 46.72 48.75 51.89 53.23 55.35

Table 3.1: The cost of best strategies under PCP and CCP from experiments of [42].

While Algorithm 3.4 was given in [42], Hutchinson and Karabina stated that they
could find no formula for the cost nor any optimal canonical strategy under CCP. In their
experiments, using the parameters (e, cmul, ciso) = (186, 25.8, 22.8), the optimal PCP cost
and the best CCP cost of strategies sampled from the following sets are computed. The
results are shown in Table 3.1 and are compared with C∗

1(e) = 34256.4.

• CCP S.O.: all 1,623,160 optimal strategies under the single-core setting,

• CCP A.C.: 5,000,000 randomly sampled canonical strategies,

• CCP P.O.: 5,000,000 randomly sampled PCP canonical optimal strategies.
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Algorithm 3.4: Computing the cost of a given canonical strategy for computing
degree-ℓe isogeny with K cores under CCP.

Input : K, e, cmul, ciso, #ES,mul,i and #ES,iso,i for 0 ≤ i < e− 1
Output: The cost of a given canonical strategy for computing degree-ℓe isogeny

with K cores under CCP

1 s, t, leftover← 0; r ← e− 1
2 for i = 0 to e− 2 do
3 binSize← #ES,iso,i −K
4 if binSize < 0 then
5 binSize← K − leftover
6 leftover← #ES,iso,i − binSize

7 else
8 binSize← #ES,iso,i − leftover
9 if leftover = 0 then

10 binSize← binSize−K
11 s← s+ 1

12 if binSize > 0 then
13 if binSize ≥ (K − 1) ·#ES,mul,i+1 then
14 binSize← binSize− (K − 1) ·#ES,mul,i+1

15 t← t+#ES,mul,i+1

16 s← s+ ⌈binSize
K
⌉

17 leftover← (−binSize) mod K

18 else
19 t← t+ ⌈binSize

K−1
⌉

20 r ← r +#ES,mul,i+1 − ⌈binSizeK−1
⌉

21 leftover← 0

22 else
23 r ← r +#ES,mul,i+1

24 leftover← 0

25 return r · cmul + s · ciso + t ·max{cmul, ciso}

As shown in Table 3.1, having multiple cores helps reduce the cost of computing smooth
degree isogenies. With a sufficient number of cores and a carefully chosen strategy, the
cost can be reduced by more than half. Nonetheless, the cost of computing smooth degree
isogenies can be reduced further as we shall see in the next chapter.

30



3.4 Chapter Summary

In this chapter, we reviewed how a degree-ℓe isogeny can be computed by decomposing
it into a chain of e degree-ℓ isogenies. We defined a strategy, which is a directed graph
showing which operations are performed. Then, we gave the equation for the cost C1(S)
of a strategy S in the single-core setting, which is the sum of the cost of each operation in
a strategy. As proposed in [30], an optimal cost can be computed by a recurrence and an
optimal strategy can be constructed by a dynamic-programming algorithm.

The second half of this chapter dealt with the multi-core setting, where we are allowed
to perform up to K > 1 operations at one time. The restrictions of how a strategy is
evaluated was discussed. After that, we presented PCP and CCP, two ways of evaluating
a strategy by [42]. By the simplicity of PCP, we have a recurrence describing the optimal
cost under PCP. However, CCP is more complicated to analyze and no formula for the
optimal cost under CCP has been found. We ended the chapter by giving experimental
results of [42] which show a significant cost reduction from the single-core setting to the
multi-core setting.
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Chapter 4

Precedence-Constrained Scheduling
(PCS) Technique

We have seen in the previous chapter that there are various techniques for constructing
and evaluating strategies in the multi-core setting. This chapter takes a closer look at the
problem and proposes a new approach to evaluate and construct strategies with less costs.
The content of this chapter is based on [75].

Here, we first give an example showing that the cost of a canonical strategy under CCP
is still not the least cost we can achieve.

Example 4.1. Let e = 9, K = 3, and cmul = ciso = 1. Below shows a canonical strategy
which is optimal under PCP with the cost of 21. When calculating its cost using Algorithm
3.4, the cost under CCP is 20. The times at which each operation is finished are shown on
the corresponding edges in Figure 4.1(a).

Consider another way of evaluating this strategy in Figure 4.1(b). Here, operations that
can be performed simultaneously are not limited to ones in the same or consecutive elliptic
curves. For instance, three isogeny evaluations ϕ0, ϕ1, and ϕ2 are performed in parallel at
time 11. As another example, during time 14, two isogeny evaluations ϕ2, ϕ3, and a point
multiplication on E4 are done at the same time. These are not permitted under CCP or
PCP. As a result, we achieve a lower cost of 19 for this strategy and evaluation.

We will later prove that for this parameter setting, the least cost that any strategy
and any evaluation can achieve is 19. Therefore, in this example, we provide an optimal
strategy with its evaluation.
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(a) (b)

Figure 4.1: A canonical strategy which does not give the least cost under CCP.

By the above example, one can see that there is still room for improvement regarding
this problem of finding optimal strategy and evaluation. It is important to note that, unlike
the single-core setting, a strategy in the multi-core setting does not uniquely correspond to
how it is evaluated. This does mean that, in order to obtain the least cost possible, we need
to search for a strategy and its evaluation that give the least cost as a pair. Evaluating a
good strategy in a wrong way might not give us a low cost. On the other hand, starting
with a bad strategy will not give us a low cost under any evaluation. This makes it a
challenging problem. Moreover, since it is possible that a least-cost strategy may not be
canonical, we might not be able to utilize the recursive structure of canonical strategies to
solve the problem.

4.1 Precedence-Constrained Scheduling Technique

The only cost measurements for a given strategy S that we are aware of are C1(S) proposed
in [30], and CPCP

K (S), CCCP
K (S) proposed in [42]. In this section, we propose a new technique

of computing the cost of a given strategy called precedence-constrained scheduling (PCS).
The first part of the technique is to construct the task dependency graph of a strategy,
and the second part is to evaluate a strategy by using its task dependency graph and
precedence-constrained scheduling algorithms.
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4.1.1 Task Dependency Graphs of Strategies

Without loss of generality, we assume that for a given strategy S = (VS , ES), all vertices
in VS that are unreachable from (0, 0) are removed since they are not related to the cost
computation. From Section 3.1 we recall that in any well-formed strategy there is a unique
path from (0, 0) to any vertices in a strategy. This implies that every vertex in a well-
formed strategy that can be reached from (0, 0), except for (0, 0), must have only one
incoming edge. Thus, for a point (i, j) to be available, the operation representing the
incoming edge to the point (i, j) must be completed. Therefore, in a strategy, a point and
its incoming edge represent the same thing. This concept is important in constructing the
task dependency graphs of a strategy.

A task dependency graph is defined as follows.

Definition 4.2 (Task dependency graph). Given a set of tasks T = {t1, ..., tn}, the task
dependency graph for T is a directed acyclic graph DT = (VDT

, EDT
) where VDT

= T and
⟨ti, tj⟩ ∈ EDT

if a task ti must be performed and finished before a task tj can begin.

We then give a definition of the task dependency graph of a strategy below.

Definition 4.3 (Task dependency graph of a strategy). The task dependency graph of a
strategy S = (VS , ES = ES,mul ∪ ES,iso) is a directed acyclic graph DS = (VDS , EDS ) where
VDS = VS \ {(0, 0)} and

EDS = (ES ∪ {⟨(i, e− 1− i), (i+ 1, j)⟩ : ⟨(i, j), (i+ 1, j)⟩ ∈ ES,iso})
\ {⟨(0, 0), (0, 1)⟩, ⟨(0, 0), (1, 0)⟩}.

A vertex (i, j) ∈ VDS should be thought as a “task” of computing the point (i, j), but
it can be thought as the point as well following our discussion earlier. For each isogeny
evaluation edge ⟨(i, j), (i + 1, j)⟩ in S, we add an edge ⟨(i, e − i − 1), (i + 1, j)⟩ to DS to
explicitly specify the dependency that we need to have R′

i before we can evaluate ϕi. We
also remove (0, 0), since (0, 0) is available from the start and we do not have to perform
any task to produce it. The next example depicts this process.

Example 4.4. Consider a strategy from Example 3.14 as shown in Figure 4.2(a). The first
step of constructing the task dependency graph of it is to add a green diagonal directed
edge for each red isogeny evaluation edge in order to show all implicit dependencies of
isogeny evaluation described above. The result of the first step is in Figure 4.2(b). The
second step is to remove the point (0, 0) and two edges from it. The task dependency
graph DS is shown in Figure 4.2(c).
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(a) (b) (c)

Figure 4.2: Constructing the task dependency graph of a strategy.

Task dependency graphs are useful for computing the costs of strategies as we will see
later. In the next subsection, we require that task dependency graphs must not have any
transitive edge. We give the definition of it and discuss how to remove them from DS .

Definition 4.5 (Transitive edge). For a directed graph G = (V , E), an edge e = ⟨u, v⟩ ∈ E
is transitive if there exists a vertex w ̸∈ {u, v} in V such that u reaches w and w reaches v.

Example 4.6. In the task dependency graph in Figure 4.2(c), the edge ⟨(0, 2), (1, 2)⟩ is
transitive as (0, 2) reaches (0, 4) and (0, 4) reaches (1, 2). The edge ⟨(0, 3), (1, 3)⟩ is also
transitive. These two edges are the only transitive edges in the graph.

Aho, Garey, and Ullman [2] presented that, for a general directed graph, the task of
removing all transitive edges from a graph, called transitive reduction, can be done in
O(|V|log2 7) steps. For DS , it can be done in a more efficient way by the following lemma.

Lemma 4.7. All transitive edges in a graph DS must be of the form ⟨(i, j), (i + 1, j)⟩.
Also, the edge ⟨(i, j), (i+ 1, j)⟩ is transitive if and only if (i, j) reaches (i, e− 1− i).

Proof. For an edge ⟨u, v⟩ to be transitive in a directed acyclic graph, the out-degree of u
and the in-degree of v must be more than 1. Therefore, all blue point multiplication edges
of the form ⟨(i, j), (i, j + 1)⟩ cannot be transitive.

Next, consider a green diagonal edge of the form ⟨(i, e−1− i), (i+1, j)⟩. If there exists
another green diagonal edge coming out of (i, e−1−i), its end point must be (i+1, j′) with
j′ ̸= j. If j′ > j, it is impossible that (i + 1, j′) reaches (i + 1, j). If j′ < j, (i + 1, j′) can
reach (i + 1, j) by going through a sequence of blue point multiplication edges. However,
(i + 1, j) is the end point of the diagonal edge implies that it is the end point of the red
isogeny evaluation edge ⟨(i, j), (i+1, j)⟩. Thus, there is no blue point multiplication edges
coming to (i+ 1, j). By both cases, all green diagonal edges cannot be transitive.
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By Definition 4.3, for a red isogeny evaluation edge of the form ⟨(i, j), (i+ 1, j)⟩, there
must exist the green diagonal edge ⟨(i, e− 1− i), (i+1, j)⟩. These are only incoming edges
to (i + 1, j). Therefore, if this red isogeny evaluation edge is transitive, (i, j) must reach
(i, e− 1− i). This concludes the proof.

In order to remove all transitive edges fromDS , Lemma 4.7 suggests that we only need to
go through all red isogeny evaluation edges once and remove ⟨(i, j), (i+1, j) if (i, j) reaches
(i, e−1− i). Verifying that there is a path from (i, j) to (i, e−1− i) can be simply done by
checking if all edges ⟨(i, j), (i, j + 1)⟩, ⟨(i, j + 1), (i, j + 2)⟩, . . . , ⟨(i, e− 2− i), (i, e− 1− i)⟩
exist, since both points are in the same column. When implemented as in Algorithm 4.1,
the transitive reduction of DS can be performed in O(|VS |) steps since each vertex (i, j) is
visited at most once.

Algorithm 4.1: Transitive reduction algorithm for DS .

Input : The task dependency graph DS = (VDS , EDS ) of a strategy S
Output: DS with all transitive edges removed

1 for i = 0 to e− 2 do
2 for j = e− i− 2 down to 0 do
3 if ⟨(i, j), (i, j + 1)⟩ ̸∈ EDS then break
4 if ⟨(i, j), (i+ 1, j)⟩ ∈ EDS then EDS ← EDS \ {⟨(i, j), (i+ 1, j)⟩}
5 return DS

4.1.2 Task Scheduling Algorithms

The problem of scheduling a set of tasks to cores has been studied for a long time and has
many applications in various fields such as operating systems and networks. For a given set
of tasks, we need to specify which core performs which task and the goal is to minimize the
time that the last task is finished. In our setting, we are interested in the problem of task
scheduling with dependency: given a set of tasks with its task dependency graph, schedule
all tasks to the cores available so that all tasks are done as soon as possible. There are
several variants of this problem as itemized below.

• The structure of the task dependency graph: the graph has to be a DAG, but can
be restricted to have some structure. For example, in a DAG with tree-like structure
[41], all vertices can have at most one out-going edge.
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• The time required for each task: all tasks can have unit or different length.

• The number of cores: we can have only one core or more than one. In addition, the
number of cores can be fixed throughout the scheduling or can vary with time.

• The specification of cores: all cores can be identical, or their performances can be
different, e.g., some cores can perform tasks faster than others.

• Preemption: if we are allowed to stop a task before it is finished, perform another
task, and then continue the task that was paused (possibly with another core), the
scheduling is called preemptive. Otherwise, it is non-preemptive.

In this thesis, we restrict ourselves to the case of the graphs DS with all tasks of unit-
length, the number of cores is constant, all cores are identical, and preemption is not
allowed. We formally define the problem of task scheduling as follows.

Definition 4.8 (Precedence-constrained scheduling problem). Let DT = (VDT
, EDT

) be a
task dependency graph, and let K be a positive integer. Suppose that all tasks require one
unit of time to complete. A scheduling of DT using K cores is a sequence S = ⟨S1, . . . , Sn⟩
of non-empty sets of tasks where Si is a set of tasks executed at time i such that (i)
S1, . . . , Sn form a partition of VDT

, (ii) #Si ≤ K, and (iii) for all ⟨t, t′⟩ ∈ EDT
, if t ∈ Si and

t′ ∈ Sj then i < j. The finished time of S is n, the size of S, and is denoted by T(S).

A scheduling S is optimal if T(S) ≤ T(S′) for all possible schedulings S′ of DT using
K cores. The (precedence-constrained) scheduling problem is to find an optimal scheduling
for given DT and K.

Example 4.9. Consider the task dependency graph in Figure 4.3 withK = 3. One possible
scheduling for it is S = ⟨{t1, t4}, {t2, t3, t5}, {t6, t7, t8}, {t9}⟩ with T(S) = 4. Obviously, it is
not optimal as there exists another scheduling S′ = ⟨{t1, t3, t5}, {t2, t4, t7}, {t6, t8, t9}⟩ with
T(S′) = 3. Because the lower bound of the finish time is ⌈#VDT

K
⌉ = ⌈9

3
⌉ = 3, we are certain

that S′ is an optimal scheduling. Other optimal schedulings also exist.

Figure 4.3: A task dependency graph.
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Even in this setting, the problem might still be “hard”. For general DAGs, Ullman
[92] proved that the problem is NP-complete, and Garey and Johnson [35] mentioned that
complexity remains open when the number of cores K ≥ 3 is fixed.

In the rest of this subsection, we take a look at two algorithms. The first algorithm
by Hu [41] outputs a scheduling with optimal finished time for K ≥ 1 cores when the
task dependency graph is tree-like. The second algorithm by Coffman and Graham [47]
produced a scheduling with optimal finished time when K = 2. When K ≥ 3, no efficient
algorithm has been proposed. Nonetheless, there are many approximation algorithms
solving this problem with various approximation ratios. Below gives the definition of
the approximation ratios of an algorithm.

Definition 4.10 (Approximation ratio). An algorithm A solving the task scheduling prob-
lem has the approximation ratio of r if for all instances (DT , K) of the problem, the ratio
between T(S) produced by A and T(S∗), where S∗ is an optimal scheduling, is at most r,

T(S)

T(S∗)
≤ r.

Equivalently, we say thatA is an r-approximation algorithm of the task scheduling problem.
An algorithm which always gives an optimal scheduling has the approximation ratio of 1.

Hu’s Algorithm

The first algorithm deals with a task dependency graph which is tree-like, i.e., all vertices
has out-degrees of at most one. Hu described that this structure mimics an assembly line,
where tasks are making an elementary part or putting several parts together to create a
more complex part.

For u ∈ VDT
, let L(u) denote the length of a longest path started at u. In a tree-

like graph, the longest path started from each vertex is unique since all vertices have at
most one out-going edge. For u ∈ VDT

, L(u) can be computed by walking through the
only out-going edge until we are at a vertex with no out-going edge. To find L(u) for all
u ∈ VDT

, we can apply a breadth-first search or a depth-first search algorithm to the graph
rev(DT ) = (VDT

, rev(EDT
)) where rev(EDT

) = {⟨v, u⟩ : ⟨u, v⟩ ∈ EDT
} is the set of edges in

EDT
with their directions reversed.

Hu’s algorithm is described in Algorithm 4.2. In short, the algorithm chooses up to K
available tasks with largest L(·) in each iteration until all tasks are performed. The chosen
tasks and their edges are then removed from the graph in order to show new available
tasks.
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Algorithm 4.2: Hu’s algorithm.

