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Abstract

Quantum field theory (QFT) in curved spacetime is a study of quantum fields under
the influence of the relativistic motion of particles or spacetime curvature. The famous
outcomes of this subject are the Unruh and Hawking effects. The Unruh effect claims that
a uniformly accelerating atom (people in the community tend to use a model called the
Unruh-DeWitt (UDW) particle detector, which is a two-level quantum system coupled to
a quantum field) thermalizes even though an inertial observer sees no particles. That is,
an acceleration motion excites the internal degree of freedom of the atom in such a way
that the atom experiences as if it is immersed in a thermal bath. The Hawking effect is
a phenomenon where a black hole radiates thermal quanta. If one puts a UDW detector
outside an event horizon, then it also perceives thermality. Both the Unruh and Hawking
effects show thermality, which is the core theme of this thesis.

In recent years, a protocol called entanglement harvesting has attracted great interest.
Entanglement harvesting utilizes multiple UDW detectors to extract (or ‘harvest’) entan-
glement pre-existed in a quantum field. The extracted entanglement is influenced by the
geometry of spacetime and the trajectories of UDW detectors. One can also extract other
types of correlations, and so we collectively call this the correlation harvesting protocol.

In this thesis, we examine how thermal effects influence the ability of correlation har-
vesting. In a previous study [1], the case of two inertial UDW detectors coupled to a
thermal quantum field was investigated. It was shown that as the temperature of the field
increases, the extracted entanglement between the detectors decreases while the quantum
mutual information (the total correlations including classical and quantum correlations)
increases. Since a single detector in uniform acceleration motion or hovering near a black
hole experiences thermality as if it is immersed in a thermal quantum field, it is natural to
ask if harvested correlations also behave in the same manner.

In contrast, we show that (i) the Unruh temperature of uniformly accelerating detectors
prevents the detectors from extracting any correlations at the high temperatures, i.e., even
the quantum mutual information vanishes at the extreme Unruh temperatures; (ii) high
black hole temperatures also prevent the detectors from harvesting correlations, and this
is no exception even for tripartite entanglement; and (iii) freely falling detectors in a black
hole spacetime are less affected by this, and they have no trouble extracting correlations
from the field even when detectors are causally disconnected by an event horizon.
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Chapter 1

Introduction

The groundbreaking theories in theoretical physics in the twentieth century are undoubt-
edly quantum theory and the general theory of relativity (GR). Quantum theory describes
the nature of microscopic particles such as electrons and photons, whereas GR is a the-
ory of gravitational fields. Although these two pillars of modern theoretical physics are
compatible with experimental observations, physicists do not know how to unify these two
theories in a consistent manner to this date.

One attempt to describe gravitation within the quantum theory uses quantum field
theory (QFT) in curved spacetime, which defines quantum fields (such as vector fields
representing photons) on a classical curved spacetime [2]. Among the seminal works in
this framework is a paper by Hawking, who showed that a classical black hole can emit
particles (known as Hawking radiation) as a result of the presence of a quantum field [3].
Moreover, this phenomenon turns out to reduce the mass of the black hole, leading to the
shrinkage (or “evaporation”) of the hole. While it remains uncertain whether black holes
vanish at the end of this evaporation process, if they do, it would lead to the so-called
black hole information problem, which states that the principle of unitarity in quantum
theory is incompatible with gravitational theory.

In recent years, people have realized that the tools developed in quantum information
theory are valuable assets to deal with quantum information in black hole spacetimes. Ex-
amples include the Hayden-Preskill protocol [4] and von Neumann entropy in gauge/gravity
duality [5, 6]. The importance of quantum information theory is recognized not only for
the study of black holes but also in condensed matter physics [7], quantum gravity [8], and
thermodynamics [9].

Similarly, the field of relativistic quantum information (RQI) has gained significant at-
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tention in recent years. RQI has two main focuses. The first is to describe physical systems
in which relativistic effects are important using the tools developed in quantum informa-
tion theory. The second is to generalize quantum information protocols to a relativistic
setting. One example of a branch of RQI is relativistic quantum communication (RQC). In
everyday life, we use electromagnetic fields to send and receive information, and these fields
are fundamentally relativistic quantum fields. RQC aims to understand how information
can be transmitted from one point to another through a quantum field, and this can be
analyzed by computing the channel capacity [10, 11, 12, 13, 14].

Another branch of RQI is the so-called entanglement harvesting protocol, which is a pro-
cedure that extracts entanglement from a quantum field by using multiple atoms. In the
literature, people typically employ two Unruh-DeWitt (UDW) particle detectors [15, 16, 17]
interacting with a quantum scalar field. Here, a UDW detector is a particular model for
a qubit (i.e., a two-level quantum system), which travels in spacetime. The protocol is
described as follows.

(i) Prepare two or multiple UDW detectors. Typically, we assume that the detectors are
initially uncorrelated and that the quantum field is in a specific state, such as the vacuum
state. Additionally, we assume that the detectors and the field are uncorrelated as well.
(ii) We let the detectors travel through spacetime and at some point they start to interact
with the quantum field until the interaction is turned off. Thus, the detector-field coupling
is time-dependent.
(iii) After the interaction, we collect the detectors and observe that they are entangled
with each other. Entanglement is “harvested” from the field if the detectors are entangled
at the end of the process.

One might ask where this entanglement comes from. The answer is from the quantum
field since it is known that a quantum field is already in an entangled state even if it is
a vacuum state [18, 19]. Hence, the entanglement pre-existent in the field is transferred
to the detectors through interaction, and in this sense entanglement is “harvested” (or
extracted) from the field. Moreover, the detectors can be entangled even when they are
causally disconnected.

Such a harvesting process was first examined by Valentini in 1991 [20] and subsequently
Reznik et al. in the early 2000s [21, 22]. Valentini considered two atoms coupled to an
electric field (i.e., the light-matter interaction), which is perhaps a more realistic scenario.
However, it was pointed out that the essential features in the light-matter interaction are
captured in the UDW model so long as the detectors do not exchange angular momenta with
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thermal bath

acceleration

mirror

black holes

de Sitter

anti-de Sitter
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[28, 29, 30, 31, 32]
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[41, 42, 43, 44, 45, 46, 47, 48]

[49, 50]

[51, 52]

[53, 54, 55]

Figure 1.1: A list of articles on the correlation harvesting protocol.

the field [23, 24]. This fact reinforces the decision to use the UDW detector model, which is
much easier to handle than the full light-matter interaction. For entanglement harvesting
in the light-matter interaction, see [25] (also [26, 27] for the light-matter interaction and
UDW detectors).

After these pioneering papers, people investigated the entanglement harvesting protocol
extensively. The simplest case for this protocol is when two UDW detectors are at rest
in Minkowski spacetime [28]. Additionally, the harvested entanglement shows a distinct
property depending on the trajectories of the detectors and the geometry of spacetime.
For example, uniformly accelerating detectors in the Minkowski vacuum will be influenced
by the Unruh effect. Thus, the harvested entanglement tells us about the trajectories and
the background geometry of spacetime. Furthermore, one can think of not only harvesting
entanglement but also other types of correlations such as classical correlations or quantum
discord, and so we can refer to the protocol as the correlation harvesting protocol in general.
Figure 1.1 lists some papers on correlation harvesting.
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thermal bath black hole acceleration
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Figure 1.2: Temperature dependence of entanglement and mutual information in different
scenarios.

This thesis primarily focuses on the influence of Unruh and Hawking effects on corre-
lation harvesting. As mentioned above, the Unruh effect [15] refers to the phenomenon
that a uniformly accelerating UDW detector experiences thermal equilibrium at the Un-
ruh temperature TU = ℏa/2πkBc in the Minkowski vacuum, whereas the Hawking effect [3]
claims that a black hole surrounded by a quantum field radiates Hawking quanta, which
in turn thermalizes a stationary UDW detector hovering outside of the black hole. It was
pointed out by Cliche and Kempf in 2011 [56] that high Hawking temperature would act
as noise that prevents the detectors from harvesting entanglement near a black hole. In-
deed, it was numerically shown by Henderson et al. in 2018 [41] that this is the case for
two stationary detectors in the Bañados-Teitelboim-Zanelli (BTZ) black hole spacetime.
In particular, they showed that there is a region in the vicinity of a black hole called the
entanglement shadow where detectors cannot extract entanglement at all once one of them
enters it. Uniformly accelerating detectors also behave in a similar way in the sense that
high Unruh temperature TU prevents them from harvesting entanglement [38].

However, the impact of thermal effects resulting from the Unruh and Hawking effects on
correlation harvesting differs from that of a thermal state in a quantum field. It was shown
[57, 1] that two detectors at rest in Minkowski spacetime interacting with a thermal quan-
tum field monotonically decreases the amount of entanglement with temperature whereas
the total correlation (quantum mutual information) monotonically increases. This result
suggests that thermality in a thermal quantum field actually enhances total correlation at
high temperatures, contrary to our intuition that thermality acts as noise. See Fig. 1.2 for
the comparison.

In this thesis, we investigate the temperature dependence of harvested correlations by
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filling out the missing pieces in Fig. 1.2. We first consider quantum mutual information
(i.e., the total correlation) harvested by two uniformly accelerating UDW detectors in
Minkowski spacetime in Ch. 3. We obtain the temperature dependence of quantum mutual
information and show that the detectors are unable to harvest any correlation at TU → ∞
as opposed to the thermal bath case in [57, 1]. In fact, entanglement harvested by uniformly
accelerating detectors behaves in a similar manner [38], though it cannot be extracted at a
finite Unruh temperature. Hence, in the high Unruh temperature regime, either classical
correlation or non-distillable entanglement can be extracted.

Chapter 4 examines quantum mutual information harvested by two stationary detec-
tors situated outside a BTZ black hole. Since Unruh and Hawking effects show a similar
property, we expect that correlation harvesting is prohibited at infinite local temperatures
observed by a detector as in Ch. 3. We show that this is the case; the total correlation van-
ishes at infinite temperatures while entanglement becomes zero with a finite temperature.
This suggests that a “quantum mutual information shadow” does not exist. Furthermore,
we reveal that only Hawking temperature is responsible for prohibiting correlation har-
vesting and gravitational redshift does not contribute to it.

As an extension of Ch. 4, we introduce a third UDW detector to the BTZ black hole
spacetime and consider tripartite entanglement harvesting in Ch. 5. We place the three
detectors around the black hole in an equilateral triangular configuration so that each
detector feels the same gravitational redshift and local temperature, which simplifies the
calculation. Here, we employ a tripartite entanglement measure called π-tangle. Although
the π-tangle of a mixed state does not reflect the true amount of tripartite entanglement,
it provides a lower bound. We demonstrate that harvesting tripartite entanglement is
easier than harvesting bipartite entanglement and thereby, detectors can extract tripartite
entanglement even from the bipartite entanglement shadow. Since bipartite entanglement
is absent, the harvested tripartite entanglement is of the GHZ type.

Until now, the detectors in BTZ spacetime are stationary, namely, they are hovering at
a constant proper distance from an event horizon. It is then intriguing to see how freely
falling detectors extract correlations from the field. We uncover this in Ch. 6 by carrying
out the (bipartite) correlation harvesting protocol in (1 + 1)-dimensional Schwarzschild
spacetime. Here, three kinds of detector motions are considered: two static detectors
as in the previous chapters, one detector is freely falling into a black hole from infinity
while the other detector is stationary, and both detectors are free-falling. As expected,
the entanglement shadow is present for the two static-detectors case. One would expect
that if one of the detectors is in free fall, then the entanglement shadow is absent since the
free-faller will not encounter the infinite temperature when crossing the horizon. However,
this is not the case since the relative velocity of the free-faller with respect to the static

5



detector causes degradation of entanglement extraction. Nevertheless, quantum mutual
information is less affected by this effect, especially near the horizon, and the free-faller
and static detectors can extract correlations across the horizon. Finally, two free-fallers
can always harvest correlations due to the fact that their local temperatures remain finite
throughout their journey to the singularity.

All the basic ingredients needed in this thesis are provided in Ch. 2. The detailed
description of QFT in BTZ spacetime is given in Appendix B. Throughout this thesis,
we use the natural units, ℏ = c = kB = 1, where c and kB are the speed of light and
the Boltzmann constant. We also use the most-plus convention for metric and a point in
spacetime is denoted by x.
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Chapter 2

Quantum fields and particle
detectors in curved spacetime

In this chapter, we introduce the concept of quantum field theory (QFT) in curved space-
time, which is based on [2, 58].

2.1 Quantum fields in curved spacetime

2.1.1 Classical field on a manifold

Let (M, g) be a pseudo-Riemannian manifold, where g is a pseudo-Riemannian metric.
For example, (R4, η) can be regarded as a (3 + 1)-dimensional Minkowski spacetime with
η = diag(−1, 1, 1, 1). In QFT in curved spacetime, the manifold (M, g) is treated classically
and the fields are defined on this manifold.

Before quantizing a field, consider a classical real scalar field (i.e., Klein-Gordon field),
ϕ(x), which is defined on a point in a manifold: x ∈ M.1 The action Sϕ[ϕ, g], for this
classical scalar field is given by

Sϕ[ϕ, g] = 1
2

∫
M

dvolg
[
gµν∂µϕ(x)∂νϕ(x) − (m2 + ξR(x))ϕ2(x)

]
, (2.1)

1Technically speaking, it is appropriate to define ϕ as ϕ : C∞
0 (M) → R, where C∞

0 (M) is a space of
smooth functions with compact support on M.

7



where dvolg is a volume element, m ≥ 0 is the mass of the field, ξ ∈ R is a constant describ-
ing a coupling between the field and the Ricci curvature scalar R(x). In (n+1)-dimensions,
the volume element dvolg is expressed as dvolg = dn+1x

√−g, where g := diag gµν is the
metric determinant. The action Sϕ is manifestly covariant, i.e., it is independent of coor-
dinate transformations.

From the action principle, δSϕ[ϕ, g] = 0, one can obtain the Euler-Lagrange equation:

(□ −m2 − ξR)ϕ(x) = 0 , (2.2)

where

□ := 1√−g∂µ(gµν
√−g∂ν) (2.3)

is the d’Alembert operator. Equation (2.2) is known as the Klein-Gordon equation. Note
that the Klein-Gordon equation depends on the background geometry (i.e., the curved
spacetime on which the field is defined) even when ξ = 0 since the d’Alembert operator
(2.3) contains gµν , which has the information of the geometry.

The final task is to solve (2.2) and obtain an explicit form for ϕ(x). Since the d’Alembert
operator (2.3) is a second-order, hyperbolic partial differential operator, the Klein-Gordon
equation (2.2) is a second-order differential equation. This means that one can solve the
equation once two initial conditions are specified. However, the existence of the solution
ϕ(x) to the Klein-Gordon equation depends on the causal structure of the manifold (M, g).
Specifically, the solution ϕ(x) is well-defined everywhere in a manifold if (M, g) is globally
hyperbolic (namely, there exists a Cauchy slice). In this section, we will assume that the
manifold is globally hyperbolic, so the solutions to the Klein-Gordon equation are well-
defined.

2.1.2 Quantum field in curved spacetime

Formulation

So far, we have considered a classical Klein-Gordon field in curved spacetime. We now
proceed to quantize this field and obtain a quantum field defined on curved spacetime.

Typically, the quantization of a field is done in the canonical quantization scheme,
which promotes ϕ(x) and its canonical conjugate π(x) to operator-valued quantities ϕ̂(x)
and π̂(x), respectively, and imposes canonical commutation relations (CCRs). That is,
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ϕ̂(x) and π̂(x) must obey the following three conditions.

(1) Hermiticity: ϕ̂†(x) = ϕ̂(x).
(2) CCR: [ϕ̂(t,x), π̂(t,y)] = iδ(n)(x − y) in (n+ 1)-dimensions.2
(3) Heisenberg equations of motion:

i∂tϕ̂(t,x) = [ϕ̂(t,x), Ĥ] , (2.4)
i∂tπ̂(t,x) = [π̂(t,x), Ĥ] , (2.5)

or equivalently,

(□ −m2 − ξR)ϕ̂(x) = 0 , (2.6)
π̂(x) =

√−gg0ν∂νϕ̂(x) . (2.7)

Hence, the goal is to find a solution ϕ̂(x) that satisfies these conditions.
To do this, let us assume that spacetime possesses a timelike Killing vector field (which

we will introduce later). Then, one can perform a mode-decomposition of ϕ̂ as

ϕ̂(x) =
∫
Rn

dnk
(
âkuk(x) + â†

ku
∗
k(x)

)
. (2.8)

Here, uk(x) ∈ C is the mode function, and âk and â†
k are annihilation and creation opera-

tors, respectively. The vacuum state |0⟩ is defined as âk |0⟩ = 0 for all k (we will explain
this later). The three conditions for ϕ̂ are now translated as follows. The Hermiticity con-
dition (1) is manifest in this expression. The CCR condition (2) is obeyed if the following
two conditions are satisfied:

[âk, â
†
k′ ] = δ(n)(k − k′) , (2.9)

√−gg0ν
∫
Rn

dnk [uk(t,x)∂νu∗
k(t,y) − u∗

k(t,x)∂νuk(t,y)] = iδ(n)(x − y) . (2.10)

The second equation (2.10) is known as the Wronskian condition. Finally, the equation of
motion is satisfied if uk(x) obeys the Klein-Gordon equation,

(□ −m2 − ξR)uk(x) = 0 , (2.11)
2Technically, one has to specify a foliation of M as M = R × Σ, where R is the time direction and Σ

is a Cauchy surface. Such a decomposition is always possible in a globally hyperbolic spacetime.
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since if this is the case, u∗
k(x) is a solution to the Klein-Gordon equation, and a linear

combination âkuk(x) + â†
ku

∗
k(x) is also a solution to the Klein-Gordon equation due to its

linearity, and thus ϕ̂(x) expressed in (2.8) can be a solution to the equation of motion. As
mentioned in the previous subsection, globally hyperbolic spacetimes are useful. This is
due to the fact that if (M, g) is globally hyperbolic, then there exist solutions {uk(x)} to
the Klein-Gordon equations satisfying the Wronskian condition (2.10).

We now introduce the Klein-Gordon product. Let f, g ∈ R be real-valued solutions
to the Klein-Gordon equations (2.11), and denote SolR(M) the solution space (a vector
space), that is, f, g ∈ SolR(M). We then promote SolR(M) to a symplectic vector space
(SolR(M), (·, ·)) by introducing a bi-linear symplectic form,

(·, ·) : SolR(M) × SolR(M) → R ,

(·, ·) : f1, f2 7→ (f1, f2) :=
∫

Σ
dΣµ (f1∂µf2 − f2∂µf1) ,

(2.12)

where Σ is any Cauchy hypersurface in the manifold M and dΣµ = dΣnµ with nµ being
a unit normal vector to Σ and dΣ is the volume element on that hypersurface. It is
known that such a bi-linear form is independent of the choice of Σ, and is non-degenerate
(i.e., non-zero if f1, f2 ̸= 0). Moreover, one can easily check that it is anti-symmetric:
(f1, f2) = −(f2, f1).

We now extend this to SolC(M), the solution space of the Klein-Gordon equation over
C. We define the Klein-Gordon product as

(·, ·)KG : SolC(M) × SolC(M) → R ,

(·, ·)KG : f1, f2 7→ (f1, f2)KG := i(f ∗
1 , f2) = i

∫
Σ

dΣµ [f ∗
1∂µf2 − (∂µf ∗

1 )f2] . (2.13)

Here, the symplectic form (·, ·) is extended to the complex-valued solutions, SolC(M).
Then, by using the properties of the bi-linear symplectic form of the symplectic bases, the
Klein-Gordon product of uk(x) ∈ SolC(M) satisfies the following.

(uk(x), uk′(x))KG = δ(n)(k − k′) , (2.14a)
(u∗

k(x), u∗
k′(x))KG = −δ(n)(k − k′) , (2.14b)

(uk(x), u∗
k′(x))KG = 0 . (2.14c)

Note that the Klein-Gordon product is not an inner product since it is not positive semi-
definite. However, it becomes an inner product if we divide the solution space SolC(M)
into the subspaces of positive and negative frequency modes, which we will define in the
following.
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The interesting part of QFT in curved spacetime is that the expression for ϕ̂(x) is not
unique. That is, one can find more than two sets of mode functions {uk(x)} that satisfy
all the conditions for a scalar field, and these can be unitarily inequivalent. So how can we
find a vacuum state that is physically reasonable? One way is to use the symmetries of a
background spacetime. If spacetime does not change its geometry with time, an observer
would not see particle creation so long as the observer is stationary with the spacetime.

Let K ∈ TxM be a timelike Killing vector field. Then uk(x) is called the positive
frequency mode with respect to K if it satisfies

LKuk(x) = −iωkuk(x) , ωk > 0 (2.15)

where LK is the Lie derivative associated to K. The negative frequency modes, on the
other hand, are the complex conjugates, u∗

k(x), since they satisfy

LKu
∗
k(x) = iωku

∗
k(x) , ωk > 0 (2.16)

One can then use uk(x) and u∗
k(x) to decompose the field operator ϕ̂ as in (2.8). Moreover,

the solution space SolC(M) can be decomposed into the subspaces of positive and negative
frequency solutions, denoted by Hsol and H∗

sol, respectively, as

SolC(M) = Hsol ⊕ H∗
sol . (2.17)

Since the Klein-Gordon product, (·, ·)KG, becomes positive semi-definite in the subspace
Hsol, a space (Hsol, (·, ·)KG) turns out to be a Hilbert space of solutions to the Klein-Gordon
equation.3 The nice thing about the positive/negative frequency modes with respect to
the timelike Killing vector field K is that the decomposition (2.17) remains the same under
the flow generated by K. That is, the mode functions {uk(x), u∗

k(x)} on a Cauchy surface
Σ0 will not be mixed on another surface Σ1 after some time and therefore, the vacuum
state defined by âk |0⟩ = 0 will not change along the flow generated by K.

As a side note, the definition of positive/negative frequency modes given above is
applicable only if timelike Killing vector fields exist. In a generic curved spacetime, there is
no guarantee that such vector fields exist. Nevertheless, we can collect all possible elements
in SolC(M) that give a positive semi-definite Klein-Gordon product (·, ·)KG and claim such
a subspace of SolC(M) as Hsol. In QFT, the choice of Hsol is not unique and thereby, the
choice of vacuum is not unique.

States like |0⟩ and |1⟩, which we typically use in QFT, can be defined as states in the
symmetric Fock space Fs(Hsol) of the Hilbert space (Hsol, (·, ·)KG). The symmetric Fock

3Cauchy-completion with respect to (·, ·)KG is required to make (Hsol, (·, ·)KG) a Hilbert space.
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space is also a Hilbert space constructed as

Fs(Hsol) :=
∞⊕
n=0

H⊗sn
sol = C ⊕ Hsol ⊕ (Hsol ⊗s Hsol) ⊕ · · · , (2.18)

where ⊗s is the symmetric part of the tensor product ⊗ (symmetric because ϕ̂ is bosonic).
Then, |0⟩ ∈ C (one-dimensional subspace), |1⟩ ∈ Hsol, and so on.

A simple example of a positive frequency mode can be seen in the scalar field in
Minkowski spacetime. In the Minkowski coordinates (t, x, y, z), ∂t is a Killing vector field.
One can then consider positive frequency mode functions

uk(x) = 1√
(2π)32ωk

e−iωkt+ik·x , (2.19)

where ωk =
√

|k|2 +m2 with m being the mass of the scalar field. Therefore, the mode
decomposition (2.8) reads

ϕ̂(x) =
∫
R3

d3k√
(2π)32ωk

(
âke

−iωkt+ik·x + â†
ke

iωkt−ik·x
)
, (2.20)

and the Minkowski vacuum |0M⟩ is defined as âk |0M⟩ = 0 for all k. One can easily check
that uk(x) is a positive frequency mode with respect to a timelike Killing vector field ∂t.

Conformal vacuum

In certain cases, it is useful to introduce a different type of vacuum state called the con-
formal vacuum. This state applies when our spacetime is conformally related to another
spacetime.

Let (M, g) and (M̃, g̃) be two manifolds. These two are said to be conformally equiv-
alent if the metrics are related by

g̃µν = Ω2(x)gµν , (2.21)

where Ω(x) > 0 is a smooth function. In particular, if gµν in above definition is flat (e.g.,
Minkowski metric ηµν) then g̃µν is said to be conformally flat, and any (1 + 1)-dimensional
(pseudo-)Riemannian manifold is locally conformally flat, namely, one can always find Ω(x)
such that g̃µν = Ω2(x)ηµν at each point in the spacetime. Note that the causal structures
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of conformally related spacetimes are the same in the sense that if a vector vµ on gµν is
timelike (spacelike) then it is also timelike (spacelike) in g̃µν .

Conformally related spacetimes are of particular interest in QFT in curved spacetime
if the behavior of quantum fields is well-known in one of the two manifolds. For example,
if g̃ is a conformally flat spacetime, then the behavior of a quantum field in (M̃, g̃) can
be approximately understood by considering QFT in Minkowski spacetime, since the two
cases share some similarities due to the conformal flatness of (M̃, g̃).

Consider two conformally related spacetimes in (2.21). Let Sϕ[ϕ̂, g] be a quantized
version of the action given by (2.1), and Sϕ̃[ ˆ̃ϕ, g̃] the action of another scalar field ˆ̃ϕ on
g̃. Then Sϕ̃[ ˆ̃ϕ, g̃] is said to be conformally invariant to Sϕ[ϕ̂, g] if Sϕ̃[ ˆ̃ϕ, g̃] = Sϕ[ϕ̂, g]. This
means that the behavior of ˆ̃ϕ on g̃ is the same as ϕ̂ on g. However, this does not always
hold. One particular case in which two scalar field theories are conformally invariant is
when we choose m = 0 and ξ = (n− 1)/4n in (n+ 1)-dimensional spacetime in (2.1). Such
a coupling ξ is known as a conformal coupling. A massless, conformally coupled scalar
field theory Sϕ̃[ ˆ̃ϕ, g̃] is conformally invariant to Sϕ[ϕ̂, g] if ˆ̃ϕ transforms as

ˆ̃ϕ(x) = Ω 1−n
2 (x)ϕ̂(x) . (n+ 1)-dimension (2.22)

If we understand ϕ̂ in g to have a vacuum state |0⟩, then the conformally invariant theory
in g̃ can be obtained simply by multiplying Ω 1−n

2 (x). The vacuum state |0̃⟩ in g̃ can be
obtained from |0⟩ and this new vacuum |0̃⟩ is called a conformal vacuum.

Correlation functions

One of the important quantities in entanglement harvesting is the Wightman function. Let
ρϕ be a quantum state of the field. Then the Wightman function (or two-point correlation
function) W (x, x′) ∈ C is defined as

W (x, x′) := ⟨ϕ̂(x)ϕ̂(x′)⟩ρϕ
. (2.23)

In particular, if the field is in the vacuum state ρϕ = |0⟩ ⟨0| then W (x, x′) = ⟨0|ϕ̂(x)ϕ̂(x′)|0⟩,
which is sometimes referred to the vacuum two-point correlation function.

The Wightman function has three important properties:
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(1) W ∗(x, x′) = W (x′, x) ,
(2) Im[W (x, x′)] = 1

2i ⟨[ϕ̂(x), ϕ̂(x′)]⟩ρϕ
,

(3) Re[W (x, x′)] = 1
2 ⟨{ϕ̂(x), ϕ̂(x′)}⟩ρϕ

.

The properties (2) and (3) are related to the causal relationship between two points x
and x′. Micro-causality tells us that if x and x′ are spacelike separated, then [ϕ̂(x), ϕ̂(x′)] =
0. On the other hand, the anti-commutator {ϕ̂(x), ϕ̂(x′)} is non-zero in general. Therefore,
the causal relations of x and x′ are relevant to the value of the Wightman function, and it
is useful to decompose it into the following form.

W (x, x′) = 1
2WH(x, x′) + i

2WPJ(x, x′) , (2.24)

where WH(x, x′) and WPJ(x, x′) are Hadamard and Pauli-Jordan functions, respectively,
defined as

WH(x, x′) := 2Re[W (x, x′)] = ⟨{ϕ̂(x), ϕ̂(x′)}⟩ρϕ
, (2.25)

WPJ(x, x′) := 2Im[W (x, x′)] = 1
i ⟨[ϕ̂(x), ϕ̂(x′)]⟩ρϕ

. (2.26)

We will use these functions in Sec. 2.3.

