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Abstract

Multi-scalar multiplication refers to the operation of computing multiple scalar mul-
tiplications in an elliptic curve group and then adding them together. It is an essen-
tial operation for proof generation and verification in pairing-based trusted setup zero-
knowledge succinct non-interactive argument of knowledge (zkSNARK) schemes, which
enable privacy-preserving features in many blockchain applications. Pairing-based trusted
setup zkSNARKs usually follow a common paradigm. A public string composed of a list
of fixed points in an elliptic curve group called common reference string is generated in a
trusted setup and accessible to all parties involved. The prover generates a zkSNARK proof
by computing multi-scalar multiplications over the points in the common reference string
and performing other operations. The verifier verifies the proof by computing multi-scalar
multiplications and elliptic curve bilinear pairings.

Multi-scalar multiplication in pairing-based trusted setup zkSNARKs has two char-
acteristics. First, all the points are fixed once the common reference string is gener-
ated. Second, the number of points n is typically large, with the thesis targeting at
n = 2e (10 ≤ e ≤ 21). Our goal in this thesis is to propose and implement efficient algo-
rithms for computing multi-scalar multiplication in order to enable efficient zkSNARKs.

This thesis primarily includes three aspects. First, the background knowledge is in-
troduced and the classical multi-scalar multiplication algorithms are reviewed. Second,
two frameworks for computing multi-scalar multiplications over fixed points and five cor-
responding auxiliary set pairs are proposed. Finally, the theoretical analysis, software im-
plementation, and experimental tests on the representative instantiations of the proposed
frameworks are presented.
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Chapter 1

Introduction

1.1 Motivation

The goal in this thesis is to establish efficient methods for computing multi-scalar multi-
plication over fixed points, which is an essential and time-consuming operation in many
pairing-based trusted setup zero-knowledge succinct non-interactive argument of knowl-
edge (zkSNARK) schemes.

zkSNARKs have been a hot topic lately because they can be used to build privacy-
preserving blockchains. Known for the successful deployment in Zcash [Zca], zkSNARKs
provide a convenient tool to construct blockchains that support shielded transactions, in
which the sender, the receiver, and the coin being transacted remain confidential when
verifying the validity of transactions.

zkSNARKs enable one party (the prover) to prove to another party (the verifier)
that a statement is true, without revealing other information apart from the fact that
the statement is true. Among the many zkSNARK schemes, there is a popular cate-
gory of them, which are trusted setup zkSNARKs built upon elliptic curve bilinear pair-
ings [GGPR13,DFGK14,Gro16,MBKM19,GWC19,CHM+20]. The representatives in this
category are Groth16 [Gro16] and PlonK [GWC19].

These pairing-based trusted setup zkSNARKs typically follow a common paradigm.
There is a public string composed of a list of fixed points in an elliptic curve group called
common reference string, which is generated in a trusted setup1 and accessible to all par-

1Trusted setup refers to a pre-processing phase that generates a trapdoor hidden in the common refer-
ence string.
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ties. The prover generates the zkSNARK proof by computing multi-scalar multiplications
over the points in the common reference string and performing other operations. The ver-
ifier verifies the proof by computing multi-scalar multiplications and elliptic curve bilinear
pairings.

Multi-scalar multiplication, which is also called n-scalar multiplication if the number
of points involved is n, refers to the operation of computing multiple scalar multiplications
in an elliptic curve group and then adding them together. In pairing-based trusted setup
zkSNARKs, cryptographic pairings can be quickly evaluated within several milliseconds,
while the computation of multi-scalar multiplications is time-consuming, usually measured
in seconds. The number of points n involved in multi-scalar multiplication can be very
large. For examples, given an image of SHA256, if a prover wants to prove the knowledge
of a 512-bit preimage by utilizing Groth16 [Gro16] in a zero-knowledge manner, n in the
corresponding n-scalar multiplication is tens of thousands [CGGN17]. To hide the identity
of a coin, Zcash originally proposed to prove the membership of the coin’s commitment in a
64-layer Merkle tree built upon SHA256, and n in the corresponding n-scalar multiplication
is more than a million [BCTV13,BCG+14].

Multi-scalar multiplication in pairing-based trusted setup zkSNARKs exhibits two char-
acteristics. First, all points are fixed once the common reference string is generated. Sec-
ond, the number of points n is large. This thesis targets at n = 2e (10 ≤ e ≤ 21).

In light of the importance of multi-scalar multiplication in the process of proof gen-
eration and verification for pairing-based trusted setup zkSNARKs, some new techniques
that utilize precomputation to speed up the computation of multi-scalar multiplication
over fixed points are proposed and analyzed in this thesis.

1.2 Related work

1.2.1 Multi-scalar multiplication

The most popular method for computing scalar multiplication in elliptic curve groups is
the binary algorithm, known as the doubling and addition method. It is also known as
the square and multiplication method in the exponentiation setting [Knu97, Section 4.6.3].
GLV method [GLV01] and GLS method [GLS11] decompose the scalar into dimensions
2, 4, 6 and 8, then compute the corresponding multi-scalar multiplication. When the
point for scalar multiplication is fixed, precomputation can be used to reduce the compu-
tational cost. Knuth’s 5 window algorithm utilizes the precomputation table of 16 points

2



to speed up scalar multiplication [Knu97, BC89]. If a bigger window and more mem-
ory for precomputed points are used, window method can be even faster. Pippenger’s
bucket method and its variants decompose the scalar, then sort all points into buckets
with respect to their scalars, and finally utilize an accumulation algorithm to add them to-
gether [Pip76,BDLO12]. Another line of research lies in constructing new number systems
to represent the scalar, such as basic digit sets [Mat82,BGMW92] and multi-base number
systems [DKS09, SIM12,YWLT13]. Researchers also try to make the addition arithmetic
more efficient by using different curve representations, such as projective coordinates and
Jacobian coordinates that eliminate the inversion operations, and Montgomery form that
utilizes the x-only-coordinate systems [Mon87]. Differential addition chains are used in
conjunction with x-only-coordinate systems, for example, PRAC chains [Mon92], DJB
chains [Ber06] and other multi-dimensional differential addition chains [Bro15,Rao15].

Most of the aforementioned techniques can be applied to n-scalar multiplication when
the number of points n is small. When n is large, which is the case in pairing-based trusted
setup zkSNARK schemes, Pippenger’s bucket method and its variants are the state-of-the-
art algorithms that outperform other competitors. Published in 1976 [Pip76], Pippenger’s
bucket method has recently become an essential tool for privacy-preserving blockchains due
to its effectiveness for computing multi-scalar multiplication in pairing-based zkSNARKs,
pairing-based cryptographic commitments, BLS signature aggregations, and so on. A
variant of Pippenger’s bucket method that utilizes precomputation to speed up single-scalar
multiplication was introduced by Brickell, Gordon, McCurley andWilson [BGMW92]. This
variant can be applied to n-scalar multiplication with large n. In order to achieve fast
batch forgery signature verification, Bernstein et al. [BDLO12] investigated Bos-Coster
method [DR94, Section 4], Straus method [Str64] and Pippenger’s bucket method, then
chose Pippenger’s bucket method for implementation, which marked the start of extensive
employment of Pippenger’s bucket method for computing n-scalar multiplication with large
n.

By now, some popular zkSNARK applications, such as Zcash [Zca], Aztec [Azt], Tur-
boPLONK [GJW20] and gnark [gna], have already adopted Pippenger’s bucket method for
computing multi-scalar multiplication.

1.2.2 Pairing-based trusted setup zkSNARKs

There are several classic approaches to constructing zkSNARKs, one of which involves
utilizing elliptic curve bilinear pairings. In 2010, Groth made the first attempt to introduce
elliptic curve pairing into zero-knowledge proofs by constructing an argument scheme for
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circuit satisfiability [Gro10]. This scheme does not rely on probabilistic checkable proofs
or Fiat-Shamir heuristic. Following that, Gennaro, Gentry, Parno and Raykova [GGPR13]
introduced the new characterizations of the NP class called quadratic span program (QSP)
and quadratic arithmetic program (QAP). They constructed a zkSNARK scheme for circuit
satisfiability with a proof consisting of only 7 group elements. The common reference string
size is linear in the circuit size, and the prover computation is quasi-linear, which makes
this scheme seemingly practical. Since then, many pairing-based trusted setup zkSNARKs
following a similar construction paradigm have emerged, including Pinocchio [PHGR13],
DFGK scheme [DFGK14], Groth16 [Gro16], etc. Among this line of work, Groth16 stands
out with a proof consisting of only 3 elliptic curve points.

However, the aforementioned schemes have a drawback in that the common reference
string is specific to the circuit. If the circuit changes, the common reference string needs to
be recomputed by a costly multi-party computation protocol. In 2018, Groth, Kohlweiss,
Maller, Meiklejohn and Miers [GKM+18] proposed a new pairing-based trusted setup zk-
SNARK scheme that introduces the concept of universal and updatable common reference
string2. Here universal means that the same common reference string can be used for
all size-bounded circuits, and updatable means that the common reference string can be
updated by a new party. As long as at least one party from all updaters is honest, the
soundness of the scheme is ensured. The scheme proposed by [GKM+18] has inspired a
lot of current work, including Sonic [MBKM19], PlonK [GWC19], Marlin [CHM+20], and
others. PlonK has become the representative of this line of work and continues to inspire
the creation of more schemes to this day.

These zkSNARK schemes can be instantiated over pairing-friendly elliptic curves such
as Barreto-Naehrig (BN) curves [BN05] and Barreto-Lynn-Scott (BLS) curves [BLS02].

1.3 Contributions

This thesis proposes new ideas for computing multi-scalar multiplication over fixed points,
driven by the objective of supporting efficient pairing-based trusted setup zkSNARK ap-
plications. The term n-scalar multiplication over fixed points refers to the arithmetic

Sn,r :=
n∑

i=1

aiPi,

2Common reference string (CRS) is also called structured reference string (SRS) in some papers men-
tioned here in order to emphasize that there is a special structure in the string.
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where every ai (1 ≤ i ≤ n) is an integer such 0 ≤ ai < r, and every Pi is a fixed point
in an elliptic curve group. This thesis targets at the case where n is large. The main
contributions of the thesis can be summarized in the following three aspects.

I. Two frameworks for computing multi-scalar multiplication over fixed points
and an associated accumulation algorithm.

These two frameworks are the extensions of BGMW method and Pippenger’s bucket
method respectively. The key idea behind the proposed frameworks is to decompose a
scalar a into the following radix q representation

a =
h−1∑
j=0

mjbjq
j, mj ∈M, bj ∈ B,

where q is a proper radix, h is the length of the decomposition, M is a set of integers
referred to as multiplier set, and B is a set of integers called bucket set. The first framework
computes n-scalar multiplication using at most approximately

nh+ |B|

point additions, with the help of |M |nh precomputed points. The second framework com-
putes n-scalar multiplication using at most approximately

h(n+ |B|)

point additions, with the help of |M |n precomputed points.

After all points are sorted into buckets with respect to their scalars, an accumulation
algorithm is utilized to add all subsums together. The original subsum accumulation
Algorithm 1 employed in Pippenger’s bucket method is only applicable when the scalars
in the bucket set are consecutive. However, for the proposed frameworks, the scalars in
the bucket set may be nonconsecutive, rendering Algorithm 1 less efficient. To address this
issue, this thesis proposes a new subsum accumulation Algorithm 4 that accumulates m
intermediate subsums using at most (2m+d−3) point additions, where d is the maximum
difference between two neighboring elements in the bucket set.

5



II. Five constructions of bucket set and multiplier set that yield efficient algo-
rithms for computing multi-scalar multiplication over fixed points when com-
bined with the proposed frameworks.

The proposed multiplier set M is symmetric, i.e.,

M = {i | i ∈M ′} ∪ {−i | i ∈M ′},

where the set M ′ only contains positive integers. In this case, the precomputation size
can be halved by computing the inverse of a point on the fly when needed. The proposed
bucket set is carefully constructed to make its size as small as possible, because a smaller
bucket set would yield a faster algorithm for computing multi-scalar multiplication. The
proposed constructions are summarized in Table 4.1.

Out of all the five constructions, the first three constructions would provide different
trade-offs between precomputation size and time complexity for computing multi-scalar
multiplication. The fourth and fifth constructions are primarily of theoretical interest,
which explore the ultimate limits that the proposed frameworks could reach.

III. Two concrete methods for computing multi-scalar multiplication over fixed
points in the BLS12-381 groups.

These two methods, summarized in Propositions 4 and 5, are obtained by instantiating
the two proposed frameworks together with the first proposed construction of bucket set
and multiplier set. We analyzed the performance of the two methods theoretically, then
implemented and tested them based on the BLS12-381 curve library blst [bls]. When com-
puting n-scalar multiplication over fixed points in the BLS12-381 groups, the theoretical
analysis indicates that

• The proposed Method I saves 21.05%–39.77% of the point additions compared to
Pippenger’s bucket method for n = 2e (10 ≤ e ≤ 21), and it saves 2.08%–9.65% of
the point additions compared to BGMW method for n = 2e (10 ≤ e ≤ 21).

• By utilizing a smaller precomputation size than Method I, the proposed Method II
saves 2.59%–12.26% of the point additions compared to Pippenger’s bucket method
for n = 2e (10 ≤ e ≤ 21).

The experimental results show that
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• The proposed Method I saves 17.20%–40.89% of the computational time compared
to Pippenger’s bucket method for n = 2e (10 ≤ e ≤ 21), and it saves 0.73%–10.21%
of the computational time compared to BGMW method for n = 2e (10 ≤ e ≤ 21, e ̸=
16, 17).

• The proposed Method II saves 2.48%–11.27% of the computational time compared
to Pippenger’s bucket method for n = 2e (10 ≤ e ≤ 21).

The experiment confirms the feasibility of speeding up the computation of multi-scalar
multiplication over fixed points by utilizing large precomputation tables.

Original work declaration

Sections 3.1 and 3.2 in Chapter 3, all the sections in Chapter 4, all the sections in Chapter
5, and Sections 6.2 and 6.3 in Chapter 6 are my original work. Most of these work appears
in the following three papers that I co-authored3, explicitly,

• The work on the algorithm in Section 3.1, Framework I in Section 3.2, Construction
I in Section 4.1, Method I in Section 5.2 and the test for Method I in Section 6.2
appears in [LFG23]

– Guiwen Luo, Shihui Fu, and Guang Gong. Speeding Up Multi-Scalar Multipli-
cation over Fixed Points Towards Efficient zkSNARKs. In IACR Transactions
on Cryptographic Hardware and Embedded Systems (2023), pages 358-380.

This paper proposes a method for computing multi-scalar multiplication over fixed
points by taking advantage of large precomputation tables.

• The work on Framework II in Section 3.2, Method II in Section 5.3, and the test for
Method II in Section 6.3 appears in [LG23]

– Guiwen Luo and Guang Gong. Fast Computation of Multi-Scalar Multiplication
for Pairing-Based zkSNARK Applications. In IEEE International Conference
on Blockchain and Cryptocurrency (2023), pages 1-5.

This paper provides an alternative to [LFG23] when devices’ memory size is relatively
limited.

3In these papers, the authorship is not arranged in alphabetical order, and Guiwen Luo is the first
author.
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• The work on Constructions II and V in Chapter 4 appears in

– Guiwen Luo and Guang Gong. On the Optimization of Pippenger’s Bucket
Method with Precomputation. In Stinson66 - New Advances in Designs, Codes
and Cryptography, accepted paper.

This paper explores the theoretical potential of the proposed frameworks.

1.4 Outline

The thesis is organized as follows,

• Chapter 1 introduces the motivation, related work and contribution of this thesis.

• Chapter 2 reviews several popular methods for computing multi-scalar multiplication
over fixed points, two pairing-based schemes that can benefit from the ideas presented
in this thesis, and other fundamental knowledge.

• Chapter 3 proposes two frameworks and discusses popular techniques for computing
multi-scalar multiplication over fixed points.

• Chapter 4 proposes five constructions of multiplier set and bucket set pairs that can
be used with the proposed frameworks.

• Chapter 5 proposes two methods for computing multi-scalar multiplication over fixed
points in the BLS12-381 groups.

• Chapter 6 implements and tests these two methods proposed in Chapter 5.

• Chapter 7 concludes the thesis and suggests possible future research topics.
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Chapter 2

Preliminaries

In this chapter, we will explain the background knowledge that underpins the subsequent
chapters. We will begin by introducing elliptic curve groups and bilinear pairings. Then
we will explain the popular algorithms used for multi-scalar multiplication, followed by
introducing two classical pairing-based schemes where the computation of multi-scalar
multiplication is essential. Lastly, we will introduce the influential BLS12-381 curve, over
which the experiment is conducted.

2.1 Elliptic curve group

Elliptic curves can be expressed by general Weierstrass equations [Sil09, Chapter III]. In
this thesis, we always work with pairing-friendly curves, which are non-singular elliptic
curves defined over a field F whose characteristic is neither 2 nor 3. In this case, an elliptic
curve can be expressed by its short Weierstrass equation

y2 = x3 + Ax+B, (2.1)

where A,B ∈ F are two constants such that 4A3 + 27B2 ̸= 0.

Although a curve is usually specified by an affine equation, we are actually working
with the corresponding projective curve, which can be expressed as

Y 2Z = X3 + AXZ2 +BZ3.

If Z = 0, then so does X, implying that the projective curve and the projective line Z = 0
has a unique intersection point ∞ = (0 : 1 : 0). Any point on the curve that is not ∞
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has a nonzero Z-coordinate, which can be scaled to 1, allowing us to investigate the group
operation in the affine space.

In the affine space, the elements of an elliptic curve include every point (x, y) that
satisfies the affine equation in Equation (2.1), as well as the infinity point ∞ that cannot
be expressed in the affine equation. For an affine curve defined over the real number field,
one can treat ∞ as a formal notation and loosely think of ∞ as a point located at the
end of the y-axis. The points ∞ and −∞ are considered as the same point. A line passes
through ∞ when it is perpendicular to the x-axis.

2.1.1 Group operation

Let E(F) be an elliptic curve defined over the field F,

E(F) := {(x, y) ∈ F2 | y2 = x3 + Ax+B} ∪ {∞}. (2.2)

For P = (x, y) ∈ E(F), it is important to notice that the point (x,−y) also lies on the
curve. If we define −P = (x,−y) and treat∞ as the identity element, the group operation
can be characterized by the following rule [Sil09, Chapter III]:

For P,Q,R ∈ E(F), P +Q = R if and only if P,Q,−R lie on the same line.

It follows immediately that this operation is commutative. For P,Q ∈ E(F), P+Q = Q+P ,
since the line passing through P and Q is the same as the line passing through Q and P .

A group is defined as a set of elements along with a binary operation that combines
two elements to produce a third element in the set, in such a way that the set contains an
identity element, every element in the set has an inverse, and the operation is associative.
It can be checked that E(F) along with the given addition operation is a commutative
group, explicitly,

• ∞ is the identity element. For P ∈ E(F), P,∞,−P lie on the same line, so

∞+ P = P.

• Every element has an inverse. For P = (x, y) ∈ E(F), we have −P = (x,−y) ∈ E(F).
For P =∞, we have −P =∞.
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• The addition operation is associative. For P1, P2, P3 ∈ E(F),

(P1 + P2) + P3 = P1 + (P2 + P3).

Associativity is not immediately clear, therefore we would refrain from presenting
the proof here. One can check [ST92, Chapter 1.2] or [Sil09, Chapter III.2] for a
comprehensive proof.

Let P ∈ E(F) and a be a positive integer, we define

aP := P + P + · · ·+ P︸ ︷︷ ︸
a points

. (2.3)

We also define 0P =∞ for completeness. This operation is called scalar multiplication, or
called single-scalar multiplication in order to distinguish it from multi-scalar multiplication.

Unless otherwise specified, addition refers to the point addition operation in elliptic
curve groups in this thesis. Doubling is treated as addition for simplicity.

2.1.2 Explicit formulas for addition operation

Let P = (x1, y1), Q = (x2, y2) ∈ E(F), we derive explicit formulas for

R = P +Q = (x3, y3).

