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A B S T R A C T

We compare the performance and level of distraction of expressive direc-
tional gesture input in the context of in-vehicle system commands. Center
console touchscreen swipes and midair swipe-like movements are tested in
8-directions, with 8-button touchscreen tapping as a baseline. Participants
use these input methods for intermittent target selections while performing
the Lane Change Task in a virtual driving simulator. Input performance is
measured with time and accuracy, cognitive load with deviation of lane posi-
tion and speed, and distraction from frequency of off-screen glances. Results
show midair gestures were less distracting and faster, but with lower accuracy.
Touchscreen swipes and touchscreen tapping are comparable across measures.
Our work provides empirical evidence for vehicle interface designers and
manufacturers considering midair or touch directional gestures for centre
console input.
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“The force is strong with this one.”
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1I N T R O D U C T I O N

The automotive industry is progressively moving to centralize the display
and control of vehicle systems on a single console screen [32]. Originally
for “infotainment” like music and navigation, these are now frequently used
for features like cabin climate control and vehicle status, and increasingly,
even for critical functions like windshield wiper speed [31]. Likely due to
familiarity and the manufacturing economy, a touchscreen is commonly used
for primary input, but this means the driver has to momentarily redirect
their visual focus away from the roadway [25]. Speech control [2, 7] and
steering wheel buttons [13, 29] are potential eyes-free alternatives, but they
have limitations. For instance, speech can be slow and unreliable, especially
in loud environments, and it can disturb passengers [7, 15]. Steering wheel
buttons increase manufacturing complexity and cost, and they are typically
reserved for dedicated vehicle functions like cruise control.

Gestures performed on the touchscreen or in midair can in theory be
performed eyes-free, and midair gestures are already used in some high-end
vehicles. For example, the G11 7-Series BMW uses midair drags and swipes
for functions like phone functions, media player, and navigation [4], and the
S-Class Mercedes-Benz uses a midair swipe to control the sunroof [24]. Both
use an index-to-thumb pinch to delimit midair gestures from other hand
movements, and both use some form of directional movement [34]. However,
the performance of midair gestures compared to conventional touchscreen
input has only been evaluated in limited forms and higher-level tasks. For
example, Parada-Loira, González-Agulla, and Alba-Castro [28] tested static
and dynamic hand gestures moving through menus and selecting options,
Wu et al. [38] tested very simple left-right directional gestures with a more
open-ended interface navigation task, and Graichen, Graichen, and Krems
[10] tested a set of completely different hand gestures to perform navigation
related tasks. In particular, more expressive directional gestures have not been
directly compared for midair and touch using a short-duration atomic type
of selection task.

We compare expressive 8-direction gestures when performed as touchscreen
swipes or as dynamic midair movements while forming a pinch posture. An
equivalent 8-button condition using touchscreen tapping is included as a base-
line. Participants use these conditions to complete intermittent short-duration
single target selections while simultaneously performing the standard Lane
Change Task [20] in a driving simulator. Input performance metrics include re-
sponse time, selection time, and accuracy, and level of distraction is measured
using Standard Deviation of Lateral Position (SDLP) [35], deviation from
target vehicle speed, and frequency of off-screen glances. Results show that
midair gestures are fast, more error prone, but least distracting. Touchscreen
swipes are accurate and fast to respond with medium distraction. Touchscreen
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introduction

tapping is slower to respond and accurate, but most distracting. Since the
participants behavioural space for midair gestures were wider than touch-
screen gestures and midair gestures were clustered into more groups than
touch-screen ones with the same parameters, we looked for ways to address
this issue. Simulated experiments with data shows that if midair directions
are reduced to 4, accuracy is comparable to both touchscreen conditions. Data
and analysis scripts are available1.

We contribute the first highly controlled study directly comparing more
expressive 8-direction midair and touch gestures for in-vehicle control. Our
results provide empirical evidence for vehicle interface designers and manu-
factures considering midair or touch gestures for centre console input.

1 https://github.com/exii-uw/invehicle-gestures
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2B A C K G R O U N D A N D R E L AT E D W O R K

After surveying elicitation studies to motivate the relevance of touch and
midair directional gestures, we summarize previous work comparing different
forms of gestures to other input methods under varying task conditions. We
focus entirely on in-vehicle interaction given the specialized physical context
and importance of considering input that is compatible with driving.

2.1 in-vehicle gesture elicitation

Several works elicit what gestures people prefer to use when communicating
with in-vehicle systems.

Wu et al. [37] used three studies to design user-defined in-vehicle midair
gestures for interaction with an in-vehicle infotainment system. Using re-
quirement analysis and function definition, gesture elicitation, and gesture
vocabulary evaluation, they found up and down swiping, fanning oneself,
and tapping were the most desired midair gestures by the participants. Up
and down swiping is a form of directional gesture, our work tests a much
expanded variation with 8 directions.

Fariman et al. [9] conducted a formal user elicitation study to establish
a midair input vocabulary for in-vehicle systems. The results discovered
some frequently-observed gestures in the context of in-vehicle control were
not well described by Wobbrock, Morris, and Wilson in their general input
elicitation study [36]. This suggests that input methods for vehicles need to
be considered distinctly from general input. Based on their set of elicited
gestures, Fariman et al. proposed a novel midair gesture vocabulary for in-
vehicle systems called GestDrive. This included static and directional dynamic
gestures performed with full-hand, two-fingers, and one-finger.

May, Gable, and Walker [22] combined a gesture elicitation study and
an online gesture comparison to design a midair gesture set for in-vehicle
interaction. Based on their results, they argue for three qualities to reduce
driver workload with midair in-vehicle gestures: the gesture set should fit
together conceptually; all gestures should adhere to a cohesive interaction
metaphor and consistent spatial mapping; and the gestures should be unlikely
to lead to system recognition errors due to distinctive shapes and clear user
formation rules. They propose a set of gestures that include making a fist,
displaying the palm, pointing, index finger flicking, and swiping. Our focus
on a set of directional midair gestures is similar to their flicking and swiping
gestures. In theory, using one hand posture and distinguishing a set of
gestures based on direction satisfies the three qualities suggested by May,
Gable, and Walker.

