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Abstract

The proportion of inverter-connected renewable energy resources (RES) in the grid is
expanding, primarily displacing conventional synchronous generators. This shift signifi-
cantly impacts the objective of maintaining grid stability and reliable operations. The
increased penetration of RESs contributes to the variability of active power supply and
a decrease in the rotational inertia of the grid, resulting in faster system dynamics and
larger, more frequent frequency events.

These emerging challenges could make traditional centralized frequency control strate-
gies ineffective, necessitating the adoption of modern, high-bandwidth control schemes. In
this thesis, we propose a novel hierarchical and coordinated real-time frequency control
scheme. It leverages advancements in grid monitoring and communication infrastructure
to employ local, flexible inverter-based resources for promptly correcting power imbalances
in the system. We solve two research problems that, when combined, yield a practical,
real-time, next-generation frequency control scheme. This scheme blends localized control
with high-bandwidth wide-area coordination.

For the first problem, we propose a layered architecture where control, estimation, and
optimization tasks are efficiently aggregated and decentralized across the system. This
layered control structure, comprising decentralized, distributed, and centralized assets,
enables fast, localized control responses to local power imbalances, integrated with wide-
area coordination.

For the second problem, we propose a data-driven extension to the framework to en-
hance model flexibility. Achieving high accuracy in system models used for control design
is a considerable challenge due to the increasing scale, complexity, and evolving dynamics
of the power system. In our proposed approach, we leverage collected data to provide
direct data-driven controller designs for fast frequency regulation.

The devised scheme ensures swift and effective frequency control for the bulk grid by
accurately re-dispatching inverter-based resources (IBRs) to compensate for unmeasured
net-load changes. These changes are computed in real-time using frequency and area tie
power flow measurements, alongside collected historical data, thus eliminating reliance on
proprietary power system models. Validated through detailed simulations under various
scenarios such as load increase, generation trips, and three-phase faults, the scheme is prac-
tical, provides rapid, localized frequency control, safeguards data privacy, and eliminates
the need for system models of the increasingly complex power system.
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Chapter 1

Introduction

1.1 Motivation

The grid is changing and conventional monitoring and control paradigms will, necessarily,
have to evolve too. The major drivers of this modernization are the need to decarbonize
the power sector, enhance grid visibility, and improve operational efficiency.

Spurred by climate change concerns, the world is moving towards a low-carbon fu-
ture, and countries have set ambitious climate change targets in order to limit the global
temperature rise [3]. Decarbonizing the power sector is essential in meeting these climate
change goals and requires raising the share of renewables in the world’s primary energy
supply from the current 15% to 65% [4]. The increasing penetration of these intermittent
and variable renewable energy sources (RES, mostly inverted-connected wind and solar
plants), which are mostly displacing fossil-fuel-powered conventional synchronous genera-
tors, is significantly affecting the goal of maintaining grid stability and reliable operations.

Additionally, the present grid lacks visibility, with the unavailability of real-time high
resolution information necessary to make critical decisions hampering situational awareness
and resulting in blackouts [5]. Improving grid visibility will require advances in remote
sensing with the use of global positioning system (GPS) synchronized phasor measurements
units (PMUs) in the transmission grids[6] and Smart Meters (SMs) and Remote Terminal
Units (RTUs) on the customer-facing side [7].

Furthermore, the current grid has inefficient power storage resulting in the real-time
matching of supply with demand, leading to high strain on the infrastructure during peak
demand hours and the need for an increasingly fast ramp up of generation [8]. Remedying
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this will require the integration of energy storage and improvements in the ability of util-
ities to adjust customer’s load demands along with finer control over distributed energy
resources.

The increasing penetration of RESs coupled with real-time power demand and supply
matching and lack of grid visibility bring new challenges to traditional frequency control
strategies. These challenges include increased variability of active power supply, reduced
overall inertia, and increased spatial heterogeneity of inertia, leading to faster system
frequency dynamics along with larger and more frequent frequency control events [9, 10,
11, 12].

These aforementioned challenges may render conventional frequency control strategies
ineffective, necessitating the use of modern, high-bandwidth control schemes. These high-
bandwidth control schemes will become increasingly feasible as the grid modernizes, with
communication infrastructure playing a dominant role [6, 13]. Advances in remote com-
munication and sensing with the use of global positioning system (GPS) synchronized
phasor measurements units (PMUs) will allow for improved monitoring and protection [6],
enabling fast control actions using IBRs to quickly compensate disturbances [13].

In order to fully leverage these technologies, however, power system control will need
to evolve away from the conventional centralized paradigm. The next-generation grid will
contain large numbers of geographically dispersed sensors and actuators that need to be
coordinated in a fast and reliable way, while maintaining data privacy of the multiple actors
involved. Additionally, with the increased integration of information and communication
technology, the cyber-physical system will be vulnerable to cyber-attacks, which will be
exacerbated by a centralized control architecture with only a single point of failure. These
issues highlight the shortcomings of the centralized paradigm. In this work, we propose
a novel hierarchical coordinated real-time frequency control scheme that exploits these
improvements in modern grid monitoring and communication infrastructure by utilizing
local, flexible inverter-based resources to quickly correct power imbalances arising in the
system.

1.2 Research Objectives

The primary objective of this work is to design and validate a next-generation frequency
control scheme. This scheme would feature decentralized actors granted authority within
smaller, defined regions of the broader transmission system. Such a system requires a
hierarchical architecture that decentralizes control and optimization authority further while
integrating new sensors and actuators.
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The design must also incorporate built-in model flexibility, minimizing the quantity
and the quality of the required system model information. This is crucial because ensuring
high accuracy in the system model is a significant challenge due to the increasing scale,
complexity, and changing dynamics of the power system. Furthermore, the scheme needs
to address emerging issues resulting from the heightened penetration of renewable energy
resources, such as increased spatial heterogeneity of inertia.

These key attributes lead us to the main research objectives of this work, which we will
explore in more detail below.

1. Hierarchical architecture: In modern grids, sensing ability and control authority
is dispersed over many more devices than in the past, making decentralization impor-
tant in managing the information flows. In this work, we seek a layered architecture
wherein control, estimation, and optimization tasks are aggregated and decentralized
across the system efficiently. The candidate layered control architecture would pro-
vide for fast, localized control in response to local power imbalances with wide-area
coordination and would consist of decentralized, distributed, and centralized assets.
The layered architecture results in greater flexibility in designing the constituent lay-
ers, while the local handling of information allows for faster speed and efficiency of
control response, greater data privacy, reduced latency and communication payload,
and reduced vulnerability to cyber-attacks.

2. Data-driven modelling: As mentioned earlier, due to the increasing complexity
and scale of the power system, it is very difficult to obtain sufficiently accurate system
models for control design. Hence, there is a need to minimize the amount of model
information required for design purposes. In this work, in order to overcome this
obstacle, we will pursue a data-driven control framework, whereby measured data is
used in place of any explicit model in our designs. This will improve the adaptability
of the design to realistic system conditions, resulting in faster control actions together
with a reduction in the incidence of parameter tuning.

The research objectives above are complementary and can be combined to provide a prac-
tical, real-time next-generation frequency control scheme.

1.3 Contributions

Based on the research objectives discussed in Section 1.2, we outline our main contributions
in this work.
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1.3.1 Contribution #1: Hierarchical Fast Frequency Control Ar-
chitecture for Transmission Systems

In the first part of this work, we propose a layered control architecture, consisting of decen-
tralized, distributed, and centralized asset control, whereby the bulk electricity transmis-
sion system is partitioned into geographically small (e.g., several substations) local control
areas (LCAs), within which high-bandwidth low-latency measurements are available for
local decision making. Within each LCA, a disturbance estimator processes frequency and
area tie power flow measurements (using a dynamic model of the LCA) in order to detect
frequency events. The estimator generates a real-time estimate of the net unmeasured ac-
tive power imbalance within the LCA, and an allocation mechanism optimally redispatches
local IBRs to correct the imbalance. In situations where local resources are insufficient,
a higher-level coordinating controller facilitates the provision of additional power support
from neighboring LCAs. In Section 3.4, our results are extensively validated via simula-
tions on two detailed power system models; several scenarios are examined, including load
increases, generation trips, and three-phase faults.

The novelty of our methodology lies in the rapid and accurate re-dispatch of fast IBRs
to compensate unmeasured net-load changes, and in the layered control architecture, which
enables fast, localized control in response to local power imbalances with supplementary
wide-area coordination. This hierarchical architecture provides flexibility in designing the
constituent layers, while local handling of information allows for faster speed and efficiency
of control response. Our scheme has the following appealing characteristics:

1. Practicality: the design for each LCA is based only on a simple aggregated area
model, although the designer is free to incorporate a more detailed model if one is
available. This is advantageous, since owing to the increasing power system scale,
complexity and changing dynamics, ensuring the accuracy of complex system models
is a major challenge in practice. All controller computations are either linear update
rules or small, simple optimization problems. Furthermore, due to the robustness
against model uncertainty provided by the feedback configuration, the scheme af-
fords the designer a large margin of error in the accuracy of this model, which is
indispensable in practice as even lumped parameters can be difficult to estimate; see
Section 3.4.5. Finally, the design can be retrofit onto existing systems.

2. Localized and fast control: The local control loops take into account local communi-
cation delays, inertia, and primary frequency response characteristics, and use only
local measurements of frequency and line power flows. An upshot of this localized
use of measurements is the minimization of latency. This use of local measurements
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together with the more granular partitioning of the system, allows for the quick local-
ization of net power imbalance and redispatch of fast-acting IBRs for its correction,
resulting in fast frequency regulation.

3. Multi-area data privacy : Potentially sensitive information such as device limits, set-
points, and available spare capacity of resources in an LCA are not shared with either
the central controller or the neighboring LCAs. Furthermore, computation of control
actions for the additional power adjustments are done within each LCA (3.14), with
the central controller providing minimal coordination between LCAs.

1.3.2 Contribution #2: Data-Driven Extension to Hierarchical
Coordinated Fast Frequency Control Framework

For the initial development of the LCAs in the first part of this work, we consider a simpli-
fied, low-order dynamic model for the controller designs. The model is parameterized by
several coefficients (such as total inertia, total primary response, and damping constants),
which can be updated in an online fashion if needed. This modeling choice is made based
on the assumption that reliable and highly accurate system models would be too difficult
to obtain in practice.

Unfortunately, despite these efforts to minimize the amount and quality of system
model information required, it may be the case that accurate parameter values for use
in the models cannot be easily obtained in practice with reasonable effort, or cannot be
accurately updated as system conditions change. Therefore, in the later part of this work,
we provide direct data-driven controller designs which enable the IBRs to participate in
providing geographically localized fast frequency control. The key components in our
approach are novel designs for data-driven disturbance estimators : dynamic algorithms
which provide online estimates of the net real power imbalance within a specified control
area. Local IBRs are then quickly redispatched within their operating limits to eliminate
the imbalance.

In Section 4.1 we present two data-driven disturbance estimator designs. Both designs
are based directly on recorded system data, and do not require a parametric system model.
The two designs trade off between simplicity and robustness/performance. The first design
uses a simple linear update law to estimate the disturbance, and requires tuning of only
a single parameter; we provide theoretical guarantees supporting this design. The first
design serves as a stepping stone to our second approach, which is an optimization-based
estimation procedure. The second design has a higher computational burden, requiring
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the solution of a convex optimization problem at each time-step, but (i) is less sensitive
to noise in the recorded data, (ii) is less sensitive to strong nonlinearity in the system
dynamics (e.g., governor deadbands), and (iii) shows superior performance in simulation
studies. As the formulations are general, we outline specifically how these methods are
applied to the frequency control problem under consideration. Compared, for instance,
to the recent data-driven load-frequency controller proposed in [14], we do not make the
strong assumption that a measurement of net load demand is available; our approach is
based only on direct measurements of area frequency and net power flow out of the control
area.

In Section 4.2, we extensively validate our designs via simulations on a detailed non-
linear three-area power system. Several scenarios are examined, including load increases,
heavy renewable penetration, generation trips, and three-phase faults. The tests demon-
strate that our approach provides fast and effective frequency control for the bulk grid,
and even outperforms our model-based design in Section 3.

1.4 Related Contributions

In references [15, 16], we proposed a measurement-based voltage controller and validated
it through comprehensive simulations. This controller coordinates fast-acting inverter-
based resources (IBRs) and other traditional power sources to prevent voltage violations
and maintain voltages within the desired limits in grids dominated by IBRs. Like the
frequency control architecture mentioned above, this scheme also takes advantage of the
recent advancements in wide-area communication and monitoring by employing real-time,
measurement-based feedback control.

In [17], we outlined detailed integration procedures to combine the novel frequency
controller discussed in this thesis with the voltage controller proposed in references [15, 16]
into a unified control framework. This integration approach allows both controllers to
utilize IBRs simultaneously with minimal conflict and adverse interactions.

1.5 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 presents a brief background
and literature review related to the research objectives. In Chapter 3, we present our novel
hierarchical fast frequency control scheme, which uses a simplified dynamic model of each
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LCA for controller design purposes. We then provide a data-driven extension to the scheme
in Chapter 4. Finally, Chapter 5 concludes the work, providing a summary of the work
undertaken in this thesis and outlining possible future research directions.
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Chapter 2

Background and Literature Review

Motivated by environmental concerns, the share of renewable energy resources (mostly
inverted-connected wind and solar plants) in the transmission grid is currently rising.
However, this poses significant technical challenges to the goal of maintaining grid sta-
bility and operational constraints. First, the intermittency and variability of renewable
generation can result in increased net load variability in the system [18]. Additionally,
RES are displacing traditional synchronous generators from the power grid, along with the
stored kinetic energy they provide through inertia. The ensuing reduction in the system ro-
tational inertia can significantly impact power system operation and stability, resulting in
large frequency deviations, faster frequency dynamics, and heterogeneous inertia distribu-
tion throughout the system [9, 10, 11, 12]. Low-inertia stability issues are now manifesting
in the real world; for example, the increasing penetration of inverter-connected RES has
been blamed for the recent power system blackout in South Australia [19].

Therefore, to maintain and improve the functionality and operation of the power system
in this more uncertain environment, critical services such as automatic control, estimation,
and optimization systems must be fast and localized, and be increasingly geographically
coordinated using high-bandwidth communications. In what follows, we provide a brief
review of relevant literature for frequency control in transmission grids and discuss some
works relevant to the research problems being considered in this Ph.D. research.

2.1 Frequency Control (Regulation) in Power Systems

Our contemporary electrical grid operates on the principle of real-time energy generation
aligning with real-time consumer demand, as there is limited practical energy storage
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currently available [20]. Central to this power system is the production of electricity at a
stable, synchronized Alternating Current (AC) frequency, measured in cycles per second,
or Hertz (Hz). This specific frequency, referred to as the nominal frequency, is vital to the
smooth operation of the power grid. Failure to maintain this nominal frequency can lead
to damaging outcomes such as equipment damage and, in worst-case scenarios, a full-scale
power system collapse [21].

