
Noname manuscript No.
(will be inserted by the editor)

Transitive-Closure-based Model Checking (TCMC) in
Alloy

Sabria Farheen · Nancy A. Day ·
Amirhossein Vakili · Ali Abbassi

Received: date / Accepted: date

Abstract We present transitive-closure-based model checking (TCMC): a
symbolic representation of the semantics of computational tree logic with fair-
ness constraints (CTLFC) for finite models in first-order logic with transitive
closure (FOLTC). TCMC is an expression of the complete model checking
problem for CTLFC as a set of constraints in FOLTC without induction, it-
eration, or invariants. We implement TCMC in the Alloy Analyzer, showing
how a transition system can be expressed declaratively and concisely in the
Alloy language. Since the total state space is rarely representable due to the
state-space explosion problem, we present scoped TCMC where the property
is checked for state spaces of a size smaller than the total state space. We ad-
dress the problem of spurious instances and carefully describe the meaning of
results from scoped TCMC with respect to the complete model checking prob-
lem. Using case studies, we demonstrate scoped TCMC, and compare it with
bounded model checking (BMC), highlighting how TCMC can check infinite
paths.

1 Introduction

The process of model-driven engineering (Selic, 2007) promises many benefits
from the use of models early in the development process; in general, the earlier
that quality models are created, the fewer errors there will be to discover later
in the process. A modelling language used early in the design process must
be able to express abstract concepts because of the lack of details available
at this point in the project. However, if we wish to provide analysis support
for these models to increase their quality and utility, we must be able to ex-
press the models precisely. Languages such as Alloy (Jackson, 2002), B (Abrial,

David R. Cheriton School of Computer Science
University of Waterloo
Waterloo, Ontario, Canada, N2L 3G1
E-mail: {sfarheen,nday, avakili, aabbassi}@uwaterloo.ca

2 Sabria Farheen et al.

1996), Z (International Organisation for Standardization, 2000), TLA+ (Yu
et al, 1999), and ASMs (Börger, 2005) have many features to express abstract
concepts (e.g. sets, relations, and functions) without sacrificing precision. Ab-
stract behavioural models are usually declarative, meaning that they describe
a transition system using constraints rather than assignments to variables, in
addition to providing more abstract datatypes.

We are interested in the problem of analyzing temporal properties of declar-
ative models of transition systems. In this article, we will use as a running
example the game of musical chairs. This game is conveniently and concisely
modelled as sequences of transitions that modify a function mapping chairs to
the player who occupies the chair. In a declarative model of this game, we can
specify that in a step we want all the chairs to be occupied without detailing
all the possible combinations of players occupying chairs. An example of a
temporal property that we want to verify is that eventually there is a single
winner to the game.

There has been a variety of work on verifying temporal properties of
declarative behavioural models. In TLA+ (Yu et al, 1999) (with the TLC
model checker), a user creates and checks behavioural models for a subset of
LTL properties using explicit-state model checking. ProB (Leuschel and But-
ler, 2008) is a tool for analyzing finite B machines, in particular, simulation
and model checking against linear temporal logic (LTL) specifications using
explicit-state model checking. Iterative (meaning involve multiple runs of the
solver) symbolic model checking algorithms (such as IC3 (Bradley, 2011)) for
checking B machines are implemented in (Krings and Leuschel, 2018). None
of these approaches use non-iterative symbolic model checking algorithms. A
non-iterative symbolic model checking algorithm is one where one formula is
constructed and evaluated per model checking query, rather than producing
multiple SAT/SMT problems per query.

Del Castillo and Winter provided model checking support for a transition
system specified as an Abstract State Machine (ASM) (Börger, 2005) via the
translation of a class of ASMs to SMV by restricting the range of functions
to finite sets (Del Castillo and Winter, 2000). Chang and Jackson added finite
relations and functions to a traditional state-based specification of a transition
system (i.e. the SMV language (McMillan, 1992)), and developed a BDD-based
model checker that analyzed these models for computational tree logic (CTL)
specifications (Chang and Jackson, 2006). Translation-based approaches usu-
ally unfold user-level abstractions and make understanding models and coun-
terexamples difficult.

Within the popular Alloy Analyzer toolset, it is fairly straightforward to
specify a transition relation and do bounded model checking (BMC) (Biere
et al, 1999): create a formula that describes a path for multiple steps to check
bounded duration temporal properties (Jackson, 2006). Electrum (Macedo
et al, 2016) and DynAlloy (Frias et al, 2005) are extensions of Alloy to model
transition systems. Electrun does BMC for LTL properties and DynAlloy
checks dynamic properties. Neither of these approaches work without exten-

Transitive-Closure-based Model Checking (TCMC) in Alloy 3

sions to Alloy or allow us to check a full set of temporal properties for the
complete (unbounded) model checking problem.

We seek a non-iterative symbolic model checking method for a full set of
temporal properties on a declarative model without translation. If the state-
space explosion problem makes it impossible to represent the entire state space
for analysis, we would like to avoid spurious instances and have a clear de-
scription of what the results from a smaller scope mean for the complete state
space.

Describing the traditional representation of the semantics of a temporal
logic with respect to a single transition system and state within first-order
logic (FOL) is not possible because of the need for quantification over paths
(a second-order operator). Thus, using constraint-based first-order solvers for
model checking has remained elusive. Immerman and Vardi (Immerman and
Vardi, 1997) encoded the semantics of CTL and CTL* in first-order logic
with transitive closure (FOLTC). Their semantics has the important property
that the use of transitive closure replaces the need for quantification over the
paths. Our first contribution (Section 3) is an encoding of CTL with fairness
constraints (CTLFC) in FOLTC that is linear in the size of the model, which
we call transitive-closure-based model checking (TCMC). Immerman
and Vardi’s encoding required an exponential increase in the size of the model
with respect to the size of the temporal logic formula. TCMC is an expression
of the complete (unbounded) model checking problem for a transition system
with a finite-state space for CTLFC as a set of constraints in FOLTC without
induction, iteration, or invariants. Since the constraints of a declarative model
can be satisfied by multiple transition system instances, TCMC can check that
either all transition systems that satisfy the constraints satisfy the property
(universal model checking) or that some instance satisfies the property
(existential model checking). Novel to TCMC, is that a counterexample
is an instance of a transition system with a bug rather than a single coun-
terexample path. Our second contribution (Section 4) is to show that TCMC
can be implemented in the Alloy Analyzer, making it possible to do complete
model checking of declarative models of transition systems described in Alloy
without translation. The model checking problem is turned into a non-iterative
constraint solving problem. These first two of our contributions were originally
presented in (Vakili and Day, 2012; Vakili, 2016). Here, we give an improved
presentation of these results.

Novel to this article, we tackle some of the practical issues in using the Al-
loy Analyzer for TCMC with results found in the first author’s thesis (Farheen,
2018). First in Section 5, we discuss style guidelines for modelling transition
systems in Alloy showing an illustrative example. These guidelines do not in-
volve any extensions to Alloy and are relevant for the use of any model check-
ing method in Alloy (not just TCMC). Second, since the total state space
is rarely representable due to the state-space explosion problem, we present
scoped TCMC where the property is checked for transition systems of a
certain size that satisfy the constraints of the model (Section 6). Third, we
address the problem of spurious instances of transition systems by introducing

4 Sabria Farheen et al.

significance axioms (Section 6), which require the instance of the model to
be of a large enough size to be interesting to the user. Our significance ax-
ioms provide a measure independent of computing resource limitations that a
significant part of the state space has been verified. Stating these axioms is pos-
sible in a model that follows our style guidelines. Since the significance axioms
are requirements of transition system instances (rather than path lengths),
they are of use in the TCMC methodology. Fourth in Section 7, we present
a methodology that carefully describes the meaning of results from scoped
TCMC with respect to the complete model checking problem (meaning over
the entire state space), highlighting distinctions for properties with respect to
finite and infinite paths. Finally, we provide a comparison between TCMC and
BMC.

In Section 2, we provide brief background material on CTLFC model check-
ing and the Alloy language. Sections 3 (TCMC), 6 (Significance Axioms), and 7
(TCMC Methodology) are relevant to any verification effort of CTLFC prop-
erties (not just in Alloy). The discussion on significant scopes matters for any
method where it is not possible to search the entire state space. Our technique
has been implemented in the Alloy language and its toolset, which is a popular
and well-used verification environment, thus our work has wide applicability.
Sections 4 (TCMC in Alloy) and 5 (Modelling a Transition System in Alloy)
are Alloy-specific. Section 8 discusses TCMC performance results in the Alloy
Analyzer, a comparison of our methodology to BMC, and the use of fairness
constraints in TCMC, through case studies. We conclude with related work in
Section 9.

2 Background

In this section, we provide a brief overview on temporal logic model checking
and Alloy.

2.1 Temporal Logic Model Checking

Temporal logic model checking is a decision procedure for checking whether a
transition system satisfies a temporal logic specification (Clarke et al, 1999).
A transition system is a finite directed graph with a labelling function that
associates a set of propositional variables to each vertex. A vertex represents
a state of a system, and the propositional variables that it is labelled with
represent the values of the variables in that particular state. An edge between
two vertexes represents a transition from one state to another.