Input : A tree-like task dependency graph DT = (VDT
, EDT

) and the number of
provided cores K

Output: An optimal scheduling S = ⟨S1, . . . , St⟩
1 Compute L(u) for all u ∈ VDT

2 t← 0
3 while VDT

̸= ∅ do
4 t← t+ 1
5 V ′ ← {u ∈ VDT

: in-degree of u = 0}
6 Sort V ′ by L(u) in an decreasing order, break ties arbitrarily
7 if #V ′ ≤ K then St ← V ′

8 else St ← {the first K vertices in V ′}
9 Remove all vertices in St and their associated edges from DT

10 return S = ⟨S1, . . . , St⟩

As mentioned earlier, Hu’s algorithm was proved to output an optimal scheduling for
input graphs that are tree-like. In addition, [41] also answered another question: what is
the smallest number of cores K needed in order to finish all tasks within time T . This
question is also interesting but we do not pursue it.

We provide two examples below. The first performs the algorithm with a tree-like
graph and the second with a non-tree-like graph. When a task dependency graph is not
tree-like, Hu’s algorithm might not produce an optimal scheduling. We note that L(u) for
a non-tree-like graph can be computed in the reversed topological order.

Example 4.11. We apply Hu’s algorithm to two graphs in Figure 4.4 with K = 3. The
values L(u) are written in red above each vertex.

We start with graph (a) which is tree-like. V ′ in the first iteration is sorted as V ′ =
[t1, t3, t4, t6, t8, t12, t9], hence S1 = {t1, t3, t4} and three tasks in S1 are then removed. The
task t2 are now available as its incoming edge from t1 is removed. In the second iteration,
we have V ′ = [t2, t8, t6, t12, t9] and S2 = {t2, t8, t6}. Removing t2, t8, t6 enables t5 and t11
to be included in V ′. Continuing in this fashion, one possible output of the algorithm is
S = ⟨{t1, t3, t4}, {t2, t8, t6}, {t5, t11, t12}, {t7, t9, t15}, {t10, t13}, {t14}⟩ which is optimal.

Next, consider graph (b) which is not tree-like. In the first round, we can have V ′ =
[t4, t1, t3, t2] as ties are broken arbitrarily. If S1 = {t4, t1, t3}, the output scheduling cannot
be optimal as S2 must be {t2, t8} and T(S) will be at least 5. The optimal scheduling
S∗ = ⟨{t1, t2, t3}, {t4, t5, t6}, {t7, t8, t9}, {t10, t11, t12}⟩ has T(S∗) = 4.
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(a) (b)

Figure 4.4: Task dependency graph that is tree-like and non-tree-like.

Although Hu’s algorithm may not give an optimal scheduling when a task dependency
graph is not tree-like, which is the case of our graphs DS , we have tried applying Hu’s
algorithm to find the cost of task dependency graphs of some strategies. The experimental
results show some interesting outcomes. We explain them in more detail in Section 4.3.

Coffman-Graham’s Algorithm

The second algorithm refines how vertices are labeled. In Hu’s algorithm, vertices are
labeled by the lengths of their longest paths. In [47], Coffman and Graham presented
another way to label vertices for DAGs of any structure without transitive edges. After all
vertices are labeled, the same technique as in Hu’s algorithm is then applied: choose up to
K available tasks with largest labels to be performed at each time. By Coffman-Graham’s
labeling algorithm, some guarantees on the output scheduling can be proved.

The labeling process of Coffman and Graham is described in Algorithm 4.3. We give an
example of the function C(·) in Lines 7–8 as follows: Suppose u has three children v1, v2, v3
and all are labeled with LCG(v1) = 4, LCG(v2) = 3, and LCG(v1) = 8. Then, C(u) is the list
[8, 4, 3] as it is sorted in decreasing order. In Line 8, lists are compared lexicographically,
e.g., [4, 2, 1] < [4, 3], [5, 4, 2] < [5, 4, 2, 1], and [ ] < [3, 2].

At first, one vertex with no out-going edge is assigned a label of 1. In each iteration,
one vertex is labeled. V ′′ in Line 5 is the set of unlabeled vertices with all children labeled.
By the definition of V ′′, C(·) is well-defined for all vertices in V ′′. The next vertex to be
assigned a label is u ∈ V ′′ with smallest C(u). The label is assigned from 1 up to #VDT

.
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Algorithm 4.3: Coffman-Graham’s labeling algorithm.

Input : A task dependency graph DT = (VDT
, EDT

)
Output: Coffman-Graham’s label LCG(u) for all u ∈ VDT

1 Choose any vertex u with out-degree of 0 and assign LCG(u)← 1
2 idx← 1
3 while there is a vertex without a label do
4 idx← idx + 1
5 V ′′ ← {u ∈ VDT

: u is not labeled and all its children are labeled}
6 for u ∈ V ′′ do C(u)← the list of all labels of u’s children in decreasing order
7 Choose u ∈ V ′′ with lexicographically smallest C(u), break ties arbitrarily
8 LCG(u)← idx

Coffman and Graham proved that, by using LCG(u) instead of L(u) in Algorithm 4.2,
the output scheduling is optimal when K = 2 for a task dependency graph of any structure.
A few years later, Lam and Sethi [61] showed that the algorithm is (2− 2

K
)-approximation

for K ≥ 2. When K is small, the approximation ratio is close to 1.

Example 4.12. We perform Coffman-Graham’s algorithm on the graph in Figure 4.4(b).
Suppose in Line 1, we choose LCG(t9) = 1. In the first iteration, V ′′ = {t5, t10, t11, t12}
with C(t10) = C(t11) = C(t12) = [ ] and C(t5) = [1]. By the algorithm, we can choose any
one in {t10, t11, t12} and assign the label 2. Let us pick LCG(t11) = 2. We keep track of
LCG(u) and C(u) as in Figure 4.5. In the second iteration, only t9 and t11 are labeled, thus
V ′′ = {t5, t10, t7, t12}. Breaking a tie arbitrarily, we select LCG(t12) = 3. The next vertex
to be assigned the label is t10 with label 4.

In the fourth iteration, V ′′ = {t5, t6, t7, t8} with C(t5) = [1], C(t6) = [4], C(t7) = [2], and
C(t8) = [3]. Therefore, t5 receives the label 5. The process continues until all vertices are
labeled. To obtain a scheduling, we choose available vertices with highest labels for up to
K vertices. Since all labels are unique, there is only one way to construct a scheduling.
In our example with K = 3, S = ⟨{t2, t4, t3}, {t1, t6, t8}, {t7, t5, t10}, {t12, t11, t9}⟩ which is
optimal. We note that Coffman-Graham’s algorithm does not consider K for labeling.

Example 4.13. This example shows that Coffman-Graham’s algorithm might not output
an optimal scheduling whenK ≥ 3. Consider the graph in Figure 4.6 from [61] withK = 3.
If LCG(u) are as shown in the figure, we have S = ⟨{t5, t4, t3}, {t2, t1}, {t9, t8}, {t7, t6}⟩.
However, an optimal scheduling is S∗ = ⟨{t1, t2, t3}, {t4, t5, t6}, {t7, t8, t9}⟩. Nonetheless,
T(S)
T(S∗)

= 4
3
is no more than 2 − 2

K
= 4

3
. It was proved in [61] that it is always possible to

construct a graph such that T(S)
T(S∗)

approaches 2− 2
K
.
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(a) (b)

Figure 4.5: The values of LCG(u) and C(u) when Coffman-Graham’s algorithm terminates.

Figure 4.6: A graph not giving an optimal scheduling under Coffman-Graham’s algorithm.

We note that approximation algorithms have recently been proposed with smaller ratios,
e.g., [34] gave (2 − 7

3K+1
)-approximation algorithm and [62] gave a (1 + ϵ)-approximation

algorithm. We refer the interested readers to the mentioned papers for more details.

We end this subsection by giving a short proof regarding the graph rev(DT ) and
rev(S) = ⟨Sn, . . . , S1⟩, where S = ⟨S1, . . . , Sn⟩.

Lemma 4.14. If S is a scheduling for an instance (DT , K), then rev(S) is a scheduling for
the instance (rev(DT ), K).

Proof. Let rev(S) = ⟨S ′
1, . . . , S

′
n⟩ = ⟨Sn, . . . , S1⟩. It is clear that S ′

1, . . . , S
′
n form a partition

of VDT
and #S ′

i ≤ K. For ⟨t, t′⟩ ∈ rev(EDT
), there is ⟨t′, t⟩ ∈ EDT

. Let t ∈ S ′
i = Sn+1−i and

t′ ∈ S ′
j = Sn+1−j. Because S is a scheduling, we have n + 1 − j < n + 1 − i. Therefore,

i < j and rev(S) is a scheduling for (rev(DT ), K) as desired.

Since rev(rev(DT )) = DT and rev(rev(S)) = S, Lemma 4.14 suggests that, in order to
construct an optimal strategy for (DT , K), we can find an optimal strategy for (rev(DT ), K)
and then reverse it.
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4.1.3 Strategy Evaluation with PCS

After we construct the task dependency graph from a strategy and remove all transitive
edges, two precedence-constrained scheduling algorithms—Hu’s and Coffman-Graham’s
algorithms—previously described can be applied to obtain a scheduling. Although both
algorithms assume that all tasks are of unit-length when scheduling, which is not the case
for our setting since cmul ̸= ciso, they can be used as approximation algorithms.

Because both scheduling algorithms are designed for unit-length tasks, we calculate
the cost of a strategy evaluation from a scheduling as shown in Algorithm 4.4: for each
1 ≤ i ≤ T(S), if all tasks in Si are point multiplications, the cost of Si is cmul. If all tasks
in Si are isogeny evaluations, its cost is ciso. Otherwise, its cost is max{cmul, ciso}. The
costs of a strategy S when using Hu’s and Coffman-Graham’s algorithms with K cores are
denoted by CHu

K (S) and CCG
K (S), respectively.

(a) (b)

(c) (d) (e)

Figure 4.7: Precedence-constrained scheduling (PCS) technique.
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Algorithm 4.4: Precedence-Constrained Scheduling (PCS) Technique.

Input : A strategy S = (VS , ES) for computing degree-ℓe isogeny and the number
of provided cores K

Output: The cost CHu
K (S) or CCG

K (S) and a scheduling S

1 E∗S ← ES
2 for ⟨(i, j), (i+ 1, j)⟩ ∈ S do
3 ES ← ES ∪ {⟨(i, e− i− 1), (i+ 1, j)⟩}
4 ES ← ES \ {⟨(0, 0), (0, 1)⟩, ⟨(0, 0), (1, 0)⟩}
5 VS ← VS \ {(0, 0)}
6 Remove transitive edges from ES (Algorithm 4.1)
7 Label all vertices v ∈ S with L(v) or LCG(v) (Algorithm 4.3)
8 S← ⟨⟩
9 t← 0

10 cost← 0
11 while VS ̸= ∅ do
12 t← t+ 1
13 St ← {K vertices in S with highest L(·) and their in-degrees are 0}
14 Append St to S

15 Remove all vertices in St and their out-going edges from S
16 costt ← 0
17 for (i, j) ∈ St do
18 if ⟨(i, j − 1), (i, j)⟩ ∈ E∗S then costt ← max{costt, cmul}
19 else costt ← max{costt, ciso}
20 cost← cost + costt
21 return (cost, S)

Example 4.15. We explain how CHu
K (S) and CCG

K (S) are computed for the strategy shown
in Figure 4.7(a). First, its task dependency graph with all transitive edges removed is
shown in Figure 4.7(b). Next, all vertices are labeled. The values of L(v) and LCG(v) are
provided in Figures 4.7(c) and 4.7(d), respectively. ForK = 2, Hu’s and Coffman-Graham’s
algorithms give S = ⟨S1 = {(0, 1)}, S2 = {(0, 2)}, S3 = {(0, 3)}, S4 = {(0, 4)}, S5 =
{(1, 3), (1, 0)}, S6 = {(1, 2), (2, 0)}, S7 = {(2, 2), (2, 1)}, S8 = {(3, 1), (3, 0)}, S9 = {(4, 0)}⟩.
In S5, (1, 3) and (1, 0) are computed by isogeny evaluations, thus cost5 = ciso. In S7,
(2, 2) is computed by isogeny evaluation and (2, 1) is computed by point multiplication,
hence cost7 = max{cmul, ciso}. The costs CHu

K (S) and CCG
K (S) are therefore 4cmul + 4ciso +

max{cmul, ciso}. The evaluation when cmul = ciso = 1 is shown in Figure 4.7(e).

44



4.2 Strategy Construction with Linear Programming

In addition to an evaluation technique that gives us a low cost from a strategy, we also
need efficient strategies that would provide low costs. As discussed earlier, a strategy
for the multi-core setting has to be carefully constructed specifically for the parameter
set (e, cmul, ciso, K). To construct those low-cost strategies, we first formalize the problem
mathematically as an integer linear program (ILP) and then use optimal solutions of the
ILP to generate strategies.

4.2.1 Optimal Strategies and Evaluations

The problem of constructing a strategy and its evaluation is clearly an optimization prob-
lem. We call a pair of a strategy and its evaluation that provides the least cost as optimal.
In this subsection, we will construct an optimal strategy and evaluation in the simplest
case of cmul = ciso = 1, which can be generalized to the case that cmul = ciso.

Let xi,j,t ∈ {0, 1} be a decision variable such that xi,j,t = 1 if the point represented
by the vertex (i, j) is computed and is available no later than time t and 0 otherwise.
A discrete optimization problem of finding an optimal strategy and its evaluation can be
formalized as an integer linear program (ILP) as follows:

minimize
xi,j,t

T + 1−
T∑

t′=0

xe−1,0,t′

subject to x0,0,0 = 1

xi,j,0 = 0 (i, j) ̸= (0, 0)

xi,j,t ≥ xi,j,t−1

xi,j,t ≤ xi,j−1,t−cmul
+

xi−1,j,t−ciso + xi−1,e−i,t−ciso

2∑
i,j

(xi,j,t+1 − xi,j,t) ≤ K

xi,j,t ∈ {0, 1}
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The initial conditions for xi,j,0 are x0,0,0 = 1, since it is available at the start of the
isogeny computation, and xi,j,0 = 0 for (i, j) ̸= (0, 0). If (i, j) is available no later than
time t − 1, then it is also available no later than time t. Hence, we have the constraint
xi,j,t ≥ xi,j,t−1. Our objective is thus to minimize t′ such that xe−1,0,t′ = 1, the time that
(e−1, 0) is finished. However, we cannot straightforwardly use this as an objective function
because t′ is not a decision variable. We instead consider the sum of xe−1,0,t′ for 0 ≤ t′ ≤ T
for some sufficiently large T . The earliest time t′ at which xe−1,0,t′ is ready can now be
expressed by T + 1−

∑
0≤t′≤T xe−1,0,t′ , which is our objective function.

The fourth constraint comes from two restrictions of the isogeny computation discussed
in Subsection 3.3.1: xi,j,t can become 1 by one of these two cases: (i) (i, j − 1) is ready at
time t−cmul and (i, j) is computed by a point multiplication, or (ii) (i−1, j) and (i−1, e−i)
are available at time t− ciso and (i, j) is computed by an isogeny evaluation. The first case
is possible if xi,j−1,t−cmul

= 1. For the second case, both xi−1,j,t−ciso and xi−1,e−i,t−ciso must
be 1. Hence, we can perform the second case if 1

2
(xi−1,j,t−ciso + xi−1,e−i,t−ciso) = 1. Because

xi,j,t can become 1 by either of the two cases, the value of xi,j,t is restricted to

xi,j,t ≤ xi,j−1,t−cmul
+

xi−1,j,t−ciso + xi−1,e−i,t−ciso

2
.

The fifth constraint is by the number of cores given. Since we are interested in the case
that cmul = ciso = 1, there can be up to K decision variables that change from 0 to 1 at
each time, those represent points computed at that time. Therefore, we have∑

i,j

(xi,j,t+1 − xi,j,t) ≤ K.

Given the integer linear program of the problem, we can use a solver to find an optimal
strategy and its evaluation in a general setting. Table 4.1 below shows the least possible
cost of any strategy in general settings and under PCP using cmul = ciso = 1. We use
shading to express the differences between the cost under PCP and the optimal one.

The results shown in Table 4.1 support our claim that the costs under PCP and CCP
are not optimal and we are able to improve them. The differences in the table can be
up to 6, and they are expected to grow for larger e and K. However, even in the case of
cmul = ciso = 1 and small e < 15, the solver can take several hours to produce a solution.
This is expected since integer linear programming is NP-hard [48]. Although it is not
practical to construct optimal strategies and evaluations for large e directly using ILP,
we will use solutions for small e to construct a low-cost strategy for large e in the next
subsection.
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e 3 4 5 6 7 8 9 10 11 12 13 14

K = 1 5 8 12 16 20 24 29 34 39 44 49 54

K = 2
PCP 4 7 10 13 16 19 23 27 31 35 39 43
Optimal 4 7 9 12 15 18 21 24 27 30 33 37

K = 3
PCP 4 6 9 12 15 18 21 24 27 30 33 37
Optimal 4 6 9 11 14 16 19 21 24 27 29 32

K = 4
PCP 4 6 8 11 14 17 20 23 26 29 32 35
Optimal 4 6 8 11 13 15 18 20 23 25 27 30

K = 5
PCP 4 6 8 10 13 16 19 22 25 28 31 34
Optimal 4 6 8 10 13 15 17 20 22 24 27 29

K = 6
PCP 4 6 8 10 12 15 18 21 24 27 30 33
Optimal 4 6 8 10 12 15 17 19 21 24 26 28

K = 7
PCP 4 6 8 10 12 14 17 20 23 26 29 32
Optimal 4 6 8 10 12 14 17 19 21 23 26 28

K = 8
PCP 4 6 8 10 12 14 16 19 22 25 28 31
Optimal 4 6 8 10 12 14 16 19 21 23 25 27

Table 4.1: The costs of optimal strategies in a general setting and under PCP.