These formulas are established by leveraging the geometric interpretation of elliptic curves,
which implicitly uses the assumption that F is the real number field. The formulas can
also be applied when F is a finite field.

If P = ∞, then R = Q, and if Q = ∞, then R = P . Thus we assume that P and Q
are non-infinity points, and use PQ to represent the line passing through P and Q.

• If x1 ̸= x2, the left sub-figure in Figure 2.1 provides a visual illustration for this case.
The slope of the line PQ can be computed as

m =
y2 − y1
x2 − x1

. (2.4)

Since the line is not perpendicular to the x-axis, it will intersect with the curve E(F)
at a third affine point −R = (x3,−y3). The equation for the line PQ can be expressed
as

y = m(x− x1) + y1.
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By substituting the equation for the line PQ into the equation for the curve, we
obtain

(m(x− x1) + y1)
2 = x3 + Ax+B,

which is equivalent to
x3 −m2x2 + · · · = 0.

According to Vieta’s theorem for the roots of a cubic equation, we know that

x1 + x2 + x3 = m2,

thus
x3 = m2 − x1 − x2. (2.5)

Because −R lies on the line PQ, we know that

−y3 = m(x3 − x1) + y1,

which gives us
y3 = m(x1 − x3)− y1. (2.6)

Equations (2.4)(2.5)(2.6) are the explicit formulas for point addition when x1 ̸= x2.

• If x1 = x2, from the curve’s equation we know y21 = y22, which means either y1 = y2
or y1 = −y2.
(a) If y1 = −y2, we know Q = −P , so R = P +Q = P + (−P ) =∞.

(b) If y1 = y2, then R = P + Q = 2P . In this case, the line PQ is the tangent to
E(F) and touches the curve at P . We can compute the slope of the tangent line by
implicit differentiation, which results in the expression

2ydy = 3x2dx+ Adx,

thus

m =
dy

dx
=

3x2 + A

2y
. (2.7)

We can use this m to compute (x3, y3) by the same formulas presented in Equations
(2.5)(2.6).

Figure 2.1 shows two curves with the same equation E(F) : y2 = x3 + 3 excluding ∞.
For the left curve, F is the real number field and P +Q = R. For the right curve, F is the
finite field F19. This group happens to be a cyclic group of order 13, and G = (1, 2) is a
generator. The arrow points from iG to (i+ 1)G (i = 1, 2, · · · , 11).
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Figure 2.1: Elliptic curves defined over real number field versus over finite field
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2.1.3 Elliptic curve bilinear pairings

Elliptic curve bilinear pairing is a map

e : G1 ×G2 → GT , (2.8)

(P,R) 7→ µ,

that is defined over the elliptic curve groups G1,G2 and the finite field GT . It satisfies the
following properties [Men09] [EMJ17, Chapter 3],

• e is bilinear. For P,Q ∈ G1 and R, S ∈ G2, we have

e(P +Q,R) = e(P,R) · e(Q,R),

and
e(P,R + S) = e(P,R) · e(P, S).

• e is non-degenerate. For any P ∈ G1, there exists R ∈ G2, such that e(P,R) ̸= 1.
For any R ∈ G2, there exists P ∈ G1, such that e(P,R) ̸= 1.

A pairing e is considered appropriate for use in cryptography if e is easy to compute
but difficult to invert. Inverting e means given µ ∈ GT , find P ∈ G1 and R ∈ G2 such that
e(P,R) = µ.
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Elliptic curve bilinear pairings can use relatively small parameters to produce elliptic
curve groups G1,G2 and finite field GT that are sufficiently large to make the correspond-
ing discrete logarithm problems hard to solve. The bilinear property implies additive
homomorphism, which means that given two ciphertexts, one can efficiently compute a
ciphertext of their sum, without decrypting the ciphertexts. These features have led to
the widespread use of pairings in various cryptographic primitives, such as identity-based
encryptions, digital signatures, key establishment schemes, cryptographic commitments,
and zkSNARKs.

2.2 Classical methods for multi-scalar multiplication

The notation Sn,r used throughout the thesis represents the following n-scalar multiplica-
tion over fixed points,

Sn,r := a1P1 + a2P2 + · · ·+ anPn, (2.9)

where each ai (1 ≤ i ≤ n) is a scalar such that 0 ≤ ai < r and each Pi (1 ≤ i ≤ n) is a
fixed point in an elliptic curve group.

In this section we review several classical methods for computing Sn,r, some of which are
originally invented to compute single-scalar multiplication. These methods are namely the
trivial method, window method, Pippenger’s bucket method, BGMW method and comb
method.

2.2.1 Trivial method

In the trivial method, each aiPi in Sn,r is computed separately by the doubling and addition
method, and then n intermediate results are added together to obtain the final result. In
the worst case each scalar multiplication costs 2 · (⌈log2 r⌉− 1) additions, the total cost for
computing Sn,r is

[2 · (⌈log2 r⌉ − 1) · n+ (n− 1)] ≈ 2n log2 r (2.10)

additions. If non-adjacent form is used to represent the scalar ai (1 ≤ i ≤ n), then every
non-zero bit has to be adjacent to two 0s, resulting in the worst case having half non-zero
digits in ai. The cost of each scalar multiplication would drop to about (3/2)⌈log2(r)⌉
additions. The time complexity for computing Sn,r in the worst case is about[

3

2
⌈log2 r⌉ · n+ (n− 1)

]
≈ 3

2
· n log2 r (2.11)

additions.
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2.2.2 Window method

Window method is a generalization of the trivial doubling and addition method. It pro-
cesses more than one bit of the scalar in each iteration.

Let q = 2c, where c is a small positive integer. In order to compute Sn,r, we first
precompute the following qn points

{b1P1 + b2P2 + · · ·+ bnPn | 0 ≤ bi < q, 1 ≤ i ≤ n},

and then decompose each ai into its standard q-ary representation,

ai =
h−1∑
j=0

aijq
j, 0 ≤ aij < q, (2.12)

where h = ⌈logq r⌉. Notice that for 0 ≤ j ≤ h− 1, once

Sj := a1jP1 + a2jP2 + · · ·+ anjPn (2.13)

has been precomputed, it follows that

Sn,r =
n∑

i=1

aiPi

=
n∑

i=1

(
h−1∑
j=0

aijq
j

)
Pi

=
h−1∑
j=0

qj

(
n∑

i=1

aijPi

)

=
h−1∑
j=0

qjSj.

(2.14)

This can be computed by a method similar to Horner’s rule,

Sn,r =
h−1∑
j=0

qjSj = S0 + q(S1 + · · ·+ q(Sh−2 + qSh−1) · · · ). (2.15)

qSj is computed by c = log2 q additions (doubling is treated as addition for simplicity).
Equation (2.15) can thus be evaluated with at most (h− 1)(c+ 1) additions.
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The aforementioned method is only suitable for small n, because the precomputation
size would be exponentially large when n goes large. One variant that can be used for
large n is to precompute only the following n · (q − 1) points,

{aPi | 1 ≤ a < q, 1 ≤ i ≤ n}.

Instead of directly retrieving Sj from the precomputation table, for 0 ≤ j ≤ h− 1, we can
compute

Sj = a1jP1 + a2jP2 + · · ·+ anjPn

on the fly using at most n− 1 additions. The cost for computing Sn,r is thus

h(n− 1) + (h− 1)(c+ 1) = h(n+ c)− c− 1 ≈ h(n+ c) (2.16)

additions, with the help of
n(q − 1) (2.17)

precomputed points.

2.2.3 Pippenger’s bucket method

Here we introduce Pippenger’s bucket method interpreted in [BDLO12, Section 4], which is
an application of Pippenger’s algorithm [Pip76]. This interpretation was initially used for
computing multi-scalar multiplication in the context of large batch signature verification.

When r is small enough, we have

Sn,r =
n∑

i=1

aiPi

=
n∑

i=1

(
r−1∑
k=1

k ·
∑

i s.t. ai=k

Pi

)

=
r−1∑
k=1

k ·
( ∑

1≤i≤n, ai=k

Pi

)
.

(2.18)

Define the intermediate subsum (it is also called bucket sum) Sk,

Sk :=
∑

1≤i≤n, ai=k

Pi, 1 ≤ k < r, (2.19)
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then we know

Sn,r =
r−1∑
k=1

kSk. (2.20)

Sn,r is computed by first evaluating all Sk (1 ≤ k < r) using at most n− (r− 1) additions,
because there are n points that are sorted into r − 1 subsums, then by using Algorithm 1
with at most 2(r−2) additions to complete the computation. The correctness of Algorithm
1 is ensured by the following equation,

m∑
k=1

kSk =
m∑
k=1

k∑
j=1

Sk =
m∑
j=1

m∑
k=j

Sk.

To sum up, when r is small, the cost for computing Sn,r is at most

n+ r − 3 (2.21)

additions.

Algorithm 1 Subsum accumulation algorithm I
Input: S1, S2, · · · , Sm.
Output: 1S1 + 2S2 + · · ·+mSm.

1: tmp = 0

2: ret = 0

3: for k = m to 1 do
4: tmp = tmp+ Sk
5: ret = ret+ tmp

6: return ret

Example. Let us present a toy example that computes the following 13-scalar multiplica-
tion to illustrate Pippenger’s bucket method,

S13,4 = 2P1 + 3P2 + 3P3 + 2P4 + 1P5 + 1P6+

3P7 + 2P8 + 2P9 + 3P10 + 1P11 + 3P12 + 1P13.

First, all the points are sorted into 3 buckets according to their scalars,

S13,4 = 1 · (P5 + P6 + P11 + P13) + 2 · (P1 + P4 + P8 + P9)+

3 · (P2 + P3 + P7 + P10 + P12)

= 1S1 + 2S2 + 3S3.
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Here S1 = P5 +P6 +P11 +P13, S2 = P1 +P4 +P8 +P9, and S3 = P2 +P3 +P7 +P10 +P12.
S1, S2, S3 are evaluated using 10 additions. Then

1S1 + 2S2 + 3S3 = S3 + (S3 + S2) + (S3 + S2 + S1),

which can be evaluated using 4 additions. The computation of S13,4 requires 14 additions.

In order to compute Sn,r when r is large (for example, in practice r is at least 2256

for achieving 128-bit security), Pippenger’s bucket method proceeds similarly to window
method by first breaking down each scalar into the standard q-ary representation,

ai =
h−1∑
j=0

aijq
j, 0 ≤ aij < q, (2.22)

where h = ⌈logq(r)⌉. The difference is that Pippenger’s bucket method computes every

Sj := a1,jP1 + a2,jP2 + · · ·+ an,jPn (0 ≤ j ≤ h− 1) (2.23)

by the aforementioned method (treating q as the small r) using at most n+q−3 additions,
because Sj is an n-scalar multiplication where every scalar is smaller than q. We thus have

Sn,r =
n∑

i=1

aiPi

=
n∑

i=1

(
h−1∑
j=0

aijq
j

)
Pi

=
h−1∑
j=0

qj

(
n∑

i=1

aijPi

)

=
h−1∑
j=0

qjSj,

(2.24)

which again can be evaluated by a method similar to Horner’s rule, as shown in Equation
(2.15), with (h− 1)(c+ 1) additions. The computation of Sn,r would take at most

h(n+ q − 3) + (h− 1)(c+ 1) ≈ h(n+ q) (2.25)

additions. Compared to Equation (2.16), at first glance it seems that Pippenger’s bucket
method is less efficient than window method, but this might not be true for large n. Because
Pippenger’s bucket method does not require precomputation, a bigger q can be selected to
minimize the computational cost.
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Further optimization

If the parameter r in Sn,r is the order of the corresponding elliptic curve group
1, Pippenger’s

bucket method can be further optimized by halving the number of buckets. For a radix
q = 2c, using the observation that in an elliptic curve group −P can be obtained from
P = (x, y) by taking the negative of its y coordinate at almost no cost, all the buckets can
be restricted to the scalars that are no more than q/2. Algorithm 2 is used to substitute a
scalar with the representation where every digit is in the interval of [−q/2, q/2]. The time
complexity of Pippenger’s bucket method would thus drop to

h
(
n+

q

2

)
(2.26)

additions.

Algorithm 2 Scalar conversion I

Input: a, q, r, such that 0 ≤ a < r and rP =∞, where P is an elliptic curve point.

Output: {bj}0≤j≤h−1, such that −q/2 ≤ bj ≤ q/2 and aP =
(∑h−1

j=0 bjq
j
)
· P .

1: h = ⌈logq r⌉, condition = (a > (qh/2))
2: if condition is true then
3: a = r− a

4: Express a as its standard q-ary form, a =
∑h−1

j=0 ajq
j, where 0 ≤ aj < q

5: for j = 0 to h− 2 by 1 do
6: if aj ≤ q/2 then
7: bj = aj
8: else
9: bj = aj − q

10: aj+1 = aj+1 + 1

11: bh−1 = ah−1

12: if condition is true then
13: for j = 0 to h− 1 by 1 do
14: bj = −bj
15: return {bj}0≤j≤h−1

Let us conclude the introduction of Pippenger’s bucket method by demonstrating the
correctness of Algorithm 2.

1If the constraint in Equation (2.27) holds true, this condition can be removed, as discussed in the
proof of the correctness of Algorithm 2.
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Proof. By the definition of h, we know

qh−1 < r ≤ qh.

If
qh−1 < r ≤ q

2
· qh−1, (2.27)

then the scalar a would always be less than qh/2, and Algorithm 2 would skip Steps 2−3,
12−14. From Steps 5−10, we know −q/2 ≤ bj ≤ q/2 for 0 ≤ j ≤ h − 2. The assumption
in Equation (2.27) ensures a < qh/2, it follows that ah−1 ≤ q/2 − 1, and bh−1 ≤ q/2
considering the possible carry bit from ah−2. From Steps 5−11, one can easily check that
a =

∑h−1
j=0 bjq

j, thus

aP =

(
h−1∑
j=0

bjq
j

)
· P.

This analysis suggests that when the parameters r, q, h for computing Sn,r satisfy Equation
(2.27), Algorithm 2 can be simplified by omitting Steps 2−3 and 12−14.

If the assumption in Equation (2.27) does not hold, then a < qh/2, a = qh/2, and
a > qh/2 are all possible.

• If a < qh/2, it boils down to the case where Equation (2.27) holds.

• If a = qh/2, Algorithm 2 will return bj = 0 (0 ≤ j ≤ h− 2) and bh−1 = q/2.

• If a > qh/2, then the condition variable is true. The original a is replaced by r− a,
which would ensure −q/2 ≤ bj ≤ q/2 for 0 ≤ j ≤ h− 1. After Step 11, we have

r − a =
h−1∑
j=0

bjq
j.

After Step 14, we have

a− r =
h−1∑
j=0

bjq
j.

Because rP =∞, it follows that

aP = (a− r) · P =

(
h−1∑
j=0

bjq
j

)
· P.
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2.2.4 BGMW method

In the aforementioned Pippenger’s bucket method, one downside is that Algorithm 1 runs
h times. If a precomputation table is used, a variant of Pippenger’s bucket method called
BGMW method can be used to circumvent this shortcoming [BGMW92].

Let us choose a radix q = 2c and decompose ai (1 ≤ i ≤ n) into its q-ary form

ai =
h−1∑
j=0

aijq
j, 0 ≤ aij < q, (2.28)

where h = ⌈logq r⌉. It follows that

Sn,r =
n∑

i=1

aiPi

=
n∑

i=1

(
h−1∑
j=0

aijq
j

)
Pi

=
n∑

i=1

h−1∑
j=0

aij · qjPi.

(2.29)

If the following nh points

{qjPi | 1 ≤ i ≤ n, 0 ≤ j ≤ h− 1}

are precomputed, then Sn,r boils down to an nh-scalar multiplication where all scalars are
smaller than q. It can be computed by invoking Algorithm 1 only once. By Equation
(2.21), the computation for Sn,r requires at most

nh+ q − 3 (2.30)

additions.

Further optimization

Silimar to Pippenger’s bucket method, BGMW method can also be further optimized by
restricting all the buckets to scalars that are no more than q/2 if r in Sn,r is the order
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of the corresponding elliptic curve group. The time complexity of BGMW method would
become approximately

nh+
q

2
(2.31)

additions, with the help of the following nh precomputed points

{qjPi | 1 ≤ i ≤ n, 0 ≤ j ≤ h− 1}. (2.32)

Henceforward, when mentioning Pippenger’s bucket method and BGMW method, we
refer to the algorithms whose time complexities are given by Equations (2.26) and (2.31),
respectively.

2.2.5 Comb method

Comb method was first proposed by Lim and Lee [LL94] to compute the exponentiation
for a fixed element in a given group. For computing single-scalar multiplication, this
method exhibits greater flexibility compared to BGMW method because it decomposes
the scalar twice. We will show that this flexibility disappears for computing multi-scalar
multiplication. Here we first present the original comb method for computing single-
scalar multiplication, and then propose its natural extension for computing multi-scalar
multiplication.

Let us first investigate single-scalar multiplication aP , where P is a fixed point, and
0 ≤ a < r. For q = 2c, p = 2c1 , c ≥ c1, we decompose a twice as follows,

a =
h−1∑
j=0

ajq
j (0 ≤ aj < q)

=
h−1∑
j=0

v−1∑
k=0

ajkp
kqj (0 ≤ ajk < p),

where h = ⌈logq r⌉, v = ⌈logp q⌉ = ⌈c/c1⌉. If we further write ajk into its binary form,

ajk =

c1−1∑
ℓ=0

ejkℓ2
ℓ, ejkℓ ∈ {0, 1}, (2.33)
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it follows that

aP =
h−1∑
j=0

v−1∑
k=0

c1−1∑
ℓ=0

ejkℓ2
ℓpkqj · P

=

c1−1∑
ℓ=0

2ℓ

(
v−1∑
k=0

h−1∑
j=0

ejkℓp
kqj · P

)

=:

c1−1∑
ℓ=0

2ℓ

(
v−1∑
k=0

Pkℓ

)

=:

c1−1∑
ℓ=0

2ℓSℓ,

(2.34)

where Pkℓ :=
∑h−1

j=0 ejkℓp
kqjP , and Sℓ :=

∑v−1
k=0 Pkℓ. When k = v − 1, ajk may not be full

of c1 bits. Therefore, ejkl = 0 if c− (v − 1)c1 ≤ ℓ ≤ c1 − 1. It follows that

Pkℓ =
h−1∑
j=0

0 · pkqjP =∞, if k = v − 1, c− (v − 1)c1 ≤ ℓ ≤ c1 − 1.

We can precompute the following (2h − 1)v points (excluding these points associated
with

∑h−1
j=0 ej = 0, which are infinity){

h−1∑
j=0

ejp
kqjP

∣∣∣∣∣ ej ∈ {0, 1},
h−1∑
j=0

ej ̸= 0, 0 ≤ k ≤ v − 1

}
. (2.35)

In order to compute aP in Equation (2.34), every Pkℓ can be directly retrieved from the
precomputation table. Therefore, all Sℓ’s are computed using

c1(v − 1)− (c1v − c)
additions because there are (c1v−c) Pkℓ’s that are infinity. The remaining part is

∑c1−1
ℓ=0 2ℓSℓ,

which can be computed by the method presented in Equation (2.15) using

2(c1 − 1)

additions. Thus the number of additions required to compute aP is at most

c1(v − 1)− (c1v − c) + 2(c1 − 1) = c+ c1 − 2. (2.36)

Compared to BGMW method, comb method provides more flexibility for the trade-
off between time and memory. One can check the appendix in [LL94] for the detailed
comparison between BGMW method and comb method when it comes to the computation
for single-scalar multiplication.
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Multi-scalar multiplication variant

We follow the same methodology to propose an extended comb method for computing the
multi-scalar multiplication over fixed points

Sn,r =
n∑

i=1

aiPi, 0 ≤ ai < r.

For q = 2c, p = 2c1 , c ≥ c1,

ai =
h−1∑
j=0

aijq
j =

h−1∑
j=0

v−1∑
k=0

aijkp
kqj.

If we further write aijk into its binary form

aijk =

c1−1∑
ℓ=0

eijkℓ2
ℓ, eijkℓ ∈ {0, 1},

then

aiPi =
h−1∑
j=0

v−1∑
k=0

c1−1∑
ℓ=0

eijkℓ2
ℓpkqjPi.