Definition 1 Transition System: The transition system TS is a five tuple,
TS = (S, S0, σ, P, l), where: S is a finite set of states; S0, the set of initial states,
is a non-empty subset of S; σ, the transition relation, is a binary relation over
S; P is a finite set of atomic propositions; and l, the labelling function, is a
total function from S to the power set of P .

Transitive-Closure-based Model Checking (TCMC) in Alloy 5

A computation path starting at s where s ∈ S is a sequence of states,
s0 → s1 → . . . such that s0 = s and ∀i ≥ 0 : σ(si, si+1). If the transition
relation is a total binary relation then there is at least one infinite computation
path starting at each state.

A specification is a set of temporal logic formulas. A temporal logic, such
as CTL or CTLFC (Clarke et al, 1999), has logical connectives for specifying
properties over the computation paths of a transition system. Equation 1 is
the grammar for a complete fragment of CTL:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | EXϕ| EGϕ | ϕEUϕ , where p ∈ P (1)

The satisfiability relation for CTL, |=, is used to give meaning to formulas.
The notation TS, s |= ϕ denotes that the state s of the transition system TS
satisfies the property ϕ and TS, s 6|= ϕ is used when TS, s |= ϕ does not hold.
The relation |= is defined by structural induction on ϕ:

Definition 2 Semantics of CTL: For a transition system, TS, with a total
transition relation σ, the semantics of CTL formulas is as follows.

TS, s |= p iff p ∈ l(s)
TS, s |= ¬ϕ iff TS, s 6|= ϕ
TS, s |= ϕ ∨ ψ iff TS, s |= ϕ or TS, s |= ψ
TS, s |= EXϕ iff ∃s′ ∈ S : σ(s, s′) ∧ TS, s′ |= ϕ
TS, s |= EGϕ iff there exists a path, s0 → s1 → . . . , where s = s0,

and for all i’s TS, si |= ϕ.
TS, s |= ϕEUψ iff there exist a j and a path, s0 → s1 → . . . , where s =

s0, TS, sj |= ψ and for all i less than j TS, si |= ϕ.

The transition system TS satisfies the CTL formula ϕ, denoted by TS |= ϕ,
if and only if for all s0 ∈ S0 we have TS, s0 |= ϕ.

The syntax of a complete fragment of CTLFC is the same as Equation 1
with the addition of one connective, EcG. In this connective, c is a fairness
constraint formula, which is used to define a fair computation path. The com-
putation path s0 → s1 → . . . is fair with respect to c iff:

{i | TS, si |= c} is infinite.

The semantics of CTLFC is the same as Definition 2 along with the semantics
of EcG:

TS, s |= EcGϕ iff there exists a fair computation path with respect to
c, s0 → s1 → . . . , where s = s0, and for all i’s
TS, si |= ϕ.

Multiple fairness constraints can be converted to an equivalent property with
a single fairness constraint using the method described in (Vakili, 2016), which
is based on Vardi and Wolper’s work (Vardi and Wolper, 1994). Therefore, we
describe our method for a single fairness constraint.

6 Sabria Farheen et al.

If X is a subset of S, then σX denotes the transition relation σ when its
domain is restricted to X:

σX(s, s′) iff σ(s, s′) ∧ s ∈ X

In this article, ^ denotes the transitive closure operator; for example, ^σX is the
transitive closure of the relation σX . The reflexive transitive closure operator
is ∗. The bounding operator has higher precedence than the transitive closure
operators: i.e. ^σX is ^(σX).

2.2 Alloy

Alloy is a lightweight declarative relational modelling language (Jackson, 2002).
The logic that Alloy provides for modelling is essentially first-order logic with
the transitive closure operator (FOLTC). An Alloy model consists of a set of
declarations, which specify the sets, relations, and functions in a model, and
a set of constraints, which are logical formulas. In general, first-order logic
is undecidable; as a result, automatic consistency checking of Alloy models
is not possible. The Alloy Analyzer, the main analysis tool for Alloy models,
provides finite scope analysis: a user is required to choose a finite size for the
sets in the model (called the scope) and then after expanding the transitive
closure operator for the scope, the Alloy Analyzer translates the model to a
propositional CNF formula, which is handed to a SAT solver for consistency
checking. By fixing the sizes of the sets in an Alloy model, the Alloy Analyzer
evaluates a model for consistency using the run command and validity using
the check command.

3 Transitive-Closure-based Model Checking (TCMC)

Immerman and Vardi show how CTL and CTL* can be encoded in FOLTC for
finite models (Immerman and Vardi, 1997). The transitive closure operator is
defined only for a finite set. Their encoding of CTL* requires the introduction
of Boolean variables into the model for every sub-formula, and as a result, the
number of states of a transition system increases exponentially with respect
to the size of the formula. They do not provide any implementation of their
idea.

In this section, we present our translation of CTLFC to FOLTC with a
similar approach to that of Immerman and Vardi. We chose CTLFC for three
reasons: 1) unlike CTL*, the encoding of CTLFC in FOLTC does not increase
the size of a transition system, 2) it is more expressive than CTL, and 3)
LTL model checking can be reduced to CTLFC model checking1 (Clarke et al,
1997). We call our approach transitive-closure-based model checking (TCMC).

The general idea for TCMC is to use the (reflexive) transitive closure oper-
ator to specify the necessary and sufficient conditions for the set of states that

1 This translation increases the size of a transition system.

Transitive-Closure-based Model Checking (TCMC) in Alloy 7

satisfy a property. The closure operator is used to specify the reachability rela-
tion, which is not expressible in FOL. Similar to traditional representations of
CTL model checking, we define an operator, [·], that takes a formula as input
and outputs a symbolic representation of the set of states that satisfy the in-
put formula. In TCMC, this operator in defined using transitive closure. The
recursive definition for [·] is given in Definition 3. The key difference from the
work of Immerman and Vardi is that each formula can be defined directly; sup-
port for all of CTL* would require the introduction of a new Boolean variable
into the transition system for each sub-formula of the property.

Definition 3 TCMC Let TS = (S, S0, σ, P, l) be a transition system and c
be a fairness constraint. The operator [·] takes a CTLFC formula, and produces
a subset of S:

1. [p] = {s ∈ S| p ∈ l(s)}
2. [¬ϕ] = {s ∈ S| s 6∈ [ϕ]}
3. [ϕ ∨ ψ] = [ϕ] ∪ [ψ]
4. [EXϕ] = {s ∈ S| ∃t ∈ [ϕ] : σ(s, t)}
5. [ϕEUψ] = {s ∈ S| ∃t ∈ [ψ] : ∗(σ[ϕ])(s, t)}
6. [EGϕ] = {s ∈ S| ∃t ∈ [ϕ] : ∗(σ[ϕ])(s, t) ∧ ^(σ[ϕ])(t, t)}
7. [EcGϕ] = {s ∈ S| ∃t ∈ [ϕ] : ∗(σ[ϕ])(s, t) ∧ ^(σ[ϕ])(t, t) ∧ t ∈ [c]}

[EXϕ] is the set of states that can be reached in one step from states in
[ϕ]. [ϕEUψ] is the set of states that can reach a state in [ψ] via the transitive
closure of σ restricted to states in [ϕ]. [EGϕ] are states that can reach some
state, t, via the transitive closure of σ restricted to states in [ϕ] and t must loop
back to itself via a path of states in the set [ϕ]. The definition of [EcGϕ] is based
on the model checking algorithm of EcG that finds the strongly connected
components (SCCs) in a transition system. The state t in the definition of
[EcGϕ] is a state that belongs to an SCC and satisfies the fairness constraint,
c. This state t must be in a loop (it returns to itself in the transitive closure
of σ) of states in the set [ϕ] and is reachable from s via a path of states in the
set [ϕ].

Theorem 1 Let TS = (S, S0, σ, P, l) be a transition system, ϕ a CTLFC
formula, and [·] the operator defined in Definition 3. We have:

[ϕ] = {s ∈ S| TS, s |= ϕ}

Theorem 1 is proven by structural induction on ϕ. The proof is straight-
forward for the first six cases. The details of the proof of this theorem are
in (Vakili, 2016). The following corollary of Theorem 1 defines the use of
TCMC for model checking a transition system:

Corollary 1 Let TS = (S, S0, σ, P, l) be a transition system, ϕ a CTLFC
formula, and [·] the operator defined in Definition 3. We have:

TS |= ϕ iff S0 ⊆ [ϕ]

8 Sabria Farheen et al.

Fig. 1: Multiple instances of a transition system for the constraint: every state
must reach a state that is reachable from itself.

If the declarative model of a transition system is not fully defined, there can
be multiple instances that satisfy its constraints. For example, the declarative
specification “every state must reach a state that is reachable from itself”
specifies more than one transition system as shown in Figure 1.

Corollary 1 can be used in two ways because there are potentially multiple
instances of σ. Universal TCMC is traditional model checking, which checks
whether the property is satisfied on all paths starting from all initial states in
all TS instances of the model and can be accomplished by verifying S0 ⊆ [ϕ]
for all instances of the model. Existential TCMC checks if some TS instance
of the model satisfies the property from all initial states. In this case, we are
checking if the model definition is consistent with the property S0 ⊆ [ϕ].