4.2.2 Constructing Low-Cost Strategies with Solutions of ILP

In Subsection 3.3.1, we state Theorem 3.17 from [42] for computing the cost of a least-
cost (canonical) strategy under PCP. The theorem implicitly describes how this least-cost
canonical strategy is constructed: a strategy with e leaves is divided into two smaller
strategies with n and e−n leaves, and the construction performs recursively until the base
case e = 1 is reached. With the ILP we obtain in the previous subsection, we propose
a new way of constructing a strategy which is by precomputing optimal strategies and
evaluations for some e and then using them as base cases. We need to slightly modify the
ILP in order to find optimal strategies and evaluations corresponding to CPCP

K (e, k), but
the main idea is the same. Strategies constructed by our proposed technique can then be
viewed as a mixture of a canonical part when e is larger than the base case and a possibly
non-canonical part when e is one of the base cases.

Similar to PCS in the previous section, we assume that cmul = ciso when we formulate
the ILP, which is not the case for our setting. Also, we only solve the ILP for up to some
value of e and combine them for large e. Hence, strategies resulted from our construction
technique are considered as approximations of a least-cost strategy.
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4.3 Experiments and Results

For each parameter set (e, cmul, ciso, K), we conduct two experiments using our proposed
PCS evaluation (Section 4.1) and ILP construction (Section 4.2) techniques as follows:

• Experiment A: We use Theorem 3.17 to construct least-cost canonical strategies un-
der PCP. Since there are many such strategies, we randomly sampled 100,000 of them
for evaluation. The cost of strategy S is then computed as min{CHu

K (S),CCG
K (S)}.

• Experiment B: We randomly constructed 100,000 strategies using our proposed strat-
egy construction technique, where we precomputed solutions for ILP for all e ≤ 14.
The cost of strategy S is also computed as min{CHu

K (S),CCG
K (S)}.

We conduct experiments under two sets of parameters from [58], which are also used
by [42], for the purpose of comparison. Table 4.2 compares costs obtained by [42] and our
experiments under the parameter set (e, cmul, ciso) = (186, 25.8, 22.8). Rows 3 and 5 show
the smallest min{CHu

K (S),CCG
K (S)} among all randomly sampled strategies in Experiments

A and B, respectively. Table 4.3 reports the results under the parameter set (e, cmul, ciso) =
(239, 27.8, 17). The cost reductions in both tables are compared to the costs under CCP.

The experimental results show the reductions of more than 10% in several cases, which
is significant due to the fact that CCP has already improved the cost of PCP and the
single-core setting. Our strategy construction technique (Experiment B) works very well
when cmul ≈ ciso as seen in Table 4.2. We expect greater reductions when we precompute
solutions of ILP for more values of e.

K 2 3 4 5 6 7 8

PCP Cost 25942.2 22521.6 20373.0 19197.0 17941.2 16978.8 16617.0
CCP Cost 23890.2 20515.2 18252.6 17555.4 16482.0 16021.2 15294.6

Exp. A Cost 22203.0 18622.8 16337.4 15708.6 15091.2 14949.6 14063.4
(PCS) % reduction 7.06 9.22 10.49 10.52 8.44 6.69 8.05

Exp. B Cost 22081.2 18340.2 16400.4 15269.4 14973.6 14999.4 14184.0
(PCS+ILP) % reduction 7.57 10.60 10.15 13.02 9.15 6.38 7.26

Table 4.2: The cost of best strategies under PCP, CCP, and in our experiments under the
parameter set (e, cmul, ciso) = (186, 25.8, 22.8). The cost C∗

1(e) for K = 1 is 34256.4.
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K 2 3 4 7 8

PCP Cost 31886.0 27858.0 25328.8 21572.6 20851.2
CCP Cost 29931.0 25835.0 23390.8 20399.6 19814.2

Exp. A Cost 28265.0 23625.0 21282.8 19073.6 18641.2
(PCS) % reduction 5.57 8.55 9.01 6.50 5.92

Exp. B Cost 28574.6 23731.0 21337.8 19319.0 18900.4
(PCS+ILP) % reduction 4.53 8.14 8.78 5.30 4.61

Table 4.3: The cost of best strategies under PCP, CCP, and in our experiments under the
parameter set (e, cmul, ciso) = (239, 27.8, 17). The cost C∗

1(e) for K = 1 is 41653.8.

In addition, we point out that CHu
K (S) and CCG

K (S) of the same strategy S are equal
for all (canonical) strategies sampled in Experiment A, but these costs can be slightly
different for some (possibly non-canonical) strategies sampled in Experiment B. When the
costs are not equal, CHu

K (S) is smaller for some K and strategies, while CCG
K (S) is smaller

for some others. This shows that none of the algorithms provides the least cost for strategy
evaluation.

Lastly, we present the experimental results for both parameter sets when K is larger
than 8. For these values of K, we did not precompute solutions for ILP and thus present
the results when applying only PCS (Experiment A). The results are provided in Table 4.4
and Figure 4.8 (including the data for small K).

Once again, PCS outperforms PCP, from 3.28% to 12.34%. The reductions are large
when the number of cores K is around 64–128 for both parameter sets. When K ≥ e−1, it
can be seen that PCP and PCS give the same cost since the optimal strategy is the isogeny-
based strategy and both PCP and PCS give the same evaluation. Moreover, because the
least cost we can have happens when K = e−1, we can see that the costs converge to that
least cost when K increases. The costs drop drastically for small K and then drop slightly
starting at around K = 16. This may suggest that using 16 cores for the computation
might be the best trade-off between the cost and the computation resources.
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K
(e, cmul, ciso) = (186, 25.8, 22.8) (e, cmul, ciso) = (239, 27.8, 17)
PCP PCS % reduction PCP PCS % reduction

16 13642.8 12844.8 5.85 17678.4 16029.4 9.33
32 12842.4 12135.6 5.50 16043.6 15516.6 3.28
48 12381.6 11310.0 8.65 15426.0 14627.0 5.18
64 11920.8 10484.4 12.05 14808.4 13737.4 7.23
80 11460.0 10046.4 12.34 14190.8 12847.8 9.46
96 11020.2 9948.6 9.72 13573.2 12332.2 9.14
112 10655.4 9561.0 10.27 12955.6 11799.6 8.92
128 10290.5 9287.4 9.75 12532.4 11478.4 8.41
144 9925.8 9127.8 8.04 12260.4 11206.4 8.60
160 9561.0 9059.4 5.25 11988.4 11002.4 8.22
185 8991.0 8991.0 0.00 11563.4 10798.4 6.62
238 8991.0 8991.0 0.00 10662.4 10662.4 0.00

Table 4.4: The cost of best strategies under PCP and PCS in our experiments under two
parameter sets when K is large.

Figure 4.8: A plot for the costs under PCP and PCS in our experiments.
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4.4 Chapter Summary

In this chapter, we studied the problem of constructing a strategy for computing degree-
ℓe isogeny and evaluating it to achieve the least cost possible in the multi-core setting.
The first half of this chapter proposed a novel evaluation technique called precedence-
constrained scheduling (PCS): we first transformed a strategy into a task dependency
graph and then applied task scheduling algorithms to it. We focused on the specific case
that all tasks are unit-length. Even then, the problem is NP-hard. Here, we reviewed two
task scheduling algorithms: Hu’s and Coffman-Graham’s algorithms. The first algorithm
gives optimal scheduling when a graph is tree-like, but does not give optimal scheduling
in general. The second algorithm gives optimal scheduling when K = 2 and is proved to
be (2 − 2

K
)-approximation. Finally, we applied both algorithms to the task dependency

graphs constructed from strategies.

Next, we presented a strategy construction technique which utilizes solutions of integer
linear programs for small e. We started by formulating the problem of finding an optimal
strategy and its evaluation as an integer linear program. The solutions showed that the
costs under PCP and CCP are not optimal. Although solving large integer linear program
is not practical, we were able to solve small instances and then combined them to obtain
low-cost strategies for the case where cmul ≈ ciso.

Via experimental results, we were able to obtain costs that are lower than those under
PCP and CCP [42], which already improve the cost of an optimal strategy under the single-
core setting [30]. The improvements can be up to 13.02% under some specific parameter
sets. For K ≥ 16, we were also able to improve the cost with various extents.
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Chapter 5

Parallel and Vectorized
Implementations of PCS

This chapter presents two software implementations of the degree-ℓe isogeny computation
which exploit the PCS technique and parallelism provided by modern processors. The first
implementation is designed for two-to-four-core processors, while the second implementa-
tion is designed for two-to-four-core processors which support AVX-512. Since we did not
consider any implementation environments in the previous chapter, we provide analyses
and modifications on how to effectively apply the PCS technique to the unique execution
environment of each implementation. The content of this chapter is based on [76], and
both of the implementations are available at https://github.com/kittiphonp/PCS.

We begin by giving a brief introduction of the Intel’s Advanced Vecter eXtension AVX-
512 technology used in one of our implementations.

5.1 Intel’s Advanced Vector eXtension AVX-512

The latest generation of Intel’s Advanced Vector eXtensions (AVX), which is AVX-512,
provides a way to vectorize and speed-up software by using vectors of length 512 bits
and vectorized instructions. One extension of AVX-512 used by [20] and this work is
the Integer Fused Multiply-Add extension (IFMA or AVX-512IFMA) which is useful for
software libraries requiring large integer arithmetic. As we are mainly interested in the
strategy-level optimization, we briefly explain the high-level usage of AVX-512.
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In [20] and our implementation, we consider 512-bit vectors as eight elements of 64 bits:
[a, b, c, d, e, f, g, h] where each variable is of size 64 bits. The AVX-512 instructions allow
us to compute [a, b, . . . , h]⊕ [a′, b′, . . . , h′] = [a⊕ a′, b⊕ b′, . . . , h⊕ h′] within a similar time
as a ⊕ a′ for certain operations ⊕. Thus, we can consider AVX-512 as a form of parallel
computation where all cores perform the same operation.

When the operand sizes are larger than 64 bits, they must be divided into 64-bit
blocks in order to use AVX-512 instructions: a = an−1an−2 . . . a1a0 where ai is of size
64 bits. For a computation, we can use n vectors Vi = [ai, bi, . . . , hi] for 0 ≤ i < n to
represent eight operands and perform Vi ⊕ V ′

i . One needs to take care of any carry and
dependency between blocks to ensure correctness. Nonetheless, there are other usages
when we have fewer than eight operands. Other possible options are (i) using n/2 vectors
Wi = [ai, ai+n/2, bi, bi+n/2, ci, ci+n/2, di, di+n/2] for 0 ≤ i < n/2 to represent four operands,
(ii) using n/4 vectors Xi = [ai, ai+n/4, ai+2n/4, ai+3n/4, bi, bi+n/4, bi+2n/4, bi+3n/4] for 0 ≤ i <
n/4 to represent two operands, and (iii) using n/8 vectors Yi = [ai, ai+n/8, ai+2n/8, ai+3n/8,
ai+4n/8, ai+5n/8, ai+6n/8, ai+7n/8] for 0 ≤ i < n/8 to represent only one operand. Following
[20], we call these representations and computations as 8-way, 4-way, 2-way, and 1-way,
respectively.

5.2 Multi-Core PCS Implementation

Our first software implementation of isogeny computation is designed for multi-core pro-
cessors without AVX-512IFMA instructions. For this setting, we utilize the equation CPCP∗

K

(Section 3.3.2) to construct strategies. To achieve better speed-up, we consider the opti-
mization of [16] and modify PCS to accommodate such optimization.

5.2.1 Modifying PCS for Speed-Up

We first describe the speed-up technique of Cervantes-Vázquez et al. [16] for multi-core
platforms. Some isogeny-based protocols require computing a point R from other points,
e.g., R← P + [m]Q for 0 ≤ m < ℓe, before passing it as an input for isogeny computation.
For fixed points P and Q of degree ℓe, this computation, typically performed using a three-
point ladder algorithm (Algorithm 2.3), takes time roughly e · cmul when m has bitlength
e. However, [ℓj]R = [ℓj]P + [m][ℓj]Q can be computed faster. This is because (i) [ℓj]P
and [ℓj]Q can be precomputed when P and Q are public and fixed, and (ii) [m][ℓj]Q =
[m mod ℓe−j][ℓj]Q as deg([ℓj]Q) = ℓe−j. The computation of [m mod ℓe−j]([ℓj]Q) would
only take time of (e− j) · cmul. This observation suggests the following implementation.
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Figure 5.1: Optimization for multi-core platform proposed by [16]: we can compute R′ and
S2 without knowing R, thus we can compute R′ and S2 in parallel with R.

Let R denote the result of P + [m]Q and R′ denote that of [ℓj]P + [m][ℓj]Q, where R′

is a corner point of a strategy S2. Since we do not need to know R to compute R′ and the
computation time of R′ is smaller than that of R, Cervantes-Vázquez et al. proposed, for
the multi-core platforms, that we devote one core for computing R. While the computation
takes place, we use one core to compute R′ and then K − 1 cores to compute the whole
strategy S2. They would choose j such that the computation time of R is close to the
computation time of R′ and S2. After R is computed, several isogeny evaluations are
serially performed on R before we start computing S1 using all K cores.

The optimization of [16] significantly reduces the isogeny computation time. However,
it can be further reduced, as we can see that the isogeny evaluations performed on R are
done serially and the computation does not utilize all available cores. Here, we apply
the PCS technique to fully utilize those cores. The modified PCS that makes use of this
optimization is presented in Algorithm 5.1.

The algorithm works in two phases. The first phase is for operations performed after
R′ is computed but before R. The cost is thus initialized as (e − j) · cmul. In this phase,
we can utilize K ′ = K − 1 cores and we cannot compute ϕ(R), represented by (1, 0), since
the computation of R is not yet finished. The cost computation in Lines 20–24 is done as
in the original PCS. In Line 25, we check whether the current cost is at least e · cmul, the
cost for computing R. If so, this implies that the computation for R is completed and we
can start the next phase. In the second phase, we can utilize all K cores. The algorithm
continues until all computational tasks are scheduled. For our algorithm, we do not require
that the computation time of R is close to the computation time of R′ and S2.
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Algorithm 5.1: Modified PCS for the optimization of [16].

. . . (Lines 1–9 are the same as in Algorithm 4.4)
10 cost← (e− j) · cmul

11 K ′ ← K − 1
12 Remove vertices (0, 1), . . . , (0, j) and their out-going edges from S
13 while VS ̸= ∅ do
14 t← t+ 1
15 V ′ ← {v ∈ VS : in-degree(v) = 0}
16 if K ′ ̸= K then V ′ ← V ′ \ {(1, 0)}
17 St ← {K ′ vertices in V ′ with highest L(·)}
18 Append St to S

19 Remove all vertices in St and their out-going edges from S
20 costt ← 0
21 for (i, j) ∈ St do
22 if ⟨(i, j − 1), (i, j)⟩ ∈ E∗S then costt ← max{costt, cmul}
23 else costt ← max{costt, ciso}
24 cost← cost + costt
25 if cost ≥ e · cmul then K ′ ← K

26 return (cost, S)

5.2.2 Handling Synchronization

We use the OpenMP API to accommodate multi-threading for our implementation. Al-
though OpenMP is usually used in the single instruction, multiple data (SIMD) paradigm,
this tool provides a way to perform different operations on different cores.

The constructs we are using are the OpenMP’s "sections" and "section". They let
us explicitly describe what each core does. Below we show an example of how to use these
constructs with three cores. When the program reaches #pragma omp sections, it will
fork threads and execute them on each core. Each core will execute, in parallel, one of the
#pragma omp section. When one core is finished, it will wait until all cores are finished.
After that, all threads will join together and the program will continue.
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#pragma omp sections

{

#pragma omp section

{

core1_op();

}

#pragma omp section

{

core2_op();

}

#pragma omp section

{

core3_op();

}

}

From our scheduling, it is straightforward to convert S = ⟨S1, . . . , Sn⟩ into code: we
can have n "sections", the i-th "sections" represents Si, and K "section" in each
"sections", each represents one core. Nonetheless, the resulting implementation is not
effective, as there is overhead when starting and ending "sections". To overcome this
issue, it is better to have only one "sections" and put all operations of each core across
all iterations into each "section", e.g., the first "section" includes operations for the
first core from all S1, . . . , Sn.

However, we also need a synchronization mechanism to ensure the order of operations.
For instance, it is possible that the second core starts its second operation while the first
core is still working on its first operation and the second operation of the second core
requires a result of the first operation of the first core. Considering the algorithm that we
used to construct S, we should ensure that all operations in S1 are finished before we start
S2 in our implementation. We solve this issue by implementing our own barriers.

The codes below show an example when working with three cores. The initial values
of all variables Lj i, representing a status for j-th core and i-th operation, is 1. For the
scheduling, let Si contain three operations: core1 opi, core2 opi, and core3 opi. We
give one operation to each core. After a core performs its task, that core changes the
variable to 0, signaling the other cores that its operation is done. Then, that core keeps
checking whether other cores finish their operations. As soon as all variables are set to 0,
all cores continue to the next operation. This mechanism ensures correct order and is not
costly when implemented.
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#pragma omp sections

{

#pragma omp section

{

core1_op1();

L1_1 = 0;

while(L2_1 || L3_1);

core1_op2();

L1_2 = 0;

while(L2_2 || L3_2);

...

}

#pragma omp section

{

core2_op1();

L2_1 = 0;

while(L1_1 || L3_1);

core2_op2();

L2_2 = 0;

while(L1_2 || L3_2);

...