Therefore, we have

Sn,r =
n∑

i=1

aiPi =
n∑

i=1

h−1∑
j=0

v−1∑
k=0

c1−1∑
ℓ=0

eijkℓ2
ℓpkqjPi

=

c1−1∑
ℓ=0

2ℓ

(
v−1∑
k=0

n∑
i=1

h−1∑
j=0

eijkℓp
kqjPi

)

=:

c1−1∑
ℓ=0

2ℓ

(
v−1∑
k=0

n∑
i=1

Pikℓ

)

=:

c1−1∑
ℓ=0

2ℓSℓ,

(2.37)

where Pikℓ :=
∑h−1

j=0 eijkℓp
kqjPi and Sℓ =

∑v−1
k=0

∑n
i=1 Pikℓ.

24



We can precompute the following (2h − 1)vn points (excluding these points associated
with

∑h−1
j=0 ej = 0, which are infinity){

h−1∑
j=0

ejp
kqjPi

∣∣∣∣∣ ej ∈ {0, 1},
h−1∑
j=0

ej ̸= 0, 1 ≤ i ≤ n, 0 ≤ k ≤ v − 1

}
. (2.38)

The values of Pikℓ can be directly retrieved from the precomputation table, therefore all
Sℓ’s can be computed by at most c1(nv − 1) additions. Following a similar analysis as the
single-scalar multiplication case, there are n(c1v−c) Pikℓ’s that are infinity. The remaining
part can be computed by at most 2(c1 − 1) additions. Therefore, the computation of Sn,r

requires at most

c1(vn− 1)− n(c1v − c) + 2(c1 − 1) = cn+ c1 − 2 ≈ cn (2.39)

additions.

In the multi-scalar multiplication case, the main term in time complexity is cn. The
flexibility introduced by further decomposing each scalar into p-ary representation disap-
pears, so we can always set c1 = c and v = 1 to minimize the precomputation size.

2.2.6 Comparison of multi-scalar multiplication algorithms

We summarize in Table 2.1 the precomputation sizes and worst case time complexities for
computing Sn,r by the aforementioned methods, together with the proposed methods in
Chapter 4. In the table, q = 2c, h = ⌈logq r⌉. Radixes q can be selected to minimize the
corresponding computational complexities. PE represents the memory size of one point,
AE refers to the addition operation in elliptic curve groups. Additionally, the following
conditions should be satisfied in order to achieve the alleged time complexities.

• For Pippenger’s bucket method and BGMW method, r ≤ q/2 · qh−1 or r is the order
of the corresponding elliptic curve group.

• For the proposed Proposition 1, q = 2c (10 ≤ c ≤ 31) and r/qh is small.

• For the proposed Proposition 2, r ≤ q/2 · qh−1 or r is the order of the corresponding
elliptic curve group.

• For the proposed Proposition 3, r ≤ q/4 · qh−1.
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When n is small and the precomputation memory is sufficiently large, window method
and comb method might be faster than other methods.

Table 2.1: Comparison of different methods for computing Sn,r

Method Precomputation size Worst case complexity

Trivial method n · PE 3/2 · (n log2 r) · AE

Window method n(2c − 1) · PE h(n+ c) · AE

Pippenger’s bucket method [Pip76] n · PE h(n+ q/2) · AE

BGMW method [BGMW92] nh · PE (nh+ q/2) · AE

Comb method [LL94] n(2h − 1) · PE cn · AE

Proposition 1 in Section 4.1
3nh · PE (nh+ 0.21q) · AE

3n · PE h(n+ 0.21q) · AE

Proposition 2 in Section 4.2
2nh · PE (nh+ q/3) · AE

2n · PE h(n+ q/3) · AE

Proposition 3 in Section 4.3
2nh · PE (nh+ 5q/16) · AE

2n · PE h(n+ 5q/16) · AE

2.3 Pairing-based trusted setup schemes

In this section, we will review two influential pairing-based trusted setup schemes that
would benefit from efficient multi-scalar multiplication algorithms, namely the KZG poly-
nomial commitment and the Groth16 zkSNARK scheme. KZG commitment is the corner-
stone of many zkSNARK schemes, while Groth16 is an iconic scheme in zero-knowledge
proof community.

KZG polynomial commitment is universal, in the sense that the same common reference
string can be used to commit to any polynomial as long as its degree is bounded and
supported by the common reference string. Thus zkSNARK schemes built upon KZG
commitment inherit the universal property and can be applied to any circuit-satisfiability
instance as long as the circuit size is bounded and supported (for example, PlonK). On
the contrary, Groth16 is circuit-specific.
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2.3.1 KZG polynomial commitment

A polynomial commitment scheme enables a prover to commit to a polynomial using a
concise string that a verifier can later utilize to verify the alleged evaluations of the com-
mitted polynomial. KZG commitment is a scheme to commit to a univariate polynomial
f(X) ∈ Zp[X], with the commitment string being a single elliptic curve point [KZG10].
The term commitment is used because once the prover sends the commitment string (an
elliptic curve point in KZG commitment) to the verifier, the prover is unable to modify
the polynomial afterward.

KZG commitment utilizes the following observation. Given a polynomial f(X) ∈ Zp[X],
a point (x0, y0) is on f if and only if X−x0 divides f(X)−y0. Let us assume that we want
to commit to a polynomial f(X) ∈ Zp[X] with its degree deg(f) ≤ ℓ. KZG commitment
consists of six algorithms C = (Setup,Commit,Open,VerifyPoly,CreateWitness,VerifyEval):

• crs ← Setup(1λ, ℓ): Taking as input the security parameter 1λ and the maximum
degree of polynomial ℓ, it outputs a common reference string crs that provides λ-bit
security. Let G1, G2, GT be groups of prime order p over which the pairing is defined.
Let e : G1×G2 → GT be the asymmetric bilinear pairing, and G, H be the generators
of G1, G2 respectively. Let the uniformly and randomly picked α ∈ Z∗

p be a trapdoor
generated by a trusted authority. Then

crs :=
(
e, {αiG}0≤i≤ℓ, {αiH}0≤i≤ℓ

)
.

• com ← Commit(crs, f): Taking as input the common reference string crs and a
polynomial f(X) ∈ Zp[X] of degree ℓ or less, it outputs the commitment com to

f(X). If f =
∑deg(f)

i=0 fiX
i, then the commitment to f(X) is given by

com := f(α)G =

deg(f)∑
i=0

fi · αiG. (2.40)

• f ← Open(crs, com, f): It outputs the polynomial f .

• 0/1 ← VerifyPoly(crs, com, f): For a polynomial f =
∑deg(f)

i=0 fiX
i with degree no

more than ℓ, it verifies that com is a commitment to f . If the following equation

com =

deg(f)∑
i=0

fi · αiG

holds true, it outputs 1, otherwise it outputs 0.
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• (x0, y0, π)← CreateWitness(crs, x0, f): It first computes y0 = f(x0) and

q(X) =
f(X)− y0
X − x0

,

then it computes
π := q(α)G

by a multi-scalar multiplication over the points in crs. the point π will serve as an
opening proof asserting that f(x0) = y0.

• 0/1 ← VerifyEval(crs, com, x0, y0, π): Taking as input the common reference string
crs, commitment com, a point (x0, y0) ∈ Z2

p, and the proof π, it verifies that y0 is the
evaluation at x0 of the polynomial committed to by com. If the following equation

e(π, αH − x0H) · e(G,H)y0 = e(com, H) (2.41)

holds true, it outputs 1, otherwise it outputs 0.

It should be noted that the verification Equation (2.41) presented here is directly from
[KZG10]. Others (for example, Gabizon) also employ the following verification equation,

e(π, αH − x0H) = e(com− y0G,H).

Both of them compute 2 pairings because e(G,H) in Equation (2.41) can be precomputed.

One may employ multi-party computation protocols [BCG+15,BGG18] to generate the
trapdoor α in Setup. The value α should be forgotten after the common reference string
crs is computed. If the committed polynomial does not change, the commitment com also
remains the same, in this situation e(com, H) can also be precomputed.

A polynomial commitment is said to be correct, if the honest output of Open and
CreateWitness can be successfully verified. It is said to be polynomial binding, if an adver-
sary cannot output two different polynomials f and f ′ that are both accepted by VerifyPoly.
It is said to be evaluation binding, if an adversary cannot compute two evaluation tuples
(x0, y0, π) and (x0, y

′
0, π

′) that are both accepted by VerifyEval. It is said to be hiding, if an
adversary, given k valid evaluation tuples (xi, f(xi), πi) for 1 ≤ i ≤ k, k ≤ deg(f), cannot
correctly determine f(x′) for x′ ̸= xi, 1 ≤ i ≤ k.

If the discrete logarithm assumption and ℓ-Strong Diffie-Hellman assumption [TS10]
hold true, then the KZG commitment scheme presented above is correct, polynomial bind-
ing, evaluation binding and hiding [KZG10, Theorem 1].

One can observe that multi-scalar multiplication is the essential operation in Commit,
VerifyPoly and CreateWitness.
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Batching opening

KZG commitment also supports batching opening, which means that a set of evaluations is
verified at the same time by providing an opening proof of only one point. In the batching
situation, suppose we have k points {(xi, yi)}1≤i≤k, we can employ Lagrange interpolation
to construct a polynomial I(X) ∈ Zp[X] with degree smaller than k such that I(xi) = yi
for 1 ≤ i ≤ k. Then all the points {(xi, yi)}1≤i≤k lie on f if and only if

∏k
i=1(X − xi)

divides f(X)−I(X). The batching opening version KZG commitment has the same Setup,
Commitment, Open and VerifyPoly components, with the following BatchCreateWitness and
BatchVerifyEval:

• ({(xi, yi)}1≤i≤k, π) ← BatchCreateWitness(crs, {xi}1≤i≤k, f): It requires k ≤ deg(f).
It first computes yi = f(xi) for 1 ≤ i ≤ k and

I(X) =
k∑

i=1

yi ·
k∏

j=1, j ̸=i

X − xj
xi − xj

, Z(X) =
k∏

i=1

(X − xi),

then it computes

q(X) =
f(X)− I(X)

Z(X)
,

finally it computes
π := q(α)G

by a multi-scalar multiplication over the points in crs.

• 0/1← BatchVerifyEval(crs, com, {(xi, yi)}1≤i≤k, π): It requires k ≤ deg(f). It verifies
that yi is the evaluation at xi of the polynomial committed to by com for 1 ≤ i ≤ k.
In order to verify this, it first computes

I(X) =
k∑

i=1

yi ·
k∏

j=1,j ̸=i

X − xj
xi − xj

, Z(X) =
k∏

i=1

(X − xi),

and then computes I(α) · G and Z(α) · H by multi-scalar multiplications over the
points in crs. If the following equation

e(π, Z(α)H) · e(I(α)G,H) = e(com, H)

holds true, it outputs 1, otherwise it outputs 0.

One can see that multi-scalar multiplications are involved in BatchCreateWitness and
BatchVerifyEval.

29



2.3.2 Groth16 zkSNARK scheme

Groth16 zkSNARK scheme adopts the paradigm where the prover computes a proof con-
sisting of several elliptic curve points using multi-scalar multiplications, while the verifier
verifies the proof by checking several equations that involve multi-scalar multiplications
and elliptic curve pairings.

While a computational problem can typically be formulated using a high level pro-
gramming language, a zkSNARK scheme usually requires it to be expressed using a set of
algebraic constraints. Groth16 is no exception. In Groth16, a problem is first converted
into an arithmetic circuit, which is then further converted into a R1CS (Rank-1 Constraint
System, a widely-used NP-complete language), and the R1CS is then converted into a
quadratic arithmetic program over which the Groth16 scheme will be applied.

Groth16 is a pairing-based proof system for the following quadratic arithmetic programs
depicted as the binary relations of the form

R =
(
Zp,G1,G2,GT , e, ℓ, {ui(X), vi(X), wi(X)}0≤i≤m , t(X)

)
, (2.42)

where p is a prime and the order of G1,G2,GT , e : G1 × G2 7→ GT is a bilinear pair-
ing, {ui(X), vi(X), wi(X)}0≤i≤m are degree n − 1 polynomials, and t(X) is a degree n
polynomial.

The relation R defines a language of public statements a = (a0, a1, . . . , aℓ) ∈ Zℓ+1
p with

a0 = 1, and private witnesses w = (aℓ+1, . . . , am) ∈ Zm−ℓ
p , (a, w) is in the language if and

only if
m∑
i=0

aiui(X) ·
m∑
i=0

aivi(X) =
m∑
i=0

aiwi(X) + h(X)t(X) (2.43)

for some degree n− 2 quotient polynomial h(X), where n is the degree of t(X).

The relation R captures an arithmetic circuit with n multiplication gates and m wires.
The polynomials {ui(X), vi(X), wi(X)}0≤i≤m and t(X) are decided by the specific arith-
metic circuit. For a given public statement a, a prover would employ Groth16 to prove
that he knows a witness w such that (a, w) satisfies Equation (2.43) without revealing w.

Groth16 is the following scheme consisting of (Setup,Prove,Verify):

• σ ← Setup(R): Taking as input the description of the binary relation R presented in
Equation (2.42), it first picks generators G ∈ G1, H ∈ G2, and then uniformly and
randomly picks α, β, γ, δ, x ∈ Z∗

p . It outputs common reference string σ computed
as follows,
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σ1 =

(
αG, βG, δG,

{
xiG

}
0≤i≤n−1

,

{
βui(x) + αvi(x) + wi(x)

γ
·G
}

0≤i≤ℓ

,

{
βui(x) + αvi(x) + wi(x)

δ
·G
}

ℓ+1≤i≤m

,

{
xit(x)

δ
·G
}

0≤i≤n−2

)
,

σ2 =
(
βH, γH, δH,

{
xiH

}
0≤i≤n−1

)
,

σ =(σ1, σ2) .

(2.44)

• π ← Prove(R, σ, a, w): It uniformly and randomly chooses r, s ∈ Zp, and then it
computes

U(X) =
m∑
i=0

aiui(X),

V (X) =
m∑
i=0

aivi(X),

W (X) =
m∑
i=0

aiwi(X),

M(X) =sU(X) + rV (X),

h(X) =
U(X)V (X)−W (X)

t(X)
.

(2.45)

Let us denote the coefficients of each polynomial using its name and the indexes,
explicitly,

U(X) =
n−1∑
i=0

UiX
i, Ui ∈ Zp,

V (X) =
n−1∑
i=0

ViX
i, Vi ∈ Zp,

M(X) =
n−1∑
i=0

MiX
i, Mi ∈ Zp,

h(X) =
n−2∑
i=0

hiX
i, hi ∈ Zp.

(2.46)
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The proof π = (A,B,C) is computed by using the following three multi-scalar mul-
tiplications,

A =

1, 0, r, U0, · · · , Un−1, 0, · · · , 0︸ ︷︷ ︸
m+ n 0s

 · σ1
=(α + rδ + U(x))G,

B =(1, 0, s, V0, V1, · · · , Vn−1) · σ2
=(β + sδ + V (x))H,

C =

s, r, rs,M0, · · · ,Mn−1, 0, · · · , 0︸ ︷︷ ︸
ℓ+ 1 0s

, aℓ+1, · · · , am, h0, · · · , hn−2

 · σ1
=

(
m∑

i=ℓ+1

ai ·
βui(x) + αvi(x) + wi(x)

δ
+

h(x)t(x)

δ
+ s(α + U(x)) + r(β + V (x)) + rsδ

)
G.

(2.47)

• 0/1 ← Verify(R, σ, a, π): It first parses π = (A,B,C) ∈ G1 × G2 × G1, and then
accepts the proof if and only if

e(A,B) = e(αG, βH) · e
((

ℓ∑
i=0

ai ·
βui(x) + αvi(x) + wi(x)

γ

)
G, γH

)
· e(C, δH).

(2.48)

zkSNARK schemes enable a prover to prove the validity of a statement to a verifier
while keeping any other information concealed. They are supposed to have three funda-
mental properties, i.e., completeness, which guarantees that given a valid statement and
the corresponding witness, the prover can convince the verifier. Soundness, which ensures
that a malicious prover cannot convince the verifier of a false statement with non-negligible
probability. Lastly, zero knowledge, which means that the proof does not reveal anything
except the truth of the statement, and specifically, it does not reveal the witness.

The Groth16 scheme given by the above (Setup,Prove,Verify) algorithms is perfect
complete and perfect zero-knowledge. It has statistical knowledge soundness against ad-
versaries that only use a polynomial number of generic group operations [Gro16, Theorem
2].
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In Groth16, the proof generation involves an (n + 2)-scalar multiplication in G1, an
(n+ 2)-scalar multiplication in G2, and another (2n+m− ℓ+ 2)-scalar multiplication in
G1. The proof verification mainly requires an (ℓ + 1)-scalar multiplication and 3 bilinear
pairings assuming that e(αG, βH) is precomputed.

2.4 BLS12-381 curve

This section introduces BLS12-381 curve [BLS02,Bow17]. The proposed multi-scalar mul-
tiplication methods will be instantiated and tested over BLS12-381 curve.

BLS12-381 curve is a pairing-friendly elliptic curve initially designed by Sean Bowe
for the cryptocurrency system Zcash [Zca, Bow17]. It is widely deployed in blockchain
applications such as Zcash, Ethereum, Chia, DFINITY and Algorand.

BLS12-381 curve provides 127-bit security on the elliptic curve groups side, estimated by
Pollard’s rho algorithm [Pol78]. It achieves around 110-bit security on the finite field side,
estimated theoretically and conservatively by the exTNFS algorithm [BGK15,KB16,BD19],
while a recent non-conservative research estimates its finite field side security to be 126-
bit [GMT20].

2.4.1 Parameters

BLS12-381 curve is defined by a low Hamming weight parameter u given in hexadecimal
form as

u = -0xd201000000010000. (2.49)

Its Weierstrass equation over the prime field Fp is

E(Fp) : y
2 = x3 + 4,

where p is the 381-bit field characteristic,

p =
1

3
· (u6 − 2u5 + 2u3 + u+ 1)

= 0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512b

f6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffaaab.

(2.50)
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This curve contains a subgroup with a 255-bit prime order, denoted as r,

r = u4 − u2 + 1

= 0x73eda753299d7d483339d80809a1d80

553bda402fffe5bfeffffffff00000001.

(2.51)

2.4.2 Groups G1 and G2

In order to define bilinear pairings, two distinct groups G1 and G2 of order r are needed.
However the curve E(Fp) has only one subgroup of order r. If we extend Fp to Fpk for
some integer k, E(Fpk) would eventually contain some other subgroup of order r over which
we can define the pairing. The minimal integer k that makes this happen is called the
embedding degree of the curve. BLS12-381 curve is a curve in BLS12 pairing-friendly curve
family, whose embedding degree k equals 12. Embedding degree k is also the minimum
integer that makes r divide (pk − 1).

Let
πp : E(Fp)→ E(Fp), (x, y) 7→ (xp, yp)

be the Frobenius map, where Fp = ∪∞i=1Fpi is the algebraic closure of Fp, then we know

G1 := E(Fp)[r] = {P ∈ E(Fp) | r · P =∞} (2.52)

is the r-torsion subgroup of E(Fp), and

G2 :=E(Fp12)[r] ∩ ker(πp − [p])

={P ∈ E(Fp12) | r · P =∞, πp(P ) = p · P} (2.53)

is the r-torsion subgroup of E(Fp12) different from G1.

If we directly compute pairings over G2, some of the operations would be evaluated in
Fp12 , which is inefficient. Instead, we utilize the following degree-2 extension field Fp2 ,

Fp2 = Fp[µ]/(µ
2 − (−1)). (2.54)

Let
E ′(Fp2) : y

2 = x3 + 4(µ+ 1), µ ∈ Fp2 (2.55)

be the degree-6 twist of E(Fp) : y
2 = x3 + 4, and define

G′
2 := E ′(Fp2)[r] ∩ ker(πp − [p])

= {P ∈ E ′(Fp2) | r · P =∞, πp(P ) = p · P}, (2.56)
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then G′
2 can be used to replace G2 when computing pairings so that all operations are

computed in Fp2 . If needed, the untwisted map

ψ : G′
2 → G2, (x

′, y′) 7→
(
x′ω−2, y′ω−3

)
, where ω6 = µ+ 1 (2.57)

can be used to pull a point in G′
2 back to G2.