Ohn-Bar and Trivedi [27] suggested midair gesture sets including direc-
tional swipe, pinch, scroll, etc. for functionalities such as answering a call
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background and related work

and song selection. These gestures were selected to evaluate the vision-based
approaches for hand gesture recognition in a car.

Angelini et al. [3] proposed different ways to gesture on a steering wheel
with a user-elicited taxonomy. They considered predefined commands such
as selecting songs and and free commands as the participants desired. The
study generated a set of gestures consisting of tap, swipe, and pressure using
thumb, index, and whole-hand. Their swipe gesture on the steering wheel is
quite similar to the direction swipe gesture we study on the centre console.

A collective observation from these past elicitation works is the dominance
of directional gestures, like swipes, performed on a touch surface or in midair.
In addition, for midair gestures, several studies found a pinch drag as a
preferred gesture. We use these findings to justify our selection for comparing
a touch screen and midair directional gesture input methods, and using pinch
as a delimiter for midair.

2.2 comparison with midair gestures

Researchers have implemented and tested different variations of midair and
touch gestures for in-vehicle systems.

Parada-Loira, González-Agulla, and Alba-Castro [28] developed a system
using an IR camera to detect midair gestures that are static (e.g. showing
one to five fingers, an OK sign, an open or closed hand) and dynamic (e.g.
directional movement, shaking, wrist twist). The gestures are used for general
input, such as increasing and decreasing a continuous control like volume, as
well as triggering dedicated commands, such as playing or pausing music.
Using a questionnaire, they compared these midair gestures with existing
touchscreen gestures in a driving simulator and in a parked prototype vehicle.
The driving task was uncontrolled and open-ended: the participant only
had to maintain a speed limit of 120 km/h. Their results show touchscreen
gestures were more reliable and easier to use, but midair hand gestures were
less distracting and more useful.

May, Gable, and Walker [21] proposed and tested a set of multi-modal
barehand midair gestures for in-vehicle systems. They asked participants to
drive in a low fidelity simulator while performing secondary menu navigation
tasks using midair gestures with feedback sound, midair gestures without
feedback sound, and a baseline using direct touch tapping. They found
both midair gesture conditions had higher levels of mean lateral deviation
compared to baseline, but not significantly different from direct touch. In
following work, May et al. [23] measured the impact of menu length and
midair gesture type on driver workload. Driver workload was measured using
brake response time, task completion time, and NASA TLX. They found that
swipe gestures were higher performing for short menus while hold to scroll
systems, where one holds their hand with the palm facing down and changes
the extension degree of wrist up or down, may provide versatility for longer
menus.
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2.2 comparison with midair gestures

Häuslschmid, Menrad, and Butz [14] examined the combined effect of
scale and surface with small one and two finger gestures performed on the
steering wheel (“micro-hand”) and midair barehand gestures. They measure
the level of driver distraction using the Lane Change Task. They found
barehand gestures impeded lateral control meaning lower success rate (rate
of correctly performed lane changes) and slightly higher reaction time but
had less deterioration meaning less lateral deviation. Micro-hand gestures
had a higher success rate and lower reaction time.

Angelini et al. [2] compared a combined midair and touch gestures per-
formed on the steering wheel, such as a midair swipe upwards and down-
wards, and tap on the wheel. Baseline conditions included touch taps on
centre console and speech commands. Using a primary driving task (driving
simulator in a city centre with traffic condition) and secondary infotainment
system input task, they measured performance and subjective workload. They
observed no difference between input conditions regarding driving perfor-
mance, but found there were fewer user interactions (higher performance)
with speech and lower task completion time with touch.

Harrington et al. [12] evaluated the effect of ultrasound haptic feedback on
midair and touchscreen gestures for atomic and complex input tasks. In a
desktop car simulator, participants followed a lead car while performing two
input tasks separately: target selection (atomic) and manipulate a slide-bar
(complex adjust and select). Target selection was selecting one of four targets,
and slide-bar manipulation was increasing or decreasing a value by dragging
a slide-bar in a certain direction and magnitude. In the touch condition, an
on-screen tap selected the target and right/left on-screen swipes adjusted
the slide-bar. In the midair condition, targets were selected with downward
movement of an open-hand and the slide-bar bar adjusted with right/left
movement of an open hand and then making a closed fist. Each input method
was performed with and without ultrasound haptic feedback. Their results
showed that midair had longer off-road glances for target selection, less
accuracy for slide-bar, and longer selection time than touch.

Wu et al. [38] compared touchscreen tapping, touchscreen swiping, midair
tapping, and midair swiping. All methods used similar directional motions:
tapping methods had left or right targets and swiping methods used motions
to the left or to the right. Midair taps were done by pointing the index finger to
two virtual targets defined at a fixed position beside the driver and recognized
using a Leap Motion device. No feedback on correctness was provided for
either of the methods. Midair swipes were done by rotating the wrist with
no specific hand pose and detected using speed, magnitude, and direction of
the trajectory. The input task was a “song selection task” that required a long
sequence of individual menu navigation input actions (the duration of each
task was approximately 10 to 30 seconds). To quantify driver attention, the
study used a desktop driving simulator with “central lane maintaining” and
“lead car following” tasks and associated metrics, in addition to subjective
workload using the NASA TLX. They found the midair gestures were slower
and had a higher workload than touchscreen gestures. They also report that
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background and related work

swipe gestures, across both the midair and surface conditions, had a lower
workload than tap gestures.

Most recently, Graichen, Graichen, and Krems [10] compared different
dynamic gestures performed midair and and on a touchscreen, for in-vehicle
systems. There were five types of midair input: making a fist posture, making
a pointing posture, flashing the palm, and performing a 2-directional swipe
with either a thumb to 4-finger pinch or an open hand (Fig. 2.1). The touch-
screen condition was taps on 8 different buttons which were labelled with
vehicle functions like show traffic information, mute, raise volume, and start
navigation. They quantified acceptance and measured workload using NASA
TLX with an objective measure of off-screen glances. These input actions were
performed while performing two open-ended driving tasks in a virtual simu-
lator. One task was a simple approximation of city driving with right and left
turns and a maximum speed of 50 km/h. The other approximated motorway
driving where the participant drove in the right side lane with occasional
overtaking manoeuvres, all while maintaining a speed of 130 km/h. The
results showed midair gestures required fewer and shorter off-screen glances.
Midair gestures also had a higher acceptance rate and lower workload.