}

#pragma omp section

{

core3_op1();

L3_1 = 0;

while(L1_1 || L2_1);

core3_op2();

L3_2 = 0;

while(L1_2 || L2_2);

...

}

}
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We can optimize the implementation further by removing some unnecessary variables.
For example, in a case that corej op2 depends only on corej op1 for each j, the variables
Lj 1 are not necessary and can be removed for efficiency.

5.2.3 Implementation Results

We implement our first isogeny computation, combining all speed-up techniques in previous
subsections. The implementations are based on the SIKEp751 parameter set, where the
underlying field is Fp2 with p = 23723239 − 1. We compute two isogenies of degree 4186 and
3239, respectively. After that, we execute them on an Intel(R) Core(TM) i7-8700 processor,
benchmarking them with those of [16]. For the reproducibility of the results, the Intel
Hyper-Threading and Intel Turbo Boost technologies are disabled. For benchmarking, we
employ the same set of parameters, including the prime and the extension field, used in
the works that we compare our results with.

Table 5.1 compares execution times of several implementations with one to four cores.
The execution times for the single-core setting are shown for reference. For the multi-core
setting, we compare four implementations: the implementation of [16] and our implemen-
tation which utilizes PCS, each with and without the optimization of [16] described in
Section 5.2.1. We note that the optimization is applied only on the implementations of
4186-isogeny computation. For the isogeny computation, there are two rounds for each
ℓe-isogeny computed: the first round includes the computation of (ϕ,E ′) from (E,R) and
the computation of three image points ϕ(P1), ϕ(P2), ϕ(P3) for some given points P1, P2, P3,
while the second round includes only the computation of (ϕ,E ′) from (E,R).

It is clear from Table 5.1 that there is a reduction in the execution times when there
are more cores available. Overall, our implementations have better speed compared to [16],
and the reduction percentage increases when there are more cores. For implementations
including the optimization of [16], the maximum reduction is up to 14.36% for the sec-
ond round of 4186-isogeny computation with four cores. For implementations without the
optimization, the maximum reduction is up to 16.79% also for the second round of 4186-
isogeny computation with four cores. These results show the significance of strategy-level
optimization for low-latency parallel isogeny computation.
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# Cores Implementation
4186-isogeny 3239-isogeny

Round 1 Round 2 Round 1 Round 2

1 [16] 22.96 18.85 25.98 22.16

2

[16] 20.60 16.47 23.23 19.39
This work 18.78 14.68 21.24 17.42
% reduction 8.83 10.87 8.57 10.16
[16] (∗) 16.30 14.69
This work (∗) 14.76 12.85
% reduction 9.45 12.53

3

[16] 19.53 15.42 21.87 18.06
This work 17.65 13.53 19.60 15.79
% reduction 9.63 12.26 10.38 12.57
[16] (∗) 14.95 13.32
This work (∗) 13.34 11.71
% reduction 10.77 12.09

4

[16] 19.09 14.89 21.03 17.15
This work 16.62 12.39 18.68 14.80
% reduction 12.94 16.79 11.17 13.70
[16] (∗) 14.08 12.67
This work (∗) 12.81 10.85
% reduction 9.02 14.36

Table 5.1: Execution times of various isogeny computation implementations (in million
CPU cycles). The first round includes the computation of (ϕ,E ′) from (E,R) and three
image points ϕ(P1), ϕ(P2), ϕ(P3) for some points P1, P2, P3. The second round includes
only the computation of (ϕ,E ′) from (E,R). (∗) denotes implementations utilizing the
optimization by [16] described in Section 5.2.1. The % reduction shows how much the
execution time of our implementation (the row above) is reduced from that of [16] (the
row before).
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When the aforementioned implementations of isogeny computation is employed to build
the complete isogeny-based protocol SIKEp751, we observe superior results with PCS. The
description of SIDH and SIKE is provided in Appendix A for reference. We note that the
first round of isogeny computation in Table 5.1 refers to the key generation phase of SIDH
and the second round refers to the secret agreement phase. In Table 5.2, the data shows
similar trends as in Table 5.1. The maximum reduction occurs in the case of encapsulation
algorithm when utilizing four cores, with the reduction of up to 11.49%.

# Cores Implementation KeyGen Encaps Decaps

1 [16] 25.98 42.08 45.18

2
[16] (∗) 23.28 30.76 35.73
This work (∗) 21.20 27.88 32.18
% reduction 8.93 9.36 9.94

3
[16] (∗) 21.95 28.32 33.12
This work (∗) 19.78 25.40 29.59
% reduction 9.89 10.31 10.66

4
[16] (∗) 21.01 26.72 31.14
This work (∗) 18.72 23.65 27.74
% reduction 10.90 11.49 10.92

Table 5.2: Execution times of various SIKE implementations using the SIKEp751 param-
eter set (in million CPU cycles). (∗) denotes implementations utilizing the optimization
by [16] described in Section 5.2.1. The % reduction shows how much the execution time
of our implementation (the row above) is reduced from that of [16] (the row before).

5.3 AVX-512 and Multi-Core PCS Implementation

We present in this section our second software implementation of isogeny computation
designed for processors supporting AVX-512. We first consider the execution environment
for the implementation and propose a modified version of CPCP∗

K that is better suited to this
setting. We then apply the PCS technique to an implementation of isogeny computation
that uses AVX-512 instructions and multi-threading. Lastly, timing results comparing
previous implementations with ours are presented.
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5.3.1 Constructing Better Strategies using Modified PCP

We consider the implementation of [20] as a starting point. As mentioned in Section 5.1,
their implementation sees 512-bit vectors as eight elements. Although we previously de-
scribed the usage at the low-level operations a ⊕ a′, the idea can be applied to a higher
level of isogeny evaluations. Here, we define n-way isogeny evaluation for n ∈ {8, 4, 2, 1} as
representing n elliptic curve points in one vector and evaluating n points simultaneously.
They are designed so that we use as many as possible vector elements, although there are
fewer than eight points to be evaluated and, as a consequence, fewer points evaluated im-
plies less execution time. As an example, we performed an experiment to obtain execution
times for each number of points evaluated concurrently by 4-isogeny. The experiments
were performed on an Intel(R) Core(TM) i5-11400 processor. Table 5.3 shows the results.

Points evaluated 1 2 3 4 5 6 7 8

Computation 1-way 2-way
4-way
(∗) 4-way

4-way
then
1-way

4-way
then
2-way

8-way
(∗) 8-way

Execution time
(CPU cycles)

4900 5800 9300 9400 13600 14500 16400 16500

Table 5.3: Execution times of [20] for different number of points evaluated concurrently by
4-isogeny. (∗) denotes cases where some vector elements are unused.

Based on these results, it is obvious that the execution times differ for different number
of points evaluated in the AVX-512 implementation. Therefore, using the equation CPCP∗

K

with K = 8 to construct strategies in this execution environment is not accurate and might
not give us the best speed-up, as PCP assumes that K evaluations take time equal to one
evaluation. Therefore, before we apply the PCS technique, we should modify PCP first in
order to obtain better strategies for the current setting.

For CPCP∗

K (e, k), the equation focuses on the number of cores k available to perform
operations. We instead focus on the number of operations to be performed. We elaborate
on our intuition with Figure 5.2.

Suppose we decompose strategy S to S1 and S2. The costs of point multiplications
(shown as a blue vertical thin line) can be determined. One isogeny evaluation connecting
S2 and S1 (shown as a red horizontal thin line) can also be calculated. For S2, we see that
there is a line representing isogeny evaluations above the triangle of S2. This line needs to
be taken into account when we perform operations of S2. While PCP says that this line
will occupy one core of the processor and we are left with K − 1 cores, we note that there
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Figure 5.2: Computing the costs of strategies using modified PCP: We need one isogeny
evaluation when moving from S2 to S1 and two evaluations from S4 to S3.

is one line included with S2. Recursively, S2 is then decomposed to S3 and S4. Since we
noted that there is one line above the S2 triangle, we can infer that there will be one line
above the S3 triangle and two lines above the S4 triangle. Also, we know that the number
of isogeny evaluations between S3 and S4 (shown as red horizontal thin lines) is two, which
is equal to the number of lines above the S4 triangle.

To formalize this intuition, let CMP∗
(e, r) denote the lowest cost of strategies for ℓe-

isogeny when there are r lines above the strategy triangle. What we would like to determine
is CMP∗

(e, 0). The dynamic programming equation for the modified PCP is as follows:

CMP∗
(e, r) ={

0 if e = 1,

min
0<i<e

{CMP∗
(i, r + 1) + CMP∗

(e− i, r) + fmul(e− i) + fiso(r + 1)} otherwise.

The function fmul(n) denotes the cost of serially performing n point multiplications by [ℓ],
and the function fiso(n) denotes the cost of performing n isogeny evaluations. If we let
fmul(n) = n · cmul and fiso(n) = ⌈n/K⌉ · ciso, our CMP∗

will be CPCP∗
. In other words, our

equation is a generalization of PCP.

In the setting of AVX-512, the values of fiso(n) for 1 ≤ n ≤ 8 are taken according to
Table 5.3. When n > 8, it is not straighforward to say that fiso(n) = fiso(n− 8) + fiso(8).
For an example of n = 10, we can split the computation to 8 + 2, 6 + 4, or even 4 + 4 + 2.
To obtain the optimal computation, we need another dynamic programming equation:

fiso(n) =

{
See Table 5.3 if 0 ≤ n ≤ 8,

min
1≤i≤8

{fiso(n− i) + fiso(i)} otherwise.

Lastly, for the value of fmul(n), it is almost linear to n. Based on our experiment, [20] gave
fmul(n) = 5200n+ 800 (in CPU cycles) for point multiplications by [4].
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5.3.2 Applying PCS to AVX-512 Implementation

After obtaining better strategies, we are ready to apply the PCS technique to them in order
to get a more efficient implementation. Since the main advantage of PCS is to perform
point multiplications and isogeny evaluations simultaneously but vectorization works well
with a single type of operation at a time, we decided to consider multi-threading for our
AVX-512 implementation. In particular, we utilize AVX-512 instructions and also two to
four cores of the multi-core processor. To the best of our knowledge, this work is the first
to combine both vectorization and multi-core processor for isogeny computation.

Revisiting Modified PCP. For K ∈ {2, 3, 4} cores, we can perform up to 8K isogeny
evaluations at a time. Hence, we revisit our CMP∗

equation for necessary modifications.

The only thing we need to modify is the function fiso(n). Now Table 5.3 can be used for
n up to 8K. The same issue happens for n > 8K. Nonetheless, the fix is straightforward.

fiso(n) =

{
See Table 5.3 for ⌈n/K⌉ if 0 ≤ n ≤ 8K,

min
1≤i≤8K

{fiso(n− i) + fiso(i)} otherwise.

Balancing Times of Two Operations. Under PCS, point multiplications by [ℓ] and
isogeny evaluations are allowed to be performed in parallel on different cores. To effectively
perform both, their execution times should not differ much. For example, we see that
performing one point multiplication by [4] takes time fmul(1) = 6000 and performing 2-
way 4-isogeny evaluations takes time fiso(2) = 5800. Therefore, it is effective to perform
one point multiplication by [4] on one core and 2-way 4-isogeny evaluations on another.

Modifying PCS. The PCS technique can be applied to our setting with some changes.
To obtain low-latency implementation, we consider two issues. The first one is the balance
of operations previously mentioned. By the proof of [42], any two point multiplications by
[ℓ] in a strategy constructed by CPCP∗

or CMP∗
cannot be computed at the same time. This

implies that, if one core is used to perform point multiplications, then other remaining cores
will be used for isogeny evaluations or left idle. In the former case, the execution times of
other cores should be close to the core performing point multiplications. In Algorithm 5.2
which is a modified version of Algorithm 4.4, these are shown in Lines 14–17.

The second issue we consider is the number of isogeny evaluations performed at one
time when no point multiplication is available. Under PCP, since K evaluations take time
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equal to one evaluation, it is best to greedily perform as many evaluations as possible.
However, for AVX-512, that is not the case. As an example, suppose K = 4 and there
are currently 25 isogeny evaluations to be performed. We could perform seven of them on
one core and six on three other cores. This will take time fiso(7). However, it is better
to perform only 24 of them and leave one for later, taking time fiso(6). This has not
been considered before because of the design principle of PCP used in all implementations.
Thus, our first step is to perform isogeny evaluations as a multiple of K.

We can optimize this further. By looking at Table 5.3 and Section 5.1, it is more
effective to perform one, two, four, eight isogeny evaluations at a time on each core. For
the example of 25 evaluations, we can perform only 16 of them, rather than 24, with the
cost of fiso(4). By this scheduling, we could effectively utilize AVX-512 instructions. This
optimization appears in Lines 18–25 of Algorithm 5.2.

Algorithm 5.2: Modified PCS for K-Core AVX-512 Implementation.

. . . (Lines 1–10 are the same as in Algorithm 4.4)
11 while VS ̸= ∅ do
12 t← t+ 1
13 V ′ ← {v ∈ VS : in-degree(v) = 0}
14 if there exists (i, j) ∈ V ′ such that ⟨(i, j − 1), (i, j)⟩ ∈ E∗S then
15 V ′ ← {2(K − 1) vertices in V ′ \ {(i, j)} with highest L(·)}
16 St ← {(i, j)} ∪ V ′

17 costt ← max{fmul(1), fiso(⌈#V ′/(K − 1)⌉)}
18 else
19 n← #V ′

20 if 8K ≤ n then n← 8K
21 if 4K ≤ n < 8K then n← 4K
22 if 2K ≤ n < 4K then n← 2K
23 if K ≤ n < 2K then n← K
24 St ← {n vertices in V ′ with highest L(·)}
25 costt ← fiso(⌈n/K⌉)
26 Append St to S

27 Remove all vertices in St and their out-going edges from S
28 cost← cost + costt
29 return (cost, S)
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5.3.3 Implementation Results

We implement our second isogeny computation which uses AVX-512 and two-to-four cores,
including optimizations in Sections 5.3.2 and 5.2.2. The implementations are based on the
SIKEp751 parameter set, where the underlying field is Fp2 with p = 23723239 − 1. We
compute two isogenies of degree 4186 and 3239, respectively. Then, we execute them on an
Intel(R) Core(TM) i5-11400 processor, together with other existing works. As usual, we
disable the Intel Hyper-Threading and Intel Turbo Boost technologies for reproducibility.
For benchmarking, we employ the same set of parameters, including the prime and the
extension field, used in the works that we compare our results with.

Table 5.4 shows the results. Two single-core implementations are those proposed by [68]
with no use of AVX technologies and [20] with the use of AVX-512. For two to four cores,
we present two implementations for each one of them: one is obtained by applying PCP
(Section 3.3.2) to strategies constructed from our modified PCP (Section 5.3.1), and the
other is obtained by applying our modified PCS (Section 5.3.2) to strategies constructed
from our modified PCP (Section 5.3.1). For the isogeny computation, there are two rounds
for each ℓe-isogeny computed: the first round includes the computation of (ϕ,E ′) from
(E,R) and the computation of three image points ϕ(P1), ϕ(P2), ϕ(P3) for some given points
P1, P2, P3, while the second round includes only the computation of (ϕ,E ′) from (E,R).

# Cores Implementation
4186-isogeny 3239-isogeny

Round 1 Round 2 Round 1 Round 2

1
[68] 20.11 16.49 22.73 19.40
[20], AVX 8.39 7.71 10.25 9.54

2
This work, AVX, PCP 7.26 6.95 8.63 8.31
This work, AVX, PCS 6.44 6.34 7.80 7.62

3
This work, AVX, PCP 6.64 6.50 7.94 7.75
This work, AVX, PCS 5.89 5.96 7.16 7.13

4
This work, AVX, PCP 6.28 6.26 7.51 7.51
This work, AVX, PCS 5.61 5.75 6.76 6.96
% reduction 33.13 25.42 34.05 27.04

Table 5.4: Execution times of various isogeny computation implementations (in million
CPU cycles). The first round includes the computation of (ϕ,E ′) from (E,R) and three
image points ϕ(P1), ϕ(P2), ϕ(P3) for some points P1, P2, P3. The second round includes only
the computation of (ϕ,E ′) from (E,R). The % reduction shows how much the execution
time of our best implementation in the eighth row is reduced from that of [20].
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The results clearly show the advantage of using vectorization and multi-core processors
for isogeny computation, as all of our multi-core implementations are faster than [68] and
[20]. We note that the underlying arithmetic computation of [20] and ours are the same.
As indicated in the bottom row of Table 5.4, the reduction is up to 34.05% for Round 1 of
3239-isogeny when utilizing four cores. Once again, the implementation results support the
importance of optimizing isogeny computation at the strategy-level. Even though using
AVX-512 on a multi-core platform leads to a faster implementation, we may not obtain the
best results if we do not consider optimizations for strategy construction and evaluation.
By changing the parallelization technique from PCP to PCS, the execution time can be
reduced by up to 6.64−5.89

6.64
= 11.30% (4186-isogeny, Round 1, three cores).

When the aforementioned implementations of isogeny computation is employed to build
the complete isogeny-based protocol SIKEp751, we observe superior results with PCS. The
description of SIDH and SIKE is provided in Appendix A for reference. We note that the
first round of isogeny computation in Table 5.1 refers to the key generation phase of SIDH
and the second round refers to the secret agreement phase. In Table 5.5, the data shows
similar trends as in Table 5.4. The maximum speed-up occurs in the case of key generation
algorithm when utilizing four cores, with the reduction of up to 34.11% from the single-core
implementation of [20].