KMS state

The Kubo-Martin-Schwinger (KMS) state [59, 60, 61] is a generalized version of a thermal
state (Gibbs state) that can be used in QFT. The rationale for defining this state is as
follows. In quantum mechanics, the Gibbs state is given by

ρth = 1
Z
e−βĤ , (2.27)

where Z := Tr[e−βĤ ] is the partition function, β := 1/T is the inverse temperature of the
bath, and Ĥ is the Hamiltonian of the bath. This is well-defined as long as the trace,
Tr[·], is well-defined. If the Hamiltonian allows eigenbases {|n⟩}, then the trace can be
concretely evaluated by Tr[Â] = ∑

n ⟨n|Â|n⟩. However, this is tricky when it comes to the
thermal state of a quantum field due to the fact that the Hilbert space of a field is, in
general, non-separable (i.e., the basis is uncountable), and therefore a trace is ill-defined.
In other words, Tr[·] < ∞ is not guaranteed.
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One can generalize the notion of thermality to non-separable Hilbert spaces by extract-
ing the essential features of the thermal state ρth in quantum mechanics. For any (bounded)
operator Â(t), B̂(t) in the Heisenberg picture, the Gibbs state ρth always satisfies

⟨Â(0)B̂(t+ iβ)⟩ρth
= ⟨B̂(t)Â(0)⟩ρth

, (2.28)

where B̂(t) = Û †(t)B̂Û(t) is a time-evolved operator. Here, we used the definition ⟨Â⟩ρ :=
Tr[Âρ] and its cyclic property Tr[ÂB̂Ĉ] = Tr[B̂ĈÂ] = Tr[ĈÂB̂]. In a nutshell, we employ
the equality (2.28) as an axiom for thermality and call this the KMS condition.4

More specifically, let Ĥ be a Hamiltonian that is a generator of time-translation parametrized
by t. ρ is a KMS state with respect to time t if the following conditions are satisfied.

(i) The expectation values ⟨ÂB̂(z)⟩ρ and ⟨B̂(z)Â⟩ρ, where z ∈ C, are holomorphic (i.e., no
poles) in 0 < Im[z] < β and −β < Im[z] < 0, respectively.
(ii) Eq. (2.28) is satisfied for β > 0.

The basic idea of condition (i) is to make both sides of (2.28) well-defined quantities
(i.e., they converge in the respective regions) in the complex plane. Then, condition (ii)
just states that we adopt (2.28) as the definition of thermality in a generic system.

It is crucial that the KMS condition is compatible with the Gibbs state in quantum
mechanics [63]. That is, if the Hilbert space of a system is separable, then the KMS
condition uniquely recovers the Gibbs state ρth.

In this thesis, we are particularly interested in the Wightman function, Wρ(x, x′) =
⟨ϕ̂(x)ϕ̂(x′)⟩ρ. Let Wρ(τ, τ ′) ≡ ⟨ϕ̂(x(τ))ϕ̂(x′(τ ′))⟩ρ be the pullback of the Wightman function
along a trajectory x(τ) = (t(τ),x(τ)). If ρ is a KMS state with respect to τ then Wρ(τ, τ ′)
satisfies [64]:

• Time-translational invariance with respect to τ : Wρ(τ, τ ′) = Wρ(∆τ);

• Wρ(∆τ + iβ) = Wρ(−∆τ).
4The KMS condition is formally stated using the language of C∗-algebra, which we will not explore in

depth. See [62, 63] for details.
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2.2 Unruh-DeWitt particle detector model

We are interested in the scenario where quantum-mechanical atoms interact with a quan-
tum field. As a realistic example, one can think of an atom (such as a Hydrogen atom)
coupled to photons. In relativistic quantum information (RQI), such systems are com-
monly modeled by the so-called Unruh-DeWitt (UDW) particle detector model coupled to
a quantum scalar field [15, 16]. In the literature, people use two types of UDW detectors:
monopole and harmonic-oscillator type detectors. The monopole-type UDW detector con-
sists of ground and excited states, |g⟩ and |e⟩ respectively, so it can be thought of as a
qubit interacting with a quantum field. On the other hand, the harmonic oscillator-type
UDW detector is described by the Hamiltonian for a harmonic oscillator and it can be
thought of as a multi-level atom interacting with a quantum field. The benefit of using
harmonic oscillator-type detectors is that one can solve the Heisenberg equation of motion
and examine the back-reaction effect of the detectors on the field (see for example [65]).

Here, we will employ the monopole-type UDW detectors. We denote the ground and
excited states for detector-j (say, detector-A, B, C) by |gj⟩ and |ej⟩, respectively, with the
energy gap Ωj between them in each detector’s reference frame.

2.2.1 Single detector

Consider a single UDW detector linearly coupled to the scalar quantum field. In the
Schrödinger picture, the total Hamiltonian, ĤS,tot is given by [66, 67]

ĤS,tot = ĤS,d0 + ĤS,ϕ0 + ĤS,int , (2.29)

where

ĤS,d0 = Ωσ̂+σ̂− ⊗ 1ϕ , (2.30a)
ĤS,int = λχ(τ)(σ̂+ + σ̂−) ⊗ ϕ̂(x(τ)) , (2.30b)

with σ̂+ ≡ |e⟩ ⟨g| and σ̂− ≡ |g⟩ ⟨e| being the raising and lowering operators, respectively,
acting on the Hilbert space of the UDW detector, Hd.

Let us now transform the Hamiltonians from the Schrödinger picture to the interaction
picture. In general, given that ĤS,tot = ĤS,0 + ĤS,int, an operator ÂS in the Schrödinger
picture can be transformed into an operator ÂI in the interaction picture by

ÂI(t) = Û †
0ÂSÛ0 , (2.31)
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where

Û0 = Tt exp
(

−i
∫
R

dt ĤS,0

)
, (2.32)

with Tt being a time-ordering symbol with respect to t. In our case, ĤS,0 corresponds to
ĤS,d0 + ĤS,ϕ0 and therefore, the interaction Hamiltonian in the interaction picture, ĤI can
be obtained by

Ĥτ
I (τ) = Û †

0ĤS,intÛ0 (2.33)
= λχ(τ)eiĤS,d0t(σ̂+ + σ̂−)e−iĤS,d0t ⊗ eiĤS,ϕ0tϕ̂(x)e−iĤS,ϕ0t (2.34)
= λχ(τ)m̂(τ) ⊗ ϕ̂(x(τ)) , (2.35)

where

m̂(τ) ≡ eiΩτ σ̂+ + e−iΩτ σ̂− (2.36)

is the monopole moment in the interaction picture. The superscript τ in Ĥτ
I (τ) indicates

that it is a generator of time-translation with respect to τ . The field operator ϕ̂ is defined
along a trajectory of the detector x(τ) (i.e., it is a pullback of the field operator along the
trajectory). Therefore, the detector is locally interacting with the field at its location.

Before proceeding to a perturbative analysis, let us comment on modified versions of
UDW detectors. The qubit-type UDW detector model we have introduced so far has no
size, and it is often called a pointlike UDW detector. One may think of a UDW detector
with a finite size. This can be implemented in the formulation by introducing a smearing
function, which specifies the size and shape of the detector. Although we will use only
pointlike detectors in this thesis, readers who are interested can refer to [66, 67, 68]

2.2.2 Two detectors

Let us now consider two pointlike UDW detectors A and B. In this case, the whole Hilbert
space can be written as HA ⊗ HB ⊗ Hϕ. The interaction Hamiltonian describing both
detectors is given by

Ĥ t
I (t) = dτA

dt Ĥ
τA
A (τA(t)) ⊗ 1B + 1A ⊗ dτB

dt Ĥ
τB
B (τB(t)) , (2.37)

where

Ĥ
τj

j (τj) = λjχj(τj)m̂j(τj) ⊗ ϕ̂(xj(τj)) . j ∈ {A,B} (2.38)
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Notice that we have three variables representing time: τA, τB, and t. Since the proper time
τj only parametrizes detector-j’s trajectory, we used a common time t to write the total
interaction Hamiltonian, Ĥ t

I (t). In what follows, we assume that the coupling constant λj
and the energy gap Ωj for the both detectors are the same: λ ≡ λA = λB, Ω ≡ ΩA = ΩB.

The time-evolution operator ÛI in the interaction picture is known to be

ÛI = Tt exp
(

−i
∫
R

dt Ĥ t
I (t)

)
, (2.39)

where Tt is a time-ordering symbol with respect to t [66, 67]. We emphasize that this
time-ordering is performed in terms of the common time t, rather than proper times τj
since t specifies both the detectors’ time. One can perform the Dyson series expansion by
assuming the coupling constant λ is small:5

ÛI = 1 + Û
(1)
I + Û

(2)
I + O(λ3) , (2.40a)

Û
(1)
I = −i

∫ ∞

−∞
dt Ĥ t

I (t) , (2.40b)

Û
(2)
I = −

∫ ∞

−∞
dt1

∫ t1

−∞
dt2 Ĥ t

I (t1)Ĥ t
I (t2) . (2.40c)

Let ρ0 be the initial state of the whole system (i.e., two UDW detectors and the field).
The final state ρtot for the total system is then

ρtot = ÛIρ0Û
†
I

= ρ0 + ρ(0,1) + ρ(1,0) + ρ(1,1) + ρ(2,0) + ρ(0,2) + O(λ3) , (2.41)

where ρ(i,j) = Û
(i)
I ρ0Û

(j)†
I . Since Û (j)

I contains λj, ρ(i,j) is a λi+j term in the expansion. In
particular, if one chooses the initial state to be ρ0 = ρAB,0 ⊗ |0⟩ ⟨0|, where |0⟩ is a vacuum
state of the quantum field, then the odd-power terms of λ vanish in ρtot [28]:

ρtot = ρ0 + ρ(1,1) + ρ(2,0) + ρ(0,2) + O(λ4) . (2.42)

Let us further assume that the detectors are both initially in their ground state: ρAB,0 =
|gA⟩ ⟨gA| ⊗ |gB⟩ ⟨gB|. One can then explicitly calculate each ρ(i,j) and obtains the final
density matrix of the detectors, ρAB, by tracing out the field degree of freedom: ρAB =

5In natural units, λ has units of [Length](n−3)/2 in (n + 1)-dimensional spacetime when detectors are
linearly coupled to the field. Therefore, one needs to make this a unitless quantity λ̃ := λσ−(n−3)/2, where
σ is a length scale, and then make an assumption that λ̃ ≪ 1.
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Trϕ[ρtot]. In the basis {|gAgB⟩ , |gAeB⟩ , |eAgB⟩ , |eAeB⟩}, namely, |gA, gB⟩ = [1, 0, 0, 0]⊤,
|gA, eB⟩ = [0, 1, 0, 0]⊤, |eA, gB⟩ = [0, 0, 1, 0]⊤, and |eA, eB⟩ = [0, 0, 0, 1]⊤, the final density
matrix for the detectors, ρAB, reads (see Appendix A)

ρAB =


1 − PA − PB 0 0 X∗

AB
0 PB C∗

AB 0
0 CAB PA 0

XAB 0 0 0

+ O(λ4) (2.43)

where

Pj = λ2
∫
R

dτj
∫
R

dτ ′
j χj(τj)χj(τ ′

j)e−iΩ(τj−τ ′
j)W (xj(τj), xj(τ ′

j)) , (2.44a)

CAB = λ2
∫
R

dτA

∫
R

dτB χA(τA)χB(τB)e−iΩ(τA−τB)W (xA(τA), xB(τB)) , (2.44b)

XAB = −λ2
∫
R

dτA

∫
R

dτB χA(τA)χB(τB)eiΩ(τA+τB)

×
[
Θ(t(τA) − t(τB))W (xA(τA), xB(τB)) + Θ(t(τB) − t(τA))W (xB(τB), xA(τA))

]
,

(2.44c)

where Θ(t) is the Heaviside step function and the quantity W (x, y) := ⟨0| ϕ̂(x)ϕ̂(y) |0⟩
is the Wightman function (i.e., vacuum two-point correlation function). The elements
Pj, j ∈ {A,B} are known as transition probabilities (or response functions) from the
ground |gj⟩ to excited |ej⟩ states. The off-diagonal elements XAB and CAB contribute to
bipartite entanglement and quantum mutual information, respectively.

We point out that one has to pay sufficient attention to the Heaviside step functions
in XAB. Notice that the integrals are defined in terms of the proper times τj, but the
argument of the Heaviside step function is of the form t(τ). This means that one needs to
know the relationship between the common time t and the proper times: t = t(τ). One
simple example is when the trajectory of each detector is given by xA = (γAτA,xA) and
xB = (γBτB,xB), where γj is the redshift factor. In this case,

Θ(t(τA) − t(τB)) = Θ(γAτA − γBτB) , (2.45)

and so the double integral containing this particular Heaviside step function reads∫
R

dτA

∫
R

dτB Θ(t(τA) − t(τB)) =
∫
R

dτA

∫ (γA/γB)τA

−∞
dτB . (2.46)

Of course, in general, the argument of the Heaviside step function could be very compli-
cated. In this thesis, this will be the case when we deal with detectors freely falling into a
black hole.

19



In summary, the calculations provided above state as follows. First, we initially (t →
−∞) prepare two UDW detectors in the ground state and assume that the field is in a
vacuum state. At this stage, there is no correlation at all. Then the detectors are turned
on according to their switching functions χj(τj) so that they locally interact with the
quantum field. At some point the interaction is turned off, and we obtain the final state
of the detectors ρAB, which may be entangled with each other.

2.2.3 Three detectors

Finally, consider three UDW detectors, A, B, and C. One can obtain the final density
matrix ρABC of the detectors in the same way as before. The interaction Hamiltonian
Ĥ t

I (t) for the three detectors is

Ĥ t
I (t)

= dτA

dt Ĥ
τA
A (τA(t)) ⊗ 1B ⊗ 1C + 1A ⊗ dτB

dt Ĥ
τB
B (τB(t)) ⊗ 1C + 1A ⊗ 1B ⊗ dτC

dt Ĥ
τC
C (τC(t)) .

(2.47)

Assume that the detectors are all initially in their ground states and the field is in the
vacuum |0⟩. The initial density operator is

ρ0 = |g⟩A ⟨g| ⊗ |g⟩B ⟨g| ⊗ |g⟩C ⟨g| ⊗ |0⟩ ⟨0| , (2.48)

and the time-evolution operator ÛI (2.39) gives us the final density operator:

ρABC = Trϕ[ρtot] = Trϕ[ÛIρ0Û
†
I ] . (2.49)

Introducing the basis {|gAgBgC⟩, |gAgBeC⟩, |gAeBgC⟩, |eAgBgC⟩, |gAeBeC⟩, |eAgBeC⟩, |eAeBgC⟩,
|eAeBeC⟩}, namely, |gAgBgC⟩ = [1, 0, 0, 0, 0, 0, 0, 0]⊤, |gAgBeC⟩ = [0, 1, 0, 0, 0, 0, 0, 0]⊤, · · · ,
ρABC takes the form [32]

ρABC =



r11 0 0 0 r∗
51 r∗

61 r∗
71 0

0 r22 r∗
32 r∗

42 0 0 0 r∗
82

0 r32 r33 r∗
43 0 0 0 r∗

83
0 r42 r43 r44 0 0 0 r∗

84
r51 0 0 0 r55 r∗

65 r∗
75 0

r61 0 0 0 r65 r66 r∗
76 0

r71 0 0 0 r75 r76 r77 0
0 r82 r83 r84 0 0 0 r88


, (2.50)
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with a constraint ∑i rii = 1. Here, r∗
ij is a complex conjugate of rij ∈ C and rii ∈ R.

Note that ρABC takes this form even before applying the perturbative expansion. For our
perturbative analysis, ρABC to the leading order in λ reads

ρABC =



1 − (PA + PB + PC) 0 0 0 X∗
BC X∗

AC X∗
AB 0

0 PC C∗
BC C∗

AC 0 0 0 0
0 CBC PB C∗

AB 0 0 0 0
0 CAC CAB PA 0 0 0 0

XBC 0 0 0 0 0 0 0
XAC 0 0 0 0 0 0 0
XAB 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


+ O(λ4) ,

(2.51)

where Pj, Cjk, and Xjk are the same as (2.44).
One can obtain the reduced bipartite density matrices ρAB, ρBC, and ρCA, by tracing

out one of the detectors:

ρjk =


1 − Pj − Pk 0 0 X∗

jk

0 Pk C∗
jk 0

0 Cjk Pj 0
Xjk 0 0 0

+ O(λ4) . (2.52)

To make sure that the density matrix ρABC given by (2.51) is an actual density matrix,
one needs to impose some conditions. That is, a density matrix has to be hermitian with
Tr[ρAB] = 1, and all the eigenvalues of ρABC are positive. The first two conditions are
already satisfied by construction, though the positivity of eigenvalues is yet to be imposed.
However, some of the eigenvalues of ρABC cannot be analytically obtained. Instead, if we
simplify this density matrix by setting

CAB = CBC = CCA ≡ C , (2.53a)
XAB = XBC = XCA ≡ X , (2.53b)
PA = PB = PC ≡ P , (2.53c)

and assuming C ∈ R, the positivity conditions read

P ≥ C , (2.54a)
2C + P ≥ 0 , (2.54b)
1
2

(
1 − 3P ±

√
(1 − 3P )2 + 12|X|2

)
≥ 0 . (2.54c)
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We will use these conditions in Sec. 2.4.2.
We point out that the calculations provided above are all within perturbation the-

ory. However, one can carry out non-perturbative approaches by sacrificing some aspects
of UDW detectors. As an example, the delta-switching approach [69] employs smeared
UDW detectors with χj(τj) = δ(τj/ηj), where ηj is a constant with a dimension of time.
Physically, such a switching function corresponds to an instantaneous interaction, i.e., the
detectors interact with the field just for a moment. Such treatment allows us to use a non-
perturbative analysis since it removes the time-ordering symbol, Tt, in the time-evolution
operator ÛI in (2.39). However, unlike other kinds of switching, two delta-switched de-
tectors are unable to extract entanglement from the field if each of them switches once
[69, 70, 71] (but other types of correlation can be extracted [72]). Here are other references
using the delta-switching approach: [73, 74, 75, 76, 77, 13, 78].

Another non-perturbative approach is the gapless detector approach (also known as the
degenerate detector approach), which sets the energy of a UDW detector to be Ω = 0. If one
instead uses the Magnus expansion of (2.39), the higher-order terms will all vanish because
of this. Note that this approach uses a pointlike UDW detector with an arbitrary switching
function χ(τ). As in the delta-switching approach, the gapless detectors also cannot extract
entanglement from the field [70, 71]. See other references such as [11, 12, 79].

2.3 Entanglement harvesting in a nutshell

As mentioned earlier, entanglement harvesting (or broadly, correlation harvesting) is a
protocol, where one employs multiple UDW detectors and extracts entanglement from a
quantum field. Specifically, initially uncorrelated UDW detectors become entangled at
the end of the operation. This is due to the fact that a quantum field is already an
entangled state even in its vacuum. Although the harvesting protocol primarily considers
a relativistic quantum field, a quantum mechanical system such as a chain of coupled
harmonic oscillators allows probes to be entangled. Here, we first show how entanglement
harvesting works by looking at a chain of harmonic oscillators, and then extend this to a
relativistic quantum field theory.

Consider a chain of coupled harmonic oscillators in one dimension, in which the system
is governed by a Hamiltonian,

Ĥtot = Ĥ0 + Ĥint , (2.55)
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where Ĥ0 is the free Hamiltonian and Ĥint is the interaction Hamiltonian of the form

Ĥ0 =
∑
i

Ĥ
(i)
0 ≡

∑
i

p̂2
i

2m , (2.56)

Ĥint = 1
2
∑
i

ks(x̂i+1 − x̂i)2 , (2.57)

where m and ks are the mass and spring constant of a harmonic oscillator. One notices
that the free and the interaction Hamiltonians do not commute, [Ĥ0, Ĥint] ̸= 0, which leads
to [Ĥtot, Ĥ0] ̸= 0, and so they cannot be simultaneously diagonalized. Consequently, the
harmonic chain is in an entangled state, even in its vacuum. To see this, let |0i⟩ be a
vacuum state of the i-th harmonic oscillator, Ĥ(i)

0 . Assuming each harmonic oscillator is
in the vacuum state, the fact [Ĥtot, Ĥ0] ̸= 0 leads to

|0⟩ ≠
⊗
k

|0k⟩ , (2.58)

where |0⟩ is the vacuum state of the total Hamiltonian. Then, the density matrix of a joint
system of the i-th and j-th sites, ρi,j is a non-separable state:

ρi,j = Trk ̸=i,j[|0⟩ ⟨0|] (2.59)
̸= Trk ̸=i,j

[
|01, 02, · · ·⟩ ⟨01, 02, · · ·|

]
(2.60)

= |0i⟩ ⟨0i| ⊗ |0j⟩ ⟨0j| . (2.61)

Since this is true for any other sites, we say the chain is entangled even in a vacuum state
due to [Ĥtot, Ĥ0] ̸= 0. Therefore, if one brings a probe (such as a UDW detector) and lets it
interact with one of the sites, the probe and the chain become entangled. Subsequently, if
another probe interacts with a different site, the second probe entangles with the chain and
hence, the two probes entangle with each other. Note that this is due to the pre-existent
entanglement in the chain.

This argument can be extended to quantum fields since a quantum field can be thought
of as a continuum limit of a harmonic chain [80]. In addition, the fact that QFT is compat-
ible with Relativity allows us to examine how causality affects entanglement harvesting.
For example, two causally disconnected UDW detectors still can be entangled, thanks to
the pre-existed entanglement in the field. One can mathematically see this from the Wight-
man function [30]. Recall that the Wightman function W (x, x′) can be decomposed into
the Pauli-Jordan and the Hadamard functions [see (2.24)]:

W (x, x′) = 1
2WH(x, x′) + i

2WPJ(x, x′) . (2.62)
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The Pauli-Jordan function, WPJ(x, x′), is the commutator part in the Wightman function
(i.e., WPJ(x, x′) ∼ ⟨[ϕ̂(x), ϕ̂(x′)]⟩ρ). Therefore, if two points x and x′ are spacelike then
micro-causality tells you that WPJ(x, x′) = 0. In the context of entanglement harvesting,
this tells you that if two UDW detectors cannot communicate at all, then WPJ(x, x′) does
not contribute at all. However, the Hadamard function, WH(x, x′), is non-vanishing even
if x, x′ are spacelike, and so two causally disconnected detectors are able to be entangled.
Of course, if detectors can communicate through a quantum field then the Pauli-Jordan
function also contributes to Pj, XAB, and CAB in (2.43).

We now comment on the term ‘harvesting’ in the literature. Some papers implicitly
claim that entanglement is ‘harvested’ if two detectors entangle at the end of a procedure,
regardless of how much of the entanglement is coming from WH and WPJ. In this sense,
their claim can be summarized as ‘entanglement is said to be harvested if it comes from the
Wightman function W (x, x′)’. On the other hand, Ref. [30] claims that ‘entanglement is
said to be harvested if it comes purely from the Hadamard function WH(x, x′)’. This is due
to the fact that the Pauli-Jordan function is state-independent; Since it does not depend
on the state of the field ρϕ, detectors still can be entangled even if ρϕ does not contain
any entanglement, which defeats the idea of ‘extraction of the pre-existing entanglement
from a quantum field’. In contrast, the Hadamard function is state-dependent, so the only
way to acquire entanglement from the entanglement pre-existing in the field is through this
function.

For this reason, it is important to know where the correlation comes from. First, let us
define the term ‘communication’ or ‘signaling’ as follows (see also [81]).
Terminology: communication and signaling
We say detector-A is communicating or signaling to detector-B if the Pauli-Jordan contri-
bution in CAB and XAB in the density matrix ρAB is non-zero. As a physical interpretation,
detectors can communicate by exchanging field quanta.

Then, we define ‘harvesting’ as follows.
Terminology: harvesting
We say that a correlation such as entanglement is harvested or extracted from a quantum
field if the resulting entanglement between two detectors has the non-zero Hadamard con-
tribution in CAB and XAB. That is, entanglement can be harvested even with the help of
communication as long as the Hadamard contribution is non-vanishing. In particular, if
two detectors cannot signal to each other (i.e., zero Pauli-Jordan contribution) then we say
the correlation is genuinely harvested. Moreover, we say that the harvested entanglement is
assisted by communication to emphasize that the Pauli-Jordan function is contributing to
the entanglement harvesting, and if the Hadamard contribution is zero then the obtained
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entanglement is not harvested.
The rationale for the terminology for ‘harvesting’ is as follows. The Hadamard function

contributes to the entanglement between two detectors most of the time. If the detectors
cannot communicate at all then only the Hadamard function gives rise to the extracted
entanglement; otherwise, both functions could contribute to the entanglement. It “could”
be so since it is possible to find a case where only the Pauli-Jordan part contributes to the
entanglement [30]. However, this is not always the case. This indicates that the Hadamard
and Pauli-Jordan contributions are not mutually exclusive in general. Therefore, it is
reasonable to give the name ‘harvesting’ to the phenomenon in which particle detectors
become entangled whenever the Hadamard contribution in XAB is non-zero, and partic-
ularly call ‘genuine harvesting’ when entanglement is purely coming from the Hadamard
function.6

To illustrate this point, consider two detectors A and B in (3+1)-dimensional Minkowski
spacetime as depicted in Fig. 2.1. We fix detector-A’s timing of interaction with the field
(red curve) and consider three cases for detector-B’s interaction (blue curves). Assuming
a massless scalar field, it is known that the Pauli-Jordan function is non-vanishing if two
points x, x′ are lightlike-separated. Moreover, the Hadamard contribution becomes zero
(at least for a Gaussian switching) when the detectors are exactly lightlike separated for
a large detector separation [30]. Note that quantum mutual information behaves in a
slightly different way. One can numerically check that both Hadamard and Pauli-Jordan
parts almost equally contribute to the mutual information when detectors are lightlike
separated, and so the region in which the Hadamard contribution vanishes (the grey region
in Fig. 2.1) does not exist.

If detector-B interacts with the field during the case (i), there is no way that two
detectors exchange quanta, in which case the Wightman function only depends on the
Hadamard part. This is also true for case (iii), and we say that the detectors genuinely
harvest entanglement. On the other hand, case (ii) indicates that detector-B receives
quanta emitted from detector-A. Mathematically, this can be seen from the fact that WPJ ̸=
0. The harvested entanglement comes from both the Hadamard and the Pauli-Jordan
functions. In this case, we say the harvested entanglement is assisted by communication.

6If this were a mutually exclusive property such like “Hadamard-only” or “Pauli-Jordan-only” then it
would be reasonable to call the former ‘harvesting’ and the latter ‘non-harvesting’.
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W = WH

W = WH

W = WH +WPJ

(i)

(ii)

(iii)
W = WPJ

Figure 2.1: A spacetime diagram representing an entanglement harvesting protocol per-
formed by detector-A (red) and B (blue). The red and blue stripes indicate the interaction
of the detectors with the field. Based on [30], the green region suggests the domain of
communication, i.e., if detector-B enters this region during the interaction, it receives a
signal from detector-A [scenario (ii)]. The grey region, on the other hand, is dominated
by the Pauli-Jordan function and the Hadamard contribution is zero if the center of B’s
switching is in this region. Outside of these regions there is no Pauli-Jordan contribution
[e.g., cases (i) and (iii)].
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2.4 Correlation among UDW detectors

We are particularly interested in the correlation between two or three detectors extracted
from the field. We will focus on two correlations: quantum mutual information (the total
correlation including classical and quantum) and entanglement, which is contained in the
quantum mutual information.

For bipartite qubit systems in a mixed state, entanglement between the two qubits can
be quantified by using the so-called concurrence or negativity of entanglement. In addition,
entanglement in tripartite qubit systems in a pure state can be examined by the π-tangle,
which is defined by using the negativity of entanglement. See [82] for a review.

2.4.1 Correlations between two qubits

Quantum mutual information

Quantum mutual information is the total correlation including both classical and quantum.
Therefore, entanglement is part of quantum mutual information.

Let SAB be the von Neumann entropy of the systems A and B, which is defined by [83]

SAB := − Tr[ρAB ln ρAB] . (2.63)

One can also introduce the von Neumann entropy of the subsystems by SA := − Tr[ρA ln ρA],
where ρA = TrB[ρAB]. The quantum mutual information between systems A and B, de-
noted by IAB, is then defined as [83]

IAB := SA + SB − SAB . (2.64)

Quantum mutual information is non-negative, IAB ≥ 0, with equality if and only if SA +
SB = SAB. Quantum mutual information is said to be the total correlation since it is the
upper bound of a correlation function and so if IAB = 0 then it is guaranteed that no
correlations exist between A and B [84].

