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Abstract

Deep Learning (DL) applications are widely deployed in diverse areas, such as im-
age classification, natural language processing, and auto-driving systems. Although these
applications achieve outstanding performance in certain metrics like accuracy, developers
have raised strong concerns about their reliability since the logic of DL applications is
a black box for humans. Specifically, DL applications learn their logic during stochastic
training and encode it in high-dimensional weights of DL models. Unlike source code in
conventional software, such weights are infeasible for humans to directly interpret, exam-
ine, and validate. As a result, the reliability issues in DL applications are not easy to detect
and may cause catastrophic accidents in safety-critical missions. Therefore, it is critical to
adequately assess the reliability of DL applications.

This thesis aims to help software developers assess the reliability of DL applications
from the following three perspectives.

The first study proposes object-relevancy, a property that reliable DL-based image
classifiers should comply with, i.e., the classification results should be made based on
the features relevant to the target object in a given image, instead of irrelevant features
such as the background. This study further proposes an automatic approach based on two
metamorphic relations to assess if this property is violated in the image classifications. The
evaluation shows that the proposed approach can effectively detect unreliable inferences
violating the object-relevancy property, with an average precision of 64.1% and 96.4% for
the two relations, respectively. The subsequent empirical study reveals that such unreliable
inferences are prevalent in the real world and the existing training strategies cannot tackle
this issue effectively.

The second study concentrates on the reliability issues induced by DL model compres-
sion. DL model compression can significantly reduce the sizes of Deep Neural Network
(DNN) models, and thus facilitate the deployment of sophisticated, sizable DNN mod-
els. However, the prediction results of compressed models may deviate from those of their
original models, resulting in unreliably deployed DL applications. To help developers thor-
oughly assess the impact of model compression, it is essential to test these models to
find any deviated behaviors before dissemination. This study proposes DFLARE, a novel,
search-based, black-box testing technique. The evaluation shows that DFLARE constantly
outperforms the baseline in both efficacy and efficiency. More importantly, the triggering
inputs found by DFLARE can be used to repair up to 48.48% of deviated behaviors.

The third study reveals the unreliable assessment of DL-based Program Generators
(DLGs) in compiler testing. To effectively test compilers, DLGs are proposed to auto-
matically generate massive testing programs. However, after thorough analysis of the
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characteristics of DLGs, this study found that the assessment of these DLGs is unfair and
unreliable, since the chosen baselines, i.e., Language-Specific Program Generators (LSGs),
are different from DLGs in many aspects. Furthermore, this study proposed Kitten, a sim-
ple, fair, and non-DL-based baseline for DLGs. The experiments show that DLGs cannot
even compete against such a simple baseline and the claimed advantages of DLGs are likely
due to the biased selection of the baseline. Specifically, Kitten triggers 1,750 hang bugs and
34 distinct crashes in 72-hours of testing on GCC, while the the-state-of-art DLG only
triggers 3 hang bugs and 1 distinct crash. Moreover, the code coverage achieved by Kitten
is at least 2x as of that achieved by the the-state-of-art DLG.
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Chapter 1

Introduction

This chapter introduces the motivation of this thesis, the thesis statement, and the three
studies contributing to the thesis statement. It also highlights the contributions of this
thesis and presents the organization.

1.1 Motivation

Over the past decade, Deep Learning (DL) applications have attracted tremendous atten-
tion from both academia and industry. By leveraging the sophisticated Deep Neural Net-
work (DNN) models trained by massive data, these applications are achieving outstanding
performances in many tasks [160, 65, 142, 64, 41, 101]. For example, in image classification,
DL applications have outperformed humans in classification accuracy [65, 151]. In the Go
game, AlphaGo defeated the topmost human player in the world in 2017.

Despite the success of DL applications in terms of accuracy, the reliability of DL ap-
plications have become one of the strongest concerns for developers [56, 144, 149, 107].
For example, a DL-based auto-driving system may fail to predict the correct steering di-
rection when the weather conditions have changed from snowy to rainy [130, 172]. Such
unreliable DL applications can cause catastrophic consequences and threaten human life,
especially in mission-critical scenarios, such as auto-driving systems and malware detec-
tion [83]. Therefore, it is important to help software developers assess the reliability of DL
applications.

However, it is challenging to assess the reliability of DL applications. First, DL appli-
cations are driven by data instead of source code, and such a special computing paradigm
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induces many previously unknown reliability issues, such as trustworthiness [56, 167] and
fairness [2, 209]. Without domain-specific knowledge and comprehensive analysis, it is hard
to reveal such issues. Second, even if software developers are aware of certain reliability
issues, it is hard for them to assess the extent to which DL applications are affected by such
issues. Unlike conventional software where the logic is written in source code, DL applica-
tions encode the logic in the weights of the DNN models during stochastic training. Such
weights are complicated in terms of both dimension and amount, resulting in insurmount-
able difficulties for developers to interpret and examine the encoded logic. As a result,
many existing approaches for software quality assurance, such as code review [10] and
program analysis [122], are not applicable for DL applications [207], since these activities
require developers to understand the logic of software. Therefore, to help developers assess
the reliability of DL applications, the proposal of new methodologies is highly desirable.

1.2 Overview

This thesis includes three studies to help developers assess the reliability of DL applications.
To be precise, the thesis statement is:

Thesis Statement. This thesis aims to help software developers assess the reliability
of DL applications, by proposing effective and efficient techniques, conducting empirical
studies, and providing actionable advice.

These three studies contribute to this statement from three perspectives, i.e., the un-
reliable inference within DL applications, the unreliable deployment of DL applications,
and the unreliable assessment of DL applications, respectively. This thesis focuses on
these three perspectives since they correspond to the three important stages of software
development life cycle [38],i.e., development, deployment, and assessment.

Unreliable Inference within DL Applications. The first study proposes object-
relevancy, a property that reliable DL-based image classifiers should comply with, i.e., the
classification results should be made based on the features relevant to the target object in
a given image, instead of irrelevant features such as the background. This study proposes a
metamorphic testing approach to assess if this property is violated in image classifications.
Specifically, this study proposes two metamorphic relations (MRs) to detect such unreliable
inferences. These relations expect (a) the classification results with different labels or the
same labels but less certainty from models after corrupting the relevant features of images,
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and (b) the classification results with the same labels after corrupting irrelevant features.
The inferences that violate the metamorphic relations are regarded as unreliable. The
evaluation shows that the proposed approach can effectively detect unreliable inferences
violating the object-relevancy property, with an average precision of 64.1% and 96.4% for
the two MRs in single-label image classification models. The empirical study using our
approach reveals that such unreliable inferences are prevalent in the real world and the
existing training strategies cannot tame this issue effectively. This study [171] was pub-
lished in Empirical Software Engineering in 2021 and presented in the 44th International
Conference on Software Engineering (ICSE 2022).

• To what extent do DNN-based image classification models make unreliable
inferences?
Yongqiang Tian, Shiqing Ma, Ming Wen, Yepang Liu, Shing-Chi Cheung, and Xiangyu
Zhang.
Empirical Software Engineering, published in 2021.

Unreliable Deployment of DL Applications. The second study concentrates on
the reliability issues due to model compression, a common stage for model deployment.
Model compression can significantly reduce the sizes of DNN models, and thus facilitate
the dissemination of sophisticated, sizable DNN models. However, the prediction results of
compressed models may deviate from those of their original models, resulting in unreliable
DL applications in deployment. To help developers thoroughly understand the impact of
model compression, it is essential to test these models to find any deviated behaviors before
dissemination. However, this is a non-trivial task because the architectures and gradients
of compressed models are usually not available. This study proposes DFLARE, a novel,
search-based, black-box testing technique. DFLARE iteratively applies a series of mutation
operations to a given seed input, until a triggering input is found. For better efficacy
and efficiency, DFLARE models the search problem as Markov Chains and leverages the
Metropolis-Hasting algorithm to guide the selection of mutation operators in each itera-
tion. Further, DFLARE utilizes a novel fitness function to prioritize the mutated inputs that
either cause large differences between the outputs of two models, or trigger previously un-
observed models’ probability vectors. The evaluation results show that DFLARE constantly
outperforms the baseline in terms of efficacy and efficiency: DFLARE is 17.84x∼446.06x as
fast as the baseline in terms of time; the number of queries required by DFLARE to find
one triggering input is only 0.186%∼1.937% of those issued by the baseline. This study
also demonstrates that the triggering inputs found by DFLARE can be used to repair up
to 48.48% deviated behaviors. The study [175] was accepted by ACM Transactions on
Software Engineering and Methodology (TOSEM) in 2023.
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• Finding Deviated Behaviors of the Compressed DNN Models for Image Clas-
sifications
Yongqiang Tian, Wuqi Zhang, Ming Wen, Shing-Chi Cheung, Chengnian Sun, Shiqing
Ma, and Yu Jiang.
ACM Transactions on Software Engineering and Methodology, published in 2023.

Unreliable Assessment of DL Applications. The third study focuses on the unre-
liable assessment of DL-based compiler testing techniques. To comprehensively test com-
pilers such as GCC and Clang, Deep Learning-based program generators (DLGs) have
recently been proposed to automatically generate new programs via learning the semantics
of programs. Some recent work claims that DLGs outperform Language-Specific Program
Generators (LSGs) crafted by domain experts in various metrics. However, by identifying
the characteristics of DLGs and LSGs, this study argued that the assessment of DLGs
using LSGs is unfair, which may result in biased conclusions. To help developers reliably
evaluate the DLGs, this study proposes Kitten, a simple baseline that shares many common
characteristics with DLGs, except that Kitten directly derives new programs using muta-
tions instead of any DNN models. After 1,500-CPU/GPU-hour experiment and analysis,
this study found that the performance of existing DLGs cannot outperform this simple
baseline Kitten. In 72 hours of testing on GCC, the-state-of-art DLGs, DeepSmith, triggers
3 hang bugs and 1 distinct crash, while Kitten triggers 1,750 hang bugs and 34 distinct
crashes. Moreover, the code coverage achieved by Kitten is at least 2x as much as the one
generated by DeepSmith. This study [173] has been accepted by the 32nd International
Joint Conference on Artificial Intelligence (IJCAI’23).

• Revisiting the Evaluation of Deep Learning-Based Compiler Testing
Yongqiang Tian, Zhenyang Xu, Yiwen Dong, Chengnian Sun, and Shing-Chi Cheung.
The 32nd International Joint Conference on Artificial Intelligence (IJCAI’23), accepted
in 2023.

1.3 Contribution

This thesis made the following contributions.

Assessing the Reliability This thesis proposed three techniques to help developers to
assess the reliability of DL applications. Each technique is specially designed based on
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domain-specific knowledge. The first technique leverages metamorphic testing to find
the inference violating the object-relevancy property. The second technique guides the
search process of triggering inputs using 1) the difference between the original model
and the compressed model, and 2) the observed model states. The last technique
constructs a simple yet effective baseline using mutation operators to help developers
conduct reliable assessments of DLGs.

Understanding the Reliability Using the proposed techniques, this thesis conducted
extensive experiments with diverse DL applications. The results show that DL ap-
plications pervasively suffer from these reliability issues. Moreover, the third work of
this thesis is the first study to reveal the unreliable assessment of DLGs in compiler
testing.

Improving the Reliability This thesis provided actionable suggestions and techniques
to help developers and researchers improve the reliability of DL applications. The first
and third studies proposed many suggestions based on extensive empirical analysis.
The second study proposed DREPAIR to fix the reliability issues using the triggering
inputs found by DFLARE and .

1.4 Organization

The remainder of this thesis introduces the details of these three studies. Specifically,
§2 introduces the background, including DL applications and the related reliability. §3
introduces the object-relevance property and our proposed metamorphic testing approach.
§4 details the deviated behaviors induced by model compression and DFLARE, our effective
and efficient approach to finding the trigger inputs of original models and compressed
models. The unreliable assessment of DLGs is discussed in §5, together with the simple
and fair baseline proposed by us. Lastly, §6 concludes this thesis and discusses future
work.

5



Chapter 2

Preliminary

This chapter introduces the background related to this thesis, including the DL applications
and their reliability.

2.1 Deep Learning Applications

Deep Learning (DL) is one of the computing paradigms of machine leaning [87]. It lever-
ages diverse models consisting of multiple hidden layers to capture the characteristics of
data. Such DL models can be used in various scenarios, such as classification [65, 69] and
detection [143]. Many model architectures are proposed to accommodate the requirements
of different scenarios, including Deep Neural Network (DNN), Recurrent Neural Network
(RNN) and so on.

Deep Neural Network is one of the most common model architectures in DL. As shown in
Figure 2.1a, DNN models [108] usually have multiple connected hidden layers and each layer
contains a collection of computing units, i.e. neurons. The neurons in consecutive layers
are connected by weighted edges. Figure 2.1b illustrates the computation process of each
neuron. Each neuron takes as input the output values from the neurons in preceding layers
(x0, x1, . . . ) and corresponding weights (wk

0 , w
k
1 , . . . ), and then produces the aggregated

value (
∑k

i w
k
i xi) to the neurons in subsequent layers. Before passing the data to the next

neuron, each neuron usually processes the aggregated value using activation functions σ,
such as ReLU [120] and Sigmod [112].

DL applications refer to software applications that leverage DL models to accomplish
certain tasks [172, 130], such as image classification [39, 65, 160, 65], object detection [143,
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Figure 2.1: (a): A DNN model that presents the function f = σ (W 3 (σ (W 2 (σ (W 1x))))).
W is the weight between layers and x is the input variable. σ is the activation function.
(b): A neuron in DNN models and its computation process.

1], natural language processing [60, 41, 140], vulnerability detection [30, 219, 92], and so
on [203]. Besides the DNN model, DL applications may also contain other conventional
software components, e.g., the auxiliary function for data pre-processing.

Figure 2.2 shows the workflow of a typical DL application. Developers write source
code using deep learning frameworks (e.g., TensorFlow [168] and PyTorch [137]) to build
the structure of DL model, including the number of layers, the type of each layer and
activation function, and so on. Developers also need to specify the data processing process,
the training loss function, and other hyper-parameters. Then the DNN model is trained
using the training dataset. During the training, the weights in DL models are updated
using backward propagation [150], until its loss value and accuracy are close to saturation.
When the DL applications are deployed, input will be fed into the trained DL model for
inference.

2.2 The Reliability of Deep Learning Applications

Many studies discussed the reliability issues of DL applications from different perspec-
tives [172, 130, 196, 146, 208, 107, 56]. This section briefly outlines some of them.

Quality The quality of the outputs from DL applications should be reasonable. The
quality is usually measured in customized metrics for different tasks. For example,
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Figure 2.2: The workflow of deep learning applications.

accuracy and precision are commonly used in classification tasks where the inference
results of classifiers should be the same as ground truths [172, 130]. Bilingual Eval-
uation Understudy, a.k.a. BLEU, is a metric widely used to evaluate the quality of
machine translation [127].

Robustness The inference results should be correct, no matter how inputs are mutated
or where the applications are deployed [172, 196]. For example, if the image of an
apple is rotated by 90 degrees, the inference should still be “apple”. If the classifier is
deployed in mobile phones or Internet of Things (IoT) devices, the output should still
be “apple”.

Adversarial Robustness The inference results should remain unchanged when human-
imperceptible perturbation is applied to inputs [22, 53]. The perturbed inputs that
lead to different results from the original ones are usually referred to as adversarial
samples. DL applications are prone to be vulnerable to adversarial attacks and there
are many studies in this direction [22, 115, 53, 58, 206, 107, 4].

Trustworthiness The inference process of DL application should be trustworthy [144,
167]. For example, the logic behind the inference processes should make sense to
humans. For example, given an image of an apple, a reliable DL-based image classifier
should classify it as “apple” because of the appearance of an apple in this image, instead
of anything irrelevant to the apple, such as the background. Backdoor attack is an
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effective attacking method exploiting the untrustworthiness of DL Applications [56,
210].

There are various root causes for the reliability issues including but not limited to
problematic datasets [105, 163, 119], incorrect implementation [45, 195, 20, 213], defects
in DL infrastructures [91, 131, 156], improper development and deployment [59, 68], and
so on.

The reliability issues focused on by this thesis are in line with the aforementioned issues,
and extend them. The first study concentrated on the object-relevancy property of deep
learning-based image classifiers. Specifically, the inference results from these classifiers can
be dominated by the background of images, instead of the objects. Such inference processes
contradict humans and thus cannot be trusted. Therefore, this reliability issue belongs to
the trustworthiness issues [144, 167]. The deviated behaviors studied in the second work
refer to the situation where the DL applications produce different results given the same
input before and after their deployment. This issue is closely related to the robustness of
DL applications [196, 172] since the performance of these DL applications is not robust to
their computational platforms. The last study of this thesis pinpointed that the baseline
selection of DLGs is unfair. By revisiting the performance of DLGs using a fair baseline, we
revealed that unfair baselines of DLGs are likely to result in overclaims of the effectiveness
of DLGs. The unreliable assessment of DL applications discussed in this study provides a
new perspective for software developers to understand the reliability of DL applications.
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Chapter 3

Unreliable Inference within Deep
Learning Applications

3.1 Introduction

Deep Learning (DL) have been widely deployed for image classification tasks [82, 160,
65, 67, 223]. While these DL-based classifiers outperform classic algorithms, such as
SIFT+FV [152] and Sparse Coding [43], in terms of classification accuracy [82], which is the
proportion of the inputs in test set whose inference result is the same as the ground truth,
recent studies have raised concerns about other properties of such models, including relia-
bility [144, 115, 163], fairness [178, 2, 209], robustness [22]. To help detecting the inappro-
priate behaviors of DNN models, various testing techniques [195, 42, 130, 172, 208, 45, 105]
have been proposed. For instance, Pei et al. [130] proposed an optimization strategy to
generate adversarial test inputs for image classification. Dwarakanath et al. [45] leveraged
metamorphic testing to detect bugs in model implementations.

These techniques, however, do not consider a key property when evaluating a DL-based
image classifier, that is, whether the inferences made by the model are based on the features
encoded from the target objects or the features encoded from these objects’ background.
We refer to the former features as object-relevant features, the latter as object-irrelevant
features, and the property as object-relevancy property. Intuitively, a reliable inference
made by a DL-based image classifier should be mostly based on object-relevant features,
instead of object-irrelevant features.

For instance, let us assume that the mouse shown in Figure 3.1a is the target object.
The features encoded from it are object-relevant features, and the features encoded from
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(a) (b) (c)

Figure 3.1: (a): The original image. (b): Object (mouse) corrupting mutation. (c): Object
(mouse) preserving mutation.

the rest of this image are object-irrelevant. Let us further assume that a model classifies the
image as shown in Figure 3.1a as “mouse”. This inference is reliable on the condition that
it is made mostly based on the object-relevant features, instead of the object-irrelevant
features. If the inference is majorly based on the object-irrelevant features but not the
object-relevant features, the model is likely to classify the image in Figure 3.1b as “mouse”
again, since this image has the same object-irrelevant features as Figure 3.1a. It is obvious
that the image in Figure 3.1b does not have any “mouse” and should not be classified as
“mouse”. Further, the model is also likely to classify the image as shown in Figure 3.1c as
any label other than “mouse”, since this image does not have the object-irrelevant features
in Figure 3.1a. It does not make sense since the image in Figure 3.1c clearly has the target
object mouse.

Due to their stochastic nature, many DL-based image classifiers do not necessarily
make inferences based on object-relevant features, which may lead to various problems.
For instance, a recent study showed that an animal image classifier1 would classify any
image with bright backgrounds as “wolf”, regardless of the objects in the image [144].
This raises the concern of reliability and overfitting for this model [144, 106]. Another
work showed that attackers could inject a backdoor trigger, such as a yellow square in an
image’s background, to a deep neural network (DNN) model [56]. A model that makes
inferences based on object-irrelevant features (e.g., yellow square at the background), will
then classify an image containing this trigger to a specific label, regardless of the objects
in the image. Thus, such models are not robust and can cause catastrophic consequences
when being deployed in mission-critical applications. Based on the above analysis, we

1Unless otherwise specified, we use classifier to refer to DL-based image classifier in the remaining
chapter.
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conjecture that the violation of the object-relevancy property might be the root cause of
many issues in DL-based image classifiers, including but not limited to the aforementioned
ones. Therefore, it is important to develop effective techniques to assess the inference
results of DL-based image classifiers from the perspective of object relevancy, so as to help
improve the trustworthiness of DL-based image classifiers.

Validating the inference results of DL-based image classifiers with respect to object
relevancy is challenging. It is well-known that DL models behave as black boxes [144, 130].
Their logic is learned from data and represented as model structures and weight values. It
is non-trivial for human beings to examine the inference process of such models and check
what kind of features determines the inference results. Some existing techniques [144, 154]
try to explain the inferences for individual input. However, these techniques still require
manual efforts to make the final assessment for each input due to the lack of test oracles.
In contrast, in our work, we first try to generate both test inputs and test oracles for
DL-based image classifiers, and then leverage them to identify unreliable inferences that
violate the object-relevancy property automatically. However, generating test oracles is
a long-standing challenge for software testing [12], especially in the testing of the deep
learning systems [130, 172, 131, 121], where the expected probability outputted from DL
models is unknown.

To tackle these challenges, we resort to metamorphic testing [24], which has been popu-
larly leveraged to test DL-based image classifiers [195, 42, 208, 45]. Specifically, we propose
two metamorphic relations (MRs) to quantitatively assess a model’s inferences from the
perspective of object relevancy as follows:

• MR-1 An image mutated by corrupting only the features of the target object(s)
should lead to an inference result with different label(s), or an inference result with
the same label(s) but less certainty.

• MR-2 An image mutated by preserving the features of the target object(s) and
corrupting other features should lead to an inference result with the same label(s).

The two metamorphic relations will be formally defined in §3.3. For the purpose of
metamorphic testing, we designed image mutation operations to generate test inputs with
respect to the two relations. Applying these operations to a given image allows us to check
if the pair of the original inference and the inference on a generated mutant satisfies the
metamorphic relations. Violations of such relations will be deemed as the indication of
unreliable inferences. We note that applying metamorphic testing to evaluate DL-based
image classifiers is not new. However, existing work [172, 208] mutates the whole image
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(e.g. blurring or rotating) to test the model robustness. In comparison, our MRs focus
on object-relevant/irrelevant features in one input image and hence our image mutation is
regional, semantic and more targeted. Besides, our goal is to assess whether an inference
violates the object-relevancy property, which is a new property proposed by us.

To validate the effectiveness of our proposed approach, we applied it to three popular
DL-based image classifiers trained on the ImageNet dataset and one model trained on the
COCO dataset [94], and then manually checked the results. The evaluation results show
that for single-label classifiers, our approach achieves an aggregated precision of 64.1% for
MR-1 and 96.4% for MR-2. As for multi-label classifiers, the corresponding precision for
MR-1 and MR-2 is 78.2% and 86.5%, respectively. We also investigated the reasons for the
false positives, and we found that they are mainly due to the inappropriate annotations of
the dataset.

We then deployed our approach with the aim of investigating the pervasiveness of unre-
liable inferences. Specifically, we tested 18 pre-trained models for single-label classification
from Keras [33] and 3 models for multi-label classification [65, 147]. We found that for each
of them, more than thousands of correct classification inferences are actually unreliable,
i.e., they are not made based on object-relevant features. More seriously, we found that the
pervasive unreliable inferences can cause significant bias on model evaluation. Specifically,
our experiments revealed that unreliable inferences can cause significant degradation of a
model’s overall accuracy, thus preventing developers from correctly evaluating a model and
fairly comparing among models. For example, after removing the unreliable inferences vi-
olating MR-2 in single-label image classification, the model accuracy is 8.84% higher than
the original one. We also traced the ratio of unreliable inference during the model training
and found that the current model training methodology is ineffective in terms of reducing
unreliable inferences. Besides, enhancing a model with respect to its accuracy does not
necessarily increase its probability to make reliable inferences. Therefore, developers need
to design other methodologies with the aim to enhance a model’s reliability, especially with
respect to the object-relevancy property.

To summarize, we make the following contributions:

1. We proposed a metamorphic testing technique to automatically assess the reliability
of inferences generated by DL-based image classifiers using object-relevant metamor-
phic relations.

2. We evaluated our technique and the results show that it is effective. Our approach
can find thousands of unreliable inferences with high precision for each evaluated
model.
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3. We found that unreliable inferences are pervasive among a wide range of models.
More seriously, such pervasive unreliable inferences significantly change the perfor-
mance of DL-based image classifiers with respect to the accuracy, thus affecting model
evaluation and comparison.

4. We explored the correlation between model accuracy and the ratio of unreliable
inferences, and found that the current model training strategy should be further
improved to help the model to learn the object-relevant features and avoid making
unreliable inferences.

3.2 Preliminaries

3.2.1 Metamorphic Testing

Metamorphic testing [24, 25] was proposed to address the test oracle problem. It works
in two steps. First, it constructs a new set of test inputs (called follow-up inputs) from
a given set of test inputs (called source inputs) based on some properties that should be
satisfied by the program under test. Second, it checks whether the program outputs based
on the source inputs and the ones based on the follow-up inputs satisfy certain desirable
properties, known as metamorphic relations (MRs).

For example, let us suppose p is a program implementing the sin () function. We know
that the equation sin(π + x) = − sin(x) holds for any numeric value x. Leveraging this
knowledge, we can apply metamorphic testing to p as follows. Given a set of source inputs
Is = {i1, i2, . . . , in}, we first construct a set of follow-up inputs If = {i′1, i′2, . . . , i′n}, where
i′j = π+ij, j ∈ [1, n]. Then, we check whether the metamorphic relation ∀j ∈ [1, n] , p(ij) =
−p(i′j) holds. A violation of it indicates the presence of faults in p.

3.2.2 Deep Learning-based Image Classification

Image classification is a key application of DL models. Its objective is to classify a given im-
age into predefined labels. Popular DL models for image classification include AlexNet [82],
VGG [160], ResNet [65], DenseNet [69], MobileNets [67] and so on. The performance of
these models is mostly evaluated based on the top-1 accuracy, which refers to the percent-
age of test images whose correct labels are in the top-1 (sorted according to probability)
inference made by models [82, 160, 65, 69, 67].
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There are two types of image classification tasks, single-label classification and multi-
label classification. In single-label classification, each input is supposed to be classified into
one label. Figure 3.2a from ImageNet [39] shows an example input that is expected to be
classified into label “tiger shark”. Given an input i, the inference of a single-label classifier
is a probability vector, vi = [p1, p2, . . . , pn], where n is the number of labels. Each element
pj in the vi represents the probability that the input belongs to the j-th label. The sum
of the elements is equal to 1, i.e.