The maintenance of this system frequency, a critical aspect of power system stability, is
typically managed using a blend of inertia response and automatic control [22]. Generators
in the synchronous grid store kinetic energy, primarily due to the rotational momentum
of their rotors. Through their electrical coupling to the power system, these generators
provide a level of inertia to the rotation frequency. As a result, when a disturbance causes
frequency fluctuations, the initial resistance comes from the inertia of these generators.
This physical response slows the speed of frequency changes, a characteristic referred to as
the Rate of Change of Frequency (RoCoF).

After the initial inertia response, an automatic control system is deployed to restore
and stabilize the frequency. This control system is divided into primary, secondary, and
tertiary stages [20].

The primary control stage is often the first line of defense after a disturbance. Its rapid
response, typically within seconds, adjusts the power generation in proportion to frequency
changes, providing an immediate stabilizing effect on the power system frequency.

The secondary control stage follows, with the primary aim of restoring the system fre-
quency to its nominal value and freeing up resources assigned to primary control. This
secondary control(or secondary regulation) is typically implemented using Automatic Gen-
eration Control (AGC). The AGC involves generating control signals from a centralized
control center. These signals regulate the active power output, modifying it in real-time
to align with projected demand fluctuations.

Finally, the tertiary control phase aims at long-term system stability. This phase is
geared towards the long-term stability of the system. It replenishes the power reserves
used during the primary and secondary control stages, ensuring that enough capacity is
available for any future disturbances. Tertiary control also corrects the power balance over
larger interconnected areas and assists in minimizing the operating cost by calling on the
most economical generating units first.
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2.2 Overview of Inverter-Based Resources in Frequency

Regulation

Introducing Renewable Energy Sources (RESs), particularly at higher penetration levels,
typically results in new challenges in conventional system frequency control operation, as
previously discussed.

The first issue arises due to the low or non-existent inertial responses [11] typically
exhibited by inverter-based RESs. These resources are usually connected to the AC grid
by power electronic converters, which effectively decouple them. As these Inverter-Based
Resources (IBRs) replace conventional synchronous generators with high rotational inertia,
the inertia of the entire grid decreases. This reduced inertia causes a marked increase in
the Rate of Change of Frequency (RoCoF) of the power system [9], resulting in significant
deviations even for small generation-loading mismatches. Recent advances have been made
in virtual inertia emulation services to address this issue [11, 23]. In these schemes, grid-
forming inverters deliver an inertia-like response proportional to the RoCoF [20].

Secondly, the increased penetration of inverter-based RESs leads to a decrease in the
number of conventional generating units providing reserve power for primary and secondary
control. This results in higher frequency deviations [9], necessitating the involvement of
IBRs in frequency regulation operations. Currently, most standards, such as IEEE1547
and FERC order 842 in the US, require IBRs to include power-frequency droop to support
the grid’s primary frequency response. This is expected to become a norm in all new IBR
installations worldwide [24].

For IBRs to participate in secondary frequency regulation, they need to be dispatchable
within specified limits. It’s encouraging to note that the technology already exists to make
existing IBRs dispatchable [25, 26]. There is a growing expectation for IBRs to provide
active power ancillary services in the future, especially as energy storage technologies ad-
vance and become more prevalent. This expectation is partly driven by regulations and
requirements imposed by system operators in areas with high renewable energy penetra-
tion. For instance, Denmark’s Transmission System Operators (TSOs), Eltra and Elkraft,
require wind plants to track power set points [27].

In some cases, IBRs can be made dispatchable, as seen in direct active power control
(APC) in wind turbines and the co-location of renewable resources with energy storage.
On the individual wind turbine level, this control is achieved through power electronics,
modifications to the generator torque, blade pitch angle, or various other patented schemes,
as detailed in [26, 28]. TSO power set-point commands can also be followed collectively
across a wind plant as demonstrated in [29] and in successful field tests conducted by
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the Spanish TSO [30]. Finally, IBRs could contribute to active power regulation through
output curtailment [31]. For example, the electricity output of wind farms may be slightly
reduced to provide a quick-access energy reserve. This strategy is often more cost-effective
than the alternative, which involves maintaining traditional power plants, such as steam
or combined cycle gas turbines (CCGT), in a partially operational state to provide a
similar reserve. This is because, unlike these conventional power plants, wind farms don’t
incur ongoing fuel costs. Furthermore, under certain grid conditions characterized by
minimum generation (”min-gen”) requirements, renewable energy output might need to
be reduced to accommodate the power output from these conventional plants, which must
maintain a certain minimum operational level. This scenario is more cost-intensive due to
the significant start-up, shut-down, and minimum load maintenance costs associated with
conventional power plants.

Determining the market mechanisms for such secondary frequency regulation ancillary
services is a current topic of discussion in the literature [26, 32, 33, 34, 35]. One promising
structure, which we have assumed in this work, is to have dedicated IBRs with secondary
frequency reserves available for prompt dispatch. Compensation to the IBRs for providing
these reserves, based on capacity and performance, could be procured through long-term
agreements similar to those for voltage support ancillary services [36].

2.3 Hierarchical Coordinated Fast Frequency Control

for Transmission Systems

A key objective in power system operations is the maintenance of a stable system fre-
quency and the quick restoration of power balance [21]. However, as previously mentioned,
the increasing penetration of inverter-connected renewable energy resources (RESs) [37]
is resulting in adverse effects on power system frequency regulation [19], due to its in-
crease net-load variability and the faster frequency dynamics it induces in the system
[18, 9, 10, 11, 12], making it increasingly difficult for system operators to maintain fre-
quency within acceptable limits, such as the extreme variations noted by the California
Independent System Operator in the so-called ’duck chart’ [38].

There has been extensive research into the negative dynamic effects of reduced inertia
in the power system due to increased renewables, with suggested solutions such as vir-
tual inertia emulation and services [23, 9, 10, 11, 12]. Equally important to consider is
the problem of maintaining the average frequency close to nominal during normal oper-
ation, with regulation performance being quantified by regulatory authorities in Control
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Performance Standards [39, 40]. This task is getting more difficult as, due to the faster
frequency dynamics induced by the IBRS, if the load imbalances in the system are not
rectified promptly, the faster (and larger) frequency deviations and transient power flows
may result in the inadvertent activation of automatic protection devices, hindering the
adherence to the performance standards. To better address this, it is essential to consider
the local system inertia, primary control response, and primary control deadband, as these
have the greatest effect on the average frequency deviations [41]. Hence, this fosters the
need for localized fast frequency control strategies, which take into cognizance the local sys-
tem model and parameter information. Traditionally, the Automatic Generation Control
(AGC) system employs a centralized approach to maintain average frequency deviations
within desired limits for each balancing authority area. This is achieved by generating
control signals at a central control center. However, the extensive size of the balancing au-
thority areas can lead to significant time delays for measurements to be sent to the control
center, processed, and then returned to the power-generating stations as actuation signals.
These delays are often exacerbated by the considerable communication delays prevalent in
today’s power system communication infrastructure, as noted in [6, 42]. Moreover, the large
geographical size makes maintaining an accurate dynamic system model challenging. As a
result, the AGC system relies on traditional frequency bias constant methods [43], which,
while somewhat effective, can limit its speed and usefulness for rapid frequency control.
Hence, conventional frequency control strategies may not be effective, necessitating the use
of modern, high-bandwidth control schemes. These high-bandwidth control schemes will
become increasingly feasible as the grid modernizes, with communication infrastructure
playing a dominant role [6, 13]. Advances in remote communication and sensing with the
use of global positioning system (GPS) synchronized phasor measurements units (PMUs)
will allow for improved monitoring and protection [6], enabling fast control actions using
IBRs to quickly compensate disturbances [13].

If parametric models are readily accessible, then modern model-based controller design
approaches may be used to facilitate these fast frequency control actions. Approaches
to fast frequency control can be roughly divided into three categories: model predictive
control (MPC), adaptive control, and miscellaneous methods for coordinated dispatch.
Control schemes based on MPC have been proposed in several studies [44, 45, 46, 47]. Al-
though MPC-based approaches have the desirable feature of constraint satisfaction during
transients, this benefit relies heavily on accuracy of the system model, and the resulting
control laws place a heavy communication burden for real-time implementation. Due to
the increasing power system scale, complexity and changing dynamics, ensuring this high
accuracy in the system model is a major challenge in practice.

Traditional frequency control based on automatic generation control (AGC) [48, 49]
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usually requires extensive tuning of the AGC’s PI controllers to obtain good performance
and stable operation. Authors in [50] propose an adaptive controller that seeks to automate
this tuning process by computing and applying a correction in real time. Other adaptive
approaches [51, 52], aim to tackle the frequency control problem by minimizing the need
for a system model by using techniques based on dynamic programming and artificial
intelligence. However, it is usually difficult to assess the stability of these controllers.
There has also been high-profile failures of implemented adaptive controllers [53].

The final category seeks to provide frequency support to the system by utilizing fast
acting inverter-based resources. Researchers in [11, 54, 55] have utilized IBRs for virtual
inertia and primary frequency control support. Authors in [56] have proposed a load fre-
quency controller which provides frequency control by adjusting the setpoints of distributed
energy resources by means of direct observation of active power generation and consump-
tion. Despite this method’s advantages over the traditional AGC, it requires a high degree
of monitoring infrastructure and total grid visibility.

Another approach in the same category is the wide-area monitoring and control scheme
proposed by researchers in [12, 57]. In the scheme, a central authority, operating on
a slow time-scale, coordinates and optimizes geographically dispersed local controllers,
which receive measurements from PMUs and dispatch controllable active power resources
to mitigate the effect of disturbances. However, the work does not investigate the stability
or robustness of the scheme. Furthermore, although measurements are collected regionally,
control is still based on a system-wide frequency estimate, which may not effectively address
the issue of inertia heterogeneity. Finally, the central authority, as it receives the status
and resource limits of all resources, has system-wide visibility which raises privacy issues
and may limit the distributed implementation.

In this work, we consider a novel, real-time, layered frequency control scheme that
exploits the improvements in modern grid monitoring and communication infrastructure
by utilizing local, flexible inverter-based resources to quickly correct active power imbal-
ances arising in the system, thereby minimizing the average system frequency deviation.
This scheme addresses the shortcomings of the aforementioned strategies by relying on
simple nominal models of the system, being amenable to standard analytical analysis of
stability and performance, utilizing mostly local information that is easily accessible, and
safeguarding data ownership and privacy.
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2.4 Data-Driven Extension to Hierarchical Coordinated

Fast Frequency Control Framework

As alluded to previously, it is important to build model information flexibility into the
control scheme in order to improve its adaptability to real-world implementation. Due to
the increasing power system scale, complexity, and changing dynamics, ensuring this high
accuracy in the system model is a major challenge in practice [58]. Additionally, it may be
the case in practice that reliable values for these model parameters cannot be obtained with
reasonable effort, or cannot be accurately updated as system conditions change, ultimately
limiting the performance of model-based designs. For example, simulations in 3.10 show
deterioration in control performance (e.g., post- disturbance settling time and overshoot)
when there are parametric mismatches between the true system model and the model used
for design.

Data-driven or data-based controller design methods provide a promising alternative
in this regard. Proposals to address the issue of power system frequency control using
data-driven control can be broadly divided into two categories: indirect and direct. In
an indirect approach, historical data from the power system is used to explicitly identify
a system model, and a controller is then designed based on that model (e.g., [59, 60]).
The indirect approach has the advantage of providing an explicit, interpretable model of
the system, which can aid in understanding the particular frequency response dynamics.
However, even selecting an appropriate parametric model to fit is a difficult trial-and-
error process, particularly in modern power systems with diverse and quickly evolving
components. Additionally, there is evidence that the intermediate identification step may
lead to poorer closed-loop performance than recent direct approaches [61].

In a direct data-driven or model-free approach, a frequency controller is designed di-
rectly based on recorded or online real-world data, without explicit identification of a
system model. One broad approach in this category is adaptive dynamic programming
or reinforcement learning [62, 63, 64, 65]. Here, control actions are taken to maximize
some form of cumulative reward. However, reinforcement learning approaches are limited
by their sensitivity to hyper-parameter selection, the complex training process required to
determine the weight coefficients of the trained agent, which in turn relies on a significant
amount of historical sampled data [66, 67].

In contrast with reinforcement learning, a suite of alternative direct data-driven control
approaches have recently appeared [68, 66, 69, 14], and derive from a branch of control
theory called behavioral systems [70, 71]. These techniques allow for direct control while
being sample efficient, and often come with rigorous performance guarantees. While the
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specific controllers differ between approaches (e.g., model-predictive [66], linear-quadratic,
[69] etc.), these approaches all rely on the so-called fundamental lemma of behavioral
systems, which states that a single recorded trajectory is sufficient to capture the underlying
dynamic model of the system if the input signal is rich enough to excite all system modes
[70]. Our proposed data-driven controller is based on this principle.
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Chapter 3

Hierarchical Coordinated Fast
Frequency Control using
Inverter-Based Resources

In this chapter, we delve into the specifics of our innovative hierarchical coordinated fast
frequency control scheme that utilizes inverter-based resources. The chapter is structured
as follows:

Section 3.1 provides a concise introduction to our two-layer local-global inverter-based
resource (IBR) control scheme, which offers a rapid and localized response to frequency
events.

Section 3.2 discusses the local disturbance estimation and rejection control loop, a
concept loosely grounded on the principle of internal model control. This control loop
processes local measurements to generate a real-time disturbance estimate, signifying the
imbalance of local generation and net load, and swiftly re-dispatches local IBRs to correct
this imbalance. Supporting theoretical analysis for the design procedure is also presented
in this section.

In Section 3.3.1, we frame the local re-dispatching of IBRs, stemming from the produced
disturbance estimate, as a simple optimization problem.

Section 3.3.2 introduces a higher-level central coordinating controller, designed for sit-
uations when local control area (LCA) IBR resources prove insufficient. This controller
facilitates the transfer of additional power from electrically close neighboring areas on a
slower time scale.
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Finally, Section 3.4 validates our results extensively via simulations conducted on two
detailed power system models. Several scenarios are examined in this section, including
load increases, generation trips, and three-phase faults.

3.1 Introduction

The increasing share of inverter-connected renewable energy resources (RES), which is
mostly displacing conventional synchronous generators, has increased the variability of
active power supply and reduced the rotational inertia in the grid, resulting in faster
system dynamics along with larger and more frequent frequency events.