Figure 2.1: Multiple variations of midair gesture input used by Graichen, Graichen,
and Krems [10].

Table 2.1 summarizes the works just discussed that also compare midair
input for in-vehicle systems. All use either a complex multi-step input task,
such as navigating infotainment menus or triggering sequences of vehicle
functions (Fig. 2.2), or they include multiple variations of an input method
within the same task, such as an up-down swipe to adjust volume, an open
hand to zoom a map, and pointing for repeating navigation instructions
(2.1). Using a complex task with sequences of input methods variations is
intended to approximate specific use cases for in-vehicle interaction. However,
these are hard to experimentally control and directly compare different input
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2.2 comparison with midair gestures

Figure 2.2: Multi-step input task used by Angelini et al. [2].

methods, and generalization is unclear for different interfaces and use cases.
Our approach is to decompose complex tasks into “atomic” input actions,
each a single, defined movement that can trigger an arbitrary in-vehicle
command. Mapping an experiment task trials to single atomic actions lends
more internal validity and can be easier generalize to a wider range of
real car tasks. This approach is similar to how Fitts’ law experiments test
pointing using individual target selection trials since the goal is to isolate
the fundamental motor action. The complex tasks used in previous work are
valuable to test specific interfaces, similar to how usability tests are used with
conventional computing systems. The atomic task approach also enables us
to include more variations of each input method. While past work tested 1

or 2 movement directions, we evaluate 8. Finally, we adopt the lane change
task with SDLP measure, a highly controlled driving task with high internal
validity, which was also used by Wu et al. [38] and Häuslschmid, Menrad,
and Butz [14].
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background and related work

Table 2.1: Summary and comparison of previous works that also compared a midair
input method in terms of input methods included in the evaluation, the
input task and measures, and the driving task. See text for more details.

Input Task Driving Task

Input Methods Type Measures Type Apparatus Metrics Distraction
Parada-Loira et 
al. [28]

midair (1 directional) 
midair other (OK sign, 
open/close hand, 
shaking)
touch tap

complex media 
task (song, 
volume)

*questionnaire maintaining 
speed limit

lab simulator, 
parked car

*questionnaire *questionnaire

May et al. [21] midair (2-directional 
with open hand)
midair (open/close 
hand)
touch tap

complex 3-level 
list, selection task

selection time, 
accuracy

following lead 
car

lab simulator brake response 
time

off-screen 
glances

Häuslschmid et 
al. [14]

midair (2-directional 
with open hand)
finger on-wheel (2-
directional)

complex media 
task (song, 
volume)

*questionnaire lane change 
task

lab simulator SDLP; success 
rate

not measured

Angelini et al. [2] midair (2-directional)
touch tap
speech

complex 
infotainment task 
(volume, call, 
song)

selection time, 
accuracy

driving with 
traffic in city 
centre

lab simulator driving 
violations; 
speed; *NASA 
TLX

not measured

Harrington et al. 
[12]

midair (2-directional 
with open hand then 
fist)
touch tap
touch swipe

atomic and 
complex selection 
action 

selection time, 
accuracy

following lead 
car

lab simulator SDLP off-screen 
glances

Wu et al. [38] midair (2-directional)
touch tap
touch swipe

complex target 
selection (song 
menu)

selection time maintaining 
central lane; 
following lead 
car

lab simulator brake response 
time; SDLP; 
*NASA TLX

not measured

Graichen et al. 
[10]

midair (fist, pointing, 
pinch drag)
touch tap

complex 
infotainment task 
(navigation, 
volume, radio)

none driving with 
traffic in city 
and on 
motorway

lab simulator *NASA TLX off-screen 
glances

Our Work midair (8-directional 
pinch)
touch tap
touch swipe

atomic selection 
action 

selection time, 
accuracy

lane change 
task, 
maintaining 
speed limit

lab simulator SDLP, speed, 
*NASA TLX

off-screen 
glances
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3I N P U T M E T H O D S

This section provides design and implementation details for the three input
methods to be compared in the following experiment, as well as the driving
simulation setup and input sensing equipment. All three methods support
8 different commands. Directional gesture or swiping methods differentiate
based on movement direction and tapping differentiates based on position.
In all methods, the target position or direction is referred to as up, up-right,
right, down-right, down, down-left, etc.

driving simulator . Our setup used OpenDS1 software running on a
Windows PC (CPU speed 3 GHz) with an ultra-wide 43" Samsung Odyssey
G9 LED monitor. All driving input used a Logitech G29 Driving Force Racing
steering wheel and pedals. The steering wheel was clamped to a 75 cm high
desk with the monitor placed 90 cm from the steering wheel front. The driver
is seated in a fixed leg, non-swivelling office chair. Figure 3.1 shows the setup.

input sensing . A Galaxy Tab 9 tablet with 10.5" screen (22.6 × 14.2 cm)
was used as a vehicle centre console. It was placed 20 cm to the right of the
steering wheel centre on the desk clamped at a 20

◦ tilt angle. The position and
orientation were chosen to be easily reachable and approximate the typical
position for a centre console in a vehicle.

We used a Vicon motion tracking system with Tracker software2 for tracking
the positions of fingers to enable midair gestures. Seven cameras were used
in our setup (2 top front, 2 lower front, 2 top back, 1 top left). Two 13 mm
markers were attached to the nails of the index finger and thumb on the
participant’s right hand using double-sided foam tape. The system’s tracking
frequency is 120 Hz with accuracy <1 mm for the markers we used.

In order to capture the off-screen glances of the drivers, a 4K webcam was
placed 70 cm in front of the driver. Captured video was analyzed in Python
using the Gaze Tracking library3 to determine if the driver is looking at the
driving simulator display or the centre console tablet.

pilot test. The midair and swipe methods are implemented using pa-
rameterized rules to determine states and events like when a swipe motion
starts, what direction is a swipe, and when a hand is pinching. To tune these
parameters, we conducted a pilot with 4 participants in which they performed
the same driving and input task used in the main experiment, but we only
logged input movement data. We use mean values and 95% intervals from
relevant data to set thresholds and direction tolerances for the different input

1 https://opends.dfki.de/
2 www.vicon.com/software/tracker
3 https://github.com/antoinelame/GazeTracking/
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input methods

Figure 3.1: Setup used for driving simulation and input tracking: (a) steering wheel
clamped to desk with fixed driver seat; (b) pedals below; (c) tablet used for
infotainment screen; (d) OpenDS driver view displayed on 43" ultra-wide
display; (e) markers attached to the index finger and thumb; (f) Vicon
camera (the lower left front); (g) webcam used for eye tracking.

methods (each explained below). This pilot also functioned as a technical
system test and it verified the driving task difficulty was appropriate.