4 TCMC in Alloy

In this section, we describe the implementation of TCMC in the Alloy lan-
guage. We create the module ctlfc (part of which is shown in Figure 2),
which takes the transition system’s set of states as a parameter (Line 1). The
TS (Lines 3-7) declares the sets and relations that are needed to describe a
transition system, where S0 refers to the initial states, sigma refers to the
transition relation, and FC refers to the set of fair states if a fairness constraint
is present. These are accessed using the functions on Lines 9–11.

TCMC (Definition 3) is implemented as Alloy functions as shown in Fig-
ure 2 Lines 18–29. It uses two helper functions, domainRes and id, imple-
mented and explained in Lines 13–16. domainRes[R,X] is the subset of R with
its domain restricted to X; id[X] is the identity relation over X. In defining
the temporal operators, we take advantage of the Alloy join function, “.”.
For example the .S on Line 24 extracts the domain from the relation pro-
duced in the rest of the expression. In our complete ctlfc module, we also
include the universal path quantifiers, AX, AG, AU, ACG, defined in terms of
the existential temporal operators. Our ctlfc module is available on-line2.

An example template for developing a model to use with TCMC is shown in
Figure 3. We import the CTLFC module (Line 1). In the modelDefinition, on
Line 6, we equate the initialState function from the module with the initial
state constraints of our model. Similarly, we set up the nextState relation,
and the fairness constraint (fc), if any. Then we use ctlfc mc (Lines 10-13)
to perform model checking tasks. Our template shows the use of the ag and

2 https://cs.uwaterloo.ca/~nday/artifacts/

https://cs.uwaterloo.ca/~nday/artifacts/

Transitive-Closure-based Model Checking (TCMC) in Alloy 9

1 module ctlfc[S]
2
3 private one sig TS{
4 S0: some S, // initial states
5 sigma: S -> S, // next -state relation
6 FC: set S // fair states
7 }
8 ----------------------- MODEL -----------------------------------
9 fun initialState: S {TS.S0} // initial state constraints

10 fun nextState: S -> S {TS.sigma} // transition relation
11 fun fc: S {TS.FC} // fairness constraints
12 ----------------------- HELPER FUNCTIONS _-----------------------
13 // domainRes[R,X]={(x, y) | (x,y) in R and x in X}
14 private fun domainRes[R: S -> S, X: S]: S -> S {X <: R}
15 // id[X]={(x, x) | x in X}
16 private fun id[X:S]: S->S {domainRes[iden ,X]}
17 ----------------- TEMPORAL LOGIC OPERATORS ----------------------
18 fun not_[phi: S]: S {S - phi}
19 fun or_[phi , si: S]: S {phi + si}
20 fun ex[phi: S]: S {TS.sigma.phi}
21 fun eu[phi , si: S]: S {(*(domainRes[TS.sigma , phi])).si}
22 fun eg[phi: S]: S {
23 let R= domainRes[TS.sigma ,phi]|
24 *R.((^R & id[S]).S)
25 }
26 fun ecg[phi:S]:S {
27 let R= domainRes[TS.sigma ,phi]|
28 *R.((^R & id[S]).S & TS.FC)
29 }
30 -------------------- MODEL CHECKING -----------------------------
31 // used for model checking in user ’s model file
32 pred ctlfc_mc[phi: S] {TS.S0 in phi}

Fig. 2: Part of CTLFC module in Alloy

1 open ctlfc[State] as ctlfc
2
3 sig State { ... }
4
5 fact modelDefinition {
6 all s:State | s in initialState iff ...
7 all s,s’:State | s->s’ in nextState iff ...
8 all s:State | s in fc iff ...
9 }

10 // universal TCMC
11 check {ctlfc_mc[ag[{s:State| <universal_property >}]]} for exactly <scope >
12 // existential TCMC
13 run {ctlfc_mc[ef[{s:State| <existential_property >}]]} for exactly <scope >

Fig. 3: Template for use of TCMC in Alloy

ef temporal logic properties, but others can be used. The scope chosen can be
for the sets that are components of the state or the State set itself.

To implement universal TCMC, we use ctlfc mc with check, as shown
in Figure 3, Line 11. If the property is satisfied, then the Alloy Analyzer will
not be able to find a counterexample. If the property is violated, we get a
counterexample – an inspectable transition system that is an instance of our
model containing a path that violates the checked property. Unlike other model

10 Sabria Farheen et al.

checking methods, TCMC in Alloy returns an instance of a transition system
with a bug rather than a single counterexample path.

For existential TCMC, we use ctlfc mc with run, as shown in Figure 3,
Line 13. If the model constraints are consistent with the temporal logic prop-
erty, the Analyzer shows a transition system that is a valid instance of our
model. Otherwise, no instance is found.

5 Modelling a Transition System in Alloy

There are many ways that a transition system (TS) can be modelled in FOL.
To some extent the style of modelling chosen is based on user preference, how-
ever, we have developed some guidelines for Alloy that we find give structure
to the model, which we present via an example in this section. These guidelines
do not involve any extensions to Alloy. In most uses of symbolic model check-
ing, the user defines a unique transition relation, so our guidelines are focused
on defining a declarative model with a single transition system instance. Our
example in this section also illustrates the modelling convenience afforded by
the abstraction of FOL as compared to writing the same model in the SMV
language.

We use the game of musical chairs to illustrate an Alloy model of a transi-
tion system. Our model was inspired by Nissanke’s model of musical chairs (Nis-
sanke, 1999). As illustrated in Figure 4, each round of the game moves through
the modes Start, Walking, Sitting and End. The number of rounds will depend
on the number of players; we wish to write a flexible model description that
can be used for any number of players, and choose the number of players by
setting a finite scope only when we start analyzing the model.

Our behavioural model for Musical Chairs in Alloy consists of three parts:
1) the declaration of the state space, 2) the initial state constraints, and 3)
constraints describing the transitions. We combine the constraints describing
the transitions to create the transition relation in a standard way.

The state-space definition, as shown in Figure 5, consists of the primitive
sets Chair and Player, and the four possible modes. The State set encapsu-
lates the current set of players, chairs, mode, and chair occupancy by players,
occupied, which is a relation from players to chairs. The use of uninterpreted
sets, such as Chair and Player, plus the use of the relation occupied are ex-
amples of the abstractions possible in declarative models, which make models
concise, but precise.

The encapsulation provided by the State set is convenient, but in Alloy
such encapsulation is not a record, rather State is a distinct set, and the fields
are mappings from a State element to a set of players, etc. Two State elements
with the same attribute values are treated as two distinct elements by default.
To match our intuition that states with the same attributes are equivalent,
we introduce an equality predicate, shown in Lines 11-17 in Figure 5, to force
State elements with the same attributes to be the same element.

Transitive-Closure-based Model Checking (TCMC) in Alloy 11

Start Walking

SittingEnd

music

starts

music
stops

eliminate
loserdeclare

winner

#players
=1

#players>1

end
loop

Fig. 4: Musical Chairs Overview

1 sig Chair , Player {}
2 abstract sig Mode {}
3 one sig start , walking , sitting , end extends Mode {}
4 sig State {
5 players: set Player ,
6 chairs: set Chair ,
7 occupied: set Chair -> set Player ,
8 mode : set Mode
9 }

10 // two states with the same attributes are equivalent
11 pred equality [s,s’:State] {
12 (s.players=s’. players and
13 s.chairs=s’. chairs and
14 s.occupied=s’. occupied and
15 s.mode=s’.mode)
16 implies s = s’
17 }

Fig. 5: Musical Chairs state space

In Alloy, every element is modelled as a set. Therefore, even though every
chair can be associated with at most one player, Alloy treats occupied as a
relation. If we use the Alloy keyword lone (constraining every Chair to be
associated with at most one Player) in the declaration of occupied, we are
inserting a constraint that may or may not be maintained by the transitions
of the transition system. There is the potential to create an inconsistency.
We recommend using sets/relations for all attributes of the state space and
making the constraint that occupied is functional an invariant that is checked
by model checking.

The initial state constraints for Musical Chairs, shown in Figure 6, set up
the initial mode and constrain the number of players in the game.

The Musical Chairs model has five operations as shown in Figure 4:
music starts, music stops, eliminate loser, declare winner, and
end loop. Any pair of states that satisfies at least one of the operations
is a transition in the model. Figure 7 shows the predicates that define the

12 Sabria Farheen et al.

1 pred init [s:State] {
2 s.mode = start
3 #s.players > 1
4 #s.players = (#s.chairs).plus [1]
5 }

Fig. 6: Initial state constraints

1 pred pre_eliminate_loser [s: State] {
2 s.mode = sitting
3 }
4 pred post_eliminate_loser [s, s’: State] {
5 s’.mode = start
6 // loser is the player in the game not in the range of occupied
7 s’. players = Chair.(s.occupied)
8 #s’. chairs = (#s.chairs).minus [1]
9 }

10 pred eliminate_loser [s, s’: State] {
11 pre_eliminate_loser[s]
12 post_eliminate_loser[s,s’]
13 }
14 ...
15 fact modelDefinition{
16 all s:State | s in initialState iff init[s]
17 all s,s’:State | s->s’ in nextState iff
18 (music_starts[s,s’] or
19 music_stops[s,s’] or
20 eliminate_loser[s,s’] or
21 declare_winner[s,s’] or
22 end_loop[s,s’])
23 all s, s’: State | equality[s,s’]
24 }

Fig. 7: DisjMethod for Eliminate Loser Operation and Musical Chairs Model
Definition

eliminate loser operation in Alloy. For the sake of modularity in the model
description, we separate the operation description into separate predicates for
the pre- and post-conditions. The pre-condition is a constraint on a single state
and the post-condition is a constraint on the previous and the next states. Line
7 removes from the game the player who is not in the range of the occupied

relation. Line 8 eliminates a chair declaratively, that is, any chair could be the
one eliminated. The statement of the operation itself on Lines 10–13 combines
the pre- and post-conditions with conjunction.