# Cores Implementation KeyGen Encaps Decaps

1
[68] 22.88 36.87 44.21
[20], AVX 10.26 16.12 17.93
[20], AVX (∗) 10.26 12.80 17.93

2
This work, AVX, PCP 8.61 14.19 15.64
This work, AVX, PCS 7.77 12.91 14.18

3
This work, AVX, PCP 7.94 13.14 14.43
This work, AVX, PCS 7.24 11.93 13.11

4
This work, AVX, PCP 7.51 12.56 13.79
This work, AVX, PCS 6.76 11.41 12.67
% reduction 34.11 10.86 29.34

Table 5.5: Execution times of various SIKE implementations using the SIKEp751 pa-
rameter set (in million CPU cycles). (∗) denotes an implementation where two isogeny
computations in Encaps are combined. The % reduction shows how much the execution
time of our best implementation in the ninth row is reduced from that of [20] (∗) in the
third row.
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In addition to benchmarking AVX-512 implementations for cycle counts, we also bench-
marked them for wall times (with the Intel Hyper-Threading and Intel Turbo Boost tech-
nologies enabled to replicate actual runnings) as in Table 5.6. Based on the results, the
cycle counts of all implementations (ref. Table 5.4) correspond to wall times.

# Cores Implementation
4186-isogeny 3239-isogeny

Round 1 Round 2 Round 1 Round 2

1
[68] 4.693 3.787 5.225 4.445
[20], AVX 1.958 1.801 2.396 2.233

2
This work, AVX, PCP 1.691 1.630 2.017 1.954
This work, AVX, PCS 1.513 1.506 1.835 1.799

3
This work, AVX, PCP 1.548 1.526 1.872 1.821
This work, AVX, PCS 1.371 1.397 1.670 1.672

4
This work, AVX, PCP 1.471 1.485 1.762 1.768
This work, AVX, PCS 1.310 1.363 1.609 1.637

Table 5.6: Execution times of various isogeny computation implementations (in millisec-
onds). The Intel Hyper-Threading and Intel Turbo Boost technologies are enabled.

5.3.4 Efficiency Analysis

The previous subsection shows 25–34% reduction in the execution time when employing
four cores, compared to the single-core implementation of [20]. At first glance, four-time
speed-up (or equivalently 75% reduction) might be expected. In this subsection we analyze
the theoretical speed-up together with efficiencies of our strategies and implementations.
For the analysis, we refer to data under the column of 4186-isogeny, Round 2, in Table 5.4.

In the following, we define the overall computational cost for a strategy designed for
the multi-core setting as the cost of that strategy when it is evaluated using a single core.
The overall computational cost reflects the number of operations in a strategy, while the
multi-core strategy cost depends both on the number of operations and how much we can
parallelize them.

Theoretical Speed-Up. The theoretical single-core strategy cost from [20] (computed
using the modified PCP in Section 5.3.1) is 5.53 million CPU cycles, and the four-core strat-
egy cost of that achieved by our four-core implementation (computed by Algorithm 5.2) is
3.39 million CPU cycles. By looking only at the theoretical strategy costs, the expected
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speed-up is 38.70%. This is 1.5 times higher than what we achieved (25.42%, bottom
row of Table 5.4) presumably due to the communication overhead among cores. Next,
we analyze the maximum theoretical speed-up. For this, it is common to assume that we
have an infinite number of cores. However, [42] and [16] described that the highest level
of parallelization is obtained for e − 1 cores as it is not useful to have more than e − 1
cores. For the 4186-isogeny, e is 186. In this case, the strategy used for the computation is
the isogeny-based strategy [30] (i.e., all points except for those in the leftmost column are
computed from isogeny evaluations) and its strategy cost is fmul(e−1)+(e−1) ·fiso(1). For
our current setting, this would result in 1.87 million CPU cycles. Hence, even in the case
of having plentiful cores, the maximum theoretical speed-up is 5.53

1.87
= 2.96 times (or equiv-

alently 66.20% reduction). We note that the actual speed-up from the implementation is
expected to be less than this due to the synchronization costs.

Strategy Efficiency. When there are more cores available, the strategies used in our
implementations require more computations compared to the one used by [20]. For the
strategy used by our four-core implementation, its overall computational cost (computed
using the modified PCP in Section 5.3.1) is 6.68 million CPU cycles, which is higher
than that of [20]. Nonetheless, a higher number of operations allows multiple cores to
concurrently perform the computation, resulting in a lower latency. If we apply four
cores to the strategy of [20], its strategy cost (computed by Algorithm 5.2) is 4.76 million
CPU cycles, which is higher than ours. Therefore, we could say that we increase the
overall computational cost by 6.68−5.53

5.53
= 20.80%, but reduce the four-core strategy cost by

4.76−3.39
4.76

= 28.78%. This is preferable in order to have low-latency implementations.

Implementation Efficiency. From the aforementioned results, the efficiency of our ap-
proach decreases when the number of cores increases. One way of looking at the efficiency
of our K-core, K ∈ {2, 3, 4}, implementation is to express it as T1

K·TK
, where Tx is the

execution time of the x-core implementation. For our implementations, the efficiencies are
7.71

2×6.34
= 60.80% for two cores, 7.71

3×5.96
= 43.12% for three cores, and 7.71

4×5.75
= 33.52% for

four cores. The efficiency is expected to decrease when there are more cores as we trade
overall computational cost for latency.

In addition, we ran our proposed multi-core implementations utilizing PCS on a single
core to have a better understanding of the extent of any overheads in the execution time
(e.g., due to communication between cores). The corresponding execution times are shown
in Table 5.7, and we compare theoretical costs and actual running times of our multi-core
implementations and their serializations corresponding to the computation of 4186-isogeny
in Table 5.8. Assuming that the execution times of the serialized versions correspond to
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their theoretical costs, the overhead percentage increases from 0.78−0.64
0.64

= 21.88% for two
cores to 0.57−0.39

0.39
= 46.15% for four cores. This is another indication that having more

cores may not always be beneficial due to an overhead increase.

Implementation
4186-isogeny 3239-isogeny

Round 1 Round 2 Round 1 Round 2

Serialization of 2-core PCS 8.86 8.14 10.09 9.57
Serialization of 3-core PCS 9.63 8.87 11.44 10.24
Serialization of 4-core PCS 10.47 10.04 11.62 11.13

Table 5.7: Execution times of the serialized version of our proposed isogeny computation
implementations (in million CPU cycles).

Implementation
Theoretical Cost Execution Time

Multi-Core Serialized Ratio Multi-Core Serialized Ratio

2-core PCS 4.06 6.39 0.64 6.34 8.14 0.78
3-core PCS 3.66 7.28 0.50 5.96 8.87 0.67
4-core PCS 3.39 8.65 0.39 5.75 10.04 0.57

Table 5.8: Theoretical strategy costs and actual execution times of multi-core and serial-
ized versions of our 4186-isogeny computation implementations, Round 2 (in million CPU
cycles). The Ratio columns show the ratio between Multi-Core and Serialized columns.

5.4 Discussion

The implementation results in Sections 5.2 and 5.3 show notable speed-ups when applying
PCS with the SIKEp751 parameter set of SIKE as software implementations. In this
section, we discuss the applicability of the proposed techniques to a variety of other settings
and provide some remarks on the cost functions used in this work.

Applicability to Other Settings. The settings considered below include different vec-
torization technologies, alternative implementations of arithmetic in the underlying finite
field, hardware implementation, and other isogeny-based schemes.

Different vectorization technologies. Although AVX-512 is currently the most powerful
extension available, other technologies such as AVX2 may be arguably far more widely
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used. When using AVX2, vectors are only of size 256 bits and one will need to adjust the
implementations of point multiplications, isogeny evaluations, and other primitive arith-
metic accordingly. After the implementations of fundamental operations are ready, we
require the execution times of those operations (similar to what is discussed in Section
5.3.1) in order to adjust the functions fmul, fiso and apply our proposed techniques. We
expect a similar extent of effectiveness when applying our work with AVX2-supported pro-
cessors. It is also of interest to apply our techniques to ARM’s Scalable Vector Extension
(SVE).

Alternative arithmetic package. Our techniques are applicable regardless of the im-
plementation of the arithmetic in the underlying field Fp2 . The speed of the arithmetic
operations has a profound influence on the speed of the implementation. This work relies
on the arithmetic implementations of [20, 68] which may no longer represent the state-of-
the-art due to the recent result of [63]. A faster arithmetic level implementation will likely
result in a higher speed-up. For that, one requires the execution times of those arithmetic
operations to adjust with our work.

Hardware implementations. The number of operations that can be performed in parallel
can vary based on implementations and the number of logic gates or FPGA slices available.
The maximum number of operations performed concurrently and their execution times can
be used to customize our work accordingly, similar to earlier discussion. Unlike other works
[57, 58], the operations done in each iteration need to be specified explicitly. Thus, the
control circuit may become complicated and optimizing it can be challenging.

Other isogeny-based schemes. The proposed implementations have a potential to be
adapted for the computation of degree-ℓ1ℓ2 · · · ℓn isogenies, which are used in some isogeny-
based protocols such as CSIDH. The only strategy-level difference is that in this case the
isogeny computation is more complex. In particular, the cost of computing an ℓi-isogeny
differs from that of an ℓj-isogeny. This is also true for point multiplication by [ℓi] and [ℓj].

To handle these differences, we require some changes to both strategy construction and
evaluation. For strategy construction, there are already some works that have studied
optimal strategies for the isogeny computation [21, 43]. Although both approaches are
designed for serial implementation, they can be extended to vectorized and parallel imple-
mentation in the same manner. For strategy evaluation, the scheduling algorithm used by
the PCS technique needs to be applicable with tasks of varying length. Example of such
algorithms are [22, 37]. Tables 5.9 and 5.10 summarize and compare strategy construction
and evaluation techniques for both isogeny computations.
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Settings Strategy Construction Strategy Evaluation
Single-Core Optimal strategies [30] Sequential
Multi-Core PCP [16, 42] Modified PCS (Section 5.2.1)

AVX & Multi-Core Modified PCP (Section 5.3.1) Modified PCS (Section 5.3.2)

Table 5.9: Strategy construction and evaluation techniques for computing isogenies of
degree ℓe in various settings.

Settings Strategy Construction Strategy Evaluation
Single-Core Optimal strategies [21, 43] Sequential
Multi-Core PCP

Modified PCS using [22, 37]
AVX & Multi-Core Modified PCP

Table 5.10: Strategy construction and evaluation techniques for computing isogenies of
degree ℓ1ℓ2 · · · ℓn in various settings.

We would like to note that, while extending our work to CSIDH, one also needs to
think about the implementation of Fp arithmetic and the way to handle a case when a
sampled point cannot generate an isogeny. In addition, there is a possibility to extend
our implementations to SQISign. Since its source code suggests the use of strategies as an
improvement, this would be a natural application of our techniques to SQISign. As well,
one requires the implementation of Fp2 arithmetic designed specifically for its prime.

The Cost Functions. In this work, the cost of a strategy is based solely on two pa-
rameters: the costs of computing point multiplications and isogeny evaluations. This is
the approach used in all existing works, to our best knowledge, for both single-core [30]
and multi-core platforms [16, 42]. Consequently, the theoretical cost may not be a close
approximation of the actual execution time. For better cost computation, one may need
to take into account the costs of synchronization, memory access, etc. However, our pro-
posal considers strategy construction and evaluation as separate processes. Thus, we are
currently not able to determine the architectural costs during the construction. To handle
this, a new computation model needs to be devised, leading to an open problem.
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5.5 Chapter Summary

In this chapter, we illustrated how software implementation of large smooth-degree isogeny
computation, specifically with vectorization and parallelism, can be further sped-up at
the strategy-level. For the first implementation, which considered only the multi-core
parallelism, we were able to gain a speed-up when utilizing the modified PCS adapted
for the existing optimization. The execution time was reduced by up to 14.36% in our
implementation compared to that of [16].

The second implementation, equipped with AVX-512 technology and multi-core proces-
sors, combined the use of the modified PCP and PCS in order to provide effective strategies
and evaluations crafted for the execution environment. Our benchmarking showed a re-
duction in execution time of up to 34.05% compared to the single-core implementation
of [20] when utilizing up to four cores. Apart from these, our synchronization handling
mechanism was also important in achieving a low-latency vectorized and parallel software
implementation for the isogeny computation.

At the end of this chapter, we also provided commentaries on the applicability of our
work to a variety of other settings including AVX2, hardware implementations, and other
isogeny-based schemes such as CSIDH and SQISign. We see that there are promising
possibilities to further extend our implementations by considering such executing environ-
ments.
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Chapter 6

Learning-Based Optimizations

So far, we have proposed explicit algorithms to construct and evaluate strategies in order
to achieve low cost: construction is mainly based on the recursive structure of canoni-
cal strategies, and evaluation is based on precedence-constrained scheduling algorithms.
Although we were able to reduce the cost, those approaches are devised based on the
perspective and experience of human. This chapter explores some possibilities of using
machine to provide alternative—and sometimes better—solutions without our guide.

6.1 Using Machine to Solve Optimization Problems

As previously discussed, the problem of constructing a strategy and its evaluation is an
optimization problem. In Section 4.2.1, we provided an integer linear program for the case
that cmul = ciso. Here, we define a few problems related to strategies in general.

Definition 6.1 (Strategy problems). Let C be a function of computing the cost of a
strategy S and T be a function of computing the cost of a scheduling S. For a given
parameter set (e, cmul, ciso, K), we define the following problems:

1. Strategy construction under C: Construct a strategy S giving the least cost C(S)
among all possible strategies.

2. Strategy evaluation for S: Construct a scheduling S from S giving the least cost T(S)
among all possible schedulings of S.

3. Strategy construction and evaluation: Construct a pair (S, S) giving the least cost
T(S) among all possible pairs.
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The ultimate goal is to solve the third problem, but we do not see any directions to
tackle it at this moment. Up to this point, we principally solve the second problem with
PCS and modified PCS, with an attempt to solve the first problem with ILP. We note
that, to the best of our knowledge, only the problem of strategy construction under CPCP

K

is solved for the multi-core setting.

The traditional technique to solve optimization problems is to have domain experts
designed some heuristics and construct algorithms from them. However, those can often be
suboptimal due to the hard nature of the problems [66]. As alternatives, various techniques
let machines to search for good solutions without explicitly mentioning any properties of
the problem. In this thesis, we consider two directions of using machines to search for good
solutions.

The first direction involves stochastic local search [40] in the space of feasible solu-
tions. Briefly speaking, the search starts with some feasible solutions. Then, more feasible
solutions are produced from the current ones and the quality of these newly-produced
solutions are used to determine the direction of the search. Some well-known search algo-
rithms include random local search [4], simulated annealing [50], ant colony optimization
[27], particle swarm optimization [49], genetic algorithm [39], and other evolutionary al-
gorithms. Several applications of optimizing (cryptographic) computations based on these
techniques have been proposed, such as using genetic algorithm to reduce the number of
multiplications for matrix multiplication [46], and using random local search to generate
fast assembly code for cryptographic primitives [60].

The second direction is based on the emerging trend of machine learning algorithms.
Machine learning [70] is a study area of computer algorithms that improve automatically
through experience or learning from data. According to [12], machine learning algorithms
can be classified into three categories:

• Supervised learning : Algorithms learn from prepared input-output pairs and try to
predict the output for unseen inputs.

• Unsupervised learning : Algorithms obtain input data without any corresponding
output and try to discover underlying patterns of inputs.

• Reinforcement learning [89]: Algorithms, considered as agents, iteratively learn from
interactions with their environments and decide which action to perform at each step
in order to maximize their rewards.
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These techniques are applied to many optimization problems in various research area. For
example, reinforcement learning was used to speed-up matrix multiplication algorithms in
[28]. We refer the interested readers to [8, 65, 66] for details.

In the next two sections, we apply two above directions to two strategy problems.
Specifically, we use genetic algorithm to solve strategy construction problem in searching
for low-cost strategies in Section 6.2 and use reinforcement learning algorithm to solve
strategy evaluation problem in searching for low-cost schedulings in Section 6.3.

6.2 Strategy Construction with Genetic Algorithm

6.2.1 Genetic Algorithm (GA)

The genetic algorithm (GA) is a search algorithm which mimics the mechanics of natural
selection and genetics. It considers an optimization problem as an environment where
solutions are individual livings in that environment, and survival and reproduction of
individuals are based on the quality or fitness of them (calculated by the objective function).

In general, the genetic algorithm is initialized with a group of randomly generated
feasible solutions called population. Each individual is represented under some chosen form,
usually as a (binary) string or an array. After that, the algorithm performs iteratively. At
the end of each iteration, a new population is generated from the current population by
some stochastic operations. These operations typically include (i) a process of selecting
solutions for reproduction, (ii) a reproduction process to create new solutions (e.g., by
crossover or recombination), and (iii) a mutation of newly-generated solutions. Finally,
the algorithm stops when the termination condition is met, such as finding a satisfactory
solution or completing pre-determined number of iterations. The common framework of
the genetic algorithm can be summarized in Algorithm 6.1.

Algorithm 6.1: Genetic algorithm.

Output: A solution of an optimization problem

1 Initialize the population
2 while the termination condition is not met do
3 Select solutions from the population
4 Reproduce new solutions
5 Mutate newly-generated solutions
6 Form new population

7 return the best solution found
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It is mentioned in [36] that the genetic algorithm is theoretically and empirically proven
to provide robust search in complex spaces. It is different from traditional optimization
and search in four aspects:

1. GA works with some representation of solutions, not the solutions themselves.

2. GA searches from a group of solutions, not one.

3. GA uses only the objective function without other auxiliary knowledge.

4. GA uses probabilistic rules and not deterministic.

6.2.2 Applying Genetic Algorithm to Our Setting

When applying GA to each optimization problem, the designer of the algorithm still needs
to specify some implementation details, including:

• the representation of solutions,

• the size of the population,

• the termination condition, and

• the detail of each stochastic operation.

