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New Techniques for Static Symmetry Breaking
in Many-Sorted Finite Model Finding

Joseph Poremba, Nancy A. Day, Member, IEEE Computer Society, and Amirhossein Vakili

Abstract—Symmetry in finite model finding problems of many-sorted first-order logic (MSFOL) can be exploited to reduce the number
of interpretations considered during search, thereby improving solver performance for tools such as the Alloy Analyzer. We present a
framework to soundly compose static symmetry breaking schemes for many-sorted finite model finding. Then, we introduce and prove
the correctness of three static symmetry breaking schemes for MSFOL: 1) one for functions with distinct sorts in the domain and range;
2) one for functions where the range sort appears in the domain; and 3) one for predicates. We provide a novel presentation of sort
inference in the context of symmetry breaking that yields a new mathematical link between sorts and symmetries. We empirically
investigate how our symmetry breaking approaches affect solving performance.
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1 INTRODUCTION

Automated verification engines play key roles in many soft-
ware engineering problems. Many of these problems can be
represented in first-order logic (FOL) to solve. For example,
the Alloy Analyzer [1] uses finite model finding (FMF) of
(essentially) first-order logic1 to find counterexamples to
properties and to return satisfying instances for applications
such as role-based access control [2], finding bugs in the
CHORD protocol [3], understanding UML diagrams [4],
checking health care workflows [5], finding errors in verifi-
cation algorithms [6], reasoning about operations on sparse
matrices for scientific computation [7], checking networking
architectures [8], and temporal logic model checking [9] [10].

The satisfiability problem of finding a solution to a
formula in FOL is undecidable. However, in finite model
finding we restrict the problem to searching for solutions
of a bounded size, which is decidable. If FMF discovers
a solution, the formula is satisfiable. However, a formula
that is unsatisfiable for FMF may be satisfiable for the
unbounded satisfiability problem, due to the existence of
a solution that has a larger size than the search bound (even
a potentially infinite size). According to Jackson’s small
scope hypothesis [1], most flaws in formal models can be
exposed by counterexamples of small size, so if all possible
interpretations up to a sufficiently high size are explored
and no counterexample is found, then we can have a high
degree of confidence in the correctness of the model. Solvers
over unbounded domains such as CVC4 [11] have added
FMF capability to provide feedback to users [12] [13]. FMF
affords a good balance between providing useful results
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1. Alloy is relational logic with transitive closure, but transitive

closure over finite domains can be expanded to stay within first-order
logic.

while slightly sacrificing the generality of the result. But, it is
clear that looking at larger interpretations adds confidence
to the result of FMF, thus, performance improvements in
these automated verification engines are key to bringing the
value of formal verification to many software engineering
problems.

There are two main styles of FMF: the MACE-style [14],
which reduces the problem to symbolic logic and uses a
logic solver; and the SEM-style [15], which has a backtrack-
ing algorithm for searching for an interpretation explicitly.
Paradox [16] and Kodkod [17] are both MACE-style solvers
that reduce the FMF problem to boolean satisfiability and
use SAT solvers. Kodkod is used in the Alloy Analyzer.
Fortress [18] is a MACE-style solver, but it reduces the FMF
problem to quantifier-free first-order logic and uses an SMT
solver (forcing it to search only a finite set of interpreta-
tions). Mace4 [19] is a SEM solver (unlike its predecessor
Mace2, which is in the MACE-style). The SMT solver CVC4
has a hybrid algorithm where a SEM-style search for finite
model finding is integrated into the logic solver [12].

We can improve the performance of finite model finders
by exploiting symmetries in the set of possible interpre-
tations. Symmetry breaking means ruling out symmetric
(isomorphic) interpretations from consideration as solutions
and thereby reducing the number of interpretations that
must be examined to conclude a problem is satisfiable or
unsatisfiable. These reductions can be done dynamically
during search in a SEM-style finder or statically in a MACE-
style finder. In the static approach, formulas are added to the
problem that disallow interpretations from being considered
as solutions either at the level of the propositional logic
encoding (e.g. [20]) or at the FMF-problem level. Wang et
al [21] show the effectiveness of existing problem-level static
symmetry breaking (rather than symmetry breaking at the
propositional logic level) on reducing the time to find a
satisfying solution and reducing the number of satisfying
solutions produced in the Alloy Analyzer. In this paper we
study the problem of static symmetry breaking at the FMF-
problem level.
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Claessen and Sörenson’s symmetry breaking in Para-
dox [16] is focused on unsorted (or single-sorted) FMF prob-
lems, so all elements are drawn from a single domain. Their
symmetry breaking techniques are used in Kodkod [22] for
unsorted relational logic. However, in software engineer-
ing, types are often valued in problem descriptions and
several tools for theorem proving and model finding, such
as SMT solvers [23], Fortress [18], SEM [24], and Reger
et al.’s extensions to Vampire [25] use a many-sorted first-
order logic (MSFOL). Such systems are analogous to type
systems in programming languages. In unsorted logic, the
universe is homogoneous. In many-sorted logic, the uni-
verse is heterogenous and partitioned into multiple sorts.
The expressive power of many-sorted and unsorted FOL
are equivalent since sorts can be translated into predicates,
but many problems have a more natural representation
in a many-sorted logic, and the use of sorts can increase
performance [25] [16].

Claessen and Sörenson [16] describe basic ways to gener-
alize their symmetry breaking techniques to many-sorted fi-
nite model finding (MSFMF). These generalizations are used
in Fortress [18] and Reger et al.’s extensions to Vampire [25].
However, these generalizations are limited in the symmetry
breaking they can provide for many-sorted problems. They
only consider sorts in isolation and so are only applicable
for constants and single-sorted functions that use only one
sort for both the inputs and output. To strengthen symmetry
breaking in the many-sorted setting, we want to be able to
apply symmetry breaking to functions that arbitrarily mix
sorts for their input and output. The complications of having
a sort system mean that we must be careful about how to
soundly combine symmetry breaking techniques.

The main contributions of this article are:
• We introduce a general framework of iterative sym-

metry breaking over partially-interpreted MSFMF prob-
lems (meaning problems that already include symme-
try breaking formulas). Our framework gives a gen-
eral mechanism to soundly compose symmetry break-
ing schemes for different many-sorted functions and
relations that may share sorts with each other. Our
framework facilitates a simple implementation for the
composition of different schemes.

• We present and prove correct three symmetry breaking
schemes for MSFMF, using our general framework.
Two of the schemes concern many-sorted functions.
They generalize ideas from Claessen and Sörenson to
allow multiple sorts and partially-interpreted problems,
and provide more symmetry breaking for a class of
functions that we call “range-domain independent”
functions. The third scheme is entirely new and de-
scribes symmetry breaking over many-sorted relations.
Together, these cover all the kinds of functions and
predicates that can appear in MSFOL.

• We show how our schemes benefit from sort inference,
and establish a new mathematical link between sort
inference and symmetry.

• We empirically demonstrate the performance improve-
ments possible with our new techniques over Claessen
and Sörenson’s techniques for MSFMF via an imple-
mentation of our new symmetry breaking techniques
in the Fortress [18] finite model finder.

In Section 2, we provide background on MSFOL,
MSFMF, static symmetry breaking, and the results of
Claessen and Sörenson. In Section 3, we describe our frame-
work for combining symmetry breaking schemes. In Sec-
tions 4, 5, 6, we describe our new symmetry breaking
schemes and prove their correctness. Section 7 discusses the
effect of sorts on symmetry breaking and Section 8 is the em-
pirical analysis of the effect of our new symmetry breaking
schemes on solver performance. Section 9 describes related
work and Section 10 summarizes our contributions.

2 BACKGROUND

In this section, we provide background on many-sorted
first-order logic (MSFOL), many-sorted finite model find-
ing (MSFMF), static symmetry breaking, and Claessen and
Sörenson’s work on static symmetry breaking. We assume a
general familiarity with first-order logic (FOL).

2.1 Many-Sorted First-Order Logic (MSFOL)

The formulas and terms of many-sorted first-order logic
(MSFOL) are constructed with respect to a collection of
symbols called a signature.

Definition 1 (Signature). A signature is a tuple Σ =
(Θ,F,R) where
• Θ is a finite set of symbols called sorts,
• F is a finite set of functional symbols.
• R is a finite set of relational symbols (or predicate

symbols).
A functional symbol is a name f equipped with a sequence
of argument (input) sorts A1, . . . , An in Θ, and an output
sort B in Θ. We write such a functional symbol as f : A1 ×
· · · × An → B. A relational symbol is a name R equipped
with a sequence of argument (input) sorts A1, . . . , An in Θ.
We write such a relational symbol as R : A1 × · · · × An →
Bool 2.

Constants are nullary function symbols (i.e. no argument
sorts and only an output sort). We write a constant with
name c and output sort A as c : A. For brevity, we often
refer to functional and relational symbols as functions and
relations respectively, though we emphasize that they are
syntactic symbols and not actual functions or relations. We
include the equality symbol =: S × S → Bool with its
standard interpretation for each sort S without including
it explicitly in the signature.

Σ-terms and Σ-formulas (usually called simply terms
and formulas) have their usual definitions in first-order
logic with the addition that each term has an associated
sort, determined recursively by the sorts of subterms and
the functional symbol used in constructing the term. For
example, if f : A → B is a functional symbol, and t is
a term with sort A, then f(t) is a term of sort B. Sorts
do not have any relationships (such as subtyping). Unless
mentioned otherwise, all terms and formulas are closed (i.e.
all variables are bound).

2. Bool is a fixed symbol not in Θ. We use Bool to indicate that the
application of a relation to its arguments is a formula, not a term. Bool
is not a sort considered for symmetry breaking.
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In the semantics, sorts are interpreted by assigning sets
to them.

Definition 2 (Domain Assignment). For a given signature,
a domain assignment D maps each sort S to a non-empty
set called its domain, D(S). The elements of D(S) are called
values. The size of a domain is called its scope.

Values are semantic, not syntactic, and thus do not
appear in formulas. To emphasize this, we write values in a
different font; for exampleD(S) = {a, b, c}. It is common to
require that the domains of different sorts are disjoint, but it
is not necessary.