3.1 touch tapping

A touch tap is defined as a touch down event and then a touch up event
without movement from the initial touch position. We used the standard
Android threshold for distinguishing a touch tap. All 8 touch targets were
shown in a 3 × 3 grid with an empty space in the centre cell coloured purple
over a black background. Each target was 38 × 38 mm with 5 mm gaps
between all targets to avoid overlapping (Figure 3.3a). No feedback for touch
position or selected target was shown.

3.2 touch swiping

A touch swipe is defined as a touch down, then an uninterrupted movement
along the surface of the screen for at least 12 mm (100 pixels) with minimum
speed of 12 mm/s (Figure 3.3b). Each event generated two time stamped
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3.3 midair directional gestures

Figure 3.2: Non-uniform circular division for swipe and midair (grey dashed lines
represent the original uniform sectors).

events. The screen was blank at all times, no touch feedback or target direction
was provided.

Direction is determined by the slope of a linear regression result calculated
from dragging trajectory data points. The pilot test showed it was easier
to perform the four cardinal up-down and left-right directions, so we use
a non-uniform division of the circular space. This non-uniform division is
further supported by work finding different gesture movement directions do
not share the same accuracy [39, 40]. Specifically, we assigned 35

◦ circular
sectors for cardinal directions and 55

◦ circular sectors for diagonal directions
(Figure 3.2). These creates a sector angle ratio between cardinal and diagonal
directions of 7:11.

3.3 midair directional gestures

A midair gesture is initiated by bringing the thumb and finger together
in a pinch. This was detected when the centre of motion tracking markers
attached to each finger were less than 50 mm apart. Taking into account
typical finger thickness, this is approximately 10 mm between fingertips. To
avoid hysteresis between a pinch and open hand, the open hand threshold
was 90 mm, approximately 50 mm between fingertips. These thresholds were
calculated from mean values and 95% confidence intervals of marker position
data from the pilot test. We found this simple pinch detection to be robust,
there was no evidence of false positives or false negatives during the study
and participants appeared to use it intuitively. Once a pinch was detected,
subsequent movement away from the initial position determines the swipe
action and direction (Figure 3.3c). The centroid of the two finger markers is
projected to a virtual plane parallel to the front edge of the desk (i.e. parallel
to the average plane of the monitor). Similar to the touch swipe method, an
uninterrupted movement of the projected point along the virtual plane had
to exceed a distance and speed threshold, in this case 50 mm with minimum
speed of 50 mm/s. These values were computed from pilot test data. The
difference in thresholds between midair and touch swipe is due to the relative
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input methods

(a) (b) (c)

Figure 3.3: Input method conditions illustrating an equivalent Up Right direction: (a)
tap used standard tapping on one of 8 targets on a touchscreen centre
console; (b) swipe used a drag movement along a blank touchscreen in the
desired direction; (c) midair worked by first forming a thumb-to-index
pinch, then moving in the desired direction.

sizes of the interaction areas, midair is approximately four times larger than
touch swipe gestures (we examine interaction area in Section 5.5). To avoid
pinch false positives when gripping the steering wheel, a 30 × 25 cm rectangle
(slightly larger than the 26 × 23 cm steering wheel) was removed from the
virtual plane. When the projected position of finger marker centroid was
within this steering wheel area, it was ignored.

12



4E X P E R I M E N T

The goal of this experiment is to directly compare the three input methods
just described. For ecological validity and to measure attention required by
each method, the Lane Change Task (LCT) is used with the driving simulator.

4.1 participants

We recruited 18 participants, ages 19 to 41 (23.9 mean, 4.97 std), of which 12

identified as male and 6 as female. Two participants did not possess a valid
driving license, but this had no observable effect on their driving performance
(discussed in Section 5.4). Participants were recruited using recruitment e-
mails throughout the university and word-of-mouth, and received $20 for
successful completion of the study.

4.2 apparatus

The experiment used the software and hardware described in the previous
section. Audio prompts are used for the input task stimulus, played through
the Android tablet using the TextToSpeech class.

4.3 tasks

The participants in this study were asked to perform two tasks simultaneously:
a long duration driving task while responding to prompts to complete input
tasks as quickly as possible.

driving task . Following previous work [14, 19, 38], we use the standard
Lane Change Task (LCT). The participant drives along a perfectly straight
3-lane roadway in a featureless landscape while changing lanes as instructed
by two identical signs on both sides of the road which appear at controlled
intervals. The signs are initially grey until within 20 m of the virtual vehicle,
after which they indicate the required lane using two ‘X’s and an arrow (Figure
4.1b). Through-out the driving task, the participant is told to maintain 80

km/h. A speedometer is shown on the right bottom of the driving simulator
display (Figure 4.1c) and the virtual vehicle uses an automatic transmission.

The experiment uses one unique “track” with pseudo-randomized lane
change instructions (two subsequent signs do not indicate the same lane).
The track has 18 signs, spaced approximately 150 m apart along the track.
At 80 km/h, the track can be completed in around 2 minutes with pairs
of signs appearing every 6 to 7 seconds, and each pair of signs visible for
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experiment

Figure 4.1: Example of lane change driving task: (a) 3-lane roadway with drive in
left lane; (b) pair of signs instructing driver to change to centre lane; (c)
speedometer for driver to maintain 80 km/h.

approximately 1 second after which the participant is expected to complete
the lane change.

input task . As explained in Section 2.2, we use “atomic” input tasks
since they have higher internal validity enabling the most direct comparison
between input methods. Once the participant begins driving on the track, a
spoken audio prompt indicating an input action direction is played every 7.5
seconds (e.g. “up-left”). The participant performs the input in the prompted
direction and hears a beep to confirm an input action was recognized. No
feedback about the correctness of direction is provided. During the 2-minute
driving task, there are 16 input task prompts.