Lines 15–24 of Figure 7 show the model definition fact, which matches the
template of Figure 3 and begins to make use of the ctlfc module. It equates
the initialState and nextState functions from the ctlfc module to the
model-specific constraints. A state can be an initial state if and only if it sat-
isfies the constraints listed in the init fact, and a pair of states can be in the
nextState relation if and only if it satisfies the constraints in one of the oper-
ations. Each operation is the conjunction of its pre- and post-conditions, and
the nextState relation is a disjunction of the definitions of each operation. We

Transitive-Closure-based Model Checking (TCMC) in Alloy 13

1 pred eliminate_loser [s, s’: State] {
2 pre_eliminate_loser[s] implies
3 post_eliminate_loser[s,s’]
4 }
5 ...
6 fact modelDefinition{
7 all s,s’:State | s->s’ in nextState iff
8 (music_starts[s,s’] and
9 music_stops[s,s’] and

10 eliminate_loser[s,s’] and
11 declare_winner[s,s’] and
12 end_loop[s,s’])
13 ... }

Fig. 8: ConjMethod Method for Defining nextState Relation

call this form of model the disjunctive modelling method (DisjMethod)
for transition relations. The model definition fact also enforces the equality

predicate described previously for all elements of State. Because of the equal-
ity predicate, where states with the same attributes must be equal, a model
written in this manner defines a unique transition system. There are likely
multiple TS transitions between states that satisfy the constraints of a single
operation.

An alternative, common method for modelling the transition relation is to
define each operation as an implication (pre-condition implies post-condition)
and conjunct the definitions of all the operations (similar to Dijkstra’s guarded
commands (Dijkstra, 1975)). We call this the conjunctive modelling method
(ConjMethod). An example of this modelling method for musical chairs is
shown in Figure 8.

For Musical Chairs, these two modelling methods yield equivalent tran-
sition relations, but this is not the case for all models. The two methods
produce equivalent transition relations when the pre-conditions are mutually
exclusive and complete (some pre-condition is satisfied in every state). Oth-
erwise, the transition relations resulting from these two methods can differ,
as illustrated in Figures 9 and 10, where the transition relation is defined as:
σ(s, s′)⇔ (pre1(s)∧post1(s, s′))∨ (pre2(s)∧post2(s, s′))) for the DisjMethod,
and as: σ(s, s′) ⇔ (pre1(s) ⇒ post1(s, s′)) ∧ (pre2(s) ⇒ post2(s, s′))) for the
ConjMethod.

If a state satisfies multiple user-defined operations’ pre-conditions, that is,
the pre-conditions are not mutually exclusive, then the transition relation from
the DisjMethod can include more transitions than the ConjMethod. Figure 9
illustrates this case; the figure only shows transitions that start from S1. For
the ConjMethod, all operations from a state that satisfies their pre-conditions
(S1) must have their post-conditions satisfied in the next state (S4). This
requires the next state to satisfy the post-conditions of multiple operations
at the same time, thus there are fewer transitions. But for the DisjMethod,
only one of the possible post-conditions from a state that satisfies their pre-

14 Sabria Farheen et al.

Fig. 9: Overlap in pre-conditions.
Shows only transitions starting
from S1.
Solid lines: DisjMethod transitions.
Dashed lines: ConjMethod transi-
tions.

Fig. 10: Incomplete pre-conditions.
Shows all transitions between S5
and S6.
Solid lines: DisjMethod transitions.
Dashed lines: ConjMethod transi-
tions.

conditions (S1) needs to hold in the next state (S2, S3, S4). So there is a higher
number of transitions included in the transition relation for the DisjMethod.

The opposite happens when the pre-conditions of the operations are in-
complete, that is, they do not cover all states. Figure 10 illustrates this case;
the figure shows all transitions occurring between the two states. From a state
that does not satisfy any pre-condition (S6), transitions to all other states
(S5, S6) are included in the transition relation for the ConjMethod, because
the antecedent of the implications in all the operations is false. So there are
more transitions included in the transition relation for the ConjMethod than
the DisjMethod in this scenario, although none of these extra transitions are
likely ones the user is expecting. While the modelling style is a matter of user
preference, we prefer the DisjMethod because it is more modular and additive
in nature than the ConjMethod, and we believe it is more likely to produce a
transition relation that the modeller is expecting.

To demonstrate the value of the declarative nature of describing behavioural
models in Alloy, we compare to a description in NuSMV (Cimatti et al, 2002)
of Musical Chairs. In NuSMV, a transition can be described as a constraint,
but it lacks abstract data structures. Figure 11 shows the eliminate loser

operation described in NuSMV. Lines 1-7 declares some of the elements of the
state (players, chairs, and occupied). Since NuSMV does not have sets and
relations as native constructs, an array of Booleans is used to represent sets;
occupied is an array of integers, where the indices represent the chairs and
the array values represent the players. A 0 player value is used to designate
that a chair is empty. To describe the elimination of a player, there is a case
for each player (Lines 15-20), thus the model is for a fixed scope. Additional
lines (22-23) are needed to keep track of previously eliminated chairs, which
also need to be extended if the scope of chairs is increased. Modules in NuSMV
might make this description less verbose, but it is clear that the abstractions

Transitive-Closure-based Model Checking (TCMC) in Alloy 15

1 VAR
2 -- boolean represents whether player is still in the game
3 players : array 1.. numPlayers of boolean;
4 -- boolean represents whether chair is still in the game
5 chairs : array 1.. numChairs of boolean;
6 -- mapping of chairs to players
7 occupied : array 1.. numChairs of 0.. numPlayers;
8 ...
9 TRANS

10 case
11 ...
12 mode = sitting :
13 next(mode) = start &
14 -- eliminate player if player doesn ’t occupy any chairs
15 ((occupied [1]!=1 & occupied [2]!=1) ?
16 !next(players [1]) : next(players [1])=players [1]) &
17 ((occupied [1]!=2 & occupied [2]!=2) ?
18 !next(players [2]) : next(players [2])=players [2]) &
19 ((occupied [1]!=3 & occupied [2]!=3) ?
20 !next(players [3]) : next(players [3])=players [3]) &
21 -- leave chair outside game if already outside
22 ((! chairs [1]) -> next(chairs [1])=FALSE) &
23 ((! chairs [2]) -> next(chairs [2])=FALSE) &
24 -- eliminate 1 chair for next round
25 count(chairs [1], chairs [2]) =
26 next(count(chairs [1], chairs [2])) + 1 &
27 ...

Fig. 11: Eliminate Loser Operation in NuSMV

provided by Alloy are substantially better for writing declarative models that
do not depend on a fixed scope.

Our style guidelines are useful for describing a transition system in Alloy
in a structured manner, which may be analyzed via TCMC or BMC.

6 Scope, Spurious Instances, and Significance Axioms

To use Alloy’s finite model finding capabilities for analysis, we must decide on
scopes for all sets. If we set the scope for the basic sets (Players and Chairs

for Musical Chairs), the size of all other sets can be determined, generating a
total state space. If we fix the scope of the State set to the size of the total
state space and run the model, assuming the initial state set is not empty,
we would get as an instance the complete transition system. However,
the total state space is usually too large to be represented in Alloy, especially
when the model includes relations. In the Musical Chairs example, occupied
is a relation between Chairs and Players. If we have 4 chairs and 5 players,
the number of all possible occupied relations is 24∗5, and this is for only one
element of the state.

One solution is to limit the number of states to the number of reach-
able states, using a generator axiom that uses the transitive closure operator,
however, this is also usually too big. Following Jackson’s small scope hypoth-
esis (Jackson, 2006), we try smaller scopes for the State set than the entire

16 Sabria Farheen et al.

I1

I2

I3

I4

I5

...

...

...

...

...

Reachable
states

Total state
space Instance

A

Instance
B

Op1

Op2

Op1

Op1

Op1

Op1

Op1

Op3

Op1

Op2

O
p3

Op3

Op4

O
p2

Op 2

Op2

O
p2

Op3

Instance
C

Op2

Op3

Fig. 12: Complete transition system and examples of its full subgraphs, with
and without significance axioms. In the figure, the states labelled with In are
initial states and the user-defined operations are Op1, Op2, Op3, and Op4

state space with the goal of finding bugs. We call this method scoped TCMC.
For a state set of scope n in scoped TCMC, if our model describes a unique
transition relation, we inspect all full subgraphs3 of size n in the complete
transition system.

This set of full subgraphs consists of all subsets of size n of the state
space of the complete transition system, which introduces the spurious instance
problem. Spurious instances are instances that satisfy the model but contain
disconnected states. Additionally, we also consider an instance that does not
include enough of the user-defined operations to be spurious because it is not
interesting for the user. Seeing spurious instances does not help us inspect the
correctness of the model. Figure 12 illustrates some spurious instances of a
hypothetical model. Instances A and B are instances of the model with the
scope of exactly 3 states. They are each spurious because some of the states
included are not reachable from an initial state or they are disconnected from
each other, or both.