In our particular case where the density matrix ρAB is given by (2.43), IAB up to second
order in λ is known to be [28]

IAB = L+ ln L+ + L− ln L− − PA lnPA − PB lnPB + O(λ4) , (2.65)

27



where

L± := 1
2

(
PA + PB ±

√
(PA − PB)2 + 4|CAB|2

)
. (2.66)

One can easily check that mutual information vanishes when |CAB| = 0. In addition, from
the condition PAPB ≥ |CAB|2 [29], if one of the transition probabilities are Pj = 0 then
|CAB| = 0, thereby IAB = 0.

It is also instructive when two detectors have identical transition probabilities. Let us
consider the case when P ≡ PA = PB, which leads us to L± = P ±|CAB|. In the case where
the transition probability P is large, P ≫ |CAB|, mutual information becomes negligible
IAB ≈ 0 since L± ≈ P . This observation will be useful when we examine the quantum
mutual information of detectors near an event horizon since their transition probabilities
become large.

Concurrence

Concurrence [85, 86] is a measure of bipartite entanglement based on the entanglement of
formation [87] and its minimization. Here, we present the basic idea behind concurrence.

Suppose we have a density matrix ρAB of a joint system HA ⊗ HB. We can perform
a pure-state decomposition of ρAB as ρAB = ∑

i pi |ψi⟩ ⟨ψi|. Then, the entanglement of
formation E(ρAB) is defined as

E(ρAB) := min
{pi,|ψi⟩}

∑
i

piS(ψi) , (2.67)

where S(ψi) is the von Neumann entropy of the reduced density matrix of |ψi⟩ ⟨ψi|, i.e.,
TrA[|ψi⟩ ⟨ψi|] or equivalently TrB[|ψi⟩ ⟨ψi|]. The entanglement of formation (2.67) is thus
the minimization of the average of all possible pure-state decompositions of ρAB.

Although this is not so practical in general since one has to find all possible decom-
positions and then minimize their average, the expression for E(ρAB) can be found if
dim(HA) × dim(HB) = 2 × 2 (i.e., a two-qubit system). To see how this works, consider
a pure state |ψ⟩ ∈ HA ⊗ HB. People tend to use a basis {|00⟩ , |01⟩ , |10⟩ , |11⟩}, which
is constructed from the eigenvectors of σ̂z, but it is known that the so-called magic basis
{|e1⟩ , |e2⟩ , |e3⟩ , |e4⟩} is useful in this case. The magic basis is defined by

|e1⟩ = 1
2(|00⟩ + |11⟩) , |e2⟩ = i

2(|00⟩ − |11⟩) , |e3⟩ = i
2(|01⟩ + |10⟩) , |e4⟩ = 1

2(|01⟩ − |10⟩) ,
(2.68)
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and they are orthonormal to each other. We then change the basis to the magic basis and
write |ψ⟩ as

|ψ⟩ =
4∑
i=1

αi |ei⟩ . (2.69)

The entanglement of formation can be written as

E(|ψ⟩) = Hbin

(1
2 + 1

2
√

1 − C2(|ψ⟩)
)
, (2.70)

where Hbin(x) := −x log2 x − (1 − x) log2(1 − x) is the binary Shannon entropy [83], and
C(|ψ⟩) ∈ [0, 1] is the concurrence defined by

C(|ψ⟩) :=
∣∣∣∣∣

4∑
i=1

α2
i

∣∣∣∣∣ . (2.71)

The concurrence can be thought of as an entanglement measure since the entanglement of
formation monotonically increases with C.

The point one should be aware of is that the concurrence is written as a sum of the
squares of coefficients of |ψ⟩ in the magic basis. Therefore, once ρAB is given in the σ̂z-basis,
one should change the basis to the magic basis and compute the concurrence. It turns out
that one can make use of σ̂y to compute C easily in the σ̂z-basis. To see this, we use the
fact that the concurrence can be written as C(|ψ⟩) = | ⟨ψ∗|ψ⟩ |, where |ψ∗⟩ = ∑

i α
∗
i |ei⟩.7

Suppose |ψ⟩ is given in the σ̂z-basis, such as |ψ⟩ = c00 |00⟩ + c01 |01⟩ + c10 |10⟩ + c11 |11⟩.
We then change the basis to {|ei⟩} and then take a complex conjugate, |ψ∗⟩. One can check
that the resulting concurrence, C(|ψ⟩) = | ⟨ψ∗|ψ⟩ | is equivalent to the expression | ⟨ψ|ψ̃⟩ |,
where |ψ̃⟩ is constructed as follows. Instead of changing the basis to the magic basis, take
a complex conjugate so that |ψ∗⟩ = c∗

00 |00⟩ + c∗
01 |01⟩ + c∗

10 |10⟩ + c∗
11 |11⟩, and then apply

σ̂y ⊗ σ̂y:

|ψ̃⟩ := (σ̂y ⊗ σ̂y) |ψ∗⟩ . (2.72)

The nice thing about the equality, C(|ψ⟩) = | ⟨ψ|ψ̃⟩ |, is that applying σ̂y allows us to
compute C in the σ̂z-basis, and this is much easier than changing the basis to the magic
basis.

7Notice that the expression for the concurrence (2.71) is not
∑

i |αi|2.
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This expression allows us to generalize the concurrence to that of mixed states: C(ρAB).
Define (in the σ̂z-basis)

ρ̃AB := (σ̂y ⊗ σ̂y)ρ∗
AB(σ̂y ⊗ σ̂y) , (2.73)

which is the mixed-state generalization of |ψ̃⟩. Since C(|ψ⟩) = | ⟨ψ|ψ̃⟩ | can be seen as
a fidelity [83] between |ψ⟩ and |ψ̃⟩, we introduce a Hermitian operator

√√
ρABρ̃AB

√
ρAB.

The concurrence of ρAB is found to be [86]

C(ρAB) := max{0, w1 − w2 − w3 − w4} , (w1 ≥ w2 ≥ w3 ≥ w4) (2.74)

where wi are the eigenvalues of the aforementioned Hermitian operator, (or equivalently,
the square roots of the eigenvalues of ρABρ̃AB).

For a density matrix of the form

ρAB =


r11 0 0 r14
0 r22 r23 0
0 r∗

23 r33 0
r∗

14 0 0 r44

 , (2.75)

which is known as the X-state, wi read

wi ∈ {√
r11r44 ± |r14|,

√
r22r33 ± |r23| }, (2.76)

and so the concurrence is either

C(ρAB) = 2 max{0, |r14| − √
r22r33} , (when w1 = √

r11r44 + |r14|) (2.77)
C(ρAB) = 2 max{0, |r23| − √

r11r44} . (when w1 = √
r22r33 + |r23|) (2.78)

It turns out that our density matrix (2.43) always satisfies (2.77) and so

CAB ≡ C(ρAB) = 2 max{0, |XAB| −
√
PAPB} . (2.79)

It provides a nice interpretation for XAB and Pj. The off-diagonal element XAB is respon-
sible for entanglement since two systems A and B entangle if and only if |XAB| > √

PAPB.
Likewise, the transition probabilities Pj can be thought of as noise since they tend to
prevent the systems from being entangled.
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Negativity

The idea behind the negativity of entanglement [88] is the so-called Peres-Horodecki cri-
terion [89, 90]. The Peres separability criterion [89], also known as the positive partial
transpose (PPT) criterion, states that if a state ρ is separable, then all the eigenvalues of
a partial-transposed density matrix, ρ⊤B , are positive. By contraposition, this also means
that if at least one of the eigenvalues of a partial-transposed density matrix, ρ⊤B , is negative
then the state ρ is entangled. Soon after, the Horodecki family showed [90] that the above
statement becomes a necessary and sufficient condition for dim(HA) × dim(HB) = 2 × 2
and 2 × 3 cases, which we refer to the Peres-Horodecki criterion [82]. The negativity
of entanglement utilizes this fact and quantifies entanglement by computing the negative
eigenvalues of ρ⊤B .

Suppose the system HA ⊗ HB is 2 × 2. Let us perform a partial transpose ⊤B to the
subsystem HB. This is a map

⊤B : |aA⟩ ⟨bA| ⊗ |µB⟩ ⟨νB| 7→ |aA⟩ ⟨bA| ⊗ |µB⟩ ⟨νB|⊤B := |aA⟩ ⟨bA| ⊗ |νB⟩ ⟨µB| . (2.80)

The Peres-Horodecki criterion states that ρAB is entangled if and only if there exists at
least one negative eigenvalue of ρ⊤B

AB. Let λi, i ∈ {1, 2, 3, 4} be the eigenvalues of ρ⊤B
AB.

There are four of them since ρAB (and thereby ρ⊤B
AB) is a 4 × 4 matrix. The negativity of

entanglement NA(B) is given by [88]

NA(B) := ||ρ⊤B
AB|| − 1

2 =
∣∣∣∣∣∣
∑
λi<0

λi

∣∣∣∣∣∣ . (2.81)

Here ||ρ⊤B
AB|| := Tr |ρ⊤B

AB| is the trace norm of an operator ρ⊤B
AB. This definition is telling us

that the negativity is the (absolute value of) sum of all possible negative eigenvalues of
ρ⊤B

AB, and if there are no such eigenvalues, entanglement is zero, which is consistent with
the PPT criterion.

Let us restrict our density matrix ρAB to the X-state (2.75). The partial transposition
⊤B swaps the off-diagonal elements in ρAB:

ρ⊤B
AB =


r11 0 0 r23
0 r22 r14 0
0 r∗

14 r33 0
r∗

23 0 0 r44

 , (2.82)
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which has the following eigenvalues.

λ1 = r22 + r33

2 −
√(

r22 − r33

2

)2
+ |r14|2 , (2.83a)

λ2 = r22 + r33

2 +
√(

r22 − r33

2

)2
+ |r14|2 , (2.83b)

λ3 = r11 + r44

2 −
√(

r11 − r44

2

)2
+ |r23|2 , (2.83c)

λ4 = r11 + r44

2 +
√(

r11 − r44

2

)2
+ |r23|2 . (2.83d)

Note that the diagonal elements rii are positive-reals and the off-diagonal elements are
complex numbers. Therefore, λ1 and λ3 are the only possible eigenvalues to be negative.
The conditions to be negative are [29]

λ1 < 0 ⇔ |r14|2 > r22r33 , (2.84)
λ3 < 0 ⇔ |r23|2 > r11r44 . (2.85)

Since the only possible negative eigenvalues are λ1 and λ3, we will use the following formula.
NA(B) = |min{0, λ1} + min{0, λ3}| . (2.86)

It turns out that our perturbative density matrix (2.43) has only one negative eigenvalue
λ1. Therefore, the negativity for (2.43) is

NA(B) =
√(

PB − PA

2

)2
+ |XAB|2 − PB + PA

2 . (2.87)

Note that if two detectors are identical and have PA = PB, then the negativity can be
related to the concurrence as NA(B) = CAB/2. From this, one can see that the negativity
has a range 0 ≤ NA(B) ≤ 1/2 since 0 ≤ CAB ≤ 1. Indeed, concurrence and negativity are
related by [91] √

(1 − CAB)2 + C2
AB − (1 − CAB) ≤ 2NA(B) ≤ CAB . (2.88)

2.4.2 Correlation in three qubits

The harvested tripartite entanglement can be quantified by the π-tangle [92]. Consider
three qubits A, B, and C. The π-tangle is defined by using the negativity:

π := πA + πB + πC

3 , (2.89)
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where

πA = N 2
A(BC) − N 2

A(B) − N 2
A(C) , (2.90a)

πB = N 2
B(AC) − N 2

B(A) − N 2
B(C) , (2.90b)

πC = N 2
C(AB) − N 2

C(B) − N 2
C(A) , (2.90c)

and by definition,

NA(BC) = ||ρ⊤A
ABC|| − 1

2 , NB(CA) = ||ρ⊤B
ABC|| − 1

2 , NC(AB) = ||ρ⊤C
ABC|| − 1

2 . (2.91)

Note that NA(BC) does not reflect the entanglement between detector-A and the rest, (BC),
since it is dim(HA) × dim(HBC) = 2 × 4 and therefore, only the PPT criterion is valid. In
other words, if the negativity is positive, NA(BC) > 0, then there is entanglement between A
and (BC), whereas NA(BC) = 0 does not guarantee that there does not exist entanglement
between A and (BC); it only provides the lower bound for entanglement.

Nevertheless, the π-tangle (2.89) quantifies the tripartite entanglement in the system
when ρABC is a pure state. This is supported by a monogamy relation called the Coffman-
Kundu-Wootters (CKW) inequality for negativity [92]:

N 2
A(B) + N 2

A(C) ≤ N 2
A(BC) . (2.92)

In general, however, this inequality will not hold when ρABC is mixed. In such a case, the
π-tangle defined in (2.89) and (2.90) is only a lower bound for the tripartite entanglement.
To obtain genuine tripartite entanglement for a mixed state, one needs to generalize the
inequality as [92]

N 2
A(B) + N 2

A(C) ≤ min
[
N 2

A(BC)

]
, (2.93)

where the minimization is performed over all possible pure-state decompositions [93, 92].
Concretely, suppose ρABC can be decomposed into ρABC = ∑

i pi |ψi⟩ ⟨ψi|. Then the
expectation value of N 2

A(BC) can be written as

⟨N 2
A(BC)⟩ψ :=

∑
i

piN 2
A(BC)(ψi) , (2.94)

where N 2
A(BC)(ψi) is the square of negativity of the pure state |ψi⟩ ∈ HA ⊗ HB ⊗ HC. Since

the CKW inequality (2.92) is satisfied for a pure state |ψi⟩, we have

N 2
A(B)(ψi) + N 2

A(C)(ψi) ≤ N 2
A(BC)(ψi) . (2.95)
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The left-hand side of the inequality is understood as

NA(B)(ψi) := || TrC[|ψi⟩ ⟨ψi|]⊤A|| − 1
2 . (2.96)

The weighted-sum, ∑i pi, of this inequality reads∑
i

piN 2
A(B)(ψi) +

∑
i

piN 2
A(C)(ψi) ≤

∑
i

piN 2
A(BC)(ψi)(= ⟨N 2

A(BC)⟩ψ) . (2.97)

Since negativity has the convexity property, N (∑i piρ) ≤ ∑
i piN (ρ), one can apply this to

the left-hand side of the inequality. The resulting inequality becomes

N 2
A(B)(ρAB) + N 2

A(C)(ρAC) ≤ ⟨N 2
A(BC)⟩ψ , (2.98)

where the left-hand side is understood as

NA(B)(ρAB) := || TrC[ρABC]⊤A|| − 1
2 . (2.99)

This is the CKW inequality for a pure-state decomposition. However, the pure-state
decomposition of ρABC is not unique and there are many ways to decompose it (e.g.,
ρABC = ∑

i qi |ϕi⟩ ⟨ϕi|). This means the right-hand side of (2.98) is not unique for a given
ρABC. We choose the decomposition that minimizes the right-hand side of (2.98), which is
(2.93). We also remark that the π-tangle for a mixed state ρABC is the lower bound of the
‘pure-state decomposed π-tangle.’ This is due to the fact that the negativity is a convex
function and so the right-hand side of (2.98) has the following relationship:

∀{pi, |ψi⟩} : ⟨N 2
A(BC)⟩ψ ≥ N 2

A(BC)(
∑
i

pi |ψi⟩ ⟨ψi|) = N 2
A(BC)(ρABC) . (2.100)

By subtracting the left-hand side of (2.98), we obtain πA(ρABC) ≤ πA({pi, |ψi⟩}), where

πA({pi, |ψi⟩}) := ⟨N 2
A(BC)⟩ψ − N 2

A(B)(ρAB) − N 2
A(C)(ρAC) . (2.101)

Since minimization of negativity is tedious, we will use the π-tangle (2.89) as a lower
bound for mixed tripartite entanglement. However, one needs to keep in mind that the
π-tangle could be negative due to the violation of the CKW inequality (2.92) even for
non-perturbative approaches.
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Let us now consider an explicit form of the π-tangle for our density matrix ρABC in
(2.51). The bipartite negativities, Nj(k), are already known as (2.87). However, the tri-
partite negativities, Nj(kl), have slightly complicated forms. As a concrete example, let us
compute NA(BC). The partial transpose ⊤A yields

ρ⊤A
ABC =



1 − (PA + PB + PC) 0 0 0 X∗
BC CAC CAB 0

0 PC C∗
BC XAC 0 0 0 0

0 CBC PB XAB 0 0 0 0
0 X∗

AC X∗
AB PA 0 0 0 0

XBC 0 0 0 0 0 0 0
C∗

AC 0 0 0 0 0 0 0
C∗

AB 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


+ O(λ4) ,

(2.102)

and its eigenvalues are

eigen(ρ⊤A
ABC) = {0, 0, 0, ϱ±

1 , ϱ2} , (2.103)

where

ϱ±
1 := 1

2

(
1 − PA − PB − PC ±

√
(1 − PA − PB − PC)2 + 4(|CAB|2 + |CAC|2 + |XBC|2)

)
,

(2.104)

and ϱ2 are the three solutions to the following cubic equation.

ϱ3
2 − (PA + PB + PC)ϱ2

2 + (PA + PB + PC − |CBC|2 − |XAB|2 − |XAC|2)ϱ2

+ PA|CBC|2 + PB|XAC|2 + PC|XAB|2 − PAPBPC − 2Re[CBCX
∗
ABXAC] = 0 . (2.105)
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For ϱ±
1 , because λ̃2 ≪ 1,

ϱ±
1 = 1

2

1 − PA − PB − PC ± (1 − PA − PB − PC)

√√√√1 + 4(|CAB|2 + |CAC|2 + |XBC|2)
(1 − PA − PB − PC)2


(2.106)

≃ 1
2

[
1 − PA − PB − PC ± (1 − PA − PB − PC)

(
1 + 2(|CAB|2 + |CAC|2 + |XBC|2)

(1 − PA − PB − PC)2

)]
(2.107)

=


1 − PA − PB − PC + |CAB|2 + |CAC|2 + |XBC|2

1 − PA − PB − PC
≈ 1

−|CAB|2 + |CAC|2 + |XBC|2
1 − PA − PB − PC

≈ −(|CAB|2 + |CAC|2 + |XBC|2) = O(λ4)
. (2.108)

Therefore, ϱ±
1 contribute only to the negativity in O(λ4).

Since the solutions to the cubic equation above are complicated in general, we are
interested in the simplest scenario where

CAB = CBC = CCA ≡ C , (2.109a)
XAB = XBC = XCA ≡ X , (2.109b)
PA = PB = PC ≡ P . (2.109c)

Such a simplification is possible if the detectors are placed in an appropriate way. An
equilateral triangle configuration in Minkowski spacetime is one example, as long as the
detectors are identical and they switch at the same time. Another example that is relevant
to this thesis is an equilateral triangle configuration in a BTZ black hole spacetime. In
this case, the center of the black hole is aligned with the center of the equilateral triangle,
so that each detector experiences the same redshift effect from the black hole. We will
describe this in Ch. 5 in more detail.

In the simplified scenario described above, the three solutions to the quartic equation
are

ϱ2 = P − C ,
1
2

(
C + 2P ±

√
C2 + 8|X|2

)
, (2.110)

and so the negativities can be simply written as [32]

NA(BC) = NB(CA) = NC(AB) = max
0,

√
C2 + 8|X|2

2 − C

2 − P

+ O(λ4) , (2.111)

NA(B) = NA(C) = NB(C) = NB(A) = NC(A) = NC(B) = max{0, |X| − P} + O(λ4) . (2.112)
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Here, we used the fact that P − C ≥ 0 from (2.54). The π-tangle (2.89) is then

π = max
0,

√
C2 + 8|X|2

2 − C

2 − P


2

− 2 max{0, |X| − P}2 + O(λ6) . (2.113)

Unlike the bipartite negativity, which is positive if |X| > P , the tripartite negativity
(and so the π-tangle) also depends on C. Also note that the π-tangle can be positive
even when the bipartite entanglement is 0. Such tripartite entanglement with vanishing
bipartite entanglement is known as the Greenberger-Horne-Zeilinger (GHZ) state [94].
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Chapter 3

Extraction of correlation by
uniformly accelerated particle
detectors

This thesis aims to show how Unruh and Hawking effects affect the correlation harvesting
protocols. In particular, a single particle detector under uniform acceleration responds as if
it is at rest in a thermal bath. This is due to the fact that the Wightman function along the
accelerating trajectory takes the same form as that of a detector at rest in a thermal bath.
On the other hand, if two detectors are uniformly accelerating in the Minkowski vacuum,
the harvested entanglement behaves in a very different way compared to the case of two
inertial detectors in a thermal bath. In this chapter, we examine the mutual information
harvesting protocol with two uniformly accelerating detectors (see Fig. 1.2) and show how
it is different from the thermal bath scenario.

This chapter is organized as follows. We first specify three kinds of detector trajec-
tories, parallel, anti-parallel, and perpendicular, and obtain the corresponding Wightman
functions in Sec. 3.1. We then show the mutual information harvested by these detectors
and compare this to the result provided by [1] in Sec. 3.2.

3.1 Accelerating detectors’ trajectories

Let us consider two uniformly accelerating detectors in (3 + 1)-dimensional Minkowski
spacetime. The quantum scalar field ϕ̂(x) is assumed to be massless (m = 0) and minimally
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coupled (ξ = 0) in Eq. (2.1). One can perform a mode expansion as

ϕ̂(x) =
∫
R3

d3k√
(2π)32|k|

(
âke

−i|k|t+ik·x + â†
ke

i|k|t−ik·x
)
. (3.1)

See Sec. 2.1.2 for a detail. The vacuum state associated with these mode functions is the
Minkowski vacuum |0M⟩ satisfying âk |0M⟩ = 0 for all k. The creation and annihilation
operators obey the canonical commutation relations,

[âk, â
†
k′ ] = δ(3)(k − k′) , (3.2a)

[âk, âk′ ] = 0 , [â†
k, â

†
k′ ] = 0 . (3.2b)

The Wightman function in the Minkowski vacuum state |0M⟩ is then known to be

W (x, x′) = lim
ϵ→0+

− 1
4π2

1
(t− t′ − iϵ)2 − |x − x′|2 , (3.3)

where ϵ is a UV regulator.
In this chapter, we wish to compute the mutual information harvested by two uniformly

accelerated UDW detectors. Therefore, from (2.65), we need to have Pj and CAB. To
evaluate these density matrix elements, one needs to specify the trajectories of detectors
A and B in this Wightman function. In what follows, we will consider three different
acceleration scenarios: parallel, anti-parallel, and perpendicular.

Parallel acceleration

The parallel acceleration scenario refers to the case where a pair of UDW detectors A and
B is accelerating in the same direction along x. In particular, their spatial separation on
the t = const slice is L for all times, as shown in Fig. 3.1(a). The detectors’ trajectories
can be written as

xA =
{
t = 1

a
sinh(aτA), x = 1

a
[cosh(aτA) − 1] + L

2 , y = 0, z = 0
}
, (3.4a)

xB =
{
t = 1

a
sinh(aτB), x = 1

a
[cosh(aτB) − 1] − L

2 , y = 0, z = 0
}
, (3.4b)
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Figure 3.1: Three configurations of acceleration: (a) parallel, (b) anti-parallel, and (c)
perpendicular. The red and blue stripes indicate the interaction duration of detectors A
and B, respectively. In all cases, the detectors are separated by L at t = 0, at which their
Gaussian switching peaks. Note that the separation in the parallel configuration is L for
all times.

where a (≥ 0) is the proper acceleration of a detector. The Wightman functions (3.3)
along these trajectories are

Wa(xj(τj), x′
j(τ ′

j)) = − a2

16π2
1

sinh2[a(τj − τ ′
j)/2 − iϵ]

, j ∈ {A,B} (3.5)

Wpara(xA(τA), xB(τB)) =

− a2

4π2
1

[sinh(aτA) − sinh(aτB) − iϵ]2 − | cosh(aτA) − cosh(aτB) + aL|2 , (3.6)

where the subscript a indicates that the Wightman function is defined along an accelerated
trajectory. Here, limϵ→0+ is implied. The first Wightman function (3.5) is defined along a
single trajectory, whereas the second one (3.6) is along the two trajectories of A and B.

As explained before, we employ a Gaussian switching function. In this chapter, we will
use

χj(τj) = e−τ2
j /2σ2

, (3.7)

where σ(> 0) is the typical duration of interaction, or in other words, the typical width of
the Gaussian function. Note that the peak of the Gaussian is at t = 0.
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Let us consider the transition probabilities PA and PB. For the Gaussian switching
(3.7), the transition probability Pj can be simplified to [38]

Pj = λ2

4π [e−Ω2σ2 − √
πΩσerfc(Ωσ)]︸ ︷︷ ︸

at rest

+λ2aσ

4π3/2

∫ ∞

0
ds cos(βs)e−αs2(sinh2 s− s2)

s2 sinh2 s
, (3.8)

where β ≡ 2Ω/a, α ≡ 1/(aσ)2, and erfc(x) := 1 − erf(x) is the so-called complementary
error function, and erf(x) is the error function defined by

erf(x) := 2√
π

∫ x

0
ds e−s2

. (3.9)

We remark that the first term in Pj is the transition probability of a detector at rest
in (3 + 1)-dimensional Minkowski spacetime. Moreover, this expression for Pj is the same
for both A and B (i.e., PA = PB) since their trajectories are the same up to the spatial
translation.

Anti-parallel acceleration

The anti-parallel configuration, shown in Fig. 3.1(b), is the case where two detectors ac-
celerate toward each other and after momentarily stopping (at which point the detector
separation is L), they accelerate away. Unlike the parallel acceleration configuration, the
distance between the detectors is not fixed. In addition to the parallel configuration, we
consider the anti-parallel and perpendicular configurations to make a comparison to the
entanglement harvesting scenario examined in [38].

The trajectories are given by

xA =
{
t = 1

a
sinh(aτA), x = 1

a
[cosh(aτA) − 1] + L

2 , y = 0, z = 0
}
, (3.10a)

xB =
{
t = 1

a
sinh(aτB), x = −1

a
[cosh(aτB) − 1] − L

2 , y = 0, z = 0
}
. (3.10b)

The Wightman function along a single detector trajectory is the same as the parallel
acceleration case (3.5), and so is the transition probability Pj (3.8). On the other hand, the
Wightman function along both the trajectories, W (xA, xB), differs from (3.6) and therefore,
the off-diagonal elements CAB and XAB in the density matrix (2.43) are different from
those in the parallel case. Note that the detectors, as long as L is small, can in general
communicate with each other by exchanging field quanta when the detectors are lightlike
separated. See Fig. 3.1(b).
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Perpendicular acceleration

As depicted in Fig. 3.1(c), the perpendicular acceleration configuration is similar to the
anti-parallel configuration, but now detectors are traveling along different axes x and y.
That is, detector-A and B accelerate along y and x axes, respectively; they accelerate
toward and away from each other with a 90◦ angle. The minimum distance between them
at which they stop momentarily is L. The trajectories are

xA =
{
t = 1

a
sinh(aτA), x = 0, y = 1

a
[cosh(aτA) − 1], z = 0

}
, (3.11a)

xB =
{
t = 1

a
sinh(aτB), x = 1

a
[cosh(aτB) − 1] + L, y = 0, z = 0

}
. (3.11b)

As before, the transition probability Pj of each detector is the same as (3.8).

3.2 Results: thermality and Unruh effect

We now examine the correlation harvested by two uniformly accelerated UDW detectors
in the Minkowski vacuum. The main message of this section is that, although a single
accelerating detector observes thermality, the correlation between two detectors after the
interaction is very different from that of inertial detectors in a thermal bath. To show this,
we first revisit the correlation harvesting protocol by two detectors at rest in a thermal
bath in [1]. We then provide our results.

3.2.1 Review: harvesting correlations from a thermal bath

Here, we briefly review [1] and obtain their results summarized in Fig. 1.2.
Consider (n + 1)-dimensional Minkowski spacetime with a massive quantum field in a

KMS state ρth. One can calculate the thermal Wightman function at the inverse temper-
ature β as

Wth(x, x′) = Wvac(x, x′) +Wβ(x, x′) , (3.12)

where

Wvac(x, x′) =
∫
R3

dnk
(2π)n2ωk

e−iωk(t−t′)+ik·(x−x′) , (3.13a)

Wβ(x, x′) =
∫
R3

dnk
(2π)n2ωk

e−iωk(t−t′)+ik·(x−x′) + c.c.
eβωk − 1 , (3.13b)
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Figure 3.2: (a) Uniformly accelerating UDW detectors A and B in the Minkowski vacuum
|0M⟩. (b) Detectors at rest in a thermal bath (depicted in orange). The field is in the KMS
state ρth.

are the vacuum Wightman function and the thermal contribution to the Wightman func-
tion, respectively.1 One can then evaluate the elements of the density matrix (2.43)
from this Wightman function Wth(x, x′) and show that for identical UDW detectors, the
non-local elements Xth

AB(T1) and Xth
AB(T2) for any temperatures obeying T1 < T2 satisfies

|Xth
AB(T2)| ≤ |Xth

AB(T1)|, and consequently the concurrences are [1]

Cth
AB(T2) ≤ Cth

AB(T1) . (3.14)

This means that the ability to harvest entanglement downgrades monotonically with the
temperature T (= β−1) of the thermal bath.