4.4 procedure

After consenting to participation and answering demographic questions, the
markers were attached to the participant’s finger and thumb and they were
seated in the driving simulator setup. The experiment facilitator explained the
lane change task, then the participant practised approximately 5 minutes to
get comfortable with the simulator and the lane change task. Then, methods
were explained and practised. Before starting blocks of measured tasks for an
input method, the facilitator explained and demonstrated the method and
the participant practised it without driving at the same time. This practice
period lasted until the participants said they were comfortable performing
the input method, typically 2 minutes. We reserved the simultaneous driving
task and input task for the measured trials to capture unbiased performance.

Note that during this practice portion, the participant received feedback
to indicate that the system detected an input action (a “beep” sound), and
for midair and swipe, the recognized direction was displayed in text on the
main display. This was necessary to learn how to perform the gesture and
to gain familiarity with system characteristics, such as minimum movement
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4.5 design

thresholds and the location of the virtual plane. During the measured portions
of experiment, feedback only indicated that a gesture was recognized with
the same “beep” sound, but not the direction or whether it was correct. Using
minimal feedback during the measured tasks avoided a confound: if the
participant focused on feedback, they would be more distracted from driving.

Afterwards, the participant completed the main experiment using the three
input methods with the driving and input tasks. They were encouraged to
take breaks between input conditions. The main experiment required 15 to 20

minutes to complete. After all three conditions, they completed NASA TLX
and answered the following questions:

• Which gesture style did you like the most? Why?

• Do you have any additional comments about your experience?

• Do you own a valid driving license? If yes, from where?

The total session took between 30 to 45 minutes.

4.5 design

This is a within-participants design with one primary independent variable:
method with 3 types (tap for touch tapping, swipe for touch swiping, and
midair for midair directional gestures). block and direction are secondary
independent variables. There were 2 blocks per method, in each block all 8

directions were repeated twice. The order for method was counter-balanced
using a balanced Latin square. To arrange the order of trials, in each block,
we randomly assigned all 16 directions and used the same block for all
participants. As a result, the directions were presented in the same order in
each block for all participants. Each participant did 2 blocks for each of the 3

methods.
The measures computed from logs for the driving task are Standard

Deviation of Lateral Position (SDLP) and Speed. SDLP is the standard deviation
of the vehicle position from the centre of the correct lane (the intended lane
20 m after the signs appearing until the next sign) and Speed is the vehicle
speed in km/h. Four dependent measures were computed from logs for the
input task. Selection Time is defined as the duration from when the voice
prompt finished until the participant finished performing the interaction (i.e.
lifted their finger for tap or exceeded the movement thresholds for swipe and
midair). In addition, we divide this overall task time into two component
times: Response Time is the duration up until the participant started the
interaction (i.e. contacted the touch screen for tap and swipe, or formed a
pinch for midair); and Completion Time to capture the remaining duration
when the interaction was performed. Accuracy is the percentage of directions
that were performed correctly. A fifth measure was calculated using the 4K
webcam and Python post-processing described above: Glances is defined as
the number of off-screen glances that lasted for at least 500 ms during a block.
In addition, NASA TLX questionnaire provides 6 subjective measures, each
ranging from 0 (very low) to 20 (very high).
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Figure 4.2: Selection Time by method, light colours are Response Time, dark colours
are Completion Time. Note Completion Time for tap is zero. White labels
represent the values of Response Time and Completion Time, while the black
labels show Selection Time. In all graphs, significant differences between
levels are shown as horizontal bars and vertical error bars are 95%
confidence intervals.

In summary: 3 methods × 2 blocks × 8 directions × 2 repetitions = 96

data points per participant.

4.6 results

Trials with Selection Time greater than three standard deviations were removed
from the dataset as outliers, which excluded 53 trials (3%). There were no
outliers for other dependent measures. Trials were aggregated by block

producing 108 entries in the final dataset (18 participants × 3 methods

× 2 blocks). We use Shapiro-Wilk test to check data residual normality.
If normally distributed, we use ANOVA with Tukey HSD post hoc tests,
otherwise we use a Friedman test with post hoc pairwise Wilcoxon-signed
rank tests.

4.6.1 Selection Time

midair was 22% faster than swipe and 13% faster than tap (Figure 4.2).
Between touch gestures, tap was 11% faster than swipe. Selection Time was not
normally distributed (W = .96, p < .01), so we use a Friedman test. Method

had a significant effect (χ2
F(2) = 25.7, p < .001) with post hoc tests revealing

midair (1004 ms) was faster than tap (1150 ms) (p < .05) and swipe (1296 ms)
(p < .001), and also tap was faster than swipe (p < .05). We also examine the
component response and completion times that make up the overall selection
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Figure 4.3: Accuracy by method.

time using post hoc analysis (white numbers in Figure 4.2). For Response Time,
midair was 35% lower than tap and 24% lower than swipe (all p < .001). Tap
has no Completion Time since it is a simple tap, but midair was 17% lower
than swipe (p < .05).

4.6.2 Accuracy

Participants were less accurate with directional midair gestures, achieving
82% compared to 95% with swipe and 98% withtap. Since data was not
normally distributed (W = .74, p < .001), we use the Friedman test which
revealed a main effect of method on Accuracy (χ2

F(2) = 47.2, p < .001). Post
hoc analysis showed that midair is approximately 15% less accurate than
both tap and swipe methods (all p < .001) and swipe 3% less accurate than
tap (p < .01).

4.6.3 SDLP and Driving Speed

Overall, there was no main effect of method on SDLP and Speed (Figure 4.4).
Using the normally distributed data (W = .99, p > .05), a one-way ANOVA
found no effect of method on SDLP (F2,105 = 2.00, p > .05) or on Speed
(χ2

F(2) = 2.6, p > .05).

4.6.4 Number of off-screen Glances

Overall, participants were less distracted performing midair compared to
tap. There was a main effect of method on number of off-screen Glances
(χ2

F(2) = 18.2, p < .001) in our non-normally distributed data (W = .78, p < .001).
Post hoc tests show that midair, with an average number of off-screen
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Figure 4.4: SDLP and Speed by method.
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Figure 4.5: Number of off-screen Glances by method.

Glances of 3.7, is less distracting than tap with 10.1 off-screen Glances (p < .05).
However, there was no significant difference between midair and swipe

methods. In total midair has 63% fewer off-screen Glances than tap (Figure
4.5).