To mitigate these challenges, a fast, area-based hierarchical control strategy is proposed.
The overall hierarchical IBR control architecture is sketched in Figure 3.1. Our scheme
has the following appealing characteristics: (i) fast local response to local disturbances, (ii)
localized use of measurements to minimize latency, (iii) flexibility in the fidelity of dynamic
model information required for design, (iv) heterogeneity of system inertia and primary
response is directly accounted for by each LCA controller, (v) minimal communication
between control areas, and (vi) no single point of failure, as the majority of control has
been localized. We provide more details below.

3.2 An Internal Model Control Approach for Local

Area-Based Frequency Control

We assume that the power system is partitioned into small local control areas (LCAs),
with the goal being for local resources in each area to correct local net load imbalances.
These areas should ideally have access to, or be near, fast-acting inverter-based resources
(IBRs). The premise is that these IBRs, due to their proximity, can facilitate quick control
measures. These resources are not necessarily large wind or solar plants, they could also be
energy-storage powered installations or other fast-acting and dispatchable resources. This
shrinking of the spatial scale permits increasing decentralization of control actions, and is
enabled by the expected deployment of more sensing and inverter-based resources within
the system. The overall hierarchical IBR control architecture using a three-area power
system is sketched in Figure 3.1. The power system consists of 18 buses, 36 transmission
lines, and 15 generators. The generators consist of 5 conventional synchronous generators,
4 wind generation plants (WT), and 6 generating units representing generic inverter-based
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Figure 3.1: Cyber-physical system illustrating frequency control approach.

resources whose inertias are fully decoupled from the grid. Our design involves a local
controller for each area, which acts on power and frequency measurements and re-dispatches
IBRs to correct local net-load load imbalances. Finally, a central controller coordinates the
activities of all LCA controllers in the system to ensure satisfaction of the global objectives.

In this section, we focus on just one such area. Our goal is to design an area-wise
decentralized controller which uses only local measurements to correct any power imbalance
within the LCA by quickly re-dispatching local IBRs. Our design is based on the idea of
disturbance estimation and rejection, and can be interpreted as an implementation of the
classical internal model control (IMC) paradigm [72] for internally stable systems.

Our local controller design is based on the block diagram shown in Figure 3.2. The local
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Figure 3.2: Block diagram of area control structure for each LCA. Black dashed lines
denote sampled signals.

frequency controller consists of the disturbance estimator, optional detuning filters, and
a power allocator. The disturbance estimator processes system measurements to produce
an estimate ∆P̂u of the unmeasured net active power change in the LCA, relative to the
current dispatch point. This imbalance is then allocated to IBRs within the area. We
detail the design of disturbance estimator and detuning filter here, while covering optimal
power allocation in the next section.

3.2.1 Local Disturbance Estimator for the LCA

The starting point for disturbance estimation is a nominal (small-signal) dynamic model
of the LCA dynamics at the current dispatch point. As each LCA represents a very small
part of the overall interconnection, it is reasonable that a dynamic model can be locally
built and maintained; the accuracy of this nominal model may vary based on the level of
detailed system component models available, and one may even wish to fit this model from
historical or experimental data. For practical reasons, it is desirable to use the simplest
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model which captures the primary frequency response dynamics for design purposes, and
as such, we restrict our attention to lumped LCA models, where all power injections are
assumed to occur at a single electrical point. We generically express the lumped small-
signal model of the LCA as

∆ẋ = Ã∆x+ B̃1∆P c
ibr,tot + B̃2(∆Ptie +∆Pu) (3.1)

where Ã is a Hurwitz stable matrix. In (3.1), ∆x is the internal state vector of the area,
which could model, for example, generator, load, and IBR dynamics. The control input
∆P c

ibr,tot is the sum of all command changes to IBRs. The measurable disturbance ∆Ptie is
the sum of all deviations in LCA tie flows, and ∆Pu is the net unmeasurable active power
imbalance in the LCA. The model (3.1) is a general state-space representation of any LCA
model that can be used for design purposes, as illustrated in Figure 3.2, and is distinct
from the detailed models of the test power systems used in validating the proposed scheme,
which are discussed in Section 3.4. We discretize (3.1) using the zero-order-hold method
with a chosen sampling period Ts, yielding a discrete-time model

∆xk+1 = A∆xk +B1∆P c,k
ibr,tot +B2(∆P k

tie +∆P k
u ), (3.2)

where A is Schur stable and k is the sampling instant index. The IBR commands ∆P c,k
ibr,tot

are subject to communication delays, which for modelling purposes we assume are fixed
at τc sample periods. This can be integrated directly into the model by appending extra
states ∆ηc governed by

∆ηk+1
c = Ac∆ηkc +Bc∆rkibr,tot, ∆P c,k

ibr,tot = Cc∆ηkc , (3.3)

where (Ac, Bc, Cc) is a state-space realization of a τc-step delay. The unknown net active
power imbalance is modelled via a difference equation with unknown initial condition
[73, 74]. The simplest choice is the constant disturbance model

∆P k+1
u = ∆P k

u . (3.4)

More complex versions of (3.4) require only minor extensions. Moreover, if some load
changes are measurable in real-time, this can also be incorporated by adding appropriate
feedforward signals to the IBR commands; the details are omitted. The vector of system
measurements that we can use for estimation are

∆ȳk = C∆xk. (3.5)
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These measurements should include frequency deviation, but may include other variables
such as power outputs and voltages, if available. Measurement delays are again incorpo-
rated by appending extra states ∆ηm as

∆ηk+1
m = Am∆ηkm +Bm∆ȳk, ∆yk = Cm∆ηkm (3.6)

where (Am, Bm, Cm) is a state-space realization of a τm-step delay for each measurement.
Combining (3.2)–(3.6), the overall model of the LCA with states ∆ξ = (∆x,∆Pu,∆ηc,∆ηm),
inputs ∆v = (∆ribr,tot,∆Ptie), and delayed measurements ∆y is given by

∆ξk+1 = A∆ξk + B∆vk, ∆yk = C∆ξk (3.7)

where C = [ 0 0 0 Cm ] and

A =


A B2 B1Cc 0
0 1 0 0
0 0 Ac 0

BmC 0 BmCc Am

 , B =


0 B2

0 0
Bc 0
0 Bm

 .

The following result (proof in Appendix A.1) establishes that this extended model is de-
tectable.

Proposition 3.2.1 (Detectability of Area Model (3.7)). Assume that A is Schur stable
and that

[
A−I B2
C 0

]
has full column rank. Then (C,A) is detectable.

The rank condition in Proposition 3.2.1 stipulates that the transfer matrix from ∆Pu to
∆ȳ has no transmission zeros at z = 1; this will hold as long as a frequency deviation from
within the LCA is one of the measured variables. It follows from linear systems theory
that we can design a dynamic state estimator [75] for (3.7):

∆ξ̂k+1 = A∆ξ̂k+1 + B∆vk + L(C∆ξ̂k −∆yk)

∆P̂ k
u = [ 0 1 0 0 ] ∆ξ̂k,

(3.8)

where L is the estimator gain matrix which can be designed by, e.g., linear-quadratic opti-
mal methods. The estimator produces the desired running estimate ∆P̂ k

u of the unknown
net active power imbalance, which can now be allocated to the IBRs.

Remark 3.2.2 (Detuning for Robust Stability). In the presence of significant model un-
certainty, one may wish to “slow down” the overall control loop to ensure robust closed-loop
stability at the cost of decreased controller bandwidth. This can be achieved by passing the
estimated unmeasured net active power change ∆P̂ k

u through a discrete low-pass filter

Fdetune[z] =
1− e−Ts/τf

z − e−Ts/τf
(3.9)

with filter time constant τf > 0, and then allocating the result to IBRs. □
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3.2.2 System Frequency Response LCA Modelling

For design purposes, a simple and effective model for the LCA dynamics is the following
two-state system frequency response (SFR) model proposed in [76, 77], which describes the
machine mechanical and turbine-governor response. The frequency model represents the
averaged system frequency response when all generating units and frequency-responsive
loads are viewed as a single aggregate unit. The model, which can be easily put into the
general form (3.1), is1

2H∆ω̇ = −(D + 1
RI
)∆ω +∆Pm −∆Pu −∆Ptie +∆P c

ibr,tot

TR∆Ṗm = −∆Pm −R−1
g (∆ω + TRFH∆ω̇),

(3.10)

where ∆ω [p.u.] is the area frequency deviation, ∆Pm [p.u.] is the mechanical power
change, H [s] is the inertia constant, TR [s] is the reheat time constant, D [p.u.] is the load
damping, FH the fraction of total power generated by the high pressure turbine, Rg, RI

[p.u.] are the generator and IBRs primary droop constants respectively, where we have
simplified the IBRs drop control scheme by eliminating the time constants, since they are
significantly faster than the ones of the conventional generators [78].

3.2.3 Nominal Stability and Perfect Disturbance Rejection

From Section 3.2.1, the controller for each LCA embeds a dynamic model of the LCA
in order to produce a running estimate ∆P̂ k

u for the local unmeasured disturbance. It
follows by more-or-less standard observer-based control theory that if the total IBR power
∆P c,k

ibr,tot in (3.2) is set equal to the disturbance estimate ∆P̂ k
u produced by (3.8), then the

closed-loop system (3.2)–(3.8) will be internally stable and any constant disturbance will

be eliminated, i.e., ∆P̂ k
u → ∆Pu as k → ∞. In other words, the design always achieves

nominal stability and asymptotically eliminates any load net-load imbalance.

Perhaps surprisingly, the net-load mismatch will still be eliminated even when the LCAs
are interconnected as in Figure 3.1 — and will occur irrespective of the model mismatch
between the true system and the model used in designing the estimator — as long as the
interconnected closed-loop system is stable. To demonstrate this, suppose that the linear

1We have assumed that most of the generating units are reheat steam turbine units and that the
dominant time constants are the reheater time constant and the inertia constant; these assumptions can
be easily modified.
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time-invariant (LTI) model

∆xk+1
p = Ap∆xk

p +
∑

j
Bp,j(∆P k

ibr,tot,j −∆P k
u,j)

∆qi = (∆Ptie,i,∆ȳi)

describes the true linearized and discretized multi-area power system with measurements
qi for LCA i, where Ap is Schur stable. The aggregated IBR inputs ∆P k

ibr,tot,i to this model
are set equal to the estimates produced by the LCA disturbance estimators (3.8), which
are themselves designed using any approximate model (e.g., the SFR model (3.10)) of the
LCA. We can then show the following; the proof is in Appendix A.1.

Theorem 3.2.3 (Perfect Disturbance Rejection). Consider the closed-loop system de-
scribed above, and assume that the system is internally stable. Then for any constant un-
measured net-load disturbances {∆Pu,j}, it holds for each LCA i that ∆P k

ibr,tot,i = ∆P̂ k
u,i →

∆Pu,i as k → ∞.

Given Theorem 3.2.3, the key issue becomes whether closed-loop dynamic stability and
performance is maintained in the presence of model uncertainty, i.e., robust stability and
performance. We make two comments. First, robust closed-loop stability can always be
achieved by lowering the controller bandwidth as described in Remark 3.2.2; see, e.g., [72].
This will guarantee stability at the possible cost of decreased control performance. Second,
while we omit the details, we have used modern robust control tools [79] to examine stability
robustness of the design without controller detuning, when the estimator is designed based
on an SFR-type model (3.10). We have observed guaranteed stability and acceptable
performance under up to 10% joint variation in H, TR, and Rg. Robust control analysis
typically results in conservative guarantees, meaning that much more variation can be
tolerated in practice before lowering the control bandwidth becomes necessary. We verify
these conclusions on a detailed test system in Section 3.4.5.

Remark 3.2.4 (Key differences with AGC). There are several key differences between
our proposed approach and the traditional power system frequency control (primary control
plus the AGC).

Spatial scale In contrast to the large traditional balancing authority areas considered in
AGC, which typically contain hundreds of buses and generation sites, the LCAs we consider
can be considerably smaller. Many LCAs would be contained within a single balancing
authority area, each LCA containing, for instance, several substations. This smaller spatial
scale permits further localization of control actions.
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Model information While maintaining an accurate dynamic model would be prohibitively
difficult to do for an entire balancing authority area, the small scale of LCAs permits
estimation and continued maintenance of at least a crude dynamic LCA model, accounting
for aggregate inertial and primary control/turbine-governor effects. Incorporation of this
model (3.2) into the LCA controller design enables substantially faster estimation of net
imbalances compared to the classical frequency bias constant methods used in AGC.

Temporal scale The improved local model information described above enables faster and
more accurate estimation of local net active power imbalances than is possible in AGC. By
combining this fast estimation with fast-acting IBRs as the primary source of compensating
power, our scheme is capable of providing fast frequency control within seconds, as opposed
to the traditional AGC time scale of minutes.

Inter-LCA coordination The AGC is balancing-authority-wise decentralized; no com-
munication occurs during online operation between balancing authorities. As the LCAs
considered in our scheme are much smaller than balancing authority areas, it becomes
more important to coordinate and share resources between areas when required. The second
layer in our proposed control hierarchy achieves this in a fashion that preserves information
privacy between areas. We note that this higher coordination layer of our controller is not
itself conceptually analogous to AGC, as the objective is explicitly to procure power from
adjacent LCAs in an efficient and privacy-preserving manner.

As a final point, we wish to emphasize that the proposed scheme is fully backward-
compatible with AGC; both can be implemented on the same system — even if IBRs are
integrated into AGC — as they operate on very different spatial and temporal scales.

□

3.3 Mathematical Formulation for Optimal Power Al-

location

We now design a power allocation mechanism for the IBRs, completing the frequency
controller design from Section 3.2. The net power imbalance estimate ∆P̂ k

u from the
disturbance estimator is used to compute the active power reference for the IBRs in an
LCA, subject to the device limits. In Section 3.3.1 we formulate this re-dispatch via a simple
optimization problem, which is solved locally at each time step by the LCA controller; we
call this stage one of the redispatch. If a very large disturbance occurs however, local
resources may not be sufficient to maintain power balance. For this situation, in Section
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3.3.2 we design a privacy-preserving higher-level coordination control layer to optimally
coordinate IBR responses from nearby LCAs; we call this stage two of the redispatch.

3.3.1 Stage 1: Local Redispatch of IBRs

In stage one, at each sampling instant, the local resources are re-dispatched to compensate
for the current net disturbance estimate in each LCA. Let A = {1, . . . , N} index the
LCAs, and let Ii = {1, . . . ,mi} index the resources in LCA i. Let Pij = [P ij, P ij] denote
the power set-point limits for resource j in area i. The new optimal power set-points
{P ∗

ij}j∈Ii for the resources in area i are computed at time step k via

argmin
Pij∈Pij

f(Pi1, . . . , Pimi
, φi)

subject to
∑

j∈Ii
(Pij − P ref

ij ) + φi = ∆P̂ k
u,i

(3.11)

where P ref
ij denotes the nominal dispatch set-point for the jth resource in area i. The

equality constraint models local power balance. The slack variable φi ensures feasibility,
and its optimal value φ∗

i represents the remaining power mismatch within the LCA after
local redispatch, which will be used in Section 3.3. The objective function f captures the
cost associated with utilizing the resources in the LCA for disturbance rejection; this may
be a monetary cost, or may be designed for operational convenience. As our focus is not
on economic or market aspects, for this work, we have selected the following cost function

f(Pi1, . . . , PiM , φi) =
∑

j∈Ii
1
2

(
Pij−P ref

ij

P ij−P ref
ij

)2

+ λ|φi|.