One can also numerically show that the harvested quantum mutual information behaves
in an opposite manner. Consider (3 + 1)-dimensional Minkowski spacetime, in which the
two detectors are at rest in a single reference frame [Fig. 3.2(b)]. By employing Gaussian
switching χ(τ) = e−τ2/2σ2 , Fig. 3.3 depicts the temperature dependence of (a) transition
probability P and correlation element |CAB|, and (b) quantum mutual information IAB

1In fact, this is the same result as those obtained by using the Gibbs thermal state ρ = e−βĤϕ/Z, where
Z = Tr[e−βĤϕ ] is the partition function [1].
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Figure 3.3: Harvesting protocol considered in [1]. (a) Transition probability P and the
correlation element |CAB|/λ̃2 as a function of the temperature of the field. Here, Ωσ =
1, L/σ = 7. Unlike |XAB|, the element |CAB| increases with temperature. (b) Using the
elements in (a), quantum mutual information IAB/λ̃

2 is plotted as a function of Tσ.

examined in [1]. Unlike concurrence, quantum mutual information increases with temper-
ature T . This is due to the fact that |CAB| also increases with Tσ. We point out that the
quantum mutual information is not monotonic with T in some cases. Nevertheless, IAB
never decreases at the high-temperature regime.

3.2.2 Correlations harvested by accelerating detectors

Figure 3.4 shows the effect of acceleration on mutual information harvesting for each of
the scenarios in Fig. 3.1, plotting mutual information IAB as a function of acceleration
aσ (which is proportional to the Unruh temperature TU = a/2π). The diagrams depict
different energy gaps Ω and detector separations L at t = 0. Figures 3.4(a) and (b) depict
IAB with Ωσ = 0.5 and 2, respectively, when the separation is small (L/σ = 1), whereas
(c) and (d) have a large separation: L/σ = 7 for the same two gaps. Note that the effect of
communication between the two detectors is negligible when L/σ = 7, which suggests that
the harvested mutual information predominantly comes from the Hadamard contribution
and it is genuine quantum mutual information. On the other hand, both the Hadamard
and Pauli-Jordan parts of the Wightman function contribute to the case of L/σ = 1, and
so this is the communication-assisted mutual information.

We see that high acceleration suppresses mutual information harvesting in all three
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Figure 3.4: Mutual Information as a function of acceleration aσ in three acceleration
scenarios (parallel, anti-parallel, and perpendicular). (a) L/σ = 1,Ωσ = 0.5, (b) L/σ =
1,Ωσ = 2, (c) L/σ = 7,Ωσ = 0.5, and (d) L/σ = 7,Ωσ = 2.

acceleration scenarios regardless of the energy gap Ωσ and separation L/σ. This charac-
teristic property of mutual information can be explained as follows. Since the two detectors
have the same transition probabilities, PA = PB ≡ P , then L± in (2.66) becomes

L± = P ± |CAB| . (3.15)

The reason that IAB vanishes at high acceleration (or equivalently, high temperatures
TU → ∞) is that the transition probability P monotonically increases with aσ while |CAB|
remains small, which leads to P ≫ |CAB| and so L± ≈ P . Thus, the mutual information
IAB ≈ 0. However, for a thermal bath (Fig. 1.2) [1], the mutual information between two
inertial detectors increases with T because both P and |CAB| increase with temperature
T ; consequently the mutual information monotonically increases with T .
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Figure 3.5: Mutual Information as a function of energy gap Ωσ in three acceleration
scenarios (parallel, anti-parallel, and perpendicular) with aσ = 1 and (a) L/σ = 1 , (b)
L/σ = 7. The red curve represents the harvested mutual information by two inertial
detectors in the Minkowski vacuum, which corresponds to aσ = 0.

By contrast, small acceleration seems to affect mutual information harvesting differ-
ently depending on the type of acceleration, energy gap, and detectors’ separation. In the
case of small energy gap and small detector separation, shown in Fig. 3.4(a), we find that
small acceleration enhances mutual information for anti-parallel and perpendicular con-
figurations with higher harvested mutual information in the anti-parallel scenario, while
harvested mutual information monotonically decreases with aσ in the parallel acceleration
case. Nevertheless, as the energy gap Ω changes from 0.5 to 2, the acceleration dependence
of IAB changes, as shown in Fig. 3.4(b). In particular, the parallel acceleration case no
longer monotonically decreases with aσ, and smaller acceleration could enhance mutual
information harvesting. This is also true for L/σ = 7 in Figs. 3.4(c) and (d). We also
examine how harvested mutual information changes with the energy gap by plotting IAB
as a function of Ωσ in Fig. 3.5. Here, we fix the value of acceleration to be aσ = 1, and
plot the energy gap dependence when L/σ = 1 and 7 in Figs. 3.5(a) and (b), respectively.
For entanglement harvesting reported in [38], any accelerating detectors (as well as inertial
detectors) with small energy gaps cannot extract entanglement when the detector sepa-
ration L is large. However, this is not the case for mutual information; we find that for
both L/σ = 1 and 7 in Fig. 3.5, mutual information IAB is non-vanishing near Ω = 0,
which suggests that the harvested correlation with small Ω is either classical correlation or
non-distillable entanglement.
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3.2.3 Comparison to previous studies

As we have shown in the previous section, harvested quantum mutual information IAB
behaves in a manner similar to harvested entanglement [38]. From Fig. 1.2, we can now
discuss how different the temperature dependence among various scenarios is. Here, we
focus on the difference between the accelerating detector scenarios and the thermal bath
scenario in [95, 1].

Recall that the concurrence for detectors in a thermal bath, Cth
AB(T ), monotonically

decreased with the temperature as in (3.14) [1]. This is distinct from the case of uniformly
accelerating detectors [38], where entanglement is either enhanced before vanishing at high
temperature or monotonically decreases, depending on parameters such as the energy gap
Ω. It is difficult to analytically show the behavior of quantum mutual information due to
its logarithmic definition. However one can numerically check that the mutual information
in a thermal bath increases at the high-temperature regime [1] as depicted in Fig. 3.3(b),
whereas our result (Fig. 3.4) shows similar behavior to that in the entanglement harvesting
scenario with accelerating detectors [38].

Although an accelerating single detector experiences a thermal bath, two detectors
exhibit remarkably different behavior. This can be explained by looking at their Wightman
functions (3.12) and (3.6). One can examine this difference by, for example, performing a
series expansion around T = 0:

Wth(x, x′) = Wvac(x, x′) + T 2

12 + O(T 4) , (3.16)

Wa(x, x′) = Wvac(x, x′) + c1(x, x′)TU + c2(x, x′)T 2
U + O(T 3

U) , (3.17)

where the cj(x, x′) are expansion coefficients that depend on the spacetime points. Note
that Wth(x, x′) has an expansion in even-powers of T for two arbitrary points x and x′,
and thereby along a single detector trajectory. On the other hand, for a single accelerating
detector, these functions become c1(x, x′) = 0 and c2(x, x′) = 1/12, and so Wa(x, x′) reduces
to

Wa(x, x′) = Wvac(x, x′) + T 2
U

12 + O(T 4
U) , (3.18)

which is equivalent to Wth(x, x′). Apparently, the Wightman functions along two trajecto-
ries differ, whereas the ones on a single trajectory match. It is not so surprising that two
distinct Wightman functions give different correlations. If we specify the state of the field
and the trajectories of the detectors in such a way that two Wightman functions match,

47



the corresponding quantities such as concurrence or transition probability behave in the
same way, which is the case for a single accelerating detector.

As an application of this observation, consider two UDW detectors in an expanding
universe considered in [49, 96]. The line element of the de Sitter spacetime in the planar
coordinates is

ds2 = −dt2 + e2κt(dx2 + dy2 + dz2) , (3.19)

where κ is the expansion rate of the universe. We employ a conformally coupled, massless
scalar field in the conformal vacuum. In this case, a single inertial detector also sees a
thermal bath at temperature TGH := κ/2π (the Gibbons-Hawking effect [97]). This can be
seen from the Wightman function [2],

WdS(x, x′) = − 1
4π2

1
sinh2(πTGH∆t− iϵ)

π2T 2
GH

− e2πTGH∆+tL2
, (3.20)

(∆t ≡ t− t′, ∆+t ≡ t+ t′) ,

by pulling it back to a single inertial trajectory, L = 0, which yields the same form as (3.5).
Nevertheless, a series expansion of WdS(x, x′) around TGH = 0 reads

WdS(x, x′) = WM(x, x′) + cdS
1 (x, x′)TGH + cdS

2 (x, x′)T 2
GH + O(T 3

GH) , (3.21)

and this obviously differs from Wth(x, x′) in (3.16).
In summary, harvested correlations do not necessarily show the same behavior even if

two scenarios give the same transition probability. This is simply because the Wightman
functions are different in general between distinct spacetime points on different trajectories.
These quantities, including transition probability, show identical features if the Wightman
functions in two scenarios happen to be the same.

3.2.4 General argument

So far, we have considered the properties of quantum mutual information extracted from
both inertial detectors in a thermal bath and from linearly accelerating detectors in the
Minkowski vacuum. Although their response functions are identical, the matrix element
CAB is different in these cases, resulting in differences in quantum mutual information.
Here, we provide a general argument for why such different behavior should be expected.
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As shown in Appendix A, CAB can be obtained from∫
R

dτA

∫
R

dτB Trϕ
[
ĤB(τB)ρ0ĤA(τA)

]
. (3.22)

By using the expressions

Ĥj(τj) = λχj(τj)m̂(τj) ⊗ ϕ̂(x) , (3.23)

ϕ̂(x) =
∫ dnk√

(2π)n2ωk

(
âke

ik·x + â†
ke

−ik·x
)
, (3.24)

where ik · x ≡ −iωkt+ ik · x and ω2
k = |k|2 +m2, Eq. (3.22) reads

Trϕ
[(
I+

B,kσ̂
+
B âk + I−

B,kσ̂
+
B â

†
k + h.c.

)
(ρAB,0 ⊗ ρϕ)

(
I+

A,k′σ̂+
A âk′ + I−

A,k′σ̂+
A â

†
k′ + h.c.

)]
, (3.25)

where

I±
j,k := λ

∫
R

dτj χj(τj)
∫ dnk√

(2π)n2ωk

eiΩτj±ik·xj . (3.26)

The terms σ̂+
j âk and σ̂−

j â
†
k correspond to the rotating wave terms, whereas σ̂+

j â
†
k and σ̂−

j âk

are the counter-rotating wave terms. Therefore, I+
j,k and I−

j,k respectively correspond to the
rotation and counter-rotation terms.

We now assume that the detectors’ initial state is ρAB,0 = |gA⟩ ⟨gA| ⊗ |gB⟩ ⟨gB|, which
further simplifies (3.25) as

Trϕ
[(
I+

B,kσ̂
+
B âk + I−

B,kσ̂
+
B â

†
k

)
(ρAB,0 ⊗ ρϕ)

(
I+∗

A,k′σ̂−
A â

†
k′ + I−∗

A,k′σ̂−
A âk′

)]
= Trϕ

[(
I+

B,kâk + I−
B,kâ

†
k

)
ρϕ
(
I+∗

A,k′ â
†
k′ + I−∗

A,k′ âk′
)]
σ̂+

BρAB,0σ̂
−
A

=
(
I+

B,kI
+∗
A,k′ ⟨â†

k′ âk⟩ρϕ
+ I+

B,kI
−∗
A,k′ ⟨âk′ âk⟩ρϕ

+ I−
B,kI

+∗
A,k′ ⟨â†

k′ â
†
k⟩ρϕ

+ I−
B,kI

−∗
A,k′ ⟨âk′ â†

k⟩ρϕ

)
︸ ︷︷ ︸

CAB

× σ̂+
BρAB,0σ̂

−
A . (3.27)

Let us consider a specific field state ρϕ. If the detectors are inertial in the Minkowski
vacuum ρϕ = |0M⟩ ⟨0M|, then âk |0M⟩ = 0 for all k, which leads to

CAB = I−
B,kI

−∗
A,k′ ⟨0M|âk′ â†

k|0M⟩ . (3.28)

This means that the only contribution is from the counter-rotating terms.
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Now, instead of the Minkowski vacuum, let us consider the inertial detectors in a
thermal state ρϕ = ρth. In this case, it is known that ⟨âk′ âk⟩ρth

= ⟨â†
k′ â

†
k⟩ρth

= 0 [1] and so

CAB = I+
B,kI

+∗
A,k′ ⟨â†

k′ âk⟩ρth
+ I−

B,kI
−∗
A,k′ ⟨âk′ â†

k⟩ρth
. (3.29)

This expression has contributions from both the rotating and counter-rotating terms.
One could ask how this is different from the linearly accelerating detectors in the

Minkowski vacuum. In this case, the field operator ϕ̂(x) is written in terms of the Rindler
modes b̂k with b̂k |0M⟩ ̸= 0. The operators b̂k and b̂†

k are related to the Minkowski modes
âk and â†

k by a Bogoliubov transformation. For this reason, all four terms in (3.27) are
non-vanishing, which leads to the difference between the cases of the thermal bath and
linear acceleration.
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Chapter 4

Extraction of bipartite correlation
from BTZ black hole spacetime

In this chapter, we consider the quantum mutual information harvesting protocol in a black
hole spacetime and examine how the Hawking and Unruh effects affect the extraction of
correlations. Realistic black hole spacetimes, such as the (3+1)-dimensional Schwarzschild
black hole, are of great interest. However, their computations involve mode sums, which
can be extremely tedious if one tries a brute force calculation. However, see the recent
advancement, for example, [98, 99] for the transition probability and [47] for entanglement
harvesting. Here, we instead consider simplified black hole spacetimes: the Bañados-
Teitelboim-Zanelli (BTZ) spacetime in Ch. 4 and the (1 + 1)-dimensional Schwarzschild
black hole (Ch. 6) spacetimes.

The lesson we will learn in this chapter is that an extreme temperature caused by the
Hawking and Unruh effects will prevent two detectors from harvesting correlations from
the field. This is somewhat different from the case of detectors at rest in a thermal bath as
described in Ch. 3 (also see Fig. 1.2). In [1], it is shown that extracted correlations from
a quantum scalar field in the KMS state by two inertial detectors in Minkowski spacetime
have the following properties: (i) extracted entanglement monotonically decreases with
increasing temperature; and (ii) extracted mutual information increases with temperature.
However, as we will see in this chapter, high temperatures due to Hawking and Unruh
effects forbid the extraction of correlation of any type.

51



r = 0

r = 0

r =
rh

r
=
r h

r
=

∞

r
=

∞

t

r

A B
φ

r
=
rh

(a) (b)

III

III

IV

Figure 4.1: (a) A schematic diagram of a BTZ black hole with two detectors A and B
floating outside of it. The red and blue stripes indicate when the detectors interact with
the quantum field. (b) A Penrose diagram of BTZ spacetime. Regions I and II are the
exteriors of the black hole while III is the interior of the black hole. Region IV is the white
hole. The orange wiggling line represents a photon traveling toward the boundary r = ∞,
bouncing off, and traveling toward the black hole.

4.1 Static detectors in BTZ black hole spacetime

4.1.1 Quantum field in BTZ spacetime

BTZ spacetime

The BTZ black hole spacetime [100, 101] is a (2 + 1)-dimensional spacetime and can be
obtained as a solution to the Einstein field equations with a negative cosmological constant
Λ = −1/ℓ2, where ℓ(≥ 0) is the so-called AdS (anti-de Sitter) length. See Appendix B for
details. The line-element for a non-rotating BTZ spacetime reads

ds2 = −f(r)dt2 + dr2

f(r) + r2dφ2 , f(r) = r2

ℓ2 −M (4.1)
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where t ∈ R, r ∈ (0,∞), and φ ∈ [0, 2π). One can think of (r, φ) as a polar coordinate
system. M is the mass of the black hole, which is dimensionless in this case. The event
horizon is located at r = rh ≡ ℓ

√
M . See Fig. 4.1.

We note that the BTZ spacetime can be obtained from (2+1)-dimensional AdS3 space-
time by a topological identification and thereby BTZ spacetime is conformally equivalent
to AdS3. That is, BTZ spacetime locally looks like AdS3 and shares similar properties.
This fact allows us to write the Wightman function WBTZ(x, x′), in BTZ spacetime as a
sum of correlators in AdS3, WAdS3(x, x′). See Appendix B for details.

Since we will be considering two static detectors sitting outside the black hole [see
Fig. 4.1(a) for the illustration], let us introduce the proper time τ of such detectors and
the proper distance between two spatial points at a constant time. By a static detector, we
mean a pointlike detector following a timelike Killing vector field ∂t at a fixed point (r, φ).
Thus, the proper time of such a detector can be obtained from the line-element (4.1) by
setting dr = 0 and dφ = 0:

dτ =
√
f(r)dt . (4.2)

We impose that τ = 0 when t = 0 so that τ =
√
f(r)t. The quantity

√
f(r) is called the

redshift factor, and we denote this by

γ(r) ≡
√
f(r) =

√
r2 − r2

h

ℓ
(r ≥ rh) . (4.3)

Note that γ(r) → 0 as r → rh.
Let us introduce a (radial) proper distance on a time-slice dt = 0. The proper distance,

d(r1, r2), between two spacetime points (t, r1, φ) and (t, r2, φ) with r2 > r1 ≥ rh can be
obtained from the line-element (4.1) by setting dt = 0 and dφ = 0:

d(r1, r2) = ℓ ln
r2 +

√
r2

2 − r2
h

r1 +
√
r2

1 − r2
h

 . (4.4)

For simplicity, we will denote the proper distance between the horizon and detector-j by
dj ≡ d(rh, rj) with rj(≥ rh) being the radial coordinate of detector-j, and proper distance
between detectors A and B by dAB ≡ d(rA, rB).

The Hawking temperature TH of a BTZ black hole (seen from r = ∞) is known as
[100] TH = rh/2πℓ2 and the local temperature Tj ≡ T (rj) at radial position r = rj can be
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derived from the KMS condition as [102]

Tj = TH

γ(rj)
, (4.5)

which is equivalent to the Tolman relation [103]. For rB > rA > rh, the redshift factors for
detectors A and B can be written in terms of the proper distances:

γA ≡ γ(rA) = rh

ℓ
sinh dA

ℓ
, (4.6a)

γB ≡ γ(rB) = rh

ℓ
sinh dAB + dA

ℓ
. (4.6b)

QFT in BTZ spacetime

Let us now consider a quantum scalar field ϕ̂(x) defined on this spacetime. In particular,
a massless conformally coupled scalar field satisfying the Klein-Gordon equation,

(□ −R/8)ϕ̂(x) = 0 , (4.7)
where □ is the d’Alembert operator and R is the Ricci scalar. Since BTZ spacetime is
conformally equivalent to AdS3, the conformally coupled quantum field in BTZ can be
constructed from that of AdS3.

Let WBTZ(x, x′) := ⟨0H|ϕ̂(x)ϕ̂(x′)|0H⟩ be the Wightman function in the Hartle-Hawking
vacuum |0H⟩ in the BTZ spacetime so that the BTZ black hole is in thermal equilibrium
with its exterior. WBTZ(x, x′) can be expressed as an image sum of the correlation function
in AdS3 spacetime [102, 104]:

WBTZ(x, x′) =
∞∑

n=−∞
WAdS3(x,Γnx′)

= 1
4π

√
2ℓ

∞∑
n=−∞

 1√
σϵ(x,Γnx′)

− ζ√
σϵ(x,Γnx′) + 2

 , (4.8)

where Γ : (t, r, φ) 7→ (t, r, φ+ 2π) is a topological identification of an event in AdS3 and

σϵ(x,Γnx′) = rr′

r2
h

cosh
[
rh

ℓ
(∆φ− 2πn)

]
− 1 −

√
(r2 − r2

h)(r′2 − r2
h)

r2
h

cosh
(
rh

ℓ2 ∆t− iϵ
)

with ∆φ := φ− φ′,∆t := t− t′, and ϵ is a UV cutoff. As shown in Fig. 4.1(b), the spatial
infinity (r → ∞) of BTZ spacetime is timelike, and so one needs to impose a boundary
condition, which is characterized by ζ ∈ R.
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4.1.2 Mutual information harvested from BTZ spacetime

In this section, we investigate how a black hole affects the extraction of quantum mutual
information. We assume the following:

• Detectors A and B are both static outside the black hole as depicted in Fig. 4.1(a).
Their trajectories are respectively described by (t, rA, φ0) and (t, rB, φ0), where rB >
rA > rh and φ0 is a constant.

• Both detectors have the same Gaussian switching function χ(τj) = e−τ2
j /2σ2 , where σ

is the Gaussian width. All quantities will be expressed in units of σ to make them
adimensional. For example, λ̃ := λ

√
σ denotes a dimensionless coupling constant.

• The proper separation between A and B, dAB/σ, is always fixed so that the change in
correlation comes from the black hole and not from the change in dAB/σ. Specifically,
we set dAB/σ = 7 so that the contribution coming from the Pauli-Jordan function
(2.26) is very small.

We remind the reader that we are examining quantum mutual information (2.65) by
computing Pj and CAB by substituting the Wightman function (4.8) into Eqs. (2.44a) and
(2.44b). Therefore, in general, the mutual information is a function of dj, dAB,Ω, ℓ, and
M : IAB = IAB(dA/σ, dB/σ, dAB/σ,Ωσ, ℓ/σ,M). Also note that the Wightman function in
(4.8) has a square root, leading to branch cuts in the complex plane. It turns out that one
of the branch cuts resides along the real axis, and one has to take this into account when
evaluating (2.44). We explicitly deal with this issue in Appendix B.2.

Let us first analyze the dependence on the energy gap of the detectors, Ω, and the
proper distance dA ≡ d(rh, rA) between detector-A and the event horizon in Fig. 4.2. Here,
we fix ℓ/σ = 10,M = 10−2 (which gives rh/σ = 1) and dAB/σ = 7. Since dB = dA + dAB,
mutual information becomes a function of dA and Ω: IAB = IAB(dA/σ,Ωσ). Figure 4.2(a)
is a 3D plot of quantum mutual information, IAB/λ̃

2, as a function of dA/σ and Ωσ,
and Figs. 4.2(b) and (c) are the slices of (a) with constant dA/σ and Ωσ, respectively.
From Figs. 4.2(a) and (b), one finds that there exists an optimal value of Ωσ for mutual
information harvesting.

Figure 4.2(c) displays quantum mutual information as a function of dA/σ for various
values of Ωσ. For a given value of Ωσ, a point on the curve represents the amount of
harvested value IAB/λ̃

2 after the interaction, with detectors A and B placed at distances
dA and dB = dA + dAB from the horizon, respectively. Overall, as the detectors move away
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Figure 4.2: (a) 3D plot of quantum mutual information IAB/λ̃
2 as a function of energy

gap Ωσ and proper distance dA/σ. The parameters are chosen to be ℓ/σ = 10,M = 10−2,
and dAB/σ = 7. (b) Some slices of (a) with constant dA/σ = 10, 1, and 0.1. (c) Slices of
(a) with constant Ωσ = 1, 0.5, and 0.1.

from the horizon, the mutual information initially grows very quickly, reaches a maximum,
and then asymptotes to a constant corresponding to detectors in AdS3 spacetime.

Henderson et al. [41] showed that two static detectors cannot harvest entanglement
when one of them is close to the black hole. That is, if one plots the concurrence CAB/λ̃

2

as a function of dA/σ as in Fig. 4.2(c), then CAB/λ̃
2 = 0 for some dA/σ near dA/σ = 0.

Such a region is known as the “entanglement shadow,” and Ref. [41] concluded that this
is due to extreme Hawking radiation and gravitational redshift.

By contrast, our mutual information IAB/λ̃
2 depicted in Fig. 4.2(c) is non-zero every-

where except at dA/σ = 0, namely, a “quantum mutual information shadow” does not exist.
In other words, detectors are able to harvest mutual information from the region arbitrarily
close to the horizon. Since the detectors can harvest mutual information but not entangle-
ment near the horizon, the extracted correlation in the entanglement shadow is either the
classical correlation or non-distillable entanglement. As we will see in the next chapter,
this statement holds true even in the (1 + 1)-dimensional Schwarzschild spacetime [43, 44].
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One would expect that the decline of correlation near the horizon and its death at
dA/σ = 0 are attributed to the gravitational redshift and the intense Hawking radiation
as suggested in Ref. [41]. In fact, we will show that it is not the gravitational redshift
but rather Hawking radiation that kills the correlation at dA/σ = 0. To this end, we
examine how these two factors contribute by treating detector A’s redshift factor γA and
local temperature TA as independent variables, and write quantum mutual information as
well as concurrence as a function of them: IAB = IAB(TAσ, γA), CAB = CAB(TAσ, γA). To
do this, let us express the event horizon rh and the proper distance dA in terms of TA and
γA as follows.

rh = 2πℓ2TAγA , (4.9)

dA = ℓ ln
1 +

√
1 + (2πℓTA)2

2πℓTA
. (4.10)

One notices that the scenarios where TA = const and γA = const are different. As il-
lustrated in Fig. 4.3(a-i), fixing TA while varying γA corresponds to the case where the
size of the black hole is varied while fixing the proper distances of the detectors from the
horizon. This is because the proper distance (4.10) only depends on the local temperature
TA. Note that the local temperature detected by detector B, TB, is also fixed. On the other
hand, setting γA a constant and changing TA corresponds to the case where both rh and
dA change with TA [Fig. 4.3(b-i)]. High temperature with constant γA means the detectors
are very close to a large black hole.

Let us first take a look at the matrix elements PA and CAB and see how they depend
on γA and TA. We also decompose these functions into the AdS-Rindler (n = 0) and BTZ
(n ̸= 0) to see how a black hole plays a role in the correlation harvesting protocol.

Figures 4.3(a-ii) and (a-iii) are respectively PA/λ̃
2 and CAB/λ̃

2 when the local KMS
temperature of detector-A, TA, is fixed as shown in (a-i). Here, TAσ = 1. One can observe
that the AdS-Rindler term in both PA and CAB is independent of γA, whereas the BTZ
part is non-vanishing only when γA ≪ 1. The fact that P (n=0)

A and C
(n=0)
AB are constant

for all γA tells us that the AdS-Rindler contribution remains unaffected by the black hole.
In fact, for a larger black hole (with fixed TA), only the AdS-Rindler part is contributing
to these matrix elements. Hence, PA = P

(n=0)
A + P

(n̸=0)
A and CAB = C

(n=0)
AB + C

(n̸=0)
AB are

non-zero for all γA, indicating that quantum mutual information will not vanish because
of the gravitational redshift in the AdS-Rindler part.

On the other hand, Figs. 4.3(b) depict the matrix elements PA and CAB when the
gravitational redshift factor γA is fixed but the local temperature is varied. We first note
that the transition probability PA of detector A [Fig. 4.3(b-ii)] decreases as the temperature
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Figure 4.3: AdS-Rindler and BTZ contributions in PA and CAB with ℓ/σ = 10, dAB/σ = 7,
and Ωσ = 1. (a-i)-(a-iii): Varying γA while TAσ = 1 is fixed. For both PA and CAB, the
AdS-Rindler part (n = 0) is independent of γA and the BTZ part (n ̸= 0) is non-zero only
for γA ≪ 1. (b-i)-(b-iii): Varying TA with fixed γA = 1/10. For CAB, both AdS-Rindler
and BTZ terms vanish at TAσ → ∞. 58



increases. In a nutshell, one expects the contrary: that a detector’s transition probability
increases monotonically as the local temperature increases. However, this turns out to be
not necessarily true; even a carefully switched detector with an infinite interaction duration
experiences “cool down” as temperature increases. More precisely, writing F(Ω) ≡ Pj/λ̃

2,
the conditions

dF(Ω)
dTKMS

< 0 weak (4.11)

∂TEDR

∂TKMS
< 0 strong (4.12)

in the presence of a black hole are respectively referred to as the weak and strong anti-
Hawking effects [105] (see also [106, 107, 108, 109]), where

TEDR = − Ω
ln R (4.13)

with

R = F(Ω)
F(−Ω) , (4.14)

being the excitation-to-de-excitation ratio of the detector. For an accelerating detector in
a flat spacetime these effects are respectively referred to as weak and strong anti-Unruh
phenomena [110, 64], and will not be present in a situation where an inertial detector is in
a thermal bath.