4.6.5 NASA TLX Load Index

To measure cognitive load, the participant answered a NASA TLX question-
naire after completing tasks all input methods. Overall, all input methods
exhibit the same behaviour across all NASA TLX metrics except that midair
was perceived as more physically demanding than tap (Figure 4.6). There was
a main effect of method on Physical Demand (F2,51 = 3.9, p < .05) with post hoc
tests showing midair was perceived as 50% more physically demanding than
tap (p < .05).
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5 D I S C U S S I O N

After we summarize our findings with a comparison to the most related prior
work, we discuss additional insights with secondary analysis, and finally
acknowledge the limitations of our work.

Overall, midair directional gestures performed very well. They were 13% to
22% faster than other methods, and achieved a respectable 82% high accuracy
considering the demanding 8-direction task. Perhaps most important for our
focus on an in-vehicle context, is how midair required fewer off-road glances
than touch tapping. This is despite inherent limitations of midair input, no
haptic feedback and no well-defined frame-of-reference, as well as greater
potential for tracking and recognition issues, and less participant familiarity
with this more novel style of interaction. Fatigue is also a potential issue
with midair input, our NASA TLX results revealed a single difference across
all dimensions: midair input was more physically demanding than touch
tapping.

Wu et al. [38] also report a higher workload for midair, but otherwise our
results are quite different since they found midair gestures are slower than
touch tapping. Considering the limitations, technical challenges, and lack
of familiarity with midair input, their results also make sense, especially
considering most people are familiar with touchscreen input due to the
ubiquity of smartphones and other touch devices. Importantly, our experiment
used a distinctly different input task to isolate single atomic actions for input,
it is possible that Wu et al.’s more complex, longer duration task was also
measuring other factors, not just pure input performance. It is likely that
our midair sensing and recognition was more robust, Wu et al. used a Leap
Motion consumer depth camera while we used a commercial marker-based
motion tracking system with multiple cameras. The difference may also be
attributed to our more complex 8-direction (and 8-button) input methods.
The time and attention to visually locate and then press one of 8 touchscreen
buttons may be more than the time to raise a hand in the air and move it in
one of 8 directions. Examining Response Time (Figure 4.2) shows that raising
the hand before making a midair gesture takes only 65% of the time to reach
out and contact the centre console touch screen.

Regarding the need to look at the centre console or not is central to driver
safety. Based on recorded number of glances, tapping and swiping both clearly
require visual attention to work quickly and reliably. While some participants
attempted to perform these two on-screen methods without taking their
eyes off the road, they were unable to do so reliably. Participant comments
support this, for instance “It was challenging to get the tapping precisely without
looking at the screen, so I typically had to look to make sure I was touching the
right button.” [p18] and “I think I got more distracted and veered off the road when
I was doing the tap gestures because I had to look at the tablet.” [p7] To see if
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5.1 performance diversity across input methods

how participants glanced affected their error rate, we tested for a correlation
between Glances and Error Rate for each method. No statistical correlation was
found for any method (all p > .20).

5.1 performance diversity across input methods

We found that participants performed midair with a greater degree of vari-
ation compared to tap or swipe. Figure 5.1 illustrates how combinations of
Error Rate and Response Time for different participants have a wider range of
values when performing midair gestures.

To conduct our analysis, we normalized data using min-max feature scaling,
which was necessary in order to have the same effects on data point distance
for both Error Rate and Response Time. Outliers were retained for in order to
capture all observed behaviour. Then we plotted the convex hull to show
the behaviour space for each method. The resulting plot confirms that the
performance space for tap and swipe is relatively smaller (i.e. more consistent)
than that of midair, highlighting how tap is more accurate and swipe is faster.
For tap, there was also a positive correlation between Error Rate and Response
Time (r(16) = .56, p = .01), but not for midair or swipe (p > .20) On the other
hand, midair gestures carry a wider range of performance with more density
for lower Response Time. By investigating potential causes of this performance
diversity, it may be possible to identify ways to improve midair gestures in
order to interact with in-vehicle centre console systems with the least amount
of distraction.

5.2 performance diversity within midair input

To investigate performance diversity within midair input, we cluster the nor-
malized Error Rate and Response Time points representing the 18 participants.
To find the number of clusters, we use the Elbow method [17]. First, Nearest
Neighbours calculates point distances, and reaches an optimal ϵ = 0.12. This
is fed to the DBSCAN algorithm to determine k, the optimal number of
clusters. The method found k = 3, which we use with the K-Means algorithm
to cluster in the participant points.

The results shows how participants can be classified into three clusters
based on their performance (see Figure 5.2). The green cluster of 13 partic-
ipants have lower Response Time and low Error Rate. They learned how to
balance speed and error, and overall managed to perform with some expertise.
The blue cluster of 3 participants have slower Response Time but low Error
Rate. They focused on carefully performing the directional action even if it
took a much longer time. These participants are likely less confident about
their actions, needing more practice or additional instructions to reach a
more optimal performance. Finally, the red cluster of 2 participants have
very high Error Rate. This indicates either a priority of speed over accuracy,
great difficulty in performing the technique, or general lack of care when
performing the task. Note that we performed the same analysis for tap and
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Figure 5.1: Performance behaviour based on normalized Response Time and Error
Rate, each point represents mean of participant data for a method: (green)
midair; (blue) tap; and (yellow) swipe. The convex hull indicates a “per-
formance space” for a method.

swipe methods, and those participant data points were each clustered into 1

group. This suggests a homogeneity of performance with tap and swipe, and
further confirms additional performance diversity with midair.

5.3 driving experience

Out of 18 participants, P10 and P17 did not hold a valid driving license
and had little driving experience. Our analysis below suggests this had no
noticeable effect on their performance in the driving task or the input task.

We use the 95% confidence interval (95% CI) for the 16 participants who
held a valid drivers licence, and examine if values for the two participants
without a drivers license, P10 and P17, fall into that interval. For SDLP, the
mean is 2.0 m (sd=0.2) with 95% CI [1.6, 2.4]: both P10 (2.1 m) and P17 (2.2
m) are within. For Speed, the mean is 83.3 km/h (sd=6.0) with 95% CI [71.3,
95.3]: both P10 (82.3 km/h) and P17 (88.0 km/h) fall within. We believe this
is because our driving task only required simple vehicular control rather
than interactions with other vehicles and pedestrians requiring knowledge of
the rules of the road and more driving decisions.