In this thesis, we will focus on the computation of multi-scalar multiplication in G1 and
G′

2. Because the computation is always carried out in G′
2, we will refer to G′

2 as G2 when
conducting the experiment in Chapter 6.

2.4.3 Optimal ate pairing

Let G1 and G2 be the two groups defined in Equations (2.52)(2.53) and

GT := µr

be the subgroup of F∗
p12 consisting of r-th roots of unity. The optimal ate pairing defined

over BLS12-381 curve has a neat formula as follows [GF16] [EMJ17, Theorem 3.3],

e : G1 ×G2 → GT , (2.58)

(P,Q) 7→ (fu,Q(P ))
p12−1

r ,

where fu,Q is the function with respect to the divisor

Div(fu,Q) = u(Q)− ([u]Q)− (u− 1)(∞)

and satisfies

fi+j,Q = fi,Q · fj,Q ·
ℓ[i]Q,[j]Q

v[i+j]Q

(2.59)

up to a nonzero factor in Fp. In Equation (2.59), ℓ[i]Q,[j]Q is the line passing through [i]Q
and [j]Q, and v[i+j]Q is the line perpendicular to the x-axis passing through [i+ j]Q. The
line function v[i+j]Q evaluated at P is

v[i+j]Q(P ) = xP − x[i+j]Q,

which will become 1 after raising to the exponent of (p12 − 1)/r [EMJ17, Lemma 3.3], so
it can be ignored when computing the optimal ate pairing.
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Algorithm 3 Optimal ate pairing for BLS12-381 curve

Input: P ∈ G1, Q ∈ G2, the curve parameter u in Equation (2.49).
Output: The optimal ate pairing f = e(P,Q) ∈ Fp12 .

1: Let |u| =∑ℓ−1
i=0 ui2

i, uℓ−1 = 1, ui ∈ {0, 1}
2: T ← Q, f ← 1
3: for i = ℓ− 2 to 0 do
4: f ← f 2 · ℓT,T (P ), T ← 2T
5: if ui = 1 then
6: f ← f · ℓT,Q(P ), T ← T +Q

7: if u < 0 then
8: f = f−1

9: f ← f (p12−1)/r

10: return f

From Equations (2.58)(2.59), one can obtain Algorithm 3, which is also known as
Miller’s algorithm [Mil04]. Steps 2−6 are called Miller loop, Steps 7−8 are called adjust-
ment steps, and Step 9 is called final exponentiation.

If the curve parameter u is negative, the result obtained after Miller loop is f|u|,Q(P ).
Adjustment steps are involved to correct the result since

fu,Q(P ) = (f|u|,Q(P ))
−1, u < 0.

In order to utilize the exponent decomposition in Step 9, we in practice compute the cube
of the optimal ate pairing rather than the original ate pairing value. This is a common
practice already adopted in [AFCK+12,GF16,Sco17b].

Shared final exponentiation

Pairing-based schemes are usually required to compute several pairings in the verification
algorithm. If there arem pairings to be computed and each pairing is computed separately,
it would go through m Miller loops and evaluate m final exponentiations. An alternative
method is going through m Miller loops, obtaining m intermediate results, multiplying
them together, and then evaluating a single shared final exponentiation.

For example, computing the optimal ate pairing over BLS12-381 curve by running MIR-
ACL core C++ library [Sco17a] on a 2.2 GHz single-thread CPU takes about 2.08 ms per
pairing. During this computation, Miller loop takes about 0.83 ms, final exponentiation
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takes about 1.25 ms, and the multiplication in Fp12 takes only 0.006 ms, which is insignif-
icant compared to Miller loop and final exponentiation. If 3 pairings are computed (for
instance, the verification algorithm of Groth16 in Section 2.3.2), the trivial method that
computes every pairing separately takes about 6.24 ms, while the shared final exponentia-
tion method takes about 3.74 ms, providing a 40% improvement.

Further improvement for pairing computation can be achieved by fully exploiting sparse
multiplication and accumulating the line functions. Please refer to [EMJ17,Sco19] for more
details on this topic.
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Chapter 3

Techniques for Multi-Scalar
Multiplication over Fixed Points

This chapter presents techniques for computing the multi-scalar multiplication over fixed
points Sn,r defined in Equation (2.9). We will propose a new subsum accumulation algo-
rithm and two frameworks for computing Sn,r, and discuss the potential benefits of utilizing
GLV endomorphism and affine coordinates.

3.1 A new subsum accumulation algorithm

When computing Sn,r by Pippenger’s bucket method, after sorting each point into the
bucket with respect to its scalar and computing the intermediate subsums {Si}1≤i≤m, the
remaining step is to invoke a subsum accumulation algorithm to compute

S = b1S1 + b2S2 + · · ·+ bmSm, (3.1)

where 1 ≤ b1 ≤ b2 ≤ · · · ≤ bm. When set {bi}1≤i≤m is not a sequence of consecutive inte-
gers, Algorithm 1 shows the limitation of handling such case with less efficiency. Bos-Coster
method [DR94, Section 4] can be utilized to deal with this case, but it is a recursive algo-
rithm and its complexity is not easy to analyze. Therefore, we propose a straightforward
algorithm to tackle this case.

Let us define b0 = 0, and introduce the following notation

d = max
1≤i≤m

{bi − bi−1}, (3.2)
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then S in Equation (3.1) can be computed by Algorithm 4.

Algorithm 4 Subsum accumulation algorithm II

Input: b1, b2, · · · , bm, S1, S2, · · · , Sm.
Output: S = b1S1 + b2S2 + · · ·+ bmSm.

1: Define a length-(d+ 1) array tmp = [∞]× (d+ 1)
2: for i = m to 1 by −1 do
3: tmp[0] = tmp[0] + Si
4: k = bi − bi−1

5: if k >= 1 then
6: tmp[k] = tmp[k] + tmp[0]

7: return 1 · tmp[1] + 2 · tmp[2] + · · ·+ d · tmp[d]

If we denote δj = bj − bj−1, then bi =
∑i

j=1 δj. The correctness of Algorithm 4 comes
from the following equation,

m∑
i=1

biSi =
m∑
i=1

(
i∑

j=1

δj

)
Si

=
m∑
j=1

δj

(
m∑
i=j

Si

)

=
d∑

k=1

k ·
∑

1≤j≤m, δj=k

(
m∑
i=j

Si

)
.

(3.3)

During the execution of Algorithm 4, the temporary variable tmp[0] stores
∑m

i=j Si when
loop index i equals j, and the temporary variable tmp[k] stores

∑
1≤j≤m, δj=k

(
m∑
i=j

Si

)
for 1 ≤ k ≤ d

after the for loop.

If {bi}1≤i≤m is strictly increasing and k in Line 4 goes through {1, 2, · · · , d}, then in
the for loop (Lines 2 – 6), each iteration executes exactly 2 additions. Since all d + 1
temporary variables in tmp are initialized as ∞, there are d + 1 additions with ∞, which
have no computational cost. Therefore, the for loop executes 2m− (d+1) additions. Line
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7 is computed by the subsum accumulation Algorithm 1 with 2(d− 1) additions. In total,
the cost of Algorithm 4 is 2m+ d− 3 additions.

If {bi}1≤i≤m is not strictly increasing, which means that sometimes k in Line 4 equals
0, the corresponding for iteration will only execute one addition by skipping the if part.

If k in Line 4 does not go through all integers in {1, 2, · · · , d}, there exists a tmp[k] (1 ≤
k ≤ d) that will skip the for loop and remain as ∞. In the for loop, the saved addition
due to the initiation of tmp[k] as ∞ will no longer be saved. In the mean time, when Line
7 is executed, at least one addition will be saved because tmp[k] = ∞. As a result, the
total cost will not increase.

In summary, the cost of Algorithm 4 in the worst case is

2m+ d− 3 (3.4)

additions. When d = 1, Algorithm 4 degenerates to Algorithm 1.

3.2 Frameworks for computing multi-scalar multipli-

cation over fixed points

In this section, we will propose two frameworks for computing multi-scalar multiplica-
tion over fixed points. These frameworks extend BGMW method and Pippenger’s bucket
method, respectively.

3.2.1 Framework I

The first framework is inspired by BGMW method [BGMW92], which was originally de-
signed for computing single-scalar multiplication using the notion of basic digit sets.

The goal is to compute

Sn,r =
n∑

i=1

aiPi,

where 0 ≤ ai < r, and every Pi is fixed. Let M be a set of integers and B be a set of
non-negative integers with 0 ∈ B. If every ai can be expressed as the following radix q
representation (not necessarily uniquely)

ai =
h−1∑
j=0

mijbijq
j, mij ∈M, bij ∈ B, h = ⌈logq r⌉, (3.5)
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then Sn,r can be computed as follows,

Sn,r =
n∑

i=0

aiPi

=
n∑

i=1

(
h−1∑
j=0

mijbijq
j

)
Pi

=
n∑

i=1

h−1∑
j=0

bij ·mijq
jPi.

(3.6)

Denote Pij := mijq
jPi, then

Sn,r =
n∑

i=1

h−1∑
j=0

bijPij

=
n∑

i=1

h−1∑
j=0

∑
k∈B

k ·
∑

i,j s.t. bij=k

Pij


=
∑
k∈B

k ·

 ∑
1≤i≤n, 0≤j≤h−1, bij=k

Pij

 .

(3.7)

Suppose these nh|M | points

{mqjPi | 1 ≤ i ≤ n, 0 ≤ j ≤ h− 1,m ∈M} (3.8)

are precomputed, and define the intermediate subsum Sk as

Sk :=
∑

1≤i≤n, 0≤j≤h−1, bij=k

Pij, k ∈ B,

then Equation (3.7) can be evaluated by first computing all Sk (k ∈ B) using at most

nh− (|B| − 1)

additions. The reason for this is straightforward because there are nh points being sorted
into |B| − 1 subsums. The remaining part is computed by Algorithm 4 using at most

2(|B| − 1) + d− 3
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additions, where d is the maximum difference between two neighboring elements in B.

To sum up, the worst case time complexity for computing Sn,r is

nh+ |B|+ d− 4 (3.9)

additions, where h = ⌈logq r⌉, with the help of

nh|M | (3.10)

precomputed points.

The set M is called a multiplier set, because the set of precomputed points contains
all points multiplied by each element from M . The set B is called a bucket set, since all
points are sorted into subsum buckets with respect to the scalars in B. This framework is
translated into Algorithm 5.

In Algorithm 5, if we denote the expected number of zero elements in the length-nh
array scalars as f , and assume that all elements in the length-|B| array buckets of Step
5 are non-infinity, then the average complexity for computing Sn,r can be estimated as

nh+ |B|+ d− f (3.11)

additions.

From Equations (3.9)(3.11) we can observe that, when n and r are fixed, we can re-
duce the time complexity for computing Sn,r by choosing a larger radix q to make the
length h smaller, or by finding a smaller bucket set B. These two alternatives are closely
interconnected. We will discuss them in Chapter 4.

Example. Under Framework I, BGMW method presented in Section 2.2.4 has

M = {1}, B = {0, 1, 2, · · · , 2c − 1},

or
M = {−1, 1}, B = {0, 1, 2, · · · , 2c−1}.

3.2.2 Framework II

We propose the second framework, which is inspired by Pippenger’s bucket method and
Framework I. Framework II requires only 1/h of the precomputation size compared to
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Algorithm 5 Multi-scalar multiplication over fixed points: Framework I

Input: Scalars a1, a2, · · · , an, fixed points P1, P2, · · · , Pn, radix q, scalar length h, multi-
plier set M = {m0,m1, · · · ,m|M |−1}, bucket set B = {b0, b1, · · · , b|B|−1}.
Output: Sn,r =

∑n
i=1 aiPi.

1: Precompute a length-nh|M | point array precomputation, such that

precomputation [|M|((i− 1)h+ j) + k] = mkq
jPi for 1 ≤ i ≤ n, 0 ≤ j < h, 0 ≤ k < |M |.

Precompute a hash table mindex to record the index of every multiplier, such that
mindex[mk] = k. Precompute a hash table bindex to record the index of every bucket,
such that bindex[bk] = k.

2: Convert every ai to its standard q-ary form, then convert it to

ai =
h−1∑
j=0

mijbijq
j, mij ∈ M, bij ∈ B.

3: Create a length-nh scalar array scalars, such that scalars[(i− 1)h+ j] = bij.
Create a length-nh array points recording the index of points, such that
points[(i− 1)h+ j] = |M|((i− 1)h+ j) + mindex[mij]. Then n-scalar multiplication
Sn,r is equivalent to the following nh-scalar multiplication

nh−1∑
i=0

scalars[i] · precomputation [points[i]],

where all scalars in scalars are from the bucket set B.
4: Create a length-|B| point array buckets to record the intermediate subsums, and

initialize every point to∞. For 0 ≤ i ≤ nh− 1, add point precomputation [points[i]]
to bucket buckets [bindex[scalars[i]]].

5: Invoke Algorithm 4 to compute
∑|B|−1

i=0 bi · buckets[i], then return the result.

Framework I, making it a viable alternative when the devices’ memory size is relatively
restricted.

Let q = 2c be a radix, M an integer set and B a non-negative integer set with 0 ∈ B,
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such that each scalar ai (0 ≤ ai < r) appeared in Sn,r can be expressed as

ai =
h−1∑
j=0

mijbijq
j, mij ∈M, bij ∈ B, h = ⌈logq r⌉. (3.12)

Using this decomposition, the n-scalar multiplication Sn,r can be computed as follows,

Sn,r =
n∑

i=1

aiPi

=
n∑

i=1

h−1∑
j=0

bijmijq
jPi

=
h−1∑
j=0

qj ·
(

n∑
i=1

bij ·mijPi

)
.

Denote Pij := mijPi, and suppose all the following |M |n points

{mPi | 1 ≤ i ≤ n,m ∈M} (3.13)

are precomputed, then

Sj :=
n∑

i=1

bij ·mijPi =
n∑

i=1

bij · Pij

is an n-scalar multiplication where all scalars are from B. By Equation (3.9) in Framework
I (assigning h = 1), each Sj can be computed with

n+ |B|+ d− 4 (3.14)

additions. The remaining part is

Sn,r =
h−1∑
j=0

qjSj,

which can be computed using
(h− 1)(c+ 1)

additions by a method similar to Horner’s rule, as shown in Equation (2.15).

To sum up, Framework II computes Sn,r using at most

h(n+ |B|+ d− 4) + (h− 1)(c+ 1) (3.15)
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additions. When we design bucket sets, it is ensured that d is small. Because

h = ⌈logq r⌉ =
⌈
log2 r

c

⌉
,

and ⌈log2 r⌉ is several hundreds in practice1, it follows that

(h− 1)(c+ 1)

is in the range of hundreds. Thus the main term of the time complexity is

h(n+ |B|). (3.16)

Framework II is translated into Algorithm 6.

Example. Under Framework II, Pippenger’s bucket method presented in Section 2.2.3
has

M = {1}, B = {0, 1, 2, · · · , 2c − 1},
or

M = {−1, 1}, B = {0, 1, 2, · · · , 2c−1}.

3.3 Other tricks

In this section, two tricks that can reduce the time complexity or the precomputation size
are introduced. These tricks can be utilized by Pippenger bucket method, BGMW method
and the proposed frameworks. We did not implement them in this thesis and further
investigation is needed in order to assess their relative effectiveness and impact.

3.3.1 GLV endomorphism

Let us first discuss the potential benefits of utilizing GLV endomorphism [GLV01]. GLV
endomorphism could be used to either shrink down the precomputation size under Frame-
work I, or accelerate the computation of Sn,r under Framework II, at the cost of computing
some field multiplications on the fly.

1The parameter r is usually the order of the pairing-friendly curve groups over which the pairing is
defined. In order to provide 128-bit security, r is at least 256-bit. In order to provide 192-bit security, r is
at least 384-bit.
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Algorithm 6 Multi-scalar multiplication over fixed points: Framework II

Input: Scalars a1, a2, · · · , an, fixed points P1, P2, · · · , Pn, radix q, scalar length h, multi-
plier set M = {m0,m1, · · · ,m|M |−1}, bucket set B = {b0, b1, · · · , b|B|−1}.
Output: Sn,r =

∑n
i=1 aiPi.

1: Precompute a length-n|M | point array precomputation, such that

precomputation [|M|(i− 1) + k] = mkPi for 1 ≤ i ≤ n, 0 ≤ k < |M |.

Precompute a hash table mindex to record the index of every multiplier, such that
mindex[mk] = k. Precompute a hash table bindex to record the index of every bucket,
such that bindex[bk] = k.

2: Convert every ai to its standard q-ary form, then convert it to

ai =
h−1∑
j=0

mijbijq
j, mij ∈ M, bij ∈ B.

3: Create a length-h point array subsums to record the intermediate subsums. For j from
0 to h− 1, invoke Algorithm 5 with scalar length 1 to compute the following n-scalar
multiplication,

subsums[j] =
n∑

i=1

bij · precomputation[|M|(i− 1) + mindex[mij]],

where all scalars are from the bucket set B.
4: Use the method in Equation (2.15) to compute

h−1∑
j=0

qj · subsums[j],

then return the result.

GLV endomorphism provides a shortcut to obtain a specific scalar multiplication for
every point in an elliptic curve group, at the expense of a field multiplication. Suppose GLV
endomorphism is applicable in the elliptic curve group E of prime order r when computing
Sn,r. For a point P = (x, y) in E, let

ϕ(P ) = λP = (βx, y)
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be the GLV endomorphism, where λ2 + λ + 1 = 0 mod r, β2 + β + 1 = 0 mod p, and p is
the characteristic of the field over which E is defined.

Precomputation size reduction for Framework I

Utilizing GLV endomorphism, it is possible to reduce the precomputation size of Framework
I by approximately a factor of 2, at the cost of computing some field multiplications on
the fly.

When computing Sn,r, we can replace every single-scalar multiplication by a 2-scalar
multiplication. Suppose in the optimal situation each scalar can be decomposed to [bab86,
GLV01]

ai ≡ ai,0 + λai,1 mod r,

where |ai,0|, |ai,1| are approximately no more than
√
r2, then we have

Sn,r =
n∑

i=1

aiPi

=
n∑

i=1

(ai,0 + ai,1λ)Pi

=
n∑

i=1

(ai,0Pi + ai,1 · λPi)

=
n∑

i=1

(ai,0Pi + ai,1 · ϕ(Pi)).

(3.17)

This is equivalent to a 2n-scalar multiplication where all scalars are approximately no more
than

√
r. By Equation (3.9) in Framework I, this 2n-scalar multiplication costs at most

approximately
2n · h′ + |B| (3.18)

additions, where

h′ ≈
⌈
logq
√
r
⌉
=

⌈
logq r

2

⌉
=

⌈
h

2

⌉
.

2Not all curves satisfy this condition, but BN curves and BLS12 curves do.

47



During the computation process, every ai,1 in Equation (3.17) is further decomposed
into the following radix q expression of length h′,

ai,1 =
h′−1∑
j=0

bij,1 ·mij,1 · qj,

and these mij,1q
jϕ(Pi) appeared in this process are computed on the fly by GLV endomor-

phism using nh′ field multiplications. The following |M |nh′ points are precomputed,

{mqjPi | m ∈M, 1 ≤ i ≤ n, 0 ≤ j ≤ h′}, (3.19)

which are approximately half of the points in the precomputation set of Framework I, as
shown in Equation (3.8).

Acceleration for Framework II

By Equation (3.17), Sn,r is equivalent to a 2n-scalar multiplication whose all scalars are
approximately no more than

√
r. According to Equation (3.16) in Framework II, Sn,r can

be computed by
h′(2n+ |B|) (3.20)

additions, where

h′ ≈ ⌈logq(
√
r)⌉ =

⌈
h

2

⌉
. (3.21)

During the execution of Framework II, every ai,1 in Equation (3.17) is further decomposed
into the following radix q expression of length h′,

ai,1 =
h′−1∑
j=0

bij,1 ·mij,1 · qj.