∑n
0 pj = 1. The label with the highest probability is

regarded as the final classification label of this classifier given this input. MNIST [89],
CIFAR-10 [81], and ImageNet are common datasets for single-label classification.

In multi-label classification, the number of labels of each input is not limited to one. For
example, Figure 3.2c from COCO [94] has three labels, {“person”, “motorcycle”, “airplane”}.
In the classification, the inference result is regarded as correct if and only if it only contains
the three labels [176, 190]. Similar to single-label classifiers, given an input i, the inference
of a multi-label classifier is a probability vector, vi = [p1, p2, . . . , pn], where n is the number
of labels. Each element pj in the vi represents the probability that the input belongs to
the j-th label. Unlike the single-label classifier, the sum of the elements is not necessarily
equal to 1, i.e.

∑n
0 pj ̸= 1. The final classification result is the set of labels whose

probability is equal to or larger than a predefined threshold, which is usually set to 0.5 [65,
147]. For example, given the input in Figure 3.2c, a multi-label classifier may output a
probability vector vi = [0.8, 0.7, 0.2, 0.6], where each element represents the probability of
label “person”, “airplane”, “motorcycle” and “car”, respectively. When the threshold is set
to 0.5, the final classification result is {“person”, “airplane”, “car”}, which is an incorrect
classification result as the “car” is not in the ground truth and the ground truth label
“motorcycle” is not in the result. If the probability vector is vi = [0.8, 0.7, 0.6, 0.2], the
final result is {“person”, “airplane”, “motorcycle”}, and it is a correct classification result.
Common multi-label datasets include COCO and Google Open Image [80].

3.3 Object-Relevant Metamorphic Relations

With the aim to identify the unreliable inference made by the DL-based image classifiers
based on the object-irrelevant features, we are motivated to propose two metamorphic
relations as mentioned in §3.1. This section presents the details of these two relations,
starting with the motivating examples. Specifically, we follow a common metamorphic
testing framework to define the two metamorphic relations [24, 25]. In subsequent formu-
lation, letM(i) andM(i′) denote the inferences made by a DL-based image classifierM
on an input image i and its follow-up input i′, respectively. Let D(M(i), M(i′)) denote
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Figure 3.2: Input examples and their annotations in image classifications. (a)(b): Image
from the ImageNet dataset and its bounding box. Its label is “tiger shark”. (c)(d): Image
from the COCO dataset and its object mask. Its labels are “person”, “motorcycle”, “air-
plane”.

the distance between two inferencesM(i) andM(i′).

3.3.1 Metamorphic Relation-1

Motivating Example-1 Given a source input as shown in Figure 3.1a, let us assume
a DL-based image classifier predicts it as “mouse”. A follow-up input is constructed by
corrupting the object mouse, as shown in Figure 3.1b. After feeding the follow-up input
into the previous classifier, one of the following two cases could happen. First, it is possible
that the label on follow-up input is still “mouse” and its certainty increases. Such a situation
indicates that the inference on the source input is not based on the object(mouse)-relevant
features. If it is based on the object(mouse)-relevant features, it does not make sense
that the classifier still predicts it as “mouse” when there is no such object(mouse). This
situation is out of human expectations on image classification, as humans will not classify
the follow-up image that does not have mouse into label “mouse” with higher certainty.
Second, it is possible that the inference on the follow-up input changes to another label,
or the label remains the same but the certainty decreases. In other words, due to the
corruption of the object(mouse)-relevant features, the classifier cannot make the inference
with the same label and the same level of certainty as the one on source input. It implies
that the inference on the source input is based on the object(mouse)-relevant features.
This situation is in line with human expectations. Since the objects have been removed or
corrupted, humans are likely to classify this image to a different label, or the same label
but with less certainty. Motivated by the above example, we proposed the following MR-1.
In the first situation aforementioned, the MR-1 is violated while in the second situation,
MR-1 is satisfied.
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MR-1 An image mutated by corrupting only the features of the target object(s) should
lead to an inference result with different label(s), or an inference result with the same
label(s) but less certainty.

Relation Formulation of MR-1 Let i′c be a follow-up input constructed from a
source input i for a DL-based image classifierM by corrupting the target object but pre-
serving its background. We consider such a mutation as object-corrupting. An example
of object-corrupting mutation is shown in Figure 3.1a (source input) and Figure 3.1b
(follow-up input). MR-1 mandates that M(i) and M(i′c) should satisfy the relation:
D(M(i), M(i′c)) ≥ ∆c. Here D takes two factors of M(i) and M(i′c) into considera-
tion, i.e. the labels in the inferences and the certainty of the inferences. The detailed
definition of D for MR-1 is introduced in §3.4.4. ∆c denotes a threshold for the distance
between two inference results made by a DL-based image classifier under metamorphic
testing using object-corrupting mutations.

Explanation of MR-1 If an inference made by a specific DL-based image classifier
is based on object-relevant features, after object-corrupting mutations, the new inference
results should be affected since those object-relevant features have been corrupted, and thus
those features cannot be further utilized by the classifier anymore. Such effects could cause
two consequences. First, the classifier can still make the same inference as the inference
of the original input while the certainty of the inference given by the classifier should be
decreased since the object-relevant features have been corrupted. Second, the classifier
cannot make the same inference as the inference of the original input if the corruption
is very severe. Consequently, the label of the new inference should be different from the
original one.

3.3.2 Metamorphic Relation-2

Motivating Example-2 Given a source input shown in Figure 3.1a, assume a DL-based
image classifier predicts it as “mouse”. A follow-up input is constructed by preserving
the object, as shown in Figure 3.1c. After feeding the follow-up input into the previous
classifier, one of the following two cases could happen. First, the inference on follow-
up input is not “mouse” anymore. It indicates that the inference on the source input
is not based on the object(mouse)-relevant features. Since the object mouse is still in
the input, if the inference on the source input is based on the object(mouse)-relevant
features, the inference should still be the “mouse”. Second, the inference on follow-up
input remains the same label. It implies that the inference on the source input is based on
the object(mouse)-relevant features. When the object-relevant features are preserved, the
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classifier can leverage them to make the correct inference. Such a situation is in line with
human expectations. Motivated by this example, we propose the following MR-2. In the
above example, MR-2 is violated in the first situation and satisfied in the second situation.

MR-2 An image mutated by preserving the features of the target object(s) and cor-
rupting other features should lead to an inference result with the same label(s).

Relation Formulation of MR-2 Let i′p be a follow-up input constructed from a
source input i for a DL-based image classifier M by preserving the target object(s) but
mutating the other parts. We consider such a mutation object-preserving. An example
of object-preserving mutation is shown in Figure 3.1a (source input) and Figure 3.1c
(follow-up input). MR-2 mandates that M(i) and M(i′p) should satisfy the relation:
D(M(i), M(i′p)) ≤ ∆p. Here, ∆p denotes a threshold for the distance between two in-
ference results made by a classifier under metamorphic testing using object-preserving
mutations. The detailed definition of D for MR-2 is introduced in §3.4.4.

Explanation of MR-2 If an inference made by a DL-based image specific classifier is
based on object-relevant features, after object-preserving mutations, the labels of the new
inference result should not be changed, since the object-relevant features are preserved and
the classifier should be able to use them.

3.4 Approach

We present our approach in this section, starting from an overview of the whole approach,
followed by the explanation of each stage.

3.4.1 Overview

Figure 3.3 shows the overview of our approach, including the following three stages:

1 Object-Relevant Feature Identification Given an inference to be examined,
we regard its input image as the source input. We semantically divide the input into two
parts, a target-object region and a background region. The target-object region is where
the target object(s) is located and where the object-relevant features are encoded. The
background region is where the object-irrelevant features are encoded.

2 Follow-up Inputs Construction Mutation functions are leveraged to generate
follow-up inputs from the source inputs, based on the proposed metamorphic relations.
Specifically, these mutation functions will corrupt, or preserve the object-relevant features
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Figure 3.3: The overview of our metamorphic testing approach.

in the source input. The corresponding testing oracles will also be generated based on the
metamorphic relations.

3 Metamorphic Relation Validation We validate if the distance between the
inference result of a source input and the inferences of its follow-up inputs violates the test
oracles. If so, the inference of the source input is flagged as an unreliable inference, which
means this inference is made mainly based on object-irrelevant features.

Please note that our approach mainly assesses the correct inference results from DL-
based image classifiers. In single-label classification, “correct” means that the top-1 label
in the result is the same as the source input’s ground truth. In multi-label classification,
“correct” means that the set of labels in the results is the same as the set of labels in the
source input’s ground truth, as we mentioned in §3.2.2. We focus on correct inferences
since if the inference result is incorrect, the target object might not exist in the input, and
thus it is challenging to identify the object-relevant features.
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3.4.2 Object-Relevant Feature Identification

In single-label classification, since each image only has a single label, we regard the object(s)
belonging to the annotated label as the target object(s). For multi-label classification,
each image can have multiple labels. We regard the union of all objects belonging to the
annotated labels as the target objects. For example, for the input as shown in Figure 3.2c,
the target objects consist of the airplane, motorcycle and person. In both cases, the pixels
where the target object(s) reside are treated as the target-object region and the others are
regarded as the background region.

The annotations of the target objects could be extracted from the dataset, obtained
using object localization techniques, such as YOLO [142] and Faster R-CNN [143], or col-
lected using recent image segmentation techniques like Segment Anything [78]. Currently,
several datasets for image classification provide the annotation of objects, such as Ima-
geNet, COCO, PASCAL VOC and Google Open Image. The annotations are usually in
the format of a bounding box. For example, the bounding box of the tiger shark in Fig-
ure 3.2a is displayed as the red rectangle in Figure 3.2b. Some datasets, such as COCO,
annotate the object using the object mask, which draws the boundary of each object with
a finer granularity. These annotations provide the exact target-object region that does
not contain any pixels belonging to the background region. Figure 3.2d shows the object
marks of “person”, “motorcycle” and “airplane”.

Both annotation formats can be used in our approach. If the annotations are provided
as bounding boxes, we regard the region of the bounding boxes as the target-object region.
Although the target-object region could contain some pixels that do not belong to the
target object(s), the majority of the region represents the target object. If the annotations
are object masks, we regard the region covered by the object masks as the target-object
region. In our experiment, we used the bounding box for the experiments based on the
ImageNet dataset and the object mask on the COCO dataset, depending on the availability
of the annotation format in these datasets.

3.4.3 Follow-up Inputs Construction

We generate the follow-up inputs by semantically corrupting or preserving the object-
relevant features of a source image using the two aforementioned image mutations: object-
corrupting mutation and object-preserving mutation.

There are many possible ways to design the mutation functions to corrupt or preserve
the object-relevant features. However, it is challenging to quantitatively measure the degree
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of corruption and preservation. Such a challenge further brings difficulties to define the
test oracle, as different levels of corruption and preservation should correspond to different
designs of test oracle, especially the thresholds of test oracle (e.g. the ∆c in §3.3). An
inappropriate test oracle will influence the effectiveness of our approach.

To alleviate this challenge, we mutate the image by filling simple colors, such as white,
gray and black, into the target-object region (or background region). Correspondingly,
we use whether the classification results of source input and follow-up input are equal
as the test oracle. The objective of our mutation is to simulate extreme cases, without
considering the realism of images. For example, if the target-object region in the source
input is substituted by black color, i.e. the object-relevant features are removed, but the
classifier can still classify it correctly, the classifier is very likely to make the inference
based on the object-irrelevant features. In real scenarios, our mutation can be considered
as the simulation of the blocking of cameras. An existing study [130] designed for testing
DL-based image classifier also generates test images via randomly patching black holes to
images, in order to simulate the blocking of cameras.

Besides alleviating the above challenge, another advantage of using simple colors is that
these colors bring little additional features to the source input. If we replace the object
region with other objects or patterns, they may bring new features and further affect the
classifier inference results. In such a situation, one cannot easily identify whether the
change of the inference result is due to the absence of object-relevant features, or the
appearance of these new features.

In our experiments, we use three colors, i.e. black (R0, G0, B0), gray (R127, G127,
B127) and white (R255, G255, B255). For each source input, three follow-up inputs are
generated based on MR-1 and three more are generated based on MR-2. For example,
given the source input shown in Figure 3.4a, Figures 3.4b and 3.4c are two follow-up
inputs generated based MR-1 and MR-2, respectively. It is possible that such simple
colors could also induce bias to classifier inference. To alleviate this threat, eventually, we
use the majority of their validation results as the final result. Such a strategy is called the
majority voting [49] and it has been used by an existing study [130] to test DL systems. One
threat to validity that might be raised is whether three colors are sufficient for performing
metamorphic testing. To alleviate this threat, we compare the results using more colors
in §3.5.2, and demonstrate that using three colors is sufficient.

Another threat that might be raised is why not using the inpainting technology to
remove the object/background more naturally. Actually, we tried this method at the
exploratory stage of this study. However, even the-state-of-art technology DeepFill [203]
cannot completely remove the object features. An example is shown in Figure 3.4d. The
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Figure 3.4: (a): Original image with bounding box. Its label is “pitcher, ewer”. (b): Image
after object corrupting mutation for MR-1. (c): Image after object preserving mutation
for MR-2. (d): Image inpainting result using DeepFill.

feature of pitcher in the image cannot be removed completely. Moreover, such inpainting
models usually need hundreds of hours for training and ∼15 seconds to inpaint an image,
which is not efficient.

3.4.4 Metamorphic Relation Validation

In this subsection, we introduce the metamorphic relation validation process. Please note
that in our experiments on single-label and multi-label classifiers, for each source input i,
we generate three follow-up inputs i′s. Then we will validate the MRs three times and use
majority voting to decide whether MRs are violated. As we mentioned, such a method
can mitigate the possible threat induced by a single mutation. We will regardM(i) as an
unreliable inference if and only if MR-1 is violated at least two out of three times. The
same strategy is applied for MR-2.

Validation of MR-1

MR-1 An image mutated by corrupting only the features of the target object(s) should
lead to an inference result with different label(s), or an inference result with the same
label(s) but less certainty.

Single-label Classification Here we use the same notation as §3.3. We define the
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distance function D as follows:

D(M(i), M(i′c)) =


1, if lM(i) ̸= lM(i′c)

or if lM(i) = lM(i′c) and C(lM(i)) > C(lM(i′c))

0, otherwise

Here, lM(i) is the label of the target object inM(i). C(M(i)) measures the certainty of
the M(i), according to the definition proposed by existing work in DL testing [197, 212]:2

C(M(i)) = min
0<j<n,j ̸=l

|pl − pj|

where pl is the probability of label lM(i) and pj is the probability of j-th label in the
inference. Intuitively, the certainty measures the minimal difference between label lM(i)

and any other labels in terms of their probabilities. The value of C(M(i)) ranges in the
region [0, 1]. The higher the value is, the more certain the DL-based image classifier is on
the inference. If the inference is a correct inference, the above certainty equation actually
calculates the difference between the highest probability and the second highest probability.

Correspondingly, we define ∆c equals to 1. if D(M(i), M(i′c)) ≥ ∆c = 1, i.e. the
label of the inference on the source input lM(i) is different from the one of the inference
on the follow-up input lM(i′c), or the labels are the same but the inference on the follow-up
input become less certain, the MR-1 is satisfied. Otherwise, if D(M(i), M(i′c)) < ∆c = 1,
i.e. lM(i) and lM(i′c) are the same and the certainty increases, it implies that after corrupting
the object-relevant features in the source input, the DL-based image classifier can still
correctly classify the input with more certainty. In other words, the examined inference
M(i) is made based on features irrelevant to the objects. This conclusion violates our
MR-1, and thusM(i) is labeled as an unreliable inference.

Multi-label Classification In multi-label classification, we adapt the above formula
with slight modifications to cooperate with the multiple labels. Specifically, we use LM(i)

to denote the set of labels outputted by the DL-based image classifier M on input i. We
define the distance function D as follows:

D(M(i), M(i′c)) =


1, if LM(i) ̸= LM(i′c)

or if LM(i) = LM(i′c) and C(LM(i)) > C(LM(i′c))

0, otherwise

2The latter study refers this concept as “prediction confidence”.
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To the best of our knowledge, the certainty in multi-label classification has not been
defined by existing work, and the definition in single-label classification cannot be applied
to multi-label classification directly. As we introduced in §3.2, in single-label classification,
the sum of the probability of all labels is equal to 1. Labels are competing with each other
and only the label with the highest probability is regarded as the final result. In other
words, the increase of the probability of a label means the decrease of the probability of
other labels. Thus, we can measure the certainty based on to what extent the probability
of this label is different from the probabilities of the remaining labels. However, as we
mentioned in §3.2.2, in multi-label classification, the probabilities of labels are relatively
independent, i.e. the sum of the probabilities of all labels are not necessarily equal to 1.
The difference between the probabilities of the two labels does not imply the inference
certainty.

To address this challenge, in our approach, we regard the multi-label classification into
multiple binary-classification tasks where each binary-classification predicts whether the
input belongs to a single label or not. This enables us to measure the certainty of each
label individually. For example, let us assume an inference result given by a multi-label
classification is [0.8, 0.9, 0.2], which corresponds to the probability of “airplane”, “person”
and “motorcycle”. We can regard it as the outputs from three binary-classifiers. The first
classifier predicts whether the input belongs to label “airplane” and outputs the probability
0.8. The second and third ones predict whether the input belongs to label “person” and
“motorcycle”, and output the probability 0.9 and 0.2, respectively. It is trivial to calculate
the certainty of the binary classification task. Therefore, we can first measure the certainty
of each binary classification, and then leverage the results to measure the certainty of multi-
label classification.

More specifically, for any label l in the inference result of M(i) and its probability p,
we define the certainty Cl,M(i):

Cl,M(i) = |p− (1− p)| = |2p− 1|

The value of Cl,M(i) is within the region [0, 1]. The intuition is to measure the certainty
based on the difference between the probability that “it belongs to label l” and “it does
not belong to label l”. The larger the difference is, more certain the DL-based image
classifier is on the inference. Based on the above definition of certainty of single label in
the multiple-classification, we define the comparison of C(LM(i)) and C(LM(i′c)) as following:
C(LM(i)) > C(LM(i′c)) ⇐⇒ Cl,M(i) > Cl,M(i′c),∀ l ∈ LM(i). The above equation compares
the certainty of each label in the inferences on the source input and the follow-up input.
Please note that for the predicate of certainty C(LM(i)) and C(LM(i′c)), we check it only if
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the prior predicate LM(i) = LM(i′c) is true.

For ∆c, we use the same definition as single-label classification, i.e. ∆c = 1. If
D(M(i), M(i′c)) ≥ ∆c, the MR-1 is satisfied. Otherwise, MR-1 is violated and the exam-
ined inference, i.e.M(i), is regarded as an unreliable inference.

Validation of MR-2

MR-2 An image mutated by preserving the features of the target object(s) and corrupting
other features should lead to an inference result with the same label(s).

Single-label Classification We define D as follows:

D(M(i), M(i′p)) =

{
0, if lM(i) = lM(i′p)

1, otherwise

Here, lM(i) is the label with the highest probability in M(i). We define the threshold
∆p = 0. If D(M(i), M(i′p)) > ∆p = 0, it means that the label of the inference on the
source input lM(i) is different from the one of the inference on the follow-up input lM(i′p). In
other words, after preserving the features of the target object and corrupting the remaining
features in the source input, the classifier classifies the follow-up input into a different label.
This conclusion is opposite to our MR-2, and thus the examined inferenceM(i) is labeled
as an unreliable inference. If D(M(i), M(i′p)) ≤ ∆p = 0, it implies that after preserving
the features of the target object and corrupting the others, the classifier still classifies the
input into the same label as the one of the source input. This result is in line with our
MR-2 and thus the examined inference will not be labeled as an unreliable inference by us.

Multi-label Classification We define D as follows:

D(M(i), M(i′p)) =

{
0, if LM(i) = LM(i′p)

1, otherwise

Here, LM(i) is the set of labels inM(i). The equality of the LM(i) and LM(i′p) is based on
the equality of set. In other words, LM(i) = LM(i′p) if and only if for any element in LM(i),
this element is also in LM(i′p) and for any element in LM(i′p), it is also in LM(i).

Same as single-label classification, the ∆p is defined as 0. If D(M(i), M(i′p)) > ∆p = 0,
it means LM(i) and LM(i′p) are different. In other words, after preserving the features of
the target object and corrupting the remaining features in the source input, the DL-based
image classifier classifies the input into different labels with the inference on the source
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input. This conclusion is opposite to our MR-2, and thus the examined inferenceM(i) is
labeled as an unreliable inference.

3.5 Evaluation

In this section, we evaluate our approach from the perspective of effectiveness. First, we
investigate the effectiveness of our proposed approach to see whether it can successfully
identify inferences that are made based on object-irrelevant features. Specifically, we mea-
sure the precision (true positive rate) of our approach, i.e. the number of real unreliable
inferences in all inferences identified by our approach. We aim to answer the following
question:

RQ1 What is the effectiveness of our approach in terms of true positive rate?

Further, as mentioned in §3.4, we use three colors to mutate inputs in our approach.
One threat of our approach is that whether more colors should be used to identify unreliable
inferences. To answer this question, we performed another experiment in which we use 15
distinct colors to mutate the inputs, and then compared it with the experiment in which
only 3 colors are used. These results will help us to answer the following question:

RQ2 Is it sufficient to use only three colors for mutations in terms of effectiveness?

The source code and data of our experiment are available online at https://github.
com/yqtianust/PaperUnreliableInference. Our experiments were conducted on two
datasets, the ImageNet 2012 validation set and COCO 2014 validation set. The ImageNet
2012 validation set is a popular single-label classification dataset with 50,000 images. These
images evenly distribute across 1,000 labels. The COCO 2014 validation set is a common
multi-label classification dataset, with 40,504 images across 80 labels. On average, each
image has 7.21 labels. We chose these datasets for three reasons. First, both are popular
image classification datasets on which most state-of-the-art DL-based image classifiers are
trained. Second, there are plenty of pre-trained DL-based image classifiers available as
experiment subjects. Third, they provide the annotation of object boundaries.

3.5.1 Effectiveness of Our Approach

In order to evaluate whether our metamorphic testing approach can effectively identify
unreliable inferences, we applied it to the inferences made by three pre-trained single-label
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DL-based image classifiers from the Keras Application [32] and one multi-label classi-
fiers [147]. The former ones are trained on the ImageNet dataset and the latter one is
trained on the COCO dataset. Then we manually validated the testing results and mea-
sured the precision.

To validate whether the unreliable inferences identified by our approach are indeed made
based on object-irrelevant features, for each of them, we manually checked the quality of
their follow-up inputs. If the follow-up inputs are constructed as expected, i.e., the object
features in the follow-up inputs are corrupted(preserved) for MR-1(MR-2), we regarded
the corresponding inference as indeed unreliable, i.e. a true positive case. If the follow-up
inputs are not constructed as expected, the corresponding inference cannot be regarded as
an unreliable inference, thus resulting in a false positive case.

More specifically, for the inference results that violate MR-1, we manually checked
whether the object-relevant features were completely corrupted after the mutation, i.e.,
whether the target objects in the follow-up inputs are indeed removed. If the follow-up
input does not contain the target object, the inference violates MR-1 since the classifier
still predicts it as the original label. Thus, this test result is a true positive. If the follow-up
input still contains the target object, predicting it as the original label does not violate
MR-1, and hence the identified unreliable inference is a false positive.

Similarly, for the inference that violated the relation MR-2, we manually checked
whether the target objects were preserved and whether the other features were corrupted.
Specifically, if the follow-up input contains the target object, the MR-2 is violated since the
classifier does not predict the follow-up input as the original label. So, we labeled the test
result as true positive. On the contrary, if the follow-up input does not contain the target
object, MR-2 is not violated and the identified unreliable inference is a false positive.

The manual check was conducted by two graduate students individually and indepen-
dently. Only the results agreed by consensus were considered. The disagreed results were
labeled as “uncertain”.

Pilot Study

Before the manual check, we first conducted a pilot study to help us understand the possible
cases (i.e. the root cause of false positive cases) that might be encountered in the manual
check. Specifically, we randomly selected 200 unreliable inferences found by our approach
to perform the pilot study, among which 100 violate MR-1 and the others violate MR-2.
We investigated whether each unreliable inference is true positive and if not, what are the
major reasons for those false positive cases.
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In the investigation, for each unreliable inference, each student was requested to view a
pair of inputs (pictures in our scenarios). More specifically, each pair of the inputs consisted
of two inputs: (a) the source input on which the unreliable inference is made, e.g. Fig-
ure 3.4a, and (b) the follow-up input constructed based on the source input, e.g. Figure 3.4b
if MR-1 is violated, or Figure 3.4c if MR-2 is violated. Besides, the label of the source
input was provided to the students. The students were required to answer the following
questions for the unreliable inferences violating MR-1:

1. Do you think the object-relevant features of the source input have been completely
corrupted in the follow-up inputs, i.e. the target objects in the follow-up inputs have
been indeed removed?

2. If not, please briefly explain the reason.

Similarly, for the unreliable inferences violating MR-2, the corresponding questions
were:

1. Do you think the object-relevant features of the source input have been completely
preserved in the follow-up inputs, i.e. the target objects still remain in the follow-up
inputs?

2. If not, please briefly explain the reason.

First, two graduate students investigated the selected 200 image pairs individually and
independently. Their answers to the questions have been recorded. Then for the inconsis-
tent answers, they discussed with each other to see if they can reach a consensus. A reason
is selected as a common reason if it occurs more than or equal to 10 times. Eventually, we
finalized three common reasons inducing false positives for unreliable inference violating
MR-1, which are:

(a)Existence of Multiple Target Objects. These false positives occurred because there are
multiple target objects in the source input, but not all of them are corrupted in the follow-
up inputs. Figure 3.5f shows an example. The original image in Figure 3.5b, whose label
is “confectionery”, has multiple confectioneries. Ideally, all of them should be corrupted in
its follow-up inputs. However, after mutation, the follow-up input, as shown in Figure 3.5f,
still contains multiple confectioneries since the dataset only annotates one of them, which
is shown as the red rectangle in Figure 3.5b. As such, the inference of the follow-up input
can still be “confectionery” as the object-relevant features (the other confectioneries) are
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not completely corrupted. Therefore, MR-1 is not violated and the original inference is a
false positive of the identified unreliable inferences.

(b)Incomplete Removal of the Target Object. Some false positives occurred in the inputs
that contain a single target object but only parts of it are corrupted in the follow-up input.
An example is shown in Figure 3.5c, whose label is “drilling platform”. Ideally, the entire
platform should be corrupted in the follow-up inputs. However, the mutated images shown
in Figure 3.5g still contain part of the target object. This is because the annotation
provided by the ImageNet dataset does not cover the upper-half of “drilling platform”,
which differs from the other images in this label whose platforms are entirely annotated.
Therefore, the follow-up input can lead to the same classification result as the original
inference because the object-relevant features are not corrupted entirely. The MR-1 is not
violated in this case.