Since there is a range of temperature in which PA/λ̃
2 decreases, the detector exhibits

the weak anti-Hawking effect and the redshift is not involved. Also note that (under the
Dirichlet boundary condition, ζ = 1) this originates from the BTZ part of the Wightman
function, as demonstrated in [105].

Figure 4.3(b-iii) shows that the off-diagonal term CAB/λ̃
2 asymptotes to 0 as TAσ → ∞.

This suggests that it is the extreme temperature that inhibits detectors from harvesting
mutual information. Hence, the fact that the detectors cannot extract correlations when
one of them is at the event horizon [Figs. 4.2(a), (c)] is purely due to the extremity of the
local Unruh/Hawking effects there, which is a combination of increasing black hole mass
with decreasing dA so as to ensure constant redshift.

Finally, we plot mutual information IAB/λ̃
2 as a function of detector A’s local temper-

ature, TA, and the redshift factor, γA, in Fig. 4.4(a). Here we fix ℓ/σ = 10, dAB/σ = 7,
and Ωσ = 1. One can observe from Fig. 4.4(a) that the detectors easily harvest mutual
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Figure 4.4: (a) 3D plot of mutual information IAB/λ̃
2 as a function of local temperature TA

and redshift factor γA of detector A. Here, ℓ/σ = 10,Ωσ = 1, and dAB/σ = 7. (b) Slices of
(a) at constant γA in a logarithmic scale. The curves at lower temperature show the scenario
of static detectors in AdS3 spacetime without radiation, and the higher temperature regime
represents how Unruh and/or Hawking radiations “attack” the detectors. (c) Slices of (a)
at constant TAσ in a logarithmic scale. The contribution coming from the black hole can
be seen in γA ≪ 1 regime. As γA → ∞, the Hawking effect becomes negligible and only
Unruh effect survives.

information when the temperature TA and redshift γA are both small. This corresponds
to a case where two detectors are located far away (dA/σ ≫ 1) from a tiny black hole
(rh/σ ≪ 1). On the other hand, high temperature or large redshift factor, which corre-
sponds to rh/σ ≫ 1 and dA/σ ≪ 1, suppress the extraction of correlation.

Figure 4.4(b) depicts slices of Fig. 4.4(a) with constant γA in a logarithmic scale to
analyze the relationship of mutual information with the Unruh and Hawking effects. As the
figure indicates, the colder the temperature, the more the correlation harvested, whereas
IAB/λ̃

2 → 0 as the temperature gets large. This indicates that the radiation from the black
hole acts as noise that inhibits extraction of correlation by the detectors, and this is true
no matter what the value of redshift is.
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Figure 4.5: Concurrence harvested by two detectors in BTZ black hole spacetime. Here,
ℓ/σ = 10,Ωσ = 1, and dAB/σ = 1. (a) Fixing TAσ = 0.1, the concurrence is plotted as a
function of log10 γA. (b) Fixing γA = 1, this figure depicts the temperature dependence of
the concurrence.

Conversely, Fig. 4.4(c) exhibits the influence of redshift γA while the temperature TA is
fixed. In contrast to Fig. 4.4(b), mutual information does not go to 0 as γA → ∞. Instead,
it asymptotes to a finite value that is characterized by the temperature TA. As we saw
in Fig. 4.3(a-ii) and (a-iii), the BTZ part of Pj and CAB vanishes at large γA, leading us
to conclude that the asymptotic values in Fig. 4.4(c) coincide with mutual information
harvested by accelerating detectors in AdS3 spacetime with corresponding accelerations
that give local temperature TA. From these figures, we conclude that the death of mutual
information in a black hole spacetime is purely due to the Unruh and Hawking effects. We
have checked that this feature holds for other boundary conditions (ζ = 0,−1).

We finally revisit [41] and see how entanglement harvested around a black hole is
influenced by γA and TA. In Fig. 4.5(a) and (b), we plot the concurrence CAB/λ̃

2 as a
function of log10 γA (with fixed TAσ = 0.1) and log10 TAσ (with fixed γA = 1), respectively,
when ℓ/σ = 10,Ωσ = 1, and dAB/σ = 1. Note that the proper distance between the
detectors, dAB/σ, is small for the sake of reliable numerical calculations. Figure 4.5(a) tells
us that the concurrence CAB/λ̃

2 is non-vanishing for all γA, indicating that the previously
known entanglement shadow is not caused by the redshift. On the other hand, Fig. 4.5(b)
explicitly shows that the concurrence dies if a detector feels a high black hole temperature,
and this is the very reason that the entanglement shadow occurs.

In conclusion, by studying the temperature and gravitational redshift dependence of
harvested correlations, we find that the high black hole temperature prevents the detec-
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tors from harvesting correlations. Both entanglement and quantum mutual information do
not vanish for all γA due to the fact that the AdS-Rindler contribution is constant. While
entanglement cannot be harvested above some finite black hole temperature, quantum mu-
tual information only vanishes at the infinite temperature limit, indicating that quantum
mutual information can be extracted from the field arbitrarily close to the event horizon.
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Chapter 5

Extraction of tripartite correlation
from BTZ black hole spacetime

In this chapter we investigate the tripartite correlation harvesting protocol in BTZ black
hole spacetime. The tripartite harvesting protocol was first examined by Silman and
Reznik [111], who showed that the harvested entanglement by three UDW detectors can
be distilled into a W state [112] (on which we will elaborate later). Other investigations of
tripartite entanglement harvesting in flat spacetime can be found in [113, 32, 77]. These
papers found that tripartite entanglement is relatively easier to extract from the vacuum
than bipartite entanglement.

Tripartite entanglement is interesting in its own right due to the richness of its en-
tanglement structure. Unlike bipartite entanglement, which only has two classes of states
(entangled and separable states), tripartite entanglement can be characterized into four
classes: Greenberger-Horne-Zeilinger (GHZ), W, bi-separable, and fully separable states
[112, 114]. These four are described as follows.

• Fully separable: a state that is not entangled at all, such as |gA⟩ ⊗ |gB⟩ ⊗ |gC⟩.
• Bi-separable: it is an entangled state but one of the subsystems is separable from the

rest. For instance, |gA⟩ ⊗ (|gBgC⟩ + |eBeC⟩)/
√

2.

• W state [112]: three subsystems are all entangled with each other (genuinely entan-
gled). As an example, |W ⟩ = (|gAgBeC⟩ + |gAeBgC⟩ + |eAgBgC⟩)/

√
3. If one measures

one of the subsystems (e.g., subsystem C) of |W ⟩ ,then the resulting bipartite state
remains entangled. The W state cannot be transformed into the GHZ state via
stochastic local operations and classical communication (SLOCC) protocols.
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• GHZ state [94]: this is also a genuine entanglement, though distinct from the W state
(since it cannot be converted into the W state via SLOCC). An example of GHZ state
is |GHZ⟩ = (|gAgBgC⟩ + |eAeBeC⟩)/

√
2, and it becomes a separable bipartite state

once one of the subsystems is measured.

In this chapter, we examine the influence of the Hawking effect on the extraction of tri-
partite entanglement by considering three static detectors in BTZ spacetime. Specifically,
we investigate whether tripartite entanglement can be extracted in the bipartite entangle-
ment shadow, and whether a tripartite entanglement shadow exists. We will show that the
tripartite entanglement shadow exists and it is “narrower” than the bipartite entanglement
shadow, indicating that tripartite entanglement can be extracted even if the extraction of
bipartite entanglement is prohibited.

Although tripartite harvesting and its classification are intriguing, our current tool is
too limited to fully investigate this matter. As described in Sec. 2.4.2, the π-tangle, which
is the entanglement measure we will use, is well-defined only for pure states. On the other
hand, our final state is a mixed state and thus the π-tangle does not necessarily reflect the
true amount of entanglement. Nevertheless, the π-tangle for mixed states can be thought
of as the lower bound of the “true” π-tangle, and so it will provide us with some insightful
information on tripartite entanglement harvesting. Specifically, if the π-tangle is positive
then it is guaranteed that the true π-tangle is also positive. However, if the π-tangle
is either zero or negative, then we cannot say anything about the existence of tripartite
entanglement since the true π-tangle still could be positive.

5.1 Equilateral configuration

For three UDW detectors, the simplest spatial configuration is an equilateral triangle con-
figuration, when one detector is located at each corner (see Fig. 5.1). In Ref. [32], en-
tanglement harvesting with detectors in an equilateral triangle configuration in Minkowski
spacetime was investigated. In flat spacetimes (so long as the detectors are at rest in a
single reference frame), the transition probabilities Pj and correlation elements Cjk, Xjk

simplify to (2.53):

CAB = CBC = CCA ≡ C ,

XAB = XBC = XCA ≡ X , (2.53)
PA = PB = PC ≡ P .
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Figure 5.1: (a) Showing a BTZ black hole and static trajectories of three UDW detectors
A, B, and C. The colored stripes indicate when the detectors interact with the quantum
field. (b) A time-slice of (a). The detectors are located at the corners of the equilateral
triangle, and therefore, d(rh, Rj)/σ are all the same.

In general spacetimes, the equilateral triangle configuration does not necessarily sim-
plify the density matrix elements in the aforementioned manner. For example, if one of
them experiences a redshift effect then the transition probability and non-local elements
will be different. In the BTZ black hole case, we can simplify as (2.53) by aligning the
centers of the equilateral triangle and the black hole, so that the proper distance of each
detector from the horizon, d(rh, rj), is the same (Fig. 5.1).

We then consider a conformally coupled massless scalar field in the Hartle-Hawking
vacuum as in Ch. 4 and see how the Hawking effect influences the tripartite entanglement.
Since the detectors are now in the equilateral triangle configuration, we set ∆φ = 2π/3
in the Wightman function (4.8). By calculating P,CAB, and XAB, one can obtain the
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Figure 5.2: (Top:) The bipartite negativity, ND(D′), between two of the detectors, and
(bottom:) the extracted π-tangle in the case of the equilateral triangle configuration de-
picted in Fig. 5.1 as a function of the mass of the black hole M and the proper distance
d(rh, RD)/σ of the detectors from the horizon. Here, the energy gap Ωσ = 1. In the top
figure, the green dots indicate the region where ND(D′) = 0 and in the bottom figure the
green dots indicate the region where the π-tangle is zero. Black dots indicate the region
where the π < 0.
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bipartite negativity ND(D′) and the π-tangle by (2.112) and (2.113), respectively:

ND(D′) = max{0, |X| − P} + O(λ4) , (2.112)

π = max
0,

√
C2 + 8|X|2

2 − C

2 − P


2

− 2 max{0, |X| − P}2 + O(λ6) . (2.113)

In Fig. 5.2(top), we plot the bipartite negativity ND(D′) between two of the three de-
tectors in the equilateral triangle configuration as a function of the black hole mass M and
the proper distance of the detectors from the horizon, d(rh, RD)/σ. We find that bipartite
entanglement harvesting by detectors with an energy gap of Ωσ = 1 is only possible, at any
distance from the horizon, if the mass of the black hole is smaller than M ≈ 0.0225. This
is likely due to the fact that as the mass M of the black hole increases, the proper separa-
tion d(RD, RD′)/σ between the two detectors also increases if one fixes the distance from
the horizon, d(rh, RD)/σ. Since greater detector separations, d(RD, RD′)/σ, decrease the
correlations between the detectors, greater black hole masses will decrease the maximum
distance from the horizon where entanglement harvesting is possible.

Moreover, the bipartite entanglement is zero when the detectors are very close to the
horizon, which is caused by the high black hole temperature [41, 45]. The term |XAB| in
(2.112) sharply decreases while the transition probability P increases with temperature.
Hence, the entanglement shadow still exists even when detectors are located at a different
angle φj.

However, we see from Fig. 5.2 (bottom), where we now consider the π-tangle between
all three detectors, that harvesting tripartite entanglement is indeed possible for black hole
masses larger than those that allow for bipartite entanglement harvesting. The fact that
the detectors can extract tripartite entanglement when the bipartite one is vanishing can be
seen from (2.113). We also find it is possible to extract tripartite entanglement at larger
distances from the horizon than is possible in the bipartite case, which corresponds to
greater detector separations, in agreement with previous results in flat spacetime [32]. We
note that for this particular value of energy gap, Ωσ = 1, the π-tangle becomes zero for all
detector distances from the horizon when the black hole mass is larger than M ≈ 0.0255.
Furthermore, we find that when the black hole mass is less than M ≈ 0.01, the π-tangle
becomes negative for moderate detector distances, despite being positive for both smaller
and larger distances. Since the π-tangle (2.89) puts a lower bound on the tripartite entan-
glement, we are unable to gain any information about multivariate correlations between
the three detectors in this region (where π ≤ 0) of the parameter space, and instead focus
our attention on regions where the π-tangle is positive. For this reason, we do not explore
black holes with smaller masses.
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Figure 5.3: The straight line configuration.

In summary, detectors can extract tripartite entanglement from the field even when
bipartite entanglement cannot be harvested. This can be seen from Eqs. (2.112) and
(2.113). Bipartite entanglement can be harvested whenever |X| > P and otherwise, the
noise P prevents the detectors from extraction. On the other hand, the first term in the
π-tangle (2.113) can be positive. As a demonstration, suppose |X| = P : in this case the
bipartite negativity is 0. Then it is straightforward to show that the first term in the
π-tangle is positive.

5.2 Straight line configuration

By placing the three detectors along a line intersecting the center of the black hole (Fig. 5.3),
we gain further insight into the distinctions between the bipartite and tripartite cases. In
the bipartite case the entanglement shadow was manifest when one of the detectors was
placed close to the horizon [41]. However, we find that the situation is very different in the
tripartite case.

In Fig. 5.4, we fix the proper distance between the detectors to be d(RA, RB)/σ =
d(RB, RC)/σ = 1 and plot the π-tangle as a function of the proper distance from the black
hole horizon to the nearest detector for M = 0.01 and differing energy gaps. We find that,
provided the energy gap of the detectors is large enough, tripartite entanglement can be
harvested at distances arbitrarily close to the black hole horizon. In striking distinction to
the bipartite case, tripartite entanglement often has no entanglement shadow in the line
configuration, and, unlike in the case of the equilateral triangle configuration, it is quite
easy to find regions in parameter space where this occurs. The minimum value of the
detector energy gap guaranteeing near horizon tripartite entanglement harvesting depends
on the mass of the black hole. Specifically, we find that for M = 0.01 and Ωσ = 0.01 the
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Figure 5.4: The π-tangle harvested by detectors in the straight line configuration as a
function of the proper distance of the closest detector A to the horizon, d(rh, RA)/σ. Here,
M = 0.01 and d(RA, RB)/σ = d(RB, RC)/σ = 1.

π-tangle becomes zero when the first detector is very close at d(rh, RA)/σ ≲ 0.08. We also
note that the π-tangle asymptotes to a constant value, which depends on Ω and M , in the
limit d(rh, RA)/σ → ∞, as expected since the BTZ spacetime is asymptotically AdS3.

We now explicitly show that the π-tangle is positive where the bipartite entanglement
is zero. Choosing two cases (M,Ωσ) = (0.01, 0.01) and (0.01, 0.1) in Fig. 5.4, we plot
their bipartite and tripartite negativities in (2.90) as a function of the proper distance of
detector A from the horizon in Fig. 5.5. For both values of the energy gap Ωσ considered,
we find that each πj (j ∈ {A,B,C}) in (2.89) is positive even when some of the bipartite
negativities ND(D′) vanish. Consider πA (2.90a) as an example. We see that NA(BC) remains
positive while NA(B) = NA(C) = 0, which suggests that πA > 0 in the bipartite entanglement
shadow. This is also true for πB and πC if they possess the bipartite entanglement shadow,
and therefore the π-tangle is positive.1 We point out that NB(C) does not vanish in Fig. 5.4
(bottom) since detectors B and C are still far away from the horizon when d(rh, RA)/σ = 0.
Nevertheless, for a sufficiently large Ωσ, tripartite entanglement can be extracted in the

1Since the tripartite negativity is a lower bound, NA(BC) = 0 does not mean that there is no entan-
glement between detector A and the (BC) subsystem; there is very likely to be some, since detector B is
more entangled with (AC) and detector C is more entangled with (AB) then detector B is entangled with
detector C alone.
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Figure 5.5: In the case of three detectors placed along a straight line outside of a BTZ
black hole (Fig. 5.3), the three tripartite and three bipartite negativities are calculated as
a function of d(rh, RA)/σ for a detector energy gap of Top: Ωσ = 0.01 and Bottom: Ωσ =
0.1. Here, the proper distance between the detectors remains constant at d(RA, RB)/σ =
d(RB, RC)/σ = 1. The AdS length ℓ/σ = 10, the boundary condition ζ = 1, and the mass
of the black hole M = 0.01.
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Figure 5.6: The π-tangle extracted by detectors in the straight line configuration in Fig. 5.3.
Here, the proper distance between the detectors remains constant at d(RA, RB)/σ =
d(RB, RC)/σ = 5. The AdS length ℓ/σ = 10, the boundary condition ζ = 1, and the
mass of the black hole M = 0.01. The inset shows details of the near horizon spike in
π-tangle for Ωσ = 1.75 and Ωσ = 2.

bipartite entanglement shadow, which suggests that the harvested entanglement is of the
GHZ type.

We note from Fig. 5.4 that a local maximum exists in π/λ̃2 for some Ωσ. In fact, for
some choices of parameters, this maximum leads to an interesting result.

In Fig. 5.6 we again plot the π-tangle of the detectors in the straight line configuration
as a function of the proper distance of the nearest detector from the horizon, but now for
larger detector separation d(RA, RB)/σ = d(RB, RC)/σ = 5. Unlike the previous case, as
the detectors move towards the horizon, the π-tangle becomes zero followed by a sharp
spike before it drops to zero again. These spikes in the π-tangle are larger in magnitude
than its asymptotic value at d(rh, RA)/σ → ∞.

To better understand the origin and properties of the near-horizon spike in the π-tangle,
we plot the bipartite and tripartite negativities in Fig. 5.7. We first note that the large
spike in the π-tangle occurs at values of d(rh, RA) where the bipartite negativities are
zero, i.e. inside the bipartite entanglement shadow of all three detectors, meaning that the
tripartite entanglement extracted from the field in this region of the spacetime is of the
GHZ type. Consequently, the π-tangle results from the tripartite negativities, and when
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the energy gap of the detectors is small enough, only from NB(AC), which puts a lower
bound on the entanglement between detector B and the (AC) subsystem. As the energy
gap of the detector is increased, the remaining two tripartite negativities also contribute
to near-horizon π-tangle.

The bipartite and tripartite negativities are functions of the matrix elements of Eq. (2.51),
which we plot in Fig. 5.8 for the same detector configuration as in Fig. 5.6. We find that as
detector A approaches the horizon, both the detector correlations CDD′ and the non-local
correlations |XDD′| between detectors A and B and between A and C also show a near-
horizon spike. Here, the spike in the detector correlations CDD′ is smaller and occurs closer
to the horizon than that of the non-local correlations |XDD′ |. The correlations between
detectors B and C do not exhibit spikes, as they are still relativity far from the horizon,
d(rh, RB)/σ = d(rh, RA)/σ + 5. This spike in pairwise correlations is directly responsible
for the spike in the tripartite negativities shown in Fig. 5.7. Such a spike is not seen in the
bipartite negativities, since the transition probability of detector A, PA/λ̃

2, is very large
near the horizon, due to the local field temperature, which will prevent any entanglement
between detector A and B (or C). Since detectors B and C remain far from the horizon,
their transition probabilities remain small, and as a result, the three detectors can have
tripartite entanglement. We also note that a near horizon spike does not appear in the
pairwise correlations when Ωσ < 1.
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Figure 5.7: In the case of three detectors placed along a straight line outside of a BTZ
black hole (Fig. 5.3), the three tripartite and three bipartite negativities are plotted as a
function of the proper distance d(rh, RA)/σ for a detector energy gap of Top: Ωσ = 2 and
Bottom: Ωσ = 2.5. Here, the proper distance between the detectors remains constant at
d(RA, RB)/σ = d(RB, RC)/σ = 5. Here, the mass of the black hole is M = 0.01.
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Figure 5.8: In the case of three detectors placed along a straight line outside of a BTZ
black hole (Fig. 5.3) with ℓ/σ = 10, and M = 0.01, the matrix elements of Eq. (2.51) are
calculated as a function of d(rh, RA)/σ, for top: the transition probabilities PD/λ̃

2, bottom-
left: the pairwise detector correlations CDD′/λ̃2, and bottom-right: the pairwise non-local
correlations |XDD′|/λ̃2. Here, the proper distance between the detectors remains constant
at d(RA, RB)/σ = d(RB, RC)/σ = 5 and the energy gap of the detectors is Ωσ = 2.5. The
inset in the left figure shows details of PB and PC.

74



Chapter 6

Extraction of bipartite correlation
from Schwarzschild black hole
spacetime

We finally examine the correlation harvesting protocol in (1+1)-dimensional Schwarzschild
spacetime. So far in Ch. 4, we have learned that the high black hole temperature is
responsible for the entanglement shadow and vanishing quantum mutual information at
the horizon. Here, we first confirm that this is also the case for two static detectors in
Schwarzschild spacetime. We then let one of the detectors free-fall into the black hole.
While the free faller does not encounter infinite temperature upon crossing the horizon,
the relative velocity between the free faller and the static observer diminishes the ability
to extract correlations. Finally, we let two detectors fall into the black hole from infinity
and see that there is no problem for the detectors to harvest correlations across the event
horizon due to finite black hole temperature.

6.1 Quantum field in (1+1)-dimensional Schwarzschild
spacetime

6.1.1 Schwarzschild spacetime and a free-faller’s trajectory

In the next two sections we first review the geometrical and quantum field-theoretic aspects
of a quantum massless scalar field in a Schwarzschild background spacetime, following dis-
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cussion in [115, 43]. We will review three coordinate systems that are naturally associated
with the three standard vacua — Boulware, Unruh, and Hartle-Hawking states — and also
a coordinate system adapted to a class of free-falling observers.

Schwarzschild geometry

Consider a (3 + 1)-dimensional Schwarzschild spacetime described by the metric

ds2 = −f(r)dt2s + 1
f(r)dr2 + r2(dθ2 + sin2 θdφ2) , f(r) = 1 − rh

r
(6.1)

where rh = 2GNM is the event horizon and M ≥ 0 is the ADM mass. In what follows, we
write M = GNM so that rh has units of length. The coordinate system (ts, r, θ, φ) is known
as the Schwarzschild coordinates, where the subscript ‘S’ will be useful to distinguish it
from other coordinate systems. The metric (6.1) is valid only for r > rh due to the
coordinate singularity at r = rh.

We can extend the coordinate system by first introducing the tortoise coordinate r⋆
defined by

r⋆ := r + rh ln
∣∣∣∣ rrh

− 1
∣∣∣∣ , (6.2)

and then defining the null coordinates v := ts + r⋆, u := ts − r⋆. With this, the metric now
reads

ds2 = −rh

r
e

− r
rh e

v−u
2rh du dv + r2

(
dθ2 + sin2 θdφ2

)
. (6.3)

Finally, introducing new coordinates

U := −2rhe
−u/2rh , V := 2rhe

v/2rh , (6.4)

the extension to region II in Fig. 6.1 is obtained by considering the coordinate system
(U, v, θ, φ) where U, v ∈ R and the metric reads

ds2 = −2r2
h
r
e

− r
rh

+ v
2rh dUdv + r2

(
dθ2 + sin2 θdφ2

)
. (6.5)

Note that here r is an implicit function of U and v. The maximal analytic extension is
obtained by considering the coordinate system (U, V, θ, φ) where U, V ∈ R and the metric
reads

ds2 = −rh

r
e−r/rhdV dU + r2

(
dθ2 + sin2 θdφ2

)
. (6.6)
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Figure 6.1: Penrose diagram for Schwarzschild spacetime.

Thus we have obtained three distinct coordinate systems for the Schwarzschild black hole
spacetime: Schwarzschild coordinates with metric (6.1), Eddington-Finkelstein coordinates1

with metric (6.5), and Kruskal-Szekeres coordinates with metric (6.6). These three coordi-
nate systems are naturally adapted for definitions of the three standard vacuum states of
quantum fields in this background spacetime, as we will see in the next subsection.

Finally, we will consider a class of free-falling observers that are infalling from infinity
towards the curvature singularity at r = 0. For this purpose, it will not be sufficient for
us to simply solve for radial geodesics in Schwarzschild coordinates because the coordinate
systems do not apply for free-fallers inside the horizon. The coordinate system we need
for this class of observers that is also regular at the event horizon r = rh is the Painlevé-
Gullstrand (PG) coordinate system (see [116] and references therein), which is constructed
based on a free-falling observer’s proper time.

The PG coordinate system is adapted to free-falling observers starting at rest at spatial
infinity, with metric given by

ds2 = −f(r)dt2PG + 2
√

1 − f(r)dtPGdr + dr2 + r2(dθ2 + sin2 θdφ2), (6.7)
1Strictly speaking Eddington-Finkelstein coordinates refer to coordinates (u, r, θ, φ) or (v, r, θ, φ), but

we will borrow this name because they share the same region of validity (regions I and II) without any
analytic extension.
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where tPG is the PG coordinate time. The PG coordinates (tPG, r, θ, φ) for infalling ob-
servers are obtained from the Schwarzschild metric (6.1) by using the coordinate transfor-
mation

tPG = ts + 2rh

√ r

rh
+ 1

2 ln
∣∣∣∣∣∣
√
r/rh − 1√
r/rh + 1

∣∣∣∣∣∣
 . (6.8)

Time reparametrization invariance allows us to fix tPG = 0 at the singularity r = 0 and so
tPG < 0 for all r > 0. A remarkable property of the PG coordinates is that the induced
metric at constant tPG slices (i.e., dtPG = 0) are flat; thus proper distances between
two fixed radial coordinates r1, r2 on a tPG = constant surface will be given simply by
∆r = |r2 − r1|.

In what follows, we will consider the (1+1)-dimensional reduction of the Schwarzschild
spacetime, by truncating the angular part. While we will lose the physics that depends on
angular variables such as the graybody factors due to the gravitational potential (associ-
ated with spherical harmonic parts of the wave equation) and the physics associated with
orbital motion, much of the essential features of quantum field theory in curved space-
times will remain. For example, the detailed balance condition associated with detector
thermalization in the Hartle-Hawking state can be obtained [115, 43]. This dimensional
reduction allows us to borrow conformal techniques and obtain closed-form expressions for
the two-point functions of the quantum field, thus simplifying the setup considerably.

Klein-Gordon field and Wightman functions

Let ϕ(x) be a massless Klein-Gordon field in (1 + 1)-dimensional Schwarzschild spacetime,
satisfying the Klein-Gordon equation (2.2). After canonical quantization, the quantum
field admits Fourier mode decomposition of the form

ϕ̂(x) =
∫
R

dk
(
âkuk(x) + â†

ku
∗
k(x)

)
, (6.9)

with the mode functions {uk(x)} satisfying the conditions given by (2.14).
The definition of a vacuum state of the field depends on the choice of timelike Killing

vector field with respect to which the positive frequency modes uk(x) are defined [2, 115, 43].
There are three standard choices of vacuum states that are unitarily inequivalent and are
associated with different regions of spacetime:
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• Boulware vacuum |0B⟩: The corresponding mode functions uk(x) are positive fre-
quency modes with respect to ∂ts . The state is defined on the exterior region I of
Fig. 6.1.

• Unruh vacuum |0U⟩: The corresponding mode functions uk(x) are positive frequency
modes with respect to ∂U on H− and ∂v on I −. The state is defined in regions I
and II of Fig. 6.1.

• Hartle-Hawking vacuum |0H⟩: The corresponding mode functions uk(x) are positive
frequency modes with respect to ∂U and ∂V . The state is defined on the full maximally
extended Schwarzschild spacetime regions I–IV of Fig. 6.1.

The Boulware vacuum is the vacuum state that reproduces the Minkowski vacuum in
r → ∞ limit, whereas the Hartle-Hawking vacuum is the vacuum state that reproduces a
thermal state in flat space in the large r limit. The Unruh vacuum is, by construction, one
that mimics radiation outflux, effectively by replacing the ingoing Hartle-Hawking modes
with ingoing Boulware modes.