Many of these may not be determined right away and may require some trial-and-error ex-
periments. This section discusses our attempt to utilize GA to construct low-cost strategy
S under a specific cost function C(S).

The Representation of Solutions. We follow a popular approach and aim to represent
strategies using bitstrings. Unlike some optimization problems, it might not be obvious to
represent a graph of a strategy as a bitstring. We do so by considering the fact that every
vertex in a well-formed strategy must have at most one incoming edge. For vertices (0, j)
in the leftmost column and vertices (i, 0) in the top row, their incoming edges are certain.
However, for other vertices (i, j) where i ̸= 0 and j ̸= 0, there are three options: (i) there is
a left-to-right edge from (i−1, j), (ii) there is a top-to-bottom edge from (i, j−1), and (iii)
there is no edge. By this, we define two representations for a strategy, one using bitstring
and the other using ternary string.
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Definition 6.2 (String representations of strategies). For the computation of degree-ℓe

isogeny, we define two ways of interpreting strings of length (e−2)(e−1)
2

as follows. A strat-
egy’s vertex (i, j), where i ̸= 0 and j ̸= 0, corresponds to the x-th element of the string

where x =
i−1∑
y=1

(e− y − 1) + j.

1. Binary string representation: Each element of the string can be 0 or 1, where 0
represents the left-to-right edge and 1 represents the top-to-bottom edge.

2. Ternary string representation: Each element of the string can be 0, 1, or 2, where 0
represents the left-to-right edge, 1 represents the top-to-bottom edge, and 2 represents
no incoming edge.

Example 6.3. For degree-ℓ5 isogeny, we use strings of length 3×4
2

= 6 to represent strate-
gies. For binary representation, the string 000110 represents the strategy in Figure 6.1(a).
One could obtain the bitstring from the strategy by going through all vertices (i, j) where
i ̸= 0 and j ̸= 0 from left to right, top to bottom: (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (3, 1).
For ternary representation, the string 210110 represents the strategy in Figure 6.1(b). Both
strategies are not well-formed, but we can obtain a well-formed strategy in Figure 6.1(c)
by removing some unnecessary edges. Its ternary representation is 220110.

(a) (b) (c)

Figure 6.1: Examples of interpreting binary and ternary strings as strategies.

It is not hard to see that all well-formed strategies can be represented by some strings,
thus we cover all solutions in the search space. We note that some ternary strings may
not represent valid strategies as some leaves may not be reachable from (0, 0). An obvious
example is a ternary string whose all elements are 2. Regarding GA, we extend the defi-
nition of our cost functions for strategies to accommodate subgraphs G of Te that are not
strategies: C(G) =∞.
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On the other hand, we prove in the following lemma that all binary strings represent
valid strategies (but not necessarily well-formed). This difference between two representa-
tions reflects experimental results as we shall see next.

Lemma 6.4. All binary strings in Definition 6.2 represent strategies.

Proof. We can prove the lemma by showing that all leaves (i, e− i− 1) are reachable from
(0, 0) in the corresponding strategies. Instead, we show that all vertices (i, j) are reachable
from (0, 0). This can be done by an induction on i+ j.

Basis step (i+ j = 0): (0, 0) is reachable from (0, 0).

Induction step: Suppose all vertices (i′, j′) where i′ + j′ = n are reachable from (0, 0),
we would like to prove that all vertices (i, j) where i+ j = n+ 1 are reachable from (0, 0).
We consider any vertex (i, j) such that i + j = n + 1. The case that i = 0 or j = 0 is
obvious. For the case that i ̸= 0 and j ̸= 0, the binary string specifies whether there is an
edge from (i−1, j) or (i, j−1). Since i+j = n+1, we have (i−1)+j = i+(j−1) = n. By
induction hypothesis, both vertices are reachable from (0, 0). Therefore, by an incoming
edge to (i, j), (i, j) is reachable from (0, 0). This concludes the proof.

The Size of Population. We define the representation of strategies for degree-ℓe isogeny
to be strings of (e−2)(e−1)

2
elements. The string length is 17,020 when e = 186 and 28,203

when e = 239. For the diversity of the population, we have decided to choose the size of
the population to be 10,000. We have tried 100 and 1,000 for the size and the search tends
to converge faster but to a strategy with a higher cost. The larger population size is better
but the search will take more time. By trial and error, we think 10,000 is a good trade-off.

The Termination Condition. The larger number of iterations is better for the search as
it increases an opportunity to find better solutions, but it would result in longer execution
time. We obtain satisfactory solutions after 1,000 iterations and use this parameter for the
experiments.

The Stochastic Operations. We again follow the common approach and consider three
stochastic operations: selection, reproduction (crossover), and mutation. There are various
techniques available to choose from, and below are what we used in the experiments.
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Selection. For each time that we want to generate new strategies, we randomly select
three strategies from the population and keep the best two to be parents.

Reproduction (crossover). For two strings of parents, s1s2 · · · sn and s′1s
′
2 · · · s′n, we

randomly select an index 1 ≤ i < n, and construct two new strings s1 · · · sis′i+1 · · · s′n and
s′1 · · · s′isi+1 · · · sn.

Mutation. For newly-reproduced strings, we alter each element to different element
(depending whether it is binary or ternary string) with probability 0.001.

New Population Construction. For 10,000 strategies in the population, we reproduce
another 10,000 strategies using the above-mentioned approach. Among 20,000 strategies
we have, we keep the best 10,000 strategies as the population for the next iteration.

Example 6.5. Consider a case of binary strings and e = 5. Suppose two parent strings,
shown in Figure 6.2(a), are 110011 and 001101. For the reproduction, let the index be 2.
Hence, we construct two new strings 11|1101 and 00|0011, shown in Figure 6.2(b). The
mutation process alters the first newly-reproduced string to 111001 and alters the second
to 010011. The results of all stochastic operations are shown in Figure 6.2(c).

(a) (b) (c)

Figure 6.2: Examples of genetic algorithm stochastic operations.

Our genetic algorithm to search for a low-cost strategy for degree-ℓe isogeny computa-
tion can be summarized as in Algorithm 6.2. We note that each iteration of the for loop
in Lines 4–8 is independent and one can speed-up the algorithm by parallelizing this part.

79



Algorithm 6.2: Genetic algorithm for strategy construction under C.

Output: A low-cost strategy for degree-ℓe isogeny computation

1 Initialize the population P with 10,000 random strings of length (e−2)(e−1)
2

2 for itr = 1 to 1, 000 do
3 P′ ← ∅
4 for rep = 1 to 5, 000 do
5 Randomly pick three strings from P and keep two with least C(·)
6 Reproduction with random index i
7 Mutation each element of newly-reproduced strings with probability 0.001
8 Add two mutated strings to P′

9 P← {10,000 strategies with least C(·) in P ∪ P′}
10 return A strategy with the least cost C(·) in P

We end this subsection by emphasizing our design rationale that our string represen-
tations of strategies and the reproduction (crossover) process, as shown in Figure 6.3(a),
are designed together such that they reflect the nature of the isogeny computation which
is typically performed from left to right in a strategy. Precisely, we think that connecting
a good left part of one strategy with a good right part of another will result in a good
strategy. Alternatively, one can choose to interpret strings by going through all vertices
in top-to-bottom then left-to-right fashion, but when it comes to crossover, strategies will
be split and joined horizontally. This is depicted in Figure 6.3(b). Since strategies are
evaluated from left to right, we believe that mixing the top part of one strategy with the
bottom part of another may not maintain good structures of strategies from one generation
to the other, resulting in an ineffective search.

(a) (b)

Figure 6.3: Two approaches for strategy representation and crossover. Arrows show the
order of string interpretation.
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6.2.3 Experiments and Results

For each parameter set (e, cmul, ciso, K), we conduct two searches using GA: the first
uses ternary string representations of strategies and the second uses binary string rep-
resentations. They are denoted in the tables below as GA-3 and GA-2, respectively,
and are compared with those from Chapter 4. Again, we consider two parameter sets
(e, cmul, ciso) = (186, 25.8, 22.8) and (239, 27, 8, 17). The cost function CHu

K is used as an
objective (a.k.a. fitness) function of strategies for GA. The cost reductions in both tables
compare the costs of both GA-3 and GA-2 with our previous best results from Chapter 4.

K 2 3 4 5 6 7 8

Ch. 4 Cost 22081.2 18340.2 16337.4 15269.4 14973.6 14949.6 14063.4

GA-3 Cost 24587.4 18846.6 16455.6 15618.6 14746.8 13931.4 13722.6
% reduction −11.35 −2.76 −0.72 −2.29 1.51 6.81 2.42

GA-2 Cost 22848.0 18238.2 16078.2 14889.6 14195.4 13462.2 13120.2
% reduction −3.47 0.56 1.59 2.49 5.20 9.95 6.71

Table 6.1: The cost of best strategies from GA under the parameter set (e, cmul, ciso) =
(186, 25.8, 22.8).

K 2 3 4 7 8

Ch. 4 Cost 28265.0 23625.0 21282.8 19073.6 18641.2

GA-3 Cost 35513.8 27986.6 24387.2 20572.8 20066.2
% reduction −25.65 −18.46 −14.59 −7.86 −7.64

GA-2 Cost 31107.4 25661.2 22820.2 19279.6 18380.6
% reduction −10.06 −8.62 −7.22 −1.08 1.40

Table 6.2: The cost of best strategies from GA under the parameter set (e, cmul, ciso) =
(239, 27.8, 17).

The genetic algorithm, specifically GA-2, is able to search for less-cost strategies in
several parameter sets. From both tables, GA tends to work better with large K. The
reduction can get up to almost 10% for the case of (e, cmul, ciso, K) = (186, 25.8, 22.8, 7).
As a showcase, we visually present two strategies under this parameter set: one in Figure
6.4 is canonical and recursively constructed in Chapter 4, and the other in Figure 6.5 is
constructed by GA-2. We note that the searches terminate after 1,000 iterations, which is
approximately three days for each parameter set, and we expect to achieve even less cost
when searching longer.
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Figure 6.4: Best canonical strategy found in Chapter 4 with the cost of 14949.6 for
(e, cmul, ciso, K) = (186, 25.8, 22.8, 7).
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Figure 6.5: Best non-canonical strategy found by GA-2 with the cost of 13462.2 for
(e, cmul, ciso, K) = (186, 25.8, 22.8, 7).
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From the experimental results, one can see the advantage of strategies which do not
have nice structures unlike those canonical ones. We believe that canonical strategies
limit the use of parallelism to some extent. Below we prove that, apart from the point
multiplications in the leftmost column, there can be some operations in a canonical strategy
that cannot be parallelized with any other operations. Such operations can be considered
as a bottleneck of the computation. Notice that the proof does not apply to non-canonical
strategies.

Lemma 6.6. Consider a canonical strategy S = (VS , ES). If there is an edge ⟨(i, 0), (i, 1)⟩
in ES , then all edges ⟨(i, j), (i, j + 1)⟩, 0 ≤ j < e − i − 1, in ES in that column cannot be
parallelized with any other operations in S.

Proof. If there is an edge ⟨(i, 0), (i, 1)⟩ in ES , the point (i, 0) must be a corner point of a
triangle representing a (sub-)strategy. In the case that i = 0, it is obvious that we have
to perform all point multiplications ⟨(0, j), (0, j + 1)⟩, 0 ≤ j < e− 1, sequentially since we
must obtain the kernel generator first before moving to the next column.

In the case that i ̸= 0, there must be another sub-strategy to the left of the i-th column,
following the definition of canonical strategies. That sub-strategy, denoted as S ′, can span
from the leftmost column (Figure 6.6(a)) or any other column (Figure 6.6(b)). Regardless
of the size and structure of S ′, in order to obtain (i, 0), all computations in S ′ must first
be completed and then the isogeny evaluation ⟨(i− 1, 0), (i, 0)⟩, shown as a red thick line,
is performed. Similar to the case of i = 0, we must obtain the kernel generator in the i-th
column first before moving to the next column. Therefore, all point multiplications in the
i-th column, shown as a blue thick line, must be done sequentially.

(a) (b)

Figure 6.6: Bottleneck operations in canonical strategies.

Although we cannot see any obvious bottleneck in strategies constructed by GA, we
are yet to find any patterns of strategies which produce less cost.
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Finally, we would like to mention that the string representations of strategies also play
an important role in providing effective search. From the results, binary representations
(GA-2) give strategies with less costs for all parameter sets. We believe that this is because
ternary strings may sometimes give graphs that are not strategies when they are crossed-
over and thus considered less useful.

To better see the difference in the effectiveness between GA-3 and GA-2, below we plot
the cost of best strategy found from GA-3 and GA-2 during the search when the parameter
set used is (e, cmul, ciso, K) = (186, 25.8, 22.8, 7). It is evident that GA-2 could construct a
strategy with less cost and such strategy can be found faster compared to that of GA-3.

Figure 6.7: A plot for the cost of best strategy found from GA-3 and GA-2.

Even though Algorithm 6.2 with binary representations could construct non-canonical
strategies with less cost, we are yet to prove the optimality of its outputs. It may be
possible to present another instantiation of the genetic algorithm for strategy construction
under C which is more effective than what we proposed in this section. At this stage, we
leave this as an open research question.
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6.3 Strategy Evaluation with Reinforcement Learning

6.3.1 Reinforcement Learning (RL)

Reinforcement learning (RL) is an area of machine learning which involves learning which
action to take in each situation in order to maximize a reward. The learner, called an
agent, is not told what to do but must learn by trying those actions. When an agent
chooses an action to take, the current situation changes based on the chosen action. The
agent then incorporate the new situation to choose its next action, and so on. In many
settings, chosen actions not only affect the immediate reward but also the next situation
and subsequent rewards. Thus, an intelligent agent has to consider long-term effects when
making a decision. The followings are the three most important distinguishing features of
reinforcement learning problems [89]:

1. The problem is close-loop in a way that agent’s actions influence its later inputs.

2. An agent is not directly instructed but learns from its rewards.

3. Actions have long-term consequences in terms of future situations and rewards.

It is common to describe the interaction of the agent to the environment using the following
figure. In one situation or state, an agent first chooses an action, interacting with the
environment. Next, the environment responds by providing a new state where the agent
is now in and a reward for performing such action. Treating the new state and reward as
inputs, the agent then chooses the next action.

Figure 6.8: A framework of reinforcement learning.
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Exploration and Exploitation. One of the challenges which is specific to RL, and not
other machine learning categories, is the trade-off between exploration and exploitation.
When an agent decides which action to take, it may choose to perform an action which
was already taken during previous tries and gave a high (or even the highest) reward
(exploitation). However, by only sticking with what the agent already knows, it loses
an opportunity to try other choices which may lead to a higher reward (exploration).
The exploration-exploitation dilemma is to balance both operations and still obtain high
rewards. The problem has been modeled as the multi-armed bandit problem first described
in [80]. In this thesis, we do not go into its detail and briefly consider the dilemma when
we discuss the learning algorithm.

Markov Decision Process (MDP). The environment to which an agent interacts is
usually described by a (finite) Markov decision process [7]. We provide its definition based
on that appeared in [6, 66].

Definition 6.7 (Markov decision process). A Markov decision process is a tuple M =
(S,A,R,P) where

• S is a countable set of states,

• A is a set of actions,

• R : S×A→ R is a reward function, and

• P : S ×A × S → [0, 1] is the transition probability function such that for all states

s ∈ S and actions a ∈ A:
∑
s′∈S

P(s, a, s′) ∈ {0, 1}.

The transition probability function P(s, a, s′) specifies the probability that the current
state is changed to s′ when taking an action a at s. According to Figure 6.8, an agent,
choosing an action at at a state st, receives the next state st+1 following the distribution
P(st, at, ·) and a reward rt = R(st, at). As this process continues, an agent, starting at a
state s0, will create a sequence ⟨s0, a0, s1, a1, . . .⟩ which provides a reward of

∑
t R(st, at).

The decision of which action a to choose at s can be described by a policy π : s 7→ a
which can be probabilistic. When following π, we have at = π(st). Thus, the goal of an
RL agent is to find an optimal policy π∗ that maximizes the expected cumulative sum
of rewards: π∗ = argmaxπ{E[

∑
t R(st, π(st))]}. In many settings, short-term rewards are

more preferable and the goal of an agent is defined to be finding π∗ that maximizes the
expected cumulative discounted sum of rewards: π∗ = argmaxπ{E[

∑
t γ

tR(st, π(st))]} for
a discount rate 0 < γ ≤ 1.
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Value Functions. In order to find π∗ for an MDP M, we can apply value-based RL
algorithms. The algorithms mainly consider the following two functions:

• The state-value function V ∗ : S→ R, where V ∗(s) is the maximum expected cumu-
lative discounted sum of rewards when starting at s, and

• The action-value function Q∗ : S×A→ R, where Q∗(s, a) is the maximum expected
cumulative discounted sum of rewards when performing a at s.

By the above definitions, they satisfy particular recursive (i.e., dynamic programming)
relationships called Bellman equations as follows:

V ∗(s) = max
a

{
R(s, a) + γ

(∑
s′

(P(s, a, s′) · V ∗(s′))

)}
,

Q∗(s, a) = R(s, a) + γ

(∑
s′

(P(s, a, s′) ·max
a′
{Q∗(s′, a′)})

)
.

Also, both functions are related to each other:

V ∗(s) = max
a
{Q∗(s, a)},

Q∗(s, a) = R(s, a) + γ

(∑
s′

(P(s, a, s′) · V ∗(s′))

)
.