Minimization of f allocates power to the resources in proportion to their available
headroom. When set large enough, the penalty parameter λ > 0 ensures that φ∗

i is zero
when local resources are sufficient to balance the local disturbance. Note that the limits
of the devices and the current dispatch set-points are assumed to be available to the LCA
controllers. Hence, resources at their maximum operating range and with no available
headroom will not be dispatched. The optimization problem (3.11) can be solved very
quickly and reliably at each sampling instant.

3.3.2 Stage 2: Coordination Layer for Inter-Area IBR Response

If local resources in LCA i ∈ A are insufficient, then from Section 3.3.1, the local mismatch
variable φ∗

i will be non-zero. The variables φ
∗
i are communicated to a centralized controller
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(Figure 3.1), which is tasked with computing an aggregated dispatch adjustment a∗i ∈ R
for each LCA via the quadratic program (QP)

min
{ai}i∈A

∑
i∈A

qia
2
i (3.12a)

s.t. 0 =
∑

i∈A
(ai − φ∗

i ) (3.12b)

0 ≤ ai · sign
(∑

i∈A
φ∗
i

)
, i ∈ A (3.12c)

ai +
∑

j∈Ii
P ∗
ij ∈ Pi, i ∈ A \ {1}. (3.12d)

The weight qi in the objective is designed as

qi :=
∑

j∈A
|Zij|wj, wj :=

|∆P̂u,j|
ϵ+

∑
k∈A |∆P̂u,k|

, (3.13)

where Zij is the effective impedance [80] between LCAs i and j, with Zii ≡ 0 and where
ϵ > 0 is small to prevent division by zero. The intuition is that qi is a weighted average
of the distance from LCA i to LCAs where disturbances are significant; a small distance
encourages power procurement from LCA i. In essence, areas that are electrically close
to the load disturbance will be sourced for additional power. The effective impedance is
computed based on a per-phase, per-unit equivalent of the connections between LCAs; see,
e.g., [80]. The constraint (3.12b) ensures global power balance, while (3.12c) ensures all
adjustments are made in the same direction. Finally, (3.12d) enforces aggregate power
limits for each LCA, with the aggregate area constraint set Pi defined as

Pi =
[∑

j∈Ii
P ij,

∑
j∈Ii

P ij

]
.

To ensure feasibility of (3.12), the first LCA is treated as a slack area. Once (3.12) is
solved, the aggregate IBR dispatch adjustments a∗i for each LCA are disaggregated by

each LCA by locally re-solving (3.11) with ∆P̂u,i replaced by ∆P̂u,i + a∗i .

3.3.3 Privacy-Preserving Distributed Implementation of Stage 2

If all data in (3.12) is available to the central controller, then (3.12) can be directly solved.
Information privacy of local IBR information may be an important factor however, and we
therefore consider a distributed method solution in which more information is kept local
to each LCA. Define the closed convex constraint sets

Cbal := {(a1, . . . , aN) | (3.12b) holds}
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Ci := {ai | (3.12c) and (3.12d) hold},

and let IC(x) denote the indicator function of a closed convex set C, which is +∞ if x ∈ C
and zero otherwise. The problem (3.12) can be equivalently written as

min
{ai}i∈A

∑
i∈A

[qia
2
i + ICi(ai)] + ICbal(z1, . . . , zN)

subject to zi = ai, i ∈ A ,

where dummy variables zi have been introduced. When written in this form, the problem
now admits an iterative distributed solution via the alternating direction method of mul-
tipliers (ADMM) [81]. Each LCA receives the scalar computation variables (zkk , u

k
i ) from

the central controller, and locally computes a scalar update via the local optimization

ak+1
i = argmin

ai∈R
qia

2
i + ICi(ai) +

ρ
2
|ai − zki + uk

i |2, (3.14)

where ρ > 0 is a penalty parameter. The value ak+1
i is returned to the central controller,

which performs the vectorized coordination update

zk+1 = ProjCbal(a
k+1 + uk)

uk+1 = uk + ak+1 − zk+1,
(3.15)

where Proj denotes the Euclidean projection onto the constraint set. The update (3.14)
is a small convex quadratic program, while (3.15) is just a linear update; both can be
solved quickly and reliably, and the iterates aki will converge to the optimizer of (3.12).
The following parameters are communicated from the LCAs to the central controller: (i)

the power mismatch φi in the LCA, (ii) the estimate ∆P̂ k
u,i of the net power imbalance in

the LCA, and (iii) the current power adjustment from the LCA ak+1
i during the ADMM

loop iteration process. The central controller in turn sends a weight vector ([wj]), which is
computed from the estimated load imbalances, a control flag indicating convergence, and
the iteration variables (zk+1

i , uk+1
i ). Communication occurs only between each LCA and the

central coordinating control; LCAs do not communicate directly with one another. Hence,
potentially sensitive information such as unit operating status, device limits, set-points,
and available spare capacity of resources in an LCA are not shared with either the central
controller or the LCA neighbors.

Remark 3.3.1 (IBR Energy Sources and Markets). In this work we have not focused
on the specific energy sources behind the dc links of the IBRs, but have considered a generic
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source, which could be dispatchable integrated battery + inverter-based resource solutions
[82], or dispatchable active power controlled wind farms [34, 26, 30], photovoltaic (PV)
systems [83, 84], or a combination. For our purposes, the key feature is that the source is
dispatchable within specified limits, which may themselves change over time. It is pertinent
to note that the technology already exists for these IBRs to be dispatchable [25, 26].

The controllers we design for each LCA require the IBRs to follow power set-point
commands with limits. In the language of the current system, this is most similar to the
concept of secondary frequency response reserves. We have assumed that these reserves
can be quickly deployed, and have modelled a ramp time constant of 0.3 seconds for the
IBRs used in our case studies. Determining the specific regulatory or market mechanism
for providing such an ancillary service is outside the scope of this work, but is a topic of
current consideration in the literature [26, 32, 33, 34, 35, 25]. Instead, we have assumed
that dedicated IBRs with secondary frequency reserves are available in each LCA, and
that these IBRs send their current set-points and device information, including limits, to
the LCA controller. The capacity and performance-based compensation to the IBRs for
providing these reserves could be procured through long term agreements similar to those
for voltage support ancillary service [36]. Finally, we remark that we do not envisage that
these dedicated IBRs will be providing power indefinitely after a frequency event. On a
longer time-scale, generators can be ramped up through the usual AGC system and IBR
injections can be correspondingly ramped down to pre-event values, freeing up fast resources
for future frequency events. □

3.4 Simulation Studies

We illustrate our designs by applying them to the 3-LCA 9-machine power system shown
in Figure 3.1 and the 5-LCA 68-bus system shown in Figure 3.13, both implemented in
Simscape Electrical. Each LCA of the interconnected system in Figure 3.1 is based on
the IEEE 3-machine 9-bus system [21], with the areas interconnected through identical
tie-lines, whose parameters are given in Table 3.1.

In total, four out of the initial nine synchronous generators in the 3-LCA system have
been replaced with an equal number of lower-inertia wind power farms, with the majority of
the active power in the modified system now being supplied by renewable power generation.
The larger power system in Figure 3.13 is the 5-area 68-bus IEEE benchmark model, with
16 synchronous generators and 86 transmission lines from [85]. All of the conventional
power plants were modelled with sixth-order synchronous generators and includes detailed
turbine-governor, excitation, and power system stabilizer (PSS) models, while the wind
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Table 3.1: Tie-line parameters for 3-area system; 100 megavolts ampere (MVA) base.

Node 1 Node 2 R (p.u.) X (p.u.) B (p.u.)
1 15 0.05 0.20 0.15
5 9 0.05 0.20 0.15
7 17 0.05 0.20 0.15

power was modelled using Type 3, doubly-fed induction generator (DFIG) wind turbine
systems. Two converter-based units, with droop control schemes, are present in each
LCA for fast control, and include current limiters; system data is shown in Table 3.2. In
selecting suitable test systems for this work, we have modified the 3-LCA 9-machine system
to better represent the low-inertia, green next-generation power grid, while the larger 5-
LCA system represents a more conventional grid with slower frequency dynamics owing to
the predominance of SGs over inverter-based power resources.

Table 3.2: Generator and IBR Data.

Node Gen. ID (and type) Rating (MVA) Dispatch (MW)
1,13 G1, G7 (Hydro) 247.50 72.24
1 IBR2 (Inverter-based resource) 50 15
3 G2 (Fossil-based) 192 126
3 IBR1 (Inverter-based resource) 50 25

5, 11, 17 G3, G6, G9 (Fossil-based) 128 85
7 G4 (Hydro) 247.5 71.99
7 IBR4 (Inverter-based resource) 50 20
9 G5 (Fossil-based) 192 133
11 IBR3 (Inverter-based resource) 50 10
13 IBR6 (inverter-based resource) 50 5
15 G8 (Fossil-based) 192 128
17 IBR5 (Inverter-based resource) 50 30

Each LCA disturbance estimator was designed based on the SFR model (3.10), with
raw parameters taken from [21] and SFR parameters set based on the method in [76]. For
the estimator design itself, time delays for both measurement and control signals were fixed
at 200ms, and the estimator gain L was tuned using standard linear-quadratic methods.
Simulation tests were performed with measurement and control signal delays of 300ms and
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500ms. The selection of 300 to 500ms delays is a somewhat pessimistic choice, based on
worst-case delays for wide-area communication via high-speed Ethernet.

Both the LCA controllers in Section 3.2 and the central controller in Section 3.3 operate
continuously with a fixed sampling period Ts = 25ms, which was selected based on what
can be expected based on continued deployment of PMUs. At each sampling period the
LCA controllers send the power mismatch φ∗

i to the central controller, which computes
the total power mismatch

∑
i∈A φ∗

i . If this is within a pre-defined tolerance (≈ 5% of the
spare capacity available in each area), then no further action is taken. When

∑
i∈A φ∗

i

exceeds the set tolerance, a flag is triggered and the centralized optimization in Section
3.3 is executed, either by directly solving (3.12) when information is centralized, or by
beginning the iterations (3.14)–(3.15) when information privacy must be preserved.

Table 3.3: SFR model parameters for LCA estimator design.

Quantity Value Comment
H Varies Normalized area inertia constant
TR 10 s Reheat time constant

Rg, RI 5% Speed regulation
FH 0.64 Frac. of power generated by high pressure turb.
D 0 Load damping coefficient
Ts 25 ms Estimator sampling period
ϵ 10−9 Avoids division by zero in (3.13)
λ 100 Penalty coefficient in (3.11)
ρ 1 Penalty coefficient in (3.14)

In total we consider seven scenarios, where the first six scenarios are simulated on
the three-LCA power system shown in Figure 3.1 and the last scenario involving two
cases is validated on a larger five-LCA power system shown in Figure 3.13. The scenarios
considered include: (i) a step load change in one LCA of the three-LCA system that can
be fully compensated with only local resources, (ii) a larger step load change in the same
LCA, where support from the other areas will be required, (iii) a symmetric three phase-
to-ground fault, (iv) the loss of a generator, (v) the intentional introduction of extreme
variations in the parameters used in the LCA estimator designs for all three LCAs, (vi)
the redispatching of both synchronous generators and IBRs in response to a load change,
and (vii) the re-simulation of scenarios I and II on the larger five-LCA power system.

All scenarios are compared against a baseline case without our supplementary control
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scheme, wherein frequency support is provided only by conventional generators’ inertia
and by primary droop control action of both generators and IBRs. We emphasize that our
scheme does not aim to supplant the primary control actions of the active power generating
resources (which are mandated by regulations from system operators), nor does our scheme
attempt to emulate conventional generator inertia. Instead, our scheme is an alternative
proposal for how IBRs can enable fast frequency control.

3.4.1 Scenario #1: Disturbance with Sufficient Local Resources

In this scenario, a 63 megawatts (MW) load change is applied at bus 8 in area two at
t = 2s. The disturbance is sufficiently small such that it can be compensated locally
without coordination with other areas. The frequency response and IBR power setpoints
are plotted in Figure 3.3, where we additionally compare the response to that obtained
by augmenting the conventional droop-only with an aggressively-tuned AGC-type control
which redispatches the IBRs. This AGC-style control is implemented individually for each
Local Control Area (LCA). For example, in our system with three LCAs, we would have
three distinct AGC schemes operating concurrently, instead of the traditional approach
that uses a single AGC system for the whole system.
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Figure 3.3: Response to 63 MW load change at bus 8; the IBR power plots correspond to
the case of 300ms delay.

The frequency nadir and settling time with our controller are significantly improved
compared to a conventional AGC + droop strategy, with similar performance observed up
to 600ms of delay. The IBRs in area 2 quickly ramp up to compensate for the disturbance,
while the IBRs in areas 1 and 3 do not significantly respond; the control action is fast
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Figure 3.4: Tie-line power flow deviations following a 63 MW load change at bus 8 in area
two.

and localized. As one would expect, the closed-loop performance of the scheme degrades
slightly with increasing delay; since however we have explicitly included an expectation of
200ms of delay in the design phase (Section 3.2.1), the typical destabilizing effect of delays
is largely mitigated.

Recall from Section 3.2.1 that each LCA controller is designed and implemented in
an area-by-area decentralized fashion. In Figure 3.3, one can observe a slight increase in
inter -area oscillations in the presence of our controller. A small-signal stability analysis
was performed on the interconnected system, and we have observed a trade-off between the
speed of the controller response and a degradation of the damping ration of this particular
inter-area mode. This is perhaps not surprising, as the generator PSS units were tuned in
the absence of our retrofit control scheme. If desired, this mode can be further damped
by (i) re-tuning the PSS loops, or (ii) lowering the bandwidth of our control scheme, as
described in Remark 3.2.2.

In Figure 3.4, we observe that the proposed scheme reduces the inadvertent power
exchange from adjacent areas following the disturbance compared to the classical AGC-
balancing mechanism. In this scenario where the contingent area has sufficient resources
to correct the local imbalance, the proposed scheme results in significantly less energy
borrowed from adjacent areas, thereby minimizing any incurred penalty and providing
additional value to the operator.
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3.4.2 Scenario #2: Disturbance with Insufficient Local Resources

This scenario is identical to the self-sufficient case, but a 130 MW load change is applied
instead, which is sufficiently large to activate both stage one and stage two of our redispatch
scheme. The dynamic responses for this case are shown in Figure 3.5.
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Figure 3.5: Response to 130 MW load change at bus 8.
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Figure 3.6: Plot of net tie-line flows following a 130 MW load change at bus 8.