Functional and relational symbols are interpreted with
respect to a domain assignment D. For a functional symbol
f : A1 × · · · × An → B, let Interps(f) be the set of all
functions fromD(A1)×· · ·×D(An) toD(B). For a relational
symbol R : A1 × · · · ×An → Bool, let Interps(R) be the set
of n-ary relations over the sets D(A1), . . . ,D(An).

Definition 3 (Interpretation). For a given signature and
domain assignment, an interpretation I assigns each func-
tional or relational symbol f a function or relation, respec-
tively, f I ∈ Interps(f).

Formulas are evaluated under interpretations using stan-
dard first-order logic evaluation rules. We say interpretation
I satisfies formula φ if φ evaluates to True under I .

2.2 Many-Sorted Finite Model Finding (MSFMF)
In finite model finding, we are only concerned with finite
domain assignments, in which the domain assigned to each
sort is finite.

Definition 4 (Many-Sorted Finite Model Finding Problem).
A many-sorted finite model finding (MSFMF) problem P
is a tuple (Σ,Γ,D) where
• Σ is a signature,
• Γ is a finite set of formulas over Σ, and
• D is a finite domain assignment for Σ.

We let Interpretations(P ) denote the set of possible
interpretations of an MSFMF problem P . We are concerned
with the question of satisfiability for an MSFMF problem.

Definition 5 (Satisfiability). Let P = (Σ,Γ,D) be a MSFMF
problem. An interpretation I of P satisfies Γ and is a
solution of P if I satisfies every formula in Γ. If P has a
solution it is satisfiable, otherwise it is unsatisfiable.

The goal of finite model finding is to determine whether
a given MSFMF problem is satisfiable.

2.3 Static Symmetry Breaking
The literature on symmetry breaking for finite model find-
ing ( [26], [27], [16], [22], [28], [29], [25], [18]) focuses on
a kind of value symmetry. Since values do not appear in
formulas, it does not affect satisfiability whether D(A) =
{1, 2, 3, 4} or D(A) = {cat, dog,mouse, bird}. The values
are merely labels, which can be changed by a bijection.

Definition 6 (Sorted-Value Bijection, Permutation). Let D
and D′ be domain assignments over the same signature Σ.
A sorted-value bijection (SV bijection) σ between D and

D′ is a collection of bijections, containing a bijection σS :
D(S) → D′(S) for each sort S. If D = D′, σ is called a
sorted-value permutation (SV permutation).

We apply an SV bijection σ between D and D′ to relabel
values inside interpretations. For a function F : D(A1) ×
· · · × D(An) → D(B) of an interpretation, we define Fσ :
D′(A1)× · · · × D′(An)→ D′(B) by

Fσ(a′1, . . . , a
′
n) = σB(F(σ−1

A1
(a′1), . . . , σ−1

An
(a′n)))

That is, if F has the mapping (a1, . . . , an) 7→ b, then Fσ
has the mapping (σA1(a1), . . . , σAn(an)) 7→ σB(b). For a
relation R ⊆ D(A1)× · · · × D(An) of an interpretation, we
define the relation Rσ ⊆ D′(A1)× · · · × D′(An) by

(a′1, . . . , a
′
n) ∈ Rσ iff (σ−1

A1
(a′1), . . . , σ−1

An
(a′n)) ∈ R

For an interpretation I over D, we define an interpretation
σ • I over D′ by applying σ as above to each function and
relation in the interpretation I . If σ is an SV permutation,
we say I and σ • I are isomorphic.

It is well known (see for example the works by Claessen
and Sörenson [16] and Peltier [27]) that this relabelling
operation preserves whether an interpretation is a solution,
thus we state the following theorem without proof.

Theorem 7 (SV Bijections Preserve Solutions). Let D and D′
be domain assignments for the same signature Σ, and let σ be an
SV bijection between D and D′. For any interpretation I over D
and formula φ, I satisfies φ if and only if σ • I satisfies φ.

In symmetry breaking, we are primarily concerned with
SV permutations and isomorphic interpretations. For two
isomorphic interpretations, one is a solution if and only
if the other is a solution. In general, an interpretation is
isomorphic to numerous other interpretations (its isomor-
phism class). Since SV permutations preserve whether an
interpretation is a solution, only one representative from
each class need be checked to determine if the problem is
satisfiable.

Symmetry breaking is a general name for any pro-
cess that reduces the number of isomorphic interpretations
that are checked when searching for a solution. SEM-style
solvers perform dynamic symmetry breaking, where intel-
ligent decisions are made during search to avoid isomor-
phic branches. Since MACE-style solvers do not perform a
search directly, but reduce the problem to symbolic logic
and invoke an external solver, they use static symmetry
breaking, where extra formulas called symmetry breaking
formulas are added to the problem that are satisfied by at
least one member of an isomorphism class, but not all. The
external solver can use these formulas to prune the search
space, greatly improving their performance. Crawford et
al [30] first introduced the concepts behind static symmetry
breaking for SAT solving, but Claessen and Sörenson first
brought it to the context of FMF. It is quite different in these
two contexts: SAT relies on interchangeable variables rather
than values. In this paper we focus on static symmetry
breaking for FMF.

Once a symmetry breaking formula φ has been identi-
fied, it is added to the MSFMF problem P , generating a
new problem P ′. Since φ is satisfied by at least one member
of each isomorphism class, the problems P and P ′ are
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equisatisfiable. Thus a model finder can solve P ′ instead,
which is often solved more quickly.

Symmetry breaking formulas blur the line between syn-
tax and semantics. While values are not allowed to appear in
traditional formulas (which makes values interchangeable
in the first place), values are allowed to appear as terms in
symmetry breaking formulas. In particular, if S is a sort,
then any value v ∈ D(S) may appear as a term of sort S. Se-
mantically, such value-terms evaluate to themselves. Terms,
formulas, and MSFMF problems that do not have values
in terms are called pure. Terms, formulas, and MSFMF
problems that have values in terms are called partially in-
terpreted. We emphasize that partially-interpreted formulas
are only introduced through symmetry breaking formulas;
the formulas in the base problem are pure.

In addition to performance improvements from pruned
search spaces, symmetry breaking provides benefits for
counterexample generation. When one wishes to examine
flaws in a formal model, viewing isomorphic counterexam-
ples, which are identical modulo a renaming of values, may
be undesirable: ideally, counterexamples which are struc-
turally different should be presented. Symmetry breaking
reduces the number of such redundant counterexamples.

2.4 Claessen and Sörenson’s Symmetry Breaking
Claessen and Sörenson [16] introduced a few kinds of static
symmetry breaking formulas for unsorted FMF problems.
We can view these as MSFMF problems with a single sort
A. Their first technique is applied to constants. Suppose sort
A has constants c1 : A, . . . , cm : A and values a1, . . . , an. In-
tuitively, values are just interchangeable labels. For example,
if there is a solution where c1 is assigned value a1, then there
is a solution where c1 is assigned a2, and vice versa. So, for
the purposes of checking satisfiability, we can assume that
c1 is assigned a1. More generally, we assume the following
for all i ∈ {1, . . . ,max {m,n}}:

1) the i-th constant is assigned one of the first i values
(constants do not have to have distinct values), and

2) if the i-th constant is assigned the j-th value, then an
earlier constant must have been assigned the (j − 1)-th
value (for 2 ≤ j ≤ i).

Item 1) is encoded by the following formulas (where t ∈
{t1, . . . , tn} is shorthand for t = t1 ∨ · · · ∨ t = tn):

c1 = a1

c2 ∈ {a1, a2}
c3 ∈ {a1, a2, a3}
· · ·

Item 2) is encoded by the following formulas:

c2 = a2 =⇒ a1 = c1

c3 = a3 =⇒ a2 = c2

c3 = a2 =⇒ a1 ∈ {c1, c2}

c4 = a4 =⇒ a3 = c3

c4 = a3 =⇒ a2 ∈ {c2, c3}
c4 = a2 =⇒ a1 ∈ {c1, c2, c3}
· · ·

The conjunction of these formulas is a symmetry breaking
formula.

Claessen and Sörenson’s second technique is applied to
functions. If, after the above formulas are added, there are
still unused values remaining in the sort, say ak+1, . . . , an,
then a function symbol f : A → A can be selected, and the
following can also conjuncted with the above formulas:

f(a1) ∈ {a1, . . . , ak, ak+1}
f(a2) ∈ {a1, . . . , ak, ak+1, ak+2}
f(a3) ∈ {a1, . . . , ak, ak+1, ak+2, ak+3}
· · ·

A higher-arity single-sorted function g : A × · · · × A → A
could have been chosen instead, using g(ai, ai, . . . , ai) in
place of f(ai).

If k = 0 (i.e. no constants were constrained), then when
adding constraints on f we cannot start with f(a1) =
a1, f(a2) ∈ {a1, a2}, and so on. Intuitively, the reason
why we can constrain c1 = a1 is that all of the values
are “symmetric choices” for c1: it does not matter for the
purposes of satisfiability which value c1 is assigned. For an
interpretation where c1 is assigned a1, there is another in-
terpretation with the same structure, modulo a renaming of
the values, where c1 is assigned a2. But for f(a1), it changes
the structure of the solution whether f(a1) is assigned a1 or
some other ai, since the former gives f a fixed point while
the latter does not. However, a2 is a symmetric choice to ai
for any i ≥ 2, so we can use the following instead:

f(a1) ∈ {a1, a2}
f(a2) ∈ {a1, a2, a3}
f(a3) ∈ {a1, a2, a3, a4}
· · ·

We call these symmetry breaking techniques the
Claessen and Sörenson constant (CSC) and function (CSF)
schemes, respectively. We refer to these as symmetry break-
ing schemes or techniques, since the actual formulas gener-
ated depend on the chosen orderings of values, constants,
and functions. The correctness of CSC and CSF was proven
in Reger, Riener, and Suda [31].

These schemes are used in modern MACE-style model
finders, for example in Reger et al’s extensions to the
Vampire theorem prover [25] and Vakili and Day’s Fortress
model finder [18]. For many-sorted problems they use a
slight generalization, applying these schemes for each sort
independently. That is, apply the schemes for constants of
sort A and a function f : A → A (using values in D(A)),
then apply the above for constants of sort B and a function
g : B → B (using values in D(B)), and so on.