(c)Others. It refers to the other reasons not belonging to the above two reasons. For
example, the original image is not clear and hinders the students to identify the boundary
of the target object.

For MR-2, we do not distinguish the reason for false positives since the number of false
positives is very limited (less than 10 in our pilot study).

We also conducted a similar pilot study for multi-label classification. More specifically,
we selected 50 unreliable inferences violating MR-1 and 50 ones violating MR-2 from all
the unreliable inferences in multi-label classification found by our approach. A reason is
considered common if it occurs at least 5 times. Since we did not notice other reasons
than the ones aforementioned, we concluded the same reasons for both single-label and
multi-label classifications.

Experiment Setup

DL-based Classifier Selection. For the single-label classifier, we selected NASNet-
Large [223], MobileNet [67] and ResNet101 [65] among the pre-trained classifiers from
the Keras Application [33] because their top-1 accuracy lies at the top, medium and bot-
tom, respectively, among those of the classifiers. For the multi-label classifier, we selected
TResNet-XL [147], since it achieves the highest accuracy on the COCO dataset to the best
of our knowledge [147] till March 2021.

Sampling. We randomly sampled the inferences made by the four classifiers for the
manual check, where the sample size is determined by the Cochran formula [35] with 95%
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confidence level.

Manual Check. Two graduate students conducted the manual check similar to the
pilot study. More specifically, each source input in the unreliable inference was displayed
with the follow-up inputs constructed by our method. The students were asked the same
question as the ones in the pilot study. The only difference is that at this time, the Q2 in un-
reliable inference violating MR-1 was supplied with three options, which are: (a)Existence
of Multiple Target Objects, (b)Incomplete Removal of The Target Object, (c)Others. When
(c) is chosen, the students were also required to write down detailed explanations. The
students were allowed to choose multiple of the above options. During the manual check,
we also monitored the reasons in (c) Others. If any reason in (c) Others occurs at least
10 times, we would extract a new common reason. Such a situation does not exist in our
manual check.

Each student conducted the manual check individually and independently. It took
around 15 hours for each of them to complete the manual check. After the individual
check, they discussed the cases where the disagreement arises, in case any of them miss
anything during the check. If the disagreement is addressed, the corresponding manual
check result is changed. At last, we collected and analyzed the results. As we mentioned
previously, only the results agreed by consensus were considered in the analysis. The Kappa
Agreement Score [84] of the manual check is 0.955. Such a value indicates an almost perfect
agreement between the two graduate students who conducted the manual check.

Threat to validity. There is a potential threat to validity in this experiment. Our
manual check is subject to human mistakes. To address the threat, two graduate students
conducted the manual check individually and independently. A result will be adopted only
if both students made the same conclusion. The high Kappa Agreement Score indicates
that the results is reliable.

Results and Discussion

Single-label Classifiers. Tables 3.1 and 3.2 show the manual check results for MR-1
and MR-2 for single-label classifiers, respectively. The column Total refers to the number
of unreliable inferences identified by our approach for each classifier. Specifically, our
approach identifies 1,392 inferences that violate MR-1 and 15,198 inferences that violate
MR-2. We randomly sampled and manually checked 654 and 1,069 inferences from these
two categories, respectively, as previously explained.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.5: (a)(b)(c)(d): Images (with bounding boxes) as the source inputs. (e)(f)(g)(h):
Images as the corresponding follow-up inputs. Labels: (a): “goldfinch, Carduelis carduelis”,
(b): “confectionery”, (c): “drilling platform”, (d): “car wheel”.

Table 3.1: The manual check results for the effectiveness of MR-1 on single-label classifiers.
Column Multiple is for the reason existence of multiple target objects and column Incomplete
is for the reason incomplete removal of the target object. The number in the parentheses
under Multiple is for cases shared by both reasons.

Classifiers Accuracy Total
Sample True False Positive

Uncertain
Size Positive Multiple Incomplete Others

NASNetLarge 82.7% 826 311 202 (65.0%) 84 (1) 16 4 6
ResNet101 76.4% 344 194 122 (62.9%) 55 (2) 8 8 3
MobileNet 70.3% 222 149 95 (63.8%) 42 (1) 8 3 2

Total 1,392 654 419 (64.1%) 181 (27.7%) 32 (4.9%) 15 11
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Table 3.2: The manual check results for the effectiveness of MR-2 on single-label classifiers.

Classifiers Accuracy Total
Sample True False

Uncertain
Size Positive Positive

NASNetLarge 82.7% 3,634 348 339 (97.4%) 1 8
ResNet101 76.4% 4,942 357 340 (95.2%) 7 10
MobileNet 70.3% 6,622 364 351 (96.4%) 0 16

Total 15,198 1,069 1,030 (96.4%) 8(0.07%) 34

As for the inputs that violate MR-1, the column True Positive of Table 3.1 shows
that our approach achieves an average precision of 64.1%, ranging from 62.9% to 65.0%
for different classifiers. Out of the 654 samples, 419 samples do not contain the target
objects in the follow-up inputs but the classifiers keep labeling them as the target objects.
So, they violate MR-1 and are true positive cases. Figure 3.5a shows an example, in
which the original image is correctly classified by the classifier ResNet101 as “goldfinch,
Carduelis carduelis”. Although the follow-up input in Figure 3.5e does not contain birds,
ResNet101 gives the same classification result as that of the original image, thus resulting
in an unreliable inference.

We further checked the remaining 235 (=654 - 419) false positive cases, and found that
77.0% (=181/235) of the false positive cases are due to the Existence of Multiple Target
Objects and 13.6%(=32/235) are because of Incomplete Removal of the Target Object.
Moreover, there are four cases that belong to both Existence of Multiple Target Objects
and Incomplete Removal of the Target Object. The above numbers (181 and 32) have
included these four cases. Besides, there are 11 cases labeled as uncertain as the results
from two students disagree with each other. The rest of the false positive cases (15 in total)
are labeled as Others.

As for the inputs that violate MR-2, it shows that our approach achieves an aggregated
precision of 96.4%, ranging from 95.2% to 97.4% for different classifiers. In total, 1,030
out of the 1,069 samples preserve the target objects in the follow-up inputs, but these
follow-up inputs are not correctly classified by the classifiers. Therefore, these samples
indeed violate MR-2 and they are regarded as true positives of the unreliable inferences
violating MR-2. For the remaining 39 cases, only part of the target objects is preserved in
the follow-up inputs. They do not violate MR-2 and are false positives. For instance, given
the source input as shown in Figure 3.5d, the constructed follow-up input in Figure 3.5h
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Table 3.3: The manual check results for the effectiveness of MR-1 and MR-2 on multi-label
image classifier TResNet-XL.

MR Total
Sample True False

Uncertain
Size Positive Positive

MR-1 957 275 215 (78.2%) 44 16
MR-2 4,732 356 308 (86.5%) 30 18

only covers the center of wheel but not the entire tire. According to the definition from the
WordNet [48] (the labels of the ImageNet dataset are defined according to WordNet), “car
wheel” is “a wheel that has a tire and rim and hubcap”. Since the object-relevant features
are only partially preserved, it makes sense that the follow-up input is incorrectly classified.
Therefore, MR-2 is not violated and this is a false positive case.

We noticed that the precision of MR-2 is much higher than that of MR-1. We found
the reason is that the aforementioned Existence of Multiple Target Objects will cause the
follow-up input unqualified for the validation of MR-1, as the object-relevant features of
the follow-up inputs will not be completely corrupted. However, such a situation will not
affect MR-2 since as long as one of the target objects is preserved in the follow-up inputs,
the follow-up inputs are valid to validate MR-2.

Multi-label Classifiers. Table 3.3 shows the manual check results for MR-1 and MR-
2 for TResNet-XL, a multi-label classifier, respectively. The true positive rate for MR-1
and MR-2 is 78.2% and 86.5% respectively. This shows that our approach is also effective
for multi-label classifiers. As for the false positives for MR-1, the major reasons are still
Existence of Multiple Target Objects and Incomplete Removal of The Target Object. They
account for 20 and 23 of the 44 false positive cases. The remaining one is due to the
incorrect annotation, where a labeled broccoli is actually lettuce. For the false positives
for MR-2, similar to single-label classification, the major reason is that their target objects
are not completely preserved in the follow-up inputs and thus they do not violate MR-2.

Answer to RQ1: Our approach is effective in identifying unreliable inferences that
violate MR-1 and MR-2, with an aggregated precision of at least 62.9% and 86.5%,
respectively. The false positives are mainly caused by imperfect annotation of the
target objects.
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3.5.2 The Impact of The Number of Colors in Our Approach

As mentioned in §3.4, we use three colors to mutate inputs in our approach and use the
majority of their results to identify the unreliable inference. One threat of our approach
is that whether three colors are sufficient to identify unreliable inferences. To answer this
question, we performed another experiment that uses 15 distinct colors to mutate the
inputs, and we then compared the results obtained of the new experiment with that of the
original one.

Experiment Design

Specifically, besides the three colors we used previously, we select 12 more commonly used
colors, which are red (R255, G0, B0), maroon (R128, G0, B0), yellow (R255, G255, B0),
olive (R128, G128, B0), lime (R0, G255, B0), green (R0, G128, B0), aqua (R0, G255,
B255), teal (R0, G128, B128), blue (R0, G0, B255), navy (R0, G0, B128), fuchsia (R255,
G0, B255), and purple (R128, G0, B128). We use the same approach as mentioned in §3.4.
The only difference is that now we regard an inference as unreliable if and only if the MR
is violated by at least 8 out of the 15 mutated inputs.

After the data collection, we compared the results using 15 colors and the ones using 3
colors. Statistically, we use the Chi-square independence test [50] to test the independence
of the results obtained from the two approaches. The Chi-square independence test is
commonly used to determine if there is a significant relationship between two categorical
variables. In our experiment, we use it to determine if the decision “violate MR or not”
using by three colors and the one using fifteen colors are strongly correlated. If yes, we
can use three colors to save computation resources. We conduct the experiment using the
pre-trained VGG16 from Keras.

Results and Discussion

We use variable V3 to denote the decision “violate MR or not” according to the approach
using three colors. Similarly, we use variable V15 to denote the decision “violate MR or
not” according to the approach using 15 colors. We build the contingency tables for both
MR-1 and MR-2 as shown in Table 3.4. The cell in the table represents the number of the
inferences identified by the two approaches. For example, the cell “169” means there are 169
inferences that are considered as violating MR-1 by both the approach using three colors
and the one using fifteen colors. The cell “1,467” means there are 1,467 inferences that
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Table 3.4: Contingency tables for MR-1 and MR-2 to compare the experiment results
obtained using 3 colors and 15 colors.

MR-1 MR-2
V3: Violate V3: Not Violate V3: Violate V3: Not Violate

V15: Violate 169 52 5,145 1,467
V15: Not Violate 63 35,323 249 28,773

are considered as not violating MR-2 by the approach using three colors and considered as
violating MR-2 by the approach using the fifteen colors.

The p-values of the Chi-square test are both < 0.001 for MR-1 and MR-2, which is less
than the typical threshold 0.05. The corresponding effect sizes3 are 0.743 and 0.835 for
MR-1 and MR-2, respectively. It indicates that the results obtained by the approach using
three colors and the approach using fifteen colors are strongly correlated. In other words,
if an inference is considered unreliable (or reliable) by the approach using three colors,
the same decision will likely be made by the approach using fifteen colors, and vice versa.
Overall, this experiment shows that using more colors than three in our approach has a
minor difference compared to three colors. Therefore, it is sufficient to use three colors for
the follow-up input construction in our approach.

Answer to RQ2: Using three colors in our approach is sufficient to identify unreliable
inputs effectively.

3.6 Empirical Study

Leveraging our approach, we conduct an empirical study to understand the unreliable in-
ference problems in reality. Specifically, we aim to answer the following research questions.

RQ3 How pervasive is unreliable inference in DL-based image classifier?

First, we want to understand the pervasiveness of the problem, i.e. to what extent
are the inference results made by the state-of-the-art DL-based image classifiers based on
object-irrelevant features. Specifically, we measure the proportion of unreliable inferences
identified in all correct inferences outputted by these classifiers.

3in the Chi-square test, it is usually referred to as Cramér’s V [36]
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RQ4 Is there a correlation between the target object size and the unreliable inferences?

Second, we study the characteristics of the identified unreliable inferences. Specifically,
we focus on the size of the target objects in unreliable inferences, a common attribute
of objects. We studied whether there is any correlation between the object size and the
unreliable inferences.

RQ5 To what extent will the unreliable inference affect the evaluation of image classi-
fiers?

Next, we aim to understand the effect of such unreliable inferences. Specifically, we
investigate whether the unreliable inferences can significantly affect the evaluation of image
classifiers result, thus preventing us from correctly evaluating classifiers and comparing
them fairly. In the experiments, we compare the accuracy of a classifier before and after
removing those unreliable inferences from the associated test.

RQ6 Can the unreliable inference be tamed during training?

Finally, we investigate how to tame unreliable inferences. Specifically, we investigate
whether the ratio of unreliable inferences can be reduced during the training process and
whether it is correlated with the evaluation metrics such as accuracy. To achieve this
goal, in the experiments, we track the ratio of unreliable inferences and the classification
accuracy during the classifier training process .

3.6.1 Pervasiveness of Unreliable Inferences

RQ3 How pervasive is unreliable inference in DL-based image classifier?

Motivation

In the previous section, we showed that thousands of inferences made by the four pre-
trained classifiers violate our MRs. In this subsection, we investigate the pervasiveness
of the problem, i.e. whether such unreliable inferences generally exist in a wide variety
of classifiers with different architectures. We leveraged our methodology to identify the
unreliable inferences made by both the single-label and multi-label image classifiers. Then
we measure the ratio of the unreliable inferences in all correct inferences. This research
question can help us to understand the severity of the unreliable inferences.
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Experiment Setup

We collected 21 pre-trained DL-based image classifiers from public repositories. 18 out of
the 21 classifiers are single-label image classifiers, and they are collected from the Keras
Application [33], a famous and popular repository for pretrained classifiers. All of them
are trained on the ImageNet dataset, and their information (name and accuracy) is shown
in the first two columns of Table 3.5. Besides the single-label classifiers, we also collected
three multi-label classifiers, which are ResNet-50 [65], TResNet-L [147] and TResNet-
XL [147]. ResNet-50 is chosen as it has been used as an experiment subject by existing
papers [215, 176] and the other two classifiers are included because they are the state-of-the-
art in terms of accuracy (till March 2021). All three multi-label classifiers are trained on
the COCO dataset. Please note that the number of public available multi-label classifiers
is much smaller than that of the single-label classifiers, and we have tried our best efforts
to collect these three classifiers.

In the experiment, we found that Keras Application only provided the trained classifier,
but missed the source code to reproduce the results for image classification, especially
the code to preprocess the input. To avoid the possible mistakes in reproduction, we
leveraged the functionality provided by an open-source toolbox, EvalDNN [174], which
has successfully reproduced the reported accuracy for most of the 18 classifiers. The
maximum difference between the reported accuracy and the reproduced one is only 0.7%,
which demonstrates that we have faithfully deployed the classifiers in our experiments. For
the multi-label classifiers, we successfully reproduced the results by leveraging the detailed
source code provided by the authors [13] or related studies [177]. For the threshold in multi-
label classifiers, we use the value suggested by their documentation, i.e. 0.5 for TResNet-L
and TResNet-XL, and 0.7 for ResNet-50. The columns Reproduced Accuracy of Tables 3.5
and 3.6 list the accuracy reproduced in this study for single-label classification and multi-
label classifiers, respectively. After the deployment, we applied our approach to identify
unreliable inferences from all the correct inferences made by these classifiers.

Threats to validity. There are two potential threats to validity in this experiment.
First, the classifiers used in this experiment may not include all the DNN-based image
classifiers and our conclusion may have bias. To mitigate the threat, we collected 21 repre-
sentative and popular classifiers. They covered most of the modern advanced architectures
used in image classification. We believe that our conclusions can be generalized. Second,
the inference results of these classifier can be affected due to the mistake in classifier de-
ployments. To alleviate this threat, we leveraged the existing toolbox [174] and the source
code provided by the authors. We ensured that the classifiers deployed in our experi-
ment perform closely to the accuracy reported in their original research publications and
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documentations.

Results and Discussion

Tables 3.5 and 3.6 show the experimental results of single-label classifiers and multi-label
classifiers, respectively. For each cell, the percentage displayed in the parentheses is the
ratio of the number of unreliable inferences found by our approach with respect to the
number of the correct inferences. Please note that the column Inferences Violating MR-1
refers to the number of inferences violating MR-1, regardless of whether MR-2 is violated
or not. The column Inferences Violating MR-2 refers to the number of inferences violating
MR-2, regardless of whether MR-1 is violated or not. The last column Inferences Violating
MR-1&2 refers to the number of inferences violating both MR-1 and MR-2.

The results reveal that each selected single-label and multi-label DNN classifier makes
hundreds of unreliable inferences violating MR-1 and thousands of ones violating MR-2.
In terms of ratio, for single-label classification, our approach identifies that 0.63%∼2.00%
of the correct inferences violate MR-1, and 9.79%∼18.83% of the correct inferences violate
MR-2. As for multi-label classification, the ratio is much higher. Specifically, our approach
identifies that 4.71%∼5.49% of the correct inferences violate MR-1, and 24.38%∼34.91% of
the correct inferences violate MR-2. Furthermore, there are around 2% of the inferences vi-
olating both MR-1 and MR-2. The results show that the phenomenon, i.e. classifier makes
inferences based on object-irrelevant features, generally exists across different classifiers.

We further investigated whether different classifiers will make unreliable inferences to-
wards different test inputs. If most of the classifiers make unreliable inferences for the same
set of inputs, it is more likely that these inputs are defective. To conduct the investigation,
we studied for each input the number of different classifiers whose inference for the input
was unreliable. Specifically, the number of different classifiers varies from 1 to N, where N
is the total number of classifiers included in our experiments. More specifically, N is 18 for
single-label classification on the ImageNet dataset and 3 for multi-label classification on
the COCO dataset. We then calculated the ratio of inputs, for which unreliable inferences
were made by n classifiers (n = 1, 2, ..., N), with respect to the total number of inputs for
which unreliable inferences were made by at least one classifier.

Figures 3.6a and 3.6b show the results for single-label DL classifiers on the ImageNet
dataset and multi-label classifiers on the COCO dataset, respectively. It can be observed
that, for single-label classification, 43.7% and 31.8% of the inputs concern unreliable in-
ferences violating MR-1 and MR-2 made by only one classifier, respectively. More than
half of the inputs concern unreliable inferences made by three or fewer classifiers. Only
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Table 3.5: The number and ratio of unreliable inferences in single-label image classifiers
on the ImageNet dataset.

Classifiers
Reproduced
Accuracy

Inferences
Violating

MR-1

Inferences
Violating

MR-2

Inferences
Violating
MR-1&2

Xception 79.0% 374 (0.95%) 4,104 (10.39%) 229 (0.58%)
VGG16 71.3% 259 (0.73%) 5,394 (15.14%) 228 (0.64%)
VGG19 71.3% 252 (0.71%) 5,628 (15.80%) 219 (0.61%)

ResNet50 74.9% 253 (0.68%) 5,248 (14.01%) 197 (0.53%)
ResNet101 76.4% 344 (0.90%) 4,942 (12.93%) 268 (0.70%)
ResNet152 76.6% 334 (0.87%) 4,727 (12.34%) 266 (0.69%)

ResNet50V2 75.3% 247 (0.66%) 5,387 (14.30%) 213 (0.57%)
ResNet101V2 76.9% 271 (0.70%) 4,606 (11.98%) 212 (0.55%)
ResNet152V2 77.7% 319 (0.82%) 4,392 (11.30%) 252 (0.65%)
InceptionV3 77.9% 404 (1.04%) 4,663 (11.98%) 292 (0.75%)

InceptionResNetV2 80.4% 686 (1.71%) 3,998 (9.94% ) 388 (0.97%)
MobileNet 70.3% 222 (0.63%) 6,622 (18.83%) 195 (0.55%)

MobileNetV2 71.2% 281 (0.79%) 6,437 (18.08%) 225 (0.63%)
DenseNet121 75.0% 278 (0.74%) 4,349 (11.60%) 219 (0.58%)
DenseNet169 76.2% 340 (0.89%) 4,154 (10.91%) 264 (0.69%)
DenseNet201 77.3% 334 (0.86%) 4,296 (11.11%) 260 (0.67%)

NASNetMobile 73.8% 461 (1.25%) 6,505 (17.64%) 345 (0.94%)
NASNetLarge 82.7% 826 (2.00%) 3,634 (8.79%) 383 (0.93%)
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Table 3.6: The number and ratio of unreliable inferences in multi-Label image classifiers
on the COCO dataset.

Classifier
Reproduced
Accuracy

Inferences
Violating

MR-1

Inferences
Violating

MR-2

Inferences
Violating
MR-1&2

ResNet50 34.5% 657 (4.71%) 4,873 (34.91%) 422 (3.0%)
TResNet-L 45.5% 1,013 (5.49%) 5,028 (27.26%) 442 (2.4%)

TResNet-XL 47.9% 957 (4.93%) 4,732 (24.38%) 362 (1.9%)

a small portion of inputs (less than 2.7%) concern unreliable inferences made by all 18
classifiers. A similar pattern can also be found for multi-label classifiers. 74.3% and 67.4%
of the inputs concern unreliable inferences violating MR-1 and MR-2 made by only one
classifier, respectively. Less than 7.8% of the concern unreliable inferences made by all
three classifiers.

Such results reveal that different classifiers make unreliable inferences for different sets
of inputs, which indicates that such unreliable inferences are more likely to be caused by
the classifiers themselves instead of the inputs.

Answer to RQ3: The problem of making unreliable inferences is common to state-
of-the-art DL-based classifiers. Since these classifiers make unreliable inferences on
different input sets, the problem is likely to be caused by classifiers instead of inputs.

3.6.2 Characteristic of Unreliable Inferences

RQ4 Is there a correlation between the target object size and the unreliable inferences?

Motivation

As shown in §3.6.1, unreliable inferences are pervasive, and different classifiers make unre-
liable inferences for different inputs. We are curious about whether common characteristics
exhibit among unreliable inferences. If so, we may give some useful suggestions to devel-
opers.
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(a) Single-label DL-based classifiers on the ImageNet dataset
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(b) Muti-label DL-based classifiers on the COCO dataset

Figure 3.6: The percentage of inputs for which unreliable inferences were made by different
number of single-label and muti-label Classifiers.
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Figure 3.7: The images with small objects are unreliably inferred by DL-based image
classifiers.

We manually investigated those inputs that cause unreliable inferences made by most
classifiers. We observed that the sizes of the target objects in these inputs usually occupy
a tiny part of the whole image. Figure 3.7 shows some examples. The objects of these
images are different types of balls whose sizes are often small in the images, especially
compared to the sports facilities and players. It motivates us to investigate whether the
size of an input’s target object is correlated with its probability of being unreliably inferred
by DL-based image classifiers.

Experiment Design

To answer this question, for each unreliable inference, we computed the ratio of the target
object’s size with respect to the size of the whole input image. Then we divided all
inferences into 20 intervals based on their ratios, which are [0.05 ∗ i, 0.05 ∗ (i+ 1)) and i
ranges from 0 to 20. For each interval, we computed the ratio of unreliable inferences,
with respect to the total number of inferences belonging to this interval. We selected the
NASNetLarge and TResNet-XL as experiment subjects since they achieved the highest
top-1 accuracy in all classifiers used in our experiment for the ImageNet dataset and the
COCO dataset, respectively.

Results and Discussion

Figures 3.8a and 3.8b show the results for the classifier NASNetLarge on the ImageNet
dataset and for the classifier TResNet-XL on the COCO dataset, respectively. Please
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(a) Single-label classifier NASNetLarge on the ImageNet dataset.
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(b) Multi-label classifier TResNet-XL on the COCO dataset.

Figure 3.8: The ratio of unreliable inferences made by single-label and multi-label classifiers
w.r.t the ratio of target object size.
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note that for each interval, we use its middle point as the value in x-axis, except for the
last interval we use the point 1.0. We observed that for these inferences whose target
objects are smaller (relative to the size of the image), they are more likely to be unreliable.
Similar results have been observed among the other classifiers. We suspect that when the
classifier handles an image whose target object is small, it often extracts features from the
background region. Eventually, it leverages object-irrelevant features to make decisions.

Answer to RQ4: In summary, we found that inputs with small target object sizes
are more likely to be unreliably inferred by existing DL-based image classifiers. We
suggest the users of these classifiers to pay more attention when making inferences on
these inputs (i.e. the objects’ size are less than 30% of the whole image), especially
when deploying these classifiers on safety-critical applications.

3.6.3 Effect of Unreliable Inferences

RQ5 To what extent will the unreliable inference affect the evaluation of image classifiers?

Motivation

As revealed by previous sections, a significant proportion of the correct inferences made by
existing classifiers are unreliable. Such pervasiveness of unreliable inferences might cause
bias in understanding and evaluating the performance of different classifiers. Specifically,
if there exists a significant amount of unreliable inferences, it could induce non-trivial
uncertainties in measuring the accuracy of classifiers. Therefore, we investigated the effect
of unreliable inferences on the accuracy evaluation of classifiers in this experiment.

Experiment Design

We investigated the effects of unreliable inferences on the measurement of accuracy. Since
both the correct and incorrect inferences can be unreliable and both of them are important
to classifier evaluations, in this section, we examined both correct and incorrect inferences.
For the incorrect inferences, it is possible that they have the labels that do not exist in
the ground truth and thus the object-relevant features cannot be directly identified. In
such cases, we use the union of all the objects in the annotation to approximate the target
object and then identify the object-relevant features.
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In the investigation, with respect to MR-1, we examined all (both correct and incorrect)
inferences and separated them into two sets for each classifier according to whether they are
reliable. One set contains all the inputs whose inferences are identified as unreliable by our
approach and another set that contains the remaining test inputs. We denoted the former
set as “Unreliable” and denoted the latter one as “Reliable”. We also compared the results
such obtained with the original accuracy reproduced by our approach, which is denoted as
“Original”. Similar procedures were applied with respect to MR-2, and the MR-1&2. If the
results before and after removing the unreliable inference have a significant difference, it
indicates that the unreliable inferences will induce bias for classifier evaluation. We then
re-computed the accuracy based on each set of test inputs and checked if the evaluation
results are significantly different by conducting the Wilcoxon signed-rank test [189].