We also examine input tasks using mean times combining all three methods.
For Accuracy, the mean is 92.4 (sd=10.2) with 95% CI [72.0, 100]: both P10

(90.2) and P17 (93.0) fall within. For Response Time, the mean is 940 ms
(sd=359) with 95% CI [222, 1658]: both P10 (1199) and P17 (954) fall within.
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5.4 midair and swipe kinematics
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Figure 5.2: Clustering of participant data for midair using normalized Response Time
and Error Rate. Colours indicate three groups of participants.

It could have been possible that non-drivers were more focused on driving
which could have affected their input performance, but the analysis does not
show this.

5.4 midair and swipe kinematics

We investigate how optimal the thresholds were for the midair and swipe
gestures, and find the interaction space size that participants typically used.
Participants performed swipe gestures with a mean distance of 85 mm (sd=
26) and for midair gestures, a mean distance of 114 mm (sd=26). These both
well exceed the minimum distance thresholds required by the recognizers,
12 mm and 50 mm respectively. In terms of speed, participants performed
touch swipes with a mean speed of 321 mm/s (sd=157) and midair swipes
with a mean speed of 451 mm/s (sd = 267). Again, these well exceed the
minimum recognizer thresholds of 12 mm/s and 50 mm/s respectively. This
suggests the threshold distances and speeds used by the recognizer were
more than adequate. It is further observed that the space used to perform
gestures follows a similar pattern. We plot the start and end points of each
gesture, and use 95% confidence intervals to define the smallest bounding
rectangle. We found this rectangle area was 1480 cm2 (418 mm × 354 mm) for
midair and 331 cm2 (230 mm × 144 mm) for swipe. The rectangle for midair

is approximately 4.47 times larger than swipe, confirming the 4.17 (50 mm /
12 mm) ratio between recognizer thresholds was reasonable.
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5.5 midair accuracy with fewer directions

In the experiment, participants performed eight midair directional gestures
(up, down, right, left, up-right, up-left, down-right, and down-left), with
an overall accuracy of 82% across all directions. However, if the data is
restricted to the three groups of gestures, up/down, right/left, and the four
main directions, up/down/right/left, then the accuracy improves to 98%,
which is similar to that of tap and swipe techniques (Figure 5.3). First, the
original slopes of linear regression of midair gesture trajectories were taken.
Then, we divided the circular space to identical circular sectors for each
direction. Each circular sector was 180◦ for right/left and up/down and 90◦

for up/down/right/left. Considering Figure 5.3, it can be concluded that
performing midair gestures toward up-left, up-right, down-left, and down-
right have lower accuracy than performing gestures toward the four main
directions.
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Figure 5.3: Comparison of midair accuracy when reducing the number of considered
directions.

5.6 haptic feedback and midair gestures

Due to how barehand midair input does not involve a device or contact with
a surface, it lacks natural haptic feedback, which can be considered its limita-
tion. However, there is a large body of work developing and demonstrating
ultrasound methods to stimulate a hand in midair to produce synthetic haptic
feedback [30]. Midair user interface components, midair gesture feedback,
and virtual object representations are primary input-related use cases for
this technology. Several automotive manufacturers demonstrated using ultra-
sound haptics for midair touch input [16] including the “HoloActive Touch”
concept demo by BMW which combines the technique with a holographic
midair touch display [8]. UltraLeap sells systems for detecting midair gestures
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5.7 application scenarios

and delivering touch-less haptic feedback using arrays of ultrasound emitters
[6]. One of their target markets is in-vehicle control, where they demonstrated
working systems using gestures like grab-release and hand-twist.

We discussed Harrington et al. [12] more generally in Related Work, here
we focus on their results regarding haptics. They found conditions with ul-
trasound haptic feedback were more accurate, had shorter selection times,
and fewer off-road glances. Our directional midair gestures are similar to
the open-handed midair gesture they used to manipulate the slide-bar in
their task. Their results suggest ultrasound haptic feedback to indicate suc-
cessful gestures, whether a continuous gradual force or a sudden pulse,
could facilitate more accurate, and potentially safer, interactions. Shakeri,
Williamson, and Brewster [33] also studied ultrasound haptics for in-vehicle
input, comparing uni-modal and multi-modal haptic variations of a midair
gesture. Their results found multi-modal ultrasound feedback decreases the
time drivers looked away from the road, a further indication that ultrasound
haptics can improve midair gestures in a vehicle setting. Our study focused on
midair gestures in a more easily deployable form for manufacturers, without
the added complexity and cost of ultrasound haptic feedback. However, we
anticipate this type of haptic feedback could provide similar improvements
to our midair results.

5.7 application scenarios

When four or more directional gestures are distributed radially (as we did
in our study), there is a natural mapping to circular “pie” menu interfaces
[5]. The in-vehicle system commands triggered by such a pie menu could
be contextual based on the system state. For example, when there is an
incoming call, the menu items could be ‘Answer’, ‘Reject’, ‘Mute’, and ‘Call
Back’ (Figure 5.4a). Or, when playing media, the menu items could be ‘Next’,
‘Previous’, ‘Volume Up’, and ‘Volume Down’. A pie menu can also be made
hierarchical, where a directional movement on the first level triggers a second
level with related commands. For example, the first level could have items for
‘Navigation’, ‘Climate Control’, ‘Window Control’, and ‘Vehicle Functions’.
Selecting ‘Navigation’ would move to the second level where items control
the navigation system, such as ‘Pause’, ‘Repeat Instructions’, ‘Zoom In’, and
’Zoom Out’. One advantage for a directional pie menu is that it can be easily
transformed into a “marking menu”, where the first and second level in a
hierarchy can be selected in two swift directional movements [18].