In terms of field observables, the distinct vacua (denoted |0α⟩ where α = B, U, H) can
be specified by the vacuum Wightman functions:

Wα(x, x′) := ⟨0α|ϕ̂(x)ϕ̂(x′)|0α⟩ . (6.10)

For each vacuum state, we have

WB(x, x′) = − 1
4π ln

[
−Λ2(∆u− iϵ)(∆v − iϵ)

]
, (6.11a)

WU(x, x′) = − 1
4π ln

[
−Λ2(∆U − iϵ)(∆v − iϵ)

]
, (6.11b)

WH(x, x′) = − 1
4π ln

[
−Λ2(∆U − iϵ)(∆V − iϵ)

]
, (6.11c)

where Λ > 0 is an infrared (IR) cutoff inherent in (1 + 1) massless scalar field theory.
We make a parenthetical remark that in principle, one could try to perform canonical

quantization with respect to the PG coordinates where the vacuum state (which we may
call PG vacuum |0PG⟩) is associated with a freely falling observer (see e.g., [117, 118, 119]
for related discussions). This will be slightly more involved due to the cross-term in the
metric. However by construction this state will be regular across the horizon and is well-
defined on regions I and II of the Schwarzschild spacetime. We expect that essential
qualitative features of our results in the context of entanglement harvesting will be similar
to Hartle-Hawking and Unruh vacua.
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Following [120, 115, 43], we shall use a particular model of detector-field interaction
known as the derivative coupling detector model. The reason for this choice is that
the Wightman functions (6.11a)-(6.11c) have two shortcomings; they do not possess the
Hadamard short-distance property [121, 122], and they have an IR ambiguity associated
with massless fields in two-dimensional QFT with no boundary conditions. Instead, since
we are interested only in the two-point functions evaluated along the support of each de-
tector, we will only need to calculate the pullback of the two-point functions along the
detectors’ trajectories, and consider the proper time derivatives associated with the two
trajectories x(τ) and x′(τ ′):

Aα(x(τ), x′(τ ′)) = ⟨0α|∂τ ϕ̂(x(τ))∂τ ′ϕ̂(x′(τ ′))|0α⟩ . (6.12)

The proper time derivatives remove the IR ambiguity from the Wightman function and
the resulting two-point functions mimic the short-distance behavior of the Wightman dis-
tribution in (3+1) dimensions. It also retains all other essential features such as invariance
under time translation generated by the respective timelike Killing vector fields that define
each vacuum state. Past results have suggested that qualitatively similar results to the
linear coupling model are obtained in flat space and (1 + 1)-dimensional spacetimes with
moving mirrors [25, 39].

More explicitly, the proper time derivative two-point function reads

AB(τ, τ ′) = − 1
4π

[
u̇u̇′

(u− u′ − iϵ)2 + v̇v̇′

(v − v′ − iϵ)2

]
, (6.13a)

AU(τ, τ ′) = − 1
4π

[
U̇ U̇ ′

(U − U ′ − iϵ)2 + v̇v̇′

(v − v′ − iϵ)2

]
, (6.13b)

AH(τ, τ ′) = − 1
4π

[
U̇ U̇ ′

(U − U ′ − iϵ)2 + V̇ V̇ ′

(V − V ′ − iϵ)2

]
, (6.13c)

where we used the shorthand Aα(τ, τ ′) ≡ Aα(x(τ), x′(τ ′)), ẏ ≡ ∂τ [y(τ)], and ẏ′ ≡ ∂τ ′ [y(τ ′)].
We stress that in general τ and τ ′ in the derivative coupling Wightman functions are proper
times associated with distinct trajectories x(τ) and x′(τ ′); thus in general dτ/dτ ′ ̸= 1 due
to relative gravitational and kinematic redshifts of the two trajectories. For the rest of
this chapter we will refer to Aα(τ, τ ′) ≡ Aα(x(τ), x′(τ ′)) in Eqs. (6.13a)-(6.13c) as the
Wightman functions, and not the original Wightman functions (6.11a)-(6.11c).

Let us comment on the choice of coordinate systems. The coordinate system xµ is cho-
sen in such a way that it specifies the coordinates of two detectors. In (1 + 1)-dimensional
Schwarzschild spacetime, such a coordinate system could be the Schwarzschild, Eddington-
Finkelstein, Kruskal-Szekeres, PG coordinate systems, etc. For the two static detectors
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case considered in [43], any one of the coordinate systems above can be used. However, this
is not true when one of the detectors is free-falling and enters the black hole; Schwarzschild
coordinates cannot be used since it prevents us from analyzing the horizon-crossing mo-
ment. For this purpose, the coordinate system adapted to free-falling observers will be
the simplest for our purposes both conceptually and numerically. The calculations of the
geodesic equation for the free-falling trajectories in terms of the double null coordinates
are given in Appendix C.1.

In what follows, we will employ the PG coordinate system to examine the harvesting
protocol, that is, the time parameter t used in (2.39) will be tPG, and so the Heaviside step
functions in (2.44) become

Θ(tPG(τA) − tPG(τB)), Θ(tPG(τB) − tPG(τA)) . (6.14)

This choice is possible since the time-ordering is preserved when the detectors have negli-
gible spatial extent [68].

6.2 Correlations harvested from Schwarzschild space-
time

In this section, we present our main results for entanglement and quantum mutual correla-
tion harvesting for various parameter choices and detector trajectories. We define d(ri, rj)
to be the proper distance between two coordinate radii ri, rj, and write dAB := d(rA, rB)
for the proper separation between two detectors A and B.

It is clear that for two static detectors, the proper distance dAB is unambiguous, but
for free-falling detectors the proper distance between them changes with time. Therefore,
there is a need to find some sort of effective proper distance that works for free-falling
scenarios. For this purpose, we use the locations of the peaks of Alice and Bob’s Gaussian
switching functions, that is, we employ Gaussian switching functions

χj(τj) = exp
[
−(τj − τj,0)2

σ2

]
, (6.15)

where τj,0 is the peak proper time of the Gaussian, and use τA,0 and τB,0 as reference points
as follows.

(a) If Alice and Bob are static as depicted in Fig. 6.2(a) (we will call this the SS scenario),
we take dAB to be measured when both peaks are at some constant-tPG slice. Since
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Figure 6.2: Penrose diagrams for three cases: (a) SS, (b) FS, and (c) FF.

both are static, their separation dAB computed this way is also valid even if the
switching peaks are translated along their respective trajectories.

(b) If Alice is free-falling and Bob is static [Fig. 6.2(b)] (we will call this the FS scenario),
we take dAB to be measured with respect to the peaks of their Gaussian switching, thus
effectively locating Alice at rA = r(τA,0) and Bob at some fixed rB. We stress that both
detector trajectories are parametrized by different proper times due to gravitational
redshift, i.e., dτA/dτB ̸= 1.

(c) If both detectors are free-falling from infinity [Fig. 6.2(c)] (we will call this the FF
scenario) initially at rest, then the proper distance is given by dAB = |r(τA,0) −
r(τA,0 + const.)| with the constant to be determined. This is because in this case
both detector trajectories can be parametrized by the same proper time and hence
the proper distance is completely controlled by the difference τB,0 − τA,0 = constant.

We will compute all quantities in units of the switching width σ as before. Concurrence
and quantum mutual information were evaluated as CAB/λ̃

2 and IAB/λ̃
2 in Ch. 4, where λ̃

is the unitless coupling constant given by λ̃ := λσ(n−3)/2 for linear coupling ∼ m̂j ⊗ ϕ̂ in
(n + 1)-dimensional spacetime. For the derivative coupling, this becomes λ̃ := λσ(n−1)/2,
and so in (1 + 1) dimensions, this gives λ̃ = λ (i.e., λ is already dimensionless) but we
will use λ̃ in this section to remind ourselves that the coupling strength of the (derivative)
UDW model is dimension dependent.

Unlike in the BTZ spacetime case, the numerical calculations in Schwarzschild space-
time are more involved since the double integrals in (2.44) cannot be simplified to single
integrals. For this reason, we use the technique involving numerical contour integration
outlined in [43], with a modification for the evaluation of the non-local term XAB in (2.44):
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the free-falling trajectory introduces some numerical instability that makes it difficult to
work with the Heaviside step function directly. Consequently, the computation is done by
approximating the step function using a smooth analytic function: for our purposes we use
the fact that

Θ(z) = lim
k→∞

(1
2 + 1

2 tanh kz
)
, (6.16)

and define an approximate step function2 to be

Θk(z) := 1
2 + 1

2 tanh kz (6.17)

where k is fixed but sufficiently large. The choice of k will in fact be dependent on the
choice of the contour size (i.e. the value of ϵ in the iϵ prescription), which for generic
situations requires small ϵ for large k.

6.2.1 Free-falling Alice, static Bob (FS)

In Fig. 6.3 we plot the concurrence and quantum mutual information as functions of Alice’s
proper distance from the horizon, d(rA, rh)/σ, at the exterior of the black hole for both
Unruh and Hartle-Hawking vacuum states and we compare the free-falling-static (FS) and
static-static (SS) scenarios.

We observe that the SS scenario has a larger concurrence than the FS scenario, and this
is true even when both detectors are far from the black hole. The entanglement shadow
near the horizon is wider for the FS case, whereas for the SS case the shadow is much
smaller in comparison [see inset in Fig. 6.3(a)]. The generic result here is that when one
detector is free-falling, the bipartite entanglement harvesting is less potent than the static
case. We will revisit this issue later in order to see to what extent this can be explained
by relative velocities between the two detectors. We remark that the results for the SS
case differ somewhat from those a previous study of harvesting in a (1 + 1)-dimensional
collapsing shell spacetime [43] because the protocols are implemented slightly differently;
here the switching peaks of the detectors are turned on at the same constant tPG slices,
while in [43] the detectors are turned on at the same constant proper time τ0 (in their own

2The analysis of this technique is given in [123], which includes the performance of this approximation
along with other possible choices of analytic functions and variations of the contour. We also note that
the numerical evaluation is done using Mathematica 10 [124], as it is (surprisingly) more stable than the
newer versions and in some cases the newer versions may even compute the wrong answers on physical
grounds.
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Figure 6.3: Concurrence and mutual information are plotted as a function of the effective
proper distance of Alice from the horizon for both the SS and FS scenarios. Here we chose
Ωσ = 2,M/σ = 5, dAB/σ = 2. (a) Concurrence near the horizon, where d(rA, rh)/σ ∈
[0.001, 1]. (b) Concurrence further away from the horizon at d(rA, rh)/σ ∈ [1, 100] with the
inset covering very far regime d(rA, rh)/σ ∈ [105, 105 +1]. (c) Quantum mutual information
near the horizon, where d(rA, rh)/σ ∈ [0.001, 1]. (d) Mutual information further away from
the horizon at d(rA, rh)/σ ∈ [1, 100].
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frames). The relative redshift factor is markedly different, and hence the entanglement
shadow size is different [very small in Fig. 6.3(a) inset].

However, for quantum mutual information harvesting, notably the FS scenario can
outperform the SS case very near to the horizon, as we show in Fig. 6.3(c). The overall
behavior for mutual information harvesting is similar to concurrence in that the FS case
is less efficient in extracting correlations from the field, although there is non-zero mutual
information in general. This behavior is consistent with the results presented in Ch. 4,
where the harvested quantum mutual information does not have a shadow.

Next, we consider how the harvesting protocol depends on the black hole masses, as
we show in Fig. 6.4. In general, we see that the smaller mass black holes allow for bet-
ter harvesting efficiency for both concurrence and mutual information. However, due to
non-trivial roles of curvature and communication between two detectors, the variation of
concurrence and mutual information as we vary detector distances from the horizon is
generally not monotonic. This is especially so for mutual information, where we see that
sufficiently far from the horizon, the behavior flips and detectors harvest mutual informa-
tion less for smaller masses; we verified at large distances [see inset of Fig. 6.4(d)] that the
curves flip again, and we again obtain the result that larger mass leads to less correlation
harvested.

A natural question that arises is to what extent the results obtained thus far depend
only on the kinematic properties of the detectors (i.e., their velocities) and how much of it
comes from the intrinsic properties of the background spacetime (i.e., the curvature). As
it turns out, the UDW formalism is not very sensitive to spacetime curvature and much
of the results here can be simulated using the corresponding flat space result, at least
in the exterior geometry of the black hole sufficiently distant from the horizon. In order
to better understand this kinematical aspect of the harvesting protocol, we will consider
concurrence and mutual information for the Boulware vacuum and compare the results
with the Minkowski vacuum analog.3

For this comparison to work, we will use the notion of intrinsic relative velocities in
general relativity. The idea is that since in curved spacetimes (M, g) the connection
is not flat, one cannot compare vectors belonging to tangent spaces at different points
directly. Consequently, in the presence of curvature, one cannot näıvely compute relative
velocities between two observers at two different events p, q ∈ M because a vector ua in
TpM is not a priori related to vectors in TqM. However, for spacetimes with well-defined
spacelike foliations, one can generalize the notion of relative velocities by making use of

3A similar comparison has been carried out between Rindler and Schwarzschild spacetimes [125].
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Figure 6.4: Concurrence and mutual information are plotted for various black hole masses
in both the FS and SS scenarios as a function of Alice’s proper distance from the horizon.
As a benchmark, we use the Unruh vacuum and we consider three different masses M/σ =
5, 10, 20. We fix the other parameters as Ωσ = 2, dAB/σ = 2. (a) Concurrence near the
horizon at d(rA, rh)/σ ∈ [0.001, 1]. We see that the FS case vanishes close to the horizon.
(b) Concurrence further away at d(rA, rh)/σ ∈ [1, 100]. The entanglement shadow in the
SS case increases with increasing M [43]. (c) Mutual information near the horizon at
d(rA, rh)/σ ∈ [0.001, 1]. (d) Mutual information further away at d(rA, rh)/σ ∈ [1, 100].
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the generalized version of spacelike simultaneity in flat space. Such a relative velocity is
called the kinematic relative velocity (KRV), which is described in Appendix C.2.

For Schwarzschild geometry, the notion of KRV boils down to a simple formula in terms
of the metric function f(r). If Alice and Bob are both static observers at fixed radii, the
KRV is zero. For the FS scenario where Alice is free-falling from infinity, her KRV relative
to Bob is given by [126]

VA,kin
∣∣∣
B

= −f(rB)
√

1 − f(rA)2

E2
∂

∂r

∣∣∣∣∣∣
B

, (6.18)

where E =
√

1 − 2M/r0 and r0 is the initial radius of the free-falling trajectory at rest
[127]. In our FS scenario, we have r0 → ∞ so that E = 1 and the magnitude of the
KRV is given simply VAB := |VA,kin| = f(rB)

√
1 − f(rA)2. Note that VAB depends on τA

since a free-falling detector has non-zero proper acceleration; in this case, Alice’s proper
acceleration can be shown to be [see Eq. (C.3) in Appendix C.1]

a(τA) :=
√
aµaµ = − M

r(τA)2 . (6.19)

If the detectors are far enough from the black hole and/or the support of the Gaussian is
sufficiently small, then the variation of Alice’s radial velocity across the Gaussian support
can be considered approximately constant, equal to the value at Alice’s Gaussian peak. In
this case, the KRV is given approximately by VAB,0 := f(rB)

√
1 − f(r(τA,0))2 where τA,0 is

the Gaussian peak of Alice. We can then compare the concurrence and mutual information
of the corresponding scenario in Minkowski space where Alice has relative velocity VAB with
respect to Bob for the same derivative coupling UDW model.4

We compare the concurrence and mutual information in the FS scenario in the Boulware
vacuum against the corresponding Minkowski vacuum scenario with the same constant
relative velocity VAB,0 in Fig. 6.5. The flat space version (shown in orange in Fig. 6.5)
corresponds to Bob at rest in an inertial frame and Alice boosted away from Bob, with
dAB/σ = 2 measured from the peaks of both Gaussian switching functions. The relevant
scale is given by a(τA,0)σ ≈ 10−5 ≪ 1 (thus the constant velocity approximation is valid
across the Gaussian support) and VAB,0 ≲ 0.08 which is almost in the relativistic regime.
Observe that for this setup, most of the correlations at d(rA, rh)/σ ∼ 300 − 500 can be
accounted for by the correct relative velocity alone (hence purely kinematic). Therefore, the

4All we need to change is the definition of the null coordinates into u, v = t ∓ r in the definition of
Wightman distribution for the Boulware vacuum (6.13a).
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Figure 6.5: Concurrence and mutual information for the FS scenario are plotted for
the Boulware vacuum and compared to the KRV in the Minkowski vacuum. Ωσ =
2,M/σ = 1, dAB/σ = 2, and stationary and boosted inertial detectors in (1+1)-dimensional
Minkowski spacetime with Ωσ = 2, dAB/σ = 2.

relative motion between the detectors (measured by KRV) is the most relevant physics that
explains why correlations in the FS scenario are consistently lower than the SS counterpart
in Figs. 6.3 and 6.4. At distances much farther than 500σ, the concurrence and mutual
information harvesting are practically indistinguishable from flat space. As we approach
the horizon the correlation harvested will start to be different for fixed σ as more non-
uniformity in the accelerated motion is captured by the Gaussian support.

We remark that this does not mean the effect of the gravitational field is absent from
the harvesting protocol; in fact, our analysis based on the kinematic relative velocity is a
manifestation of local flatness and the equivalence principle, since a small enough Gaussian
support is equivalent to looking at a small enough region of spacetime (the detector is
already pointlike). The fact that the black hole is present will be manifest in other ways:
for instance, insofar as Alice cannot signal to detectors near future null infinity I + once
Alice falls into the black hole, or that Alice will hit the singularity in finite proper time.
Also, by putting Bob in a static trajectory such that the switching peak is sufficiently
near future timelike infinity i+ while Alice is inside the black hole, it is guaranteed that
any correlation harvested is from the Hadamard contribution since they are both causally
disconnected by the future horizon H+. In [43] it was shown how the signaling estimator
for static detectors is already generally non-trivial in some finite region in the exterior:
since the field commutator is state-independent, the non-trivial signaling is gravitational
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in nature as the classical solutions to the Klein-Gordon equation depend on curvature
(reflected by the non-trivial wave operator ∇µ∇µ).

6.2.2 Dependence of harvesting with signaling between detectors

Our analysis so far has been focused on the detector trajectories, regardless of whether
the detectors harvest correlations purely from the vacuum or potentially assisted by com-
munication. We would like to understand to what extent the harvesting protocol in this
particular setup is assisted by communication between the detectors mediated by the quan-
tum field.

Although a direct way of showing how much of the harvested correlation comes from
the quantum field is to decompose the matrix elements XAB and CAB into the Hadamard
and Pauli-Jordan contributions as done in [30], it could be tedious to do this in a generic
curved spacetime. Here, we instead employ a measure of how causally disconnected the
two detectors are: the signaling estimator E [81, 43]. We take the signaling estimator to
be5

E := λ2

2 Im
(∫ ∞

−∞
dτA

∫ ∞

−∞
dτB χ(τA)χ(τB) ⟨0| [∂τAϕ̂(xA(τA)), ∂τBϕ̂(xB(τB))] |0⟩

)
. (6.20)

We have removed the subscript α from the vacuum state since the field commutators
are state-independent. This estimator is useful for the following reason: due to finite
switching times for both detectors, it is classically challenging to determine if Alice is in
the causal complement of Bob or not since it will require non-trivial ray tracing for the
entire spatiotemporal support of both detectors, even if the detectors are pointlike. This
provides us with a relatively cheap measure of how spacelike/timelike two detectors are; the
main drawback is that it does not allow us to clearly quantify how much of the correlations
harvested are due to communication-assisted contributions and how much are coming from
the pre-existent entanglement in the field as done in [30].

A cautionary note is in order here. The signaling estimator is crude insofar as it is
not quite an entanglement monotone; this will become apparent in what follows. Thus
non-zero E can only indicate that some of the concurrence is due to the field-mediated
communication channel between Alice and Bob. Conversely, if two detectors are causally
disconnected then E is guaranteed to be zero. Likewise, small E is indicative that most
of the harvested entanglement is not due to a communication channel. The sign of E is

5Strictly speaking we only need the modulus |E| since what is more relevant is the spatial interval or
region where E is approximately zero: the non-zero value of E itself is secondary.
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secondary6 and in what follows we shall plot |E| whenever it is conceptually clearer to do
so.

Note that the signaling estimator E is in terms of the commutator of the proper time
derivative of the field along the two detectors’ trajectories instead of the field commutator
[ϕ̂(xA(τA)), ϕ̂(xB(τB))]. This is because, for the derivative-coupling UDW model, one can
show that the leading order correction7 to Bob’s density matrix ρ(2)

B
:= TrA ρ

(2)
AB

due to
Alice’s detector depends only on the commutator [∂τAϕ̂(xA(τA)), ∂τBϕ̂(xB(τB))]. The cal-
culation proceeds analogously up to Eq. (24) in [81]. Furthermore, since the signaling
component depends on proper time derivatives, it means that the communication con-
tribution of the harvesting protocol mimics the (3 + 1)-dimensional setting, in that the
commutator only has support on the light cone. Therefore, communication mediated by
the massless scalar field will only occur if the supports of the switching functions of Bob’s
detector overlap with the lightlike boundary of Alice’s causal past/future and vice versa.
This means that they only can communicate via the scalar field if the support of the
Gaussian of one detector intersects the causal past/future of the other detector.

Finally, we remark that the Gaussian switching can be effectively taken to have compact
support despite the infinite exponential tails. We define strong support to be the interval
[−5σ+τj,0, 5σ+τj,0], where τj,0 are the Gaussian peaks defined in each detector’s rest frame.
The switching function χ(τj) can be taken to be negligible outside of this interval. This
sort of strong support approximation has been shown to be reasonable for detector-field
interaction studies [81, 43].

To this end, we consider the signaling estimator for Alice and Bob’s trajectories, as
shown in Fig. 6.6. The orange lines in 6.6(a) represent the light rays that can reach or
emanate from the endpoints of Alice’s Gaussian support, indicating the region along Bob’s
trajectory at which Bob can send or receive signals from Alice. We divide the regions
along Bob’s trajectory into four parts, shown in Fig. 6.6. Regions (i) and (iii) do not allow
signaling between both detectors: this is expected from the fact that the commutator of
∂τAϕ̂(xA) and ∂τBϕ̂(xB) has support only on the lightlike region. Region (ii) is where Bob
can signal to Alice when the Gaussian support of Bob’s detector intersects the orange lines,
whereas region (iv) is where Alice can signal to Bob. Notice that region (iv) is wider than
region (ii).

For a given choice of Alice and Bob’s detector parameters, the signaling region between
Alice and Bob mediated by the detector-field interaction can be quantified by a single
parameter δ and the PG coordinates. As depicted in Fig. 6.6(a), we first find the constant

6Indeed, the absolute value |E| is the definition of signaling estimator in [81].
7Here ρ

(2)
AB contains all terms of order λ2 in Eq. (2.43).

90



H+

I +

i+r = 0

δ = 0

tPG =
const.

τB,0

τA,0

(i) (ii)

(iii)

(iv)

(v)

(a)

-20 0 20 40 60 80 100

-0.10

-0.05

0.00

0.05

0.10

(b)

Figure 6.6: (a) Penrose diagram of the schematics of Alice (red) and Bob’s (blue) positions,
and (b) the corresponding signaling estimator between Alice and Bob as a function of the
“time-delay” parameter, δ/σ, for the FS scenario. Here we choose M/σ = 5, dAB/σ = 5
and d(rA, rh)/σ = 1. The red and blue stripes in (a) denote the strong support of Alice’s
and Bob’s Gaussian switching, and the orange lines in denote the light rays that emanate
or arrive at the endpoints of Alice’s strong support.

tPG slice that crosses Alice’s Gaussian peak τA,0. This is simply given by tPG = τA,0. Bob is
stationary at the radial coordinate8 rB = rh +d(rA, rh)+dAB and we suppose that Bob has
the freedom to decide when to switch the detector on (for fixed width σ). The parameter
δ gives a measure of time delay of Bob’s switching away from the tPG = τA,0 line (the
constant-tPG slice that matches Alice’s Gaussian peak) and it is given by

δ := τB,0 −
√
f(rB)

(
τA,0 − 2rh

√
rB

rh
− rh ln

√
rB/rh − 1√
rB/rh + 1

)
. (6.21)

Note that δ > 0 if the Gaussian peak τB,0 is located in the future of the constant tPG = τA,0
line.

The signaling estimator between the two detectors as a function of δ/σ is given in
Fig. 6.6(b); we see that it is not an entanglement monotone, as expected. By comparing

8Recall that in PG coordinates, the spatial slices are flat. Thus the coordinate separation between two
radial coordinates ri, rj is equivalently given by the proper separation ∆r = |ri − rj | = d(ri, rj). This is
not true for Schwarzschild coordinates (ts, r).
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Figure 6.7: Concurrence and signaling estimator as a function of proper distance from
the horizon for FS scenario. Left: Ωσ = 2,M/σ = 5, dAB/σ = 2, as done in Fig. 6.3.
Right: M/σ = 5,Ωσ = 5, dAB/σ = 5 (larger distance between two detectors). Here we
chose δ/σ = 1 so that two detectors cannot communicate at large d(rA, rh)/σ. In these
cases, E > 0.

with Fig. 6.6(a), we see that as δ varies from regions (i)-(iv), the communication between
Alice and Bob can be precisely captured using the signaling estimator E (or rather the
absolute value |E|). Indeed the signaling estimator |E| is very sharp and narrow in region
(ii) because the support of Bob’s Gaussian switching crosses the small region where Bob
can send signals to Alice via the field. Region (iv), where Bob can receive signals from
Alice, is very wide compared to (ii), and this is manifest in |E| ≠ 0 for a wide range of
δ. Regions (i) and (iii) have vanishing |E| because Bob is outside the signaling region. In
region (v) δ is large enough that Bob is again causally disconnected from Alice.

We can now clarify whether the harvesting protocol we studied earlier is communication-
assisted or not. By computing the signaling estimator for the results in Fig. 6.3, we conclude
that indeed the harvesting protocol is communication-assisted because |E| ̸= 0, as we show
in the left plot of Fig. 6.7. In the language of Fig. 6.6, this also means that for dAB/σ = 2,
region (iii) is so small that it cannot completely contain the Gaussian support of Bob;
hence the commutator cannot vanish as δ/σ increases from (ii) to (iv).

In view of this, we can ask whether the protocol still allows for entanglement harvesting
with free-falling Alice when Bob is causally disconnected from Alice; the answer is yes, as
we show in the right plot of Fig. 6.7. In this case, we have chosen the setup parameters
and manipulated the time-delay parameter δ/σ such that the detectors are causally discon-
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Figure 6.8: Schematics of the FS scenario when Alice’s strong support is completely
contained in the black hole interior. Here we chose Ωσ = 2,M/σ = 10, d(rA, 0)/σ = 14,
and d(rB, rh)/σ = 7. Alice turns her detector on after she enters the black hole while Bob
is staying outside. For this choice of parameters, mutual information harvested between
the causally disconnected detectors is still manifestly non-zero, although the concurrence
is zero in this case.

nected. Indeed, we see that the two detectors can still have non-zero concurrence without
communication, indicating that the harvested entanglement is a genuine entanglement.
Conversely, from the left diagram in Fig. 6.7, we also see that communication does not
necessarily assist entanglement harvesting.

Last but not least, we consider the final FS scenario when Alice’s Gaussian support
is completely contained inside the black hole, as shown in Fig. 6.8(a). Here the crucial
point is that Alice can never send a signal to Bob because her causal future is completely
contained in the black hole interior, although there are values of δ < 0 where Bob can still
signal to Alice. The black hole mass needs to be large enough relative to the Gaussian
width for Alice’s strong support to fit inside. An example that fits such a requirement is
given by Ωσ = 2,M/σ = 10, d(rA, 0)/σ = 14, and d(rB, rh)/σ = 7. For this choice, the
concurrence is zero but the quantum mutual information is still non-zero, as seen from
Fig. 6.8(b).

One may ask if two detectors causally disconnected by a horizon can harvest entan-
glement. Although we do not have an answer to this question, we provide an intuition
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in the following. For two detectors at rest in Minkowski vacuum, it was shown [49, 28]
that, for any detector separation L, there exists a minimum energy gap Ωmin such that
|XAB| − √

PAPB > 0 for Ω ≥ Ωmin for a Gaussian switching. However, if the detectors are
immersed in a thermal bath caused by the Gibbons-Hawking effect [49] or the Unruh effect
[128], the statement above about the detectors at rest does not hold; The detectors cannot
be entangled if their separation L is large enough, no matter how large Ω is. Unfortunately,
due to the highly oscillatory phase in the non-local matrix element XAB, we are unable to
plot the results for Ωσ ≳ 4.6. Since the detector static outside of the black hole experi-
ences the Hawking effect, it could be possible that the detectors in the FS scenario cannot
extract entanglement. This argument differs from the paper [44] on which this chapter is
based.

