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Abstract

In this thesis we study some topological aspects of Quantum Field Theories (QFTs). In
particular, we study the way in which an arbitrary QFT can be separated into “local” and
“global” data by means of a “symmetry Topological Field Theory” (symmetry TFT). We
also study how various “topological manipulations” of the global data correspond to various
well-known operations that previously existed in the literature, and how the symmetry TFT
perspective provides a systematic tool for studying these topological manipulations.

We start by reviewing the bijection between G-symmetric d-dimensional QFTs and
boundary conditions for G-gauge theories in (d+1)-dimensions, which effectively defines the
symmetry TFT. We use this relationship to study the “orbifold groupoids” which control
the composition of “topological manipulations,” relating theories with the same local data
but different global data. Particular attention is paid to examples in d = 2 dimensions.
We also discuss the extension to fermionic symmetry groups and find that the familiar
“Jordan-Wigner transformation” (fermionization) and “GSO projection” (bosonization)
appear as examples of topological manipulations. We also study applications to fusion
categorical symmetries and constraining RG flows in WZW models as well.

After this, we present a short chapter showcasing an application of this symmetry TFT
framework to the study of minimal models in 2d CFT. In particular, we complete the
classification of 2d fermionic unitary minimal models.

Finally, we discuss how the symmetry TFT intuition can be used to classify duality
defects in QFTs. In particular, we focus on Zm duality defects in holomorphic Vertex Oper-
ator Algebras (VOAs) (and especially the E8 lattice VOA), where we use symmetry TFT
intuition to conjecture, and then rigorously prove, a formula relating (duality-)defected
partition functions to Z2 twists of invariant sub-VOAs.
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Chapter 1

Introduction

This thesis discusses some modern developments in our understanding of symmetries in
Quantum Field Theory (QFT). Given that symmetries are so fundamental in both the
development and analysis of QFT, writing about symmetries immediately places one dan-
gerously close to fundamental “definitional questions” in QFT, as opposed to higher level
“computational questions.”1 The danger of working with such basic topics like “symme-
tries in QFT” is therefore that one may be tempted to try and define what QFT is (and
is not), discuss various axiomatic approaches to QFT (see e.g. [4] for a list of attempts),
or fall into the trap of discussing things that one finds particularly interesting around the
time of writing.

In particular, the danger in trying to define QFT with this level of generality is that the
writer would have some list of things that they definitely want to be quantum field theories,
e.g. a free massive scalar or maybe the Standard Model. They would then inevitably
find themselves plunged into an ever deeper list of pathologies and counterexamples for
their intuitions, worrying about whether or not their definition should work for effective
field theories, non-unitary theories, strange lattice models, non-Lagrangian theories, etc.
Moreover, it is likely that any attempts to wade through the morass of QFTs will find one
facing down additional pathological theories, cooked up simply to spoil their classification
scheme.

The definition of symmetries in Quantum Field Theory are similarly complicated by
desires for generality; especially as one starts to worry about internal vs spacetime symme-
tries, unitarity, non-Lagrangian theories, subsystem symmetries, etc. However, significant

1By computational questions, I mean problems like computing high loop Feynman diagrams in N = 4
SYM, for example.
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progress has been made in our understanding of symmetries which appears to be quite
general and, importantly, based on simple physical principles. In modern language:

All topological observables are identified with symmetries.

On the research front, developing this new point of view has helped to both unify and
rephrase some old results in QFT: providing constraints for quantum gravity, RG flows,
and bootstrap; systematizing the study of anomalies, defects, and topological phases of
matter; and spurring on mathematical developments in higher algebra. While influencing
mathematics is usually a good sign for any theoretical physics, one thing to emphasize is
the interdisciplinary nature of the subject within physics itself, having touched high energy
particle physics, condensed matter physics, and even quantum computing.

However, since we don’t know if this definition of symmetry will last, it may be more
productive to provide some ground-up discussion of why this topological identification is a
good characteristic (and possibly defining) feature of symmetries. As such, I will present
a number of examples which will hopefully be convincing/informative enough to allow the
reader to extrapolate to general results about symmetry. I will also provide some discussion
of what constitutes a “phase of matter.”

1.1 Symmetries

Let us start by recalling some standard textbook results about Noether’s theorem (see
e.g. [5]). Suppose we have a classical field theory, with fields collectively denoted Φ, whose
action comes from a local Lagrangian density S =

∫
ddxL(Φ, ∂µΦ). If we perform a general

transformation:
x 7→ x′ = x′(x) , Φ 7→ Φ′ = F(Φ) , (1.1)

it induces some transformation on the action S 7→ S ′. Transformations such that S = S ′

are classical symmetries of the action and clearly form a group action on the theory.

When transformations live in a continuous family, barring any pathologies, they specif-
ically form a Lie group (for simplicity assume it is connected). In this case, we can also
study general infinitesimal transformations:

x 7→ x′(x) = x+ ωa
δxµ

δωa

, Φ(x) 7→ Φ′(x′) = Φ(x) + ωa
δF
δωa

(x) , (1.2)

where the ωa are spacetime independent.

2



Suppose we have some Lagrangian theory, and further suppose that its action S is in-
variant under some family of continuous symmetry transformations, i.e. S ′ = S. What is
the response of the theory to spacetime dependent transformations ωa(x)? It is a straight-
forward exercise to show that the difference δS := S ′−S becomes:

δS =

∫
ddx ∂µj

u
a ωa(x) (1.3)

where the current jµa is defined

jµa =

(
∂ L

∂(∂µΦ)
∂νΦ− δµν L

)
δxν

δωa

− ∂ L
∂(∂µΦ)

δF
δωa

. (1.4)

Now, since we assumed that the ωa = ωa(x) were a function of x, the ωa(x) are behaving
like small position dependent field variations of the Φ. But we know that field variations of
the Φ around on-shell configurations of Φ leave the action invariant 0 = δS

∣∣
on−shell

. Thus,

when the equations of motion are satisfied, (1.3) is 0 for arbitrary ωa(x) and we may strip
away the integral, so that:

∂µj
µ
a

∣∣∣
on−shell

= 0 . (1.5)

This is Noether’s theorem: For every generator of the symmetry group G, there is an
independent current jµa which is conserved when using the equations of motion. We will
return to the converse statement in the next section.