Therefore, if one knows V ∗ or Q∗ for a given MDP M, it is straightforward to determine
an optimal action for each state and thus construct π∗. When the number of (s, a) pairs
is not too large and all pairs can be iterated, an algorithm called value iteration [18, 77]
can be used to approximate V ∗ and Q∗.

Q-Learning. In various settings, the number of (s, a) pairs is very large (or even un-
countable) and we cannot go through all possible pairs. Some examples include cases
where A is continuous and cases where S is very large such as a game of chess which has
≈ 1043 (or 2143) states [85]. Instead of iterating through all (s, a) pairs, many techniques
use random sampling in order to approximate V ∗ and Q∗. In this thesis, we consider one
such algorithm called Q-learning [95], but other techniques can be utilized, e.g., Monte
Carlo methods [67] and Temporal-Difference (TD) learning [51, 83].
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Q-learning estimates Q∗ function by building its approximation Q from what an agent
has experienced. The value of Q(s, a) is initialized arbitrarily. When an agent explores
the environment and obtains s′ and R(s, a) from choosing a at s, the value of Q(s, a) is
updated using the following operation, sometimes called Bellman operation:

Q(s, a)← Q(s, a) + α[R(s, a) + γmax
a′

Q(s′, a′)−Q(s, a)],

where α ∈ (0, 1] is called the step-size parameter, influencing the rate of learning. In brief,
the value of Q(s, a) is updated towards the optimal rewards R(s, a)+γmaxa′ Q(s′, a′) that
the agent can obtain, from the agent’s current perspective of Q. Under an assumption
that all (s, a) pairs are visited infinitely often, it has been proved that Q(s, a) converges to
Q∗(s, a) with probability 1 [89].

As previously mentioned, an agent must balance between exploration and exploitation
when choosing actions to perform. One solution to this is to use ϵ-greedy method to select
actions almost-greedily: at a state s, an agent selects the best action a∗ = argmaxa{Q(s, a)}
with probability 1−ϵ, and select a random action inA with probability ϵ. As an option, it is
possible to reduce ϵ over time. Apart from this, other methods for exploration-exploitation
lemma include Boltzmann exploration (Softmax method) [89], Pursuit methods [90], Upper
Confidence Bounds (UCB) methods [3], and Thompson sampling [91].

Putting all together, the Q-learning algorithm can be expressed as in Algorithm 6.3.
Note that the algorithm updates the value of Q(s, a) even before reaching a terminal state.

Algorithm 6.3: Q-learning algorithm.

Input : An MDP M = (S,A,R,P) and an initial state s0
Output: A policy π

1 Initialize Q(s, a) arbitrarily, except for Q(terminal-state, ·) = 0
2 while the termination condition is not met do
3 s← s0
4 while s is not a terminal state do
5 Choose a ∈ A using ϵ-greedy method based on Q(s, a)
6 Take action a, observe s′ and R(s, a)
7 Q(s, a)← Q(s, a) + α[R(s, a) + γmaxa′ Q(s′, a′)−Q(s, a)]
8 s← s′

9 Construct π from Q
10 return π
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6.3.2 Applying Reinforcement Learning to Our Setting

From the description of RL, it is suitable to be applied with the optimization problem of
evaluating a given strategy S = (VS , ES). We discuss our attempt in this section. To do
so, we model the problem as an MDP and utilize the value functions.

MDP for Our Setting. For evaluating a strategy S = (VS , ES), we define a state s ∈ S
to be a subset of VS representing points computed so far. An action a ∈ A for a given state
s is thus a subset of VS (of size at most K) representing available points to be computed
next. The rewardR(s, a) of an action a is then the cost of simultaneously computing points
in a on K cores, in terms of cmul and ciso. For the transition probability function P, our
setting does not involve probabilistic transition as the next state can be deterministically
determined from the current state and an action. Hence, instead of using P, we define the
transition function N : S×A→ S which gives the next state N(s, a) for a pair (s, a).

From an implementation view point, defining a state s as a set of points already com-
puted could be memory-consuming since the size of s is getting larger when more points
are computed. Equivalently, a state s can be defined as a set of points that are currently
available to be computed. As a result, an action a for a state s is simply a subset of s (of
size at most K). We give an example to illustrate two ways of defining a state.

Example 6.8. Consider a strategy in Figure 6.9(a). During an evaluation, two possible
configurations we can have are shown in Figures 6.9(b) and 6.9(c). For the configuration in
Figure 6.9(b), defining a state using computed points gives s = {(0, 1), (0, 2), (0, 3), (0, 4),
(1, 1), (1, 3)}, while defining a state using available points (shown in yellow) gives s =
{(1, 0), (1, 2), (2, 1)} which is smaller. For two different configurations in Figures 6.9(b) and
6.9(c), one can see that the set of computed points are different, and the set of available
points are also different.

(a) (b) (c)

Figure 6.9: Two ways of defining a state.
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Below we provide two proofs: the first one indicates the upperbound for the number of
points used to define a state for each definition, and the second one shows the correspon-
dence between two definitions of states. Consequently, we decide to define a state as the
set of available points in a configuration.

Lemma 6.9. Consider only well-formed strategies, the upperbound for the number of
computed points in a configuration is e(e+1)

2
− 1, and the upperbound for the number of

available points in a configuration is e.

Proof. The maximum number of points in a strategy is e(e+1)
2

(e.g., in the multiplicative-
based and isogeny-based strategies). Since (0, 0) is given as input, the upperbound for the

number of computed points in a configuration is e(e+1)
2
− 1.

Regarding the upper bound for number of available points, we consider a well-formed
strategy as consisting of e paths from (0, 0) to each leaf. In a valid configuration, there can
be at most one available point on each path. Therefore, the upperbound for the number
of available points in a configuration is e.

Lemma 6.10. Two definitions of states are the same. Formally, the sets of available points
are the same for two configurations if and only if the sets of computed points are the same
for both configurations.

Proof. If the sets of computed points are the same for two configurations, it is obvious that
the sets of available points are the same. For the other direction, we assume, for the sake of
contraposition, that the sets of computed points are different between two configurations.
We will show that the sets of available points are different between both configurations.

Since the sets of computed points are different, there must be at least one point that
is computed in one configuration and not in the other. Also, among those points, there
must be the leftmost-and-uppermost point. Let that point be (i, j). Without loss of
generality, let (i, j) be not computed in the first configuration and computed in the second
configuration. Next, we consider two possible cases.

Case i : (i, j) is computed from (i, j − 1). By how we choose (i, j), (i, j − 1) must be
computed in both configurations. Since (i, j) is not computed in the first configuration
and computed in the second, this implies that (i, j) is available in the first configuration
and not in the second.

Case ii : (i, j) is computed from (i − 1, j). By how we choose (i, j), (i − 1, j) and
(i− 1, e− i) must be computed in both configurations. Since (i, j) is not computed in the
first configuration and computed in the second, this implies that (i, j) is available in the
first configuration and not in the second. This concludes the proof.
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Next, we consider possible actions for a state s. For a state s with n available points,
the number of possible actions is

∑min{n,K}
k=1

(
n
k

)
. However, some actions can be removed

from consideration in order to reduce the size of the search space. The following proof
describes which actions we need to consider for RL algorithms.

Lemma 6.11. For a state si with ni available points, let si = si,mul ∪ si,iso be a union of
the sets of available points to be computed by point multiplication and isogeny evaluation,
respectively. Let the sizes of si,mul and si,iso be ni,mul and ni,iso, respectively. Then, there
exists an optimal sequence ⟨s0, a0, s1, a1, . . . , st⟩ providing an optimal reward

∑t−1
i=0 R(si, ai)

such that each ai follows one of the following three cases:

1. ai is a subset of si,mul of size min{ni,mul, K},

2. ai is a subset of si,iso of size min{ni,iso, K},

3. ai is a subset of si of size min{ni, K}.

Proof. An action ai can have three possible rewards: cmul, ciso, and max{cmul, ciso}. In the
case of cmul, all points in ai must be from si,mul. We show that there exists an optimal ai
of size min{ni,mul, K}. The proof below applies to the cases of ciso and max{cmul, ciso}.

Suppose there is an optimal sequence ⟨s∗0, a∗0, s∗1, a∗1, . . . , s∗t ⟩ where there exists a∗i ⊆ s∗i,mul

of size less than min{n∗
i,mul, K}. Thus, there must be a point (x, y) ∈ s∗i that is available

to be computed but is not included in a∗i . This point (x, y) must be in some a∗j for j > i
and in all s∗k for i ≤ k ≤ j. We can construct another optimal sequence

⟨s∗0, a∗0, . . . , s∗i , a′i, s′i+1, a
∗
i+1, . . . , s

′
j−1, a

∗
j−1, s

′
j, a

′
j, s

∗
j+1, . . . , s

∗
t ⟩

where a′i = a∗i ∪ {(x, y)}, a′j = a∗j \ {(x, y)}, and s′k = s∗k \ {(x, y)} for i < k ≤ j. This is a
valid sequence since all points that must be computed after (x, y) are still computed after
(x, y) and the size of a′i is no more thanK. Also, this sequence is still optimal, asR(s∗i , a

′
i) =

R(s∗i , a
∗
i ) = cmul, R(s′k, a

∗
k) = R(s∗k, a

∗
k) for all i < k < j, and R(s′j, a

′
j) ≤ R(s∗j , a

∗
j) due

to the fact that a′j ⊆ a∗j . This process can be repeated until a′i is of size min{n∗
i,mul, K}.

Therefore, we have proved that there exists an optimal sequence ⟨s0, a0, s1, a1, . . . , st⟩ where
each ai belongs to one of the three cases as desired.

From the above-mentioned proof, we reduce the number of actions to be considered
from

∑min{n,K}
k=1

(
n
k

)
to at most

(
nmul

min{nmul,K}

)
+
(

niso

min{niso,K}

)
+
(

n
min{n,K}

)
. As an example, in

the case where nmul = niso = K = 8 and n = nmul + niso = 16, we reduce the number of
actions from 39,202 to at most 12,872. Nonetheless, the number of actions to be considered
is still large.
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Applying Q-Learning. We define R(s, a) to be a positive number and formulate our
problem as a minimization problem. Since our problem do not involve probabilistic tran-
sitions and we consider rewards equally throughout the exploration (i.e., γ = 1), we can
simplify two value functions as follows:

V ∗(s) = min
a
{R(s, a) + V ∗(N(s, a))},

Q∗(s, a) = R(s, a) + min
a′
{Q∗(N(s, a), a′)}.

As we can see that the number of actions per state can be large, we will instead estimate V ∗

function by building its approximation V . Precisely, in our setting V ∗(s) is the length of a
shortest path from s to the terminal state and V (s) is the upperbound of V ∗(s). Using the
framework of Q-learning, below is the update (i.e., Bellman) operation for our V function
when an agent at a state s performs an action a and moves to the next state s′ = N(s, a):

V (s)← min{V (s),R(s, a) + V (s′)}.

Our RL algorithm for strategy evaluation for S can be written as Algorithm 6.4. This
is similar to a randomized shortest path algorithm with an application of ϵ-greedy method.
For the termination condition, we let an agent explore for 500,000 times.

Algorithm 6.4: Q-learning algorithm for strategy evaluation for S.
Input : A strategy S
Output: A scheduling S and its cost

1 Initialize V (s) =∞, except for V (∅) = 0
2 for itr = 1 to 500, 000 do
3 s← {(0, 1)}
4 while s ̸= ∅ do
5 Choose a ⊆ s using ϵ-greedy method based on R(s, a) + V (N(s, a))
6 Take action a, observe s′ = N(s, a) and R(s, a)
7 V (s)← min{V (s),R(s, a) + V (s′)}
8 s← s′

9 S← ⟨⟩; t← 0; cost← 0; s← {(0, 1)}
10 while s ̸= ∅ do
11 t← t+ 1
12 St ← argmina{R(s, a) + V (N(s, a))}
13 Append St to S

14 cost← cost +R(s, a)
15 s← N(s, a)

16 return (cost, S)
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Regarding the ϵ-greedy method, with probability ϵ we select an action uniformly at
random. For a state s, let s = smul ∪ siso as previously defined and the sizes of s and siso
are n and niso, respectively. Also, let m =

(
n

min{n,K}

)
. For the case that cmul > ciso, we use

the following procedure to uniformly select an action a for s at random:

• If 0 < niso < K, then
with prob. 1

m+1
, a← siso,

with prob. m
m+1

, a← a random subset of s of size min{n,K}, each with prob. 1
m
.

• Otherwise, a← a random subset of s of size min{n,K}, each with prob. 1
m
.

Lemma 6.12. Let cmul > ciso. The above procedure considers all actions (according to
Lemma 6.11) with equal probability.

Proof. When cmul > ciso, max{cmul, ciso} = cmul and we can consider only Cases 2 and 3 of
Lemma 6.11 for actions to be considered. When niso = 0, we uniformly select a subset of
s of size min{n,K} as an action (Case 3) and there are m such sets. When niso ≥ K, a
subset of siso of size min{niso, K} = K (Case 2) is already considered when we consider a
subset of s of size min{n,K} = K (Case 3). Thus, the cases of niso = 0 or ≥ K are correct.

When 0 < niso < K, there are two types of actions to be considered according to
Lemma 6.11: (i) a subset of siso of size min{niso, K} = niso (Case 2), and (ii) a subset of
s of size min{n,K} (Case 3). For (i), there is only one such set (i.e., siso). For (ii) there
are m such sets. If n > niso, sets in (i) and (ii) are different (because niso ̸= min{n,K})
and hence there are m + 1 possible actions in total. The procedure selects each action
with probability 1

m+1
. If n = niso, we have s = siso and sets in (i) and (ii) are both siso.

Nonetheless, the procedure selects a ← siso for both (i) and (ii). Therefore, the case of
0 < niso < K is also correct.

Online and Offline Updates. One feature of Q-learning is that the value function
is updated online before reaching a terminal state. This is useful in various cases. For
example, an agent will obtain updated values of states/actions when it visits the same
state during the exploration, and sometimes it takes long to reach a terminal state and
storing all explored states consumes a large amount of space.

For our setting, it is possible to have an offline update: an agent explores until it reaches
the terminal state and then updates V from the terminal state back to the initial state.
Formally, for ⟨s0, a0, s1, a1, . . . , st⟩, we update V (si) from i = t− 1 to 0 using the Bellman
operation. By this offline update, the reward of the path propagates back to the initial
state faster. For comparison, we try both online and offline updates in our experiments.
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6.3.3 Experiments and Results

For each parameter set (e, cmul, ciso, K), we conduct two experiments using RL: the first
follows Algorithm 6.4 with online updates and the second performs offline updates. They
are denoted in the tables below as QL online and QL offline, respectively. The input
strategies for the experiments are the least cost ones found in Section 4.3 (by PCS+ILP)
and Section 6.2.3 (by GA) under two parameter sets (e, cmul, ciso) = (186, 25.8, 22.8) and
(239, 27.8, 17). We provide the costs of strategies using CHu

K and CCG
K as baselines for

comparison. The rows % diff show the difference between the costs of RL experiments
with min{CHu

K ,CCG
K }.

K 2 4 8

CHu
K Cost 22081.2 16078.2 13120.2

CCG
K Cost 22081.2 16126.2 13153.2

min{CHu
K ,CCG

K } Cost 22081.2 16078.2 13120.2

QL online Cost 23560.2 17214.6 13621.2
% diff 6.70 7.07 3.82

QL offline Cost 23355.0 16921.2 13509.0
% diff 5.77 5.24 2.96

Table 6.3: The cost of strategy scheduling from RL under the parameter set (e, cmul, ciso) =
(186, 25.8, 22.8).

K 2 4 8

CHu
K Cost 28265.0 21282.8 18380.6

CCG
K Cost 28265.0 21282.8 18812.6

min{CHu
K ,CCG

K } Cost 28265.0 21282.8 18380.6

QL online Cost 29608.0 23152.8 19055.8
% diff 4.75 8.79 3.67

QL offline Cost 29370.0 22914.8 18882.8
% diff 3.91 7.67 2.73

Table 6.4: The cost of strategy scheduling from RL under the parameter set (e, cmul, ciso) =
(239, 27.8, 17).
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From the results, we see that our reinforcement learning algorithms are not able to
outperform Hu’s and Coffman-Graham’s scheduling algorithms for strategy evaluation.
However, the results are within as low as 2.73% from min{CHu

K ,CCG
K }. This suggests that

the heuristics used by Hu’s and Coffman-Graham’s scheduling algorithms are powerful
and produce very good results for our setting. Based on an assumption that the results
of our RL algorithms are approaching and converging to the optimal, we say that Hu’s
and Coffman-Graham’s algorithms may produce results that is very close to optimal in
our setting. Another conclusion from both tables is that RL tends to work better with
large K. Again, note that the agent only learns for 500,000 iterations, which can take
approximately one day for each parameter set, and we expect to achieve even less cost
when learning longer.

We also provide a plot for the cost of best schedulings found during the learning process
for the parameter set (e, cmul, ciso, K) = (239, 27.8, 17, 8) to illustrate the effectiveness of
the updates in our experiments. It is clear that the offline update is more effective for our
setting and can lead to results which is closer to optimal. Nonetheless, the difference in
the results are around 1–2%.

Figure 6.10: A plot for the cost of best scheduling found from RL experiments.
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6.3.4 Optimality of PCS

As our reinforcement learning algorithms produce the results that are very close to those
from Hu’s and Coffman-Graham’s algorithm, we conjecture that our PCS technique is
nearly optimal, or even optimal, for strategy evaluation for a given strategy S.