Results and Discussion

Table 3.7 shows the results aggregated over all the 18 single-label image classifiers. In
terms of the accuracy evaluated after removing the unreliable inferences with respect to
MR-2 (column MR-2 Reliable), it is significantly higher than the original accuracy value
obtained over all the test inputs (p-value = 3.81 ∗ e−6). On average, the classification
accuracy after removing the unreliable inferences is 8.84% (5.73%∼12.31%) higher than
the original accuracy. For MR-1 and MR-1&2, a certain trend toward significance could also
be observed, for which the classification accuracy after removing the unreliable inferences
is only 1.31% (1.04%∼1.55%) and 1.30% (1.04%∼1.52%) higher than the original accuracy.

Table 3.8 shows the result of three multi-label classifiers. Similar to the previous finding
for single-label classifiers, after removing the unreliable inferences violating MR-2, the
classification accuracy is much higher (13.79%∼26.95%) than the original accuracy value
obtained over all the test inputs. Please note that the significant test is not applicable
since there are only three samples, which is significantly less than 20, the typical minimum
number for a significant test.

The above results reveal that the existence of unreliable inferences violating MR-2
causes significant bias for classifier evaluation, while the effect of unreliable inferences
violating MR-1 and MR-1&2 is limited. By excluding those unreliable inferences violating
MR-2, the performance of existing classifiers evaluated with respect to accuracy is much
higher than that evaluated based on inputs containing unreliable inferences. We suggest
developers to remove unreliable inferences for fair classifier comparisons, especially the
inferences violating MR-2.

Besides, in general, as shown in Tables 3.7 and 3.8, the classification accuracy on the
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Table 3.7: The comparison of the top-1 accuracy between the unreliable inferences and
reliable inferences for single-label image classifiers

Classifier Original
MR-1 MR-2 MR-1&2

Unreliable Reliable Unreliable Reliable Unreliable Reliable

Xception 79.02% 28.22% 80.42% 45.51% 86.40% 20.00% 80.41%
VGG16 71.27% 21.73% 72.48% 41.10% 82.01% 20.07% 72.46%
VGG19 71.26% 20.62% 72.52% 42.21% 81.82% 18.83% 72.50%

ResNet50 74.93% 21.58% 76.21% 44.98% 84.05% 18.17% 76.19%
ResNet101 76.42% 26.34% 77.76% 45.48% 85.01% 22.48% 77.74%
ResNet152 76.60% 26.13% 77.94% 44.88% 85.07% 22.52% 77.91%

ResNet50V2 75.34% 19.92% 76.78% 46.19% 84.21% 17.82% 76.75%
ResNet101V2 76.89% 21.16% 78.37% 45.05% 85.08% 17.76% 78.34%
ResNet152V2 77.73% 23.19% 79.28% 45.51% 85.44% 19.73% 79.25%
InceptionV3 77.87% 30.01% 79.20% 46.05% 85.95% 24.48% 79.17%

InceptionResNetV2 80.41% 42.52% 81.68% 47.43% 87.10% 30.36% 81.73%
MobileNet 70.34% 21.50% 71.38% 42.84% 82.65% 19.52% 71.37%

MobileNetV2 71.19% 23.44% 72.37% 44.47% 82.08% 20.09% 72.36%
DenseNet121 74.97% 22.32% 76.34% 41.89% 83.64% 18.73% 76.32%
DenseNet169 76.18% 26.19% 77.51% 42.02% 84.59% 22.30% 77.48%
DenseNet201 77.32% 26.05% 78.67% 44.60% 85.13% 22.34% 78.63%

NASNetMobile 73.77% 33.12% 74.94% 46.18% 84.60% 27.38% 74.97%
NASNetLarge 82.68% 46.74% 83.99% 49.44% 88.40% 30.25% 84.04%

Table 3.8: The comparison of the top-1 accuracy between the unreliable inferences and
reliable inferences for multi-label image classifiers.

Classifier Original
MR-1 MR-2 MR-1&2

Unreliable Reliable Unreliable Reliable Unreliable Reliable

ResNet50 34.5% 41.66% 34.17% 22.47% 48.29% 33.65% 34.49%
TResNet-L 45.5% 45.98% 45.51% 22.87% 72.45% 28.85% 46.19%

TResNet-XL 47.9% 45.31% 48.06% 23.19% 73.03% 25.84% 48.71%
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unreliable inference is significantly lower than the original accuracy of classifier. However,
there are some exceptions. In multi-label image classification (Table 3.8), the classification
accuracy on the unreliable inference is higher than (ResNet50 and TResNet-L, MR-1) or
close to (ResNet50, MR-1&2 and TResNet-XL, MR-1) the original accuracy of the classifier.
We suggest that the developers should pay more attention to such exceptions: even if the
unreliable inferences have a comparable accuracy with the reliable ones, they may raise
concerns on classifier reliability, as we mentioned in §3.1.

Answer to RQ5: The unreliable inferences violating MR-2 can cause significant
effects (8.84% for single-label classification and 21.96% for multi-label classification) on
the evaluation results, thus inducing bias in classifier comparisons. On the contrary,
the effect of the unreliable inferences violating MR-1 and MR-1&2 is limited.

3.6.4 Taming Unreliable Inferences

RQ6 Can the unreliable inference be tamed during training?

Motivation

Previous results have shown that unreliable inferences generally exist in widely-used clas-
sifiers built with different architectures. Besides, the inputs causing unreliable inferences
vary across classifiers. These unreliable inferences can induce significant bias in the eval-
uation of classifier performance. In this subsection, we studied whether such unreliable
inferences can be tamed. Specifically, our study has two goals.

First, we investigated whether the ratio of unreliable inferences can be reduced during
the classifier training process. Second, we investigated whether there is any correlation
between classification accuracy and the ratio of unreliable inferences. Understanding their
correlation helps formulate a training strategy taming such unreliable inferences. For
instance, if the top-1 accuracy is negatively correlated with the ratio of unreliable inference,
the ratio of the unreliable inferences is likely to be reduced by enhancing the classification
accuracy.

Experiment Setup

We conducted two experiments with the aim to achieve the above two goals. First, we
trained the VGG16 and Resnet50 classifiers from scratch using the training source code
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provided by PyTorch official example repository [134] based on the ImageNet dataset. We
selected these two classifiers because they have been popularly adopted by existing studies
for testing DNN systems [130, 104, 176, 215]. The training was based on the default hyper-
parameters, and stopped when its accuracy and loss reach saturation. We then measured
the ratio of unreliable inferences in all correct inferences for every five epochs during the
training process to see if they are reduced. Since the training process of DL-based image
classifiers is stochastic, we repeated the training three times for each classifier. Please note
that the training of these two classifiers is very time-consuming. Although our server has
eight NVIDIA 2080Ti GPU cards, it still takes around 80 mins and 30 mins to train one
epoch for VGG16 and Resnet50. The total training time spent for this experiment is more
than 20 days.

Second, we investigated the correlation between classification accuracy and the ratio of
unreliable inferences using the pre-trained classifiers in Table 3.5. Specifically, we used the
Pearson Correlation [14] to check whether the ratio of unreliable inferences and the top-1
accuracy are correlated. We also plotted them for visualization.

In this research question, we did not include the multi-label classification due to the
following two reasons. First, the source code to train these classifiers is not available.
Second, the number of available multi-label classifiers is limited and it is not applicable to
calculate the Pearson Correlation.

Results and Discussion

On average, our trained VGG16 and Resnet50 classifiers achieve the top-1 accuracy of
72.1% and 76.1%, respectively. Their accuracy is close to the accuracy of the pre-trained
classifiers published by PyTorch [135], which are 71.6% and 76.2%, respectively. Figure 3.9
shows the top-1 accuracy and the ratio of unreliable inferences during the training stages.
Please note the ratios of unreliable inferences violating MR-1&2 are not plotted as they
are highly overlapped with the ratios of unreliable inferences violating MR-1.

It can be observed that at the beginning of training, the ratio of unreliable inferences
violating MR-2 decreases significantly and the ratio of unreliable inferences violating MR-
1 slightly decreases. Later on, both of them become stable with the accuracy becoming
saturated. Such results indicate that the current classifier training methodologies can guide
the classifiers to learn object-relevant features to certain extents, as the ratio of unreliable
inferences decreases at the first beginning. However, they become less effective with the
training epochs increases, as the ratio of unreliable inferences becomes stable after the
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(a) VGG16, Seed 1.
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(b) VGG16, Seed 2.
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(c) VGG16, Seed 3.
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(d) Resnet50, Seed 1.
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(e) Resnet50, Seed 2.
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(f) Resnet50, Seed 3.

Figure 3.9: The top-1 accuracy and the ratio of unreliable inferences of VGG and Resnet50
during training. Training is repeated three times using different seeds.
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beginning. In other words, they may not necessarily prevent the classifier from making
unreliable inferences.

We then investigated the correlation between the top-1 accuracy and the ratio of unre-
liable inferences based on the pre-trained classifiers. The Pearson Correlation coefficients
between the ratio of unreliable inferences violating MR-1, MR-2, and MR-1&2 with top-1
accuracy are 0.702, -0.901, and 0.492, respectively. Figure 3.10 shows the relation of the
ratio of unreliable inferences that violate MR and the top-1 accuracy, as well as their linear
regression lines. The results indicate a strong negative correlation (-0.901 < -0.9) between
the ratio of unreliable inferences violating MR-2 and top-1 accuracy. In other words, higher
top-1 accuracy of a classifier couples with lower ratio of its unreliable inferences violating
MR-2. The ratio of unreliable inferences violating MR-1 has a relatively positive corre-
lation with top-1 accuracy. It increases very slightly with the increase in top-1 accuracy.
The ratio of unreliable inferences violating MR-1&2 remains about the same. This may
be because that the ratio of unreliable inference violating MR-1 and MR-1&2 is relatively
small and their changes are not obvious.

Answer to RQ6: The current training methodologies can help the classifiers to
reduce the unreliable inference to certain extents, but they become less effective with
the training epochs increases and may not necessarily prevent the classifier from making
unreliable inferences.

3.7 Limitation and Future Work

Our study points out that unreliable inferences commonly exist in the DL-based image
classifiers. In this section, we discuss some limitations of our work and the future work. In
the future, we will explore the possibility to improve the reliability of inferences made by
DNN classifiers and address such unreliable inferences effectively and efficiently.

3.7.1 Other Possible Metamorphic Relations

We introduced our approach for the MR-1 and MR-2 in §3.4. There are alternative ap-
proaches. For example, in the multi-label classification, we consider the union of all the
objects holistically and mutate them all together. An alternative way is to consider each
label one by one. For example, we only mutate all objects belonging to a specific label at
one time and then examine whether this label violates the MR. After examining all labels,
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Figure 3.10: The relationship between top-1 accuracy and the ratio of unreliable inferences
violating MRs for single-label image classifiers on the ImageNet dataset.

one can conclude whether the inference violates the MR. Such an alternative will increase
the workload and requires a more sophisticated methodology to judge whether an inference
is reliable based on all its labels. We believe there are several potential ways to define such
methodology, thus we leave it as future work to conduct an exhausting study.

Further, for multi-label classification, exact match [190] is used in the comparison of the
certainty, i.e. C(LM(i)) > C(LM(i′c)) ⇐⇒ Cl,M(i) > Cl,M(i′c),∀ l ∈ LM(i). The comparison
can use other metrics, such as Hamming Loss and Jaccard Index. In the future, one may
investigate the effect of different metrics in the comparison.

3.7.2 Other Potential Application Scenarios

In our study, we focus on the applications of the DNN on image classification. After proper
adaption, our MRs can be applied to other applications used on DNN, such as object
detection [99, 143, 142] and language processing [41]. For example, in object detection,
one may examine the object-relevancy for each detected object. The corresponding MRs
can be:4

4The MR-3/4/5/6 are just our initial proposals. The detailed definition should be polished and their
effectiveness should be thoroughly evaluated.
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MR-3: An image mutated by corrupting only the features of the target object(s) should
lead to an inference result with different label(s) and location(s), or an inference result
with the same label(s) and location(s) but with less certainty.

MR-4: An image mutated by preserving the features of the target object(s) and corrupting
other features should lead to an inference result with the same label(s) and location(s).

As for language processing, the MR could be:

MR-5: A sentence mutated by corrupting only the content words should lead to a different
inference result.

MR-6: A sentence mutated by preserving the content words and corrupting other function
words should lead to a similar inference result.

Future work can target proposing new MRs for other DL-based applications and study
their effectiveness.

3.7.3 False Positives and False Negatives

The mutations used in our approach can unnecessarily import/remove extra features and
then bring some side effects, such as false positives/negatives. Although we applied three
mutation operators and adopted the majority voting to alleviate this threat, it still may
happen. In the future work, we will explore different image mutation methods and reduce
such possible side effects, including false negatives and false positives.

In our evaluation, we only evaluate the effectiveness of our approach from the perspec-
tive of true positives and false positives, but not the false negatives, which are the inferences
that are based on the object-irrelevant features but are not detected by our approach. It
is challenging to identify the false negatives, since it is hard to know whether the inference
is indeed completely based on the object-irrelevant features, which is an outstanding chal-
lenge in deep learning (see §§3.8.3 and 3.8.4), and whether the changes of the certainty is
caused by the imported/removed features in the mutation. We believe it will be one of the
future work directions.

3.7.4 The Effect of Annotation Formats

Our metamorphic approach leverages the annotation of the object to construct the follow-
up inputs. The availability and the quality of the annotation could affect the performance
of our approach. This is the major limitation of our study. As shown in the evaluation
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in §3.5, inappropriate annotations are the major sources of false positives. In the future
work, we will explore new methodologies to alleviate this limitation.

In our study, we use bounding boxes for single-label classification and object masks for
multi-label classification, depending on their availability in the datasets. We would like to
point out that the annotation format could also affect the effectiveness of our approach. For
example, if the annotation is in the format of object mask, even after the object corruption
in MR-1, the object shape could still be left in the follow-up inputs, which may cause false
positives for MR-1 (similar to the incomplete removal of the target object). According to
a recent study [51], the texture of the input image, rather than its shape, has stronger
impact in DL-based image classifications. In other words, “a cat with an elephant texture
is an elephant to CNNs, and still a cat to humans” [51]. Thus, the influence of the shape
information left in the follow-up inputs should be limited. Nevertheless, we would like to
point out this possible factor and interested researchers may explore along this direction
in the future. A possible countermeasure is to develop a novel mutation methodology
such that it will further remove the shape information. For example, we can add random
padding to the object boundary, so that the image shape information will be destroyed.

3.8 Related Work

3.8.1 Metamorphic Testing in Deep Learning Applications

Several studies have applied metamorphic testing to validate DL applications [195, 42, 45,
208, 172]. Dwarakanath et al. [45] leveraged two sets of metamorphic relations to identify
faults in machine learning implementations. For example, one metamorphic relation is that
the “permutation of input channels (i.e. RGB channels) for the training and test data”
would not affect inference results. To validate whether a specific implementation of DL
satisfies this relation, they re-ordered the RGB channel of images in both the training set
and test set. They examine the impact on the accuracy or precision of the DL model after
it is trained using the permuted dataset. Their relations treat the pixels in an image as
independent units and they do not consider objects and background in the image.

Xie et al. [195] performed metamorphic testing on two machine learning algorithms:
k-Nearest Neighbors and Naïve Bayes Classifier. Their work targets testing attribute-
based machine learning models instead of deep learning systems. Ding et al. [42] proposed
metamorphic relations for DL at three different validation levels: system level, data set
level and data item level. For example, a metamorphic relation on system level asserts

53



that DL models should perform better than SVM classifiers for image classification. Their
technique requires retraining the systems and is inapplicable to testing pre-trained models.

Other studies [208, 172, 220] leveraged metamorphic testing to validate autonomous
driving systems. DeepTest [172] designed a systematic testing approach to detecting the
inconsistent behaviors of autonomous driving systems using metamorphic relation. Their
relations focus on general image transformation, including scale, shear, rotation and so on.
Further, DeepRoad [208] leverages Generative Adversarial Networks to improve the quality
of the transformed images. Given an autonomous driving system, DeepRoad mutates
the original images to simulate weather conditions such as adding fog to an image. An
inconsistency is identified if a DL model and its mutant make an inconsistent decision on an
image (e.g., the difference of the steering degrees exceeds a certain threshold). Differently
from the existing study, we design metamorphic relations to assess whether an inference is
based on object-relevant features for DL-based image classifiers.

3.8.2 Testing Deep Learning Applications

Besides metamorphic testing, studies have also been made to adapt other classical testing
techniques for DL applications. A recent survey [207] summarizes the latest work in this
direction. DeepXplore [130] proposed neuron coverage to quantify the adequacy of a testing
dataset. DeepGauge [104] proposed a collection of testing criteria. TensorFuzz [124],
DLFuzz [58] and DeepHunter [196] leveraged fuzz testing to facilitate the debugging process
in DL models. DeepMutation [105] applied mutation testing to measure the quality of test
data in DNN. Our study falls into the research direction of testing DNN systems. One of
our major contributions is that we test DL models from a new perspective, i.e. the object
relevancy of inferences.

3.8.3 Background Dependence of Computer Vision Systems

Some existing work studied the background dependence of computer vision systems, even
before the DL models becomes popular [148, 139]. Qin et al. [139] found that removing
the background in street scene images can improve the performance of object recogni-
tion systems. Rosenfeld et al. [149] demonstrated that after transplanting an object from
the training set to the background of another image, the state-of-the-art object detectors
could fail to identity the inserted object. Later, Wang and Su [183] proposed an auto-
mated approach to test the object detectors. Their approach generates test inputs by
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inserting objects to another image’s background. Our study focuses on image classification
applications, and we conduct a large-scale empirical study to understand the problem.

3.8.4 Heatmap-based Testing of Deep Learning Applications

Researchers have proposed ideas of generating HeatMaps for DL testing and debugging [144,
218, 154, 106, 114, 46]. These HeatMaps essentially capture the importance of individual
neurons [106] or layers [114, 46] in a given DL model. Based on different definitions of
importance, these methods generate different types of HeatMaps. Some of them directly use
neuron activation values, gradient values etc. for HeatMap generation [218, 154]. Others
perform some extra processing on such raw data, such as calculating the Jacobian matrix
or using differential analysis to extract the differences between correctly classified and
misclassified samples [106]. A common drawback of such methods is that there is no
standard definition of neuron/layer importance and it is hard to evaluate whether the
generated HeatMaps are correct. As a result, these HeatMaps may or may not accurately
reflect neuron/layer importance. Compared to their work, the effectiveness of our approach
is properly evaluated.

Moreover, some HeatMap generation techniques require the intermediate information
from the models and can only be applied for some specific types of models. For example,
CAM [218] and GradCAM [218] requires access to the pooling layer of neural networks,
which may not always be available. Different from these methods, our method does not
need extra intermediate results from models and thus can be applied to any DL-based
image classifiers.

3.9 Chapter Conclusion

In this chapter, we proposed to leverage metamorphic testing to identify unreliable im-
age classifications made by DL models based on object-irrelevant features. We proposed
two metamorphic relations, from the perspective of object relevancy. We evaluated the
effectiveness of our approach and showed that it achieves high precision. We applied our
approach to 21 popular pre-trained DL models with the ImageNet and COCO datasets,
and found that the phenomenon of unreliable inferences is pervasive. The pervasiveness
caused significant bias in model evaluation. Our experiments revealed that the current
model training methodologies can guide the models to learn object-relevant features to
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certain extent, but may not necessarily prevent the model from making unreliable in-
ferences. Therefore, further research is needed to develop a more effective approach for
enhancing a model’s object-relevancy property.
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Chapter 4

Unreliable Deployment of Deep
Learning Applications

4.1 Introduction

Compressing DNN models is one critical stage in model dissemination, especially for de-
ploying sizable models on mobile or embedded devices with limited computing resources.
Compared to their original models, compressed ones achieve similar prediction accuracy
while requiring significantly less time, processing power, memory and energy, for infer-
ence [34, 182]. However, model compression is a lossy process: given the same input, a
compressed model can make predictions deviated from its original model [197, 196]. For
example, given the two images in Figure 4.1, the LeNet-4 [88] model correctly predicts both
images as 4 while its compressed model predicts the left one as 9 and the right one as 6.
We say that a deviated behavior occurs if a compressed model makes a prediction different
from the one of the original model. The input that triggers such a deviated behavior is
referred to as a triggering input. Our objective is to find the triggering inputs for a given
pair of a compressed model and the original one, so that the compressed model’s quality
can be further assessed before its dissemination beyond the dataset that is used during
model compression [4, 98].

It is preferred to find triggering inputs quickly so that developers can obtain in-time
feedback to assess and facilitate the entire dissemination workflow. However, this is a chal-
lenging task. Specifically, to accelerate the inference speed and reduce storage consumption,
compressed models usually do not expose their architectures or intermediate computation
results via Application Programming Interfaces (APIs) [34]. Gradient, one of the most
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Figure 4.1: Images triggering deviated behaviors between LeNet-4 and its quantized model.
The ground truth labels of both images are “4” and both of them are correctly classified
as “4” by the original model. However, the quantized model classifies them as “9” and “6”
respectively.

common information leveraged by previous test generation approaches [172, 130, 196], is
also not always available in compressed models, especially for integer weights (See §4.2.4
for more details). Without such information as guidance, it is difficult for input genera-
tion techniques to efficiently find the triggering inputs. For example, the state of the art,
DiffChaser [197], requires thousands of queries from a pair of models to find a triggering
input. Considering the fact that the datasets in deep learning applications usually consist
of more than thousands of inputs, such an inefficient approach not only incurs unaffordable
computation workload to developers, but also compromises its practicality in industry.

We propose DFLARE, an effective and efficient technique to automatically find triggering
inputs for compressed DNN models that are designed for image classification tasks. Given
a non-triggering input as a seed, DFLARE mutates the seed continuously until a triggering
input is found. The mutation is guided by a specially designed fitness function, which
measures (1) the difference between the prediction outputs of the original and compressed
models, and (2) whether the input triggers previously unobserved probability vectors of
the two models. The fitness function of DFLARE does not require the model’s interme-
diate results, and thus DFLARE is general and can be applied to any compressed model
for image classifications. Unlike DiffChaser, DFLARE only selects one mutation operator
and generates one mutated input at each iteration, resulting in much fewer queries than
DiffChaser. As another key contribution, DFLARE models the selection of mutation opera-
tors as a Markov Chain process and adopts the Metropolis-Hastings (MH) algorithm [75]
to guide the selection. Specifically, DFLARE prefers a mutation operator that is likely to
increase the fitness function value of subsequent mutated input in the future.

To evaluate DFLARE, we construct a benchmark consisting of 18 pairs of models (i.e.,
each pair includes the original model and the corresponding compressed one) on three com-
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monly used image classification datasets: MNIST [89], CIFAR-10 [81] and ImageNet [39].
The compressed models are generated with diverse, state-of-the-art techniques: weight
pruning, quantization and knowledge distillation. The model architectures include both
small- and large-scale ones, from LeNet to VGG-16.

We evaluate DFLARE w.r.t. its effectiveness and efficiency and compare it with DiffChaser,
the state-of-the-art black-box approach. For effectiveness, we feed a fixed number of seed
inputs to DFLARE and measure the ratio of seed inputs for which DFLARE can success-
fully generate triggering inputs. For efficiency, we measure the time and queries that
DFLARE needs to find one triggering input given a seed input. The results show that
DFLARE constantly achieves 100% success rate while the baseline DiffChaser fails to do
so, whose success rate drops to <90% for certain cases in CIFAR, and drops to around
20% in ImageNet dataset. More importantly, DFLARE can significantly improve efficiency.
On average, DFLARE can find a triggering input with only 0.52s and 24.99 queries, while
DiffChaser needs more than 52.23s and 3642.50 queries. In other words, the time and
queries needed by DFLARE are only 0.99% and 0.69% of DiffChaser, respectively.

We conduct a case study to further demonstrate the usefulness of DFLARE in model
dissemination. Specifically, we demonstrate that given a set of compressed models whose
accuracy is very close to each other, DFLARE can efficiently provide extra information to
approximate the likelihood that the compressed model behaves differently from the original
one. Such in-time information can provide developers with more comprehensive evaluations
towards compressed models, thus facilitating the selection of compressed models and the
compression configurations in the dissemination of image classification models.

We explore the possibility to repair the deviated behaviors using the triggering inputs
found by DFLARE. Our intuition is that the substantial amount of triggering inputs found
by DFLARE contains essential characteristics of such triggering inputs, and may thus be
used to train a separate repair model to fix the deviated behaviors of compressed models
found by DFLARE for image classifications. We design a prototype named DREPAIR, serving
as a post-processing stage of compressed models. After the compressed model outputs the
probability vector of an arbitrary input, DREPAIR takes this vector as input and aims to
generate the same label as the one outputted by the original model. We build DREPAIR

based on Single-layer Perceptron [150] and train it using the triggering inputs found by
DFLARE and seed inputs. Our evaluation shows that DREPAIR can reduce up to 48.48%
deviated behaviors and decrease the effectiveness of DFLARE on the repaired models.

Contributions. Our paper makes the following contributions.

1. We propose DFLARE, a novel, search-based, guided testing technique to find triggering
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inputs for compressed models for image classifications, to help analyze and evaluate
the impact of model compression.

2. Our comprehensive evaluations on a benchmark consisting of 18 pairs of original
and compressed image classification models in diverse architectures demonstrate that
DFLARE significantly outperforms the state of the art in terms of both effectiveness
and efficiency.

3. We demonstrated that the triggering inputs found by DFLARE can be used to re-
pair up to 48.48% deviated behaviors in image classification tasks and decrease the
effectiveness of DFLARE on the repaired models.

4. To benefit future research, we have made our source code and benchmark publicly
available for reproducibility at https://github.com/yqtianust/DFlare

4.2 Preliminary

In this section, we first introduce our scope and give a brief introduction about model
compression. Second, we present the annotations and assumptions used in this study and
the state-of-the-art technique. At last, we discuss the difference between triggering inputs
and adversarial samples.