Another appropriate interface for directional input is a linear menu. A
large number of menu items can be scrolled through using up and down
directional gestures, with a right gesture to ‘select’ the current item and a
left gesture to ‘go back’ to a previous level or dismiss the menu (Figure 5.4b).
This could be applied to vehicle systems like selecting a media item among a
larger collection (e.g. a playlist or a station) or setting one of several climate
control modes (e.g. air, heat, defrost, etc.).
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These menu examples could be implemented with directional gestures
performed in midair or with a touch swipe. This could enable control by
either method as desired by the user or the driving situation. Or, given the
different performance characteristics, some menus could be accessed with
touch swipes and some with midair input. For example, frequent actions,
such as a menu of windscreen wiper functions (e.g. ‘Pulse’, ‘High’, ‘Low’,
‘Clean’) could be accessed with midair input, and less frequent menus with
touch swipes, such as media selection or vehicle settings.

Our study and the examples above are specific to in-vehicle systems, but
the general style of directional gestures and associated menu interfaces could
be used in other settings, such as controlling a smart television when seated
on a sofa (Figure 5.4c). However, a vehicle cabin has the advantage of a very
stable configuration: a very specific seated user location, a well-defined space
for tracking midair gestures, and a nearby touch surface.

Figure 5.4: Potential application scenarios: (a) pie menu; (b) linear menu; (c) control-
ling a smart TV.

5.8 limitations and future work

A desktop driving simulator in a lab environment is used to evaluate midair
input for in-vehicle control in a similar manner to previous work (Table 2.1).
We also use the standard lane change task, as was done in two other previous
works [14, 38]. This reflects a trade-off between realism and experiment
control. Conducting our study with the same driving task in a real car on a
track would undoubtedly intensify the driver’s attention, and perhaps reveal
changes in how they perform the different input methods. One approach
is for participants to perform gestures as a passenger to understand the
impact of vehicle motion [26], but the logistics and safety for a study where
participants simultaneously drive a real car would be very challenging. A
more conservative next step is to replicate this experiment in a more high-
fidelity and immersive vehicle simulator. Similarly, using a more open-ended
“driving in traffic” task like Angelini et al. [3] or Graichen, Graichen, and
Krems [10] would likely change the intensity of the driving task relative
to the input task. However, as in any experiment, open-ended tasks are
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5.8 limitations and future work

difficult to control, which reduces the internal validity necessary for unbiased
comparisons between input conditions.

In order to illustrate the advantages and challenges involved in conducting
this type of experiment in a real car, we discuss the work of Ng and Brewster
[26]. In their paper, three scrolling input techniques were compared, none
of which were midair, but there is a shared goal of comparing in-vehicle
input techniques. The experiment was conducted in a moving vehicle driving
through a quiet neighbourhood of a city. However, due to safety regulations,
the car was driven by the experiment facilitator while the participant sat
in the passenger seat holding a mock steering wheel between performing
the scrolling methods. The results showed that a direct touch method was
less accurate though faster than on-screen buttons or pressure input. They
also performed the experiment with the participant driving an actual car
in another study [25]. The driving task was in town, carriageways, and
highways scenarios in presence of the experimenter for safety which resulted
in lower accuracy and longer selection time. In comparison to our focus, the
experiment setting and open-ended task prevented a controlled measure of
driver distraction.

Although not specifically mentioned by Ng and Brewster, disturbance
caused by physical movements in a real car could effect input method perfor-
mance. The suspension in modern cars maintains a reasonably smooth ride
over well maintained streets, but rough or twisting roads would likely be a
problem for any kind of input method. We hypothesize that midair input may
be more robust to moderate disturbances compared to input performed on a
touchscreen console. The touchscreen vibrates and moves with the car which
transforms input into a moving target. However, with midair input there
is no car-anchored target and the shoulder and elbow joints will dampen
some hand movement caused by car movement disturbances. As an anecdotal
example, when encountering very rough roads, a person may remove a full
cup of coffee from the cup holder and hold it in midair in order to reduce
the motion and prevent spilling. Technical prediction tools such as Predictive
Touch [1] have been proposed to remove the need for a direct touch and
predict targets in initial pointing states, mitigating the perturbations effect.

Projecting the midair gestures to a different virtual plane changes perceived
accuracy. In our study, we projected the midair gestures to the average plane
of the monitor since naturally, people intend to perform gestures in that plane.
However, projection on an angled plane may modify the projected data points
and possibly alters the final accuracy. Further mathematical averaging of the
mean plane that participants made or machine learning analysis are possible
to find the optimum plane. As the optimum plane is logically close to our
current plane, we may reach subtle improvements.

In the experiment, we asked general demographic questions of our par-
ticipants. Providing additional demographic information regarding users’
driving abilities, the amount and manner in which they drive, as well as
their experience with technology, including video games, may provide us
with additional insight into why some participants are highly successful in
performing midair gestures and some are not, compared to the other two
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interaction methods, which have consistent performance across all partici-
pants. Although in general, our participants had slightly better performance
for the last few blocks of the experiment (0.5% higher Accuracy and 22.3%
lower Selection Time), suggesting that practice could be a crucial component
to consider, especially in the case of such a new interaction method as this.
A follow-up study may examine how users can adopt this new midair input
technique, since it is less distracting than other commercially implemented
input methods (for example, on-screen swipes and taps).

There is also a trade off between creating more advanced midair gestures
to reach a higher functionality and keeping the driver’s distraction at a
minimum point. Future works can find a balance for this issue by proposing
task specific gesture sets such as assigning different gesture methods for
various part of the in-vehicle interaction. With more progress in autonomous
driving, the problem of driver’s safety and distraction is changing overtime,
leaving a good chance for midair gestures to take action in more areas.
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6C O N C L U S I O N

We compared and evaluated the performance of three functionally equivalent
methods for in-vehicle input: 8-direction midair gestures, 8-direction touch
swipes, and 8-button touch taps. Midair gestures were faster but less accurate
compared to touch taps and swipes. In practice, midair achieves a respectable
accuracy of 82%, and we show this increases to 98% if only 2 or 4 directions
are used. Although touch swipe gestures were slower than midair, they were
very accurate. Critically for the context of in-vehicle control, midair gestures
were less distracting than touch screen taps in terms of fewer off-road glances.

With additional analysis, we showed surprising diversity for midair gesture
performance among our participants. Essentially, some people were very
good and some people were not. This suggests a need for techniques to
teach people how to perform midair gestures effectively and for automated
methods to personalize recognition parameters so midair gestures can adapt
to the capabilities and natural tendencies of specific drivers. But overall, our
results suggest that manufacturers should consider midair gestures more
closely to complement or even replace conventional target touch tapping on
the centre console.
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