3 ITERATIVE SYMMETRY BREAKING FRAMEWORK

In this section, we develop a framework that uses partially-
interpreted MSFMF problems to describe symmetry break-
ing as an iterative process. This framework enables us to
prove the correctness of symmetry breaking schemes while
showing how they can be soundly combined.

In a pure MSFMF problem, values of sorts cannot appear
in terms. This assumption is key for symmetry breaking,
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since it makes all the values interchangeable. However, once
we add symmetry breaking formulas, some values appear in
the formulas and therefore, we have a partially-interpreted
problem.

Definition 8 (Stale and Fresh Values). Let P = (Σ,Γ,D) be
a partially-interpreted MSFMF problem. A value v ∈ D(S)
is stale for sort S if v appears in any formula of Γ as a term
of sort S. Otherwise, v is fresh for S. We denote by Stale(S)
and Fresh(S) the set of values which are stale and fresh for
sort S respectively.

Stale values are not necessarily interchangeable. For ex-
ample, consider a constant c : A, distinct values a1, a2 ∈
D(A), and the partially-interpreted formula c = a1. An
interpretation I where cI = a1 satisfies this formula. How-
ever, swapping a1 and a2 produces a new interpretation I ′

where cI
′

= a2, which does not satisfy the formula c = a1.
The permutation does not preserve that I is a solution. Sym-
metries are those SV permutations that preserve whether or
not an interpretation is a solution.

Definition 9 (SV Symmetry). Let P be a partially-
interpreted MSFMF problem. An SV permutation σ of P
is a sorted-value symmetry (SV symmetry) if, for every
interpretation I , σ • I satisfies P if and only if I satisfies P .

The set of SV symmetries equals the set of SV permuta-
tions in pure problems, but not all SV permutations will
be SV symmetries in partially-interpreted problems. For
a given problem P , we let Sym(P ) be the set of all SV
symmetries of P . Now, we say two interpretations I and
I ′ of P are isomorphic if I ′ = σ • I for some SV symmetry
σ.

While stale values might not be interchangeable, any
remaining fresh values are still interchangeable. We give a
special name to SV permutations that only permute fresh
values.

Definition 10 (Stale-Fixing). Let P be a partially-interpreted
MSFMF problem. An SV permutation σ of P is stale-fixing
if for every sort S, σS acts as the identity on Stale(S).

Stale-fixing permutations are symmetries because they
only swap fresh values, which are interchangeable.

Proposition 11 (Stale-Fixing Permutations are SV Symme-
tries). Let P be a partially-interpreted MSFMF problem with
stale-fixing SV permutation σ. For any interpretation I of P , I
satisfies P if and only if σ • I satisfies P , and therefore σ is an
SV symmetry.

The presence of fresh values (and of non-trivial SV sym-
metries) in a partially-interpreted MSFMF problem suggests
we can do more symmetry breaking. Therefore the question
of how to sequence or compose multiple symmetry breaking
schemes is important.

Claessen and Sörenson only lightly acknowledge this
question of composition. The set of values used in the CSF
scheme depends on which values were used in the CSC
scheme. However, since only one function is ever chosen,
it is easy to view their symmetry breaking as a monolithic
process, where the constraints are all generated and added
at once to the original pure problem.

Composition is significantly more challenging in the
many-sorted case. Suppose we have sorts A,B,C,D, and
have added some symmetry breaking formula φ which uses
some sort values. Now consider a function f : A × B → C
on which we wish to perform symmetry breaking. Does it
matter which values of sortA are still fresh? What about sort
C? Supposing that we determine some symmetry breaking
formulas using f (which would use values of sorts A,B,
and C), what then can we do for a function h : D×A→ D?

To tackle this complexity, instead of thinking of adding
symmetry breaking formulas all at once to a pure problem,
we instead answer a more general question: what symmetry
breaking can be done for an MSFMF problem that is already
partially-interpreted? Answering this question allows us
to view symmetry breaking as an iterative process as in
Algorithm 1. We use the notation P + φ to denote the
problem obtained from P by adding the formula φ.

Algorithm 1: Iterative Symmetry Breaking
input : A pure MSFMF problem P
output: A partially-interpeted MSFMF problem P ′,

which is equisatisfiable to P
P ′ ← P
while there exists a symmetry breaking formula of P ′ do

φ← a symmetry breaking formula of P ′

P ′ ← P ′ + φ
end
return P ′

To make this approach work, we define what a sym-
metry breaking formula is for partially-interpreted MSFMF
problems, and ensure their addition preserves satisfiability.

Definition 12 (Symmetry Breaking Formula). Let P =
(Σ,Γ,D) be a partially-interpreted MSFMF problem. A
symmetry breaking formula is a partially-interpreted for-
mula φ such that, for any interpretation I of P , at least one
member of its isomorphism class under Sym(P ) satisfies the
formula φ (i.e. there exists σ ∈ Sym(P ) where σ • I satisfies
φ).

With this definition, adding symmetry breaking formu-
las preserves satisfiability 3.

Theorem 13 (Symmetry Breaking Preserves Satisfiability).
If φ is a symmetry breaking formula of a partially-interpreted
MSFMF problem P = (Σ,Γ,D), then P ′ = (Σ,Γ∪ {φ} ,D) is
equisatisfiable to P .

Proof. Since the formulas of P are a subset of the formulas
of P ′, if P ′ is satisfiable, then so too is P . For the converse,
suppose that P is satisfiable with solution I . Since φ is a
symmetry breaking formula, there exists an SV symmetry σ
such that σ • I satisfies φ. Additionally, since I is a solution
of P , I satisfies Γ. By Definition 9, σ • I also satisfies Γ.
Hence σ • I satisfies Γ ∪ {φ}, and thus satisfies P ′.

Sometimes, it is easier to handle collections of symmetry
breaking formulas instead of single formulas. It follows triv-

3. Theorem 13 still holds even if we weaken Definition 12 to quantify
over only interpretations which are solutions to P . However, this would
not help much in practice to prove a formula is symmetry breaking,
since we know little about the structure of solutions before search.
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ially from Theorem 13 that the addition of these collections
also preserves satisfiability, so they could also be used in
Algorithm 1.

Definition 14 (Symmetry Breaking Set, Chain). A finite set
Φ of partially-interpreted formulas is a symmetry breaking
set of P if its conjunction

∧
φ∈Φ φ is a symmetry breaking

formula. A sequence φ1, . . . , φk of partially-interpreted for-
mulas is a symmetry breaking chain of P if for i = 1, . . . , k,
φi is a symmetry breaking formula for P + φ1 + . . .+ φi−1.

For generality in symmetry breaking, our goal is to
derive symmetry breaking schemes for partially-interpreted
MSFMF problems. The correctness of a scheme is demon-
strated by proving that the formulas generated are symme-
try breaking formulas, sets, or chains, under Definitions 12
or 14. Then, we are able to use Algorithm 1 and Theorem 13
to iteratively sequence many symmetry breaking schemes
while preserving satisfiability. This framework is powerful
and robust for designing and combining symmetry breaking
schemes.

In Sections 4, 5, and 6, we design symmetry breaking
schemes to use in this framework. For these schemes, we
are only concerned with stale-fixing symmetries. In a gen-
eral partially-interpreted problem, some symmetries may
arise from the stale values. For example, in the partially-
interpreted formula f(1) = 1 ∧ f(2) = 2, the values 1 and
2 are stale but still interchangeable. Swapping 1 and 2 is
an SV symmetry that is not stale-fixing. However, in our
framework, the only stale values are those introduced by
our own symmetry breaking formulas. These formulas are
designed to be highly asymmetric in their use of values, so
the only remaining useful symmetries are those arising from
permuting fresh values.

4 SCHEME FOR RANGE-DOMAIN INDEPENDENT
FUNCTIONS

For many-sorted problems, the CSC and CSF schemes are
limited in applicability because they are restricted to con-
stants and single-sorted functions. Many kinds of functions
in MSFOL are not addressed, such as f : A → B, or
g : A×B → A. To increase symmetry breaking for MSFMF,
we create schemes for such functions. We categorize an
MSFOL function into one of two classes: 1) its output sort is
distinct from its input sorts, or 2) its output sort is one of its
input sorts.

Definition 15 (Range-Domain Independent/Dependent). A
function symbol f : A1 × · · · × Ak → B is range-domain
independent (RDI) if its output sort B is distinct from
each of its input sorts A1, . . . , Ak. Otherwise, the symbol
is range-domain dependent (RDD).

In the above definition it does not matter whether the
input sorts A1, . . . , Ak are distinct. In this section, we de-
velop a static symmetry breaking scheme for RDI functions,
and prove its correctness using our framework of partially-
interpreted MSFMF problems. In Section 5, we discuss sym-
metry breaking for RDD functions.

4.1 Symmetry Breaking Scheme
We begin by considering a pure problem where all values
are fresh, and the simplest RDI function f : A → B.
Suppose D(A) = {a1, . . . , am} and D(B) = {b1, . . . , bn}.

The CSF scheme is complicated by the fact that the range
and domain depend on each other, but this is not an issue for
RDI functions. We can effectively consider f(a1), . . . , f(ak)
to be constants from the perspective of B. Thus, we are
able to add similar symmetry breaking formulas as the CSC
scheme. First, we require that f sends ai to one of the first i
values in D(B):

f(a1) = b1

f(a2) ∈ {b1, b2}
f(a3) ∈ {b1, b2, b3}
. . .

Second, we require that if f(ai) = bj then some earlier al is
assigned bj−1:

f(a2) = b2 =⇒ b1 = f(a1)

f(a3) = b3 =⇒ b2 = f(a2)

f(a3) = b2 =⇒ b1 ∈ {f(a1), f(a2)}

f(a4) = b4 =⇒ b3 = f(a3)

f(a4) = b3 =⇒ b2 ∈ {f(a2), f(a3)}
f(a4) = b2 =⇒ b1 ∈ {f(a1), f(a2), f(a3)}

. . .