Therefore, it also requires nh′ field multiplications to compute the following points

{ϕ(mij,1Pi) | 1 ≤ i ≤ n, 0 ≤ j ≤ h′ − 1}

on the fly, where these mij,1Pi are directly retrieved from the precomputed points.
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3.3.2 Affine coordinates

It is very popular to adopt projective and Jacobian coordinates for computing multi-
scalar multiplication. These coordinate systems offer advantages over affine coordinates
by avoiding the need for inversions in the finite field, which are necessary for elliptic
curve addition in affine coordinates. An inversion may be orders of magnitude expensive
than a multiplication, sometimes estimated to be 100 times more expensive. For instance,
Jacobian mixed addition requires 11 multiplications in the base field, as shown in Equation
(6.7), while affine addition requires 3 multiplications and 1 inversion in the base field.
Therefore, Jacobian mixed addition is usually faster than affine addition.

However, Gabizon and Williamson observed that addition in affine coordinates may use
fewer field multiplications compared to addition in projective and Jacobian coordinates
when implementing Pippenger’s bucket method for TurboPLONK [GJW20]. If the affine
points to be added are properly arranged in a way that a batch of ℓ additions can be
computed concurrently, then Montgomery batch inversion technique can be utilized to
compute the slopes simultaneously.

Montgomery batch inversion trick computes the inverses of ℓ elements λ1, λ2, · · · , λℓ in
a field using the following steps,

• Set Λ1 = λ1. For i from 1 to ℓ − 1, compute Λi+1 = Λiλi. This step takes (ℓ − 1)
field multiplications. We have

Λi =
i∏

j=1

λj, 1 ≤ i ≤ ℓ. (3.22)

• Compute Rℓ = Λ−1
ℓ by 1 field inversion.

• For i from ℓ − 1 to 1, compute Ri = Ri+1 · λi+1. This step requires (ℓ − 1) field
multiplications. We have

Ri =
i∏

j=1

λ−1
j , 1 ≤ i ≤ ℓ. (3.23)

• By Equations (3.22)(3.23), it is clear that λ−1
1 = R1, and that for i from 2 to ℓ

λ−1
i = RiΛi−1. This step takes (ℓ− 1) field multiplications.

The above method computes ℓ inverses by using 3(ℓ−1) field multiplications and 1 field
inversion. If ℓ is sufficiently large, then each inverse can be computed by approximately 3
field multiplications on average. This trick yields a batching affine addition algorithm that
requires only 6 field multiplications.
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Chapter 4

Constructions of Multiplier Set and
Bucket Set

In this chapter, we construct five pairs of multiplier set and bucket set (M,B) that can
be utilized to compute Sn,r within the frameworks presented in Chapter 3. The essential
challenge is to ensure that each scalar in Sn,r is converted to its radix q representation
where every digit is the product of an element from M and an element from B, while
keeping the size of B as small as possible.

We would like to require M to be symmetric, meaning

M = {i | i ∈M ′} ∪ {−i | i ∈M ′},
where the set M ′ only contains positive integers. In this case, the precomputation size
could be halved by computing the inverse of a point on the fly when needed. For a point
P = (x, y) in an elliptic curve group, its inverse −P is obtained by taking the negative of
its y coordinate at almost no cost.

Given a pair of sets (M,B) and an arbitrary scalar a (0 ≤ a < r) in its standard q-ary
representation

a =
h−1∑
j=0

ajq
j, 0 ≤ aj < q, h = ⌈logq r⌉, (4.1)

the sets (M,B) are said to be valid, if they enable the scalar conversion from its standard
q-ary representation to the following radix q representation (which may not be unique)

a =
h−1∑
j=0

mjbjq
j, mj ∈M, bj ∈ B, h = ⌈logq r⌉. (4.2)

50



We will show the proposed constructions are valid, thus yielding effective algorithms
for computing Sn,r when combining with the proposed frameworks.

4.1 Construction I

For a radix q = 2c (10 ≤ c ≤ 31), the multiplier set is picked as

M = {−3,−2,−1, 1, 2, 3}. (4.3)

In order to determine the bucket set B, let us first define three auxiliary sets B0, B1 and
B2. Let h = ⌈logq r⌉, and

rh−1 =

⌊
r

qh−1

⌋
(4.4)

be the leading term of r in its standard q-ary expression,

B0 ={0} ∪
{
i | 1 ≤ i ≤ q

2
, s.t. ω2(i) + ω3(i) ≡ 0 mod 2

}
,

B2 ={0} ∪ {i | 1 ≤ i ≤ rh−1 + 1, s.t. ω2(i) + ω3(i) ≡ 0 mod 2},
(4.5)

where ω2(i) represents the exponent of the factor 2 in i, and ω3(i) represents the exponent
of the factor 3 in i. For instance, if i = 2ek, 2 ∤ k, then ω2(i) = e. From these definitions,
B0 (respectively, B2) has such a property that for each t (0 ≤ t ≤ q/2) (respectively,
0 ≤ t ≤ rh−1 + 1), there exist an element b ∈ B0 (respectively, b ∈ B2) and an integer
m ∈ {1, 2, 3}, such that

t = mb.

The set B0 itself is a valid construction, which is mentioned in [BGMW92] in the exponen-
tiation operation of general multiplicative groups. Since we can utilize negative elements
in the multiplier set M , there are some redundant elements to be removed from B0. Set
B1 is defined by Algorithm 7.

Property 1 holds for B1.

Property 1. Given q = 2c (10 ≤ c ≤ 31), for each t (0 ≤ t ≤ q), there exist an element
b ∈ B1 and an integer m ∈ {1, 2, 3}, such that

t = mb or t = q −mb.

The size of B1 satisfies
0.208q < |B1| < 0.211q.
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Algorithm 7 Construction of auxiliary set B1

Input: B0, q.
Output: B1.

1: B1 = B0
2: for i = q/4 to q/2− 1 by 1 do
3: if i is in B0 and q− 2 · i is in B0 then
4: B1.remove(q− 2 · i)
5: for i = ⌊q/6⌋ to q/4− 1 by 1 do
6: if i is in B0 and q− 3 · i is in B0 then
7: B1.remove(q− 3 · i)
8: return B1

Property 1 is checked by computation using Algorithm 9. It is also asserted by compu-
tation that exchanging two for loops in Algorithm 7 would construct the same B1.

Finally the bucket set B is constructed as

B = B1 ∪B2. (4.6)

Example. For r = 131101, q = 25 = 32, we have h = 4, rh−1 = 4 and

B0 = {0, 1, 4, 5, 6, 7, 9, 11, 13, 16}.

The redundant elements are 6 and 11, because

6 = q − 2× 13, 11 = q − 3× 7.

It follows that
B1 = {0, 1, 4, 5, 7, 9, 13, 16}.

We also have
B2 = {0, 1, 4, 5},

so the bucket set
B = B1 ∪B2 = {0, 1, 4, 5, 7, 9, 13, 16}.

Property 2. For the multiplier set M and the bucket set B defined in Equations (4.3)
(4.6), a scalar a (0 ≤ a < r) can be expressed (not necessarily uniquely) as a radix q
representation defined in Equation (4.2).
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Proof. By Property 1, we know that for any integer t ∈ [0, q], it can be expressed as

t = mb+ αq, m ∈M, b ∈ B,α ∈ {0, 1},

and by the definition of B2 we know that for any integer t ∈ [0, rh−1+1], it can be expressed
as

t = mb, m ∈ {1, 2, 3}, b ∈ B.

Back to Property 2. Algorithm 8 can be used to convert a from its standard q-ary
representation defined in Equation (4.1) to its radix q representation defined in Equation
(4.2).

Algorithm 8 Scalar conversion II

Input: {aj}0≤j≤h−1, 0 ≤ aj < q such that a =
∑h−1

j=0 ajq
j.

Output: {(mj, bj)}0≤j≤h−1,mj ∈M, bj ∈ B such that a =
∑h−1

j=0 mjbjq
j.

1: for j = 0 to h− 2 by 1 do
2: Obtain mj, bj, αj such that aj = mjbj + αjq

3: aj+1 = αj + aj+1

4: Obtain mh−1, bh−1 such that ah−1 = mh−1bh−1

5: return {(mj, bj)}0≤j≤h−1

The correctness of Algorithm 8 comes from the fact that

i) a0 ∈ [0, q − 1],

ii) αj + aj+1 ∈ [0, q], for 0 ≤ j ≤ h− 3,

iii) αh−2 + ah−1 ∈ [0, rh−1 + 1].

A hash tableH is precomputed to store the decomposition of every t ∈ [0, q], specifically,

H(t) = (m, b, α) s.t. t = mb+ αq,m ∈M, b ∈ B,α ∈ {0, 1}. (4.7)

Steps 2 and 4 in Algorithm 8 are executed by retrieving the corresponding decomposition
from the hash table. For the proposed (M,B), the hash tableH can be implemented using a
length-(q+1) array decomposition, as shown in Algorithm 9. The decomposition array is
also utilized to verify Property 1 by checking whether there is any entry in decomposition

whose last element is −1.
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Algorithm 9 Construction of digit decomposition hash table

Input: M,B defined in Equations (4.3) (4.6).
Output: Length-(q + 1) array decomposition, a realization of hash table H.

1: Define a length-(q + 1) array decomposition and initiate every entry to be [0, 0,−1].
2: for m ∈ {−1,−2,−3} do
3: for b ∈ B do
4: if m · b+ q ≥ 0 then
5: decomposition[m · b+ q] = [m, b, 1]

6: for m ∈ {1, 2, 3} do
7: for b ∈ B do
8: if m · b ≤ q then
9: decomposition[m · b] = [m, b, 0]

10: return decomposition

When rh−1/q (approximately r/qh) is small, the value |B2|/|B| is also small. In this
case, |B| = |B1 ∪B2| ≈ |B1|. By Property 1, it is expected that

|B| ≈ |B1| ≈ 0.21q. (4.8)

It is checked that the maximum difference between two neighboring elements in B is no
more than 6. Proposition 1 is obtained by combining Construction I with Frameworks I
and II.

Proposition 1. For integer r, radix q = 2c (10 ≤ c ≤ 31), length h = ⌈logq r⌉, the
multiplier set

M = {−3,−2,−1, 1, 2, 3}
and the bucket set B jointly decided by Equations (4.5)(4.6) and Algorithm 7 are valid.
When r/qh is small, we have the following two methods for computing Sn,r.

• According to Equations (3.8)(3.9) in Framework I, Sn,r is computed by using at most
approximately

nh+ 0.21q

additions, with the help of the following 3nh precomputed points

{mqjPi | 1 ≤ i ≤ n, 0 ≤ j ≤ h− 1, m ∈ {1, 2, 3}}.
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• According to Equations (3.13)(3.16) in Framework II, Sn,r is computed by using at
most approximately

h(n+ 0.21q)

additions, with the help of the following 3n precomputed points

{mPi | 1 ≤ i ≤ n, m ∈ {1, 2, 3}}.

4.2 Construction II

For a radix q = 2c, the length of a q-ary expression h is assumed to satisfy the condition1

qh−1 < r ≤ q

2
· qh−1. (4.9)

This condition ensures that the radix q representation in Equation (4.2) also has a length
of h. The multiplier set is defined as

M = {−2,−1, 1, 2}, (4.10)

and the corresponding bucket set is constructed as

B = {0} ∪
{
i
∣∣∣ ω2(i) ≡ 0 mod 2, 1 ≤ i ≤ q

2

}
, (4.11)

where ω2(i) represents the exponent of the factor 2 in i.

Property 3. For the multiplier set M and the bucket set B defined in Equations (4.10)
(4.11), a scalar a (0 ≤ a < r) can be expressed (not necessarily uniquely) as a radix q
representation defined in Equation (4.2).

Proof. Let us first demonstrate that every integer t (0 ≤ t ≤ q) can be decomposed to

t = mb+ αq, m ∈M, b ∈ B,α ∈ {0, 1}.

• If 0 ≤ t ≤ q/2, from the construction of B there exists an element b ∈ B such that
t = b or t = 2b. In this case α = 0.

1If r is the order of the elliptic curve group, this condition can be removed by the same technique used
in Algorithm 2.

55



• If q/2 < t ≤ q, then q − t lies in [0, q/2], which reduces to the previous case. Thus
there exists an element b ∈ B such that q − t = b or q − t = 2b, which means
t = (−1) · b+ q or t = (−2) · b+ q. In this case α = 1.

Back to Property 3. Given a scalar a in its standard q-ary representation defined in
Equation (4.1), one can complete the scalar conversion by utilizing Algorithm 8, whose
correctness is ensured by the following fact,

i) a0 ∈ [0, q − 1],

ii) αj + aj+1 ∈ [0, q] for all 0 ≤ j ≤ h− 3,

iii) αh−2 + ah−1 ∈ [0, q/2].

We require that r ≤ q/2 · qh−1 when we select the radix q, which would ensure that

ah−1 ≤
q

2
− 1.

Therefore, ah−1 ≤ q/2 considering the possible carry bit αh−2.

For every t ∈ [0, q], a hash table H can be precomputed to store its decomposition,
i.e., H(t) = (m, b, α) such that t = mb + αq, m ∈ M, b ∈ B,α ∈ {0, 1}. When doing the
scalar conversion, values m, b and α can be retrieved from the hash table instead of being
computed on the fly.

The following lemma is used to estimate the size of B.

Lemma 1. Let ℓ,m be positive integers such that 2m ≤ ℓ < 2m+1. Let the set

A = {i | ω2(i) ≡ 0 mod 2, 1 ≤ i ≤ ℓ},
then the size of A is evaluated by

|A| =
m∑
i=0

(−1)i
⌊
ℓ

2i

⌋
. (4.12)

Proof. Define

Ai = {j | j mod 2i = 0, 1 ≤ j ≤ ℓ}, for i = 0, 1, 2, · · · ,
notice that Ai+1 ⊂ Ai, we have

A =
∞∑
i=0

(−1)iAi.

Therefore Equation (4.12) holds by the observation that |Ai| = ⌊ℓ/2i⌋.
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For q = 2c, the size of B is estimated by

|B| = 1 +
∞∑
i=1

(−1)i+1

⌊
q

2
· 1

2i−1

⌋
= 1 +

c∑
i=1

(−1)i+1 · q
2i

=
q + (−1)c+1

3
+ 1

<
q

3
+ 2.

(4.13)

The maximum difference between two neighboring elements in B is 2. Proposition 2 is
obtained by combining Construction II with Frameworks I and II.

Proposition 2. For integer r, radix q = 2c, length h = ⌈logq r⌉, such that

qh−1 < r ≤ q

2
· qh−1,

the multiplier set
M = {−2,−1, 1, 2}

and the bucket set

B = {0} ∪
{
i
∣∣∣ ω2(i) ≡ 0 mod 2, 1 ≤ i ≤ q

2

}
are valid. This construction of (M,B) yields the following two methods for computing Sn,r.

• According to Framework I, Sn,r can be computed by using at most approximately

nh+
q

3
(4.14)

additions, with the help of 2nh precomputed points

{mqjPi | 1 ≤ i ≤ n, 0 ≤ j ≤ h− 1, m ∈ {1, 2}}.

• According to Framework II, Sn,r can be computed by using at most approximately

h
(
n+

q

3

)
(4.15)

additions, with the help of 2n precomputed points

{mPi | 1 ≤ i ≤ n, m ∈ {1, 2}} .
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4.3 Construction III

For a radix q = 2c and an integer h such that

qh−1 < r ≤ q

4
· qh−1,

we denote λ = q mod 3, then λ ∈ {1, 2}. The multiplier set is picked as

M = {−3,−1, 1, 3}, (4.16)

the corresponding bucket set is constructed as

B ={0} ∪
{
i
∣∣∣ ω3(i) ≡ 0 mod 2, 1 ≤ i ≤ q

12

}
∪
{
i
∣∣∣ q

12
≤ i ≤ q

4

}
∪
{
3i− λ

∣∣∣ i s.t. q
4
≤ 3i− λ ≤ q

2

}
,

(4.17)

where ω3(i) represents the exponent of the factor 3 in i.

Property 4. For the multiplier set M and the bucket set B defined in equations (4.16)
(4.17), a scalar a (0 ≤ a < r) can be expressed (not necessarily uniquely) as a radix q
representation defined in Equation (4.2).

Proof. Let us first demonstrate that for an integer t (0 ≤ t ≤ q), it can be decomposed to

t = mb+ αq, m ∈M, b ∈ B,α ∈ {0, 1}.

• If 0 ≤ t ≤ q/4, then t = 1 · b or t = 3 · b, where b ∈ B. In this case α = 0.

• If 3q/4 ≤ t ≤ q, we know q − t ≤ q/4, thus q − t = mb,m ∈ {1, 3}, b ∈ B. It follows
that

t = (−m) · b+ q,

and −m ∈M, b ∈ B, α = 1.

• If q/4 < t < 3q/4, we further discuss the following three cases.

– If t (mod 3) = 0, then there exists an integer b (q/12 < b ≤ q/4), such that
t = 3b, where 3 ∈M, b ∈ B and α = 0.
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– If t (mod 3) = λ, then there exists an integer b (q/12 < b ≤ q/4), such that
q − t = 3b. It follows that

t = (−3) · b+ q,

and −3 ∈M, b ∈ B, α = 1.

– If t (mod 3) = 3− λ, then
* If t ≤ q/2, then t ∈ B. We have t = 1 · b, where 1 ∈M, b ∈ B and α = 0.

* If t > q/2, then q − t < q/2 and

q − t ≡ 2λ ≡ 3− λ (mod 3).

This boils down to the former case. We have q − t = 1 · b, b ∈ B, thus

t = (−1) · b+ q,

and −1 ∈M, b ∈ B, α = 1.

Back to Property 4. Suppose a scalar a is given in its standard q-ary representation
defined in Equation (4.1), Algorithm 8 can be used to convert a to the expression defined
in Equation (4.2). The correctness is ensured by the following fact,

i) a0 ∈ [0, q − 1],

ii) αj + aj+1 ∈ [0, q] for all 0 ≤ j ≤ h− 3,

iii) αh−2 + ah−1 ∈ [0, q/4].

For j = h− 1, when we select the radix q, it is required that r ≤ q/4 · qh−1, which ensures
ah−1 ≤ 1/4 · q − 1, so ah−1 ≤ 1/4 · q considering the possible carry bit αh−2.

For every t ∈ [0, q], a hash table H can be precomputed to store its decomposition,
i.e., H(t) = (m, b, α) such that t = mb + αq, m ∈ M, b ∈ B,α ∈ {0, 1}. When doing the
scalar conversion, values m, b and α can be retrieved from the hash table instead of being
computed on the fly.

Let us estimate the size of B. Define

B1 =
{
i
∣∣∣ ω3(i) ≡ 0 mod 2, 1 ≤ i ≤ q

12

}
,

and suppose 3m ≤ q/12 < 3m+1, the size of B1 is evaluated by a method similar to Lemma
1 as follows,

|B1| =
m∑
i=0

(−1)i
⌊
q

12
· 1
3i

⌋
. (4.18)
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If m = 2k, we have

|B1| =
2k∑
i=0

(−1)i
⌊
q

12
· 1
3i

⌋

=
k∑

i=0

⌊
q

12
· 1

32i

⌋
−

k∑
i=1

⌊
q

12
· 1

32i−1

⌋

≤
k∑

i=0

q

12
· 1

32i
−

k∑
i=1

(
q

12
· 1

32i−1
− 1

)
=

m∑
i=0

(−1)i q
12
· 1
3i

+ k

=
q

16
+ (−1)m q

48 · 3m +
m

2

<
q

16
+

3

4
+
m

2
.

(4.19)

If m = 2k + 1,

|B1| =
(

2k∑
i=0

(−1)i
⌊
q

12
· 1
3i

⌋)
−
⌊
q

12
· 1

32k+1

⌋
<

(
q

16
+

3

4
+
m− 1

2

)
− 0

=
q

16
+

1

2
+
m

2
.