For example, in the Musical Chairs model, if we ask Alloy for a transi-
tion system satisfying the constraints for scopes where the Player set has 3

3 A full subgraph of a graph is a subset of the nodes with all edges between these nodes
that are found in the original graph.

Transitive-Closure-based Model Checking (TCMC) in Alloy 17

Fig. 13: A spurious instance returned by Alloy for the Musical Chairs example

elements, the Chair set has 2 elements, and the State set has 3 elements, it
can return an instance such as that shown in Figure 13. This instance is a full
subgraph satisfying all constraints of the model, but it has an empty transition
relation because none of the pairs of states satisfy any operation. The Alloy
Analyzer treats the transition relation as a set of pairs of states and a relation
that satisfies the constraints as an instance. It is not useful for a verification
run to consider this instance of the model.

We propose a set of axioms, which we call significance axioms, that helps
us find a small, yet big enough to be interesting, scope that excludes spurious
instances from the model. These axioms work whether the transition relation
is uniquely defined or not and are relevant to any kind of model checking that
cannot inspect the entire reachable state space. These axioms limit the sat-
isfying instances by excluding non-interesting parts. Our significance axioms
are:

1. Reachability Axiom: All states produced must be reachable from an initial
state. This axiom also ensures that an initial state is included, and all
transitions in the instance are reachable. Equation 2 represents this axiom,
where s and si are states, σ is the transition relation, and S0 is the set of
initial states (recall that ∗ is the reflexive transitive closure operator):

∀s · ∃si · ∗σ(si, s) ∧ si ∈ S0 (2)

2. Operations Axiom: At least one transition that satisfies each operation
must be included. Equation 3 represents this axiom, where s and s′ are
states, op is an operation, and op(s, s′) is a predicate where (s, s′) satisfies
the operation op.

∀op · ∃s, s′ · op(s, s′) (3)

Separately from a model checking run, we can find the minimum scope
that satisfies the significance axioms by iteratively increasing the size of the
state space until a TS instance is returned. We call this scope the significant
scope. Note that the reachability axiom does not require the inclusion of the
entire reachable state space, just that the states included in the instance are
all reachable. The uniqueness of the transition relation remains unchanged
after adding the axioms. For the abstract example of Figure 12, a scope of

18 Sabria Farheen et al.

1 pred reachabilityAxiom {
2 all s:State | s in initialState .* nextState
3 }
4 pred operationsAxiom {
5 some s,s’:State | music_starts[s,s’]
6 some s,s’:State | music_stops[s,s’]
7 some s,s’:State | eliminate_loser[s,s’]
8 some s,s’:State | declare_winner[s,s’]
9 some s,s’:State | end_loop[s,s’]

10 }
11 pred significanceAxioms {
12 reachabilityAxiom
13 operationsAxiom
14 }
15 run significanceAxioms for exactly 3 Player ,
16 exactly 2 Chair , exactly 8 State

Fig. 14: Musical Chairs: Significance Axioms. The initialStateAxiom and
the totalityAxiom are not specific to the Musical Chair example.

4 states (Instance C) is needed to satisfy both of these significance axioms.
Every state in Instance C is reachable and the instance contains a transition for
each user-defined operations. We call an instance that satisfies the significance
axioms a significant instance. The significance axioms for Musical Chairs are
shown in Figure 14. In the Musical Chairs example, the significance axioms
ensure we have an instance in which some player wins, but the transition
system is not required to include paths for every player to win. One can view
our significance axioms as an example of Jackson’s generator axioms that are
specific for transition systems (Jackson, 2006).

7 TCMC Methodology

Model checking at a small scope evaluates if properties hold for transition sys-
tems of that size, but moreover, we can draw some conclusions about whether
the properties hold for the complete transition system. In this section, we pro-
pose a scoped TCMC methodology. We assume that the complete transition
system is uniquely defined.

7.1 Types of Properties

Before introducing our proposed TCMC methodology, we establish some cat-
egories for classifying properties. These categories are shown in Figure 15 and
based on the negation normal form of the property (negations are only applied
to atomic propositions). In our property examples, p and q are atomic proposi-
tions. The shaded leaves of the diagram cover all possible CTLFC properties.

The first distinction made is between universal and existential properties.
Universal properties are CTLFC properties with only universal quantifiers,

Transitive-Closure-based Model Checking (TCMC) in Alloy 19

CTLFC

Properties

Universal

e.g. AGp,

AFp, AFAGp

(holds for all

paths)

Safety

e.g. AGp

(c/e is finite path)

Liveness

e.g. AFp,

AFAGp

(c/e is

infinite path)

Finite Liveness

e.g. AFp,A(pUq)

(can be satisfied

by finite path)

Infinite Liveness

e.g. AFAGp,

AG(p → AFq)

(cannot be satisfied

by finite path)

Existential

e.g. EGp, EFp

(holds for

some path)

Fig. 15: CTLFC property categories

As, and no existential quantifier, E, in them. These properties are also re-
ferred to as ACTL properties (Grumberg and Long, 1991). If the property
does not hold, a counterexample, which is a path where the property is not
satisfied, can be produced. AGp, AFp and AFAGp are all examples of univer-
sal properties. Existential properties are CTLFC properties that contain
one or more existential quantifier, E, in them. If the property does not hold,
no counterexample path can be produced. EGp and EFp are examples of such
properties.

Following traditional definitions, universal properties are categorized into
safety and liveness properties. Safety properties are properties that have
finite paths as counterexamples. Liveness properties are those that have
infinite paths as counterexamples.

Liveness properties are further categorized based on whether they can be
satisfied by a finite path or not. Finite liveness properties are those that
can be satisfied by finite paths. A property of the form AFp is a finite liveness
property. Both finite and infinite paths can satisfy these properties. Infinite
liveness properties are those that cannot be satisfied by finite paths. An
example of such a property is one of the form AFAGp. Any universal property
with a fairness constraint is categorized as an infinite liveness property. Only
infinite paths can satisfy these properties.

The rest of this section describes TCMC model checking methodologies and
how to interpret results for the complete transition system for these different
types of properties. In our figures, we use the word real to signify if a pass or
fail holds for the complete transition system of the model.

20 Sabria Farheen et al.

Safety or Infi-

nite Liveness

Property, Scope n

Universal TCMC
Real

Bug

Ambiguous if

real pass or

eventually violated

Find significant

scope if not

already found

Ambiguous,

but high

confidence

in real pass

Increment n

Fail: instance

with c/e

Pass

n ≥ sig.

scope

n < sig.

scope

Fig. 16: TCMC methodology for Safety and Infinite Liveness Properties

7.2 Safety Properties

The process outlined in Figure 164 is used to perform TCMC of safety prop-
erties. We run universal TCMC as described in Section 4. If the check fails,
we get a TS instance with a finite path with a bug; this is a real bug in the
complete transition system of the model.

If it passes, we can conclude that it passes in all transition systems of the
specified scope, however, for the complete transition system, it is unknown if
the pass holds or if a violating state would be encountered at a larger scope. At
this stage, we recommend testing the model up to the significant scope, which is
the minimum scope required to satisfy our significance axioms, as described in
Section 6. We iteratively increment the scope of our check and rerun universal
TCMC until this significant scope is reached or a failure occurs. We increment
iteratively instead of directly checking at the significant scope so that we take
advantage of better model checking performance at lower scopes. The process
of iteratively increasing the scope is standard in verification practice, however,
with our identification of what constitutes a significant scope we can reach
a point in the process of having confidence in our pass results because we
have checked some significant instances without just exhausting computational
resources.

Figure 17 shows an example of checking a safety property in our Musical
Chairs model. Here we consider a game starting with 3 players and 2 chairs.
We check that the number of players is always one more than the number
of chairs, using the ag function from the ctlfc module. We start the model
checking process at a low State scope of 2 to detect initial bugs since a lower
scope yields better performance. When we get a pass result, we iteratively
increment the State scope until we reach 8, which is the significant scope
for the Musical Chairs model of 3 players and 2 chairs. A pass at this scope

4 Infinite Liveness, also described in this figure, is explained in a later subsection.

Transitive-Closure-based Model Checking (TCMC) in Alloy 21

1 assert safety {
2 ctl_mc[ag[{s: State| #s.players = (#s.chairs).plus [1] }]]
3 }
4 check safety for exactly 3 Player , exactly 2 Chair , exactly 8 State

Fig. 17: Checking a safety property of Musical Chairs

gives us considerable confidence that the property is satisfied in the complete
transition system.

7.3 Finite Liveness Properties

Although transition systems are often thought of as having only infinite paths
generated from a total transition relation, when we perform scoped TCMC
in Alloy, the transition systems checked contain a limited number of states,
and thus may contain finite paths (i.e. states that have no successor). Finite
liveness properties are those that are violated only by infinite paths, but can be
satisfied by finite paths. These properties can be checked using scoped TCMC
in Alloy using the methodology illustrated in Figure 18.

When checking finite liveness properties, universal TCMC inherently only
considers and checks infinite paths5. Therefore, if the check fails (while con-
sidering only infinite paths), the culprit path in the counterexample instance
is an infinite path, guaranteeing that a real bug has been uncovered in the
complete transition system of the model.