In partially-interpreted MSFMF, not all values are fresh,
and we cannot just require f(ai) to be one of the first i
values in D(B), as some are no longer interchangeable.
Instead, we require that f(ai) is either any of the stale values
of B or one of the first i fresh values of B. Supposing that
the fresh values in Fresh(B) are b′1, . . . , b

′
k, this gives us the

formulas:

f(a1) ∈ Stale(B) ∪
{

b′1
}

f(a2) ∈ Stale(B) ∪
{

b′1, b
′
2

}
f(a3) ∈ Stale(B) ∪

{
b′1, b

′
2, b
′
3

}
. . .

Similarly, we require that, if f assigns some ai the j-th fresh
value, then some earlier value in D(A) was assigned the
(j − 1)-th fresh value:

f(a2) = b′2 =⇒ b′1 = f(a1)

f(a3) = b′3 =⇒ b′2 = f(a1)

f(a3) = b′2 =⇒ b′1 ∈ {f(a1), f(a2)}

f(a4) = b′4 =⇒ b′3 = f(a3)

f(a4) = b′3 =⇒ b′2 ∈ {f(a2), f(a3)}
f(a4) = b′2 =⇒ b′1 ∈ {f(a1), f(a2), f(a3)}

. . .
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Generalizing to higher-arity RDI functions like h : A ×
A × C × C → B is not difficult: list the input tuples as
t1, . . . , tm, and instead of f(ai) above, use h(ti).

It is important to note that it is irrelevant whether the
input values are fresh or stale. This fact may be surprising,
but we prove it in the next subsection.

4.2 Proof of Correctness
To verify the RDI scheme soundly breaks symmetries, we
use Definitions 10, 12, and 14. We consider an arbitrary
interpretation I , and demonstrate the existence of a stale-
fixing SV symmetry σ (a collection of permutations that only
permute fresh values) so that σ • I satisfies the generated
formulas. The work comes in constructing the SV symmetry.

First, consider the simplest case of an RDI function, f :
A → B. We can visualize an interpretation of f as an array
of values of D(B), indexed by D(A) = {a1, . . . , ak}:

a1 a2 a3 . . . ak
[ ]y1 y2 y3 . . . yk

The ai’s are distinct, though the yi’s are not required to be
distinct.

Consider the result of applying an SV permutation σ
(consisting of a permutation on D(A) called σA and a
permutation on D(B) called σB) to this array. The permu-
tation σA shuffles the columns, while σB relabels the array
elements (consistently, since the yi’s need not be distinct).
The key insight is that, because the input and output sorts
are independent, we are separately able to permute them.
In our construction of σ, we leave the columns fixed and
simply relabel the array elements.

Interpretations of higher-arity functions are similar, ex-
cept they can be seen as multidimensional arrays (e.g. a
matrix for a binary function). We take the same strategy:
only relabel the array elements.

For a pure problem, the permutation we use for σB is
given in the following lemma. It has properties that mirror
the structure of the proposed symmetry breaking formulas,
which is what enables us to apply it to an interpretation and
have these formulas be satisfied.

Lemma 16. Let X = {b1, . . . , bn} be a set of n elements. Let
y1, . . . , yr be a sequence of elements of X that are not necessarily
distinct, where r ≤ n. There exists a permutation π : X → X
such that, for each i ∈ {1, . . . , r},
• π(yi) ∈ {b1, . . . , bi}, and
• for all j ∈ {2, . . . , i}, if π(yi) = bj then, for some l ∈
{j − 1, . . . , i− 1}, π(yl) = bj−1.

Such a permutation can be constructed as follows. As-
sign y1 to the first element of X . Then, iteratively assign the
next unassigned yi (recall they may not be distinct) to the
next element of X not yet matched to a yj . For example, if
the sequence of yi’s is 1, 2, 2, 4, 1, 3, we assign σ(1) = b1,
σ(2) = b2, σ(4) = b3, σ(3) = b4.

Constructing the correct permutation for a partially-
interpreted problem is more complicated, since we leave the
stale values fixed. To do this, we generalize Lemma 16.

Lemma 17. Let X be a set of size n, with partition (S, F ),
where F = {b1, . . . , bm}. Let y1, . . . , yr be a sequence of r ≤ m

elements of X that are not necessarily distinct. There exists a
permutation π : X → X such that, π acts as the identity on S,
and for each i ∈ {1, . . . , r},
• π(yi) ∈ S ∪ {b1, . . . , bi}, and
• for all j ∈ {2, . . . , i}, if π(yi) = bj then, for some l ∈
{j − 1, . . . , i− 1}, π(yl) = bj−1.

Proof. Iteratively for each i = 1, . . . , r, define π(yi) as
follows:
• If π(yi) is already defined (due to a repetition in the

sequence), keep it as is.
• If yi ∈ S and π(yi) is undefined, define π(yi) to be yi.
• If yi ∈ F and π(yi) is undefined, define π(yi) to be the

first element of F not yet in the range of π.
It can then be verified by induction that π is a partial
injection from X to X such that, for each i ∈ {1, . . . , r},
• if yi ∈ S, then π(yi) = yi,
• if yi ∈ F , then π(yi) is one of the i first values of F , and
• for all j ∈ {2, . . . , i}, if σ(yi) = bj , then σ(yl) = bj−1

for some l < i (also l ≥ j − 1 by the above properties).
Completing π to a permutation so that it remains the
identity on S, we obtain a permutation with the desired
properties.

We now prove the correctness of the RDI scheme for
symmetry breaking.

Theorem 18 (RDI Scheme). Let P = (Σ,Γ,D) be a partially-
interpreted MSFMF problem with RDI functional symbol f :
A1×· · ·×Ak → B. Let t1, . . . , tm be the tuples ofD(A1)×· · ·×
D(Ak) and let b1, . . . , bn be the elements of Fresh(B). Let r =
min {m,n}. Define Φ = {φi : 1 ≤ i ≤ r} ∪ {φ′i : 1 ≤ i ≤ r},
where:

φi := f(ti) ∈ Stale(B) ∪ {b1, . . . , bi}
φ′i :=

∧
2≤j≤i

f(ti) = bj =⇒ bj−1 ∈ {f(tj−1), . . . , f(ti−1)}

Then Φ is a symmetry breaking set.

Proof. Let I be an interpretation of P . We prove there exists
an SV symmetry σ such that σ • I satisfies Φ.

For each sort θ that is not B, choose σθ to be the
identity map on D(θ). Now, let X = D(B), (S, F ) =
(Stale(B),Fresh(B)), and let yi = f I(ti) for each i. Define
σB to be the permutation π defined as in Lemma 17. Since
σ only permutes values of Fresh(B), it is stale-fixing, and
hence, an SV symmetry by Proposition 11.

To show that σ • I satisfies Φ, we prove that, for each
i ∈ {1, . . . , r}, σ • I satisfies φi and φ′i. Since σ acts as the
identity on the input values of f , we have that for any j ∈
{1, . . . ,m},

fσ•I(tj) = σB(f I(σ−1
A1

(tj,1), . . . , σ−1
Ak

(tj,k))

= σB(f I(tj))
= σB(yj)

It then follows from Lemma 17 that

fσ•I(ti) = σB(yi) ∈ Stale(B) ∪ {b1, . . . , bi} ,

and so φi is satisfied by σ • I . Furthermore, for all 2 ≤ j ≤
i, if σB(yi) = bj then bj−1 ∈

{
σB(yj−1), . . . , σB(yi−1)

}
.

Therefore, for all 2 ≤ j ≤ i, if fσ•I(ti) = bj then bj−1 ∈
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fσ•I(tj−1), . . . , fσ•I(ti−1)

}
. Thus, φ′i is satisfied by σ • I .

Because of this proof, we know that these formulas
constitute a symmetry breaking set. Thus, we can safely add
RDI symmetry breaking formulas to a partially-interpreted
MSFMF problem, reducing the search space for solutions.
By Theorem 13, the problem with the added symmetry
breaking formulas is equisatisfiable to the original problem.
Also note that Theorem 18 does not require the input values
of the function be fresh.

5 SCHEME FOR RANGE-DOMAIN DEPENDENT
FUNCTIONS

A range-domain dependent (RDD) function, such as g :
A × A × B × B × C → A, has one of its input sorts
as its output sort. An SV symmetry cannot independently
permute the input and output sort values like in Theorem
18, so a different symmetry breaking scheme is needed.

In the case of single-sorted functions like h : A×A→ A,
we can use the standard CSF scheme. However, it does not
apply to RDD functions with multiple sorts, like g : A×B →
A. Additionally, the CSF scheme has two cases depending
on whether or not constants were constrained beforehand.
In this section we develop a more general, iterative symme-
try breaking scheme that handles any RDD function, and we
describe it in a way that neatly consolidates the two cases of
the CSF scheme.

5.1 Unifying CSF Cases with an Iterative Scheme

Consider a function f : A → A in a partially-interpreted
problem (some values may be stale), and a particular value
â ∈ D(A) (which may or may not be fresh) and consider
how we might constrain f(â). Recall from the CSF scheme
that, because of the domain-range dependence, the choice
that f(â) = â may not be equivalent to the choice that
f(â) = a for a different a ∈ D(A). In general, there are
three cases for the values of f(â):

1) f(â) has value â itself,
2) f(â) has value different from â and is stale, or
3) f(â) has value different from â and is fresh.

The last case presents opportunity for symmetry breaking:
any choice of value in Fresh(A) \ {â} is equivalent for f(â).
Combining the above, we may add the following formula,
where a∗ is an arbitrary representative of Fresh(A) \ {â}:

f(â) ∈ {â} ∪ [Stale(A) \ {â}] ∪ {a∗}

which is more compactly written as:

f(â) ∈ Stale(A) ∪ {â, a∗}

We add this formula to the problem, update the sets of
stale and fresh values, and iteratively repeat this process
for another choice of â. This gives us Algorithm 2.