To argue about the optimality of PCS, we may have to exhaustively go through all
(s, a) pairs in the MDP. Since the number of pairs can be large for a large strategy, we
consider a small one when e = 50 (instead of 186 and 239 used elsewhere in the thesis).
We construct a strategy under the parameter set (e, cmul, ciso, K) = (50, 27.8, 17, 8) using
GA (shown below in Figure 6.11) and then perform an exhaustive (i.e., depth-first) search
on the MDP to obtain an optimal scheduling for this strategy. As a result, an optimal
scheduling has the same cost as produced by Hu’s algorithm. Hence, PCS is indeed optimal
for some strategies. Nevertheless, it is mentioned in Section 4.3 that there exists a strategy
S ′ where CHu

K (S ′) < CCG
K (S ′) and a strategy S ′′ where CHu

K (S ′′) > CCG
K (S ′′). Therefore, we

believe that RL algorithms could be helpful in suggesting an optimality of PCS, and more
works are still required to prove an optimality of PCS.

Figure 6.11: A strategy which has optimal scheduling under PCS for (e, cmul, ciso, K) =
(50, 27.8, 17, 8).
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6.4 Discussion

From experimental results in Sections 6.2 and 6.3, we have seen that both learning-based
optimizations work better when K gets larger. We think that there may be more solutions
that produce less cost for large K and the probability that learning-based algorithms are
able to find good solutions increases. In addition, GA works better for the case where cmul ≈
ciso. Thus, it is interesting to look into the parameter set (e, cmul, ciso, K) and investigate
its implication on the search space and the effectiveness of learning-based algorithms.

Another interesting question is to find better instantiation of learning-based optimiza-
tions which is more effective. The algorithms’ parameters (e.g., the size of GA population)
and heuristics (e.g. RL exploration-exploitation method), sometimes called hyperparam-
eters and metaheuristics, may be crucial in having effective learning. Hyperparameter
optimization [33] is another problem in machine learning that aims to find a set of optimal
hyperparameters for a learning algorithm. Using such optimization techniques may enable
better results for our setting, but it is beyond the scope of this thesis.

6.5 Chapter Summary

In this chapter, we applied learning-based optimizations to attempt to solve the strategy
construction and evaluation problems. We started by constructing low cost strategies
using genetic algorithm. GA involves various mechanics, mimicking natural selection such
as survival and reproduction, in order to search for solutions with great quality or fitness.
To apply GA, we defined the representation of solutions as strings and some GA stochastic
operations. As a result, GA was able to find low cost strategies for several parameter
sets for up to 9.95%. One thing which influenced the effectiveness of the search was the
representation of a solution.

Later, we utilized a reinforcement learning algorithm to construct a scheduling for a
given strategy. An agent of RL learned through trial-and-error by interacting with the
environment and built up its knowledge from its rewards. We first modeled our setting as
a Markov decision process (MDP), providing several proofs regarding states and actions,
and then applied Q-learning algorithm on the value function. Although our RL algo-
rithms were not able to outperform Hu’s and Coffman-Graham’s scheduling algorithms,
the experimental results supported that the traditional approximation algorithms for task
scheduling are powerful. We concluded by showing that there is a strategy which has
an optimal scheduling under PCS and discussing some possible improvements on using
learning-based optimization with our setting.
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Chapter 7

Conclusions and Future Works

7.1 Conclusions

This thesis is a study of speeding-up (i.e., reducing the latency of) the large smooth-degree
isogeny computation at the strategy-level, by exploiting the rich parallelism available in
multi-core and vectorized platforms. The study covered both theoretical improvements
due to various—traditional and learning-based—algorithms and practical aspects regarding
actual implementations such as precomputations and synchronizations.

Our first contribution presented in Chapter 4 is the precedence-constrained schedul-
ing (PCS) technique [75] where strategies are transformed into task dependency graphs
which are then utilized to construct schedulings. In previous works, the way a strategy
is evaluated is based on a simple set of rules that can be considered suboptimal. In this
thesis, we considered Hu’s and Coffman-Graham’s algorithms for task schedulings. Also,
we formalized the problem as an integer linear program and combined optimal solutions
for small strategies into larger strategies. As a result, the experiments showed that the
cost of strategies can be reduced by up to 13.02%.

The second contribution detailed in Chapter 5 is two actual implementations (in C
language) [76] of the large smooth-degree isogeny computation. The first implementation
considered two-to-four-core processors. We utilized our PCS and some existing optimiza-
tions for the speed-up. To efficiently handle synchronization between cores, we carefully
transformed the scheduling from PCS into OpenMP instructions with a barrier mechanism.
The benchmarkings denoted a reduction of up to 14.36% in the execution time. The second
implementation targeted two-to-four-core processors supporting AVX-512, the vectoriza-
tion technology from Intel. As vectorization is somewhat different from multi-core, we
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required some modifications to the strategy construction and evaluation for such setting.
We note that, to our best knowledge, previous implementations utilized either multi-core
processors or vectorization technology, but not both. Thus, our work is the first work to
do so. With various optimizations applied, we were able to achieve a reduction of up to
34.05% in the execution time.

The last contribution is two applications of learning-based optimizations to the problem
of the large smooth-degree isogeny computation (Chapter 6). For the first problem of
strategy construction under a given cost function, we considered the genetic algorithm to
search for better strategies. The algorithm is probabilistic and involves the processes of
mixing two strategies to create a new one and removing some strategies with low quality.
To instantiate the algorithm, we provided details and gave some discussions regarding our
design choices. The improvement from experimental results was as high as 9.95%. For the
second problem of strategy evaluation for a given strategy, we considered the reinforcement
learning algorithm to learn what action to perform at each step. The agent of the algorithm
learns from its environment and explores states using value functions. Even though our
reinforcement learning algorithms did not produce better experimental results compared
to those of PCS, we used those results to argue the effectiveness of PCS, which is optimal
for some strategies.

Table 7.1 below summarizes all techniques, in this thesis and previous works, regarding
the computation of large smooth-degree isogeny.

Settings Source Strategy Construction Strategy Evaluation

Single-
Core

[30] Optimal strategies Sequential

Multi-
Core

[42]
Optimal strategies

under PCP
Per-Curve Parallel (PCP),

Consecutive-Curve Parallel (CCP)
Chapter

4
Integer Linear

Programming (ILP)
Precedence-Constrained

Scheduling (PCS)
Chapter

5
Optimal strategies
under modified PCP

Modified PCP,
Modified PCS

Chapter
6

Genetic Algorithm (GA) Reinforcement Learning (RL)

Table 7.1: Summarization of speeding-up techniques for large smooth-degree isogeny com-
putation.
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7.2 Future Works

Although we have significantly improved the results from previous works, we believe that
it is still possible to further speed-up the large smooth-degree isogeny computation. Below
we list some directions for future work.

Proving optimality and lower bound. The optimality of strategy construction and
evaluation techniques proposed in this thesis is yet to be proved. This may be due to the
complexity of the scheduling problem and the isogeny computation itself. In addition, we
were not able to find any non-trivial lower bound for the cost of the computation. Since the
task dependency graphs have some nice structures (e.g., the in-degrees of all vertices are at
most two), it might be interesting to analyze strategies and their task dependency graphs
to a greater extent using graph theory knowledge in order to obtain insightful information
about the optimality and lower bound.

Devising better algorithmic approaches. Apart from the techniques proposed in this
thesis, there are various algorithms that can be used as alternatives. Some of those include
scheduling algorithms mentioned in Chapter 4, and search and reinforcement learning al-
gorithms mentioned in Chapter 6. The heuristics used by these algorithms may be more
suitable to the problem and yield better experimental results. Moreover, the algorithms’
hyperparameters and metaheuristics may be of importance in order to have practical al-
gorithms that works well in our setting. The optimization problem for such aspects is
another direction one could consider for the future work.

Furthermore, for the problem of constructing an optimal strategy and its evaluation
when cmul = ciso (Section 4.2), integer linear programming (ILP) is not the only available
approach to solve for a solution. The problem can also be formulated as a Boolean sat-
isfiability (SAT) problem [48] and a solution can be found using a solver. An interesting
research question to be studied is to compare the sizes of instances of ILP and SAT for our
strategy problem and their effectiveness in finding solutions.

Improving the cost model. We mentioned at the end of Chapter 5 that the cost model
for the large smooth-degree isogeny computation is based solely on two parameters: the
costs of computing point multiplications cmul and isogeny evaluations ciso. This approach
is used in all existing works, including ours, but might not provide a close approximation
for the actual execution time of implementations. It would be better if one can propose a
new cost model that takes into account the costs of synchronization, memory access, etc.
At present, we have no insights on how to do so and leave this as an open problem.
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Considering other variants of the problem. In Chapter 4, we limited the scope of
the task scheduling problem for this thesis to the case where all tasks are of unit-length, the
number of cores is constant, all cores are identical, and preemption is not allowed. When
some of these restrictions are relaxed, it may reflect some real-world applications (e.g., when
the isogeny computation is done in parallel with other procedures of the cryptographic
protocol), but the complexity of the problem may be more complicated. Also, another
variant of the problem is to find the number of cores that one needs in order to finish the
isogeny computation within the given time. Tackling these variants may possibly lead to
some insights for the original problem.

Applying to other implementation settings. We considered software implementa-
tions which utilizes multi-core parallelism and vectorization for the isogeny computation in
this thesis, but one can apply our proposed PCS to other implementation settings as well.
As discussed in Chapter 5, there are various technologies available to choose from for the
implementation (e.g., AVX2, ARM’s SVE, Graphics Processing Unit (GPU), FPGA, etc.).
Each has different characteristic and some may be more suitable for the isogeny computa-
tion than others. This is still an active area of research and we expect varieties of optimized
implementations for the parallel isogeny computation from the research community.

Extending to other isogeny-based schemes. Lastly, we are looking forward to ex-
tending our techniques to other isogeny-based schemes such as CSIDH and SQISign. Since
these two schemes are much newer than SIDH, there are fewer publications that report
the amount of parallelism that can be applied to such schemes. SQISign may be closer to
our setting of SIDH/SIKE, while the computation paradigm of CSIDH is different to some
extent. Nonetheless, we are hopeful that one would achieve a similar extent of effectiveness
when extending our techniques to both schemes. Some discussion and guidelines on this
matter are provided in Chapter 5.
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[93] Jacques Vélu. Isogénies entre courbes elliptiques. CR Acad. Sci. Paris Sér. AB,
273(A238-A241):5, 1971.

[94] Lawrence C. Washington. Elliptic curves: number theory and cryptography. CRC
press, 2008.

[95] Christopher J. C. H. Watkins and Peter Dayan. Technical note q-learning. Mach.
Learn., 8:279–292, 1992.

112



APPENDICES

113



Appendix A

SIDH and SIKE

We provide descriptions of the Supersingular Isogeny Diffie-Hellman (SIDH) key exchange
[45] and the Supersingular Isogeny Key Encapsulation (SIKE) mechanism [44] as references
for our implementations. It should be noted that both cryptosystems are totally insecure
and should not be used.

A.1 SIDH

Jao and De Feo [45] in 2011 proposed a key exchange protocol called Supersingular Isogeny
Diffie-Hellman (SIDH). We briefly describe the protocol as follows.

Setup: Alice and Bob agree on the following set of public parameters:

• a prime p of the form ℓeAA ℓeBB ·f±1 where ℓA, ℓB are small primes, eA, eB are exponents
giving ℓeAA ≈ ℓeBB , and f is a cofactor,

• a supersingular elliptic curve E0 over Fp2 with #E0(Fp2) = (ℓeAA ℓeBB · f)2, and

• bases {PA, QA} of E0[ℓ
eA
A ] and {PB, QB} of E0[ℓ

eB
B ].

• For Montgomery’s curve, two points PA −QA and PB −QB may be given for point
pseudo-addition.
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Key Exchange:

1. Alice randomly chooses mA ∈ Zℓ
eA
A
. She computes an isogeny ϕA : E0 → EA with

kernel ⟨RA⟩ where RA = PA + [mA]QA, and then sends EA, ϕA(PB), ϕA(QB) to Bob.

• For Montgomery curve, Alice also sends ϕA(PB−QB) for point pseudo-addition.

2. Similarly, Bob randomly chooses mB ∈ Zℓ
eB
B
. He computes an isogeny ϕB : E0 → EB

with kernel ⟨RB⟩ where RB = PB+[mB]QB, and sends EB, ϕB(PA), ϕB(QA) to Alice.

• For Montgomery curve, Bob also sends ϕB(PA−QA) for point pseudo-addition.

3. Upon receiving EB, ϕB(PA), ϕB(QA) from Bob, Alice computes an isogeny ϕ′
A : EB →

EAB with kernel ⟨R′
A⟩ where R′

A = ϕB(PA) + [mA]ϕB(QA).

4. Similarly, upon receiving EA, ϕA(PB), ϕA(QB) from Alice, Bob computes an isogeny
ϕ′
B : EA → EBA with kernel ⟨R′

B⟩ where R′
B = ϕA(PB) + [mB]ϕA(QB).

5. The shared secret of Alice and Bob is the j-invariant of the resulting elliptic curves:
j(EAB) = j(EBA).

• For simplified Weierstrass curve E : y2 = x3 + ax+ b, j(E) = 1728 4a3

4a3+27b2
.

• For Montgomery curve E : by2 = x3 + ax2 + x, j(E) = 256 (a2−3)3

a2−4
.

E0

EA

EB

EAB
∼= EBA

ϕA

ϕB

ϕ′
B

ϕ′
A

Figure A.1: The commutative diagram of SIDH protocol.
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A.2 SIKE

The Supersingular Isogeny Key Encapsulation (SIKE) mechanism is proposed by [44] as an
isogeny-based key encapsulation suite. It is based on SIDH and contains two algorithms:
CPA-secure public key encryption (PKE) and CCA-secure key encapsulation mechanism
(KEM). The protocol specifies some public parameters (depending on the security level)
as follows:

• a prime p = 2e23e3 − 1 for some positive integers e2, e3,

• a starting supersingular elliptic curve E0 over Fp2 , where #E0(Fp2) = (2e23e3)2,

• bases {P2, Q2} of E0[2
e2 ] and {P3, Q3} of E0[3

e3 ], and

• two points P2 −Q2 and P3 −Q3 for Montgomery curve’s point pseudo-addition.

SIKE proposes four public parameter sets for different security levels: SIKEp434,
SIKEp503, SIKEp610, and SIKEp751, whose names indicate the size of the prime p in
bits. These parameter sets are shown in Table A.1, while Table A.2 indicates security
strength categories set by NIST [73]. The details of SIKE PKE and KEM can be found
in Algorithms A.1 and A.2, respectively, where (ϕ,E ′) ← CompIsogeny(E,R) denotes the
computation of isogeny ϕ : E → E ′ = E/⟨R⟩ and H denotes a secure hash function. We
note that, while we use elliptic curve points in the algorithms, the SIKE specification and
many implementations use x-coordinates of those points in the computation.

Target NIST Security Strength e2 e3 p

SIKEp434 1 216 137 22163137 − 1
SIKEp503 2 250 159 22503159 − 1
SIKEp610 3 305 192 23053192 − 1
SIKEp751 5 372 239 23723239 − 1

Table A.1: SIKE public parameter sets.
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Level Security Description

1 At least as hard to break as AES128 (exhaustive key search)
2 At least as hard to break as SHA256 (collision search)
3 At least as hard to break as AES192 (exhaustive key search)
4 At least as hard to break as SHA384 (collision search)
5 At least as hard to break as AES256 (exhaustive key search)

Table A.2: NIST security strength categories.

Algorithm A.1: SIKE PKE.

1 Gen() :
2 sk3 ←$ {0, ..., 3e3 − 1}
3 R3 ← P3 + [sk3]Q3

4 (ϕ3, E3)← CompIsogeny3(E0, R3)
5 pk3 ← (ϕ3(P2), ϕ3(Q2))
6 return (pk3, sk3)

7 Enc(pk3,m, sk2) :
8 R2 ← P2 + [sk2]Q2

9 (ϕ2, E2)← CompIsogeny2(E0, R2)
10 c0 ← (ϕ2(P3), ϕ2(Q3))
11 E3 ← GetCurve(pk3)
12 R′

2 ← ϕ3(P2) + [sk2]ϕ3(Q2)
13 (ϕ′

2, E32)← CompIsogeny2(E3, R
′
2)

14 c1 ← H(j(E32))⊕m
15 return (c0, c1)

16 Dec(sk3, (c0, c1)) :
17 E2 ← GetCurve(c0)
18 R′

3 ← ϕ2(P3) + [sk3]ϕ2(Q3)
19 (ϕ′

3, E23)← CompIsogeny3(E2, R
′
3)

20 m← H(j(E23))⊕ c1
21 return m

Algorithm A.2: SIKE KEM.

1 KeyGen() :
2 (pk3, sk3)← Gen()
3 s←$ {0, 1}n
4 return (s, sk3, pk3)

5 Encaps(pk3) :
6 m←$ {0, 1}n
7 sk2 ← H(m ∥ pk3)
8 (c0, c1)← Enc(pk3,m, sk2)
9 K ← H(m ∥ (c0, c1))

10 return ((c0, c1), K)

11 Decaps(s, sk3, pk3, (c0, c1)) :
12 m∗ ← Dec(sk3, (c0, c1))
13 sk∗2 ← H(m∗ ∥ pk3)
14 R∗

2 ← P2 + [sk∗2]Q2

15 (ϕ∗
2, E

∗
2)← CompIsogeny2(E0, R

∗
2)

16 c∗0 ← (ϕ∗
2(P3), ϕ

∗
2(Q3))

17 if c∗0 = c0 then
18 K ← H(m∗ ∥ (c0, c1))
19 else
20 K ← H(s ∥ (c0, c1))
21 return K
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