If the check passes, it is ambiguous whether the property holds for the
complete transition system or not, since paths that are finite at the specified
scope have not been checked. However, since finite liveness properties can be
satisfied by finite paths, it is useful to consider finite paths also. At the given
scope, if all paths, finite and infinite, satisfy a finite liveness property, then the
property is satisfied for the complete transition system. We check if the given
property holds on the finite paths of the transition system by adding dead-
loop transitions, i.e. a loop at every dead-end state, which is a reachable state
with no successor. The template for dead-loop transitions between two states,
s and s′, is:

(¬(∃s′′ · ops(s, s′′)) ∧ (s = s′))

where ops is a predicate satisfied by any pair of states that are an operation.
Adding the dead-loop transitions forces all finite paths in an instance to be
infinite by adding a transition from any reachable state without a successor
back to itself, which enables TCMC to check finite paths when checking for
finite liveness properties. These added transitions make all paths infinite and
allow TCMC to distinguish between a real pass and an ambiguous pass. A

5 The use of id[X] in EG (from which AF and AU are derived) in the TCMC implemen-
tation in Figure 2 requires there to be a looping path from a state back to itself to make an
infinite path.

22 Sabria Farheen et al.

Finite Liveness

Property,

Scope n

Universal

TCMC

Real

bug

Add

dead-loop

constraint

Universal TCMC
Real

pass

Ambiguous

if real bug or

eventually satisfied

Find significant

scope if not

already found

Ambiguous,

but high

confidence

in real bug

Increment n

Fail: instance with

infinite path c/e

Pass

Pass

Fail: instance with

finite path c/e

n ≥ sig.

scope

n < sig.

scope

Fig. 18: TCMC methodology for Finite Liveness Properties

pass result after adding dead-loop transitions means that all paths originating
from all initial states reach satisfying states within the limited scope and we
can deduce that the property passes in the complete transition system as well,
and we can stop our model checking process.

If the check fails, it means that there is a violating finite path in the
given scope. However, it is unknown whether the path represents a real bug
in the complete transition system or if the finite path can eventually lead to a
satisfying state, which makes the fail result ambiguous. To add some assurance
to this result, as with safety properties, we model check up to the significant
scope. A failure at the significant scope results in higher confidence that the
finite liveness property is not satisfied in the complete transition system.

Figure 19 shows an example of checking a finite liveness property in our
Musical Chairs model. Here, we check that the game always reaches a State

with a sitting mode, ensuring the game’s progress, using the af function from
the ctlfc module. When we start model checking at a scope of 2 States, the
check passes although vacuously since no infinite paths exist for a scope of 2
for this model. Then we add dead-loop transitions to consider finite paths as
well, but the check still fails for scope size 2. We increase the scope to increase
confidence since 2 is less than the significant scope. When we increase the

Transitive-Closure-based Model Checking (TCMC) in Alloy 23

1 assert finiteLiveness {
2 ctl_mc[af [{ s: State| s.mode=sitting }]]
3 }
4 check finiteLiveness for exactly 3 Player , exactly 2 Chair ,
5 exactly 3 State
6
7 // ops[s1 ,s2] is a disjunction of the model ’s operations
8 pred dead_loop [s,s’: State] {
9 (no s_n:State | ops[s,s_n]) and s=s’

10 }
11
12 fact modelDefinition {
13 all s,s’: State | s->s’ in nextState iff
14 (ops[s,s’] or dead_loop[s,s’])
15 ...
16 }

Fig. 19: Checking a finite liveness property of Musical Chairs

State scope to 3 (which is not yet the significant scope), we find that the
property holds, which is a real pass for the complete transition system.

7.4 Infinite Liveness Properties

An infinite liveness property can only be satisfied and violated by infinite
paths, therefore, we only need to consider infinite paths during scoped TCMC.
Our proposed method for using TCMC to check infinite liveness properties is
outlined in Figure 16 (since it is similar to safety properties).

If TCMC for an infinite liveness property fails, the counterexample pro-
duced represents a real bug in the complete transition system. TCMC inher-
ently only considers infinite paths for these properties, meaning that only an
instance with a culprit infinite path, thus, representing a real bug, can be
produced as a counterexample.

If TCMC passes for such a property, then it is ambiguous whether the result
represents a real pass in the complete transition system or a false positive.
Longer paths may exist that have not been checked that violate the property.
However, as before, model checking up to the significant scope gives us greater
confidence in our pass result. There is no point in adding dead-loop transitions
to check finite paths in this case, because, unlike finite liveness properties,
infinite liveness properties cannot be satisfied by finite paths.

Figure 20 shows an example of checking an infinite liveness property in
our Musical Chairs model. We use the af and ag functions from the ctlfc

module to check that we always eventually reach a point where the number
of players is one and always remains at one at all further states on that path.
We start the model checking at a State scope of 4. We find that the check
passes (although, from our knowledge about the model, we know that this
pass occurs vacuously since no paths at this scope are infinite). We repeat the
check until we reach a scope of 8, which is the significant scope. At this point,
we are relatively confident of our pass result.

24 Sabria Farheen et al.

1 pred infiniteLiveness {
2 // #players eventually always reaches and remains at 1
3 ctl_mc[af[ag[{s: State| infiniteLiveness [{s: State | #s.players =1}]]]
4 }
5 check infiniteLiveness
6 for exactly 3 Player , exactly 2 Chair , exactly 8 State

Fig. 20: Checking an infinite liveness property of Musical Chairs

Existential

Property, Scope n
Existential TCMC Real pass

Ambiguous

if real bug or

eventually satisfied

Find significant

scope if not

already found

Ambiguous,

but high

confidence

in real bug

Increment n

Pass

Fail

n ≥ sig.

scope

n < sig.

scope

Fig. 21: TCMC methodology for Existential Properties

7.5 Existential Properties

To check existential properties (including existential properties with fairness
constraints) such as EFp or EGp, in TCMC, we use existential TCMC. Check-
ing an existential property using universal TCMC would check if there is some
path in all TS instances of the model that satisfies the property. This check is
too strong since to satisfy an existential property, there only needs to be some
path in some TS instance of the model that satisfies the property, which is
what we accomplish with existential model checking6.

Our methodology for checking existential properties is shown in Figure 21.
If an existential TCMC run returns a satisfying TS instance, then the property
passes for the complete transition system of the model because a path (finite
or infinite) exists in some TS instance that satisfies the property. If the run

does not return an instance, it is unknown whether the property fails for the
complete transition system, or there exists paths outside the specified scope
where the property is satisfied. However, as before, model checking up to the
significant scope gives us greater confidence in our pass result.

6 Existential TCMC requires the satisfying TS instance to have some path from all initial
states of the TS instance, however, unless the model requires there to be multiple initial
states, usually there is a TS instance with only one initial state meaning there is some path
from some initial state.

Transitive-Closure-based Model Checking (TCMC) in Alloy 25

1 one sig Alice extends Player {}
2 pred existential {
3 ctl_mc[ef[{s: State | s.mode=end and s.players=Alice }]]
4 }
5 run existential
6 for exactly 3 Player , exactly 2 Chair , exactly 8 State

Fig. 22: Checking an existential property of Musical Chairs

Figure 22 shows an example of checking an existential property in our
Musical Chairs model. In this example, we assert that there is a player named
Alice in the game, and there exists an instance where she eventually wins the
game. When we start our model checking process at a low State scope of 2,
our property fails (since an end state has not been reached). We increment
the scope but get failures until we reach 8. At this point, we find the property
is satisfied, which means it is satisfied for the complete transition system.

8 Case Studies

We developed three case studies in addition to our Musical Chairs example to
evaluate TCMC:

– Feature Interaction in a Telephone System (Vakili, 2016)
– Traffic Light Controller (McMillan, 1992)
– Elevator System (Plath and Ryan, 2001; Macedo et al, 2016)

All these models satisfy the properties we checked. The complete Alloy models
are available on-line7. For TCMC of our models, we used the Alloy Analyzer
4.2 with the MiniSat SAT-solver (Eén and Sörensson, 2004). The experiments
were run on an Intel(R) Xeon(R) CPU E3-1240 v5 @ 3.50GHz x 8 machine
running Linux version 4.4.0-92-generic with up to 64GB of user-space memory.

The rest of this section discusses the utility of TCMC by examining the
feasibility and performance of TCMC at standard Alloy model sizes, a com-
parison of TCMC to BMC, and the use of fairness constraints in TCMC.

8.1 Scalability

Table 1 shows performance results for four case studies across a range of the
types of properties. The scope size (SS) denotes the sum of scopes of all sets.
If the execution did not complete within 1 hour, the run was terminated.

With respect to scalability, we found that temporal specifications can be
analyzed up to the scopes that non-temporal specifications are often analyzed
in Alloy. Thus, our method is immediately valuable to those currently using
Alloy for modelling and analysis relying on Jackson’s small scope hypothesis.