In Fig. 6.8, the quantum mutual information harvested decreases with increasing δ/σ.
Thus it seems that the harvesting protocol depends on how late Bob’s detector is turned
on even though the proper separation between the two detectors is the same. This can
be traced to the fact that while the Wightman functions are stationary with respect to
coordinate t (Schwarzschild or PG), it is not stationary with respect to the respective
proper times τA and τB, i.e., Aα(τA, τB) ̸= Aα(τA − τB), since there is relative gravitational
and kinematical redshift between the two trajectories. This is true even for two static
detectors at two different radii and hence is also true for any FS scenarios where the
two trajectories do not share the same proper time parametrization. In that sense, the
harvesting protocol is sensitive to the relative proper time delay between both detectors,
i.e., making one of the detectors turn on much later in the future generically decreases the
mutual information and concurrence between them.9

We comment on the implementation of the harvesting protocol when Alice is inside the
black hole. Strictly speaking, since Alice and Bob are causally disconnected by the horizon,
there is no physical procedure for checking the entanglement by themselves. This is because
neither party can collect the other party’s detectors and perform state tomography of the
joint system. For this particular scenario, we can follow similar principle as outlined in e.g.
[49]: essentially, one has to consider a third party, say Charlie, who follows a trajectory
that is contained in the causal futures of both Alice and Bob’s detectors. Charlie will then
collect information from both parties and perform state tomography on their behalf. Note
that Charlie also needs to fall inside the black hole, since Alice’s causal future is contained
in the black hole interior. In contrast, when both detectors are outside, Alice and Bob

9Generically this is because, by varying δ/σ, there will be a value δmax where it attains a maximum for
both concurrence and mutual information since the same reasoning should hold if Bob is turned on “too
early” in the asymptotic past. For derivative coupling, the lightlike support of the commutator implies
that switching on too early also disables communication.
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can simply reconvene after the interactions have been turned off, although they can also
employ a third party to do the joint state tomography.

6.2.3 Alice and Bob free-falling (FF)

We close the section by briefly analyzing the FF scenario, i.e. when both Alice and Bob
are free-falling towards the black hole. Here, we only consider the free-falling trajectory
initially at rest at spatial infinity since the adapted coordinate system is precisely the PG
coordinates. Thus for this FF setup, Alice and Bob follow the same timelike trajectory but
with different switching peaks. This simpler setup has the advantage that the derivative-
coupling Wightman functions are expressible in relatively simple terms, since the radially
infalling geodesics are relatively straightforward to implement. Note that due to the deriva-
tive coupling with the field, the support of [∂τAϕ̂(xA(τA)), ∂τBϕ̂(xB(τB))] is lightlike. Thus
being along the same timelike trajectory does not guarantee field-mediated communication
between them.

As shown in Fig. 6.9(a), without loss of generality we set Bob’s detector to switch
on earlier than Alice’s. This simulates the effect of Alice free-falling ahead of Bob. The
effective proper separation dAB between the detectors is fixed with respect to their Gaussian
peaks. That is, given Alice’s Gaussian peak at τA,0 and a fixed proper distance dAB, we
can work out at what proper time τB,0 Bob’s Gaussian peak should be. More explicitly,
given Alice’s (effective) proper distance from the horizon dA := d(rA, 0), their Gaussian
peaks can be written purely in geometric terms as

τA,0 = −dA

3

√
2dA

M
, (6.22)

τB,0 = −dA + dAB

3

√
2(dA + dAB)

M
. (6.23)

We can study the harvesting protocol in a manner analogous to the SS or FS scenarios for
any choice of dA and dAB. Fig. 6.9(b) depicts the signaling estimator and the concurrence
between two freely falling detectors when Ωσ = 5,M/σ = 50, dAB/σ = 5.

We immediately notice from Fig. 6.9(b) that the previously known entanglement shadow
near the horizon [41, 43] is absent; the freely falling detectors can harvest entanglement
from the interior and exterior of the black hole. First, note that in the SS scenario, the
closer the detectors are to the horizon, the lower the value of |XAB| − √

PAPB as the
noise term Pj dominates the non-local term |XAB| [41, 43]. On general grounds, it can be
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Figure 6.9: Schematics of two detectors in the FF scenario. Here we set Ωσ = 5,M/σ =
50, dAB/σ = 5. (a) The Penrose diagram of freely falling detectors, with Alice infalling first
towards the singularity followed by Bob. The horizontal axis is Alice’s proper distance from
the singularity, and the event horizon is at rh/σ = 2M/σ = 100. Alice cannot signal to
Bob via the coupling to the field but can receive signals from Bob when they are close to
the singularity. (b) The modulus of signaling estimator |E|/λ̃2 (red) and the concurrence
(blue) between the two free-falling observers.

shown that for fixed proper separation dAB, |XAB| remains finite as Alice (and hence Bob)
is brought closer to the horizon (in fact vanishes in this limit), whilst PA > |XAB| (for
sufficiently small dAB we have PA ∼ PB). This behavior is a generic result of the fact that
static detectors cannot remain static at the horizon, manifest as an infinite gravitational
redshift factor. By contrast, the equivalence principle requires that free-falling observers
(or detectors) experience nothing peculiar across the horizon. Free-falling detectors do not
experience divergent gravitational redshift at the horizon, and so in generic FF situations
the entanglement shadow is absent as both detectors cross the horizon along a radial
geodesic.

Moreover, Fig. 6.9(b) shows that the amount of harvested entanglement (in blue) in-
creases as the detectors reach the singularity. At early stages after horizon crossing, |E| is
small and most of the entanglement harvested is from the vacuum. As the singularity is
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approached, we can (using analogous ray-tracing analysis from previous subsections) see
that as the singularity is approached, Bob becomes able to signal to Alice, which is manifest
as increasing non-zero |E| (in red). Therefore, up until the point at which Alice’s Gaussian
tail approaches the singularity (beyond which we cannot make any conclusions at a semi-
classical level), entanglement harvesting becomes increasingly communication-assisted for
this particular setup.

Finally we make a comment regarding the generality of this FF scenario. There are
extra complications in both analytic and numerical evaluation of the detectors’ reduced
density matrix if we consider generalized free-falling coordinates associated with free-falling
observers initially at rest at finite radial coordinate r0 (see [116] for the generalized coor-
dinates adapted to different free-falling observers). This modified scenario is very useful
in principle because we can minimize the effect of relative velocities of the detectors when
they are very close to the black hole or even inside: our current setup necessarily requires
that Alice has non-negligible (possibly relativistic) velocities that may by itself suppress
the quality of the harvesting protocol. We leave this finite-radius free-falling scenario for
future work.
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Chapter 7

Conclusion

In this thesis, we investigated the influence of Unruh and Hawking effects on the correlation
harvesting protocol. Previously Ref. [1] showed that two detectors at rest interacting with
a thermal quantum field in Minkowski spacetime extract correlations from the field in
such a way that entanglement monotonically decreases with temperature while quantum
mutual information increases at the high-temperature regime (Sec. 3.2.1). In this thesis,
we demonstrated that this is not the case for the thermal baths resulting from the Unruh
and Hawking effects.

For uniformly accelerating Unruh-DeWitt (UDW) detectors with fixed proper separa-
tion between them, the harvested entanglement can be enhanced for some Unruh temper-
ature TU, and vanishes at high temperatures [38] (Sec. 3.2.2). This is due to the fact that
the transition probability monotonically increases with temperature, and the concurrence
(a measure of entanglement) becomes 0 whenever the transition probability P exceeds the
non-local elements XAB in the density matrix ρAB of the detectors: |XAB| ≤ P . Quantum
mutual information can also be enhanced for some TU and decreases with higher temper-
atures, but it asymptotes to 0 at TU → ∞, instead of suddenly vanishing. Therefore,
high (but finite) Unruh temperatures prevent the detectors from extracting entanglement
and other types of correlations such as classical and non-distillable entanglement in the
TU → ∞ limit.

We then examined the harvesting protocol in black hole spacetimes. In Ch. 4, detectors
in Bañados-Teitelboim-Zanelli (BTZ) black hole spacetime were considered. The quantum
field is in the Hartle-Hawking vacuum, which gives a thermal equilibrium of Hawking ra-
diation. In Ref. [41], the harvested entanglement between two static detectors hovering
outside of the black hole was shown to vanish when one of the detectors are close enough to
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the event horizon. They claimed that this is caused by the high black hole temperature and
gravitational redshift. Here, we wrote the concurrence and quantum mutual information in
terms of the local temperature T and the gravitational redshift γ of the detector closest to
the horizon and showed that the high temperature is responsible for the “death” of corre-
lation near the horizon. To be more precise, at finite but high temperatures, entanglement
can no longer be harvested while the extraction of mutual information is prohibited only
in the limit T → ∞, just as in the case of accelerating detectors.

The influence of black hole temperature on tripartite entanglement was also investi-
gated in Ch. 5. Unlike bipartite entanglement, tripartite entanglement has a rich structure
consisting of four classes of entanglement: Greenberger-Horne-Zeilinger (GHZ), W, bi-
separable, and fully separable states. It is of interest that which states can be generated
from the field. We found that tripartite entanglement is less affected by high black hole
temperature compared to bipartite entanglement. This leads us to the case where the
π-tangle (a measure of tripartite entanglement) is non-zero while all the bipartite entan-
glement is vanishing. Hence, we claimed that such tripartite entanglement is of GHZ type.

We make two remarks here. First, the π-tangle is a measure of tripartite entanglement
for pure states, while our final density matrix is mixed. One has to appropriately optimize
the π-tangle in order to apply it to mixed states, though a concrete procedure for such an
optimization is not known as far as we know. However, the π-tangle we used in this thesis
is the lower bound of the optimized π-tangle; thereby whenever the π-tangle is positive,
it is guaranteed that the optimized one is also positive. Nevertheless, such optimization
is required for a thorough investigation of tripartite entanglement harvesting. Second, it
is questionable that we are actually “harvesting” tripartite entanglement from the field
since the three-point correlation function, ⟨0|ϕ̂(x1)ϕ̂(x2)ϕ̂(x3)|0⟩ is zero in the free theory.
This means that our tripartite entanglement is not coming from the tripartite correlations
in the field, but rather, it is from the two-point correlation function. In this sense, it is
appropriate to call it “tripartite entanglement generation.”

Finally, we considered two detectors in (1 + 1)-dimensional Schwarzschild spacetime in
Ch. 6 and investigated the scenario where thermal equilibrium does not exist. This is imple-
mented by introducing the Unruh vacuum, which is a mixture of the Hartle-Hawking and
Boulware vacua, and by letting the detectors free-fall into the black hole. Along with [43]
we found that the detectors in the Unruh vacuum behave similarly to the Hartle-Hawking
vacuum case. If one of the detectors free-falls into the black hole, the entanglement shadow
(the region in which detectors are prohibited to extract entanglement) becomes wider. In
fact, the harvested entanglement by the free-faller and the static detector is always less
than the entanglement extracted by two static detectors. This is counter-intuitive since
a freely falling detector will see relatively lower temperatures near the horizon compared
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to the static detectors. We revealed that the downgrade of the ability of entanglement
harvesting by the free-faller is caused by the kinematic properties of UDW detectors; The
Doppler redshift due to the relative velocity between the detectors will degrade the en-
tanglement. Nevertheless, the quantum mutual information remains non-zero even when
the free-faller crosses the horizon, which indicates that the absence of infinite temperature
for the freely falling observer saves the correlation. We also looked at two freely falling
detectors. Due to the absence of infinite temperature for both detectors, they manage to
extract correlations without a problem.

We comment on entanglement harvesting in the Boulware vacuum in [43]. The Boul-
ware vacuum is associated with the positive frequency mode with respect to ∂ts , where ts
is the Schwarzschild time. As a result, the black hole temperature is zero and in fact, the
Boulware vacuum is identical to the Minkowski vacuum at spatial infinity. In Ref. [43], it
was observed that the entanglement shadow is still present near the event horizon even in
the Boulware vacuum. This observation appears to conflict with our claim that the shadow
is a result of the high black hole temperature. However, we argue that the entanglement
shadow manifest in the Boulware vacuum is a mere result of non-zero transition probabil-
ity, which is a consequence of the interaction duration being finite. This phenomenon is
also observed in the Minkowski vacuum. By extending the interaction duration, the tran-
sition probability can be reduced (indeed, for a detector with an infinitely long interaction
time, the transition probability becomes zero). See [129] in the context of transition rate
in (3 + 1)-dimensional Schwarzschild spacetime. Hence, if the interaction duration is long
enough, the detectors can harvest entanglement from the field (in the Boulware vacuum)
arbitrarily close to the event horizon.

We close this thesis by discussing potential avenues for future research. It is still unclear
how to classify the tripartite entanglement generated among the detectors from the field.
As mentioned above, this issue is due to the lack of a tripartite entanglement measure that
can be properly applied to mixed states. It is, therefore, crucial to find such a measure (or
a witness) for a three-qubit system. One can also think about the experimental realization
of entanglement harvesting. In particular, it may be possible to verify the influence of the
Unruh effect on harvested correlations from a Bose-Einstein condensate [130, 131, 132].
However, the entanglement harvesting protocol in this setup remains largely unexplored.
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[120] Benito A Juárez-Aubry and Jorma Louko. Onset and decay of the 1+1 Hawking-
Unruh effect: What the derivative-coupling detector saw. Classical and Quantum
Gravity, 31(24):245007, nov 2014. doi: 10.1088/0264-9381/31/24/245007. URL
https://doi.org/10.1088%2F0264-9381%2F31%2F24%2F245007. 80, 136

114

https://link.aps.org/doi/10.1103/PhysRevA.62.062314
https://link.aps.org/doi/10.1103/PhysRevA.90.032316
https://link.aps.org/doi/10.1103/PhysRevA.90.032316
https://link.aps.org/doi/10.1103/PhysRevLett.87.040401
https://doi.org/10.1007/JHEP05(2018)140
https://doi.org/10.1119/1.1336836
https://www.sciencedirect.com/science/article/pii/S0920563202013063
https://www.sciencedirect.com/science/article/pii/S0920563202013063
https://doi.org/10.1142/S0218271804005249
https://doi.org/10.1093/ptep/pty146
https://doi.org/10.1088%2F0264-9381%2F31%2F24%2F245007


[121] Marek J. Radzikowski. Micro-local approach to the Hadamard condition in quan-
tum field theory on curved space-time. Commun. Math. Phys., 179(3):529–553, Sep
1996. ISSN 1432-0916. doi: 10.1007/BF02100096. URL https://doi.org/10.1007/
BF02100096. 80

[122] Igor Khavkine and Valter Moretti. Algebraic QFT in Curved Spacetime and Quasifree
Hadamard States: An Introduction, pages 191–251. Springer International Pub-
lishing, Cham, 2015. ISBN 978-3-319-21353-8. URL https://doi.org/10.1007/
978-3-319-21353-8_5. 80

[123] Erickson Tjoa. Numerical contour integration. The Mathematica Journal, 2021. URL
https://doi.org/10.3888/tmj.23-3. 83

[124] Wolfram Research, Inc. Mathematica, Version 10.0. URL https://www.wolfram.
com/mathematica. Champaign, IL, 2020. 83

[125] Aida Ahmadzadegan, Eduardo Mart́ın-Mart́ınez, and Robert B. Mann. Cavities in
curved spacetimes: The response of particle detectors. Phys. Rev. D, 89:024013, Jan
2014. doi: 10.1103/PhysRevD.89.024013. URL https://link.aps.org/doi/10.
1103/PhysRevD.89.024013. 85

[126] Vicente J Bolós. Intrinsic definitions of “relative velocity” in general relativity.
Commun. Math. Phys., 273(1):217–236, 2007. URL https://doi.org/10.1007/
s00220-007-0248-9. 87, 137

[127] S. Chandrasekhar. The Mathematical Theory of Black Holes. International Series of
Monographs on Physics. Clarendon Press, Oxford, 1998. ISBN 9780198503705. URL
https://books.google.ca/books?id=LBOVcrzFfhsC. 87

[128] Lana Bozanic, Manar Naeem, Kensuke Gallock-Yoshimura, and Robert B. Mann. To
be published. 94

[129] Lee Hodgkinson, Jorma Louko, and Adrian C. Ottewill. Static detectors and circular-
geodesic detectors on the Schwarzschild black hole. Phys. Rev. D, 89:104002, May
2014. doi: 10.1103/PhysRevD.89.104002. URL https://link.aps.org/doi/10.
1103/PhysRevD.89.104002. 100

[130] A. Retzker, J. I. Cirac, M. B. Plenio, and B. Reznik. Methods for Detecting Accel-
eration Radiation in a Bose-Einstein Condensate. Phys. Rev. Lett., 101:110402, Sep
2008. doi: 10.1103/PhysRevLett.101.110402. URL https://link.aps.org/doi/
10.1103/PhysRevLett.101.110402. 100

115

https://doi.org/10.1007/BF02100096
https://doi.org/10.1007/BF02100096
https://doi.org/10.1007/978-3-319-21353-8_5
https://doi.org/10.1007/978-3-319-21353-8_5
https://doi.org/10.3888/tmj.23-3
https://www.wolfram.com/mathematica
https://www.wolfram.com/mathematica
https://link.aps.org/doi/10.1103/PhysRevD.89.024013
https://link.aps.org/doi/10.1103/PhysRevD.89.024013
https://doi.org/10.1007/s00220-007-0248-9
https://doi.org/10.1007/s00220-007-0248-9
https://books.google.ca/books?id=LBOVcrzFfhsC
https://link.aps.org/doi/10.1103/PhysRevD.89.104002
https://link.aps.org/doi/10.1103/PhysRevD.89.104002
https://link.aps.org/doi/10.1103/PhysRevLett.101.110402
https://link.aps.org/doi/10.1103/PhysRevLett.101.110402


[131] Cisco Gooding, Steffen Biermann, Sebastian Erne, Jorma Louko, William G. Un-
ruh, Jörg Schmiedmayer, and Silke Weinfurtner. Interferometric Unruh Detec-
tors for Bose-Einstein Condensates. Phys. Rev. Lett., 125:213603, Nov 2020.
doi: 10.1103/PhysRevLett.125.213603. URL https://link.aps.org/doi/10.
1103/PhysRevLett.125.213603. 100

[132] Steffen Biermann, Sebastian Erne, Cisco Gooding, Jorma Louko, Jörg Schmiedmayer,
William G. Unruh, and Silke Weinfurtner. Unruh and analogue Unruh temperatures
for circular motion in 3 + 1 and 2 + 1 dimensions. Phys. Rev. D, 102:085006, Oct
2020. doi: 10.1103/PhysRevD.102.085006. URL https://link.aps.org/doi/10.
1103/PhysRevD.102.085006. 100

[133] S.M. Carroll. Spacetime and Geometry: An Introduction to General Relativity. Cam-
bridge University Press, Cambridge, England, 2019. ISBN 9781108775557. URL
https://books.google.ca/books?id=1XSmDwAAQBAJ. 122, 135

[134] S. J. Avis, C. J. Isham, and D. Storey. Quantum field theory in anti-de Sitter space-
time. Phys. Rev. D, 18:3565–3576, Nov 1978. doi: 10.1103/PhysRevD.18.3565. URL
https://link.aps.org/doi/10.1103/PhysRevD.18.3565. 127

[135] Kiyoshi Shiraishi and Takuya Maki. Quantum fluctuation of stress tensor and
black holes in three dimensions. Phys. Rev. D, 49:5286–5294, May 1994. doi: 10.
1103/PhysRevD.49.5286. URL https://link.aps.org/doi/10.1103/PhysRevD.
49.5286. 128

[136] James Ward Brown and Ruel V Churchill. Complex variables and applica-
tions. McGraw-Hill Education, 2009. URL https://books.google.ca/books?id=
ytJFAQAAIAAJ. 130

[137] Introduction to Smooth Manifolds. Springer New York, 2012. URL https://doi.
org/10.1007/978-1-4419-9982-5. 138

116

https://link.aps.org/doi/10.1103/PhysRevLett.125.213603
https://link.aps.org/doi/10.1103/PhysRevLett.125.213603
https://link.aps.org/doi/10.1103/PhysRevD.102.085006
https://link.aps.org/doi/10.1103/PhysRevD.102.085006
https://books.google.ca/books?id=1XSmDwAAQBAJ
https://link.aps.org/doi/10.1103/PhysRevD.18.3565
https://link.aps.org/doi/10.1103/PhysRevD.49.5286
https://link.aps.org/doi/10.1103/PhysRevD.49.5286
https://books.google.ca/books?id=ytJFAQAAIAAJ
https://books.google.ca/books?id=ytJFAQAAIAAJ
https://doi.org/10.1007/978-1-4419-9982-5
https://doi.org/10.1007/978-1-4419-9982-5


APPENDICES

117



Appendix A

Elements in the density matrix

Here, we derive the density matrix (2.43). Let us begin with ρtot given by (2.42). The final
density matrix for two detectors, ρAB is obtained by tracing out the field part:

ρAB = Trϕ[ρtot]
= Trϕ[ρ0] + Trϕ[ρ(1,1)] + Trϕ[ρ(2,0)] + Trϕ[ρ(0,2)] + O(λ4) (A.1)
= ρAB,0 + Trϕ[ρ(1,1)] + Trϕ[ρ(2,0)] + Trϕ[ρ(0,2)] + O(λ4) , (A.2)

where ρAB,0 = |gA⟩ ⟨gA| ⊗ |gB⟩ ⟨gB|.
Trϕ[ρ(1,1)] term:

Trϕ[ρ(1,1)] = Trϕ[Û (1)ρ0Û
(1)†]

= Trϕ
[ ∫

R
dt2

(
dτA

dt2
ĤA(τA(t2)) + dτB

dt2
ĤB(τB(t2))

)
ρ0

×
∫
R

dt1
(

dτA

dt1
ĤA(τA(t1)) + dτB

dt1
ĤB(τB(t1))

)]

=
∫

dt1dt2 Trϕ
[

dτA

dt1
dτA

dt2
ĤA(τA(t2))ρ0ĤA(τA(t1))

+ dτA

dt2
dτB

dt1
ĤA(τA(t2))ρ0ĤB(τB(t1))

+ dτA

dt1
dτB

dt2
ĤB(τB(t2))ρ0ĤA(τA(t1))

+ dτB

dt1
dτB

dt2
ĤB(τB(t2))ρ0ĤB(τB(t1))

]
. (A.3)
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Let us evaluate each term. For simplicity, we write τj1 ≡ τj(t1) and τj2 ≡ τj(t2).

• Trϕ
[

dτA

dt1
dτA

dt2
ĤA(τA2)ρ0ĤA(τA1)

]

= dτA

dt1
dτA

dt2
λ2

AχA(τA1)χA(τA2) Trϕ
[
ϕ̂(xA2) |0⟩ ⟨0| ϕ̂(xA1)

]
m̂A(τA2)ρAB,0m̂A(τA1)

= dτA

dt1
dτA

dt2
λ2

AχA(τA1)χA(τA2)e−iΩA(τA1−τA2)W (xA1, xA2)


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 , (A.4)

• Trϕ
[

dτA

dt2
dτB

dt1
ĤA(τA2)ρ0ĤB(τB1)

]

= dτA

dt2
dτB

dt1
λAλBχA(τA2)χB(τB1) Trϕ

[
ϕ̂(xA2) |0⟩ ⟨0| ϕ̂(xB1)

]
m̂A(τA2)ρAB,0m̂B(τB1)

= dτA

dt2
dτB

dt1
λAλBχA(τA2)χB(τB1)e−i(ΩBτB1−ΩAτA2)W (xB1, xA2)


0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 , (A.5)

• Trϕ
[

dτB

dt2
dτA

dt1
ĤB(τB2)ρ0ĤA(τA1)

]

= dτB

dt2
dτA

dt1
λAλBχA(τA1)χB(τB2) Trϕ

[
ϕ̂(xB2) |0⟩ ⟨0| ϕ̂(xA1)

]
m̂B(τB2)ρAB,0m̂A(τA1)

= dτB

dt2
dτA

dt1
λAλBχA(τA1)χB(τB2)e−i(ΩAτA1−ΩBτB2)W (xA1, xB2)


0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0

 , (A.6)

• Trϕ
[

dτB

dt1
dτB

dt2
ĤB(τB2)ρ0ĤB(τB1)

]

= dτB

dt1
dτB

dt2
λ2

BχB(τB1)χB(τB2) Trϕ
[
ϕ̂(xB2) |0⟩ ⟨0| ϕ̂(xB1)

]
m̂B(τB2)ρAB,0m̂B(τB1)

= dτB

dt1
dτB

dt2
λ2

BχB(τB1)χB(τB2)e−iΩB(τB1−τB2)W (xB1, xB2)


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 . (A.7)
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Therefore,

Trϕ[ρ(1,1)] =


0 0 0 0
0 PB C∗

AB 0
0 CAB PA 0
0 0 0 0

 , (A.8)

where PA, PB, and CAB are given by (2.44).
Trϕ[ρ(0,2)] term:

Trϕ[ρ(0,2)] = Trϕ[ρ0Û
(2)†]

= Trϕ
[

− ρ0

∫
R

dt1
(

dτA

dt1
ĤA(τA(t1)) + dτB

dt1
ĤB(τB(t1))

)

×
∫ t1

−∞
dt2

(
dτA

dt2
ĤA(τA(t2)) + dτB

dt2
ĤB(τB(t2))

)]

= −
∫
R

dt1
∫ t1

−∞
dt2 Trϕ

[
dτA

dt1
dτA

dt2
ρ0ĤA(τA(t1))ĤA(τA(t2))

+ dτA

dt1
dτB

dt2
ρ0ĤA(τA(t1))ĤB(τB(t2))

+ dτB

dt1
dτA

dt2
ρ0ĤB(τB(t1))ĤA(τA(t2))

+ dτB

dt1
dτB

dt2
ρ0ĤB(τB(t1))ĤB(τB(t2))

]
.

Each term can be calculated in the same way as before. Here, we provide two terms as an
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example.

• Trϕ
[

dτA

dt1
dτB

dt2
ρ0ĤA(τA1)ĤB(τB2)

]

= dτA

dt1
dτB

dt2
λAλBχA(τA1)χB(τB2) Trϕ

[
|0⟩ ⟨0| ϕ̂(xA1)ϕ̂(xB2)

]
ρAB,0m̂A(τA1)m̂B(τB2)

= dτA

dt1
dτB

dt2
λAλBχA(τA1)χB(τB2)e−i(ΩAτA1+ΩBτB2)W (xA1, xB2)


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 , (A.9)

• Trϕ
[

dτB

dt1
dτA

dt2
ρ0ĤB(τB1)ĤA(τA2)

]
(A.10)

= dτB

dt1
dτA

dt2
λAλBχB(τB1)χA(τA2) Trϕ

[
|0⟩ ⟨0| ϕ̂(xB1)ϕ̂(xA2)

]
ρAB,0m̂B(τB1)m̂A(τA2)

= dτB

dt1
dτA

dt2
λAλBχB(τB1)χA(τA2)e−i(ΩBτB1+ΩAτA2)W (xB1, xA2)


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 . (A.11)

Hence,

X∗
AB = −

∫
R

dt1
∫ t1

−∞
dt2

dτA

dt1
dτB

dt2
λAλBχA(τA1)χB(τB2)e−i(ΩAτA1+ΩBτB2)W (xA1, xB2)

−
∫
R

dt1
∫ t1

−∞
dt2

dτB

dt1
dτA

dt2
λAλBχB(τB1)χA(τA2)e−i(ΩBτB1+ΩAτA2)W (xB1, xA2)

= −
∫
R

dt1
∫ t1

−∞
dt2

dτA

dt1
dτB

dt2
λAλBχA(τA1)χB(τB2)e−i(ΩAτA1+ΩBτB2)W (xA1, xB2)

−
∫
R

dt2
∫ t2

−∞
dt1

dτB

dt2
dτA

dt1
λAλBχB(τB2)χA(τA1)e−i(ΩBτB2+ΩAτA1)W (xB2, xA1) (t1 ↔ t2)

= −
∫
R

dτA

∫ t(τA)

−∞
dτB λAλBχA(τA)χB(τB)e−i(ΩAτA+ΩBτB)W (xA(τA), xB(τB))

−
∫
R

dτB

∫ t(τB)

−∞
dτA λAλBχB(τB)χA(τA)e−i(ΩBτB+ΩAτA)W (xB(τB), xA(τA)) (A.12)

= −λAλB

∫
R

dτA

∫
R

dτB χA(τA)χB(τB)e−i(ΩAτA+ΩBτB)

×
[
W (xA(τA), xB(τB))Θ(t(τA) − t(τB)) +W (xB(τB), xA(τA))Θ(t(τB) − t(τA))

]
.

(A.13)
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Appendix B

Density matrix in BTZ spacetime

B.1 QFT in BTZ spacetime

B.1.1 AdS3 and BTZ spacetimes

AdS3 spacetime

BTZ spacetime can be constructed from AdS3 spacetime. AdS3 spacetime [i.e., (2 + 1)-
dimensional anti-de Sitter spacetime] can be formulated as a maximally symmetric space-
time with negative curvature embedded in four-dimensional flat space with two timelike
axes. We follow [133].