The algorithm has some flexibility in the values â and
a∗ chosen for each iteration. As a concrete example, sup-
pose initially D(A) = {1, 2, 3, 4, 5, 6} and Fresh(A) =
{3, 4, 5, 6}. One possible execution, always choosing a stale
value for â, is:

Algorithm 2: RDD Symmetry Breaking Scheme

input : A partially-interpreted MSFMF problem P ′

with function f : A→ A
output: A symmetry breaking chain Φ
Φ← the empty sequence
(S, F )← (Stale(A),Fresh(A))
while F 6= ∅ do

â← a value in D(A)
a∗ ← a value in F \ {â}
φ← the formula f(â) ∈ S ∪ {â, a∗}
Φ← Φ appended with φ
(S, F )← (S ∪ {â, a∗} , F \ {â, a∗})

end
return Φ

Iter F â a∗ Formula
1 {3, 4, 5, 6} 1 3 f(1) ∈ {1, 2, 3}
2 {4, 5, 6} 2 4 f(2) ∈ {1, 2, 3, 4}
3 {5, 6} 3 5 f(3) ∈ {1, 2, 3, 4, 5}
4 {6} 4 6 f(4) ∈ {1, 2, 3, 4, 5, 6}

Another possible execution with different values of â is:

Iter F â a∗ Formula
1 {3, 4, 5, 6} 3 4 f(3) ∈ {1, 2, 3, 4}
2 {5, 6} 2 5 f(2) ∈ {1, 2, 3, 4, 5}
3 {6} 4 6 f(4) ∈ {1, 2, 3, 4, 5, 6}

Note that â should be chosen to be different from each
previous â, otherwise the formula generated will be redun-
dant (but not incorrect). Both forms of the CSF scheme are
generated by selecting â, a∗ according to the following rules:
choose â to be the least value not yet selected by an iteration,
and select a∗ to be as small as possible. So our RDD scheme
unifies the two cases of CSF.

As with Claessen and Sörenson’s scheme, for a higher-
arity single-sorted function h : A× · · · ×A→ A, we simply
use h(â, . . . , â) instead of f(â). Intuitively, we can pretend
we are creating a new function h′ : A → A by collapsing h
so that h′(a) = h(a, . . . , a) for all a ∈ D(A) and applying
the unary scheme to h′.

5.2 Generalizing to Multiple Sorts

Suppose now we wish to apply a similar technique for a
function g : A × A × B × B × C → A. The most straight-
forward approach is to extend the “collapsing” method
above. We fix particular values b, b′ ∈ D(B), c ∈ D(C),
held constant throughout the iterations, and use the same
iterative procedure with h(â, â, b, b′, c) instead of f(â).

For instance, suppose D(A) = {1, 2, 3, 4}, and initially
Fresh(A) = {2, 3, 4}. Then, fixing arbitrary b, b′ ∈ D(B)
and c ∈ D(C), an example algorithm execution is:

Iter F â a∗ Formula
1 {2, 3, 4} 1 2 h(1, 1, b, b′, c) ∈ {1, 2}
2 {3, 4} 2 4 h(2, 2, b, b′, c) ∈ {1, 2, 4}
3 {3} 4 3 h(4, 4, b, b′, c) ∈ {1, 2, 3, 4}

We will show that it does not matter whether b, b′, c are
fresh, it only matters what values of output sort A are fresh.
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5.3 Proof of Correctness
For the proof, we show that each step produces a symmetry
breaking formula; then by induction the algorithm produces
a symmetry breaking chain (Definition 14). Attempting a
proof that handles RDD functional symbols with arbitrary
sort configurations gives rise to cumbersome notation, so
instead we only prove the correctness of this scheme for
the specific functional symbol g : A × A × B × B × C →
A. This symbol is sufficiently complex, with multiple and
repeated sorts, to demonstrate how to generalize to all RDD
functional symbols.

Theorem 19 (RDD Scheme, Single-Step). Let P = (Σ,Γ,D)
be a partially-interpreted MSFMF problem with functional sym-
bol g : A×A×B×B×C → A. Let b, b′ ∈ D(B), c ∈ D(C).
Let â ∈ D(A) and let a∗ ∈ Fresh(A) \ {â} (â may or may not
be fresh). The formula

φ := g(â, â, b, b′, c) ∈ Stale(A) ∪ {â, a∗} (1)

is a symmetry breaking formula.

Proof. Let I be an interpretation of P . We prove there exists
an SV symmetry σ such that σ • I satisfies φ.

Let z = gI(â, â, b, b′, c) ∈ D(A). There are two cases.
Case 1: Suppose z ∈ Stale(A) ∪ {â}. This means that

gI(â, â, b, b′, c) ∈ Stale(A)∪{â}, so it follows that I already
satisfies φ. We simply take σ to be the identity permutation
for each sort, which is clearly an SV symmetry. Then, σ•I =
I and so σ • I satisfies φ.

Case 2: Suppose z ∈ Fresh(A), and z 6= â. Define σθ
to be the identity on each sort θ 6= A. Define σA to be the
permutation that swaps a∗ and z, but leaves all other values
fixed. Since σ is the identity on all values except some in
Fresh(A), it is stale-fixing and hence an SV symmetry by
Proposition 11. Note that since a∗ 6= â and z 6= â, σA acts as
the identity on â. Then we have that

gσ•I(â, â, b, b′, c)

= σA(gI(σ−1
A (â), σ−1

A (â), σ−1
B (b), σ−1

B (b′), σ−1
C (c)))

= σA(gI(â, â, b, b′, c))

= σA(z)

= a∗

Therefore σ • I satisfies φ.

This theorem did not require that b, b′, c are fresh,
confirming that it only matters which values of the out-
put sort A are fresh. Also, while for the discussion about
“collapsing” we hold b, b′, c constant over the iterations,
the theorem does not use this restriction. Instead, it allows
b, b′, c to be chosen at each step, meaning they can be chosen
differently for each iteration.

6 SCHEME FOR RELATIONS

The schemes presented in Sections 4 and 5 cover every func-
tion in MSFOL. However, they do not cover relations like
Q : A → Bool. Unlike function applications, applications
of relations are formulas, not terms. That is, an application
Q(x) of a relation Q does not output an object, but True or
False. Symmetry breaking schemes using functions rely on
the interchangeability of their output values. However, True

and False are not interchangeable, so a different approach is
needed. In this section, we provide such a scheme.

6.1 Symmetry Breaking Scheme
First consider a pure MSFMF problem, with relational
symbol Q : A → Bool where D(A) = {a1, . . . , am}.
An interpretation I assigns Q a unary relation QI ⊆
D(A), which is simply a set of values. Because val-
ues are interchangeable, any choice for QI of size k
is equivalent to any other choice for QI of size k: if
there is no solution where QI = {a1, . . . , ak}, then
there is no solution where QI = Z for any other k-
subset Z ⊆ D(A). Thus, we need only try assigning QI

to be ∅, {a1} , {a1, a2} , {a1, a2, a3} , . . . , {a1, a2, . . . , am} to
determine whether a solution exists. This restriction is en-
coded by the following formulas, which we call ladder
implications:

Q(a2) =⇒ Q(a1)

Q(a3) =⇒ Q(a2)

· · ·
Q(am) =⇒ Q(am−1)

For partially-interpreted problems, we only add these
ladder implications for the fresh values. In particular, if
Fresh(A) = {a′1, . . . , a′r}, the ladder formulas to add are:

Q(a′2) =⇒ Q(a′1)

Q(a′3) =⇒ Q(a′2)

· · ·
Q(a′r) =⇒ Q(a′r−1)

This approach can be generalized to higher-arity rela-
tions. If we have a relation R : A×A×B×B×C → Bool,
we fix particular particular values b, b′ ∈ D(B), c ∈ D(C),
and add the following formulas:

R(a′2, a
′
2, b, b

′, c) =⇒ R(a′1, a
′
1, b, b

′, c)

R(a′3, a
′
3, b, b

′, c) =⇒ R(a′2, a
′
2, b, b

′, c)

· · ·
R(a′r, a

′
r, b, b

′, c) =⇒ R(a′r−1, a
′
r−1, b, b

′, c)

As we will show, it does not matter whether b, b′, c are fresh.

6.2 Proof of Correctness
Now we prove the correctness of this ladder scheme. As in
the previous section, we only prove correctness using a spe-
cific relational symbol, R : A×A×B×B×C → Bool. This
example is sufficiently complex to show how to generalize
to any relation.

Theorem 20 (Ladder Scheme). Let P = (Σ,Γ,D) be a
partially-interpreted MSFMF problem with relational symbol
R : A × A × B × B × C → Bool. Let a1, . . . , am be the
elements of Fresh(A), let b, b′ ∈ D(B), and let c ∈ D(C). The
set Φ = {φi : 2 ≤ i ≤ m} is a symmetry breaking set, where:

φi := R(ai, ai, b, b
′, c) =⇒ R(ai−1, ai−1, b, b

′, c)

Proof. For any interpretation J of P , define RJ∗ to be the
set of all a ∈ D(A) such that (a, a, b, b′, c) ∈ RJ (essentially,
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we are collapsing R to a unary relation on A by removing
the repetition of A and folding in the constants of sorts
B and C). Note that an interpretation J satisfies Φ if
and only if RJ∗ ∩ Fresh(A) is one of the following sets:
∅, {a1} , {a1, a2} , {a1, a2, a3} , . . . , {a1, a2, . . . , am}.

To show that Φ is a symmetry breaking set, we will use
Definitions 12 and 14. Let I be any interpretation of P . We
will construct an SV symmetry σ where σ • I satisfies Φ.

Write RI∗ ∩ Fresh(A) as {y1, . . . , yk}. Note that k ≤ m.
Define a permutation π : Fresh(A) → Fresh(A) such that
π(yj) = aj for each j = 1, . . . , k (if m > k then the rest
of the permutation may be defined arbitrarily). Now define
σA to be the union of the identity permutation on Stale(A)
and the permutation π on Fresh(A). Finally, define σS to be
the identity on D(S) for any sort S 6= A. The resulting σ
is stale-fixing, and hence is an SV symmetry by Proposition
11.

It remains to show that σ•I satisfies Φ. Note that since σ
leaves values of all sorts besides A fixed, R(σ•I)∗ is obtained
simply by applying σA to each element of RI∗.

Now, since σA maps fresh values to fresh val-
ues and stale values to stale values, R(σ•I)∗ ∩
Fresh(A) is obtained by applying π to each ele-
ment of RI∗ ∩ Fresh(A). Hence, R(σ•I)∗ ∩ Fresh(A) =
{π(y1), . . . , π(yk)} = {a1, . . . , ak}. Since this is one of
the sets ∅, {a1} , {a1, a2} , {a1, a2, a3} , . . . , {a1, a2, . . . , am},
it follows that σ • I satisfies Φ.