7 https://cs.uwaterloo.ca/~nday/artifacts/

https://cs.uwaterloo.ca/~nday/artifacts/

26 Sabria Farheen et al.

Musical Chairs. NS: 8, NR: 4
SS Safety Existential Finite Liveness Infinite Liveness

8 0.041 s 0.011 s 0.015 s 0.132 s
10 1.037 s 0.076 s 0.025 s 0.379 s
13 8.547 s 0.377 s 0.050 s 4.726 s
15 11 m 51 s 0.488 s 0.096 s 6 m 29 s
18 >1 hour 4.386 s 0.134 s >1 hour

(a)

Elevator System. NS: 3, NR: 4
SS Safety Finite Liveness Infinite Liveness

12 0.626 s 1.815 s 2.197 s
13 1.934 s 16.111 s 18.676 s
14 22.621 s 1 m 24 s 4 m 4 s
15 3 m 11 s 9 m 38 s >1 hour

(b)

Feature Interaction. NS:5, NR:6 Traffic Light Controller. NS:18, NR:5
SS Safety SS Safety

9 2.54 s 16 0.711 s
10 18.40 s 17 3.815 s
11 9 m 25 s 18 11 m 55 s
12 > 1 hour 19 > 1 hour

(c)

Table 1: Performance Results of Case Studies. NS: Number of Signatures, NR:
Number of Relations, SS: Scope Size, m: minutes, s: seconds

The models checked in Alloy are not as large as those that can be checked using
a model checker such as NuSMV (Cimatti et al, 2002), however, the declarative
and relational aspects of Alloy have significant advantages for creating concise,
abstract behavioural models. We have added to Alloy the ability to check
complex temporal logic specifications directly on small scopes of these models,
and a methodology to make useful conclusions about larger scopes as well.

8.2 Comparison to BMC

Bounded model checking (BMC) (Biere et al, 1999) uses symbolic model check-
ing to verify temporal (generally LTL) properties along paths up to a certain
length. It is different from scoped TCMC in that BMC limits the path length
whereas scoped TCMC limits the number of states in the transition system. In
scoped universal TCMC of scope n, we check all TS instances of size n of all
transition systems that satisfies the model’s constraints. In BMC, all paths of
a certain length of all transition systems that satisfies the model’s constraints
are checked.

Transitive-Closure-based Model Checking (TCMC) in Alloy 27

Fig. 23: Example Transition System

Using the example transition system shown in Figure 23, where S0 is the
initial state, we can compare the two approaches. For a bound of 3, BMC looks
at the following paths:

– S0 → S1 → S2 → S3

– S0 → S4 → S5 → S6

– S0 → S8 → S9 → S10

For a state scope of 4 (which is comparable to a BMC bound of 3 since one more
state than the path length may be used in BMC), scoped TCMC considers
transition system instances (and paths) such as the following:

– Instance 1: S0, S1, S2, S3

– S0 → S1 → S2 → S3 → S3 → ... (infinite path)
– Instance 2: S0, S4, S5, S6

– S0 → S4 → S5 → S6

– Instance 3: S0, S8, S9, S10

– S0 → S8 → S9 → S10 → S8 → S9 → S10 → ... (infinite path)
– Instance 4: S0, S1, S2, S4

– S0 → S1 → S2

– S0 → S4

– etc. All instances with 4 states.

In TCMC, paths are not limited to the scope size, and can be infinite. In BMC,
all paths are finite and of the length specified.

In Alloy, we can perform BMC by utilizing Jackson’s ordering mod-
ule (Jackson, 2006). The ordering module does not allow repeated states in a
path, therefore, it is impossible to represent infinite paths. To compare TCMC
in Alloy with BMC in Alloy, we implemented our Musical Chairs model using
the ordering module, and model checked a safety property and a finite live-
ness property using BMC. BMC is much faster than TCMC because TCMC
checks more instances (and paths) than BMC. However, aside from perfor-
mance, TCMC has several advantages over BMC in Alloy:

– The counterexamples produced by TCMC for liveness are real bugs in the
complete transition system. In BMC, it is not possible to limit the search to

28 Sabria Farheen et al.

infinite paths, and therefore spurious counterexamples, i.e. instances with
violating finite paths that would satisfy the liveness property if extended,
are possible. It is possible to represent infinite paths for BMC in Alloy
using the method proposed in (Cunha, 2014) (requires extra constraints to
represent loops in paths and to consider only infinite paths), which would
prevent spurious counterexamples.

– BMC can only check LTL properties, which quantify over paths, which
means that it cannot check CTLFC’s existential properties. TCMC checks
CTLFC and quantifies over transition system instances. Existential TCMC
allows us to check existential properties in Alloy.

– Checking up to the significant scope in TCMC provides a measure of con-
fidence in the result independent of computing resources. The significant
scope is a measure of transition system size, rather than path length.

– When a property does not hold, universal TCMC returns an instance that is
a transition system. A transition system instance provides more inspectable
information than a path; a violating (likely small) instance may include
multiple paths that violate the property uncovering multiple bugs.

Table 2 is a summary of the comparison between scoped TCMC and BMC
with the ordering module with respect to what we can conclude regarding the
entire reachable state space.

Table 2: Deducing Complete Model Checking Results: Scoped TCMC vs. BMC

Scoped TCMC BMC using ordering

Property Pass Fail Pass Fail

Safety Ambiguous Real Bug Ambiguous Real Bug
Finite w/o dead-loop Ambiguous Real Bug Real Pass Ambiguous

Liveness w/ dead-loop Real Pass Ambiguous
Infinite Liveness Ambiguous Real Bug Cannot Express

Existential Real Pass Ambiguous Cannot Express

8.3 Fairness Constraints

Our Traffic Light Controller case study shows an example of the use of fairness
constraints in TCMC. It also shows an application of the method described
in (Vakili, 2016) to convert multiple fairness constraints to one.

Our model has three fairness constraints that ensure all directions at the
three-way traffic light intersection (North, South and East) receive adequate
green light time. The fair states satisfying each of these three constraints are
described by the functions implemented in Lines 3–5 in Figure 24. The fact

fairness { ... } in Lines 7–14 dictates the update of a counter attribute
in State whenever a new type of fair state is encountered, and the counter

Transitive-Closure-based Model Checking (TCMC) in Alloy 29

1 open ctlfc[State]
2 ...
3 fun N_fair []: State {State - (sensors.N_Sense & goes.N_Go)}
4 fun S_fair []: State {State - (sensors.S_Sense & goes.S_Go)}
5 fun E_fair []: State {State - (sensors.E_Sense & goes.E_Go)}
6 // combines 3 fcs into 1 fc by checking that all 3 fcs occur infinitely

often using a counter
7 fact fairness {
8 all s,s’:State | s->s’ in nextState implies (
9 (s in N_fair [] and s.counter=f0) implies s’. counter=f1 else

10 (s in S_fair [] and s.counter=f1) implies s’. counter=f2 else
11 (s in E_fair [] and s.counter=f2) implies s’. counter=f3 else
12 s.counter=f3 implies s’. counter=f0 else
13 s’. counter=s.counter)
14 }
15 pred fair[s:State] {
16 s.counter = f3
17 }
18 ...
19 fact modelDefinition{
20 ...
21 all s:State | s in fc iff fair[s]
22 }

Fig. 24: Traffic Lights Control fairness constraints

is reset when all three types of fair states have occurred. The predicate fair

(Lines 15–17) is true whenever a member from each of the three fair state
sets has been encountered. We equate the set of accepted fair states in the
ctlfc module, fc, to those satisfying fair (Line 21). Therefore, when model
checking, the ctlfc module ensures that the fair predicate holds infinitely
often in checked instances, thus, satisfying all three fairness constraints of the
model.

9 Related Work

The ordering module of Alloy can be used for simple bounded model checking
(BMC) (Biere et al, 1999). Cunha (Cunha, 2014) uses the ordering module
for bounded model checking of LTL properties. Our approach supports more
sophisticated temporal properties and provides some advantages over BMC as
discussed in Section 8.2.

A declarative relational modelling language for transition systems has been
proposed by Chang and Jackson (Chang and Jackson, 2006). They augment
the traditional languages of model checkers with sets, relations and declarative
constructs to specify a transition system. Their technique is not capable of
model checking a declarative model with multiple instances of a transition
system, and suffers from the state-space explosion problem.

B (Abrial, 1996) is a modelling language that has many similarities to
Alloy. Models developed in B are called B machines, and the variables used to
define the state space can be sets and relations. ProB (Leuschel and Butler,
2008) is a tool for analyzing finite B machines, in particular, model checking

30 Sabria Farheen et al.

and automatic refinement checking of B machines. ProB provides LTL model
checking support. LTL properties are checked by explicit-state search. Since
each single state in a B machine represents some sets and relations, computing
the set of the next states of a single state is computationally very costly. Several
implementations of symbolic model checking algorithms (BMC, k-induction,
IC3) for B machines are provided in (Krings and Leuschel, 2018), however, they
cannot check all CTLFC properties, are iterative (meaning involve multiple
runs of the solver), and suffer from solver performance constraints (as does
TCMC).

The Abstract State Machine (ASM) method (Börger, 2005) is for high-level
system design and analysis. The ASM method is used to specify an infinite
transition system. Analysis techniques for the ASM method include theorem
proving (Schellhorn and Ahrendt, 1997; Dold, 1998), and model checking (Del
Castillo and Winter, 2000), which consists of translating an ASM to SMV by
fixing the size of the scopes in the ASM.