(4.20)

Notice the fact that a real interval [α, β] covers at most β − α + 1 integers, then

|B| ≤ 1 +

(
q

16
+

3

4
+
m

2

)
+
(q
4
− q

12
+ 1
)

+

(
1

3

(q
2
+ λ
)
− 1

3

(q
4
+ λ
)
+ 1

)
=

5q

16
+

15

4
+
m

2
.

(4.21)

If c is small, then 15/4+m/2 is a small integer that is negligible. The maximum differ-
ence between two neighboring elements in B is 3. Proposition 3 is obtained by combining
Construction III with Frameworks I and II.

60



Proposition 3. For integer r, radix q = 2c, length h = ⌈logq r⌉, such that

qh−1 < r ≤ q

4
· qh−1,

the multiplier set
M = {−3,−1, 1, 3}

and the bucket set

B ={0} ∪
{
i
∣∣∣ ω3(i) ≡ 0 mod 2, 1 ≤ i ≤ q

12

}
∪
{
i
∣∣∣ q

12
≤ i ≤ q

4

}
∪
{
3i− λ

∣∣∣ i s.t.
q

4
≤ 3i− λ ≤ q

2

}
are valid. This construction of (M,B) yields the following two methods for computing Sn,r.

• According to Framework I, Sn,r can be computed by using at most approximately

nh+
5q

16
(4.22)

additions, with the help of the following 2nh precomputed points

{mqjPi | 1 ≤ i ≤ n, 0 ≤ j ≤ h− 1, m ∈ {1, 3}}.

• According to Framework II, Sn,r can be computed by using at most approximately

h

(
n+

5q

16

)
(4.23)

additions, with the help of the following 2n precomputed points

{mPi | 1 ≤ i ≤ n, m ∈ {1, 3}} .

4.4 Other constructions

Recall that a multiplier set M is selected to be

M = {−mℓ,−mℓ−1, · · · ,−m1,m1,m2, · · · ,mℓ},
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where each mi (1 ≤ i ≤ ℓ) is a positive integer. The symmetry of M allows us to halve the
precomputation size. Given a radix q, and a multiplier set M of size 2ℓ, the ultimate goal
is to construct a bucket set B such that

|B| ≈ q

2ℓ
.

We have proposed three constructions by far, and now we are ready to study two
more constructions that further shrink down the size of the bucket sets, approaching the
theoretical limit. In Construction IV, the radix q = 2c − 1, while in Construction V, the
radix q can be selected from pseudo-Mersenne primes, i.e., q = 2c − e, where e is a small
integer. Construction V is theoretically optimal in terms of the size of the bucket set.

When the radix q is not a power of 2, the radix conversion algorithms presented
in [CH06, AKT20] can be utilized. These algorithms use only integer additions, integer
subtractions and bitwise operations to convert a scalar from its binary expression to the
standard q-ary expression. However, such radix conversion is much slower than that when
q = 2c. The advantage in time complexity brought by the smaller bucket set constructions
is largely offset by the radix conversion. Thus if a more efficient radix conversion algorithm
does not emerge, these bucket set constructions are primarily of theoretical significance.

4.4.1 Construction IV

For a radix q = 2c − 1, and an integer h such that

qh−1 < r ≤ q

3
· qh−1,

which implies h = ⌈logq r⌉, the multiplier set is picked as

M = {−2,−1, 1, 2}, (4.24)

and the corresponding bucket set is designed as

B = {0} ∪
{
i
∣∣∣ 1 ≤ i ≤ q

6
s.t. ω2(i) ≡ 0 mod 2

}
∪
{
i
∣∣∣ q
6
≤ i ≤ q

3

}
. (4.25)

Here, ω2(i) represents the exponent of the factor 2 in i.

Property 5. For the multiplier set M and the bucket set B defined in Equations (4.24)
(4.25), a scalar a (0 ≤ a < r) can be expressed (not necessarily uniquely) as a radix q
representation defined in Equation (4.2).
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Proof. Let us first show that for an arbitrary integer t (0 ≤ t ≤ q), it can be decomposed
to

t = mb+ αq, m ∈M, b ∈ B,α ∈ {0, 1}.

• If t ≤ q/3,

– If t ≤ q/6, we can further discuss the following two cases. If ω2(t) is even, then
t ∈ B. If ω2(t) is odd, then t/2 ∈ B.

– If q/6 < t ≤ q/3, then t ∈ B.

Anyway, there exists an element b ∈ B, such that t = 1b or t = 2b. In these cases,
α = 0.

• If t ≥ 2q/3, we have q − t ≤ q/3, which falls into the above situation. There exists
an element b ∈ B, such that q − t = mb, where m = 1 or 2. It follows that

t = (−m)b+ q, where −m ∈M, b ∈ B,α = 1.

• If q/3 < t < 2q/3,

– If t (mod 2) = 0, then there exists an integer b (q/6 < b < q/3) such that
t = 2b, where 2 ∈M, b ∈ B,α = 0.

– If t (mod 2) = 1, recall that q is odd, there exists an integer b (q/6 < b < q/3)
such that q − t = 2b. It follows that

t = (−2) · b+ q, where − 2 ∈M, b ∈ B,α = 1.

Back to Property 5. Algorithm 8 can be used to convert a from its standard q-ary
expression defined in Equation (4.1) to the representation defined in Equation (4.2). The
correctness is ensured by the following fact,

i) a0 ∈ [0, q − 1],

ii) αj + aj+1 ∈ [0, q] for all 0 ≤ j ≤ h− 3,

iii) αh−2 + ah−1 ∈ [0, q/3].

For j = h − 1, we require that r ≤ q/3 · qh−1 when we select the radix q, which would
ensure that

ah−1 ≤
q

3
− 1.

This leads to ah−1 ≤ q/3 considering the possible carry bit αh−2. We thus have ah−1 = mb
for some b ∈ B and m ∈M .

63



Let us estimate the size of B. Define

B1 =
{
i
∣∣∣ 1 ≤ i ≤ q

6
s.t. ω2(i) ≡ 0 mod 2

}
,

and suppose m is the positive integer such that 2m ≤ q/6 < 2m+1, let us first estimate the
size of B1 by Lemma 1. We use the fact that for a real number α,

α− 1 < ⌊α⌋ ≤ α.

If m = 2k, we have

|B1| =
2k∑
i=0

(−1)i
⌊
q

6
· 1
2i

⌋

=
k∑

i=0

⌊
q

6
· 1

22i

⌋
−

k∑
i=1

⌊
q

6
· 1

22i−1

⌋

≤
k∑

i=0

q

6
· 1

22i
−

k∑
i=1

(
q

6
· 1

22i−1
− 1

)

=
q

6
·

2k∑
i=0

(−1)i 1
2i

+ k

=
q

6
· 2
3
+
q

6
· (−1)m 1

2m
+ k

<
q

9
+ 2 +

m

2
.

If m = 2k + 1, then

|B1| =
2k+1∑
i=0

(−1)i
⌊
q

6
· 1
2i

⌋

≤
2k∑
i=0

(−1)i
⌊
q

6
· 1
2i

⌋
<
q

9
+ 2 +

m

2
.
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The size of B is thus bounded by

|B| < 1 +
(q
9
+ 2 +

m

2

)
+
(q
3
− q

6
+ 1
)

=
5q

18
+
m

2
+ 4, where m =

⌊
log2

(q
6

)⌋
=

5q

18
+
⌊log2 q − log2 6⌋

2
+ 4

<
5q

18
+
c

2
+ 3.

(4.26)

The maximum difference between two neighboring elements in B is 2. This construction
of (M,B) can also yield two methods for computing Sn,r when combining with the proposed
frameworks. These methods are mainly of theoretical interest because the corresponding
radix conversions are time consuming.

4.4.2 Construction V

Let q be a prime such that 2 is a primitive element in the finite field Fq, and ℓ a small
positive integer, h a small integer such that 2ℓ < q and qh−1 < r ≤ 2ℓ−1qh−1. The multiplier
set is picked as

M = {−2i | 0 ≤ i ≤ ℓ− 1} ∪ {2i | 0 ≤ i ≤ ℓ− 1}, (4.27)

and the corresponding bucket set is constructed as

B =
{
i | 0 ≤ i ≤ 2ℓ

}
∪
{
2iℓ mod q

∣∣∣∣ 0 ≤ i ≤
⌊
q − 1

2ℓ

⌋}
. (4.28)

We first show that the following property holds for (M,B) defined above.

Property 6. An integer t (−2ℓ−1 ≤ t ≤ q + 2ℓ − 1) can be expressed (not necessarily
uniquely) as

t = mb+ αq, where m ∈M, b ∈ B,−2ℓ−1 + 1 ≤ α ≤ 2ℓ−1. (4.29)

Proof. The proof is divided into the following cases,

• If t ∈ [−2ℓ−1, 2ℓ], t = 1 · |t| or t = −1 · |t|. We have m = ±1 ∈M, b = |t| ∈ B,α = 0.
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• If t ∈ [2ℓ−1+1, q−1], notice that 2(q−1)/2 = −1 mod q because 2 is a primitive element
in the finite field Fq, then

{t | 1 ≤ t ≤ q − 1} = {2i mod q | 0 ≤ i ≤ q − 2}
=
{
2i mod q | 0 ≤ i ≤ (q − 1)/2

}
∪
{
−2i mod q | 1 ≤ i ≤ (q − 3)/2

}
.

– If t ∈ {2i mod q | 0 ≤ i ≤ (q − 1)/2}, then

t = 2iℓ+j mod q (0 ≤ i ≤ ⌊(q − 1)/(2ℓ)⌋ , 0 ≤ j ≤ ℓ− 1)

= 2j · (2iℓ mod q) mod q

= mb mod q

= mb+ αq,

where −2ℓ−1 + 1 ≤ α ≤ 0.

– If t ∈ {−2i mod q | 1 ≤ i ≤ (q − 3)/2}, then

q − t ∈ {2i mod q | 0 ≤ i ≤ (q − 1)/2}.

We have
q − t = mb+ αq, where − 2ℓ−1 + 1 ≤ α ≤ 0.

One can obtain that

t = q − (mb+ αq) = (−m)b+ (1− α)q = m′b+ α′q,

where m′ = −m ∈M, b ∈ B and α′ = 1− α ∈ [1, 2ℓ−1].

• If t ∈ [q, q + 2ℓ − 1], then t = mb+ αq, where m = 1, b = t− q ∈ B,α = 1.

Property 7. For the multiplier set M and the bucket set B defined in Equations (4.27)
(4.28), an arbitrary scalar a (0 ≤ a < r) can be expressed (not necessarily uniquely) as a
radix q representation defined in Equation (4.2).

Proof. One can convert scalar a from its standard q-ary representation defined in Equation
(4.1) to the radix q representation defined in Equation (4.2) by Algorithm 8. With Property
6, one can check that
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i) a0 ∈ [0, q − 1],

ii) αj + aj+1 ∈ [1− 2ℓ−1, q + 2ℓ−1 − 1] for all 0 ≤ j ≤ h− 3,

iii) αh−2 + ah−1 ∈ [1− 2ℓ−1, 2ℓ − 1].
These fact ensures the correctness of the scalar conversion.

Similar to the previous constructions, for every t ∈ [−2ℓ−1, q + 2ℓ − 1], a hash table H
can be precomputed to store its decomposition, i.e., H(t) = (m, b, α) such that

t = mb+ αq, m ∈M, b ∈ B, 1− 2ℓ−1 ≤ α ≤ 2ℓ−1.

For a small positive integer ℓ, the size of B is estimated by

|B| ≤ 2 + 2ℓ +

⌊
q − 1

2ℓ

⌋
≈ q

2ℓ
. (4.30)

Let us demonstrate that this bucket set construction is asymptotically smallest. For
the pair (M,B) to be considered valid, it is necessary for them to enable the conversion of
the following q scalars

{a | 0 ≤ a < q}
into the representations defined in Equation (4.2). Let us assume that

a =
h−1∑
j=0

mjbjq
j, mj ∈M, bj ∈ B, h = ⌈logq r⌉,

it follows that
a = m0b0 mod q.

This implies
{a | 0 ≤ a < q} ⊆ {mb mod q | m ∈M, b ∈ B},

which requires
|M | · |B| ≥ q.

Therefore, if |M | = 2ℓ, we must have

|B| ≥ q

2ℓ
.
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4.5 Comparison of different multiplier set and bucket

set constructions

Among the five proposed constructions, the first three constructions provide different trade-
offs between the precomputation size and the time complexity for computing Sn,r when
combining with Frameworks I and II in Chapter 3. The fourth and fifth constructions are
of theoretical significance.

The estimation for the bucket set size in Construction I holds true when q = 2c (10 ≤
c ≤ 31) and r/qh is small. The estimation for the bucket set size in Construction V holds
true when ℓ is small.

Table 4.1: Different constructions of multiplier set and bucket set for computing Sn,r

Construction Radix q Multiplier set M |B|
Pippenger and BGMW q = 2c {−1, 1} ≈ q/2

Construction I q = 2c {−3,−2,−1, 1, 2, 3} ≈ 0.21q

Construction II q = 2c {−2,−1, 1, 2} ≈ q/3

Construction III q = 2c {−3,−1, 1, 3} ≈ 5q/16

Construction IV q = 2c − 1 {−2,−1, 1, 2} ≈ 5q/18

Construction V
q is a prime s.t. 2 is

primitive in Fq

{−2i | 0 ≤ i ≤ ℓ− 1} ∪
{2i | 0 ≤ i ≤ ℓ− 1} ≈ q/(2ℓ)
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Chapter 5

Instantiation

In this chapter, we will focus on the instantiation of Construction I over BLS12-381 curve
[Bow17]. By combining Construction I with Frameworks I and II respectively, we can
derive two methods for computing Sn,r. We will present the theoretical analysis for these
two methods, and compare them against Pippenger’s bucket method and BGMW method.
We will also explain why we have chosen worst case time complexity as the representative
for comparison.

The detailed parameters of BLS12-381 curve are presented in Section 2.4. When ana-
lyzing the time complexity for computing Sn,r, the most important parameter is the 255-bit
group order r,

r = 0x73eda753299d7d483339d80809a1d80

553bda402fffe5bfeffffffff00000001.

5.1 Bucket sets over BLS12-381 curve

Table 5.1 lists the bucket sets obtained by instantiating Construction I in Section 4.1 over
BLS12-381 curve for radix q = 2c (10 ≤ c ≤ 31). Here h is the length of a scalar in its
standard q-ary expression, and rh−1 = ⌊r/qh−1⌋ is the leading term of r in its standard q-ary
expression. Additionally, d is the maximum difference between two neighboring elements
in B. From the table, we have d ≤ 6 and

|B| ≈
{
0.21q, q = 2c (10 ≤ c ≤ 31, c ̸= 15, 16, 17),

0.28q, q = 216.
(5.1)
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These radix values marked in gray are discarded. Radixes 215, 217 are abandoned be-
cause |B|/q is too large. For Framework I, the time complexity for computing Sn,r is
approximately nh + |B|, and for Framework II, the time complexity is approximately
h(n + |B|). When h is the same, a smaller |B| results in lower time complexity. Radix
221 is abandoned because while having the same h with radix 220, it has larger |B|. The
similar reason applies to radixes 2c for c ∈ {23, 25, 27, 28, 30, 31}.

Table 5.1: Bucket sets obtained by Construction I over BLS12-381 curve

Radix q h rh−1 |B| d |B|/q
210 26 28 218 6 0.213

211 24 3 427 6 0.208

212 22 7 857 6 0.209

213 20 231 1725 6 0.211

214 19 7 3417 6 0.209

215 17 29677 17312 4 0.528

216 16 29677 18343 6 0.280

217 15 118710 69249 4 0.528

218 15 7 54618 6 0.208

219 14 231 109244 6 0.208

220 13 29677 220931 6 0.211

221 13 7 436906 6 0.208

222 12 7419 874437 6 0.208

223 12 3 1747625 6 0.208

224 11 29677 3497731 6 0.208

225 11 28 6990507 6 0.208

226 10 1899369 14139299 6 0.211

227 10 3709 27962333 6 0.208

228 10 7 55924059 6 0.208

229 9 7597479 112481229 6 0.210

230 9 29677 223698691 6 0.208

231 9 115 447392434 6 0.208
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5.2 Method I

By combining Framework I in Section 3.2.1 with the first construction of multiplier set
and bucket set pair presented in Section 4.1, we can derive the first instantiated method,
which is summarized as the following Proposition 4.

Proposition 4. Given the number of points n and the group order r over BLS12-381
curve, and suppose q = 2c (10 ≤ c ≤ 31), h = ⌈logq r⌉, then the multiplier set and bucket
set defined in (4.3) (4.6) yield a method for computing Sn,r using at most approximately{

(nh+ 0.21q) additions, q = 2c (10 ≤ c ≤ 31, c ̸= 15, 16, 17),

(nh+ 0.28q) additions, q = 216,
(5.2)

with the help of the following 3nh precomputed points{
mqjPi | 1 ≤ i ≤ n, 0 ≤ j ≤ h− 1, m ∈ {1, 2, 3}

}
.

For a point P = (x, y) on the elliptic curve E with short Weierstrass form, its inverse
−P = (x,−y) can be obtained for almost no cost. Therefore, the points associated with
the negative elements inM are excluded from the precomputation table. Correspondingly,
in Step 3 of Algorithm 5, a length-nh boolean array is added to record the sign of these
multipliers. In Step 4, if a multiplier is negative, the negative of the corresponding point
should be added to the intermediate subsum.

5.2.1 Theoretical analysis

A radix q is considered optimal if it minimizes the number of additions required to compute
Sn,r in the worst case. The optimal q and its corresponding scalar length h for different
methods are summarized in Table 5.2. The precomputation size presented in this table is
in terms of the points in G1 with affine coordinates. The precomputation size in G2 would
double its counterpart in G1. Pippenger’s bucket method and BGMW method are these
two further optimized methods introduced in Section 2.2.3 and Section 2.2.4, respectively.
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Table 5.2: Radix q, length h and precomputation size for computing Sn,r

Pippenger BGMW Method I

n q h Precomput. q h Precomput. q h Precomput.

210 28 32 96.0 KB 212 22 2.06 MB 213 20 5.62 MB

211 210 26 192 KB 213 20 3.75 MB 214 19 10.6 MB

212 210 26 384 KB 213 20 7.50 MB 214 19 21.3 MB

213 211 24 768 KB 215 17 12.8 MB 216 16 36.0 MB

214 212 22 1.50 MB 215 17 25.5 MB 216 16 72.0 MB

215 213 20 3.00 MB 216 16 48.0 MB 216 16 144 MB

216 213 20 6.00 MB 217 15 90.0 MB 219 14 252 MB

217 216 16 12.0 MB 217 15 180 MB 220 13 468 MB

218 216 16 24.0 MB 219 14 336 MB 220 13 936 MB

219 216 16 48.0 MB 220 13 624 MB 220 13 1.83 GB

220 216 16 96.0 MB 220 13 1.22 GB 222 12 3.38 GB

221 219 14 192 MB 222 12 2.25 GB 222 12 6.75 GB

The number of additions taken to compute Sn,r in the worst case and their comparison
are summarized in Table 5.3, where

• Improv1 = (Pippenger - Method I)/Pippenger,

• Improv2 = (BGMW - Method I)/BGMW.

Table 5.3 shows that theoretically when computing Sn,r over BLS12-381 curve for n =
2e (10 ≤ e ≤ 21), Method I saves 21.05%–39.77% additions compared to Pippenger’s
bucket method, and it saves 2.08%–9.65% additions compared to BGMW method.