Note that the theorem does not require the values of sorts
B and C to be fresh.

6.3 Applying the Scheme Multiple Times
This technique can be pushed further by applying it mul-
tiple times to the same relation, changing which sort is
focused on. For example, after adding the above formulas,
there may still be fresh values of set B (though b, b′ are
stale). If these fresh values are {b1, b2, . . . , bl}, we can fix
a, a′ ∈ D(A), c′ ∈ D(C) (a, a′, c not necessarily fresh) to
add ladder formulas for B:

R(a, a′, b2, b2, c′) =⇒ R(a, a′, b1, b1, c′)
R(a, a′, b3, b3, c′) =⇒ R(a, a′, b2, b2, c′)
· · ·
R(a, a′, bl, bl, c′) =⇒ R(a, a′, bl−1, bl−1, c′)

We could then similarly apply a third round of symmetry
breaking by adding ladder formulas for C , using the re-
maining values of D(C) that are still fresh.

7 SYMMETRY DETECTION USING SORT INFER-
ENCE

Though Claessen and Sörenson [16] used unsorted FOL,
they were interested in the potential performance benefits
of inferring sorts and increasing the symmetry breaking
that could be performed. In this section, first, we present
an explanation of sort inference, borrowing terminology
from type systems in programming languages [32]. Next
we demonstrate how the symmetry breaking schemes in-
troduced in this paper increase the benefit of sort inference
beyond Claessen and Sörenson’s work. Finally, we present a

new symmetry framework that clarifies the formal relation-
ship between sort inference and the existence of symmetries.

7.1 Sort Inference

Consider the problem of finding a Latin square. The goal is
to fill an n×n grid of cells with the numbers 1, . . . , n so that
no row or column repeats a number. One MSFMF formula-
tion uses a single sort N , with domain D(N) = {1, . . . , n},
and a function f : N × N → N mapping coordinates to
numbers. The constraints are encoded as:

∀r : N. ∀c1, c2 : N. f(r, c1) = f(r, c2) =⇒ c1 = c2

∀c : N. ∀r1, r2 : N. f(r1, c) = f(r2, c) =⇒ r1 = r2

We call this single-sorted MSFMF problem Latinn,S .
An alternate formulation uses three sorts R,C, and E,

each having the same domain D′(R) = D′(C) = D′(E) =
{1, . . . , n}. There is a function f : R × C → E, again map-
ping coordinates to numbers. The formulas are as follows:

∀r : R. ∀c1, c2 : C. f(r, c1) = f(r, c2) =⇒ c1 = c2

∀c : C. ∀r1, r2 : R. f(r1, c) = f(r2, c) =⇒ r1 = r2

We call this problem Latinn,M .
The two MSFMF problems are different, but both model

the same structure. We formalize their relationship through
sort substitution.

Definition 21 (Sort Substitution). Let Θ,Θ′ be sets of sorts.
A sort substitution is a mapping η : Θ→ Θ′.

Note that η need not be injective, and if it is, we say
the substitution is trivial (since it simply defines a renaming
of sorts). Otherwise, η can map multiple sorts in Θ to the
same sort in Θ′. We let η−1(S′) be the set of all S such that
η(S) = S′.

We define the application of sort substitution η : Θ→ Θ′

to a signature Σ = (Θ,F,R) in the natural way, replacing
Θ with its image under η and applying η to the sorts inside
the functional and relational symbols. For a Σ-formula γ,
we define η(γ) as the η(Σ)-formula obtained from γ by
applying η to each sort of the quantified variables. We apply
η to a set Γ of Σ-formulas by applying it pointwise.

We also define the application of η to a domain as-
signment D for Θ, provided that D satisfies the property
that for all S1, S2 ∈ Θ where η(S1) = η(S2), we have
D(S1) = D(S2). That is, for all S′ ∈ Θ′, the domain assign-
ment gives the same set of values for all sorts S ∈ η−1(S′),
which we will call D(η−1(S′)). In such a case, we say η and
D agree, and define η(D) to be the domain assignment for
Θ′ that assigns each S′ ∈ Θ′ the set of values D(η−1(S′)).

Then, for a MSFMF problem P = (Σ,Γ,D), we define
η(P ) = (η(Σ), η(Γ), η(D)). For the Latin squares problem,
if we consider the sort substitution η : {R,C,E} → {N}
defined by η(R) = η(C) = η(E) = N , we see that
η(Latinn,M ) = Latinn,S .

Definition 22 (More Generally Sorted). Let PGen =
(Σ,Γ,D) and P = (Σ′,Γ′,D′) be MSFMF problems. If there
exists a sort substitution η (that agrees with D) such that
η(PGen) = P , we say that PGen is more generally sorted
than, or generates, P , and write PGen v P .
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This relationship defines a partial order on MSFMF prob-
lems (provided we consider problems related by a trivial
sort substitution to be “equal” in this ordering). The process
of starting with P and finding a PGen with a maximal
number of sorts which generates P is sort inference. It
is analogous to type inference in programming languages,
and standard type inference algorithms (see [32]) are easily
adapted to sort inference. Note that in Definition 22, the
problem P might already have multiple sorts (the problem
PGen will have at least as many sorts).

7.2 Sort Inference and Symmetry Breaking
We can observe that the possible interpretations of the func-
tional symbol f are the same in both Latinn,M and Latinn,S ,
since they are both functions from {1, . . . , n}×{1, . . . , n} to
{1, . . . , n}.

This holds more generally. Let PGen = (Σ,Γ,D) and
P = (Σ′,Γ′,D′), and suppose PGen v P , through a sort
substitution η (which agrees with D). The following prop-
erty holds: if η(S) = S′, then D(S) = (η(D))(S′). This
means that a functional symbol f : A1 × · · · × An → B of
PGen and the corresponding f : η(A1)×· · ·×η(An)→ η(B)
in P will have the same set of interpretations, namely the
set of functions from D(A1) × · · ·D(An) to D(B). This is
similarly true for corresponding relational symbols. There
is thus a natural correspondence between interpretations
of PGen and interpretations of P , where we say an inter-
pretation IGen of the former and an interpretation I of the
latter correspond if they give corresponding functional and
relational symbols the same interpretation.

If IGen and I correspond in this way, then IGen satisfies
a Σ-formula γ if and only if I satisfies the formula η(γ).
There are twofold implications of this. First, IGen satisfies
PGen if and only if I satisfies P . Second, if adding a formula
φ to PGen does not change the satisfiability of PGen, then
η(φ) can be added to P without changing satisfiability. In
particular, this holds if φ is a symmetry breaking formula of
PGen.

Claessen and Sörenson [16], and later Reger et al. [25],
used this observation to increase symmetry breaking. Given
an initial problem P , they would perform sort inference to
find a PGen which generates P , find symmetry breaking
constraints for PGen, then map those constraints back to
P . Because symmetry breaking can be applied to each sort
separately, the greater number of sorts obtained from sort
inference offers stronger symmetry breaking formulas.

For instance, suppose in P there is a sort A with
constants c1 : A, c2 : A, and D(A) = {1, 2}. The only
useful formula yielded by the CSC scheme is c1 = 1. Now,
suppose PGen v P , and in PGen the constants are sorted
as c1 : B, c2 : C . The CSC scheme yields c1 = 1 and
c2 = 1, which is stronger (fewer interpretations satisfy the
formulas) than the single formula generated for P .

The symmetry breaking schemes introduced in this arti-
cle derive even more value from sort inference. For instance,
consider Latin3,S and Latin3,M . In Latin3,S , the function f
is single-sorted, and so we use the CSF scheme, yielding the
formulas:

f(1, 1) ∈ {1, 2}
f(2, 2) ∈ {1, 2, 3}

However, applying sort inference to obtain the Latin3,M

problem, the function f is now RDI. We are able to use
our new RDI scheme, obtaining the following formulas
(redundant formulas omitted):

f(1, 1) = 1
f(2, 2) ∈ {1, 2}
f(3, 3) ∈ {1, 2, 3}
f(3, 3) = 3 =⇒ 2 = f(2, 2)

These formulas are much stronger. While 13122 interpre-
tations satisfy the CSF formulas, only 3645 satisfy the RDI
formulas, a decrease of about 72%. Hence, even for unsorted
problems like Latinn,S , after sort inference our new schemes
can be used to dramatically increase symmetry breaking
over existing techniques.

7.3 Sort Inference Detects More General Symmetries

We noted previously that if PGen v P , then the semantics of
the two problems are highly linked: corresponding interpre-
tations either both satisfy their respective problems, or both
do not satisfy their respective problems. However, there are
a couple of oddities about this relationship that suggest a
deeper connection with symmetries.

First, the number of SV symmetries in PGen and P
may not be the same. For example, since Latinn,S has only
one sort, it has n! SV symmetries. However, Latinn,M has
(n!)3 SV symmetries, since it has three sorts which may be
separately permuted to yield SV symmetries.

The second oddity concerns symmetry breaking formu-
las. For example, a symmetry breaking formula (from the
RDI scheme) for the multi-sorted problem Latin2,M is:

f(1, 1) = 1

In the previous subsection, we noted that we can add the
corresponding constraint f(1, 1) = 1 to Latin2,S with-
out changing the satisfiability of the problem because a
constraint from a more generally sorted problem can be
mapped back to the original problem. Confusingly however,
f(1, 1) = 1 is not a symmetry breaking formula for Latin2,S .
Consider the (non-satisfying) interpretation for the single-
sorted problem Latin2,S given by the following grid:

2 1
1 1

Since there is a single sort N with two values, there are ex-
actly two SV symmetries: the identity and the transposition
swapping 1 and 2. Applying the identity to this interpreta-
tion does not cause f(1, 1) = 1 to be satisfied (as it leaves
the interpretation unchanged). However, nor does applying
the transposition. Since the same sort is used for the rows,
columns, and entries, the SV symmetry simultaneously swaps
the cell labels, the rows, and the columns of the grid. The
resulting interpretation is the following, which does not
satisfy f(1, 1) = 1:

2 2
2 1



12

Therefore Definition 12 is not satisfied, and f(1, 1) = 1 is
not a symmetry breaking formula for Latin2,S .