Following the disturbance, the controller in the contingent area reacts and maxes out
its IBR resources, which both have limits of 50 MW; as expected, the controllers in other
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areas do not initially respond. Stage two activates after the total mismatch exceeds the
specified tolerance of 20 MW; we plot the responses for both the centralized and distributed
implementations of stage two (Section 3.3.3). As can be seen in Figure 3.5, the non-
contingent areas supply additional active power to compensate for the disturbance, and
the system frequency is eventually brought back to nominal value. We have considered
a communication delay of 300 ms for the centralized implementation and both 300 ms
and 500 ms delays for the distributed implementation. As the distributed implementation
requires many iterations, each of which is subject to communication delays, it is noticeably
slower than the centralized implementation. The responses therefore illustrate the speed-
privacy trade-off between the centralized and distributed implementations. The net tie-line
deviations from pre-disturbance values are plotted in Figure 3.6; a comparison with an
AGC-type control has not been included in this case since, due to the insufficient IBRs’
capacity in the contingent area, it will be impossible for the integral control of the AGC
to restore the tie-line flows to their scheduled values.

3.4.3 Scenario #3: Symmetric Three-Phase Fault

For this scenario, a three-phase line-to-ground fault was introduced at bus 10 in area 2 at
t = 2s; the fault was cleared after 0.1 secs. Figures 3.7 and 3.8 show the dynamic response
of the system following the introduction of the fault.
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Figure 3.7: Frequency response to three-phase fault.
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Figure 3.8: Plots of load estimate and IBR outputs following a three-phase line-to-ground
fault at bus 8 in area 2.

From Figure 3.7, we see that our design does not alter the transient frequency be-
haviour of the system following the fault compared to the base case. As can be seen from
Figure 3.8, the load estimates in the non-contingent areas are negligible, and the IBRs do
not significantly respond. In the contingent area, there is a small transient disturbance
estimate, which smoothly returns to zero with minimal IBR response. We conclude that
the control strategy is able to detect ‘frequency events’ and ignore ‘non-frequency events’,
which are desirable properties of fast frequency response schemes [12].

3.4.4 Scenario #4: Loss of Generator

In this scenario, we have simulated a loss of generator G2 in area 2 at t = 2s. The
lost generator had a pre-fault dispatch of ≈ 72 MW. The response is plotted in Figure
3.9. Similar to Scenario #2, the controller in the contingent area maxes out its IBR
resources following the generator loss, which resulted in a load imbalance of ∼ 72 MW.
Controllers in other areas however do not provide additional support via stage two, as
the remaining power mismatch does not exceed the specified tolerance of 20 MW. This
scenario additional illustrates the robustness of the method, as the LCA controller for area
2 is designed assuming that the inertia and primary response of generator G2 are present.

35



Time(s)

0 5 10 15 20 25 30 35 40

H
z

59.8

59.9

60
G1

G3

G4

G5

Time(s)

0 20 40

M
ea

su
re

d
 p

o
w

er
 (

M
W

)

0

20

40

60
IBR1

IBR2

Time(s)

0 20 40
0

20

40

60

IBR3

IBR4

Time(s)

0 20 40
0

20

40

60
IBR5

IBR6

Droop Only

Figure 3.9: Response to loss of generator G2.

Despite this significant parameter variation, the control action is similar to that in Scenario
#1.

3.4.5 Scenario #5: Parameter Variation

In this scenario we assess the controller’s performance in the presence of extreme variations
in the parameters used in the LCA estimator designs for all three areas; see Table 3.4. The
disturbance is as in Scenario #1, with a communication delay of 300ms. The response is
shown in Figure 3.10.

It can be seen from Figure 3.10 that the system remains stable despite these significant
parameter variations, although the frequency response is degraded. Case 1 produces a
more oscillatory response due to the underestimated turbine time constant, while Case 2
produces a larger overshoot due to the overestimated turbine constant. Consequently, this
scenario illustrates the margin of error we are afforded in the model used for the LCA
estimator design.
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Table 3.4: SFR model parameters for Scenario #5.

Case Quantity Value

Base Case

H nominal
TR nominal
Rg nominal
RI nominal
FH nominal

Case 1

H 50% decrease from nominal
TR 80% decrease from nominal
Rg 50% decrease from nominal
RI 50% decrease from nominal
FH Same as nominal

Case 2

H 50% decrease from nominal
TR 60% increase over nominal
Rg 10% increase over nominal
RI 10% increase over nominal
FH 65% decrease from nominal
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Figure 3.10: Response with variations in model parameters.
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3.4.6 Scenario #6: Coordination of IBRs and Conventional Gen-
erators

While our control scheme is primarily intended for coordination and dispatch of fast IBRs,
the optimal redispatch in Section 3.3.1 is in fact agnostic to the underlying source of power
used to correct the imbalance. To illustrate the modularity and flexibility of our approach,
in this scenario we consider both the conventional synchronous generators (SGs) and the
IBRs in the optimal active power allocation of Section 3.3.1. The ratings of the SGs are
as shown in Table 3.2, while the capacities of the IBRs were increased to 100 MVA to
encourage more IBR participation for this particular test. A 63MW load change is applied
at bus 8 in area two at t = 2s, and the system responses are shown in Figures 3.11,
3.12. Both IBRs and SGs are jointly redispatched according to Section 3.3.1; due to the
slower response speed of SGs, the overall speed of the scheme is reduced compared to
compensation using only IBRs. In summary, while SGs can be directly integrated into the
proposed scheme, this will not necessarily lead to improved performance.
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Figure 3.11: Response to 63MW load change at bus 8 with redispatch of both SGs and
IBRs.

3.4.7 Scenario #7: Test on Larger Power System

To test the performance of the proposed scheme on a large power system, we repeat self
sufficient and deficient scenarios (Scenarios #1 and #2) on the 5-LCA test system shown
in Figure 3.13.
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Figure 3.12: Plot of net tie-line flows following a 63 MW load change at bus 8 with
redispatch of both SGs and IBRs.

Figure 3.13: 5-area 68-bus test system.

For the self sufficient case, we introduce a 300 MW load change at bus 33 in the NYPS
area at t = 2s. The frequency response, IBR power setpoints and net tie-line deviations
are plotted in Figures 3.14, 3.15. It can seen that the performance is similar to that
obtained in the smaller 3-area system (Section 3.4.1), with the IBRs in the contingent
area acting quickly to inject active power while those in the non-contingent areas remain
close to their dispatch values, resulting in the restoration of the frequency and net tie-line
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deviations to their pre-disturbance values significantly faster than an aggressively tuned
traditional AGC. The controller shows good performance for both the 300 ms and 500
ms communication delays simulated. From Figure 3.15, we see that the scheme quickly
restores the tie line power flows to their pre-disturbance values compared to the AGC-type
scheme, minimizing inadvertent exchange between LCAs.
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Figure 3.14: Response to 300 MW load change at bus 33.
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Figure 3.15: Plot of net tie-line flows following a 300 MW load change at bus 33.
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We next consider the case where the resources in the contingent area are insufficient
to correct a local load imbalance. Here, we introduce a 450 MW load change at bus 33 in
the NYPS area at t = 2s. As can be seen in Figures 3.16, 3.17, the non-contingent areas
supply additional active power to compensate for the disturbance after the IBRs in the
contingent areas reach their limit and stage two is activated. Since the NETS area and
area 5 are electrically closest to NYPS, more active power is sourced from them. The con-
clusions drawn in Section 3.4.2 still hold on the larger 68-bus system, with the centralized
implementation being slightly faster and the controller showing robust performance under
the simulated 300 ms and 500 ms communication delays scenarios.
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Figure 3.16: Response to 450 MW load change at bus 33.

3.5 Summary

We have proposed and validated through detailed simulations a control strategy that pro-
vides fast, localized frequency control by partitioning the power system into small areas,
and utilizing the fast, inverter-based resources in each area to correct load imbalances orig-
inating locally. The local control loop for each LCA quickly estimates the local disturbance
and compensates by re-dispatching IBRs. When required, additional power support from
neighboring areas is provided from electrically close areas using a higher-level coordinated
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Figure 3.17: Plot of net tie-line flows following a 450 MW load change at bus 33.

dispatch scheme, and we propose a privacy-preserving implementation for this layer. The
approach provides fast control action and can be retrofit onto existing systems without
compromising stability. Through the LCA controllers, the scheme explicitly accounts for
heterogeneity of inertial response throughout the power system.

This scheme depends heavily on the communication infrastructure for its operation,
and in light of this, we offer the following observations. If communication links within a
Local Control Area (LCA) fail, the local controller, having direct access to the availability
of Inverter-Based Resources (IBRs), will experience a decrease in the number of accessible
IBR devices. The remaining online IBRs will then be re-dispatched using the existing local
optimal allocation scheme. Conversely, the global layer is more vulnerable to communi-
cation link failures, which could potentially result in a failure of centralized coordination.
This could ultimately prevent additional power from being sourced from neighboring areas.
In such a scenario, the local IBRs will still be maximized. However, it’s important to note
that there is no guarantee that the frequencies in the system can be regulated back to their
nominal values under these circumstances.
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Chapter 4

Data-Driven Extension to
Hierarchical Coordinated Fast
Frequency Control Framework

In this chapter, we extend our novel hierarchical coordinated fast frequency control scheme
using inverter-based resources developed in Section 3 to utilize only measurement data.

4.1 A Data-Driven Control Approach for Area-Based

Fast Frequency Control

The model-based design of Section 3 requires an explicit and accurate model of the fre-
quency dynamics of each LCA. In practice, this requirement poses at least two major
challenges. First, an appropriate class of parametric models must be selected; this step
balances simplicity vs. accuracy, and will become increasingly difficult as RESs with black-
box power electronic controls proliferate. Second, the parameters of the model must be
selected or fit; this procedure itself is challenging, with associated bias-variance trade-offs
[86].

To address these issues, in this section we develop two direct data-driven design ap-
proaches to supplant the model-based design approach described in Section 3. In essence,
the idea is to replace the parametric LCA model (3.10) with a non-parametric model
based on time-series data collected from the system. This time-series data is directly used
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to design a disturbance estimation scheme, without passing through an explicit system
identification step.

Section 4.1.2 describes our first data-driven disturbance estimation approach, which
fuses ideas from linear estimator design and behavioral systems theory. The resulting
disturbance estimator is described by a linear update rule, and requires tuning of only
one scalar gain. To improve robustness to grid nonlinearities and inexact data collection
procedures, our second design approach in Section 4.1.3 extends this linear estimation
procedure with an optimization-based estimation procedure. Finally, in Section 4.1.4 we
describe how these general estimation ideas are adapted for the particulars of power system
frequency control and integrated into the hierarchical control framework outlined in Section
3.

4.1.1 Brief Background on Data-Driven System Representation

Consider the controllable finite-dimensional discrete-time linear time-invariant (LTI) model

x(t+ 1) = Ax(t) +Bu(t) +Bdd(t)

y(t) = Cx(t) +Du(t)
(4.1)

with time t ∈ Z≥1, state x(t) ∈ Rn, control input u(t) ∈ Rm, disturbance input d(t) ∈ Rq,
and measured output y(t) ∈ Rp. We assume the matrices (A,B,Bd, C,D) of (4.1) are
unknown, and hence the model (4.1) cannot be directly used for simulation, analysis, and
feedback design purposes. Behavioral systems theory provides a set of tools for constructing
a data-based representation of the dynamic system (4.1) using input and output measure-
ments [87].

As notation, if (z(1), z(2), z(3), . . .) is a Rm-valued signal defined for positive time, we
write z ∈ (Rm)Z≥1 . The starting point is to diminish the role of the state, and consider
all possible input-output sequences (u(t), d(t), y(t)) which are compatible with (4.1), called
the behaviour :

B =
{
(u, d, y) ∈ (Rm+q+p)Z≥1 : ∃x ∈ (Rn)Z≥1 s.t.

σx = Ax+Bu+Bdd, y = Cx+Du} ,
(4.2)

where (σx)(t) = x(t + 1) is the shift operation. The behaviour (4.2) describes the system
(4.1) as a subspace of the vector space of all possible input-output signals, and (4.1) is
a state-space representation of B. The order of the system, denoted by n(B), is the
smallest possible state dimension of the representation (4.1). Given a representation of
minimal order, the lag of B, denoted by ℓ(B) is the smallest integer ℓ such that the
matrix Oℓ = col(C,CA, . . . , CAℓ−1) has rank n(B).
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Let BT denote the restriction of the behaviour to trajectories of finite length T ∈ Z≥1,
i.e., input-output sequences of length T . Suppose that we have collected T -samples of
input-output data wd = (ud, dd, yd) ∈ BT from the system. This data may be directly used
to create a non-parametric representation of the model (4.2). To do this, let L ≤ T be a
positive integer, and organize the data into the Hankel matrix of depth L, given as

HL(u
d) =

ud(1) · · · ud(T − L+ 1)
...

. . .
...

ud(L) · · · ud(T )

 ∈ RmL×(T−L+1),

with analogous definitions for HL(d
d) and HL(y

d). The input data (ud, dd) is said to be
persistently exciting of order L if col(HL(u

d),HL(d
d)) has full row rank; this captures the

idea that the inputs are sufficiently rich and sufficiently long. The Fundamental Lemma
[70] states that if the input data is persistently exciting of order L+n(B), then any possible
length L input-output sequence (u, d, y) ∈ (R(m+q+p))L can be expressed asHL(u

d)
HL(d

d)
HL(y

d)

 g =

ud
y

 (4.3)

for some vector g ∈ RT−L+1. The linear equation (4.3) is a data-based representation of
the system (4.1), and can be leveraged for prediction and control [87].

4.1.2 Design #1: Linear Data-Driven Disturbance Estimator

We now consider (4.1) as a model for each LCA. We assume that d(t) is a constant unknown
disturbance signal, which for us will model mismatch between generation and load. In our
context, x(t) would consist of states of generators, converters, loads, and associated control
systems, u(t) would be commands to IBRs, and y(t) would be available measurements such
as frequency deviation. Since (4.1) would represent the system including the action of
primary controllers, the model (4.1) will be assumed to be internally exponentially stable,
i.e., A will have eigenvalues within the unit circle.