It should be noted that the proposed bucket sets listed in Section 5.1 are sufficient
for computing Sn,r over BLS12-381 for n = 2e (22 ≤ e ≤ 29). Method I still shows
2.76%–5.81% theoretical improvement against BGMW method in these cases. However, a
major drawback of Method I in these cases is that the precomputation size would become
too large.
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Table 5.3: Comparison of number of additions for computing Sn,r in the worst case

n Pippenger BGMW Method I Improv1 Improv2

210 3.69× 104 2.46× 104 2.22× 104 39.77% 9.65%

211 6.66× 104 4.51× 104 4.23× 104 36.40% 6.05%

212 1.20× 105 8.60× 104 8.12× 104 32.19% 5.55%

213 2.21× 105 1.56× 105 1.49× 105 32.45% 4.00%

214 4.06× 105 2.95× 105 2.80× 105 30.83% 4.89%

215 7.37× 105 5.57× 105 5.43× 105 26.40% 2.59%

216 1.39× 106 1.05× 106 1.03× 106 26.27% 2.08%

217 2.62× 106 2.03× 106 1.92× 106 26.57% 5.25%

218 4.72× 106 3.93× 106 3.63× 106 23.10% 7.71%

219 8.91× 106 7.34× 106 7.04× 106 21.05% 4.13%

220 1.73× 107 1.42× 107 1.35× 107 22.22% 4.93%

221 3.30× 107 2.73× 107 2.60× 107 21.16% 4.48%

5.3 Method II

By combining Framework II in Section 3.2.2 with the first construction of multiplier set
and bucket set pair in Section 4.1, we can obtain the second instantiated method, which
is summarized as the following Proposition 5.

Proposition 5. Given the number of points n and the group order r over BLS12-381
curve, and suppose q = 2c (10 ≤ c ≤ 31), h = ⌈logq r⌉, then the multiplier set and bucket
set defined in (4.3) (4.6) yield a method for computing Sn,r using at most approximately{

h(n+ 0.21q) additions, q = 2c (10 ≤ c ≤ 31, c ̸= 15, 16, 17),

h(n+ 0.28q) additions, q = 216,
(5.3)

with the help of the following 3n precomputed points

{mPi | 1 ≤ i ≤ n, m ∈ {1, 2, 3}} .

These points associated with the negative elements in M are excluded from the pre-
computation table, because they can be computed on the fly when needed.
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5.3.1 Theoretical analysis

Method II utilizes less precomputation compared to BGMW method and Method I. As a
result, it is expected to be slower than these two methods.

Table 5.4 summarizes the optimal q, the scalar length h, the precomputation size and
the number of additions required for computing Sn,r by Pippenger’s bucket method and
Method II, respectively. The precomputation size presented in this table is in terms of
points in G1 with affine coordinates. The precomputation size in G2 would be twice that
of G1. Pippenger’s bucket method refers to the further optimized method introduced in
Section 2.2.3.

Figure 5.1 illustrates the comparison of the number of additions used to compute Sn,r

by Pippenger’s bucket method, BGMW method, Method I and Method II.

Table 5.4: Radix q, length h, precomputation and number of additions for computing Sn,r

Pippenger Method II
Improv.

n q h Precomput. Additions q h Precomput. Additions

210 28 32 96.0 KB 3.69× 104 210 26 288 KB 3.23× 104 12.26%

211 210 26 192 KB 6.66× 104 210 26 576 KB 5.90× 104 11.41%

212 210 26 384 KB 1.20× 105 211 24 1.13 MB 1.09× 105 9.35%

213 211 24 768 KB 2.21× 105 213 20 2.25 MB 1.98× 105 10.31%

214 212 22 1.50 MB 4.06× 105 213 20 4.50 MB 3.62× 105 10.67%

215 213 20 3.00 MB 7.37× 105 214 19 9.00 MB 6.88× 105 6.74%

216 213 20 6.00 MB 1.39× 106 214 19 18.0 MB 1.31× 106 5.92%

217 216 16 12.0 MB 2.62× 106 216 16 36.0 MB 2.39× 106 8.80%

218 216 16 24.0 MB 4.72× 106 216 16 72.0 MB 4.49× 106 4.89%

219 216 16 48.0 MB 8.91× 106 216 16 144 MB 8.68× 106 2.59%

220 216 16 96.0 MB 1.73× 107 219 14 288 MB 1.62× 107 6.31%

221 219 14 192 MB 3.30× 107 220 13 576 MB 3.01× 107 8.76%
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Figure 5.1: Theoretical comparison of the number of additions for computing Sn,r

5.4 Time complexity: worst case versus average case

In this section, we are going to demonstrate that the difference between the worst case time
complexity and the average case time complexity is tiny. Therefore, the worst case time
complexity is used in this thesis as the representative. The result relies on the parameter
r and the pair of multiplier set and bucket set (M,B), that is why we do the analysis after
the instantiation.

Let us start by analyzing the average case time complexity for the proposed Method I.
This analysis involves estimating the expected number of zero elements, denoted as f , in
the length-nh array scalars of Algorithm 5, as shown in Equation (3.11).

Let us denote integer r in its standard q-ary form as

r = rh−1||rh−2|| · · · ||r0 =
h−1∑
j=0

rjq
j, 0 ≤ rj < q,

where || represents digit concatenation. Remember that r is fixed, so each rj (0 ≤ j ≤ h−1)
is also a constant integer and rh−1 ̸= 0. When uniformly and randomly picking a scalar
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a (0 ≤ a < r) and then converting it to the standard q-ary form

a =
h−1∑
j=0

ajq
j, 0 ≤ aj < q,

the probabilities Pr[aj = 0] and Pr[aj = (q − 1)] are estimated by Lemma 2.

Lemma 2. For a moderate large q, we have the following approximations,

Pr[aj = 0] ≈ 1

q
, Pr[aj = (q − 1)] ≈ 1

q
, 0 ≤ j ≤ h− 2,

and

Pr[ah−1 = 0] ≈ 1

rh−1 + 1
.

Proof. For 0 ≤ j ≤ h− 2,

• If rj ̸= 0, then

Pr[aj = 0] = Pr[aj = 0 and 0 ≤ a < r]

= Pr[aj = 0 and 0 ≤ ah−1||ah−2|| · · · ||aj+1 ≤ rh−1||rh−2|| · · · ||rj+1

and arbitrarily pick 0 ≤ ak ≤ q − 1 for 0 ≤ k ≤ j − 1]

=
((rh−1||rh−2|| · · · ||rj+1) + 1) · qj

r

=
((rh−1||rh−2|| · · · ||rj+1) + 1) · qj

(rh−1||rh−2|| · · · ||rj+1) · qj+1 + (rj||rj−1|| · · · ||r0)

=
1 + 1/(rh−1||rh−2|| · · · ||rj+1)

q + (rj||rj−1|| · · · ||r0)/ (qj · (rh−1||rh−2|| · · · ||rj+1))
.

If rj = 0, then

Pr[aj = 0] = Pr[aj = 0 and a < r]

= Pr[aj = 0 and 0 ≤ ah−1||ah−2|| · · · ||aj+1 < rh−1||rh−2|| · · · ||rj+1

and arbitrarily pick 0 ≤ ak ≤ q − 1 for 0 ≤ k ≤ j − 1]+

Pr[aj = 0 and ah−1||ah−2|| · · · ||aj+1 = rh−1||rh−2|| · · · ||rj+1

and 0 ≤ aj−1||aj−2|| · · · ||a0 < rj−1||rj−2|| · · · ||r0]

=
(rh−1||rh−2|| · · · ||rj+1) · qj + (rj−1||rj−2|| · · · ||r0)

r

=
(rh−1||rh−2|| · · · ||rj+1) · qj + (rj−1||rj−2|| · · · ||r0)
(rh−1||rh−2|| · · · ||rj+1) · qj+1 + (rj||rj−1|| · · · ||r0)

.
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• If rj ̸= q − 1, then

Pr[aj = (q − 1)] = Pr[aj = (q − 1) and 0 ≤ a < r]

= Pr[aj = (q − 1) and 0 ≤ ah−1||ah−2|| · · · ||aj+1 < rh−1||rh−2|| · · · ||rj+1

and arbitrarily pick 0 ≤ ak ≤ q − 1 for 0 ≤ k ≤ j − 1]

=
(rh−1||rh−2|| · · · ||rj+1) · qj

r

=
(rh−1||rh−2|| · · · ||rj+1) · qj

(rh−1||rh−2|| · · · ||rj+1) · qj+1 + (rj||rj−1|| · · · ||r0)
=

1

q + (rj||rj−1|| · · · ||r0)/(qj · (rh−1||rh−2|| · · · ||rj+1))
.

If rj = q − 1, then

Pr[aj = (q − 1)] = Pr[aj = (q − 1) and 0 ≤ a < r]

= Pr[aj = (q − 1) and 0 ≤ ah−1||ah−2|| · · · ||aj+1 < rh−1||rh−2|| · · · ||rj+1

and arbitrarily pick 0 ≤ ak ≤ q − 1 for 0 ≤ k ≤ j − 1]+

Pr[ah−1||ah−2|| · · · ||aj = rh−1||rh−2|| · · · ||rj
and 0 ≤ aj−1||aj−2|| · · · ||a0 < rj−1||rj−2|| · · · ||r0]

=
(rh−1||rh−2|| · · · ||rj+1) · qj + (rj−1||rj−2|| · · · ||r0)

r

=
(rh−1||rh−2|| · · · ||rj+1) · qj + (rj−1||rj−2|| · · · ||r0)
(rh−1||rh−2|| · · · ||rj+1) · qj+1 + (rj||rj−1|| · · · ||r0)

.

Lastly,

Pr[ah−1 = 0] =
qh−1

r
=

qh−1∑h−1
j=0 rjq

j
≈ 1

rh−1 + 1
.

According to those formulas, the result in the lemma follows immediately.

Example. Let us assume r = 4909, q = 10. When uniformly and randomly picking a scalar
a (0 ≤ a < r) and then converting it into a = a3||a2||a1||a0 = a3 ·1000+a2 ·100+a1 ·10+a0,
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we have

Pr[a2 = 0] =
5 · 100
4909

=
500

4909
,

Pr[a1 = 0] =
49 · 10 + 9

4909
=

499

4909
,

Pr[a1 = 9] =
49 · 10
4909

=
490

4909
,

Pr[a2 = 9] =
4 · 100 + 9

4909
=

409

4909

Pr[a3 = 0] =
1000

4909
.

When converting the scalar a by Algorithm 8 from its standard q-ary form to the radix
q representation

a =
h−1∑
j=0

mjbjq
j, mj ∈M, bj ∈ B, (5.4)

we observe that bj = 0 (1 ≤ j ≤ h− 2) if and only if

(1) aj = 0 and the carry bit from the previous digit αj−1 = 0, or

(2) aj = q − 1 and the carry bit αj−1 = 1.

Let us assume the probability of carry bit being 0 is λ, which is equal to the probability
of α = 0 in the array decomposition decided by Algorithm 9. Consequently,

Pr[b0 = 0] =
1

q
,

Pr[bj = 0] = λ
1

q
+ (1− λ)1

q
=

1

q
, for 1 ≤ j ≤ h− 2,

Pr[bh−1 = 0] = λ · 1

rh−1 + 1
.

(5.5)

By Equation (5.5), if a random scalar is converted to the representation in Equation (5.4),
the expected number of j’s such that bj = 0 is

h− 1

q
+

λ

rh−1 + 1
.

Therefore, the expected number of zeros in the array scalars of Algorithm 5 is given by

f =
n(h− 1)

q
+

λ · n
rh−1 + 1

. (5.6)

78



Let us define

I =
worst case time complexity− average case time complexity

worst case time complexity

to measure the difference between the worst case time complexity and the average case
time complexity. Since Method I utilizes q comparable to n (see Table 5.2), the first term
n(h− 1)/q in f is a small number that can be ignored. It follows that

I =
f

nh+ |B|+ 2
≈ λ · n/(rh−1 + 1)

nh+ |B|+ 2
<
λ · n/(rh−1 + 1)

nh
=

λ

(rh−1 + 1)h
. (5.7)

For q = 2c (10 ≤ c ≤ 22, c ̸= 15, 17) used in Table 5.2, the triad (q, h, rh−1) can be found
in Table 5.1, and it is checked that λ < 0.7 for these radix values. It follows that

I < 1%,

indicating a small difference.

Similar analysis also applies to the proposed Method II, Pippenger’s bucket method
and BGMW method, where the result in Equation (5.7) still holds. Pippenger’s bucket
method and BGMW method have λ ≈ 0.5. For q = 2c (8 ≤ c ≤ 22), their I values are
even smaller compared to Methods I and II.
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Chapter 6

Software Implementation

This chapter presents the software implementation, which mainly includes an overview of
the fundamental arithmetic algorithms, the implementation and analysis for Method I, and
the implementation and analysis for Method II. The implementation is done over BLS12-
381 curve and is based on blst library, which is a BLS12-381 signature library written in
C and assembly [bls].

6.1 Fundamental arithmetic in implementation

As introduced in Section 2.4, the finite field characteristic of BLS12-381 curve is a 381-bit
prime p, and the group order is a 255-bit prime r.

The necessary ingredients for implementing multi-scalar multiplications include the field
Fp and the field Fp2 over which the related elliptic curve groups are defined, the finite field
Fr from which the scalars are randomly selected, and the addition arithmetic in elliptic
curve groups.

6.1.1 Base field Fp

The arithmetic operations in Fp, including addition, subtraction, multiplication, and inver-
sion, can be implemented using various ways such as the schoolbook method, Karatsuba
method [Sco15], Montgomery reduction [Mon85] or Barrett reduction [Bar86]. Another
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roadmap to implement Fp involves the residue number system [Duq11] and lazy reduc-
tion [Sco07,CDF+11]. In this thesis, Montgomery reduction is utilized to implement the
field Fp.

For our implementation, we choose the radix R = 2384, which is larger than p and
coprime to it. The mod R operation can be efficiently done by bit shifting operation.
Algorithm 10 presents the Montgomery reduction algorithm, denoted as REDC(a), which
efficiently computes aR−1 mod p for 0 ≤ a < Rp.

Algorithm 10 REDC(a)

Input: R, p and a (0 ≤ a < Rp).
Output: aR−1 mod p.

1: Precompute R−1, p′ (0 < R−1 < p, 0 < p′ < R), such that RR−1 − pp′ = 1
2: m = (a mod R)p′ mod R, so 0 ≤ m < R
3: t = (a+mp)/R
4: if t ≥ p then
5: return t− p
6: else
7: return t

The correctness of Algorithm 10 comes from the following fact.

(1) The variable t is an integer, because

a+mp ≡ a+ ap′p

≡ a+ a(RR−1 − 1)

≡ 0 (mod R).

(2) t ≡ aR−1 mod p, because

tR = a+mp ≡ a (mod p).

(3) 0 ≤ t < 2p, because

0 ≤ tR = a+mp < Rp+Rp = 2Rp.

For a ∈ Fp, its Montgomery representation is denoted as ã = aR mod p. Given two

elements a and b in their Montgomery representations, ã and b̃, the Montgomery represen-
tation of their product is ãb = abR mod p, which can be computed by REDC(ã · b̃) without
the mod p operation.
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By representing all elements in Fp as their Montgomery representations and utilizing
the REDC algorithm, we can build an arithmetic system for Fp that avoids the mod p
operation. Explicitly,

• Converting an element a to its Montgomery representation ã is done by REDC(a ·
(R2 mod p)), where R2 mod p is precomputed.

• Addition and subtraction in Montgomery representations stay unchanged. Multipli-
cation in Montgomery representations is performed by REDC(ã · b̃).

• The Montgomery representation of the inverse of a is given by a−1R mod p, which is
computed by REDC((ã)−1 · (R3 mod p)), where (ã)−1 is computed by the extended
Euclidean algorithm and R3 mod p is precomputed.

Today’s processors typically use 32-bit or 64-bit words. However, a single word is not
sufficient for implementing the field Fp, where p is a 381-bit integer. Therefore, multi-
precision arithmetic is needed. For multi-precision arithmetic, please refer to [MVOV18,
Chapter14].

6.1.2 Extension field Fp2

For BLS12-381 curve, the following field extension is used,

Fp2 = Fp[µ]/(µ
2 − (−1)),

where p is defined in Equation (2.50). Addition and subtraction in Fp2 are straightforward,
while multiplication, squaring and inversion are worth noting.

Let a = a0 + a1µ, b = b0 + b1µ ∈ Fp2 , where ai, bi (i = 0, 1) ∈ Fp. The multiplication
formula using the schoolbook method is

ab = (a0 + a1µ)(b0 + b1µ)

= (a0b0 − a1b1) + (a0b1 + a1b0)µ,

which requires 4 multiplications and 2 additions in Fp. Karatsuba method can be utilized
to save one multiplication by computing

a0b1 + a1b0 = (a0 + a1)(b0 + b1)− a0b0 − a1b1.
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Using this method it costs 3 multiplications and 5 additions in Fp. The choice between
the two methods depends on the cost of multiplication and addition in Fp. If the cost
of one multiplication is higher than that of 3 additions in Fp, then Karatsuba method is
preferable.

Because µ2 = −1 ∈ Fp, the squaring is

a2 = (a0 + a1µ)
2

= (a0 + a1)(a0 − a1) + 2a0a1µ.

The inversion is

a−1 =
1

a0 + a1µ

=
a0 − a1µ

(a0 + a1µ)(a0 − a1µ)
=
a0 − a1µ
a20 + a21

=
a0

a20 + a21
+

(
− a1
a20 + a21

)
µ.

6.1.3 Addition formulas in elliptic curve groups

When computing multi-scalar multiplication Sn,r, all the precomputed points are stored in
affine coordinates in order to save memory. Addition in affine coordinates requires a field
inversion operation, which is significantly more costly than a field multiplication. To avoid
this inversion, popular coordinate systems such as projective coordinates and Jacobian
coordinates can be used. In our implementation, Jacobian coordinates are utilized.

The elliptic curve group in Jacobian coordinates can be represented as

E(F) = {(X, Y, Z) ∈ F3 | Y 2 = X3 + AXZ4 +BZ6}, (6.1)

where A,B ∈ F are constant. The point at infinity is ∞ = (1, 1, 0). The inverse of a point
P = (X1, Y1, Z1) is given by −P = (X1,−Y1, Z1). For the point P = (X1, Y1, Z1) in Jaco-
bian coordinates, it remains the same point after being transformed to (λ2X1, λ

3Y1, λZ1)
for λ ̸= 0. If Z1 ̸= 0, the point P in its Jacobian coordinates can be represented in affine
coordinates as (X1/Z

2
1 , Y1/Z

3
1).

Frameworks I and II presented in Section 3.2 can be roughly divided into two phases.
Phase one is sorting all points into subsums with respect to their scalars, and phase two
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involves accumulating the subsums together to obtain the final result. In phase one, ad-
dition is computed between a point in affine coordinates and another point in Jacobian
coordinates, which is known as mixed addition. In phase two, addition is evaluated between
two points in Jacobian coordinates.

Addition in Jacobian coordinates

Let P = (X1, Y1, Z1), Q = (X2, Y2, Z2) be two points given in Jacobian coordinates, and
R = P +Q. The Jacobian coordinates of R = (X3, Y3, Z3) are computed by

C1 = X1Z
2
2 ,

C2 = X2Z
2
1 ,

D1 = Y1Z
3
2 ,

D2 = Y2Z
3
1 ,

E = C2 − C1,

F = D2 −D1,

(6.2)

and 
X3 = −E3 − 2C1E

2 + F 2

Y3 = −D1E
3 + F (C1E

2 −X3)

Z3 = EZ1Z2,

(6.3)

which cost 12 multiplications and 4 squares (i.e., Z2
1 , Z

2
2 , E

2, F 2) in F.

Let P = (X1, Y1, Z1) be a point given in Jacobian coordinates, and R = P + P . The
Jacobian coordinates of R = (X3, Y3, Z3) are given by

C = 4X1Y
2
1 ,

D = 3X2
1 + AZ4

1 ,
(6.4)

and 
X3 = −2C +D2

Y3 = −8Y 4
1 +D(C −X3)

Z3 = 2Y1Z1,

(6.5)

which cost 4 multiplications and 6 squares (i.e., Y 2
1 , (Y

2
1 )

2, X2
1 , Z

2
1 , (Z

2
1)

2, D2) in F.

84



Mixed addition

Let P = (X1, Y1, Z1) be a point given in Jacobian coordinates, Q = (x2, y2) be a point given
in affine coordinates, and R = P + Q, then the Jacobian coordinates of R = (X3, Y3, Z3)
are given by

C = x2Z
2
1 ,

D = y2Z
3
1 ,

E = C −X1,

F = D − Y1,

(6.6)

and 
X3 = −E3 − 2X1E

2 + F 2

Y3 = −Y1E3 + F (X1E
2 −X3)

Z3 = EZ1,

(6.7)

which require 8 multiplications and 3 squares in F.