It is important to note that this is not a contradiction.
All symmetry breaking formulas must preserve satisfiability
of the MSFMF problem, but formulas that preserve sat-
isfiability are not always symmetry breaking formulas as
defined by Definition 12. However, given that Latin2,S and
Latin2,M behave the same semantically, it seems strange
that the notions of symmetry and symmetry breaking do
not correspond between the two problems.

These peculiarities arise from limitations of the definition
of SV symmetry (Definition 9): it is for a MSFMF problem P
with particular sorts and thus varies with which sorts are in
P even for problems that behave the same semantically.

To resolve these issues, we define a more general no-
tion of symmetry tied to the semantic structure. We take
inspiration from the literature for constraint satisfaction
problems (CSPs) [33] [34], by defining a more general group
of symmetries, and view the SV symmetries as a subgroup.
First, we define the group of permutations (which are not
necessarily symmetries).

Definition 23 (Semantic Permutation). For a partially-
interpreted MSFMF problem, a semantic permutation σ is
a collection containing a permutation σf : Interps(f) →
Interps(f) for each functional or relational symbol f .

Applying a semantic permutation σ to an interpretation
I produces an interpretation σ • I , defined in a natural way:
for each functional or relational symbol h, we define hσ•I to
be the result of applying σh to hI .

We define the semantic symmetries to be exactly those
semantic permutations that preserve whether an interpreta-
tion is a solution.

Definition 24 (Semantic Symmetry). Let P be a partially-
interpreted MSFMF problem. A semantic permutation σ is
a semantic symmetry for P if for every interpretation I of
P , σ • I satisfies P if and only if I satisfies P .

SV symmetries naturally induce semantic symmetries.

Definition 25 (Semantic Extension). Let σ be an SV per-
mutation of a partially-interpreted MSFMF problem. The
semantic extension of σ is the semantic permutation σ∗

defined as follows. For each functional or relational symbol
h, σ∗h is defined by σ∗h(H) = Hσ for H ∈ Interps(h).

By Definition 9, all SV symmetries preserve whether
an interpretation is a solution, so their semantic extensions
are semantic symmetries. If we redefine symmetry breaking
formulas (Definition 12) to use semantic symmetries (rather
than SV symmetries), then all of the symmetry breaking
schemes we proved correct would still hold, since SV sym-
metries are special cases of semantic symmetries.

As a result of the relationship between their domain
assignments, problems such as Latinn,S and Latinn,M , and
more generally any PGen and P with PGen v P , have the
same set of interpretations for each functional and relational
symbol, as well as corresponding solutions. Therefore they
have the same set of semantic symmetries. Thus, for any
symmetry breaking formula (based on the modified def-
inition using semantic symmetries) for Latinn,M , its cor-

responding formula in Latinn,S is a symmetry breaking
formula for Latinn,S .

Semantic symmetries also explain the relationship be-
tween sort inference and symmetry. Latinn,M contains SV
symmetries that are semantic symmetries for Latinn,S , but
are not SV symmetries for Latinn,S . These “hidden” sym-
metries make up the difference between the n! SV symme-
tries of Latinn,S and the (n!)3 SV symmetries of Latinn,M .
Sort inference detects these hidden symmetries, allowing for
stronger symmetry breaking. In future work, we would
like to explore whether there exist more hidden semantic
symmetries that we can detect.

8 EMPIRICAL EVALUATION

In this section, we describe our evaluation of the practical
benefits of our new symmetry breaking schemes for many-
sorted finite model finding. Our testing platform is an
Intel®Xeon®CPU E3-1240 v5 @ 3.50 GHz with Ubuntu 16.04
64-bit with up to 64GB of user memory. The scripts we used
in our evaluation are available at : https://github.com/
WatForm/fortress-eval-poremba-symmetry.

To evaluate our new schemes, we implemented them
in the Fortress finite model finder [18]. Fortress is a finite
model finding library for many-sorted first-order logic. It is
a MACE-style solver, which reduces the input MSFMF prob-
lem to a problem in the logic of equality with uninterpreted
functions (EUF), and then invokes the Z3 [35] SMT solver on
the EUF problem. While the problem is expressed in EUF,
Fortress adds range formulas to guarantee that the solver
only searches for solutions of finite size.

The existing version of Fortress uses the CSC and CSF
symmetry breaking schemes, applied separately for each
sort. We created two modified versions of Fortress, which
handle symmetry breaking differently from the existing
version as shown in Table 1 and described in the following
paragraphs. Fortress with all its versions is available at:
https://github.com/WatForm/fortress.

Fortress+: Our first modified version is called Fortress+.
It begins symmetry breaking the same as Fortress, perform-
ing the CSC and CSF schemes where possible. After hav-
ing exhausted possibilities to use CSC and CSF, Fortress+
chooses multi-sorted functions on which to apply the RDI
and RDD schemes. Once these schemes are exhausted,
Fortress+ then applies the ladder scheme on predicates
where possible. At all times, Fortress+ tracks which values
are fresh and stale. Importantly, Fortress+ performs sym-
metry breaking on functions in the same order as Fortress,
it just may add additional symmetry breaking formulas.
Because SMT solver performance is difficult to predict, the
order of functions selected for symmetry breaking may
have significant performance implications. Thus, for our
evaluation, we use the same order of functions used in the
original Fortress and simply add more symmetry breaking
formulas.

Fortress+SI: The second modified version, Fortress+SI, is
similar to Fortress+, but performs sort inference on the orig-
inal problem for greater symmetry breaking as discussed
in Section 7. To control function orderings for meaning-
ful comparison, Fortress+SI always selects functions in the
same order as Fortress+, though it may select more functions

https://github.com/WatForm/fortress-eval-poremba-symmetry
https://github.com/WatForm/fortress-eval-poremba-symmetry
https://github.com/WatForm/fortress
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TABLE 1
Versions of Fortress

Version Order of Use of Symmetry Breaking Schemes
Fortress CSC, CSF
Fortress+ CSC, CSF, RDI, RDD, ladder symmetry breaking
Fortress+SI Sort inference then CSC, CSF, RDI, RDD, ladder symmetry breaking

TABLE 2
Comparison Ratios Per-File and Total Times Over All Files

Per-File Time Ratios Total (Summed) Times
Comparison Type # Files # Wins Geom. Mean Median Min Max Absolute Times (sec) Ratio
Fortress+ / Fortress unsat 100 53/47 82% 100% 7% 282% 42355/48564 87%
Fortress+ / Fortress sat 50 33/17 79% 79% 8% 551% 20743/24381 85%
Fortress+SI / Fortress+ unsat 73 32/41 97% 102% 6% 932% 33388/32405 103%
Fortress+SI / Fortress+ sat 23 9/14 100% 105% 47% 225% 7803/7685 102%
Fortress+SI / Fortress unsat 73 31/42 91% 102% 3% 523% 33388/34085 98%
Fortress+SI / Fortress sat 23 16/7 77% 83% 14% 204% 7803/9298 84%

afterwards if it has not exhausted all symmetry breaking
opportunities.

To generate MSFOL finite model finding problems, we
start with the unbounded MSFOL problems in the UF
(uninterpreted functions, includes quantifiers but only free
sorts) SMT-LIB benchmark repository [36]. Since these are
unbounded problems, we determine a suitable finite scope
for our evaluation as follows. We randomly order the files
in the entire benchmark. Next, following the order of the
randomly ordered list, we perform a binary search to find a
scope between 5 and 30 on which all versions of Fortress did
not exceed 20 minutes, but took longer than 3 minutes on
Fortress (to eliminate trivially easy problems). For simplic-
ity, all sorts in a problem are assigned the same size. If the
binary search failed to find such a scope, the MSFOL prob-
lem is discarded. We continue this procedure until we have
50 satisfiable and 100 unsatisfiable MSFMF problems 4. After
selecting the MSFMF problems, we run Fortress, Fortress+,
and Fortress+SI on each file three times and take the aver-
age running time for each version5. Though, we only run
Fortress+SI on files where new sorts are detected by sort
inference, as otherwise it behaves identically to Fortress+.

Table 2 shows the results of our comparison between all
the methods. The last two columns report the absolute total
times, summed across all files, and the ratio of these total
times between the different Fortress versions. The ’Per-File’
columns report the geometric mean, median, minimum, and
maximum of the ratios of the running times for individual
files. That is, for each individual file, the ratio of the running
times between the Fortress versions is taken, and then
statistics (mean, median, etc.) are computed of those per-file
ratios. Numbers less than 100% indicate the method with

4. The repository contained many more unsatisfiable problems than
satisfiable ones.

5. There was very little variation in the running times. These times
are the complete running times to produce a UNSAT/SAT result from
the input files, including the time to prepare the symmetry breaking
constraints, carry out sort inference, transform into EUF, and invoke
the SMT solver and await a result. The time is very much dominated
by the SMT solving time.

more symmetry breaking performed better than the method
with less symmetry breaking.

We make two remarks on these statistics. First, for the
per-file ratios, we use the geometric mean rather than the
usual arithmetic mean since it is more appropriate for time
ratios - for example, ratios of 50% (twice as fast) and
200% (twice as slow) average to 100% (same speed) in the
geometric mean but not the arithmetic mean. Second, we
note that the per-file ratios and total time ratios each indicate
important but distinct aspects of performance. For instance,
suppose on one file that version A takes 50 seconds and
version B takes 100 seconds, while on a second file version
A takes 500 seconds and version B takes 1000 seconds. Both
files would have equal per-file ratios of 50% and thus have
the same impact on the per-file geometric mean, but the
latter file impacts the total time ratio significantly more since
the absolute times are much larger. So short tests have a
larger impact on per-file results than for total time results.

Figures 1, 2, 3, 4, 5, and 6 are scatterplots, showing the
individual times for every file for the six comparisons in
Table 2. Points below the diagonal indicate that the method
with more symmetry breaking is faster.