4.2.1 Scope

Our technique focuses on the compressed DNN models for image classifications. Image clas-
sification is one of the most important applications of deep learning and DNN compression
techniques. There are enormous studies in model compression focusing on deploying com-
pressed image classification models resource-constrained device, such as [191, 61, 34, 97,
179, 19, 31, 221, 161, 95, 23]. The deployment of compressed models for image classifica-
tions is also paid close attention by industries. Mobile hardware vendors, such as Arm [7],
Qualcomm[153], and NVIDIA [123] provide detailed documentation to deploy image clas-
sification on their mobile devices. Moreover, there are plenty of publicly available original
models and compressed models for our research [136, 222] and their detailed instructions
allow us to faithfully reproduce their results. Moreover, many previous testing studies for
DNN models also primarily focus on image classification tasks [196, 105, 22, 53, 206]. The
baseline [197] used in our evaluation also concentrates on the compressed models for image
classifications.
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Our study aims to find the triggering inputs that are not in the original training set
or test set. The model compression techniques are designed to compress the original
model while preserving the accuracy as much as possible [34]. As a result, the number of
triggering inputs in the training set and test set for the original model are pretty limited.
If there were a significant number of triggering inputs in the original training set and test
set, compressed models are likely to have a clear difference from the original models in
terms of accuracy. Developers can easily notice such triggering inputs by inspecting the
accuracy and then strive to fix the problematic compression processing before deploying
these models. However, the triggering inputs outside the original datasets are not directly
available to developers. Finding them can help developers comprehensively evaluate their
compressed models before the deployment.

Table 4.1 lists the number of triggering inputs in the training set and test set for three
pairs of models used by DiffChaser. The triggering inputs in the training set imply that
such deviated behaviors may be related to the inherent proneness of model compression to
deviating compressed models from their original models. However, the number of triggering
inputs in the training and test set is negligible (≤ 0.62%). These results may mislead
the developers of compressed models, e.g., developers may believe that the compressed
models have almost identical behaviors as their original models. However, as shown by
DiffChaser [197] and later in our evaluation, there are a significant number of triggering
inputs that are not in the training set or test set. These extra triggering inputs can
help developers comprehensively evaluate their compressed models and repair the deviated
behaviors.

Table 4.1: The numbers of triggering inputs and their percentages in training and test set.

Dataset Original Model Compression Method Training set Test set

MNIST LeNet-1 Quantization-8-bit 83 / 60000 = 0.13% 9 / 10000 = 0.05%

LeNet-5 Quantization-8-bit 23 / 60000 = 0.38% 5 / 10000 = 0.05%

CIFAR-10 ResNet-20 Quantization-8-bit 75 / 50000 = 0.15% 62 / 10000 = 0.62%

4.2.2 Model Compression

Model compression has become a promising research direction to facilitate the deployment
of deep learning models [34]. The objective of model compression is to compress the
large model into compact models so that the compressed models are able to be deployed
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in resource-constrained devices, such as the Internet of Things (IoT) and mobile phones.
Various model compression techniques have been proposed to reduce the size of DNN
models and the majority of them can be classified into the following three categories.

Pruning. Pruning is an effective compression technique to reduce the number of param-
eters in DNN models [90, 62]. Researchers find that considerable parameters in DNN mod-
els have limited contribution to inference results [34, 90, 62] and removing them does not
significantly decrease the model performance on the original test sets. Pruning techniques
can be further classified into several categories, according to the subjects to be pruned,
including weights, neurons, filters and layers. Weight pruning zeros out the weights of the
connections between neurons if the weights are smaller than some predefined threshold.
Neuron pruning removes neurons and their incoming and outgoing connections if their con-
tribution to the final inference is negligible. In filter pruning, filters in convolutional layers
are ranked by their importance according to their influence on the prediction error. Those
least important filters are removed from the DNN models. Similarly, some unimportant
layers can also be pruned to reduce the computation complexity of the models.

Quantization. Quantization compresses a DNN model by changing the number of
bits to represent weights [217, 141]. In DNN models, weights are usually stored as 32-bit
floating-point numbers, After quantizing these weights into 8-bit or 4-bit, the size of mod-
els can be significantly reduced. Meanwhile, the quantized models consume less memory
bandwidth than the original models. A recent research direction of quantization is Bina-
rization [70, 159]. It uses 1-bit binary values to represent the parameters of DNN models
and the model after binarization is referred to as Binarized Neural Networks (BNNs).

Knowledge Distillation. Knowledge distillation transfers the knowledge learned by
original DNN models (referred to as teacher models) to compact models (i.e., student
models) [18, 133, 111]. After teacher models are properly trained using training sets,
student models are trained to mimic the teacher models. We refer interested readers to a
recent literature review [54] for details.

4.2.3 Annotations

Let n be the number of all possible classification labels in a single-label image classification
problem, i.e., an image is expected to be correctly classified into only one of the n labels.
Let f denote a DNN model designed for this single-label image classification, and g denote
a corresponding compressed model. Given an arbitrary image as input x, model f outputs
a probability vector f(x) = [p1, p2, p3, · · · , pn]. We refer to the highest probability in f(x)
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as top-1 probability and denote it as pf(x). We refer to the label whose probability is pf(x) in
f(x) as top-1 label and denote it as lf(x). Similarly, the probability vector of the compressed
model, the top-1 probability and its label are denoted as g(x) = [p′1, p

′
2, p

′
3, · · · , p′n], pg(x)

and lg(x), respectively.

4.2.4 Assumptions

We assume that the compressed model g is a black-box and only the information g(x),
pg(x) and lg(x) are available [57, 29, 15, 157]. The internal states of models, including
intermediate computation results, neural coverages and gradients, are not accessible. We
make this assumption for the following reasons.

First, in practice, the intermediate results of compressed models, such as activation
values and gradients, are not available due to the lack of appropriate API support in deep
learning frameworks. Modern deep learning frameworks, such as TensorFlow Lite [169]
and ONNX Inference [125], usually provide APIs only for end-to-end inference of the com-
pressed model, but not for querying intermediate results. The design decision of discarding
intermediate results is mainly to improve inference efficiency [34, 125].

Second, gradient information is not generally meaningful for some compressed models.
For example, for the model that uses integer weights, their gradients are not defined and
thus cannot be acquired. Figure 4.2 shows such an example. The code snippet in Fig-
ure 4.2a computes the gradient of y = x3 with respect to the float tensor x and running
this code correctly outputs the expected gradient, i.e. 12. The code in Figure 4.2b also
computes the gradient y = x3 with respect to x, but the tensor x in Figure 4.2b is an integer
tensor. Executing the code in Figure 4.2b leads to a runtime error shown in Figure 4.2c.

Third, if the compressed model under test requires special devices such as mobile
phones, or the model is compressed on the fly, such as TensorRT [170], accessing the
intermediate results requires support from system vendors, which is not always feasible.
The assumption of treating compressed models as a black-box increases the generalizability
of DFLARE.

4.2.5 State of the Art

DiffChaser [197] is a black-box genetic-based approach to finding triggering inputs for
compressed models. In the beginning, it creates a pool of inputs by mutating a given
non-triggering input. In each iteration, DiffChaser crossovers two branches of the selected
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import torch
x = torch.tensor([2.])
x.requires_grad=True
y = x**3
y.backward()
print(x.grad)

(a) A code snippet to compute the gra-
dient of y w.r.t. float tensor x.

import torch
x = torch.tensor([2.]).int()
x.requires_grad=True
y = x**3
y.backward()
print(x.grad)

(b) A code snippet to compute the gra-
dient of y w.r.t. integer tensor x.

Traceback (most recent call last):
File "int_gradient.py", line 3, in <module>
x.requires_grad=True
RuntimeError: only Tensors of floating point and complex dtype
can require gradients

(c) Error message when executing the code in (b).

Figure 4.2: Example code snippet of computing gradient for tensor with float weight
(Figure 4.2a) and integer weight (Figure 4.2b) in PyTorch, respectively. Executing the code
in Figure 4.2a outputs the correct value, i.e. 12, while executing the code in Figure 4.2b
throws runtime error in Figure 4.2c.
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inputs and then selectively feeds them back to the pool until any triggering input is found.
To determine whether each mutated input will be fed back to the pool, DiffChaser proposes
k-Uncertainty fitness function and uses it to measure the difference between the highest
probability and k-highest probability of either f(x) or g(x). Please note that k-Uncertainty
does not capture the difference between two models, resulting in its ineffectiveness in
certain cases, as shown later in §4.5. Another limitation is that the genetic algorithm
used in DiffChaser needs to crossover a considerably large ratio of inputs and feed them
into DNN models in each iteration. As a result, it requires thousands of queries from the
two models to find a triggering input. Such a large amount of queries incur expensive
computational resources, which are generally unavailable for devices that have limited
computation capabilities, such as mobile phones and Internet-of-Things (IoT) devices.

There are many white-box test generation approaches for a single DNN model [77, 172,
104, 196, 130]. However, they all need to access the intermediate results or gradient to
guide their test input generation. Thus, it is impractical to adopt them to address the
research problem of this chapter.

4.2.6 Differences from Adversarial Samples

Adversarial samples are different from triggering inputs. The adversarial attack approach
targets a single model using a malicious input, which is crafted by applying human-
imperceptible perturbation on a benign input [22, 53, 124, 130, 205]. In contrast, a trig-
gering input is the one that can cause an inconsistent prediction between two models,
i.e., the original model and its compressed model. Note that adversarial samples of the
original model are often not triggering inputs for compressed models. In our preliminary
exploration, we have leveraged FGSM [53] and CW [22] to generate adversarial samples
for three compressed models using MNIST. On average, only 18.6 out of 10,000 adversarial
samples are triggering inputs. Recent studies pointed out that compressed models can be
an effective approach to defend against adversarial samples [28, 76].

4.3 Methodology

This section formulates the targeted problem, and then details how we tackle this problem
in DFLARE.
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4.3.1 Problem Formulation

Given a non-triggering input as seed input xs, DFLARE strives to find a new input xt such
that the top-1 label lf(xt) predicted by the original model f is different from the top-1 label
lg(xt) from the compressed model g, i.e., lf(xt) ̸= lg(xt). Similar to the mutated-based test
generations [197, 124], DFLARE attempts to find xt by applying a series of input mutation
operators on the seed input xs. Conceptually, xt = xs + ϵ, where ϵ is a perturbation made
by the applied input mutation operators.

4.3.2 Overview of DFLARE

Algorithm 1: Overview of DFLARE

Input: xs: a seed input
Input: f : the original model
Input: g: the compressed model
Input: pool: a list of predefined input mutation operators
Input: timeout: the time limit for finding a triggering input
Output: an triggering input xt

1 op← an operator randomly selected from pool
2 xmax ← xs

3 repeat
4 x← op(xmax)
5 if lf(x) ̸= lg(x) then
6 xt ← x // xt is a triggering input

7 return xt

8 if Hf,g(x) ≥ Hf,g(xmax) then
9 xmax ← x // if it has higher fitness value

10 op.update() // update its ranking value

11 op← pool.select(op) // select the next operator

12 until timeout ;

Algorithm 1 shows the overview of DFLARE. DFLARE takes four inputs: a seed input xs,
the original model f , the compressed model g, and a list pool of predefined input mutation
operators; it returns a triggering input xt if found.
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DFLARE finds xt via multiple iterations. Throughout all iterations, DFLARE maintains
two variables: op is the input mutation operator to apply, which is initially randomly
picked from pool on line 1 and updated each iteration on line 11; xmax is the input with
the maximum fitness value among all generated inputs, which is initialized with xs on line 2.

In each iteration, DFLARE applies an input mutation operator on the input which has
the highest fitness value to generate a new, mutated input, i.e., x← op(xmax) on line 4. If x
triggers a deviated behavior between f and g on line 5, then x is returned as the triggering
input xt. Otherwise, DFLARE compares the fitness values of x and xmax on line 8, and use
the one that has the higher value for the next iteration (line 9) . The mutation operators
are implemented separately from the main logic of DFLARE, and it is easy to integrate more
mutation operators. In our implementation, we used the same operators as DiffChaser.

Two factors can significantly affect the performance of Algorithm 1: fitness function
and the strategy to select mutation operators, of which both are detailed in the remainder
of this section.

4.3.3 Fitness Function

Following the existing test generation approaches in software testing [27, 124, 197], in
DFLARE, if the mutated input x is a non-triggering input, the fitness function Hf,g is
used to determine whether x should be used in the subsequent iterations of mutation
(Algorithm 1, line 8∼9). By selecting the proper mutated input in each iteration, we aim
to move increasingly close to the triggering input from the initial seed input xs.

Intuitions of DFLARE

We design the fitness function from two perspectives. First, if x can cause a larger distance
between outputs of f and g than xmax, x is more favored than xmax. The intuition is that
if x can, then future inputs generated by mutating x are more likely to further enlarge
the difference. Eventually, one input generated in the future will increase the distance
substantially such that the labels predicted by f and g become different, and this input is
a triggering input that DFLARE has been searching for.

Second, when x and xmax cause the same distance between outputs of f and g, x is
preferred over xmax if x triggers a previously unobserved model state in f or g. Conceptu-
ally, a model state refers to the internal status of the original or compressed models during
inference, including but not limited to a model’s activation status. If an input x triggers a
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model state that is different from the previously observed ones, it is likely that it triggers
a new logic flow in f or g. By selecting such input for next iterations, we are encouraging
DFLARE to explore more new logic flows of two models, resulting in new model behaviors,
even deviated ones. Since the internal status of compressed models is not easy to collect,
we use the probability vector to approximate the model state.

Definition of Fitness Function

Now we present the formal definition of our fitness function Hf,g(x) for a non-triggering
input x as a combination of two intuitions.

For the first intuition, given an input x, we denote the distance between two DNN
models’ outputs as Df,g(x). Since x is a non-triggering input, the top-1 labels of f(x) and
g(x) are the same and we simply use the top-1 probability to measure the distance, i.e.,

Df,g(x) = |pf(x) − pg(x)| ∈ [0, 1)

For our second intuition, we use the probability vector to approximate the model state.
When executing Algorithm 1, we track the probability vectors produced by f and g on all
generated inputs. In the calculation of fitness value of x at each iteration, we check whether
the pair of probability vectors output by the two DNN models (f(x), g(x)) is observed
previously or not. Specifically, we adopt the Nearest Neighborhood algorithm [118] to
determine O(x), i.e., whether (f(x), g(x)) is close to any previously observed states. The
result is denoted as O(x),

O(x) =

{
1 if (f(x), g(x)) has not been observed
0 otherwise

The fitness function Hf,g(x) for a non-triggering input x is defined as:

Hf,g(x) = δ−1 ∗ Df,g(x) +O(x)

Specifically, according to Hf,g, for two non-triggering inputs, we choose the one with a
higher Df,g component. If their Df,g components are very close (i.e., the difference is less
than the tolerance δ), they will be chosen based on O(x). In our implementation, we set
δ = 1e−3.
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Algorithm 2: Mutation Operator Selection
Input: opi−1: the mutation operator used in last iteration
Input: pool: a list of predefined input mutation operators
Output: opi: the mutation operator for this iteration
// sort the operators in pool into a list in descending order of the operators’

ranking values

1 op_list← pool.sort()
2 ki−1 ← op_list.index(opi−1)
3 paccept ← 0
4 while random.rand(0, 1) ≥ paccept do
5 opi ← a random operator in op_list
6 ki ← op_list.index(opi)
7 paccept ← (1− p)ki−ki−1

8 return opi

4.3.4 Selection Strategy of Mutation Operators

Existing work on test generation for traditional software has shown that the selection strat-
egy of mutation operators can have a significant impact on the performance of mutation-
based test generation techniques adopted by DFLARE [86, 27]. Following prior work, in
each iteration, DFLARE favors a mutation operator that has a high probability to make the
next mutated input x have a higher fitness value than xmax. Unfortunately, it is non-trivial
to obtain such prior probabilities of mutation operators before the mutation starts.

To tackle the challenge of selecting effective mutation operators, DFLARE models the
problem as a Markov Chain [110] and uses Monte Carlo [75] to guide the selection. During
the test generation, DFLARE selects one mutation operator from a pool of operators and ap-
plies it to the input. This process can be modeled as a stochastic process {op0, op1, · · · , opt},
where opi is the selected operator at i-th iteration. Since the selection of opi+1 from all
possible states only depends on opi [86, 186, 27], this process is a typical Markov Chain.
Given this modeling, DFLARE further uses Markov Chain Monte Carlo (MCMC) [75] to
guide the selection of mutation operators in order to mimic the selection from the actual
probability distribution.

Specifically, DFLARE adopts Metropolis-Hasting algorithm [75], a popular MCMC method
to guide the selection of mutation operators from the operator pool. Throughout all iter-

69



ations, for operator op, DFLARE associates it with a ranking value:

v(op) =
Ni

Nop + ϵ

where Nop is the number of times that operator op is selected and Ni is the number of times
that the fitness value of input is increased after applying op. ϵ = 1e − 7 is used to avoid
division by zero when Nop = 0. These numbers are dynamically updated in the generation
as shown in Algorithm 1, line 10.

The detailed algorithm for the operator selection given the operator at last iteration
opi−1 in DFLARE is shown in Algorithm 2. Based on each operator’s ranking value v,
DFLARE first sorts the mutation operators in the descending order of v (line 1) and denotes
the index of opi−1 as ki−1 (line 2). Then DFLARE selects one mutation operator from the
pool (line 5) and calculates the acceptance probability for opi given opi−1 (line 7):

P (opi|opi−1) = (1− p)ki−ki−1

where p is the multiplicative inverse for the number of mutation operators in the pool.
Following the Metropolis-Hasting algorithm, DFLARE randomly accepts or rejects this mu-
tation operator based on its acceptance probability (line 7). The above process will repeat
until one operator is accepted.

4.4 Experiment Design

In this section, we introduce the design of our evaluation. In particular, we aim to answer
the following four research questions in our evaluation.

RQ1 Is DFLARE effective to find triggering inputs?

RQ2 Is DFLARE time-efficient and query-efficient to find triggering inputs?

RQ3 What are the effects of the fitness function and the selection strategy of mutation
operator used by DFLARE in finding triggering inputs?

RQ4 Can DFLARE facilitate the dissemination of compressed models?

RQ5 Can the triggering input found by DFLARE be used to repair the deviated behaviors?
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We collect 18 pairs of original models and their compress models to answer the effec-
tiveness and efficiency of DFLARE in RQ1 and RQ2. For RQ3, we conduct an ablation
study to understand the impacts of our fitness function and mutation operation selection
strategy on effectiveness and efficiency. In RQ4, we design a case study and discuss one
potential application of DFLARE to facilitate model dissemination. For RQ5, we explore
the possibility to repair the deviated behaviors of compressed models using the triggering
input found by DFLARE.

4.4.1 Datasets and Seed Inputs

We use the three datasets: MNIST [89], CIFAR-10 [81] and ImageNet [39] to evaluate the
performance of DFLARE. We choose them as they are widely used for image classification
tasks, and there are many models trained on them so that we can collect a sufficient number
of compressed models for evaluation. These datasets are also used by many studies in model
compression [191, 61, 34, 97, 179, 19, 31, 221, 161, 95]. For each dataset, we randomly
select 500 images as seed inputs from their test set for evaluation. Each seed input in
MNIST and CIFAR-10 is pre-processed by normalization based on the mean value mean
and standard deviation std of the dataset, i.e., xs−mean

std
. For the inputs in ImageNet, they

are pre-processed using the function provided by each model. To mitigate the impact of
randomness, we repeat the experiments five times and each time use a different random
seed.

4.4.2 Compressed Models

The compressed models used in our evaluation come from two sources. First, we use three
pairs of the original model and the according quantized model used by DiffChaser: LeNet-
1 and LeNet-5 for MNIST, and ResNet-20 for CIFAR-10. They are compressed by the
authors of DiffChaser using TensorFlow Lite [169] with 8-bit quantization. The upper half
of Table 4.2 shows their top-1 accuracy.

Second, to comprehensively evaluate the performance of DFLARE on other kinds of
compressed techniques, we also prepare 15 pairs of models. Specifically, six of them are
for MNIST and nine of them are for CIFAR-10. These compressed models are prepared
by three kinds of techniques, namely, quantization, pruning, and knowledge distillation,
using Distiller, an open-source model compression toolkit built by the Intel AI Lab [222].
The remaining three models for ImageNet and their quantized models are collected from
PyTorch [136]. These three models are chosen since their accuracy is highest among all
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compressed models in PyTorch Models. The lower half of Table 4.2 shows their top-1
accuracy.

4.4.3 Evaluation Metrics

For effectiveness, we measure the success rate to find a triggering input for selected seed
inputs. In terms of efficiency, we measure the average time and model queries it takes to
find a triggering input for each seed input. All of them are commonly used by related
studies [197, 57, 130, 124]. Their details are explained as follows.

Success Rate. It measures the ratio of the seed inputs based on which a triggering
input is successfully found over the total number of seed inputs. The higher the success
rate, the more effective the underlying methodology. Specifically,

Success Rate =

∑N
i=1 sxi

N

where sxi
is an indicator: it is equal to 1 if a triggering input based on seed input xi is found.

Otherwise, sxi
is 0. N is the total number of seed inputs, i.e., 500 in our experiments.

Average Time. It is the average time to find a triggering input for each seed input.
Mathematically,

Average Time =

∑N
i=1 txi

N

where txi
is the time spent to find a triggering input given the seed input xi. The shorter

the time, the more efficient the input generation. We measure the average time spent to
find all triggering inputs provided the seed inputs.

Average Query. It measures the average number of model queries issued by DFLARE

to find a triggering input for each seed input. Formally, this metric is defined as:

Average Queries =
∑N

i=1 qxi

N

where qxi
is the number of queries to find a triggering input given the seed input xi.

A model query means that one input is fed into both the original DNN model and the
compressed one. Since the computation of the DNN models is expensive, it is preferred to
issue as few queries as possible. The fewer the average queries, the more efficient the test
generation.
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Table 4.2: The top-1 accuracy of the original models and compressed models used in the
evaluation. The first three models are from DiffChaser and the other models are prepared
by this study.

Dataset Original Model Accuracy(%) Compression Method Accuracy(%)

MNIST LeNet-1 97.88 Quantization-8-bit 97.88

LeNet-5 98.81 Quantization-8-bit 98.81

CIFAR-10 ResNet-20 91.20 Quantization-8-bit 91.20

MNIST

CNN 99.11 Pruning 99.23
Quantization 99.13

LeNet-4 99.21 Pruning 99.13
Quantization 99.21

LeNet-5 99.13 Pruning 98.99
Quantization 99.15

CIFAR-10

PlainNet-20 87.33
Knowledge Distillation 75.89

Pruning 85.98
Quantization 87.12

ResNet-20 89.42
Knowledge Distillation 74.60

Pruning 89.88
Quantization 88.89

VGG-16 87.48
Knowledge Distillation 87.59

Pruning 88.44
Quantization 87.06

ImageNet
Inception 93.45 Quantization 93.35
ResNet-50 95.43 Quantization 94.98

ResNeXt-101 96.45 Quantization 96.33
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4.4.4 Experiments Setting

Baseline and its Parameters. We use the DiffChaser [197] as the baseline, since
it is the state-of-the-art black-box approach to our best knowledge. Specifically, we use
the source code and its default settings provided by the corresponding authors. For the
timeout to find triggering inputs for each seed input, we use the same setting as DiffChaser,
i.e. 180s. The experiment platform is a CentOS server with a CPU 2xE5-2683V4 2.1GHz
and a GPU 2080Ti.

Mutation Operators. For a fairness evaluation, we used the same image mutation
operators from the baseline DiffChaser, as shown in Table 4.3. These mutation operators
are proposed by prior work [130, 197, 172, 104, 196] to simulate the scenario that DNN
models are likely to face in the real world. For example, Gaussian Noise is considered as
one of the most frequently occurring noises in image processing [17]. After applying each
mutation operator to a given image, we clip the values of pixels to [0, 255] so that the
resulted images are still valid images. Please note that these mutation operators may have
certain randomness. For example, the size of the average filter used by Average Blur Image
is randomly selected from 1 to 5.

4.5 Evaluation Results and Analysis

4.5.1 RQ1: Effectiveness

Triggering Inputs found by DFLARE

Figure 4.3 shows three examples of the triggering inputs found by DFLARE in MNIST,
CIFAR-10, and ImageNet respectively. The original models correctly classify the two

Table 4.3: Mutation operators used in DFLARE and DiffChaser

Category Mutation Operator Description

Adding Noise
Random Pixel Change Randomly change the values of pixels to arbitrary values in [0, 255]
Gaussian Noise Generate a random Gaussian-distributed noise [52] and add it into the image.
Multiplicative Noise Generate a random Multiplicative noise [52] and add it into the image

Blurring Image
Average Blur Image Blur the image using a random average filter.
Gaussian Blur Image Blur the image using a random Gaussian filter.
Median Blur Image Blur the image using a random median filter.
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inputs as “5”, “cat”, “great white shark” respectively. However, the inputs are misclassified
as “6”, “deer” and “marimba” (a musical instrument) by the associated compressed models,
respectively.

Figure 4.3: Triggering inputs found by DFLARE.

Success Rate

The two Average Success Rate columns in Table 4.4 show the success rate of DFLARE and
DiffChaser, respectively. DFLARE achieves 100% success rate for all pairs of models on three
datasets. As for DiffChaser, its success rate on MNIST and CIFAR-10 datasets, ranges from
74.12% to 99.92%, with an average of 96.39%. Such results indicate that DiffChaser fails to
find the triggering input for certain seed inputs of all the pairs. Specifically, the success rate
of DiffChaser is lower than 90% for three Quantization Model in the CIFAR-10 dataset,
while DFLARE constantly achieves 100% success rate in all models. For the models that are
trained on ImageNet, the success rates of DiffChaser range from 12.01% to 21.12%. This
result demonstrates that DFLARE outperforms DiffChaser in terms of effectiveness. The
reason is that DiffChaser, especially its k-Uncertainty fitness function, does not properly
measure the differences between two models, resulting in failures to find triggering input for
certain cases. In contrast, the fitness function of DFLARE not only measures the differences
between the prediction outputs of the original and compressed models, but also measures
whether the input triggers previously unobserved states of two models. By combining this
fitness function with our advanced selection strategy of mutation operators, our approach
always achieves 100% success rates in our experiments.

To further investigate the effectiveness of DFLARE, we feed all the non-triggering inputs
in the entire test set as seed inputs into DFLARE on the 18 pairs of models. We found
that DFLARE can consistently achieve a 100% success rate for all 18 pairs. The result on
ImageNet models is in shown in Table 4.5 and it shows that DFLARE is effective to find the
triggering inputs for these large models trained on complex dataset and the success rates
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Table 4.4: Comparison of effectiveness and time-/query-efficiency between DFLARE and
DiffChaser. The results are averaged across five runs using different random seeds.