TLA+ (Yu et al, 1999) (with the TLC model-checker) checks behavioural
models for temporal properties. TLC supports unbounded model checking of
a subset of LTL formulas using explicit-state model checking. TCMC is a
symbolic approach to model checking.

Electrum (Macedo et al, 2016) is an extension of Alloy that incorporates
features from both Alloy and TLA+. It supports finite state model checking
of LTL properties. Electrum’s model checking mechanism requires modelling
over a time dimension, which adds complexity to the model checking problem.
DynAlloy (Frias et al, 2005), along with the DynAlloy Analyzer (Regis et al,
2017), is a set of extensions to Alloy for describing and analyzing dynamic
properties of systems using actions. DynAlloy does not support model checking
of temporal properties, such as CTLFC.

10 Conclusion

We have presented transitive-closure-based model checking (TCMC): a method
for encoding every CTLFC formula in first-order logic plus transitive closure.
Compared to Immerman and Vardi (Immerman and Vardi, 1997), our encod-
ing does not increase the size of the model, and the translation algorithm is
linear with respect to the size of the CTLFC formula. We have used TCMC to
model check transition systems in Alloy by using the constraint solver of the
Alloy Analyzer up to similar scopes as are used to check non-temporal proper-
ties. We introduced style guidelines for modelling transition systems natively
in Alloy (i.e. without any extensions to Alloy). We tackled the problem of
spurious instances of transition systems through significance axioms, which
give us a measure of whether we are checking instances that are large enough
to be interesting. We describe a methodology for scoped TCMC, which uses
the significance axioms and describes what the scoped results mean for the
complete transition system.

Transitive-Closure-based Model Checking (TCMC) in Alloy 31

We are working on ways to add common modelling abstractions, such as
state hierarchy, to declarative models of transition systems (Serna et al, 2017).
In the future, we plan to explore the use of TCMC for declarative models
that define more than one transition system. We are also exploring methods
to extract paths or other useful information from the (usually small) TS in-
stances returned by TCMC (Kember et al, 2019). We also want to compare
our approach to model checking using Alloy* (Milicevic et al, 2015) (which
has second-order quantification) and investigate methods for improving the
scalability of TCMC.

11 Acknowledgments

We thank Amin Bandali, George Gao, Eunsuk Kang, Mitchell Kember, Joseph
Poremba, Khadija Tariq, and Lynn Tran for their help in discussions regard-
ing Alloy. This research was supported in part by the Natural Sciences and
Engineering Research Council of Canada (NSERC).

References

Abrial JR (1996) The B Book: Assigning Programs to Meanings. Cambridge
University Press

Biere A, Cimatti A, Clarke E, Zhu Y (1999) Symbolic model checking with-
out BDDs. In: Tools and Algorithms for the Construction and Analysis of
Systems, Springer Berlin Heidelberg, pp 193–207

Börger E (2005) The ASM Method for System Design and Analysis. A Tu-
torial Introduction. In: Frontiers of Combining Systems, Lecture Notes In
Computer Science, vol 3717, Springer, pp 264–283

Bradley AR (2011) SAT-based model checking without unrolling. In: Interna-
tional Conference on Verification, Model Checking, and Abstract Interpre-
tation, Springer, Lecture Notes In Computer Science, vol 6538, pp 70–87

Chang FSH, Jackson D (2006) Symbolic Model Checking of Declarative Rela-
tional Models. In: International Conference on Software Engineering, ACM,
pp 312–320

Cimatti A, Clarke E, Giunchiglia E, Giunchiglia F, Pistore M, Roveri M, Se-
bastiani R, Tacchella A (2002) NuSMV 2: An OpenSource Tool for Symbolic
Model Checking. In: Computer Aided Verification, Lecture Notes In Com-
puter Science, vol 2404, Springer, pp 241–268

Clarke E, Grumberg O, Peled DA (1999) Model Checking. MIT Press
Clarke EM, Grumberg O, Hamaguchi K (1997) Another Look at LTL Model

Checking. Formal Methods in System Design 10:47–71
Cunha A (2014) Bounded model checking of temporal formulas with Alloy.

In: International Conference on Abstract State Machines, Alloy, B, VDM,
and Z, Springer Berlin Heidelberg, pp 303–308

Del Castillo G, Winter K (2000) Model Checking Support for the ASM High-
Level Language. In: Tools and Algorithms for the Construction and Analysis

32 Sabria Farheen et al.

of Systems, Lecture Notes In Computer Science, vol 1785, Springer, pp 331–
346

Dijkstra EW (1975) Guarded commands, nondeterminacy and formal deriva-
tion of programs. Communications of the ACM 18(8):453–457

Dold A (1998) A Formal Representation of Abstract State Machines Using
PVS. Verifix Technical Report Ulm/6.2, Universität Ulm

Eén N, Sörensson N (2004) An Extensible SAT-solver. In: Theory and Ap-
plications of Satisfiability Testing, Lecture Notes In Computer Science, vol
2919, Springer, pp 333–336

Farheen S (2018) Improvements to transitive-closure-based model checking in
Alloy. MMath thesis, University of Waterloo, David R. Cheriton School of
Computer Science

Frias MF, Galeotti JP, López Pombo CG, Aguirre NM (2005) DynAlloy: Up-
grading Alloy with Actions. In: International Conference on Software Engi-
neering, ACM, pp 442–451

Grumberg O, Long DE (1991) Model checking and modular verification.
In: Proccedings of 2nd International Conference on Concurrency Theory,
Springer, Lecture Notes In Computer Science, vol 527, pp 250–265

Immerman N, Vardi M (1997) Model Checking and Transitive-Closure Logic.
In: Computer-Aided Verification, Lecture Notes In Computer Science, vol
1254, Springer, pp 291–302

International Organisation for Standardization (2000) Information Technology
Z Formal Specification Notation Syntax, Type System and Semantics

Jackson D (2002) Alloy: a lightweight object modelling notation. ACM Trans-
actions on Software Engineering and Methodology 11(2):256–290

Jackson D (2006) Software Abstractions - Logic, Language, and Analysis. MIT
Press

Kember M, Tran L, Gao G, Day NA (2019) Extracting counterexamples from
transitive-closure-based model checking. In: Workshop on Modelling in Soft-
ware Engineering (MISE) @ International Conference on Software Engineer-
ing (ICSE), ACM, pp 47–54

Krings S, Leuschel M (2018) Proof assisted bounded and unbounded sym-
bolic model checking of software and system models. Science of Computer
Programming 15:41–63

Leuschel M, Butler M (2008) ProB : an automated analysis toolset for the B
method. International Journal on Software Tools for Technology Transfer
10:185–203

Macedo N, Brunel J, Chemouil D, Cunha A, Kuperberg D (2016) Lightweight
specification and analysis of dynamic systems with rich configurations. In:
Foundations of Software Engineering, ACM, pp 373–383

McMillan K (1992) Symbolic model checking: An approach to the state explo-
sion problem. PhD thesis, Pittsburgh, PA, USA

Milicevic A, Near JP, Kang E, Jackson D (2015) Alloy*: A general-purpose
higher-order relational constraint solver. In: International Conference on
Software Engineering, IEEE, vol 1, pp 609–619

Transitive-Closure-based Model Checking (TCMC) in Alloy 33

Nissanke N (1999) Formal Specification: Techniques and Applications, 1st edn.
Springer-Verlag

Plath M, Ryan M (2001) Feature integration using a feature construct. Science
of Computer Programming 41(1):53–84

Regis G, Cornejo C, Gutiérrez Brida S, Politano M, Raverta F, Ponzio P,
Aguirre N, Galeotti JP, Frias M (2017) DynAlloy analyzer: A tool for the
specification and analysis of alloy models with dynamic behaviour. In: Foun-
dations of Software Engineering, ACM, pp 969–973

Schellhorn G, Ahrendt W (1997) Reasoning about Abstract State Machines:
The WAM Case Study. Journal of Universal Computer Science 3(4):377–413

Selic B (2007) From Model-Driven Development to Model-Driven Engineering.
In: Euromicro Conference on Real-Time Systems, IEEE Computer Society

Serna J, Day NA, Farheen S (2017) DASH: A new language for declarative be-
havioural requirements with control state hierarchy. In: International Work-
shop on Model-Driven Requirements Engineering (MoDRE) @ IEEE Inter-
national Requirements Engineering Conference (RE), pp 64–68

Vakili A (2016) Temporal logic model checking as automated theorem proving.
PhD thesis, University of Waterloo, David R. Cheriton School of Computer
Science

Vakili A, Day NA (2012) Temporal Model Checking in Alloy. In: International
Conference on Abstract State Machines, Alloy, B, VDM, and Z, Springer,
Lecture Notes In Computer Science, vol 7316, pp 150–163

Vardi MY, Wolper P (1994) Reasoning about infinite computations. Informa-
tion and Computation 115:1–37

Yu Y, Manolios P, Lamport L (1999) Model checking TLA+ specifications. In:
IFIP WG 10.5 Advanced Research Working Conference on Correct Hard-
ware Design and Verification Methods, Springer Verlag, pp 54–66

	Introduction
	Background
	Transitive-Closure-based Model Checking (TCMC)
	TCMC in Alloy
	Modelling a Transition System in Alloy
	Scope, Spurious Instances, and Significance Axioms
	TCMC Methodology
	Case Studies
	Related Work
	Conclusion
	Acknowledgments