The design goal is to produce a real-time estimate d̂(t) of the unknown disturbance
d(t). Our proposed estimator design consists of two steps:

(i) a data-driven forward prediction ŷ(t) of the output y(t);

(ii) a linear update rule for d̂(t) using ŷ(t) and the true system measurement y(t).
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To generate a prediction of the output for time t, we will leverage (4.3), and assume
that historical data (ud, dd, yd) is available. Model-based prediction using, e.g., (4.1) would
require the specification of an initial condition. In the data-driven setting, the initial
condition is implicitly defined by using recent online samples of input and output data
[68]. Let Tini ≥ ℓ(B) be the length of the initialization data, and define the vectors

uini = col(u(t− Tini), . . . , u(t− 1))

d̂ini = col(d̂(t− Tini), . . . , d̂(t− 1))

ŷini = col(ŷ(t− Tini), . . . , ŷ(t− 1)).

(4.4)

Note that d̂ini and ŷini are formed based on our past estimates of the disturbance and
output. In (4.3), we consider trajectories of length L = Tini + 1. We partition u, d, y in
(4.3) as

u =

[
uini

u(t)

]
, d̂ =

[
dini
d̂(t)

]
, y =

[
yini
ŷ(t)

]
,

and correspondingly partitioning the rows of the Hankel matrices in the same fashion as

HL(u
d) =

[
Uini

Uf

]
, HL(d

d) =

[
Dini

Df

]
, HL(y

d) =

[
Yini

Yf

]
.

With these choices, (4.3) can be re-expressed as

Hredg :=


Up

Dp

Yp

Uf

Df

 g =


uini

d̂ini
ŷini
u(t)

d̂(t)

 , ŷ(t) = Yfg. (4.5)

The first set of equations is solved for the unknown g, and the prediction ŷ(t) = Yfg is im-
mediately obtained. If the underlying data-generating system is LTI and the collected data
are exact, the Fundamental Lemma guarantees that (4.5) is consistent and the computed
response matches the system’s response exactly, provided Tini ≥ ℓ(B) [70].

With the output estimate generated, the disturbance estimate is now updated according
to the feedback rule

d̂(t+ 1) = d̂(t)− εL(ŷ(t)− y(t)),

where L ∈ Rq×p is the estimation gain and ε ∈ (0, 1) is a tunable parameter which controls
the rate of adjustment. Putting everything together, we can compactly express the overall
disturbance estimator as

ŷ(t) = P · col(uini, d̂ini, ŷini, u(t), d̂(t)) (4.6a)
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d̂(t+ 1) = d̂(t)− εL(ŷ(t)− y(t)) (4.6b)

where P = YfH
†
red is the prediction matrix and H †

red denotes the pseudoinverse of Hred.
As P depends only on historical data, it can be computed once and stored, and thus
implementing (4.6) simply amounts to matrix-vector multiplication.

The final issue to address concerns the tuning of the estimator gain L and parameter ε in
(4.6). Our tuning recommendation is L = G(1)†, where G(1) = C(zIn −A)−1Bd|z=1 is the
DC gain of the system (4.1) from input d to output y. This selection will be justified in our
theory to follow, and while the matrix G(1) could be obtained empirically from repeated
step response experiments, it can also be obtained directly from the exact same historical
data used to construct the matrix P in (4.6). The following result is an adaptation of [88,
Thm. 4.1].

Lemma 4.1.1 (DC Gain From Trajectory Data). Consider the previously defined
historical data (ud, yd, dd) and define

ydiffd = (yd(2)− yd(1), . . . , yd(T )− yd(T − 1)) ∈ (Rp)T−1

udiff
d = (ud(2)− ud(1), . . . , ud(T )− ud(T − 1)) ∈ (Rm)T−1

with associated Hankel matrices Y diff = Hℓ(B)(y
diff
d ) and Udiff = Hℓ(B)(u

diff
d ). Then

Gd(1) = Yf


Y diff

Udiff

Up

Dp


† 

0
0
0
Iq

 .

We can now give a theoretical result concerning the convergence of the disturbance
estimator (4.6).

Theorem 4.1.2 (Data-Driven Disturbance Estimator). Consider the disturbance es-
timator (4.6) for the system (4.1) under all previous assumptions. Assume further that
G(1) = C(In − A)−1Bd has full column rank, and set the estimator gain as L = G(1)†.
Then there exists ε⋆ > 0 such that for all ε ∈ (0, ε⋆), d̂(t) → d(t) exponentially as t → ∞.

The disturbance estimator (4.6) provides a completely model-free solution to disturbance
estimation problem; the only required tuning is the single scalar parameter ε ∈ (0, 1). An
implication of Theorem 4.1.2 is that one may tune the estimator (4.6) by starting ε small
and slowly increasing it; the proof can be found in Appendix A.2.
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Remark 4.1.3 (Singular Value Thresholding). In practice, the system generating the data
which is used to build Hred in (4.6) may contain nonlinearity, and the measurements will
be corrupted by measurement noise; this will be the case in our subsequent case studies.
Both of these effects will compromise performance of the design (4.6). It has however been
observed that low-rank approximations of Hankel matrices reduce the effects of noise in
data-driven control, and enhance generalization [66]. In implementation, we compute the
singular value decomposition of Hred and retain only the dominant singular values and
vectors, to obtain a low-rank approximation H̃red [89]. We then use P = YfH̃

†
red in (4.6),

which, empirically, greatly increases the robustness of the approach. □

4.1.3 Design #2: Optimization-Based Data-Driven Disturbance
Estimator

The advantage of (4.6) is simplicity, as it involves only linear update rules at each time step.
We now outline a more flexible optimization-based disturbance estimation procedure which
can achieve improved performance at the cost of higher implementation complexity. The
key idea is to formulate the disturbance estimation problem as a regularized optimization
problem. In particular, the use of regularization affords us more flexibility to select a better
model class in terms of behaviour and complexity to better capture the dynamics of the
true underlying system [87].

To begin, consider the previous development leading up to equation (4.5). Even if
the system of equations (4.5) is consistent, it will generally have infinitely many solutions
[68, 61]. The prediction matrix P in (4.6) is given by P = YfH

†
red, and corresponds

precisely to taking the least squares solution of the first equation in (4.5) as

g⋆ = argmin
g

∥g∥22

subject to Hredg = col(uini, d̂ini, ŷini, u(t), d̂(t))

and then substituting to obtain ŷ(t) = Yfg
⋆. When using noisy data from a non-LTI data-

generating system, it is advantageous to robustify this least-squares problem by adding
regularization [61]. To this end, for the equation Hredg = ξ, we have

g = H †
redξ ⇐⇒ (I − H †

redHred)g = 0.

Thus, with Q = H †
redHred, a least squares solution for g also arises from minimizing the

objective function ∥(I −Q)g∥22 subject to the linear constraint Hredg = ξ.
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Our disturbance estimation approach is now to intentionally bias this least squares
solution, by introducing additional objective functions quantifying the prediction error
along with regularization on g. This intentional biasing exploits the bias-variance trade-off
from system identification [86], leading to reduced overfitting in the estimation procedure.
With the same notation and set-up as in Section 4.1.2, at time t we solve the convex
optimization problem

min
d̂(t),ŷ(t),g

∥y(t)− ŷ(t)∥22 + λ1∥(I −Q)g∥22 + λ2∥g∥2

s.t.


Up

Dp

Yp

Uf

Df

Yf

 g =



uini

d̂ini
yini
u(t)

d̂(t)
ŷ(t)

 ,
(4.7)

where λ1, λ2 ≥ 0 are tuning parameters. The problem (4.7) combines the prediction and
estimation steps from (4.6) into one formulation, jointly generating the output prediction
ŷ(t) and the disturbance estimate d̂(t). The first objective function term attempts to match
the prediction ŷ(t) to the measured output y(t). Increasing λ1 encourages a least-squares
solution for g, similar to that used in (4.6), while increasing λ2 regularizes the solution; this
reduces overfitting [86] and improves estimation robustness for noisy measurements and
non-LTI dynamics. This approach is strongly justified by recent advances in regularized
data-driven control [87], and performance will be extensively tested in Section 4.2.

4.1.4 Specialization to Area-Based Fast Frequency Control using
Inverter-Based Resources

We now describe the adaptation of our general data-driven disturbance estimation meth-
ods to the fast frequency control architecture described in Section 3. Consider a large
interconnected power system which is divided into several small LCAs. Each LCA has
local IBR’s that can be re-dispatched by the operator, subject to their real-time capacity
limits. Since each LCA is geographically small, the effect of a power imbalance within the
LCA on the frequency is approximately independent of the specific nodal location of the
imbalance within the LCA. Therefore, it is assumed that power disturbances and genera-
tion are aggregate, and effectively lumped at a single bus. Put differently, disturbance and
control signals enter through the same channel, and thus B = Bd ∈ Rn×1 in (4.1).
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The following selections are made for inputs and outputs: the measurement y(t) =
∆ω(t) ∈ R is a single local measurement of frequency deviation, and the disturbance
d(t) = ∆Pu ∈ R models aggregate unmeasured generation-load imbalance within the LCA.
The input u(t) to the system consists of the measured tie-line flow ∆Ptie(t) out of the LCA,
as well as the sum of all IBR power set-points ∆Pibr(t).

Historical data must be used to build the Hankel matrices used in both estimators. As
the control and disturbance channels are lumped, during the collection of historical data,
the sum of IBR set-point changes, exogenous load/generation changes, and inter-LCA tie-
line flow changes must be recorded. Further discussion of options for data collection is
deferred to Section 4.2.1.

As a result of the above, the estimator (4.6) simplifies to

∆f̂(t) = P · col(∆vini,∆f̂ini,∆v(t)) (4.8a)

∆P̂u(t+ 1) = ∆P̂u(t)− εL(∆f̂(t)−∆f(t)), (4.8b)

where ∆v = ∆Pibr −∆Ptie −∆Pu, is the aggregated input, P = Yf [ Up;Yp;Uf ]†, is the pre-
diction matrix, and L ∈ R is now a scalar. Analogously, the optimization-based estimator
(4.7) becomes

min ∥∆f(t)−∆f̂(t)∥22 + λ1∥(I −Q)g∥22 + λ2∥g∥2

s.t.


Up

Yp

Uf

Yf

 g =


∆Pibr,ini −∆Ptie,ini −∆P̂u,ini

∆fini
∆Pibr(t)−∆Ptie(t)−∆P̂u(t)

∆f̂(t),

 ,
(4.9)

The imbalance estimate ∆P̂u(t) from either method is then used to redispatch the local
IBRs in the LCA via the optimal power allocation algorithm presented in [90].

4.2 Simulation Studies

We validate our designs by applying them to the three-area nonlinear test system illustrated
in Figure 4.1. Each LCA of the test system is based on the the IEEE 3-machine 9-bus
system given in [21], with the interconnection parameters and active power dispatch info
similar to [90]. In the modified test model, two synchronous generators (SGs) in area one
have been replaced with a photovoltaic (PV) array and a Wind (WT) plant. Similarly,
one SG each in areas two and three are replaced with a PV farm. The PV array and
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wind turbine plant are simplified models represented by non-dispatchable converter-based
units, which are parameterized using wind power and solar irradiance data from [2, 1].
To facilitate frequency control, two dispatchable IBRs have been added in each LCA. In
addition, static var compensators (SVCs) and synchronous condensers have been added
to areas 1 and 2/3 to support the voltage. All SGs and dispatchable IBRs in the system
are set to have a 5% speed droop curve on their respective bases, with a 36 mHz primary
control deadband. The pre-disturbance generation/demand in the system is approximately
800 MW.
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Figure 4.1: Three-LCA test system.
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4.2.1 Offline Data Collection and Controller Tuning

As described in Section 3.2, our estimators require a library of historical data generated
from a persistently exciting input that must be collected before the online implementation of
the control. Examples of common persistently exciting inputs from the literature include,
pseudo random binary sequence, autoregressive moving average sequence, sum of sinusoids,
and white noise [91, 92]. Among these, white-noise derivatives are most commonly used in
power system identification studies, such as measured ambient power fluctuations [93], and
low-power injected probing signals such as the low-level pseudo-random noise (LLPRN) in
[94] and the band-limited white noise in [95]. In terms of what sources should be actuated
for this data collection, there are several theoretically-equivalent options for the purposes
of this work, including

(i) apply low-power probing modulations to IBRs during calm system conditions (i.e.,
during times of minimal unmeasured generation/load changes), and meter the result-
ing frequency and tie-line power changes,

(ii) hold IBR set-points constant, record ambient load power consumption changes (or in-
jected pseudo random white noise that mimics such changes), and meter the resulting
frequency and tie-line power changes,

or obvious variations/combinations of these. In our testing to follow, we pursue option
(i); we refer the reader to Remark 3.3.1 in Section 3 for a discussion on the feasibility and
market incentives that makes this choice viable.

We now turn to the design of the low-power probing signal for IBR set-point changes.
In this work, we modeled our probing injection signal after the LLPRN in [94], where we
have combined a sum of sinusoids and band-limited white noise. Each IBR within each
LCA is commanded with the set-point changes shown in Figure 4.2, given by

∆Pibr(t) = sin(12πt) + w(t) (in MW). (4.10)

The signal consists of a sinusoidal perturbation of 1 MW (1.76 × 10−3 p.u.), with band-
limited white noise w(t) with noise power of ≈ 0.2× 10−3 p.u.

While we stress that the choice of probing signal is not unique, with our choice of signal,
we are able to utilize the aggregated power input u = ∆Pibr −∆Ptie and output y = ∆ω
data for each LCA recorded for only 10 seconds at a sampling rate of 0.1 seconds, which is
significantly shorter than the duration of 1200 seconds for ambient data and 600 seconds
for LLPRN reported in the literature [94].
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Figure 4.2: Persistently exciting IBR set-point change for data collection phase.

Regarding the tuning parameters, we used T = 101 historical data points for each LCA,
collected sequentially with only one LCA being excited at a time. The length of recent past
data used in (4.8) and (4.9) was Tini = 7; larger values were found to produce no benefit.
The controller gain ε in (4.8) was set via tuning to ε = 0.2 by starting from a small value
and increasing until satisfactory performance was reached. For the penalty parameters in
(4.9), we set λ1 to a large value of 1 × 108, according to the insights from Section 4.1.3,
and λ2 = 1 × 102 was set via tuning by gradually increasing its value until no noticeable
improvement in performance was observed.

4.2.2 Simulation Scenarios

We consider four different testing scenarios, which aim to highlight the diverse challenges
that can arise in a power system, including renewable resource variability, sudden changes
in load demand, and equipment failures. The scenarios are

(1) response to sudden load changes of different sizes,

(2) response to solar and wind farm variability,

(3) response to a three-phase-to-ground fault, and

(4) response after loss of a conventional generation unit.