Dataset Model Compression

DFLARE DiffChaser

Average Average Average Average Average AverageSuccess Time Query Success Time QueryRate (sec) Rate (sec)

MNIST LeNet-1 Quantization-8-bit 100% 0.513 83.97 99.40% 10.654 5812.47

LeNet-5 Quantization-8-bit 100% 0.706 117.02 99.68% 12.598 6040.53

CIFAR-10 ResNet-20 Quantization-8-bit 100% 0.509 30.43 99.76% 33.980 2323.58

MNIST

LeNet-4 Prune 100% 0.056 18.34 99.44% 16.249 6172.57
Quantization 100% 0.187 27.83 98.08% 76.254 6506.53

LeNet-5 Prune 100% 0.071 22.03 98.56% 17.446 6276.38
Quantization 100% 0.225 28.08 98.48% 45.618 6662.88

CNN Prune 100% 0.068 22.51 99.60% 16.381 6053.82
Quantization 100% 0.173 25.34 99.52% 38.039 6450.96

CIFAR-10

PlainNet-20
Prune 100% 0.051 4.31 99.80% 18.222 1896.59

Quantization 100% 0.470 9.13 89.52% 75.191 1696.16
Knowledge Distillation 100% 0.029 3.97 99.72% 12.324 1961.09

ResNet-20
Prune 100% 0.063 4.70 99.88% 23.298 2145.77

Quantization 100% 0.685 10.16 74.12% 83.971 1511.06
Knowledge Distillation 100% 0.032 3.91 99.92% 14.117 2097.28

VGG-16
Prune 100% 0.041 5.84 99.60% 15.619 2453.01

Quantization 100% 1.183 26.16 80.08% 85.709 2129.37
Knowledge Distillation 100% 0.036 5.78 99.80% 16.058 2761.12

ImageNet
Inception Quantization 100% 1.266 21.44 20.20% 163.847 1808.87
ResNet-50 Quantization 100% 0.819 19.24 21.12% 158.393 1702.10

ResNeXt-101 Quantization 100% 3.693 34.49 12.01% 163.936 2030.41
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Table 4.5: Effectiveness of DFLARE on on ImageNet models using entire test set as seed
inputs. The inputs in the ImageNet test set that can trigger deviated behaviors are ex-
cluded from experiments. The results are averaged across five runs.

Dataset Model Accuracy Compression Accuracy
Average Average AverageSuccess Time QueryRate (sec)

ImageNet
Inception 93.45% Quantization 93.35% 100% 1.22 18.54
ResNet-50 95.43% Quantization 94.98% 100% 0.80 15.19

ResNeXt-101 96.45% Quantization 96.33% 100% 4.33 28.22
Average 100% 2.12 20.65

are 100% in five runs. Due to the low efficiency of DiffChaser as shown in the next section,
we are not able to conduct the same experiments using DiffChaser.

Answer to RQ1: DFLARE is effective in finding triggering inputs for compressed
models. Specifically, it constantly achieves 100% success rate in all 18 pairs of models.

4.5.2 RQ2: Efficiency

Time

The two Average Time columns in Table 4.4 show the average time spent by DFLARE

and DiffChaser to find triggering inputs for each seed input if successful. The time needed
by DFLARE to find one triggering input ranges from 0.029s to 3.369s, with the average
value 0.518s. DiffChaser takes much longer time than DFLARE. Specifically, DiffChaser
takes 10.654s∼163.936s to find one triggering input, with the average 52.234s. On average,
DFLARE is 230.94x (17.84x∼446.06x) as fast as DiffChaser in terms of time.

Query

The two Average Query columns in Table 4.4 show the average query issued by DFLARE

and DiffChaser for all seed inputs if a triggering input can be found. Generally, DFLARE only
needs less than 30 queries to find a triggering input, with only two exceptions. On average,
DFLARE requires only 24.99 queries (3.9∼117.0). DiffChaser always needs thousands of
queries for each trigger input (averagely 3642.50), much more than DFLARE. For example,
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Figure 4.4: Histogram of the number of queries required by DFLARE to find the triggering
input for the given seed input on LeNet5 Quantization-8-bit models. The value is averaged
over five repeated experiments.

the smallest number of queries needed by DiffChaser is 1,896.59 for PlainNet-20 and its
pruned model. In the same pair of models, DFLARE only needs 4.31 queries on average.
Overall, the number of queries required by DFLARE is 0.699% (0.186%∼1.937%) of the one
required by DiffChaser.

We further visualize the queries of DFLARE and DiffChaser in Figures 4.4 and 4.5 on two
pairs of models: LeNet-5 Quantization-8-bit and ResNet-20 Knowledge Distillation. They
are selected since the ratio of queries needed by DFLARE over the one needed by DiffChaser
is the smallest (0.186%) and largest (1.937%) in all the 18 pairs of models. Each figure
shows the histogram of the number of queries needed by DFLARE or DiffChaser, as well as
the mean and median. It can be observed that DFLARE significantly outperforms DiffChaser
in terms of queries. The reason is that DiffChaser adopts a genetic algorithm to generate
many inputs via crossover and feed them into DNN models in each iteration. As a result,
it requires thousands of queries from the two models to find a triggering input. In contrast,
DFLARE only needs to generate one mutated input and query once in each iteration.
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Figure 4.5: Histogram of the number of queries required by DiffChaser to find the triggering
input for the given seed input on ResNet-20 Knowledge Distillation models. The value is
averaged over five repeated experiments.
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Answer to RQ2: DFLARE is efficient to find triggering inputs in terms of both time
and queries. On average, DFLARE is 230.94x as fast as DiffChaser and takes only 0.699%
queries as DiffChaser.

4.5.3 RQ3: Ablation Study

We further investigate the effects of our fitness function and mutation operator selection
strategy. Specifically, we create the following two variants of DFLARE.

1. DFLARED: the fitness function in DFLARE is replaced by a simpler fitness function:
Hf,g(x) = Df,g(x) = |pf(x)−pg(x)|. In other words, the fitness function does not trace
the model states triggered by inputs.

2. DFLARER: the selection strategy for mutation operators in DFLARE is changed to
uniform random selection.

For each variant, we measure its success rate, computation time, and the number of
queries needed using the seed inputs of the preceding experiments. Table 4.6 shows the
results. The numbers in parentheses are the ratios of time or queries spent by each variant
with respect the one(s) spent by DFLARE.

Fitness Function

The column DFLARED in Table 4.6 shows the evaluation results of DFLARED. Although
DFLARED still achieves 100% success rate in half of the 18 model pairs, the success rates of
DFLARED for the remaining 21 pairs are clearly lower than those of DFLARE, ranging from
39.44% to 99.04%. The average success rate of DFLARED over all 18 pairs of models is only
83.14%. In terms of the computation time and the number of queries, DFLARED is much
less efficient than DFLARE. Specifically, the time spent by DFLARED is 1.140x∼168.58x
of that spent by DFLARE, with an average value 50.06x. As for the number of queries
needed, the ratios range from 1.18x to 193.20x, and the average ratio is 54.85x. This result
indicates the importance of encouraging the mutated inputs to explore more model states
as formulated by our fitness function.
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Table 4.6: Evaluation results of DFLARED and DFLARER. The numbers in parentheses are
the ratios of time or queries spent by each variant with respect the one spent by DFLARE.
The results are averaged across five runs using different random seeds.

Dataset Model Compression

DFLARED DFLARER

Average Average Average Average Average AverageSuccess Time Query Success Time QueryRate (sec) Rate (sec)

MNIST LeNet-1 Quantization-8bit 41.44% 39.988 (77.93) 8140.54 (96.94) 100% 0.537 (1.05) 89.52 (1.07)

LeNet-5 Quantization-8bit 39.44% 38.244 (54.15) 7422.38 (63.43) 100% 0.752 (1.07) 125.87 (1.08)

CIFAR-10 ResNet-20 Quantization-8bit 100% 3.454 (6.78) 203.91 (6.70) 100% 0.555 (1.09) 30.59 (1.01)

MNIST

LeNet-4 Prune 92.12% 8.242 (148.23) 2970.80 (161.98) 100% 0.062 (1.12) 20.79 (1.13)
Quantization 60.76% 31.162 (166.55) 4861.92 (174.69) 100% 0.200 (1.07) 30.06 (1.08)

LeNet-5 Prune 93.52% 7.428 (104.62) 2473.71 (112.27) 100% 0.080 (1.13) 24.77 (1.12)
Quantization 59.92% 26.699 (118.72) 3548.56 (126.38) 100% 0.237 (1.05) 29.99 (1.07)

CNN Prune 81.04% 11.396 (168.58) 4348.22 (193.20) 100% 0.075 (1.11) 25.14 (1.12)
Quantization 63.68% 26.639 (154.16) 4243.05 (167.46) 100% 0.182 (1.05) 26.39 (1.04)

CIFAR-10

PlainNet-20
Prune 100% 0.037 (1.28) 5.16 (1.30) 100% 0.031 (1.05) 4.05 (1.02)

Quantization 100% 0.058 (1.14) 5.11 (1.18) 100% 0.051 (1.00) 4.32 (1.00)
Knowledge Distillation 100% 0.809 (1.72) 15.85 (1.74) 100% 0.477 (1.02) 9.30 (1.02)

ResNet-20
Prune 100% 0.039 (1.22) 4.95 (1.27) 100% 0.031 (0.98) 3.80 (0.97)

Quantization 100% 0.080 (1.26) 6.07 (1.29) 100% 0.066 (1.03) 4.89 (1.04)
Knowledge Distillation 100% 1.329 (1.94) 19.39 (1.91) 100% 0.690 (1.01) 10.07 (0.99)

VGG-16
Prune 100% 0.047 (1.28) 7.86 (1.36) 100% 0.035 (0.95) 5.49 (0.95)

Quantization 100% 0.050 (1.20) 7.48 (1.28) 100% 0.042 (1.01) 5.90 (1.01)
Knowledge Distillation 99.04% 4.986 (4.22) 117.08 (4.48) 100% 1.133 (0.96) 24.75 (0.95)

ImageNet
Inception Quantization 79.4% 16.064 (12.69) 251.55(11.73) 100% 1.459 (1.15) 25.01 (1.17)
ResNet-50 Quantization 87.4% 12.789 (15.63) 253.57(13.18) 100% 1.418 (1.73) 20.34 (1.06)

ResNeXt-101 Quantization 48.2% 29.019 (7.86) 277.17(8.04) 100% 4.240 (1.15) 40.64 (1.18)

Average Ratio w.r.t. DFLARE 50.06 54.85 1.09 1.05
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Selection Strategy of Mutation Operator

The column DFLARER in Table 4.6 shows the evaluation results of DFLARER. Same as
DFLARE, DFLARER achieves 100% success rate. In terms of efficiency, the average time
spent by DFLARER is 1.09x (0.95x∼1.73x) of that spent by DFLARE. The ratio of queries
required by DFLARER over those by DFLARE is also 1.05x, ranging from 0.95x to 1.18x. In
17 out of 18 pairs, the time and queries required by DFLARE are 91.33% of that required
by DFLARER. For the remaining 4 pairs, DFLARER is marginally (3.5%) more efficient than
DFLARE in terms of time and the number of queries. A possible reason is that with our
fitness function, a triggering input for these four pairs can be found in just a few iterations.
In such cases, the selection strategy of DFLARE has not obtained enough samples to capture
the knowledge of each mutation operator before the triggering input is found. Therefore,
it is possible that DFLARER, which adopts a random mutation strategy with our effective
fitness function, can find the triggering inputs sooner.

To check whether DFLARE statistically outperforms DFLARER in terms of time, we
conduct Wilcoxon significant test [189] and the p-value is 3.604 × 10−4. The p-value
indicates that our MH algorithm for mutation operator selection significantly improves the
efficiency of finding triggering inputs.

Answer to RQ3: Our fitness function and selection strategy both contribute to the
effectiveness and efficiency of DFLARE.

4.5.4 Application of DFLARE: Facilitating Model Dissemination

In this case study, we discuss a potential application of DFLARE to facilitate model dissem-
ination. Specifically, we are going to show that, to a certain extent, the time and number
of queries taken to find triggering inputs can be leveraged as an approximation of to what
extent the behavior of compressed models differs from that of the original models in the
dissemination. Since DFLARE can provide this metric effectively and efficiently, we argue
that DFLARE is able to provide developers with in-time feedback complementary to the
accuracy metric, to assess compressed models.

Correlation

We would like to understand the correlation between the time and queries and to what
extent the behavior of compressed models differs from that of the original models in de-
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Figure 4.6: Correlation between time/query and mutation ratio x, using LeNet-5 for
MNIST (Figure 4.6a), ResNet-20 for CIFAR-10 (Figure 4.6b), and ResNet-50 for Ima-
geNet (Figure 4.6c).

ployment. We manually constructed a series of models from the original models LeNet-5,
ResNet-20 and ResNet-50 in Table 4.2 by mutating x% of weights, where x ranges from 10
to 50, with a step of 10. In the mutation, we randomly mutated the x% of the weights by
increasing or decreasing their values by 10%. Intuitively, the larger x is, the more likely
the behavior of the resulted model differs from the one of original model. These models
serve as a benchmark with the ground truth, i.e., to what extent the resulted model differs
from the original one, for our study. Then we applied DFLARE using the same experiment
settings in §4.4.4 and measured the time and number of queries.

Figures 4.6a to 4.6c show the results for LeNet-5, ResNet-20, and ResNet-50, respec-
tively. Success rates are not presented since all of them are 100%. It is clear that as the
portion of the mutated weight x% increases, the time and queries required to find the
triggering inputs decrease. The Pearson Correlation Coefficients [14] between x and time/-
queries also confirm this strong negative correlation, which are -0.989 (time) and -0.972
(queries) for LeNet-5, -0.968 and -0.967 for ResNet-20, and -0.979 and -0.977 for ResNet-50,
respectively. Since the higher x causes the resulted model to be more likely to differ from
the original models, we claim that the time and queries can approximate to what extent
the behavior of compressed models differs from the one of original models. Specifically, the
less time and fewer queries needed to find triggering inputs, the more likely the compressed
model differs from the original model in the dissemination.
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Figure 4.7: The test accuracy of thirteen compressed models.

Application

Now we present an application of DFLARE in model dissemination. When compressing
a pre-trained model, developers often need to prepare a compression configuration [90,
34]. For example, the configuration of model pruning usually specifies which layers in the
original model are to be pruned. A common way is to select the configuration that produces
the highest accuracy on test set. However, as we will demonstrate, only using accuracy
is insufficient to distinguish different models, and DFLARE can provide complementary
information to facilitate this process.

We prepared a VGG-16 model by training it from scratch using the CIFAR-10 training
dataset. After the loss and accuracy became saturated, its top-1 accuracy on the CIFAR-
10 test set is 86.34%. Given this original model, we created a set of compressed models by
pruning only one of the thirteen convolutional layers in the VGG-16 model at one time.
In total, we collected thirteen compressed models using PyTorch and we referred to them
as m1, m2, · · · , m13, where mi is the compressed model obtained by pruning the i-th
convolutional layer of the original model. Figure 4.7 shows the top-1 accuracy of each
compressed model. The accuracy of these models ranges from 86.24% to 86.37% and is
almost identical to the accuracy of the original model (86.34%) with a maximal difference
of 0.10%. If this developer uses accuracy as the single evaluation metric, it seems that
these models achieve indistinguishable performance, and thus it makes no difference to
select any of them for dissemination.

In this scenario, DFLARE can quickly provide complementary information that is or-
thogonal to accuracy. Figure 4.8a shows the average time and queries when using DFLARE

to find one bug-triggering input. Same as the previous settings, we repeated each experi-
ment five times using 500 seed inputs. Although the accuracy of these models is similar,
the information generated by DFLARE leads to a different conclusion. Specifically, it is
relatively harder to find a deviated behavior for the compressed model whose pruned layer
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Figure 4.8: The results using DFLARE and DiffChaser on thirteen compressed models.
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is at the bottom of VGG-16, than the models whose pruned layer is at the top. For exam-
ple, m13 requires much more time and queries than m1. According to the aforementioned
correlation, if we use the time and number of queries as an approximation of the likelihood
that the compressed model behaves differently from the original model, it is clear that m13

has the least likelihood among all thirteen models. Taking account of the perspectives from
both accuracy and this likelihood information provided by DFLARE, the developers should
choose the compressed model m13 or m12 for dissemination, since they have not only the
comparable accuracy, but also the least likelihood to exhibit deviated behaviors.

Figure 4.8b shows the results generated by DiffChaser. The average success rate of
DiffChaser is only 86.3%, which is 13.7% lower than DFLARE. The time and number of
queries required by DiffChaser demonstrate the same trend as the one using DFLARE, i.e.,
the models whose pruned layers are at the bottom of the VGG16, e.g. m13/m12, are less
likely to have deviated behaviors than others, e.g. m1/m2. DFLARE can provide such in-
time feedback to developers due to its high effectiveness and efficiency, making it practical
to utilize this technique in daily tasks. In contrast, even though DiffChaser may also
provide similar information, it takes much a longer time (37.4x on average) and more
queries (29.74x) to do so, imposing large computation cost. For example, given a set of
500 seed inputs and m2, DiffChaser requires 6.1 hours and 2,370,800 queries, while DFLARE

only needs 8.9 minutes and 73,320 queries.

Answer to RQ4: DFLARE can provide developers with in-time feedback complemen-
tary to the accuracy metric, to assess compressed models.

4.5.5 Application of DFLARE: Repairing the Deviated Behaviors

We further explored the possibility to repair the deviated behaviors of the compressed mod-
els for image classification models using the triggering inputs found by DFLARE. A common
approach to improving the performance of DNN models is to retrain the DNN models. For
example, adversarial training can improve the robustness of DNN models [206, 155]. How-
ever, without accessing the internal architectures and status of compressed models, it is
difficult to repair the deviated behaviors directly via retraining. Therefore, we explored an
alternative approach that repairs the deviated behaviors without the need to retrain the
compressed model. Please note that we are not attempting to repair the triggering inputs
in the original test sets, since the number of triggering inputs in the original test set is
ineligible, as shown in Algorithm 2. It is the duty of compression techniques to reduce the
number of triggering inputs in the original test set, to avoid accuracy degradation due to
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Figure 4.9: The workflow of DREPAIR to repair deviated behaviors of compressed model.

model compression.

Design of DREPAIR

We proposed a prototype, DREPAIR, to repair the deviated behaviors of the compressed
models for image classifications. Our intuition is that the substantial amount of triggering
inputs found by DFLARE contains essential characteristics of such triggering inputs, and
may thus be used to train a separate repair model to fix the deviated behaviors. Figure 4.9a
illustrates the workflow of DREPAIR. DREPAIR is a supervised classifier, serving as a post-
processing stage of the target compressed model. Given an input x and the probability
vector g(x) = [p1, p2, p3, · · · , pn] outputted by a compressed model g, DREPAIR takes as
input the probability vector g(x) and is expected to output a label lg(x) such that lg(x) =
lf(x), where the label lf(x) is outputted by the original model f given the same input x.
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Figure 4.9b shows the workflow to train DREPAIR. After collecting a set of seed inputs,
we first 1 feed each seed input xs to the compressed model under test g and collect the
probability vector g(xs). Then we 2 utilize DFLARE to find the triggering input xt given
the seed input xs and obtain its probability vector g(xt) using the compressed model g.
Since DREPAIR is a supervised classifier, each vector in the training set is assigned a target
label. For vector g(x), we 3 use the label outputted by the original model f given input
x as the target label, i.e. lf(x). This is because the objective of DREPAIR is to produce a
label that is the same as the label from original model.

Implementation and Evaluation of DREPAIR

We implemented DREPAIR using a Single-layer Perceptron (SLP), i.e., a neural network
with a single hidden layer [150]. We chose SLP since it is light-weight in terms of com-
putational resources and thus is applicable to be deployed along with compressed models
in embedded systems. We used five-fold cross-validation to evaluate the performance of
DREPAIR using the seed inputs and triggering inputs found by DFLARE in RQ2. Specifically,
for each set of 500 pairs of seed input and triggering input, we collected their probability
vectors and split them into five portions of equal size. We chose four of them for the train-
ing set of DREPAIR, and the remaining one as its test set. In other words, each training set
contains 400 non-triggering inputs and 400 triggering inputs, and each test set X contains
100 non-triggering inputs and 100 triggering inputs. In a five-fold cross-validation, we
repeated the training and testing five times and ensured a different training and test set
is used in each time. Each five-fold cross-validation was conducted 5 times using different
random seeds.

We measure the performance of DREPAIR from the following three perspectives. In
particular, we use Xt to denote the set of triggering input and use Xs to denote non-
triggering inputs in the test set X. As we mentioned in the above paragraph, the sizes of
Xt, Xs and X are 100, 100 and 200, respectively.

Repair Count and Repair Ratio. We first use Repair Count to measure the number
of triggering inputs in Xt that do not trigger deviated behaviors after repair, i.e.,

Repair Count =
|Xt|∑
i=1

oxi

where oxi
is an indicator and oxi

= 1 only if lg(xi) = lf(xi), i.e., xi does not trigger deviated
behavior after repair; otherwise, it is 0. |Xt| is the number of inputs in Xt.
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We then measure Repair Ratio, i.e., the ratio of Repair Count in Xt. Repair Ratio
measures the percentage of triggering inputs in Xt that do not trigger deviated behaviors
after repair. The higher the repair ratio is, the more triggering inputs are repaired by
DREPAIR.

Repair Ratio =
Repair Count

|Xt|
× 100% =

∑|Xt|
i=1 oxi

|Xt|
× 100%

Inducing Count and Inducing Ratio. We use Inducing Count to denote the number
of non-triggering inputs in Xs that trigger deviated behaviors after repair, i.e.

Inducing Count =
|Xs|∑
i=1

kxi

where kxi
is an indicator and kxi

= 1 only if lg(xi) ̸= lf(xi), i.e., xi triggers deviated behaviors
after repair; otherwise, it is 0. |Xs| is the number of inputs in Xs.

Then we use Inducing Ratio to measure the ratio of Inducing Count in Xs. Specifically,
Inducing Ratio measure the percentage of non-triggering inputs in Xs that trigger deviated
behaviors after repair. The lower the inducing ratio is, the fewer deviated behaviors are
induced by DREPAIR.

Inducing Ratio =
Inducing Count

|Xs|
=

∑|Xs|
i=1 kxi

|Xs|
× 100%

Improvement Count and Improvement Ratio. We use Improvement Count to mea-
sure the difference between the number of deviated behaviors in X before repair by DREPAIR

and the number of deviated behaviors in X after repair. Specifically, the number of devi-
ated behaviors before the repair is equal to the number of triggering inputs in X, i.e. |Xt|.
A deviated behavior after repair is triggered by xi if lg(xi) ̸= lf(xi). Since the indicator
kxi

= 1 if and only if lg(xi) ̸= lf(xi), the number of deviated behaviors after repair in X is
counted as

∑|X|
i=1 kxi

. Therefore, the difference between the number of deviated behaviors
in X before repair and after repair is denoted as

Improvement Count = |Xt| −
|X|∑
i=1

kxi

We then use Improvement Ratio to measure the ratio of Improvement Count w.r.t. to
the number of deviated behaviors in X before repair. The higher the improvement ratio
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is, the more effective DREPAIR is to repair the deviated behaviors of compressed models.

Improvement Ratio =
Improvement Count

|Xt|
× 100% =

|Xt| −
∑|X|

i=1 kxi

|Xt|
× 100%

Noticed that the Improvement Ratio can be zero or negative when the number of
triggering inputs after repair is equal to or larger than the number of triggering inputs
before repair, i.e., Improvement Count ≤ 0. In such situations, the repair process fails
since the number of deviated behavior after repair is more than or equal to the number of
deviated behavior before repair.

Table 4.7 shows the results. On average, DREPAIR repairs 32.73% triggering inputs.
Although DREPAIR induces 4.17% new deviated behaviors, overall DREPAIR reduces the
number of deviated behaviors by 30.16%. In the best case, the number of deviated be-
haviors is reduced by 48.48%. In conclusion, it is feasible to repair the deviated behaviors
using the triggering inputs found by DFLARE. A promising feature work is to propose more
advanced approaches to achieve this objective.

We further leveraged DFLARE to test these models that are repaired by DREPAIR. Specif-
ically, we selected the three models that have the highest improvement ratios to see if these
models that are relatively successfully repaired by DREPAIR can decrease the effectiveness
or efficiency DFLARE. Meanwhile, we also selected the three models trained on ImageNet to
investigate the effects of DREPAIR in large and complex models. Table 4.8 shows the effec-
tiveness and efficiency of DFLARE when the compressed model is not repaired by DREPAIR

and when the compressed model is repaired by DREPAIR. After repair, DFLARE can still
achieve 100% success rates in these six models. However, the time spent by DFLARE to find
each triggering input in the compressed model repaired by DREPAIR is 2.27x∼5.87x as the
one spent by DFLARE on the compressed models without repair. The number of queries is
also increased to 1.46x∼4.54x as the one without repair. As a proof of concept proposed
by us, DREPAIR can effectively decrease the efficiency of DFLARE. We will make the efforts
to improve the effectiveness of DREPAIR as our following work.

Answer to RQ5: DREPAIR reduces the deviated behaviors up to 48.48% and decreases
the efficiency of DFLARE. This result demonstrates the feasibility to repair the deviated
behaviors using the triggering inputs found by DFLARE. We call for contributions from
the community to propose more advanced approaches.
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Table 4.7: Evaluation results of DREPAIR. The results are averaged across five-fold cross-
validation. Noticed that since Xs and Xt are equal to 100 in each fold of validation, the
Count = Ratio× 100.

Dataset Model Compression

DREPAIR

Average Average Average
Repair Inducing Improvement

Count Ratio Count Ratio Count Ratio

MNIST LeNet-1 Quantization-8-bit 30.56 30.56% 0.36 0.36% 30.20 30.20%

LeNet-5 Quantization-8-bit 24.28 24.28% 0.12 0.12% 24.16 24.16%

CIFAR-10 ResNet-20 Quantization-8-bit 15.04 15.04% 0.52 0.52% 14.52 14.52%

MNIST

LeNet-4 Prune 48.48 48.48% 0.00 0.00% 48.48 48.48%
Quantization 35.68 35.68% 0.00 0.00% 35.68 35.68%

LeNet-5 Prune 43.20 43.20% 0.08 0.08% 43.12 43.12%
Quantization 38.68 38.68% 0.00 0.00% 38.68 38.68%

CNN Prune 42.44 42.44% 0.04 0.04% 42.40 42.40%
Quantization 36.55 36.55% 0.04 0.04% 36.50 36.50%

CIFAR-10

PlainNet-20
Prune 50.40 50.40% 12.92 12.92% 37.48 37.48%

Quantization 32.20 32.20% 8.16 8.16% 24.04 24.04%
Knowledge Distillation 23.34 23.34% 6.77 6.77% 16.56 16.56%

ResNet-20
Prune 49.32 49.32% 12.24 12.24% 37.08 37.08%

Quantization 36.28 36.28% 6.44 6.44% 29.84 29.84%
Knowledge Distillation 24.78 24.78% 6.38 6.38% 18.40 18.40%

VGG-16
Prune 37.68 37.68% 5.12 5.12% 32.56 32.56%

Quantization 25.64 25.64% 6.88 6.88% 18.76 18.76%
Knowledge Distillation 19.28 19.28% 4.78 4.78% 14.50 14.50%

ImageNet
Inception Quantization 28.69 28.69% 7.26 7.26% 21.43 21.43%
ResNet-50 Quantization 18.94 18.94% 4.01 4.01% 14.93 14.93%

ResNeXt-101 Quantization 25.92 25.92% 5.44 5.44% 20.48 20.48%
Average 32.73 32.73% 4.17 4.17% 28.56 28.56%
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Table 4.8: The effectiveness and efficiency of DFLARE on the compressed model without
DREPAIR and with DREPAIR. The numbers in parentheses are the ratios of time or queries
spent by DFLARE on the compressed model repaired by DREPAIR with respect the one spent
by DFLARE on the model without DREPAIR. The results are averaged across five runs using
different random seeds.