Let u,w be the timelike coordinates and x, y be the spacelike coordinates in such a flat
space. Then the line-element of the flat space, ds2

4, reads

ds2
4 = −du2 − dw2 + dx2 + dy2 . (B.1)

AdS3 is then expressed as a hypersurface in this flat space obeying

−u2 − w2 + x2 + y2 = −ℓ2 , (B.2)

where ℓ = 1/
√

−Λ is the AdS length defined by using the cosmological constant Λ. The
line-element of the embedded AdS3 spacetime can be obtained from these two equations.
One can change the coordinates to the so-called global static coordinate system (t, ρ, φ)
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via

u = ℓ cosh ρ sin(t/ℓ) , (B.3a)
w = ℓ cosh ρ cos(t/ℓ) , (B.3b)
x = ℓ sinh ρ sinφ , (B.3c)
y = ℓ sinh ρ cosφ . (B.3d)

so that the line-element for AdS3 reads

ds2 = ℓ2(− cosh2 ρdt2 + dρ2 + sinh2 ρdφ2) , (B.4)

where t ∈ [0, 2πℓ], ρ ∈ [0,∞) and φ ∈ [0, 2π). Although this is periodic in t and thereby
the spacetime possesses closed timelike curves, we can introduce a universal covering space
that allows t ∈ R.

Let us rewrite the line-element of AdS3 as

ds2 = ℓ2 cosh2 ρ

[
−dt2 + 1

cosh2 ρ
(dρ2 + sinh2 ρdφ2)

]
, (B.5)

and introduce

dχ := dρ
cosh ρ . (B.6)

One can solve this equation to obtain

cosh ρ = 1
cosχ . (B.7)

This relation and the fact ρ ∈ [0,∞) (and therefore cosh ρ ∈ [1,∞)) leads us to χ ∈ [0, π/2).
Thus, we can perform a coordinate transformation from the global static coordinates
(t, ρ, φ) to the conformal coordinates (t, χ, φ), which give the following line-element:

ds2 = ℓ2

cos2 χ
(−dt2 + dΩ2

2) , (B.8)

where dΩ2
2 = dχ2 + sin2 χdφ2 is the line-element of two-sphere.

We remark that the two-sphere dΩ2
2 here is actually representing a half sphere since

χ ∈ [0, π/2) rather than [0, π]. Namely, χ = 0 and χ = π/2 are the north pole and
the equator of a unit sphere, respectively. The line-element given above is conformally
equivalent to a spacetime described by −dt2 + dΩ2

2 [see (2.21)]. If χ ∈ [0, π] then such
a spacetime is known as the Einstein static universe. Therefore, AdS3 is conformally
equivalent to half of the Einstein static universe. The Penrose diagram for AdS is shown
in Fig. B.1.
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χ = 0

χ = π/2
χ = π/2

t

χ
=

0

χ
=
π
/2

χ
=
π
/2

χ
=

0

χ
=
π
/2

t

Figure B.1: The green region on the sphere represents a time slice of the half Einstein
static universe. The Penrose diagram for anti-de Sitter spacetime is shown in the rightmost
figure. The orange line represents a light ray bouncing off the boundary of AdS spacetime.

BTZ spacetime

While we now know that BTZ spacetime is a black hole spacetime in (2 + 1)-dimensions,
historically, people had thought that black hole solutions do not exist in this dimension.
This is because the Riemann tensor in (2 + 1)-dimension can be written in terms of the
Einstein tensor Gµν ≡ Rµν+ 1

2Rgµν and thereby, the Einstein field equation Gµν = 8πGNTµν
allows us to express the Riemann tensor Rµνρσ in terms of the stress-energy tensor Tµν .
If we assume that there is no matter (i.e., Tµν = 0) then it leads to Rµνρσ = 0, which is
(2 + 1)-dimensional flat spacetime. Even if we introduce the cosmological constant Λ, the
vacuum solution to the Einstein field equations becomes (anti-)de Sitter spacetime, which
is not a black hole solution. Let us call these flat, de Sitter, and anti-de Sitter solutions as
trivial solutions.

However, one can think of spacetimes that are locally trivial but globally non-trivial.
For example, the plane and cylinder are both locally trivial (flat), but they are topologically
different; the cylinder is constructed by topologically identifying some points of the plane.
BTZ black hole spacetime is locally trivial (AdS3) but topologically different, and it can
be constructed by a topological identification. In this sense, BTZ spacetime is a vacuum
solution to the Einstein field equation with the negative cosmological constant, Gµν +
Λgµν = 0, but topologically different from AdS3 spacetime.
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y

w

x

u

K
2 =

r
2 h

K 2 = 0

(a) (b)

Figure B.2: (a) u, x-slice of the embedding space. The hyperbolas represent the surface
of AdS3 described by (B.2). The spacelike Killing vectors are depicted by red arrows. (b)
The (u, x)-plane and the AdS3 surfaces described by (B.11). The yellow and green regions
are characterized by u2 − x2 < 0 and u2 − x2 > 0, respectively. Each hyperbola represents
the surface of (B.11) with different K2.

Let us begin with the embedding space (B.1) and the constraint (B.2) for AdS3 space-
time. For fixed x, u, one can consider a two-dimensional (w, y)-plane. In this x, u = const
slice, the AdS3 space is characterized by −w2 + y2 = u2 − x2 − ℓ2 from (B.2). By intro-
ducing a constant rh, one of the spacelike Killing vector field K on this hypersurface can
be written as

K = rh

ℓ
(y∂w + w∂y) . (B.9)

The norm of this Killing vector field is

K2 ≡ KµKµ = r2
h
ℓ2 (w2 − y2) , (B.10)

where K2 > 0 since it is a spacelike vector. We can rewrite (B.2) by using K2 as

u2 − x2 = ℓ2
(

1 − K2

r2
h

)
. (B.11)
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We now allow u, x to vary and consider the (u, x)-plane in Fig. B.2(b). The AdS3
spacetime is now described by the constraint (B.11) with K2 > 0. The yellow and green
regions are characterized by x > |u| and u > |x|, respectively, and this means u2 − x2 < 0
for yellow and u2 − x2 > 0 for green. The surface of AdS3 is described by (B.11), and each
surface can be specified with the value of K2. In the yellow region, u2 −x2 < 0 ⇒ K2 > r2

h,
thereby each surface can be specified by, for example, K2 = r2

h +1, r2
h +2, · · · . On the other

hand, the surfaces in the green region have K2 < r2
h, but the Killing vector field must be

spacelike, K2 > 0, so the surfaces stop at K2 = 0, which will become the singularity of the
black hole.

We now perform a coordinate transformation that respects (B.2) and the argument
above:

u = ℓr

rh
cosh rhφ

ℓ
, (B.12a)

x = ℓr

rh
sinh rhφ

ℓ
, (B.12b)

w =
ℓ
√
r2 − r2

h

rh
sinh rht

ℓ2 , (B.12c)

y =
ℓ
√
r2 − r2

h

rh
cosh rht

ℓ2 , (B.12d)

where t ∈ R, r ∈ (0,∞), φ ∈ R. This coordinate transformation leads us to the BTZ
metric (4.1). However, the metric contains an infinitely long angle φ and the metric still
describes AdS3 in a different coordinate system. Since our spacelike Killing vector field in
this coordinate system is just K = ∂φ, we can perform a topological identification:

(t, r, φ) ∼ (t, r, φ+ 2π) , (B.13)

and claim that φ and φ+2π represent the same point. The resulting metric describes BTZ
black hole spacetime.

B.1.2 QFT

The Wightman function in BTZ black hole spacetime can be constructed from the Wight-
man function in AdS3. Here, we first consider QFT in AdS3 spacetime and then construct
the BTZ Wightman function.
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QFT in AdS3

Recall that the formulation of QFT is well-defined in globally hyperbolic spacetimes. How-
ever, AdS3 is not globally hyperbolic since its boundary is timelike (B.1). Therefore, we
have to specify how a quantum field behaves at the boundary.

To properly define quantum fields in AdS3 spacetime, we use the fact that it is con-
formally equivalent to the Einstein static universe (ESU) [134, 102]. Recall that the line-
element of ESU is

ds2 = −dt2 + dχ2 + sin2 χdφ2 , (B.14)

where t ∈ R, χ ∈ [0, π], and φ ∈ [0, 2π). We consider a massless, conformally coupled
scalar field in ESU, satisfying the Klein-Gordon equation and proceed with quantization
by defining a vacuum state |0ESU⟩ with respect to a timelike Killing vector field ∂t. The
Wightman function, WESU(x, x′), can be obtained by

WESU(x, x′) = ⟨0ESU|ϕ̂(x)ϕ̂(x′)|0ESU⟩ . (B.15)

By using the fact that massless conformally coupled fields in conformally related spacetimes
are related by (2.22), the Wightman function in AdS3 (but admitting the leakage of the field
from the northern to the southern hemispheres in Fig. B.1), WA(x, x′), can be constructed
as

WA(x, x′) = ⟨0|ϕ̂AdS(x)ϕ̂AdS(x′)|0⟩
= Ω− 1

2 (x)Ω− 1
2 (x′) ⟨0|ϕ̂ESU(x)ϕ̂ESU(x′)|0⟩ (B.16)

=
√

cosχ cosχ′

ℓ
WESU(x, x′) , (B.17)

where our conformal factor Ω(x) is Ω(x) = ℓ/ cosχ from (B.8).
To implement the boundary condition at χ = π/2, we employ the method of images.

By defining x̃ := (t, π − χ, φ), we can properly construct the Wightman function in AdS3,
WAdS3(x, x′) as

WAdS3(x, x′) = WA(x, x′) + ζWA(x̃, x′) , (B.18)

where ζ ∈ R determines the property of the boundary. For example, ζ = 1 and ζ = −1
represent the Dirichlet and Neumann boundary conditions, respectively. One can also
consider the transparent boundary condition, ζ = 0.
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QFT in BTZ

Since BTZ spacetime is constructed from AdS3 by identifying (t, r, φ) ∼ (t, r, φ + 2nπ) in
the coordinate system (B.12d), we can utilize the field operator in AdS3. In particular,
let Γn : (t, r, φ) 7→ (t, r, φ + 2πn). Then the Wightman function in BTZ spacetime,
WBTZ(x, x′), can be constructed from WAdS3(x, x′) via the method of images [102]:

WBTZ(x, x′) =
∞∑

n=−∞
WAdS3(x,Γnx′) . (B.19)

One can show that this Wightman function satisfies the KMS condition with respect to
time t and the vacuum state (which corresponds to |0AdS⟩) is the Hartle-Hawking state
[102]. One can also refer to [104, 135].

B.2 Derivation of matrix elements

Consider two static detectors on the same axis: ∆φ = 0. We assume that the detectors
switch at the same time so that

CAB = λ2
∫
R

dτA

∫
R

dτB e
−τ2

A/2σ2
e−τ2

B/2σ2
e−iΩ(τA−τB)WBTZ(xA(τA), xB(τB)), (B.20)

where

WBTZ(xA(τA), xB(τB)) = 1
4π

√
2ℓ

∞∑
n=−∞

 1√
σϵ(xA,ΓnxB)

− ζ√
σϵ(xA,ΓnxB) + 2

 , (B.21a)

σϵ(xA,ΓnxB) = rArB

r2
h

cosh
(
rh

ℓ
2πn

)
− 1 −

√
(r2

A − r2
h)(r2

B − r2
h)

r2
h

cosh
[
rh

ℓ2

(
τA

γA
− τB

γB

)
− iϵ

]
,

(B.21b)

where we used tj = τj/γj. Then CAB becomes

CAB = λ2

4π
√

2ℓ

∞∑
n=−∞

∫
R

dτA

∫
R

dτB e
−τ2

A/2σ2
e−τ2

B/2σ2
e−iΩ(τA−τB)

[
1

ρ−(xA,ΓnxB) − ζ

ρ+(xA,ΓnxB)

]
,

(B.22)
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where

ρ±(xA,ΓnxB) :=

√√√√rArB

r2
h

cosh
[
rh

ℓ
2πn

]
± 1 − ℓ2γAγB

r2
h

cosh
[
rh

ℓ2

(
τA

γA
− τB

γB

)
− iϵ

]
(B.23)

=
ℓ
√
γAγB

rh

√√√√coshα±
AB, n − cosh

[
rh

ℓ2

(
τA

γA
− τB

γB

)
− iϵ

]
, (B.24)

and

α±
AB, n := arccosh

[
r2

h
ℓ2γAγB

(
rArB

r2
h

cosh
[
rh

ℓ
2πn

]
± 1

)]
. (B.25)

We also used γj =
√
r2
j − r2

h/ℓ.

By changing the variables from τA and τB to tA and tB, respectively, via tj := τj/γj,

CAB = λ2γAγB

4π
√

2ℓ

∞∑
n=−∞

∫
R

dtAdtB e−γ2
At

2
A/2σ2

e−γ2
Bt

2
B/2σ2

e−iΩ(γAtA−γBtB)
[

1
ρ−(tA, tB) − ζ

ρ+(tA, tB)

]
,

(B.26)

where

ρ±(tA, tB) :=
ℓ
√
γAγB

rh

√
coshα±

AB, n − cosh
[
rh

ℓ2 (tA − tB) − iϵ
]
. (B.27)

Further changing coordinates u := tA − tB, s := tA + tB, the corresponding Jacobian deter-
minant is J = 1/2, and so CAB becomes

CAB = λ2γAγB

8π
√

2ℓ

∞∑
n=−∞

∫
R

du e−(γ2
A+γ2

B)u2/8σ2
e−iΩ(γA+γB)u/2

[
1

ρ−(u) − ζ

ρ+(u)

]

×
∫
R

ds e−(γ2
A+γ2

B)s2/8σ2
e−(γ2

A−γ2
B)us/4σ2

e−iΩ(γA−γB)s/2 . (B.28)

The s-integral can be analytically computed as∫
R

ds e−(γ2
A+γ2

B)s2/8σ2
e−(γ2

A−γ2
B)us/4σ2

e−iΩ(γA−γB)s/2

= 2σ
√

2π√
γ2

A + γ2
B

exp
[
−Ω2σ2(γA − γB)2

2(γ2
A + γ2

B)

]
exp

[
(γ2

A − γ2
B)2

8σ2(γ2
A + γ2

B)u
2
]

exp
[
i(γA − γB)2(γA + γB)Ω

2(γ2
A + γ2

B) u

]
.

(B.29)
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By changing the variables x := rhu/ℓ
2, we find

CAB = λ2γAγB

8π
√

2ℓ
2σ

√
2π√

γ2
A + γ2

B

exp
[
−Ω2σ2(γA − γB)2

2(γ2
A + γ2

B)

]

×
∞∑

n=−∞

∫
R

du exp
[
− γ2

Aγ
2
B

2σ2(γ2
A + γ2

B)u
2
]

exp
[
−iγAγB(γA + γB)Ω

γ2
A + γ2

B
u

] [
1

ρ−(u) − ζ

ρ+(u)

]
(B.30)

= 2KC

∞∑
n=−∞

Re
∫ ∞

0
dx e−aCx

2
e−iβCx

 1√
coshα−

AB, n − cosh x
− ζ√

coshα+
AB, n − cosh x

 ,
(B.31)

where

aC := γ2
Aγ

2
B

2σ2(γ2
A + γ2

B)
ℓ4

r2
h
, (B.32a)

βC := γAγB(γA + γB)
γ2

A + γ2
B

ℓ2

rh
Ω , (B.32b)

KC :=
λ2σ

√
γAγB

4
√
π
√
γ2

A + γ2
B

exp
[
−Ω2σ2(γA − γB)2

2(γ2
A + γ2

B)

]
. (B.32c)

Although the integrand in Eq. (B.31) does not have a pole, one needs to be careful about
the branch cuts as shown in Fig. B.3.1 Equation (B.31) can be obtained by evaluating along
L1, Cρ, and L2 in the limit R → ∞ and ρ → 0, where ρ is the radius of the semicircle
around the branch point.

Let us choose a contour in the complex plane and use the Cauchy integral theorem. To
do so, consider a complex integral of Eq. (B.31):

∮
C

dz e−az2
e−iβz

 1√
coshα−

AB, n − cosh z
− ζ√

coshα+
AB, n − cosh z

 . (B.33)

Assuming Ω > 0, the integral (B.33) converges if |e−az2
e−iβz| = e−a(x2−y2)eβy < 1, where

we used z = x + iy, and so the contour C should be in y < 0 and −x ≤ y ≤ x. From
this, we choose the contour C = L1CρL2L3L4 as shown in Fig. B.3 and by making use of

1For the general description of branch cuts, see [136].
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Figure B.3: Contour in a complex plane. Blue wiggly lines are the branch cuts and the
contour is chosen so that the integral converges when Ω > 0. The dotted lines represent
y = ±x, and the contour must be inside of this region.

the Cauchy integral theorem with the fact that limR→∞
∫
L3 = 0, Eq. (B.31) becomes an

integral along L−1
4 :

CAB = 2KC

∞∑
n=−∞

lim
R→∞

Re
∫ R+iη

0
dz e−aCz

2
e−iβCz

 1√
coshα−

AB, n − cosh z
− ζ√

coshα+
AB, n − cosh z

 ,
(B.34)

where η ∈ (−π, 0) and Ω > 0; this is the expression we compute numerically.

Transition probability P

For the transition probabilities PA and PB, they are known to be [41]

PD = λ2σ2

2

∫
R

dx e
−σ2(x−Ω)2

ex/TD + 1 − ζ
λ2σ

2
√

2π
Re

∫ ∞

0
dx e−aDx2

e−iβDx√
coshα+

D,0 − cosh x

+ λ2σ√
2π

∞∑
n=1

Re
∫ ∞

0
dx e−aDx2

e−iβDx

 1√
coshα−

D, n − cosh x
− ζ√

coshα+
D, n − cosh x

 ,
(B.35)
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where TD = rh/2πℓ2γD is the local temperature at r = rD and

aD := ℓ4γ2
D

4σ2r2
h
, βD := ℓ2γDΩ

rh
, (B.36)

α±
D, n := arccosh

[
r2

h
γ2

Dℓ
2

(
r2

r2
h

cosh
[
rh

ℓ
2πn

]
± 1

)]
. (B.37)

The first two terms, which correspond to n = 0, are the so-called AdS-Rindler terms and
the last term (n ̸= 0) is known as the BTZ term. The second and third integrals in (B.35)
also have the same branch cut subtlety, but can be treated in the same manner as for CAB.

Non-local correlation XAB

The derivation of XAB is also very similar to that of CAB. However, one has to be careful
with the integration range.

XAB = −λ2γAγB

4π
√

2ℓ

∞∑
n=−∞

×
∫
R

dtA
∫ tA

−∞
dtB e−(γAtA)2/2σ2

e−(γBtB)2/2σ2
eiΩ(γAtA+γBtB)

[
1

ρ−(tA, tB) − ζ

ρ+(tA, tB)

]
+ (A ↔ B) , (B.38)

where ρ±(tA, tB) is the same as (B.27). As before, one can change the coordinates as
u := tA − tB and s := tA + tB with the Jacobian determinant J = 1/2, the double integral
becomes ∫

R
dtA

∫ tA

−∞
dtB → 1

2

∫
R

ds
∫ ∞

0
du . (B.39)

It is then straightforward to have

XAB = − λ2σ

4
√
π

√
γAγB

γ2
A + γ2

B
exp

[
−Ω2σ2

2
(γA + γB)2

γ2
A + γ2

B

]

×
∞∑

n=−∞

∫ ∞

0
dx e−aXx

2
e−iβXx

 1√
cosh(α−

AB,n) − cosh(x− iϵ)
− ζ√

cosh(α+
AB,n) − cosh(x− iϵ)


+ (A ↔ B) , (B.40)
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where

aX := ℓ4

2σ2r2
h

γ2
Aγ

2
B

γ2
A + γ2

B
(= aC) , (B.41a)

βX := Ωℓ2

rh

γAγB(γA − γB)
γ2

A + γ2
B

, (B.41b)

Let IX(iϵ) be

IX(iϵ) :=
∫ ∞

0
dx e−aXx

2
e−iβXxfn(x− iϵ) , (B.42)

where

fn(x− iϵ) :=
 1√

cosh(α−
AB,n) − cosh(x− iϵ)

− ζ√
cosh(α+

AB,n) − cosh(x− iϵ)

 . (B.43)

Then, one will find that the second term (A↔B) is just IX(−iϵ). Therefore, XAB takes the
following form.

XAB ∼ IX(iϵ) + IX(−iϵ) (B.44)

= IX(iϵ) +
∫ −∞

0
(−dx)e−α2

X(−x)2
e−iβX(−x)fn(−x+ iϵ) (B.45)

=
∫ ∞

0
dx e−aXx

2
e−iβXxfn(x− iϵ) +

∫ 0

−∞
dx e−aXx

2
eiβXxfn(x− iϵ) , (B.46)

where we have used cosh(−z) = cosh(z). Thus, we finally obtain

XAB = −KX

∞∑
n=−∞

[∫ ∞

0
dx e−aXx

2
e−iβXxfn(x− iϵ) +

∫ 0

−∞
dx e−aXx

2
eiβXxfn(x− iϵ)

]
,

(B.47)

where

KX := λ2σ

2
√
π

√
γAγB

γ2
A + γ2

B
exp

[
−Ω2σ2

2
(γA + γB)2

γ2
A + γ2

B

]
. (B.48)

This single integral has the same branch cuts as in CAB and poles do not exist. However,
since γA < γB, we have βX < 0 if Ω > 0, and so the first and second integrals have different
contours. This is shown in Fig. B.4.
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Figure B.4: Complex plane showing the branch cuts and contours for evaluating XAB.
The orange and green contours are used to evaluate the first and second integrals in (B.47),
respectively. Note that there is no pole and the vertical contours does not contribute in
the limit R → ∞.
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Appendix C

Free-faller’s trajectory and kinematic
relative velocity

C.1 Free-faller’s trajectory

In this Appendix, we calculate the solution to the radial geodesic equation in Schwarzschild
coordinates, with the goal of expressing the null coordinates u, v, U, V that appear in
the definition of derivative coupling Wightman functions as functions of the free-falling
detector’s proper time.

Consider a freely falling observer who is initially at rest at r0 > rh. The geodesic
equations for a radially infalling observer are given by [133]

ẗ = − 2M
r2f(r) ṫṙ , (C.1a)

r̈ = −f(r)M
r2 ṫ2 + M

r2f(r) ṙ
2 , (C.1b)

where the dotted derivative refers to the derivative with respect to proper time. The
differential equation is also supplemented with a constraint for a massive test particle,
namely that the geodesic is timelike:

−1 = gµν ẋ
µẋν = −f(r)ṫ2 + 1

f(r) ṙ
2, (C.2)
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where ẋµ = dxµ/dτ is the four-velocity. By multiplying M/r2 on both sides of (C.2) and
substituting into (C.1b), we get

r̈ = −M

r2 . (C.3)

By integrating this with the initial conditions, r(τ0) = r0, ṙ(τ0) = 0, where τ = τ0 is the
initial proper time, we obtain

ṙ = −
√
rh

r
− rh

r0
. (C.4)

Assuming that the observer starts from r0 = ∞, the geodesic equations reduce to

ṫ = 1
1 − rh/r

, (C.5a)

ṙ = −
√
rh/r , (C.5b)

and so r can be obtained as [120]

r(τ) = rh

(
τ

τh

) 2
3
, (C.6)

where τh = −2rh/3 is the horizon-crossing time. Note that τ ∈ (−∞, 0), and the observer
reaches the singularity as τ → 0−.

Let us rewrite the geodesic equations in terms of the two null coordinates v, u = ts ± r⋆
and the Kruskal-Szekeres null coordinates V = 2rhe

v/(2rh) and U = −2rhe
−u/(2rh). By using

(C.5a) and (C.5b), we get

v̇ = 1
1 +

√
rh/r

, (C.7a)

u̇ = 1
1 −

√
rh/r

, (C.7b)

V̇ = V

2rh

1
1 +

√
rh/r

, (C.7c)

U̇ = − U

2rh

1
1 −

√
rh/r

, (C.7d)
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for r > 0. Note that due to the local nature of the differential equations, the geodesic
equations expressed in terms of these null coordinates extend into the black hole interior,
in contrast to the Schwarzschild coordinate version which is only valid in the exterior region.
Substituting (C.6) into these differential equations, we can obtain closed form expressions
for u, v, U, V as functions of infalling τ ,

v(τ) = τ − 2rhx
1
3 (τ) + rhx

2
3 (τ) + 2rh ln

[
1 + x

1
3 (τ)

]
, (C.8a)

u(τ) = τ − 2rhx
1
3 (τ) − rhx

2
3 (τ) − 2rh ln

[
−1 + x

1
3 (τ)

]
, (C.8b)

V (τ) = 2rhe
τ

2rh exp
[
−x 1

3 (τ) + 1
2x

2
3 (τ)

] (
1 + x

1
3 (τ)

)
, (C.8c)

U(τ) = 2rhe
− τ

2rh exp
[
x

1
3 (τ) + 1

2x
2
3 (τ)

] (
1 − x

1
3 (τ)

)
, (C.8d)

where x(τ) = τ/τh. One can check that at the singularity r = 0, we get UV = 4r2
h, as

expected. Furthermore, these null coordinates take the extended values in the relevant
regions; for instance, while the coordinate transformations for U, V are given for U <
0, V > 0, the solutions U(τ), V (τ) can take all real values and hence include the black hole
interior.

C.2 Kinematic relative velocity

Here, we review the notion of kinematic relative velocity (KRV) in [126].
Let us first define what relative velocity is. Let u, u′ ∈ TpM be two four-velocities

defined on a single point p ∈ M. Then u′ can always be decomposed into the components
parallel to u and its orthogonal space u⊥ [see Fig. C.1(a)]:

∃v ∈ u⊥,∃γ > 0, s.t. u′ = γ(u+ v) , (C.9)

where γ := −g(u′, u) = 1/
√

1 − ||v||2. The vector v represents how u′ is deviated from u,
and so we call this the relative velocity of u′ observed by u.

KRV generalizes this definition to tangent vectors defined on two different points p and
q on a spacelike simultaneity in a manifold by “bringing” them to one point. However, one
has to “bring” a vector to another vector’s tangent space in a mathematically consistent
way. Such a procedure is parallel transport. Therefore, the basic idea of KRV is, first
collect all spacelike simultaneous points q ∈ M of p ∈ M, which is mathematically done
by introducing the so-called Landau submanifold, and then parallel transport a vector
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Figure C.1: (a) Defining the relative velocity v of u′ with respect to u on a single point.
(b) The process of construction of a spatial simultaneity. The curve connecting p and q is
a geodesic.

u′ ∈ TqM to TpM so that we can adopt the aforementioned definition of the relative
velocity of u′ observed by u ∈ TpM.

We assume that the event q is in the convex normal neighborhood of p, which means
that there exists a unique geodesic connecting these two events. Let u ∈ TpM be a four-
velocity and expp : TpM → M an exponential map.1 Then q becomes an event on a
spacelike simultaneity of p in the following manner. The preimage of the exponential map,
exp−1

p : q 7→ exp−1
p (q) ∈ TpM, is an “initial vector” that determines the point q on the

geodesic [Fig. C.1(b)]. Since we wish to have a spacelike simultaneity, this initial vector
exp−1

p (q) has to be spacelike. We can impose this by writing g(exp−1
p (q), u) = 0, where g

is a metric and we used the fact that u is timelike. From this, let us construct a map

Φp : M → R ,
Φp : q 7→ Φp(q) := g(exp−1

p (q), u) . (C.10)

Such a map turns out to be a submersion, which has a nice property where the preimage
Φ−1
p : R → M is a submanifold of M [137]. Thus, Lp,u := Φ−1

p (0) ⊂ M is a collection of
events q that satisfies g(exp−1

p (q), u) = 0, meaning that they are on a surface of spacelike
simultaneity of p, and this Lp,u is called the Landau submanifold.

1The intuition of the exponential map is that one can determine the point on a geodesic once the initial
position p and initial vector ξ ∈ TpM is given since the geodesic equation is a second-order differential
equation. The analogy for this is throwing a ball and predicting its landing point. The location and the
velocity vector of the ball when you release determine the point where it will fall.
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Since we now have the notion of spacelike simultaneity, the remaining task is to parallel
transport a vector u′ ∈ TqM, where q ∈ Lp,u, to TpM and apply the notion of relative
velocity. Let τq,p : TqM → TpM be a parallel transport, then KRV (denoted by v) of u′

with respect to u is found by τq,pu′ = γ(u+ v). Hence,

v = τq,pu
′

−g(τq,pu′, u) − u . (C.11)
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