In comparing Fortress+ with Fortress (Figures 1 and 2),
Fortress+ took 87% of the time of Fortress overall on the
unsatisfiable files and is faster on 53 of the 100 unsatisfiable
files. The geometric mean of the per-file ratios (which we
call the “per-file mean” from now on) for unsatisfiable files
is 82%, in favour of Fortress+. For the 50 satisfiable files,
Fortress+ takes 85% of the total time of Fortress and is faster
on 33 of the 50 files. The per-file mean for satisfiable files
is 79%, again in favour of Fortress+. Thus demonstrating
that our symmetry breaking schemes achieve performance
improvements for both unsatisfiable and satisfiable files.
Symmetry constraints always reduce the space of possible
interpretations, however, they add more formulas (namely
the symmetry breaking constraints) to the problem in order
to limit the interpretations. For the cases where Fortress+
takes more time than Fortress, the additional formulas in
the problem cause the SMT solver to take more time to
produce a result. It would be useful to count solutions for
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all the satisfiable problems to show the reduction in the
number of interpretations considered, however, the number
of interpretations is too high to generate this count in a
reasonable amount of time.

Next, we compare Fortress+ to Fortress+SI, which adds
sort inference prior to symmetry breaking. Sort inference
can reduce the number of interpretations considered signifi-
cantly. For the single-sorted Latin squares problem from Sec-
tion 7, using a scope of n = 5, we counted the number of sat-
isfying solutions. Fortress+ found 33152 satisfying interpre-
tations. With the same scope, Fortress+SI found only 1344
satisfying interpretations, since after sort inference it was
able to produce stronger symmetry breaking constraints.
However, in practice there may be a point at which too
many formulas complicate the SMT solver’s performance.
One could add sort inference directly to Fortress (rather than
to Fortress+) and compare its performance with Fortress,
however, the symmetry breaking schemes of Fortress do not
depend on sorts as much so it is unclear whether Fortress in
its original form would benefit from sort inference.

We compare Fortress+SI to Fortress+ (Figures 3 and 4)
for the 73 of the 100 unsatisfiable files and the 23 of the
50 satisfiable files where extra sorts are detected by sort
inference. In this case Fortress+ has slightly better total
performance on our problems sets, as Fortress+SI takes
103% of the overall time of Fortress+ for unsatisfiable prob-
lems and 102% of the overall time for satisfiable problems.
The per-file means are 97% for unsatisfiable problems and
100% for satisfiable problems, the former slightly in favour
of Fortress+SI. Fortress+ wins on more problems for both
unsatisfiable and satisfiable problems. It is interesting that
Fortress+SI does not outperform Fortress+ since Fortress+SI
reduces the space of possible interpretations. However,
Fortress+SI increases the number of symmetry breaking
formulas added subject to the order of constants, functions,
and predicates chosen. In static symmetry breaking, the for-
mulas are added independently of the underlying solving
algorithm. We hypothesize that at some point having more
formulas becomes a more important factor in determining
the solver time than reducing the space of possible interpre-
tations.

Finally, we compare Fortress+SI to Fortress (Figures 5
and 6) for the 73 unsatisfiable files and the 23 satisfiable
files where extra sorts are detected by sort inference. For
the satisfiable problems, Fortress+SI has a clear performance
improvement, with a per-file mean of 77% and median of
83%, and being faster in the overall total time at 84% the
total time of Fortress. For the unsatisfiable problems, the
results are less conclusive, with Fortress+SI losing more than
it wins, though with a 91% per-file mean and taking 98% the
total time of Fortress.

In summary, based on this set of problems, our sym-
metry breaking schemes reduce the solving time for both
unsatisfiable and satisfiable problems. However, it is not
clear that the additional symmetry breaking that comes from
sort inference is worthwhile to improve performance.

9 RELATED WORK

There are a number of solving tools that are based on
finite model finding. Examples of SEM-style solvers, which

use an explicit search algorithm, are Mace4 [15], SEM [24],
and Falcon [26]. Examples of MACE-style solvers, which
reduce the FMF problem to symbolic logic, are Paradox [16],
Kodkod [22] (used in the Alloy Analyzer), and Fortress [18].
The SMT solver CVC4 [12], [13] has a hybrid algorithm
where finite model finding is integrated into the logic solver.
The Vampire theorem prover uses a MACE-style approach
for its finite model finding [25].

SEM-style solvers apply symmetry breaking dynami-
cally during search. For example, Zhang’s Falcon model
finder [26] uses the least number heuristic, tracking the
maximal domain value used so far during search and
only allowing a single value from the unused values to
be considered when assigning values to a cell. The SEM
model finder [37] and Mace4 [15] also use the least number
heuristic. The FMF in CVC4 relies on the existing symmetry
breaking for the EUF decision procedure in the underlying
SMT solver [12].

MACE-style model finders, which reduce FMF to satis-
fiability over simpler logics and invoke an off-the-shelf SAT
or SMT solver, use static symmetry breaking. Additional
formulas are added in advance of invoking the underlying
solver to prevent it from exploring redundant portions of
the search space.

Crawford et al. [30] first introduced static symmetry
breaking for boolean SAT. In this context, symmetries arise
from interchangeable propositional variables, rather than
values. An ordering is chosen on the propositional vari-
ables of interpretations, which allows each interpretation
to be treated as a binary string indexed by variables. For
a given symmetry σ which permutes variables, a constraint
is generated which requires that the string for a solution
must be (weakly) lexicographically smaller than the string
obtained by applying σ to the solution. These constraints
are then encoded in propositional logic and appended to the
SAT problem. In general, the number of symmetries may be
exponentially large, so only a subset of the symmetries is
selected. This approach would later become known as Lex-
Leader.

Lex-Leader can be generalized for enumerating other
combinatorial objects, as done for example by Shlyakhter
[38]. Symmetries of values become symmetries of bits or
propositional variables when combinatorial objects are en-
coded as binary strings. Shlyakhter showed how to gen-
erate optimized symmetry breaking formulas for various
objects, including acyclic digraphs, permutations, relations,
and functions. These formulas for relations and functions
are not sufficient for our purposes with MSFMF however,
since they assume all input and output domains are distinct.
We have schemes for all kinds of sort configurations, where
sorts can be repeated across both the input and output sorts.
We also consider cases where some of those sorts may have
stale values so that we may combine symmetry breaking
schemes. Additionally, our symmetry framework operates
at the first-order logic level rather than considering lexical
orderings of binary strings.

Claessen and Sörenson introduced static symmetry
breaking to the context of FMF for their MACE-style solver,
Paradox [16], which reduces FMF to SAT. They used a
single-sorted first-order logic, and created symmetry break-
ing schemes for constants and functions in that context.
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Fig. 1. Performance of Fortress vs. Fortress+
on 100 UNSAT problems
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Fig. 2. Performance of Fortress vs. Fortress+
on 50 SAT problems
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Fig. 3. Performance of Fortress+ vs. Fortress+SI
on 73 UNSAT problems
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Fig. 4. Performance of Fortress+ vs. Fortress+SI
on 23 SAT problems
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Fig. 5. Performance of Fortress vs. Fortress+SI
on 73 UNSAT problems
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Fig. 6. Performance of Fortress vs. Fortress+SI
on 23 SAT problems
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These techniques are described earlier in this article. They
also applied sort inference to increase the symmetry break-
ing obtained for their scheme for constants.

Our static symmetry breaking builds on the work of
Claessen and Sörenson, but extends it with three new
symmetry breaking schemes such that there is some kind
of symmetry breaking applicable to every function and
predicate in a pure FMF problem. We formalize the idea
of partially-interpreted MSFOL to facilitate the combination
of symmetry breaking schemes, which handles the problem
of partial interpretations implicitly.

Reger et al. [25] use the schemes of Claessen and
Sörenson in the Vampire theorem prover. Reger, Riener,
and Suda [31] prove the correctness of Paradox’s symmetry
breaking schemes. Their technique is more general than
Paradox’s in that constants and functions can be intermixed
for symmetry constraints more freely, however, it does not
address functions of different sorts. They complete an ex-
perimental evaluation to compare heuristics for the order of
applying symmetry breaking to constants and functions.

Kodkod [17] is a MACE-style model finder that reduces
to SAT. Kodkod uses a relational first-order logic, where
there is no special support for functions but there are
rich operations on relations, such as join. Kodkod supports
partial instances, where a user can specify a list of values
(or value-tuples) that must be present in the interpretation
of a relation. In our partially-interpreted formulas, values
can appear anywhere in a formula so partial instances
are a special case of our partially-interpreted formulas. We
use partially-interpreted problems to decompose symmetry
breaking into an iterative process to facilitate proofs of
correctness and implementation, but unlike Kodkod, we
assume the input problem is pure. In Section 2, we noted
that the only stale values in our framework are those intro-
duced by our own symmetry breaking formulas, which are
highly asymmetric in their use of values, so the only remain-
ing useful symmetries are those arising from permuting
fresh values. Thus, concerning ourselves with stale-fixing
symmetries is sufficient. Kodkod allows an input problem
to include arbitrary partial instances, thus there may be
symmetries arising from the interchangeability of some stale
values. Kodkod attempts to detect such symmetries, then
adds Lex-Leader symmetry breaking formulas.

Fortress [18] introduced a novel method for converting
FMF to EUF (rather than SAT) but used the same symmetry
breaking schemes as Claessen and Sörenson.

10 CONCLUSION

Our novel, iterative framework for combining static sym-
metry breaking schemes through the use of partially-
interpreted MSFMF problems makes it possible to soundly
combine symmetry breaking schemes and explore more
symmetries. We presented and proved the correctness of
three static symmetry breaking schemes for many-sorted
finite model finding. The range-domain independent (RDI)
and range-domain dependent (RDD) schemes extend earlier
work by Claessen and Sörensson to functions of multiple
sorts. The ladder scheme for relations is entirely novel and
exploits symmetries in the set of elements that can satisfy
a predicate. Together, these schemes cover all the kinds

of functions and predicates that can appear in MSFOL to
increase the amount of symmetry breaking possible for a
problem. Sorts present opportunities to increase the amount
of symmetry breaking. We presented a framework based
on semantic symmetries to describe the hidden symmetries
exposed by sort inference. Our techniques are implemented
in the Fortress model finder and we demonstrated their
effectiveness empirically on a large corpus of models. Our
techniques may also benefit other finite model finding tools
such as Kodkod and Paradox. An interesting direction for
future work is to examine heuristics for the order in which
to choose constants and functions for symmetry breaking
constraints. We are currently investigating linking the Alloy
Analyzer with the Fortress solver so that Alloy users can
take advantage of our results.
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