Dataset Model Compression

Without DREPAIR With DREPAIR

Improvement Average Average Average Average Average AverageRatio Success Time Query Success Time QueryRate (sec) Rate (sec)

MNIST
LeNet-4 Prune 48.48% 100% 0.056 18.34 100% 0.245 (4.83) 55.67 (3.04)
LeNet-5 Prune 43.12% 100% 0.071 22.03 100% 0.169 (2.38) 33.86 (1.54)
CNN Prune 42.40% 100% 0.068 22.51 100% 0.399 (5.87) 102.29 (4.54)

ImageNet
Inception Quantization 21.44% 100% 1.266 21.44 100% 2.880 (2.27) 31.40 (1.46)
ResNet-50 Quantization 18.94% 100% 0.819 19.24 100% 2.959 (3.61) 39.45 (2.05)

ResNeXt-101 Quantization 25.92% 100% 3.693 34.49 100% 9.872 (2.67) 55.06 (1.60)

4.6 Discussion and Future Work

4.6.1 Demonstration of the Generalizability of DFLARE on Other
Domain

Our study focuses on the compressed models for image classifications, but our approach can
also be applied to the compressed models in other domains after proper adaptions, espe-
cially the mutation operators. To demonstrate this, we applied DFLARE to the compressed
models on Speech-to-Text task. Given an audio clip as input, Speech-to-Text models aim
to translate the audio into text. We used the original models and compressed models
provided by Mozilla DeepSpeech [63, 117]. We selected Mozilla DeepSpeech since it is a
well-recognized open-source project (with more than 20,000 stars) and it provides detailed
documentation for us to deploy. There are two pairs of original models and compressed
model used in our evaluation. Specifically, the latest version of DeepSpeech, i.e., v0.9.3,
provides a pair of original model and compressed models and the second latest version,
v0.8.2, provides the second pair of models (versions between these two versions provide the
same models as v0.9.3). In both version, the compressed models are quantized from the
original models.

We adjusted DFLARE in two aspects to apply it in Speech-to-Text models. First, we
adopted the audio-specific mutation operators since audio and images have different char-
acteristics. Specifically, we used the operators TimeStretch, PitchShift, TimeShift, and
Gain (volume adjustment) provided by Audiomentations [9], a Python library to mutate
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Table 4.9: Effectiveness of DFLARE on on Speech-to-Text models. The results are averaged
across five runs.

Model Version Compression

DFLARE DiffChaser

Average Average Average Average Average AverageSuccess Time Query Success Time QueryRate (sec) Rate (sec)

DeepSpeech v0.9.3 Quantization 100% 5.740 8.42 95.6% 169.365 223.04
v0.8.2 Quantization 100% 4.812 5.88 95.5% 168.402 214.53

audio. Since these operators are also used in DeepSpeech for data augmentation during
model training [116], we believe that these operators are regarded as representative mu-
tations by developers. Second, since the output of Speech-to-Text models is a sentence,
rather than a label in image classifications, we also adjusted the methodology to compare
the outputs of original models and compressed models. Specifically, in image classification
models, DFLARE compares the labels outputted by original models and compressed models,
while in Speech-to-Text, DFLARE compares the sentences word by word. Given the same
audio, if the original model and compressed model output different sentences, such as “the
character which your royal highness assumed is imperfect harmony with your own” vs “the
character which your royal highness summed is imperfect harmony with your own”, such
an audio input is labeled as triggering input. We also made the same adjustment to the
baseline DiffChaser. Three authors carefully reviewed the adjustment to avoid possible
mistakes.

We randomly selected 500 audio inputs from the test set of Librispeech dataset [126].
According to the documentation of DeepSpeech, Librispeech is used by Mozilla Deep-
Speech in training and testing. We used the same timeout as RQ1, i.e., 180 seconds. The
experiments were repeated five times using different random seeds.

Table 4.9 shows results. The success rates of DFLARE are 100% in five runs. On
average, it takes DFLARE 4.812∼5.740s and 5.88∼8.42 queries to find a triggering input.
By contrast, DiffChaser fails to find triggering inputs for around 4.5% seed inputs and
it takes DiffChaser around 168 seconds and 214.53∼223.04 queries to find one triggering
input. The time and queries spent by DFLARE is only 2.4%∼3.4% and 2.7%∼3.8% of the
one required by DiffChaser, respectively. This result demonstrates the effectiveness and
efficiency of DFLARE on Speech-to-Text tasks.

We also tried to fix the triggering inputs using DREPAIR but we were not able to achieve
a reasonable result. Our conjecture is that repairing the models trained for Speech-to-Task
are much more complicated than the models trained for image classifications. Specifically,
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for image classification models trained on ImageNet, DREPAIR is expected to output the
label that is same as the label outputted by the original model from 1,000 candidate labels
(since ImageNet has 1,000 image labels). In contrast, for the Speech-to-Text task, the
output of models is a sentence that can have an arbitrary number of words and there are
around 977,000 unique English words in Librispeech. To successfully repair the results
outputted by compressed models, DREPAIR needs to not only select a correct set of words
from these 977,000 words, but also make sure these words are in the proper order since
the meaning of a sentence also depends on the order of words. As a simple prototype
proposed by us, DREPAIR is not able to handle such a complicated scenario. We leave the
improvement of DREPAIR of large datasets like Librispeech for future work.

4.6.2 Effect of Timeout

In our evaluation, we used 180s as timeout for both DFLARE and DiffChaser. To understand
the effect of timeout on the effectiveness of DFLARE, we conducted further experiments
using smaller timeouts. Specifically, we evaluated the success rate of DFLARE using 15s,
10s and 5s. Our experiments covered all the pairs of models in RQ2 and used all the images
from MNIST and CIFAR-10 test sets as seed inputs.

DFLARE achieves 100% success rates for the 14 pairs of models out of 18 pairs even
using 5s as the timeout. Table 4.10 shows the results of the remaining four pairs of models.
The success rates of DFLARE for these four pairs drop to different levels when the timeout
is shortened. The most significant decrease comes from the PlainNet-20 and its quantized
model. Specifically, its success rate drops to 76.93% when the timeout is set to 15s. The
success rate drops further to 10.90% with 5s timeout. The success rate for VGG-16 and
its compressed model also drops to 40.06% with 5s timeout. As for the other two pairs
of models in Table 4.10, their success rates slightly decrease to 99.98% and 89.12% if 5s
timeout is used, respectively. In summary, DFLARE is effective for 16 out of 18 pairs of
models even a short timeout such as 10s is used.

An interesting observation from Table 4.10 is that all the compressed models in Ta-
ble 4.10 are compressed using 8-bit quantization. A possible explanation is that the dif-
ference between an original model and its compressed model induced by quantization is
relatively smaller than the difference induced by pruning and knowledge distillation. There-
fore, it takes a relatively long time for DFLARE to find the deviated behavior for quantized
models.
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Table 4.10: The success rates of DFLARE using different timeouts. The pairs of models
that have 100% success rate using 5s timeout are not included. The results are averaged
across five runs.

Dataset Model Compression Timeout

15s 10s 5s

CIFAR-10 ResNet-20 Quantization-8-bit 100% 100% 99.98%

CIFAR-10

PlainNet-20 Quantization 76.93% 43.76% 10.90%

ResNet-20 Quantization 100% 99.30% 89.12%

VGG-16 Quantization 95.87% 79.30% 40.06%

4.6.3 Uniqueness of Triggering Inputs

We carefully checked the triggering inputs found by DFLARE in Table 4.4. Specifically, we
first represented each triggering input x as a matrix Ax with size H ×W × C, where H
and W are the height and width of the image, respectively, and C refers to the number of
channels of the image (C = 3 in color images and C = 1 in gray images). Please note that
the pixels in images are integers in the range [0, 255], and thus the elements in Ax are also
integer numbers in the range [0, 255]. For each triggering input x, we check if there exists
a triggering input y such that the matrix Ax is equal to the matrix Ay. If such y exists,
the inputs x and y are labeled as duplicated triggering inputs. Otherwise, x is a unique
triggering input.

Out of 105 experiments (18 pairs of models × 5 runs), 77 experiments do not have
any duplicated triggering inputs. For the remaining 28 experiments, on average, 99.04%
of the triggering inputs are unique to each other. In other words, the vast majority of the
triggering inputs found by DFLARE are unique.

4.6.4 Future Work

A useful future work is to fix the deviated behaviors for compressed DNN models. As we
showed in §4.5.5, there is still a significant improvement space for the performance of our
repair prototype. A promising research direction is to propose an effective and efficient
approach for this issue.
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In §4.6.1, we demonstrate the generalizability of DFLARE in Speech-to-Text tasks. A
promising direction is to apply DFLARE to other domains, such as natural language pro-
cess [41] and object detection [143]. To achieve this, the mutation operators should be
properly customized based on domain-specific knowledge. Meanwhile, the test oracle may
be adjusted accordingly, since the DNN models in other domains may concern factors
other than labels. For example, in object detection, the location and boundary of the
detected object are also important [66]. Moreover, a sufficient number of compressed mod-
els and datasets from the AI community are critical to comprehensively evaluate the new
techniques in other domains. We believe it is a fruitful working direction to explore.

Another potential follow-up direction is to leverage DFLARE to directly test the DNN
models deployed on the embedded or mobile platforms. This may help the developers
reveal the deviated behaviors induced by the hardware or firmware of such platforms.

DFLARE may also be improved in various ways. For example, DFLARE adopts the top-1
probability to measure the distance between the outputs of two models. Future work may
explore other distance metrics, such as Lp distance [22] (including L0, L1 and L∞) and
K-L divergence [73]. The efficiency of DFLARE could be further improved by proposing new
mutation operators and designing effective selection strategies for mutation operators.

4.7 Threats to Validity

4.7.1 Internal Threats

First, both DFLARE and DiffChaser have randomness at certain levels. Such randomness
may affect the evaluation results. To alleviate this, all experiments are repeated five times
using different random seeds and the average results are presented. We found that the
variance across these five runs are low and the conclusions of our evaluation are consis-
tent in each run, i.e., DFLARE outperforms DiffChaser in both effectiveness and efficiency.
Therefore, we did not run the experiments more times.

Second, to comprehensively evaluate DFLARE using diverse compressed DNN models,
we construct the first benchmark containing 18 pairs of original model and its compressed
model. Since there are no published pairs of the original model and its compressed model
for 15 out of 18 pairs, we prepare them based on popular compression algorithms. Specif-
ically, we train the DNN models from scratch and then compress them using popular
model compression techniques. Both processes may be affected by the randomness in deep
learning at a certain level [132]. To mitigate this threat, for model training, we follow the
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practice from AI community and train each model until the loss value is saturated. We also
compare their accuracy with the one reported by their original publications. The accuracy
of each model trained by us is close to its published accuracy. In order to make sure that
the model compressed by us are valid evaluation subjects, we utilize an existing tool from
Intel AI Lab [222] and carefully follow the instructions. The accuracy of each compressed
model is close to that of its original model. This suggests that our compression processes
are reliable.

Third, it is possible that the triggering inputs found by DFLARE do not comply with
the real world data distribution. To alleviate such a problem, DFLARE used the mutation
operators from prior work [130, 197, 172, 104, 196] and these mutation operators are de-
signed to simulate the scenario that DNN models are likely to face in the real world. For
example, the mutation operator Random Pixel Change simulates effects of “dirt on camera
lens” [130]. Gaussian Noise is one of the most frequently occurring noises in image sig-
nal [17]. Therefore, the triggering inputs found by DFLARE using these mutation operators
are highly likely to comply with the real-world inputs to be fed to DNN models in model
deployment.

Lastly, since the implementation of DiffChaser shared by its authors only supports
image classification models, we carefully revised its source code to support Speech-to-Text
models in §4.6.1. It is possible that our revision might have mistakes and thus affects its
effectiveness and efficiency. To address this threat, three authors carefully reviewed the
changes made by us to avoid possible mistakes.

4.7.2 External Threats

We evaluate our approach using 18 compressed models. The selection may not cover all
compression techniques proposed by the communities. To mitigate this, the models selected
are representative as they are trained on two common datasets at different scales, and then
compressed using popular model compression techniques. Besides, the architectures of
the selected models are diverse and include the ones that are commonly used by existing
studies [130, 172, 171].
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4.8 Related Work

4.8.1 Testing Deep Learning Applications

DeepXplore [130] is the first technique targeted at testing DNN models. It proposed
neuron coverage, which measures the activation state of neurons, to guide the generation
of test inputs. DeepXplore is based on differential testing and it uses multiple models
of a task to detect potential defects. To alleviate the need of multiple models under
test, DeepTest [172] leverages metamorphic relations [24] that are expected to hold by
a model as its test oracles. Both DeepXplore and DeepTest perturb their test inputs
based on the gradient of deep learning models. TensorFuzz [124] and DeepHunter [196]
are whitebox fuzzing-based testing techniques. They guide the input mutation by certain
predefined coverage, instead of gradient, in order to trigger the unexpected behaviors of
deep learning models, e.g. numerical errors and classifications. To assess the quality of DNN
models, DeepJanus [146] proposes the notion of frontier of behaviors, i.e., pairs of inputs
that have different predictions from the same DNN model. Given a DNN model under
test, DeepJanus leverages a multi-objective evolutionary approach to find the frontier of
behaviors. It further utilizes the model-based input representation to assure the realism of
generated inputs.

Our approach, DFLARE, differs from these techniques in two ways. First, DFLARE

focuses on the deviated behaviors of compressed models, while existing techniques target
the normal models. Second, the majority of existing testing techniques for DNN models
are whitebox [130, 172, 24, 124, 196], making use of the models’ internal states, such
as gradients and neuron coverage, which are often unavailable for compressed models.
Therefore, these techniques are not applicable to testing compressed DNN models. In
contrast, our approach is specifically designed for compressed models and it does not require
the internal information from the model under test. The black-box testing approaches,
e.g., DeepJanus, with proper adaptations, are promising to be applied in finding deviated
behaviors of compressed DNN models. We will explore this direction in the future work.

Besides DiffChaser, there are also several recent studies specifically targeting on com-
pressed models. DiverGet [201] presents a search-based approach to assess quantization
models for hyperspectral images. It proposes a set of domain-specific metamorphic rela-
tions to transform the hyperspectral images and use them to mutate hyperspectral images.
BET [181] is a testing method for convolutional neural network(CNN)s. It splits a convo-
lutional kernel into multiple zones of which the weights have the same positive or negative
signs. The insight is that the decisions of CNNs are likely to be affected by continuous
perturbations, i.e., the perturbations that have the same sign with each zone. These two
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approaches are either specific to the compression methods (quantization model in Diver-
Get) or types of DNN (CNN in BET), while DFLARE is a general approach for diverse
types of model architectures and compression methods. We do not include their approach
in our evaluation since their tools are not available.

4.8.2 Empirical Study on the Deployment Issues of Deep Learning
Applications

Researchers have conducted several empirical studies to characterize the issues in deploying
DNN models, including compressed DNN models. Guo et al. found that the DNN models
deployed in other platforms may exhibit different behaviors from the original models [59].
Hu et al. conducted a deep analysis for quantization models [68]. They found that retrain-
ing the compressed models with triggering inputs cannot effectively reduce the behavioral
difference between the original model and the compressed one. Our approach, DFLARE,
is a testing technique for compressed models, with the aim to help developers address
these issues in model deployment and dissemination. Using the triggering inputs found by
DFLARE, our prototype DREPAIR is able to repair up to 48.48% deviated behaviors.

4.8.3 Differential Testing

DFLARE aims to find deviated behavior between two DNN models. Related works also
include those applying differential testing to detect inconsistencies across two pieces of
traditional software. McKeeman [109] originally proposed differential testing in 1998 to
expose bugs in software systems using test cases that result in inconsistent execution results
in multiple comparable systems. Le et al. [85] introduced EMI, which applies differential
testing on compilers using semantically equivalent programs. Inconsistent execution out-
puts of compiled programs may indicate defects in compilers. Further, differential testing
is also applied in JVM implementations [96] using mutated Java bytecode [26].

The objective of DFLARE is similar to differential testing. Rather than two pieces of
code, the systems under test for DFLARE are DNN models and their compressed ones.

4.8.4 Differential Verification of Deep Learning Applications

ReluDiff [128] and its following work [129] share certain similar objectives with our approach
although it is not a testing technique. It leverages the structural and behavioral similarities
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of the two closely related networks in parallel, to verify whether the output difference of the
two models are within the specification. In the evaluation, they use the pairs of compressed
model and the original model as subjects.

Our work differs from ReluDiff in two ways. First, ReluDiff can only be used in forward
neural networks with relu activation function for both compressed and original models.
This limits its application scenarios. Sophisticated DNN models usually contain convolu-
tional layers and recurrent layers. The advantage of DFLARE is that it makes no assumption
on the model architecture, making it applicable to a wide range of application scenarios.
Second, ReluDiff needs to know the architectures and weights of DNN models for verifica-
tion, while DFLARE works for black-box models.

4.9 Chapter Conclusion

In this chapter, we proposed DFLARE, a novel, effective input generation method to find
deviated behaviors between an original DNN model and its compressed model. Specifically,
DFLARE leverages the MH algorithm in the selection of a mutation operator at each iteration
to successively mutate a given seed input. DFLARE incorporates a novel fitness function
to determine whether to use a mutated input in subsequent iterations. The results show
that DFLARE outperforms prior work in terms of both effectiveness and efficiency. DFLARE

constantly achieves 100% success rate but uses significantly less amount of time and queries
than the state of the art. We also explored the possibility to repair such deviated behaviors
using the triggering inputs found by DFLARE. Our prototype DREPAIR can repair up to
48.48% deviated behaviors and decrease the effectiveness of DFLARE on the repaired models.
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Chapter 5

Unreliable Assessment of Deep Learning
Applications

5.1 Introduction

Compilers are among the most important, fundamental system software. Every program,
no matter whether it is an operating system or application, has to be compiled by a com-
piler from source code into binary executable, so that the program can be executed by a
computer. Hence the reliability of compilers is critical, especially in the era of digitalization.
To this end, automated compiler testing is an active research area which aims to automati-
cally find bugs in production compilers. Various language-specific methodologies [202, 102]
have been proposed to generate random programs to test whether a compiler can correctly
compile these programs; if the compiler crashes or hangs (i.e., the compilation process
does not terminate normally), or the compiled binary behaves differently from the source
code, then a compiler bug is found. For example, Csmith [202] is designed to randomly
generate well-defined C programs1 and can generate only C programs. Csmith has helped
find hundreds of bugs in GCC and LLVM, and therefore has been integrated into the daily
testing routine of GCC. However, it is non-trivial, time-consuming, and labor-intensive
to design and implement such a language-specific program generator (referred to as LSG),
which requires comprehensive language-specific domain knowledge to design correct, subtle
program generation rules.

1A program is well-defined if the program does not contain any undefined behaviors; and an undefined
behavior is a behavior that is not defined in the C language standard [71].
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To minimize the cost of engineering a random program generator for compiler testing,
researchers recently resorted to deep learning techniques [100, 37]. Such a deep learning-
based program generator (referred to as DLG) attempts to automatically learn the syn-
tactic and semantic rules of a programming language from human-written programs using
a sophisticated deep learning model. Later, the DLG uses the trained model to generate
programs to test the compiler of this language. Creating a DLG does not involve human
efforts to encode domain knowledge into program generation rules, and this approach is
demonstrated to be effective in compiler testing compared to LSGs. For example, Deep-
Fuzz [100] claimed that it triggers more code paths in GCC than Csmith.

However, we argue that it is unfair to use LSGs as the baseline to evaluate DLGs. An
LSG usually has complex generation rules to ensure the generated programs are compilable
and well-defined, in order to validate whether compilers correctly optimize and produce
binary code. These generation rules inevitably restrict the diversity of language features
used in the generated test programs. For example, Csmith-generated programs only cover
a small subset of the C language features, and mainly exercise the optimization algorithms
in compilers but not the front end of compilers that handles lexing and parsing. By
contrast, existing DLGs cannot warrant well-defineness or even compilableness, and may
use arbitrary language features depending on the programs in the dataset. Therefore, it is
not surprising to see that LSG-generated programs trigger lower code coverage in compilers
than DLG-generated programs, especially code coverage in the front end of compilers;
in terms of bug detection ability, it is also expected that LSGs such as Csmith do not
trigger more bugs than DLGs because LSGs have been heavily used by various compiler
communities in the past (e.g., Csmith has been used for years on a daily basis) and their
bug detection ability has saturated. Overall, using LSGs as baselines to evaluate DLGs
likely leads to biased conclusions.

Kitten. To help researchers fairly evaluate DLGs with proper baselines, we propose
Kitten, a simple yet strong, fair baseline. Kitten is a language-agnostic program generation
technique that supports abundant language features. Same as a DLG, Kitten requires a
dataset consisting of programs. However, instead of the time-consuming step of training
a deep neural model to create a DLG, Kitten directly generates new test programs by
mutating the programs in the dataset. Specifically, given a program P in the dataset,
Kitten randomly mutates the tokens of P or nodes in the parse tree [3] of P , and outputs
the mutation result as a new test program.2 Kitten has obvious advantages over both LSGs
and DLGs. Kitten is much easier to implement than LSGs as it does not need domain

2Parsing a program into a list of tokens or a parse tree can be easily done with a parser generator such
as Antlr [5], and the grammars of most main-stream programming languages are also available online [6].
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knowledge to carefully design the rules to generate programs; Kitten does not have the
constraints defined by Csmith or similar work [102], and thus supports diverse language
features to comprehensively test compilers. Compared to DLGs, Kitten does not need to
train a deep learning model, thus saving significant time and computational resources for
training and generation; moreover, Kitten is interpretable, and extensible to support new
mutation strategies.

Re-evaluating DLGs Using Kitten. Using Kitten as the baseline, we conducted a
comprehensive experiment to empirically revisit the performance of two representative
DLGs, i.e., DeepSmith [37] and DeepFuzz [100]. Considering the simplicity of Kitten, it is
reasonable to expect that DLGs should at least perform similarly to Kitten. However, with
1,500-CPU/GPU-hour experiment and analysis, the results show that the performance
of existing DLGs is far from this simple, reasonable objective in three perspectives: bug
detection ability, the diversity of language features in the generated programs and code
coverage of compilers. In 72-hour testing on GCC, DeepSmith triggers 3 hang bugs and
1 distinct crashes, while Kitten triggers 1,750 hang bugs and 34 distinct crashes. The
generated programs by Kitten cover 21,053 more lines and 26,853 more branches than the
dataset, which is at least 2x as the one generated by DeepFuzz and DeepSmith. Moreover,
the numbers of features leveraged in the generation by DeepSmith and DeepFuzz are also
only around 64% of the one by Kitten. We believe that DLGs still have much room for
improvement to compete against the simple baseline Kitten.

Contributions. We make the following contributions.

1. We identify that the evaluations of the state-of-the-art DLGs are biased due to the use
of improper baselines.

2. We propose Kitten, a simple yet strong language-agnostic program generator as a fair
baseline for evaluating DLGs.

3. We empirically demonstrate that DLGs have much room for improvement as they fail
to compete with Kitten.

4. We make Kitten publicly available at https://doi.org/10.5281/zenodo.7946826 to
benefit future research on DLGs.
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5.2 Preliminary

5.2.1 Compilers and Compiler Bugs

Given a program P , a compiler translates the source code of P into binary code, so that
P can be executed by a computer. A typical compilation process consists of three stages.
First, the front end of the compiler parses the source code and builds an intermediate
representation of P . Second, the middle end performs various optimizations like dead
code elimination on the intermediate representation to make P run faster and use fewer
resources. Lastly, the back end converts the optimized internal representation into binary
code. Bugs can occur in any of the aforementioned stages in a compiler [202, 165, 102, 85,
164, 86]. There are three major types of compiler bugs:

Crash. A compiler crashes, if it aborts the compilation process due to an error inside
the compiler when compiling a program. For example, if a segmentation fault occurs when
GCC is compiling a program, it aborts with an error message internal compiler error:
Segmentation fault.

Hang. A hang (timeout) is a compiler bug when the compiler runs indefinitely to
compile a program.

Miscompilation. Given a well-defined program P , a compiler miscompiles P , if the
compiled binary of P is not semantically equivalent to P and thus behaves differently from
P . This type of compiler bugs is referred to as miscompilation.

5.2.2 Program Generation for Compiler Testing

Automated compiler testing uses a program generator to automatically generate random
test programs, and checks whether the compiler under test can correctly compile the gen-
erated programs. We categorize program generators into the following two classes.

LSG: Language-Specific Program Generator. LSGs generate programs by follow-
ing a set of language-specific rules that are meticulously crafted by human experts based on
the domain knowledge of the language under test. Csmith [202] is one representative LSG.
It generates well-defined C programs that conform to the C language specification [71], in
a top-down manner from a translation unit, functions and statements down to expressions.
Each time a language construct is being generated, Csmith applies the generation rules
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Figure 5.1: The workflow of using a DLG for testing a compiler.

to ensure that the generated program is compilable and well-defined. Several following
studies extend this idea to other languages, such as OpenCL [93] and CUDA [72].

Despite the success of LSGs in finding compiler bugs, one major limitation of LSGs
is that engineering a LSG requires language-specific knowledge to design generation rules
and strategies. For example, to adapt the idea of Csmith to a new language, developers
need to comprehend each feature of the new language and engineer the corresponding
generation rules to ensure that the generated programs are compilable. Considering the
complexity of programming languages, such work is labor-intensive and time-consuming,
and the generation rules cannot be easily generalized to other languages. Further, it is
challenging to take into consideration all language features and their possible combinations
when designing generation rules. In fact, most LSGs only support a subset of language
features and thus the expressiveness of the generated programs is rather limited.