For all scenarios, we integrate our disturbance estimators into the hierarchical fast
frequency control architecture proposed in Section 3 and compare the model-based distur-
bance estimator of that Section against the data-driven disturbance estimators presented
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here. We term the controller described in (4.8) as the Linear Data-Driven Disturbance
Estimator (LDDE) and that in (4.9) as the Optimization-Based Data-Driven Disturbance
Estimator (ODDE); the ODDE is the default data-driven controller presented in the figures
when no other context is given. As a baseline, we compare to the response without any
supplementary control scheme, where frequency support is provided only through the pri-
mary droop control action of both generators and IBRs. Additionally, we compare against
the response obtained by implementing standard automatic generation control (AGC) on
the three-area system in Figure 4.1. In Scenario #1, we have compared the ODDE against
all the alternatives listed above, and demonstrate its performance premium relative to
the LDDE. In the remainder of the scenarios, we focus the plots on comparing the bet-
ter estimator (ODDE) against the model-based approach presented in Section 3. Finally,
the data collection and real-time simulation steps include measurement noise, modelled as
zero-mean white noise of standard deviation 10−6 p.u. for frequency deviation and 2×10−2

p.u. for inter-area power flow measurements; these represent realistic noise on the variables
scaled for their typical values (e.g., [95]).

4.2.3 Scenario #1: Step Load Changes

This scenario evaluates the performance of our controller in response to step load changes
of varying magnitudes – 14 MW and 60 MW – applied in Area 2.

At t = 10s, a small load change of 14 MW is applied at bus 8 in area two. The
size of the disturbance is chosen such that the resulting frequency deviation is below the
36 mHz deadband of the generator primary control systems. The frequency response
and disturbance estimate of the system are plotted in Figure 4.3, while the net-tie line
deviations and IBR power outputs are displayed in Figure 4.5. For clarity in differentiating
the alternative approaches, a zoomed-in frequency response plot is shown in Figure 4.4.

Using both the model-based and data-driven disturbance estimators, the disturbance
was quickly identified to originate in Area 2 and promptly corrected by adjusting the
setpoints of the local IBRs, with minimal impact on other areas. Overall, the frequency
was restored quickly, and the variables in the non-contingent areas returned to their pre-
disturbance state due to the decentralized nature of the control scheme. The plots also
demonstrate that the proposed optimization-based data-driven estimator outperforms the
linear data-driven and model-based estimators in terms of a higher nadir and faster settling
time for the post-contingency frequency. We believe the improved performance of the
optimization-based estimator relative to the linear estimator is due to its ability to better
capture the dynamics of the true underlying system in terms of behaviour and complexity.
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Figure 4.3: Frequency and disturbance estimate during a 14 MW load change at bus 8 in
Area 2.
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Figure 4.4: Zoomed-in frequency plot of the contingent area showing the control alterna-
tives during a 14 MW load change at bus 8 in Area 2.

The plots in Figures 4.6, 4.7, and 4.8, which display the frequency response, disturbance
estimate, net tie-line deviations, and IBR outputs in response to a step load change of 60
MW applied at bus 8 in Area 2 at t = 10s, lead to the same conclusion about the controller’s
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Figure 4.5: Tie-line deviation and active power profiles during a 14 MW load change;
dashed lines in the lower plots indicate the responses under model-based estimation.

performance as the previous scenario with a 14 MW load change. This demonstrates that
the proposed controller exhibits superior performance for step load changes both inside
and outside the governor deadband range.
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Figure 4.6: Frequency and disturbance estimate during a 60 MW load change at bus 8 in
Area 2.
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Figure 4.7: Zoomed-in frequency plot of the contingent area showing the control alterna-
tives during a 60 MW load change at bus 8 in Area 2.

In general, the results show that the robust data-driven approach presented in this
study outperforms the model-based approach and other alternatives, quickly localizing
and compensating for large and small disturbances.

4.2.4 Scenario #2: High Renewable Resource Fluctations

In this scenario, we aim to demonstrate the effectiveness of our data-driven approach in
the presence of renewable variability using realistic wind and solar irradiance data. To
simulate the solar irradiance component, we use data from the Oahu solar measurement
grid 1-year archive [1], containing 1-second measurements of solar irradiance. We select
a slice of data from July 31, 2010 (see Figure 4.9). These values are used to simulate a
converter-interfaced PV farm in Area 2.

For the wind farm component, we use 4-second resolution wind power measurements
from the wind power dataset accessible at [2], originally obtained from the Australian
Energy Market Operator (AEMO). We select a slice of data from August 15, 2019 (see
Figure 4.9). These values are used to simulate a converter-interfaced wind farm in Area 1.
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Figure 4.8: Tie-line deviation and active power profiles during a 60 MW load change;
dashed lines in the lower plots indicate the responses under model-based estimation.

At t = 10s, we introduce a step load change of 40 MW in Area 2 and simultaneously
introduce the new the solar irradiance levels and wind power in accordance with the real-
world data. The frequency response, disturbance estimate, net tie-line deviations, and IBR
outputs of the power system for this scenario are displayed in Figures 4.10, 4.11, and 4.12.

The simulation results show that the optimization-based data-driven estimator is able
to quickly estimate the highly variable power imbalance in real-time, allowing the frequency
to be kept close to the nominal value throughout the simulation period. The performance
of our designed data-driven estimator is quantified in Table 4.1, which shows the root mean
squared frequency deviation for each generator in the system. The results show that the
data-driven disturbance estimator with regularization performs the best.

4.2.5 Scenario #3: Symmetric Three-Phase Fault

The essence of this scenario is to assess the performance of our control approach under a
severe contingency like a symmetrical three-phase line-to-ground fault. The response of
the system during the fault introduced at bus 8 in Area 2 at t = 2s and cleared after 0.1s is
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Figure 4.9: Solar irradiance and wind power data representing suitably scaled slices of data
on 31 July 2010 and 15 Aug 2019 from [1] and [2] repositories.
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Figure 4.10: Frequency and disturbance estimate during high renewable resource fluctua-
tions in multiple areas.

shown in Figures 4.13 and 4.14. Note that despite the transients, the controller is able to
discern that there is no net load imbalance within the area. The results indicate that the
controller is able to effectively detect and respond to frequency events, and the data-driven
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Figure 4.11: Zoomed-in frequency plot during high renewable resource fluctuations in
multiple areas.
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Figure 4.12: Tie-line deviation and active power profiles during high renewable resource
fluctuations in multiple areas.; dashed lines in the lower plots indicate the responses under
model-based estimation.

estimator’s performance is satisfactory and similar to the model-based estimator.
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Control type RMSE (Hz) Total (Hz)

G1 G2 G3 G4 G5

Data-based w/ reg. 0.0065 0.0065 0.0064 0.0066 0.0065 0.0325
Data-based w/o reg. 0.0071 0.0073 0.0072 0.0074 0.0073 0.0365

Model-based 0.0081 0.0081 0.0080 0.0080 0.0081 0.0403
AGC 0.0236 0.0225 0.0233 0.0225 0.0233 0.1151

Droop only 0.1885 0.1883 0.1884 0.1884 0.1884 0.9420

Table 4.1: Root Mean Square Error for Control Alternatives.

0 20 40

Time(s)

59.8

59.9

60

60.1

F
re

q
u

en
cy

 (
H

z)

Data-Driven

G1

G2

G3

G5

0 20 40

Time(s)

59.8

59.9

60

60.1

F
re

q
u

en
cy

 (
H

z)
Model-based

G1

G2

G3

G5

0 20 40

Time(s)

59.8

59.9

60

60.1

F
re

q
u

en
cy

 (
H

z)

No control

G1

G2

G3

G5

0 20 40

Time(s)

-50

0

50

100

D
is

tu
rb

a
n

ce
 (

M
W

)

Area one

Data-driven

Model-based

0 20 40

Time(s)

-50

0

50

100
Area two

Data-driven

Model-based

0 20 40

Time(s)

-50

0

50

100
Area three

Data-driven

Model-based

Figure 4.13: Frequency and disturbance estimate during a three-phase fault in Area 2.

4.2.6 Scenario #4: Loss of Generator

This scenario assesses the performance of our control approach under the loss of gener-
ator G2 in area 2 at t = 10s. When the generator G2 is lost, the system experiences a
disturbance, and the controllers respond to correct the resulting power imbalance. The
response of the system under both the model-based and data-driven control is plotted in
Figure 4.15. According to the findings, the data-driven controller outperforms the model-
based controller, as demonstrated by its faster frequency settling time and lower overshoot.
Importantly, despite the data used to design the LCA controller having been collected while

61



0 10 20 30 40

Time(s)

-50

0

50

P
ti

e
 d

ev
ia

ti
o

n
 (

M
W

)

Area one

Data Driven

Model Based

0 10 20 30 40

Time(s)

-50

0

50
Area two

Data Driven

Model Based

0 10 20 30 40

Time(s)

-50

0

50
Area three

Data Driven

Model Based

0 10 20 30 40

Time(s)

0

10

20

30

40

50

60

M
ea

su
re

d
 p

o
w

er
 (

M
W

)

IBR1

IBR2

0 10 20 30 40

Time(s)

0

10

20

30

40

50

60
IBR3

IBR4

0 10 20 30 40

Time(s)

0

10

20

30

40

50

60
IBR5

IBR6

Figure 4.14: Tie-line deviation and active power profiles during a three- phrase fault in
Area 2; dashed lines in the lower plots indicate the responses under model-based estimation.

G2 was online, the response indicates that the data-driven controller is effective even in the
face of significant changes in power system composition and frequency response dynamics.
This illustrates the robustness of the design, and provides flexibility for system operators
in deciding how frequently they wish to collect new data to update the controller.

4.3 Summary

We have proposed and validated through detailed simulations a robust data-driven dis-
turbance estimator that allows us to reliably compute the real-time power imbalance in
a highly nonlinear power system, and in the presence of measurement noise. This data-
driven estimate has been integrated into the hierarchical frequency control architecture
initially proposed in Section 3, to provide a completely model-free approach to provide
fast, localized frequency regulation in the power system.
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Figure 4.15: Frequency and disturbance estimate during a generator G4 loss in Area 3.
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Chapter 5

Conclusion

5.1 Summary

This work is centered on next-generation grids, where the increased integration of inverter-
based resources (IBRs) will play a crucial role in power system control, and where genera-
tion may even consist entirely of inverter-connected renewable resources (RESs). In these
grids, the sensing ability and control authority will be dispersed over many more devices
than previously, necessitating increased decentralization to manage the resulting informa-
tion flows and respond to them swiftly. When this is combined with the load variability
and uncertainty introduced by these IBRs, the need for control paradigms that incorporate
rapid localized control with high-bandwidth wide-area coordination becomes increasingly
important.

The first novelty of our approach lies in the layered control architecture, providing
fast, localized control in response to local power imbalances, supplemented by wide-area
coordination. Traditionally, the automatic generation control (AGC) system uses a cen-
tralized approach to keep average frequency deviations within acceptable limits for each
balancing authority area. However, due to the extensive size of these areas, maintaining an
accurate dynamic system model becomes a challenging task. As a result, the AGC system
relies on classical frequency bias constant methods, which, while somewhat effective, limit
its speed and efficacy for rapid frequency control. In contrast, our architecture divides
a power system into smaller local control areas (LCAs), within which high-bandwidth,
low-latency measurements are available for local decision-making. A higher coordinating
layer manages these LCAs to ensure a continued global power balance during contingen-
cies where the local capacity might be insufficient. This reduction in spatial scale enables
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increased decentralization of control actions and allows for the use of a dynamic model
representation of the area for design purposes. Overall, this layered control architecture
allows greater flexibility in designing the individual layers, and local handling of infor-
mation leads to faster and more efficient control responses, greater data privacy, reduced
latency, and smaller communication payload.

The second novelty lies in the coordination and control of fast-acting IBRs to correct
local power imbalances from so-called frequency events. An approach to fast frequency con-
trol suggested in the literature [96, 97, 98] is the use of distributed averaging (consensus-
based) methods. In these, distributed energy resources act as multi-agent systems that
support frequency regulation while fulfilling system-wide objectives, especially in primary
droop control scenarios. This technique is promising due to its relatively low implemen-
tation complexity. However, it necessitates a comprehensive peer-to-peer communication
architecture, which could introduce more time delays. This is particularly relevant as
the number of distributed energy resources in the grid is projected to increase in the fu-
ture. Although several authors [99, 100, 83, 84, 101, 102] have taken another approach
towards proposing fast frequency response (FFR) methods for low-inertia systems, which
aim to provide controlled frequency support to the system by acting rapidly on a frequency
measure to compensate for the lost inertial and governor-turbine response from conven-
tional synchronous generators, most of these focus on the potential of utilizing a range of
emerging technologies in providing FFRs, and on the specific technology or energy source
being considered. However, as the grid and its associated technologies are still evolving,
there is a need for a technology-agnostic, modular framework that provides fast frequency
control while optimally coordinating the available grid resources. Our disturbance estima-
tion and rejection techniques, in addition to the layered control architecture, provide this
modular framework. For each LCA in our scheme, we designed a fast local disturbance
estimation and rejection control loop. This loop processes local measurements and quickly
re-dispatches local IBRs and other legacy power sources to balance local generation and
net-load. While fast-acting IBRs can currently provide droop support and virtual inertia
emulation, our scheme offers additional supplementary power injection on a fast time scale,
acting as an additional fast primary and secondary control, which we believe will become
increasingly important in future IBR-dominated grids, as they are expected to face more
frequent and severe frequency excursions.

Designing our fast local disturbance estimation and rejection control loops to pro-
vide optimal dynamic performance requires a rich, and reasonably accurate, representative
model of the LCAs. However, due to the increasing scale, complexity, and changing dy-
namics of power systems, ensuring the accuracy of system models is a significant challenge.
To address this, we have presented novel designs for data-driven disturbance estimators,
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which allow us to produce real-time estimates of the net real power imbalance within an
LCA using only historical data sequences and online measurements.

The combination of our data-driven local disturbance estimation and rejection tech-
niques and the proposed layered architecture has allowed us to propose an effective ap-
proach to fast frequency control for next-generation IBR-dominated grids. We have ex-
tensively validated our scheme through simulations on detailed nonlinear multi-LCA test
power systems. The tests indicate that the scheme offers fast, localized, and non-oscillatory
frequency control for the bulk grid.

5.2 Future Research Directions

Our near-term future work will focus on enhancing the current scheme. Specifically, we aim
to improve the implementation of the global power balancing layer in terms of decentralized
power support and speed of convergence. We plan to examine the feasibility of using
a peer-to-peer strategy for additional power-sourcing support, quantify its performance
limits, and assess its communication and measurement requirements. Moreover, we will
conduct investigations into the design of improved excitation input signals with the goal
of minimizing system disruption during the data collection phase.