Let P = (X1, Y1, Z1) be a point of the curve given in Jacobian coordinates, and R =
P + P , then the Jacobian coordinates of R = (X3, Y3, Z3) are given by

C = 4X1Y
2
1 ,

D = 3X2
1 + A,

(6.8)

and 
X3 = −2C +D2

Y3 = −8Y 4
1 +D(C −X3)

Z3 = 2Y1,

(6.9)

which cost 3 multiplications and 4 squares (i.e., Y 2
1 , (Y

2
1 )

2, X2
1 , D

2) in F. For BLS12-381
curve, the constant A = 0, so it only requires 4 multiplications and 4 squares in F.

Utilize intermediate result

Further savings can be achieved by storing the coordinates of a point as (X, Y, Z2, Z3),
which corresponds to Jacobian coordinates (X, Y, Z). For example, this technique saves 2
squares in F when doing addition by Equations (6.2)(6.3). Let P = (X1, Y1, Z

2
1 , Z

3
1), Q =

(X2, Y2, Z
2
2 , Z

3
2) and R = (X3, Y3, Z

2
3 , Z

3
3). The modified formulas compute Z2

3 = E2Z2
1Z

2
2

and Z3
3 = E3Z3

1Z
3
2 instead of computing Z3 = EZ1Z2 in the last step. In this case, the

addition takes 12 multiplications and 2 squares (i.e., E2, F 2) in F.
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This technique also saves the cost for determining whether the operation is an addition
or doubling by checking if P = Q. We have that P = Q if and only if E and F in Equation
(6.2) are 0.

6.1.4 Scalar field Fr

In multi-scalar multiplication Sn,r, the field from which the scalars are randomly picked is
referred to as the scalar field Fr. The field Fr is the arena in which the scalar decomposition
is done. In our implementation, the scalar decomposition does not involve the mod r
operation and field inversion. The field Fr behaves more like the integer ring. Therefore,
the implementation of Fr adopts the schoolbook multi-precision arithmetic, in contrast to
the implementation of Fp which adopts Montgomery representation.

The scalars in Sn,r are expected to be uniformly and randomly chosen from Fr when
performing tests for computing Sn,r. However, there is a small obstacle. A cryptograph-
ically secure pseudorandom bit generator (PRBG) usually generates an ℓ-bit sequence,
which is equivalent to uniformly and randomly pick an integer from [0, 2ℓ − 1]. This ob-
stacle is overcome by the trick shown in Algorithm 11. SHA256 is used as the PRBG in
our implementation.

Algorithm 11 Uniformly and randomly choose an element from Fr

Input: Integer r, a pseudorandom bit generator PRBG.
Output: An element in Fr.

1: Compute ℓ = ⌈log2 r⌉ and initiate t = r
2: while t ≥ r do
3: Utilize the PRBG to generate an ℓ-bit integer t

4: return t

6.2 Test for Method I

The performance concern about Method I is mainly focused on two aspects. Firstly, it
involves converting all scalars in Sn,r to the radix q representation where every digit is the
product of an element from the multiplier set and another element from the bucket set.
Secondly, it requires retrieving data from the large precomputation tables. In order to
assess the cost of scalar conversions and the impact of memory locality issue caused by the
large precomputation size, we conducted the experiments. Our implementation is based
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on blst, a BLS12-381 signature library written in C and assembly [bls]. The blst library
includes the point addition/doubling arithmetic and the implementation of Pippenger’s
bucket method in G1 and G2 over BLS12-381. We implemented BGMW method and
Method I following Algorithm 5, we invoked the Pippenger’s bucket method built in the
blst library.

6.2.1 Implementation analysis

Regarding scalar conversion, which corresponds to Step 2 of Algorithm 5, a scalar in Fr is
given as a length-4 uint64 t array. Both Pippenger’s bucket method and BGMW method
need to first convert the scalar to its standard q-ary form, then convert to the expression
where the absolute value of every digit is no more than q/2 using Algorithm 2. Method I
first converts the scalar to its standard q-ary form, then converts to the expression where
every digit is the product of an element from the multiplier set and an element from the
bucket set using Algorithm 8 with the help of the decomposition hash table. This hash
table is realized as a length-(q + 1) array decomposition. Therefore, the performance
concern for scalar conversion boils down to retrieving data from the array decomposition.

Regarding Step 4 in Algorithm 5, where all points are sorted into different buckets,
the addition is performed between a point fetched from the array precomputation and
another point fetched from the array buckets. We treat the n fixed points in Sn,r as the
length-n precomputation array for Pippenger’s bucket method. We have the following
observations.

• Pippenger’s bucket method performs the computation in Equation (2.18) h times,
so in total it fetches data nh times from its length-n precomputation array, and it
fetches data nh times from its length-(0.5q + 1) buckets array.

• BGMW method fetches data nh times from its length-nh precomputation array,
and it fetches data nh times from its length-(0.5q + 1) buckets array.

• Method I fetches data nh times from its length-3nh precomputation array, and it
fetches data nh times from its buckets array, whose length is approximately 0.21q
(when q ̸= 2c, c ∈ {15, 16, 17}).

BGMW method and Method I show some advantages here regarding the number of fetch
operations, since their h values are usually smaller than that of Pippenger’s bucket method.
Their disadvantages originate from the fact that their fetch operations are executed in larger
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precomputation and buckets arrays. Step 4 of Algorithm 5 is a simple loop, so we utilize
prefetching to mitigate the latency of memory access to these large arrays.

It should be noted that in terms of fetching data from the buckets array, Method I has
an advantage against BGMW method when the same radix q is used, as Method I uses a
smaller buckets array in this case. Even if its radix q (q ̸= 216) is twice as big, Method I
still maintains such advantage.

6.2.2 Experimental result

The experiment was conducted on an Apple 14-inch MacBook Pro equipped with a 3.2
GHz M1 Pro chip and 16 GB of memory, running as a single thread. The M1 Pro chip
offers advantages such as large cache size and high memory bandwidth. Most importantly,
its cache line is 128 bytes, which is sufficient to accommodate a BLS12-381 G1 point with
a size of 96 bytes. These characteristics are expected to provide us some benefit when
fetching data from large arrays.

The experimental results are presented in Tables 6.1, 6.2 and 6.3. Both BGMWmethod
and Method I use the optimal radixes presented in Table 5.2, while the Pippenger’s bucket
method built in blst utilizes radixes slightly different from the radixes suggested in Table
5.2, explicitly,

q =

{
2e−2 for n = 2e (10 ≤ e ≤ 12),

2e−3 for n = 2e (13 ≤ e ≤ 21).

We keep blst’s implementation intact, because on one hand our focus is on the comparison
between BGMWmethod and Method I, on the other hand blst’s implementation can serve
as a performance benchmark.
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Table 6.1: Time for computing Sn,r by different methods1

G1 G2

n Pipp. BGMW Method I Pipp. BGMW Method I

210 15.1 ms 9.89 ms 8.96 ms 37.2 ms 24.5 ms 22.0 ms

211 27.2 ms 18.3 ms 17.1 ms 66.6 ms 45.1 ms 42.0 ms

212 48.7 ms 34.2 ms 32.3 ms 120 ms 83.2 ms 78.9 ms

213 89.7 ms 64.1 ms 62.0 ms 218 ms 157 ms 154 ms

214 165 ms 118 ms 114 ms 401 ms 289 ms 278 ms

215 302 ms 223 ms 216 ms 737 ms 546 ms 524 ms

216 551 ms 425 ms 431 ms 1.35 s 1.04 s 1.05 s

∗216 551 ms 426 ms 417 ms 1.34 s 1.04 s 1.01 s

217 1.04 s 814 ms 822 ms 2.55 s 1.98 s 1.99 s

∗217 1.04 s 816 ms 801 ms 2.55 s 1.96 s 1.92 s

218 1.93 s 1.62 s 1.50 s 4.72 s 3.92 s 3.64 s

219 3.56 s 3.05 s 2.84 s 8.69 s 7.35 s 6.91 s

220 6.89 s 5.75 s 5.71 s 16.8 s 13.8 s 13.6 s

∗220 6.90 s 5.73 s 5.57 s 16.8 s 13.9 s 13.4 s

221 13.4 s 11.5 s 10.8 s − − −

1We did not do test in G2 for n = 221 due to the memory size restriction of the test device.
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Table 6.2: Method I versus Pippenger’s bucket method and BGMW method

G1 G2

n Improv1 Improv2 Improv1 Improv2

210 40.48% 9.32% 40.89% 10.21%

211 37.11% 6.45% 36.95% 6.93%

212 33.67% 5.57% 34.02% 5.21%

213 30.86% 3.24% 29.58% 2.39%

214 30.97% 3.91% 30.81% 3.93%

215 28.44% 3.21% 28.92% 3.96%

216 21.83% -1.29% 21.79% -1.37%

∗216 24.29% 2.10% 24.63% 2.26%

217 21.19% -0.98% 21.93% -0.75%

∗217 23.10% 1.89% 24.74% 2.43%

218 22.49% 7.66% 22.88% 7.14%

219 20.34% 7.06% 20.49% 5.98%

220 17.20% 0.73% 19.22% 1.69%

∗220 19.31% 2.81% 20.46% 3.32%

221 19.10% 5.93% − −

In Table 6.2, Improv1 refers to the comparison between Pippenger’s bucket method
and Method I, while Improv2 is the comparison between BGMW method and Method I.
The results in Table 6.2, combined with the theoretical improvement shown in Table 5.3,
are visualized in Figure 6.1.
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Figure 6.1: Improvement against Pippenger’s bucket method and BGMW method

Table 6.3 shows the percentages of time spent by BGMW method and Method I to
conduct the scalar conversions in Step 2 of Algorithm 5 for all n scalars in Sn,r. They are
the percentages of time taken by the scalar conversions out of the entire Sn,r computation.

Both BGMW method and Method I show significant improvements compared to Pip-
penger’s bucket method, which demonstrates the feasibility of speeding up the computation
of Sn,r using large precomputation tables.

If we focus on the comparison between BGMW method and Method I, we have the
following observations when computing Sn,r in G1 for n = 2e (10 ≤ e ≤ 21), and in G2 for
n = 2e (10 ≤ e ≤ 20),

• In terms of the scalar conversion time, in G1, BGMW method takes 1.00%–1.35%
out of its entire Sn,r computation time, while Method I takes 1.08%–2.20%. Because
in G2 the point addition arithmetic takes relatively more time compared to that in
G1, the percentages are smaller. In G2, BGMW method takes 0.41%–0.56% out of
its whole Sn,r computation time, while Method I takes 0.45%–0.88%.

• Compared to the theoretical analysis, Method I does not perform well experimentally
for n = 216, 217, 220. For n = 216, the optimal radix of Method I is q = 219, which is 4
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Table 6.3: Comparison of scalar conversion time by BGMW method and Method I

G1 G2

n BGMW Method I BGMW Method I

210 1.00% 1.16% 0.41% 0.49%

211 1.05% 1.30% 0.42% 0.53%

212 1.16% 1.43% 0.48% 0.58%

213 1.06% 1.08% 0.43% 0.45%

214 1.15% 1.16% 0.47% 0.48%

215 1.14% 1.22% 0.47% 0.50%

216 1.13% 1.23% 0.46% 0.50%

∗216 1.19% 1.54% 0.46% 0.62%

217 1.18% 1.55% 0.49% 0.64%

∗217 1.18% 1.36% 0.49% 0.64%

218 1.31% 1.63% 0.54% 0.67%

219 1.26% 1.65% 0.53% 0.70%

220 1.34% 2.11% 0.56% 0.88%

∗220 1.35% 1.74% 0.56% 0.71%

221 1.22% 2.20% − −

times larger than that of BGMW method. For n = 217, the optimal radix of Method
I is q = 220, which is 8 times larger than that of BGMW method. For n = 220, the
optimal radix of Method I is q = 222, which is 4 times larger than that of BGMW
method. Since the radix values are even larger than n and the temp variables take
way more space than the cache size, it has a negative impact on fetching data from
the buckets array, as the analysis in Section 6.2.1 indicates. When we try smaller
radix values for Method I, specifically q = 218 for n = 216, q = 219 for n = 217, and
q = 220 for n = 220, Method I performs better, as shown by the results marked with
asterisks, although these radixes are not theoretically optimal.

• Method I outperforms BGMW method for n = 2e (10 ≤ e ≤ 21, e ̸= 16, 17). In these
cases, Method I demonstrates 0.73%–10.21% improvement against BGMW method,
as shown in Table 6.2.
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6.3 Test for Method II

Compared to Pippenger’s bucket method, the overhead in Method II mainly arises from
scalar conversions and the memory access latency caused by fetching data from the large
precomputation tables. This is similar to Method I, thus a detailed analysis for Method II
is omitted.

The experiment was conducted on an Apple 14-inch MacBook Pro equipped with a 3.2
GHz M1 Pro chip and 16 GB of memory, running as a single thread. The experimental
results are presented in Table 6.4. The improvement column in the table refers to the com-
parison between Pippenger’s bucket method and Method II. The comparison is visualized
in Figure 6.2.

Table 6.4: Time for computing Sn,r by Pippenger’s bucket method and Method II

G1 G2

n Pippenger Method II Improvement Pippenger Method II Improvement

210 15.1 ms 13.8 ms 8.45% 37.2 ms 34.0 ms 8.47%

211 27.1 ms 24.2 ms 10.61% 66.6 ms 59.1 ms 11.27%

212 48.7 ms 44.3 ms 9.03% 119 ms 108 ms 9.54%

213 89.2 ms 83.9 ms 5.95% 219 ms 208 ms 5.17%

214 164 ms 149 ms 9.24% 402 ms 363 ms 9.59%

215 301 ms 281 ms 6.85% 740 ms 685 ms 7.42%

216 551 ms 524 ms 4.87% 1.34 s 1.28 s 5.07%

217 1.04 s 998 ms 4.14% 2.55 s 2.46 s 3.54%

218 1.93 s 1.83 s 5.29% 4.73 s 4.45 s 5.94%

219 3.57 s 3.48 s 2.48% 8.67 s 8.42 s 2.83%

220 6.90 s 6.71 s 2.73% 16.8 s 16.3 s 2.92%

221 13.3 s 12.5 s 5.76% 32.4 s 30.6 s 5.64%
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Figure 6.2: Pippenger’s bucket method versus Method II
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

This thesis mainly covers the following contents.

• In Chapters 1 and 2, the motivation and background knowledge are introduced. The
classical multi-scalar multiplication algorithms including the trivial method, win-
dow method, Pippenger’s bucket method, BGMW method and comb method are
reviewed. Two influential pairing-based trusted setup schemes, KZG commitment
and Groth16 zkSNARK scheme, are introduced.

• In Chapters 3 and 4, theoretical techniques for computing the multi-scalar multi-
plication over fixed points Sn,r are presented. Two frameworks for computing Sn,r

and an accumulation algorithm associated with these frameworks are proposed. The
potential benefits of utilizing GLV endomorphism and affine coordinates are briefly
discussed. Five pairs of bucket set and multiplier set constructions that can be used
with the proposed frameworks are proposed.

• In Chapters 5 and 6, instantiation and experiments are conducted. Two concrete
methods for computing Sn,r in the BLS12-381 groups are proposed and analyzed.
The effectiveness of these two methods are demonstrated by experiments.

The objective of these contents is to establish efficient methods for computing multi-
scalar multiplication over fixed points, which is an essential and time-consuming operation
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in pairing-based trusted setup zkSNARK schemes. For instance, the proof of Groth16 pre-
sented in Section 2.3.2 is generated by 3 multi-scalar multiplications. Therefore, any speed
improvement achieved in the computation of multi-scalar multiplication would directly
translate to the improvement of Groth16’s proof generation.

The contributions can be structured to the following three aspects, which better align
with the actual research process.

• If the devices have sufficient large memory, they can adopt the methods that are
yielded by combining the proposed Framework I in Section 3.2.1 and Constructions
I, II, III in Sections 4.1, 4.2, 4.3, respectively. These methods utilize large pre-
computation tables to achieve better time efficiency. Specifically, by instantiating
Framework I and Construction I in BLS12-381 groups whose order r is the 255-bit
prime in Equation (2.51), one can obtain Method I in Section 5.2. When computing
Sn,r in the BLS12-381 groups,

– Theoretically, Method I saves 21.05%–39.77% additions compared to Pippenger’s
bucket method for n = 2e (10 ≤ e ≤ 21), and it saves 2.08%–9.65% additions
compared to BGMW method for n = 2e (10 ≤ e ≤ 21). The detailed theoretical
comparison is presented in Section 5.2.1.

– Experimentally, Method I saves 17.20%–40.89% of the computational time com-
pared to Pippenger’s bucket method for n = 2e (10 ≤ e ≤ 21), and it saves
0.73%–10.21% of the computational time compared to BGMW method for
n = 2e (10 ≤ e ≤ 21, e ̸= 16, 17). The detailed experimental comparison is
presented in Section 6.2.

• If the devices have relatively constrained memory, they can adopt the methods that
are yielded by combining the proposed Framework II in Section 3.2.2 and Construc-
tions I, II, III, respectively. These methods require only a fraction of precomputation
size compared to Framework I, while still offering speed improvement compared to
Pippenger’s bucket method. Specifically, by instantiating Framework II and Con-
struction I in the BLS12-381 groups, one can obtain Method II in Section 5.3.

When computing Sn,r for n = 2e (10 ≤ e ≤ 21) in the BLS12-381 groups and
compared to Pippenger’s bucket method, Method II saves 2.59%–12.26% additions
theoretically, and it saves 2.48%–11.27% of the computational time experimentally.
The detailed theoretical comparison is presented in Section 5.3.1, while the detailed
experimental comparison is presented in Section 6.3.
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• The theoretical limits of the proposed frameworks are explored by Constructions IV
and V in Section 4.4. Because these two constructions rely on radixes that are not the
powers of 2, their radix conversions are costly. These two constructions are primarily
of theoretical significance.

7.2 Future work

For the goal of computing n-scalar multiplication over fixed points with large n, partic-
ularly for supporting pairing-based zkSNARK applications, the following two directions,
one theoretical and one practical, are worth putting effort into.

7.2.1 Small bucket set constructions

The fourth and fifth multiplier set and bucket set constructions in Section 4.4 explore the
possible theoretical limits. As the radixes in these constructions are not the powers of
2, the radix conversions are much slower than that when the radix values q = 2c. The
complexity advantage for computing multi-scalar multiplication brought by the smaller
bucket set constructions would be largely offset by the radix conversions.

Given q = 2c and ℓ a small integer, an interesting problem is to construct a pair of
multiplier set and bucket set (M,B), such that

M = {−mℓ,−mℓ−1, · · · ,−m1,m1,m2, · · · ,mℓ},

where each mi (1 ≤ i ≤ ℓ) is a positive integer, and at the same time making the size of B
as small as possible, particularly, trying to achieve

|B| ≈ q

2ℓ
.

The difficulty boils down to the fact that this bucket set size is asymptotically smallest, as
analyzed in Section 4.4.2.

7.2.2 Better software implementations

In Step 3 of Algorithm 5 and Step 3 of Algorithm 6, it is required to fetch the appropriate
points from the huge precomputation tables. Additionally, scalar conversions by Algorithm
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8 also rely on fetching data from the precomputed digit decomposition hash tables. These
two processes heavily affect memory access latency, therefore it is worth exploring better
hardware and better implementations to reduce the data fetching time.

It is also worth considering to have multi-thread implementations for the proposed
frameworks, especially for these steps before the last accumulation step. Both Algorithm 5
and Algorithm 6 essentially involve adding nh points into their respective buckets. We can
try to parallelize this process. The challenge lies in enabling each thread to simultaneously
and quickly access the huge precomputation tables in memory.

Finally, it is worth investing effort to integrate the proposed methods into the actual
blockchain applications. This would allow us to effectively assess the overall time efficiency
improvement.

98



References

[AFCK+12] Diego F Aranha, Laura Fuentes-Castaneda, Edward Knapp, Alfred Menezes,
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