DLG: Deep Learning-Based Program Generator. To overcome the limitation of
LSGs, researchers proposed to use deep learning techniques to automatically learn a pro-
gram generator from existing programs. Figure 5.1 shows the overall workflow of learning
a DLG and applying the DLG to find compiler bugs. From a given dataset consisting of
human-written programs, 1 a deep learning model is trained as a DLG, which automati-
cally learns the syntactical and semantic features of the language. Specifically, the model
encodes the probability of the next token given a sequence of tokens as a prefix. 2 The
trained model generates a test program by iteratively querying the model to compute the
next token. Specifically, starting from a prefix like int main, the DLG samples the subse-
quent token from the probabilities encoded in the trained model, until some termination
tokens are generated. Then 3 the generated test program is fed to compilers under test
and the compilation result is checked to see if any crash or hang bug is triggered. 4 This
process is repeated until the time limit is reached or a sufficient number of test programs
are generated. DeepSmith [37] and DeepFuzz [100] are the representative DLGs, which uti-
lize Long Short-Term Memory (LSTM) model for training and generation. DSmith [199]

105



Property DLGs LSGs Kitten

Need a set of programs for generation ✓ ✗ ✓

Language-agnostic ✓ ✗ ✓

Use arbitrary language features ✓ ✗ ✓

Warrant well-defineness/compilableness ✗ ✓ ✗

Can detect crash and hang bugs ✓ ✓ ✓

Can detect miscompilation bugs ✗ ✓ ✗

Table 5.1: Comparison of DLGs, LSGs, and Kitten.

and TSmith [198] also have similar workflows.

Different from LSGs, DLGs can only be used to find compiler crashes and hang bugs, but
not miscompilation bugs. This is because the DLG-generated programs are not guaranteed
to be compilable or free of undefined behaviors, and it is difficult to automatically determine
whether the generated programs are free of undefined behaviors [202]. Table 5.1 summarizes
the differences between DLGs and LSGs.

5.3 Revisiting the Evaluation of Deep Learning-Based
Program Generators

As aforementioned, it is unfair to evaluate DLGs using LSGs and the resulting conclusions
are likely to be biased. Thus, we aim to re-evaluate the performance of DLGs using a fair
baseline. This section describes the design of our reevaluation experiment, and Kitten, a
new fair baseline for evaluating DLGs.

5.3.1 Evaluation Methodology

To evaluate the performance of a program generator for compiler testing, we invoke it to
continuously generate random programs for a certain period. After the generation, we feed
them into a compiler under test for compilation. Finally, we measure the performance of
this program generator from three perspectives: compiler bug detection ability, diversity of
the language features in the generated programs, and code coverage. Each perspective and
its metrics are introduced later in the corresponding sections. Since some measurements
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may affect the compiler’s efficiency, all the measurements are conducted after the pro-
gram generation is finished. For example, measuring code coverage requires instrumenting
compilers, resulting in a longer compilation time of the generated programs.

5.3.2 Selected Program Generators

We selected two representative DLGs from literature—DeepFuzz and DeepSmith—and re-
evaluated their performance. They are selected for two reasons. First they were published
in top-tier conferences of both software testing and artificial intelligence, representing the
state of the art of DLGs. Second, their implementations are publicly available, avoiding
re-implementation and thus minimizing threats to validity. Other work [198, 199] is not se-
lected since their implementations are not publicly available. For each program generator,
we followed their documentation and tried our best efforts to reproduce their results. How-
ever, we found that the performance of DeepFuzz is not comparable to the one mentioned
in its publication. Similar issues are also raised by other developers in its repository [40].
Nevertheless, since DeepFuzz and DeepSmith have very similar workflow and architecture,
we believe DeepSmith is a reasonable representative DLG work. We also include Csmith
in our experiment, one of the most commonly used LSGs for C compilers.

To fairly evaluate the performance of DLGs, a proper baseline is necessary. Specifically,
we are looking for a baseline that is similar to DLGs but much simpler than DLGs. Since
such a baseline does not exist in the literature, we propose a new, fair and simple baseline,
Kitten. Kitten is similar to DLGs except not using a DNN. Considering its simplicity, we
expect that DLGs should at least perform similarly to Kitten.
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5.3.3 Kitten: A New, Fair and Simple Baseline

Overview. Figure 5.2 shows the program generation workflow of Kitten. Unlike LSGs,
Kitten shares many similarities with DLGs. Kitten takes as input a dataset of programs
and outputs a new set of programs iteratively. For each iteration, it 1 randomly takes
one seed program and 2 applies a random mutation operation to the seed to create a new
program. After the program generation, 3 these programs are fed into a compiler under
test. If a crash or hang bug is triggered, a potential bug for this compiler is detected. 4
The above process is repeated until the time limit is reached or a sufficient number of test
programs are generated.

The entire program generation process of Kitten is language-agnostic, especially the
mutation operators. Kitten supports diverse mutation operators and it is easy to integrate
others. We implemented two types of operators from literature [8, 180], i.e., tree-level and
token-level mutations. Please note that the mutation operators of Kitten are language-
agnostic and syntax-based, while the generation rules in LSGs are language-specific and
semantic-based. The rules in LSGs require significantly more domain knowledge to design
and implement than the mutation operators in Kitten.

Comparison with DLGs. Given a dataset of programs, DLGs leverage deep learning
models to learn the syntactic and semantic rules and generate new programs, while Kitten
generates random programs by directly mutating the programs in the dataset. Other than
this, DLGs and Kitten share many commonalities as shown in Table 5.1: 1) generate new
programs from a set of programs; 2) language-agnostic; 3) may use arbitrary language fea-
tures ; 4) do not warrant well-defineness or even compilableness of the generated programs;
5) focus on detecting crash and timeout bugs in compilers.

Tree-Level Mutation

Parse Tree. A parse tree is a tree representation of program’s syntactical structure.
Figure 5.3 shows a program and its parse tree. There are two types of nodes in a parse
tree, i.e., non-leaf nodes (black rectangles in Figure 5.3) and leaf node (red circles in
Figure 5.3). The former one refers to a non-terminal symbol in language grammar, e.g.,
expression and statement. The latter one refers to a terminal symbol that cannot
have child nodes [16]. Parsing programs into parse trees can be easily done with a parser
generator (like Antlr [5]) and corresponding grammar [6], both of which are generally
available for common programming languages.
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Figure 5.3: An example of a parse tree.

A tree-level mutation operator parses a seed program p to a parse tree t and mutates
a sub-tree of t to generate a new program. The operator carefully checks the type of
tree nodes and ensures the syntactic validity of the generated programs. In Kitten, we
implemented three tree-level mutation operators [8, 180] and they are illustrated in Fig-
ure 5.4. Intuitively, these mutations randomly replace one sub-tree st of the parse tree t
with a new sub-tree st′, under the constraint that the root nodes of st′ and st represent the
same non-terminal symbol, such as an expression and statement, The major difference
among these mutations is the source of the new subtree st′. In Sub-tree Replacement, st′
is randomly generated by Kitten using the language grammar. Sub-tree Splicing randomly
selects a sub-tree from other programs in the dataset. Recursive Sub-tree Repeat attempts
to find a st′ in the ancestor of st, i.e., st is a sub-tree of st′, and then uses st′ to replace st
arbitrary times.

Token-Level Mutation

Token-level mutation operations tokenize a seed program into a list of tokens and directly
mutate this list. We implemented three types of token-level mutation in Kitten, namely
insertion, deletion and replacement. As their name implies, these mutations randomly
insert, delete or replace a token in the list. Table 5.2 shows the examples of the three
mutations. Different from tree-level mutations, token-level mutations do not guarantee
that the produced mutant is syntactically correct. This is intended since syntactically
incorrect programs can find bugs in the front end of compilers.
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new sub-tree
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Sub-tree rooted by
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Recursive 
Sub-tree Repeat

int main() {
int a = 0;
if (a == 0) {
a = a + 1;

}}

a = a + 1;

int main() {
int a = 0;
return 0;

}

int main() {
int a = 0;
if (a == 0) {
return 0;

}}

int main() {
int a = 0;
if (a == 0) {
printf("Hi!");

}}

int main() {
int a = 0;
if (a == 0) {
if (a == 0) {
if (a == 0) {
printf("Hi!");

}
}

}}

int main() {
int a = 0;
if (a == 0) {
printf("Hi!");

}}

Figure 5.4: Tree-level mutations. The parse trees are simplified for illustration, thus not
exactly matching the code examples.

Program

Seed int main(){int a = 1 * 2;}

Insertion int main(){int a = 1 * 2; int}
Deletion int main(){a = 1 * 2;}
Replacement int main(){float a = 1 * 2;}

Table 5.2: Examples of token-level mutations.

5.3.4 Miscellaneous

Compiler and Dataset. We use all program generators to test GCC, one of the most
commonly used and tested C compilers. Following existing DLGs [37, 100], we constructed
a dataset using all the C files of the testsuite of GCC 11.2. Kitten directly used this dataset
to generate new programs, while DeepSmith and DeepFuzz are trained using this dataset
until the loss is saturated.

Platform and Duration. To ensure each generator has the same computation re-
sources, each generator is deployed on a unique GPU virtual machine on a cloud platform
with the same configuration. The longest duration used by prior work is 48 hours in
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Generator Average Standard Deviation

DeepFuzz 138.54 9.78
DeepSmith 315,919.06 1,947.83
Csmith 2,021.32 187.72
Kitten 3,001,079.25 548,262.38

Table 5.3: The number of programs generated per hour.

DeepSmith. We choose a longer duration, i.e. 72 hours, for a comprehensive evaluation.

Noted that the program generation efficiency is not the primary concern in compiler
testing, while effectiveness is more important. Nevertheless, we show the number of pro-
grams generated per hour in Table 5.3 for reference. DeepSmith and DeepFuzz have sig-
nificantly different generation speeds. Such difference may be due to the aforementioned
implementation issues in DeepFuzz. Csmith takes more effort than DLG and Kitten to
ensure the semantic correctness of generated programs, resulting in a lower generation
speed. Kitten is a better baseline than Csmith for evaluating DLGs since DLGs even do
not guarantee compilableness of generated programs. Kitten has a much higher generation
speed (9.5x at least) than DLGs since it directly mutates the parse tree or toke list, which
requires less computation resource.

5.4 Empirical Findings

This section presents the empirical findings and discusses their implications.

5.4.1 Bug Detection Ability

Bug detection ability is one of the most important metrics to measure the quality of gen-
erated programs. In this RQ, we measured the number of bugs triggered by the program
generated by each generator. We fed all the programs into the latest GCC development
version (commit id gf7a3ab) and measured the number of crash and hang bugs. Specifi-
cally, for crash bugs, we first leveraged program reduction tool Perses [166] to reduce the
bug-triggering program to the smallest amount of code that still replicates the bug. Second,
we analyzed the stack traces and error messages of bugs. For bugs that have similar stack
traces and error messages, we clustered them into one group and then investigated them
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Figure 5.5: Distinct crashes. DeepFuzz and Csmith are not shown in this figure since they
do not trigger any crash bugs.

manually. For hang bugs, as compilers do not throw error messages when hanging, there
is no automatic way to deduplicate them and thus we only counted the total numbers. We
did not measure the miscompilation bugs since it is a research challenge to automatically
detect such bugs [85, 102] and neither DLGs nor Kitten is designed to find miscompilations.

Distinct Crash. Figure 5.5 shows the cumulative number of distinct compiler crashes
triggered by Kitten and DeepSmith. In total, the programs generated by DeepSmith trig-
gered 181 crash bugs but they all have the same root cause. In other words, DeepSmith
only found one distinct crash bug. The programs generated by Kitten trigger 2,354 crashes
and 34 of them are distinct bugs, which significantly outperforms DeepSmith. DeepFuzz
and Csmith did not find any crash bugs.

Hang. Following the practice in compiler testing [202, 85], we used 120 seconds as the
timeout threshold. DeepSmith triggered 3 hang bugs in GCC in 72 hours while Kitten
triggered 1,750 hang bugs. DeepFuzz and Csmith do not trigger any hang bug.

We reduced the bug-triggering programs using Perses [166] and reported the discovered
bugs to GCC after excluding the bugs that have already been reported recently. Figure 5.6
shows four of the bugs found by Kitten. All four bugs are new, and confirmed by GCC
developers. Bug 105555 has been present since at least GCC 4.8.0, and was not found by
any testing technique for over nine years. Bug 105554 has been fixed recently. Given that
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1 void foo() { __asm__("" :: "m"(({if(8);})));}

(a) GCC-100501, Crash

1 static a(); b(void) {sizeof ( int [ a}
2 static c(); d(void) {sizeof((int[c

(b) GCC-104764, Hang

1 __attribute__((target_clones(
2 "arch=core-avx2", "default")))
3 a(__attribute__((__vector_size__(
4 4 * sizeof(long)))) long) {}

(c) GCC-105554, Crash

1 a() { &__imag *(_Complex *)a

(d) GCC-105555, Crash

Figure 5.6: Bugs found by DFLARE, including their bug-triggering programs, bug ids, and
symptoms.

Kitten only takes three days to find four confirmed bugs, Kitten is an effective baseline in
terms of bug detection.

Compared to Csmith, it seems that DLGs have a good bug detection ability since they
find more bugs than Csmith. However, such an advantage is due to the unfair comparison
since Csmith has been integrated into the daily testing of GCC and any triggered issues
are expected to be fixed in development already [102]. In contrast, the limitation of DLGs
in bug detection is demonstrated when Kitten is the evaluation baseline: the number of
bugs detected by DLGs is far less than the one of Kitten, despite Kitten is a simple baseline
without using complicated DNN models.

Finding and Advice 1: The bug detection abilities of DLGs are limited and did
not outperform Kitten, a simple baseline without using DNN models. Future research
should improve the bug detection abilities of DLGs to outperform Kitten.
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Figure 5.7: The AST node types of the programs generated by each generator.

5.4.2 Diversity of Language Features

To comprehensively test compilers, the generated program should cover a diverse set of
language features. Following an existing study [44], we use the number of AST node types
as a proxy metric of language features. Abstract Syntax Tree (AST) is a tree representation
produced by compilers in the compilation. Each AST node type is regarded by compilers as
a distinct type of component defined in language grammar, such as the variable declaration,
function call, etc. For each generator, we sampled all the programs generated at first,
twenty-fifth and forty-ninth hours and counted the number of distinct AST node types.

Figure 5.7 presents the result in a Venn diagram. The programs generated by DeepFuzz
and DeepSmith contain 91 and 109 types of AST nodes, respectively. Both outperform
Csmith which only utilizes 29 node types. This is because the generation rules embedded
in Csmith only use a subset of language features to ensure the semantic correctness of the
generated programs. Including additional features requires the developers manually design
complex rules to guarantee correctness, which is a challenging task. As a result, it is unfair
to compare DLGs with Csmith since DLGs do not explicitly care about such correctness
of programs.

Kitten is a much fairer baseline for DLGs than Csmith, since neither DLGs nor Kitten
limits the features they can use in program generation. The programs generated by Kitten
have the largest number of distinct AST node types, i.e. 169. Moreover, all the AST node
types in DeepFuzz and 108 out of 109 types in DeepSmith are included by the programs
generated by Kitten. Based on this result, we may conclude that DLGs do not fully learn
and leverage the language features in the training set. A possible reason is that, when
sampling the next token, DLGs prefer the token that has a high likelihood according to co-

114



occurrence. However, DLGs have limited knowledge of the syntactic and semantic meaning
of tokens and fail to generate the programs toward diversity.

Finding and Advice 2: Existing DLGs do not fully utilize the language features in
program generation, which may affect their bug detection abilities. Future research
should encourage DLGs to use more diverse language features.

5.4.3 Code Coverage

Code coverage is an important metric in compiler testing [102, 164, 85]. It measures the
code in compilers that is executed when compiling programs. High code coverage typically
indicates that diverse code logic paths in compilers are exercised. For each set of generated
programs, we fed them into GCC and used LCOV to measure the code coverage using
three commonly used metrics: line, branch and function coverage.

Figures 5.8a to 5.8c shows the number of lines, branches and functions covered by
the programs generated by each generator but not by the seed programs. DeepSmith
covers 2,175 lines, 2,562 branches, and 17 functions that are not covered by the seed
programs, while Csmith covers 9,650 lines, 12,510 branches, and 206 functions. Even
though DeepSmith generated much more (156x) programs and leveraged more (109 vs
29) features than Csmith, the code coverage achieved by DeepSmith is much lower than
Csmith.

To understand the reason, we carefully investigated the difference between their cov-
erage. Specifically, we analyzed how many new covered branches are in the front end of
GCC and how many of them are in the middle/back end. Figure 5.9 shows the results. It
is clear that the programs generated by DeepSmith mainly cover new branches in the front
end of compilers, such as lexer and parser. By contrast, most of the branches covered by
programs generated by Csmith are located in the middle/back end of compilers. Although
the programs generated by Csmith only include limited language features, they can trigger
complex optimization in the middle/back end of compilers, resulting in high code cover-
age. This result also demonstrated the effectiveness of language-specific rules designed by
experts in compiler testing.

The line, branch, and function coverage achieved by Kitten is 9.68x, 10.48x and 31.47x
as DeepSmith, respectively. As shown in Figure 5.9, such improvements locate in both the
front end and middle/back end of compilers. Note that the advantage over DeepSmith is
not only because of program generation speed. Furthermore, the programs generated by
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Figure 5.8: Code coverage of the programs generated by Kitten, Csmith, DeepSmith and
DeepFuzz.
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Figure 5.9: Distributions of new branch coverage. Uncertain refers to the cases of which
category cannot be determined.

DeepSmith after seventy-two hours achieved lower coverage than the programs generated
by Kitten in the first hour, despite DeepSmith generating more programs in those seventy-
two hours than Kitten in the first hour.

Finding and Advice 3: DLGs does not outperform LSGs and Kitten in terms of code
coverage. One of the reasons is that the programs generated by DLGs do not trigger
diverse optimizations in compilers, which can be a promising research direction.

5.4.4 Implications

Our experiment results show that DLGs, such as DeepSmith and DeepFuzz, do not achieve
outstanding performance in compiler testing. They have certain advantages over Csmith
but such advantages are due to the unfair comparison as we mentioned in §5.2.2. Our ex-
periment also shows that once the evaluation baseline is switched to Kitten, the performance
of DLGs is worse than Kitten in all three perspectives: bug detection ability, diversity of
language features and code coverage. Although DLGs attempt to leverage DNN models to
learn the information of programs from datasets and generate new programs for compiler
testing, it turns out that the results are not as good as the approach of Kitten, i.e., directly
mutating the programs in datasets.

We believe Kitten can benefit future DLG-related research in various aspects. First,
Kitten sets a new fair baseline for DLGs. Future work of DLGs should at least have a
significant improvement over Kitten. Second, the fact that Kitten outperforms existing
DLGs may enlighten future research. Their limited performance implies that a simple end-
to-end deep learning approach without incorporating any domain-specific information has
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not achieved decent performance in compiler testing. A promising research direction is to
incorporate domain-specific knowledge extracted from the programs, such as parse trees,
control-flow graphs and data-flow graphs, into DNN models. Moreover, as Kitten itself is
shown to be effective, future research may study how to improve the workflow of Kitten
using machine learning techniques.

5.5 Discussion

5.5.1 Experiment Setting

Please note that we choose to control the time and computation resources since it is a
common practice in software testing to evaluate testing techniques by setting a limit on
time and computation resources [214, 79]. For example, Google FuzzBench deploys each
fuzzer for 24 hours. We believe this practice is related to how the software is tested in the
industry, i.e., developers need to adequately test the software before shipment date using
the limited computation resources available to them.

We did not control the number of generated programs since the number of programs is
easy to be tampered with. For example, one may easily merge multiple programs outputted
by DFLARE into one program or vice versa. Moreover, even if DLGs, LSGs, and DFLARE are
evaluated using the same number of generated programs, the conclusion of our empirical
study remains the same. For bug detection ability, Figure 5.5 demonstrates that the
number of crash bugs found by DFLARE in the first hour is more than the number of crash
bugs found by DeepSmith in 72 hours, although the number of programs generated by
DFLARE in the first hour is smaller than the number of programs generated by DeepSmith
in 72 hours. As for the diversity of language features, DFLARE covers 168 AST node types
in the first hour, while DeepSmith covers 109 AST node types in 72 hours. The results
related to code coverage have been discussed in §5.4.3.

5.5.2 Future Work

There are several future work directions. First, our study can be generalized to other
DL applications related to software testing and software engineering, such as code clone
detection [184, 185] and vulnerability detection [92, 219, 47]. Finding the limitation of
these DL applications may benefit future research. Second, to fairly evaluate DLGs, Kitten
intentionally adopts the simple mutation operators and the random strategy for mutation
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operators. A promising direction is to improve Kitten by integrating novel mutation opera-
tors [200, 204, 162] and effective mutation operator schedulers [103]. Moreover, algorithms
such as genetic algorithm [11, 188] and reinforcement learning [74] may also improve the
effectiveness and efficiency of Kitten. Third, future research may improve the DLGs by en-
couraging DLGs to use more diverse language features and to trigger more optimizations
in compilers, as discussed in §5.4.

5.6 Related Work

5.6.1 Compiler Testing

Compiler testing has been actively explored for many years. A common approach is au-
tomatically generating test programs with a generator and checking whether compilers
properly compile these programs. As mentioned in §5.2.2, LSGs [202] and DLGs [100, 37]
are two main kinds of generators. Kitten is much easier than LSG to implement as it
does not require expert knowledge and massive engineering efforts to ensure the validity of
generated programs. Different from DLGs that train DNN models using a given dataset,
Kitten generates new programs by randomly mutating the ones in the dataset.

Another mainstream of compiler testing is detecting miscompilation bugs. For example,
EMI [85, 164] generates a set of mutated programs that are equivalent to each other
w.r.t. a set of inputs. After these programs are compiled, if the binary programs behave
differently given these inputs, it indicates that at least one of them is miscompiled and a
defect is detected. These approaches requires the insightful language-specific knowledge
of developers to propose mutations that preserve the equivalence relationship w.r.t. a set
of inputs, primarily targeting miscompilation bugs. In comparison, Kitten is a language-
agnostic random program generator, targeting crash and hang bugs.

5.6.2 Revisiting Deep Learning Applications

There are several studies revisiting DL applications using simple baselines [113, 193, 192,
55, 138]. Mohammed et al. found that basic Recurrent Neural Networks with various
heuristics can achieve similar performance with the state-of-the-art techniques in ques-
tion answering tasks. Moreover, their study also found that the techniques without using
DL have compatible performance with DL-based approaches. Goyal et al. studied several
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factors that are irrelevant to DL models and found that these factors have significant ef-
fects on the performance of DL applications in the task of classifying point cloud shapes.
They also proposed a simple baseline that achieved similar or even better results than
sophisticated DL techniques. Qian et al. conducted a similar analysis in the task of point
cloud understanding. In summary, these studies focus on various DL applications, while
our study is the first one to revisit DLGs in compiler testing. Kitten, the simple non-DL
baseline proposed by us significantly outperforms DLGs.

5.7 Chapter Conclusion

This study argues that the evaluations of the DLGs are biased due to the improperly chosen
baselines. LSGs are designed to utilize limited language features to generate well-defined
programs, while DLGs generate arbitrary programs without concerns about the syntactic
and semantic correctness. We revisited the evaluation of DLGs using Kitten, a fair, simple
and strong baseline for DLGs. Instead of using DNN models, Kitten directly derives new
programs from the dataset. Empirical results show that the advantage of DLGs claimed
in their publications is likely due to the biased selection of baseline. Despite the simplicity
of Kitten, DLGs cannot compete with Kitten in multiple metrics. With in-depth analysis
of the evaluation results, we discuss potential directions for advancing future research on
DLGs, and strongly believe that Kitten is the fair, right baseline for evaluating DLGs.

120



Chapter 6

Conclusion and Future Work

In this chapter, we summarize this thesis and discuss several promising research directions
for future work.

6.1 Summary

In summary, this thesis consists of three studies to help software developers to assess the
reliability of DL applications. The reliability issues discussed in this thesis cover three im-
portant stages of the software development life cycle [38], i.e., development, deployment,
and assessment. This thesis provided three techniques to help software developers to
assess the reliability of DL applications. The first study proposed a testing methodology to
detect unreliable inferences in DL-based image classifications. The second work presented
a novel testing technique DFLARE to find the deviated behaviors of compressed DL appli-
cations. The third work proposed a simple, fair, and strong baseline Kitten for DL-based
program generator in compiler testing. With these techniques, this thesis conducted
comprehensive empirical studies to understand the reliability issues from multiple
perspectives, including their perseverance, impacts and so on. For example, the empirical
study in the first study showed that such unreliable inferences are pervasive in the state-
of-the-art DL-based image classifications. The third work revealed that the unreliable
assessment of DLGs resulted in biased conclusions in the evaluation of DLGs. This thesis
further offered actionable suggestions and techniques to help software developers to
improve the reliability of DL applications. For instance, in the second work, it is demon-
strated that the triggering inputs found by DFLARE can be used by DREPAIR to repair
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the deviated behaviors. The first and third study provided a collection of suggestions to
benefit future research in image classification and DLGs, respectively.

6.2 Future Work

Besides the future work listed in the previous chapters, there are many promising re-
search directions. First, besides image classifications and compiler testing, DL applications
have been used in many areas. These applications may have domain-specific reliability is-
sues [211, 21]. Future research may help developers to identify the reliability issues in
domain-specific applications. For example, a recent study proposes an effective prompting
methodology to increase the reliability of large language models like GPT [158]. An-
other study focuses on new evaluation metrics for NLP models other than accuracy [145].
Assessing the reliability issues of these DL applications usually requires domain-specific
knowledge. It would facilitate the revealing process if such domain-specific knowledge can
be automatically extracted.

Second, the reliability of DL applications is also affected by the infrastructures of DL,
including DL frameworks, such as TensorFlow and PyTorch, DL compilers like TVM, low-
level computation libraries, e.g., NVIDIA CUDA, and the DL hardware like GPUs and
TPUs. Effective methodologies to find the defects in such software and hardware can also
improve the reliability of DL applications [156, 91, 187, 194].

Third, the techniques to improve the reliability of DL applications are also important
to the community. Possible approaches in this direction include novel training and testing
methodologies, innovative theory for software development and maintenance, and so on. A
significant challenge is how to alleviate the side effect of these methodologies on the perfor-
mance of DL applications. For example, adversarial training has been demonstrated as one
effective way to improve the adversarial robustness of DL applications [216, 155]. However,
the accuracy of DL application after adversarial training is likely to be decreased [216].
Future research may work on improving the reliability of DL applications while preserving
their performance.
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