The logical next step for our decentralized hierarchical control scheme is to facilitate
the participation of active power sources at the distribution level, thereby creating an
integrated approach that coordinates both transmission and distribution assets. However,
beyond the optimal coordination of distributed energy resources (DERs) at the distribution
level, we also need to address the issue of aggregation. Optimal aggregations that can
manage the operations of small-scale DERs, optimize their performance, and interact with
the higher-level controller at the transmission level will need to be investigated. Moreover,
as the underlying communication infrastructure for information flows between the spatially
disparate DER units is integral, we should consider redesigning the scheme from the ground
up as a coordination strategy for a cyber-physical system. Here, issues such as cybersecurity
and network packet loss need to be studied and addressed. The successful integration of this
system not only involves technical challenges but also regulatory and market hurdles. For
instance, it’s vital to address issues such as the necessary incentives required to promote
a thriving market for auxiliary services that are IBR and DER friendly. Lastly, it will
be essential to develop new simulation tools for the large-scale cyber-physical grid to aid
validation and explore the unavoidable trade-offs required.

Thirdly, we plan to explore the potential integrated multi-input and multi-output
(MIMO) control design formulation that simultaneously addresses the joint frequency and
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voltage control issues. As frequency control becomes faster, the interactions with sys-
tem voltage dynamics increase. This interaction, particularly important in the context
of voltage-dependent power consumption of loads such as impedance-type loads, is docu-
mented in our previous work [17].
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area model and its application to the design of adaptive AGC systems,” vol. 31,
no. 5, pp. 3756–3764, 2016.

[50] L. Olmos, J. I. de la Fuente, J. Z. Macho, R. R. Pecharromán, A. M. Calmarza,
and J. Moreno, “New design for the spanish agc scheme using an adaptive gain
controller,” IEEE Transactions on Power Systems, vol. 19, no. 3, pp. 1528–1537,
2004.

[51] L. Dong, Y. Tang, H. He, and C. Sun, “An event-triggered approach for load fre-
quency control with supplementary adp,” IEEE Transactions on Power Systems,
vol. 32, no. 1, pp. 581–589, 2016.

72



[52] A. Pappachen and A. P. Fathima, “Critical research areas on load frequency control
issues in a deregulated power system: A state-of-the-art-of-review,” Renewable and
Sustainable Energy Reviews, vol. 72, pp. 163–177, 2017.

[53] B. D. Anderson et al., “Failures of adaptive control theory and their resolution,”
Communications in Information & Systems, vol. 5, no. 1, pp. 1–20, 2005.

[54] E. Dall-Anese, C. Zhao, S. Guggilam, S. V. Dhople, Y. C. Chen, and C. Zhao, “En-
gineering inertial and primary-frequency response for distributed energy resources,”
tech. rep., National Renewable Energy Lab.(NREL), Golden, CO (United States),
2017.

[55] V. Gevorgian, Y. Zhang, and E. Ela, “Investigating the impacts of wind generation
participation in interconnection frequency response,” IEEE transactions on Sustain-
able Energy, vol. 6, no. 3, pp. 1004–1012, 2014.

[56] A. Kyriacou, P. Demetriou, C. Panayiotou, and E. Kyriakides, “Controlled island-
ing solution for large-scale power systems,” IEEE Transactions on Power Systems,
vol. 33, no. 2, pp. 1591–1602, 2017.

[57] P. Wall, N. Shams, V. Terzija, V. Hamidi, C. Grant, D. Wilson, S. Norris, K. Maleka,
C. Booth, Q. Hong, et al., “Smart frequency control for the future gb power system,”
pp. 1–6, 2016.

[58] A. M. Prostejovsky, M. Marinelli, M. Rezkalla, M. H. Syed, and E. Guillo-Sansano,
“Tuningless load frequency control through active engagement of distributed re-
sources,” IEEE Transactions on Power Systems, vol. 33, no. 3, pp. 2929–2939, 2017.

[59] W. Liu, G. Geng, Q. Jiang, H. Fan, and J. Yu, “Model-free fast frequency control
support with energy storage system,” IEEE Transactions on Power Systems, vol. 35,
no. 4, pp. 3078–3086, 2019.

[60] P. Hidalgo-Gonzalez, R. Henriquez-Auba, D. S. Callaway, and C. J. Tomlin, “Fre-
quency regulation using data-driven controllers in power grids with variable inertia
due to renewable energy,” in IEEE Power & Energy Society General Meeting, 2019.

[61] F. Dorfler, J. Coulson, and I. Markovsky, “Bridging direct & indirect data-driven
control formulations via regularizations and relaxations,” IEEE Transactions on Au-
tomatic Control, vol. 68, no. 2, pp. 883–897, 2022.

73



[62] C. Chen, M. Cui, F. Li, S. Yin, and X. Wang, “Model-free emergency frequency con-
trol based on reinforcement learning,” IEEE Transactions on Industrial Informatics,
vol. 17, no. 4, pp. 2336–2346, 2020.

[63] T. Yu, B. Zhou, K. W. Chan, L. Chen, and B. Yang, “Stochastic optimal relaxed
automatic generation control in non-markov environment based on multi-step Q(λ)
learning,” IEEE Transactions on Power Systems, vol. 26, no. 3, pp. 1272–1282, 2011.

[64] Z. Yan and Y. Xu, “Data-driven load frequency control for stochastic power sys-
tems: A deep reinforcement learning method with continuous action search,” IEEE
Transactions on Power Systems, vol. 34, no. 2, pp. 1653–1656, 2018.

[65] Z. Yan and Y. Xu, “A multi-agent deep reinforcement learning method for cooper-
ative load frequency control of a multi-area power system,” IEEE Transactions on
Power Systems, vol. 35, no. 6, pp. 4599–4608, 2020.

[66] J. Coulson, J. Lygeros, and F. Dörfler, “Data-enabled predictive control: In the
shallows of the deepc,” in 2019 18th European Control Conference (ECC), pp. 307–
312, IEEE, 2019.
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Appendix A

Proofs

A.1 Proofs From Section 3

Proof of Proposition 3.2.1: A minimal state-space realization of an n-step time delay has
matrices of the general form

Am =


0 · · · · · · 0

I
. . . 0

...
. . . . . .

...
I 0

 , Bm =


I
0
...
0

 , Cm =


0
...
0
I


T

,

Note that all eigenvalues of Am are zero. By the PBH test [74], detectability of (C,A) is
equivalent to the matrix M :=

[
A−λI

C
]
having full rank for all λ ∈ C with |λ| ≥ 1. Direct

substitution yields

M =



A− λI B2 B1Cc 0
0 (1− λ) 0 0
0 0 G1 0
C
0
...
0

 0 0 G2

0 0 0
[
0 0 · · · 0 I

]
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where

G1 = G2 :=


−λI 0 · · · 0

I −λI
. . .

...
...

. . . . . . 0
0 · · · I −λI

 .

Using elementary row operations on the sub-matrices comprising of the 4th and 5th rows
of M , we obtain

M ∼


A− λI B3 B1Cc 0

0 (1− λ) 0 0
0 0 G1 0
C 0 0 0
0 0 0 I

 .

Similarly, [0 0 G1 0] can be row reduced to [0 0 I 0]. By further interchanging the
rows of the matrix, we obtain

M ∼


A− λI B2 B1Cc 0

C 0 0 0
0 (1− λ)I 0 0
0 0 I 0
0 0 0 I


If λ ̸= 1 but |λ| > 1 , then the columns of the matrix are linearly independent if and only
if
[
A−λI
C

]
has full rank, which holds since A is Schur stable. If λ = 1, then M has full rank

if and only if the submatrix
[
A−I B2
C 0

]
has full rank, which holds by assumption. □

Proof of Theorem 3.2.3: Let ei = ∆P̂u,i −∆Pu,i denote the local estimation error with e
and ∆Pu denoting the stacked vectors of errors and net-load disturbances. At the sampling
instants, the closed-loop system with disturbance input ∆Pu and estimation error output
e is described by a state-space model (AF , BF , CF , DF ) where AF is Schur stable, with
associated N ×N BIBO stable transfer matrix H(z) = CF (zI−AF )

−1BF +DF . It follows
from the final value theorem that

lim
k→∞

ek = lim
z→1

z−1
z
H(z) z

z−1
∆Pu = H(1)∆Pu.

We conclude that ∆P̂ k
u,i → ∆Pu,i as k → ∞ for each i ∈ A and for any constant distur-

bances ∆Pu,i if and only if H(1) = 0. Define the Rosenbrock matrix R(z) =
[
zI−AF −BF
CF DF

]
,
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and note the simple identity[
I 0

−CF (I − AF )
−1 I

]
R(1) =

[
I − AF −BF

0 H(1)

]
,

where the first matrix on the left is invertible (and well-defined since AF is Schur stable).
Since I − AF is invertible, it follows that H(1) = 0 if and only if rank(R(1)) = size(AF ).
Therefore, to establish our claim, we are going to show that R(z) drops rank by N at
z = 1.

Consider now the estimator (3.8) designed for the augmented dynamic LCAmodel (3.7).
Without loss of generality, we neglect communication delays and remove the associated
states. To further simplify the remainder of the proof, we neglect any IBR dynamics,
which further implies that B1

i = −B2
i . Under these assumptions, the estimator is written

as [
∆x̂k+1

i

∆P̂ k+1
u,i

]
= Ao,i

[
∆x̂k

i

∆P̂ k
u,i

]
+Bo,i

[
∆P k

tie,i

∆P c,k
ibr,tot,i

]
−
[
L1
i

L2
i

]
∆ȳki

where

Ao,i =

[
Ai B2

i

0 1

]
+

[
L1
i

L2
i

] [
Ci 0

]
, Bo,i =

[
B2

i B1
i

0 0

]
We let Co,i = [ 0 1 ]. The interconnected power system from the setup is represented as

∆xk+1
p = Ap∆xk

p +
∑

i∈A
Bpi(∆P̂ k

u,i −∆Pu,i)

∆ykp,i = (∆P k
tie,i,∆ȳki ) =

[
C1

pi

C2
pi

]
∆xk

p,

where we have made explicit the measurements used by the local estimators. Combining
the equations, the closed-loop system matrices are given by

AF =


Ap [ 0 Bp1 ] · · · [ 0 BpN ]

Be1 Ae1 · · ·
...

...
...

. . . 0
BeN 0 0 AeN

 , DF = −IN

BF =


−Bp1 · · · −BpN

0 0 0
...

...
...

0 0 0

 , CF =

0 Co1 · · · 0

0
...

. . .
...

0 0 · · · CoN
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where Bei =
[
B2

i
0

]
C1

pi
−

[
L1
i

L2
i

]
C2

pi
and

Aei = Ao,i +

[
B1

i

0

]
Coi =

[
Ai + L1

iCi 0
L2
iCi 1

]
,

where we have used that B1
i = −B2

i . Substitition now shows that R(1) is given by

I − Ap [ 0 −Bp1 ] · · · [ 0 −BpN ] Bp1 · · · BpN

−Be1 J1 · · · 0 0 · · · 0
...

...
. . . 0

...
...

...
−BeN 0 0 JN 0 0 0
0 [ 0 1 ] · · · 0 −1 · · · 0

0
...

. . .
... · · · . . .

...
0 0 · · · [ 0 −1 ] 0 · · · −1


where Ji = I − Aei =

[
I−(Ai+L1

iCi) 0

L2
iCi 0

]
. By direct inspection, the third block column of

the above is −1 times the 2N + 2nd block column, the fifth block column is −1 times
2N + 3rd block column, and so forth. It follows that the final N columns are redundant,
which completes the proof. □

A.2 Proofs From Section 4

Proof of Theorem 4.1.2: Under the stated assumptions of controllability, input data per-
sistency of excitation of order Tini+1+n(B), and sufficient initialization length Tini ≥ ℓ(B),
it follows from [68, Prop. 6] that the output predictor (4.6a) produces precisely the same
values ŷ(t) as the LTI system

x̂(t+ 1) = Ax̂(t) +Bu(t) +Bdd̂(t)

ŷ(t) = Cx̂(t) +Du(t)
(A.1)

where the matrices may be taken to be the same as those in (4.1). The disturbance esimator
(4.6) may therefore be expressed as (A.1) with (4.6b), which we rewrite together as[

x̂(t+ 1)

d̂(t+ 1)

]
=

[
A Bd

0 Iq

]
︸ ︷︷ ︸

:=A

[
x̂(t)

d̂(t)

]
+

[
B
0

]
u(t)−

[
0
εL

]
︸ ︷︷ ︸
:=εL

(ŷ(t)− y(t))

ŷ(t) =
[
C 0

]︸ ︷︷ ︸
:=C

[
x̂(t)

d̂(t)

]
+Du(t)
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where y(t) is the measured output of (4.1). The above has the form of a Luenberger
observer, and standard estimation error analysis (e.g., [103]) implies that we will have
d̂(t) → d(t) exponentially, and irrespective of the initial conditions, if

A− εLC =

[
A Bd

−εLC Iq

]
is Schur stable. Recall that, by assumption, A is Schur stable, so In−A is invertible; based
on this define the invertible matrix

T =

[
In (In − A)−1Bd

0 Iq

]
.

By similarity, A− εLC is Schur stable if and only if M(ϵ) := T (A− εLC)T−1 is as well.
Simple calculations show that M(ϵ) evaluates to

M(ϵ) =

[
A+ εM1 εM2

εM3 Iq − εLG(1)

]
,

where M1,M2,M3 are constant matrices and G(1) = C(In − A)−1Bd. By assumption,
G(1) has full column rank and L = G(1)†; thus, we have that LG(1) = Iq, and the
(2, 2) block of the above simplifies to (1 − ε)Iq. Since A is Schur stable, by standard
linear Lyapunov theory there exists a matrix P ≻ 0 such that ATPA − P ≺ 0. Defining
P = diag(P, Iq), straightforward calculations and a use of the Schur complement lemma
show that M(ϵ)TPM(ϵ) − P ≺ 0 for all sufficiently small ε > 0, which establishes that
M(ϵ) is Schur stable and completes the proof. □

83



Appendix B

Example to Clarify the Allocation
Based on Electrical Distance in
Section 3.3.2

Let the grid below represent the electrical distances between 3 hypothetical LCAs.

0

A1

Area 1 10

A2

Electrical distance
(Impedance)

20

A3

10Area 2 0 30

20Area 3 30 0

Assume that Area 2 is the disturbed area, with estimated disturbances given as

∆P̂u,1 = 2MW, ∆P̂u,2 = 60MW, ∆P̂u,3 = 0.1MW, and
∑
k∈A

∆P̂u,k = 62.1MW.

Here wj for each area j in the 3-area system are computed as

w1 =
2

62.1
= 0.032, w2 =

60

62.1
= 0.966, w3 =

0.1

62.1
= 0.002.
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The weights in the objective function of (3.12) are then

q1 = 0× 0.032 + 10× 0.966 + 20× 0.002 = 9.7,

q2 = 0.38,

q3 = 29.62.

Therefore, (3.12a) becomes

9.7a21 + 0.38a22 + 29.62a23

Since Area 2 is the contingent area, whose resources have been maxed out, the majority
of the extra supply will be sourced from area 1, which has the lowest weight in the cost
function because it is electrically closest to the contingent area.
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