This is the derivation for a classical field theory, and holds true for quantum theories
that do not have anomalies (see Section 1.1.2). For quantum theories without Lagrangians,
one could instead take the existence of a conserved current ∂µj

µ
a = 0 (as an operator equa-

tion) as the definition of what it means to have a (non-anomalous) continuous symmetry.

What do symmetry operators capture in QFT? Equation (1.3) is the key ingredient to
remember, it tells us that the current essentially characterizes the response of the theory to
a slight G-deformation of the background. This may sound cryptic, so suppose we have a
U(1) flavour symmetry, the conserved current jµ can be minimally coupled (for simplicity)
to a background (classical) gauge field Aµ by adding a term to the action like:

S int =

∫
ddxAµj

µ . (1.6)

Small variations around Aµ = 0 are captured by correlation functions of jµ in the unde-
formed quantum theory:

⟨jµΦ(x1) · · ·Φ(xn)⟩A=0 ≃
1

Z[0]

δ

δAµ

⟨Φ(x1) · · ·Φ(xn)⟩A=δA . (1.7)

3



Another example is the stress tensor T µν , which is the Noether current for translational
symmetry. T µν couples to the metric and characterizes the response of the theory to
deformations away from flat space gµν = ηµν + hµν . Some other examples of symmetries
and their background fields include fermion number (−1)F , which couples to a background
spin-structure; and time-reversal symmetry, which couples to the first Stiefel-Whitney class
w1.

Note that under a gauge transformation of the U(1) background field Aµ 7→ Aµ + ∂µα

δS int =

∫
ddx ∂µα j

µ = −
∫
ddxα ∂µj

µ . (1.8)

We find that invariance of the action under gauge transformations corresponds to the
current conservation equation (see also Section 1.1.2).

Generally, we see that a continuous symmetry group can be coupled to a background
field and its local data is encoded in current correlators; meanwhile, its global data is en-
coded in the bundle topology. For discrete symmetry groups, connections are necessarily
flat (see [6] for a review) and all data is global data. In either case, given a flat connec-
tion A ∈ H1(M,G), one can use Poincaré duality to effectively present it as a network
of codimension-1 symmetry defects labelling G-monodromies on M . In this case, gauge
transformations of the connection correspond to shifting the background field around.2

It is worthwhile to discuss one more elementary matter before proceeding, and that is
the matter of Ward identities (see [5] again). In particular, we now know that if a theory
has a continuous symmetry, then there is a conserved current ∂µj

µ
a = 0 as an operator

equation. What is the quantum mechanical manifestation of the current conservation
equation? The Ward identities are the answer.

The most pedagogical way to derive the Ward identities is again from the path integral
perspective for a continuous symmetry. In particular, suppose that we have an infinitesimal
transformation:

Φ′(x) = Φ(x)− iωaGaΦ(x) , (1.9)

where ωa is once again a function of x. Note: Ga is called the generator of the symmetry
transformation and characterizes the change in fields under the symmetry transformation.
Anyway, let X denote some multilocal operator that can enter a correlation function X :=

2Consider the concrete example of a U(1) symmetry, with background connection localized on t0: A =
ϕδ(t− t0)dt. We see that we can move the connection to a new spot t1 by using the gauge transformation
α = ϕ(θ(t− t1)− θ(t− t0)).
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Φ(x1) · · ·Φ(xn), then

⟨X⟩ := 1

Z

∫
[dΦ]Xe−S[Φ] (1.10)

=
1

Z

∫
[dΦ′]X ′e−S′[Φ′] (1.11)

=
1

Z

∫
[dΦ′] (X + δX)e−S[Φ]−

∫
ddx ∂µjµ ωa . (1.12)

In the second line, we have used the fact that the path-integral just sees the fields as an
integration variable, so that the change from unprimed to primed quantities is essentially
a relabelling of integration variables.

Now, if we assume [dΦ′] = [dΦ] and expand to first order, we find

⟨δX⟩
∣∣
O(ϵ)

=

∫
ddx ∂µ ⟨jµaX⟩ ωa(x) . (1.13)

However, we can also compute δX explicitly in terms of field variations and then express
the answer as an integral against delta functions:

⟨δX⟩
∣∣
O(ϵ)

= −i
∫
ddxωa(x)

n∑
i=1

δ(x− xi)Φ(x1) · · ·GaΦ(xi) · · ·Φ(xn) . (1.14)

Since ωa(x) was an arbitrary spacetime dependent variation, we can drop the integrals to
obtain the formula for the Ward identity for the the current operator jµa :

∂µ ⟨jµa (x)Φ(x1) · · ·Φ(xn)⟩ = −i
n∑

i=1

δ(x− xi) ⟨Φ(x1) · · ·GaΦ(xi) · · ·Φ(xn)⟩ (1.15)

Two comments are in order. First, it is important that the ∂µ be outside the correlation
function, often papers are careless about this point. The reason for this is because ∂µj

µ =
0 is an operator equation. If ∂µ was inside the correlation function acting on jµa the
correlation function would be 0 on the nose. This can be seen explicitly when one works
with correlation functions as time-ordered vacuum expectation values: in this case, the δ-
functions (called contact terms) in the Ward identity comes from taking derivatives of the
Heaviside theta-functions that implement the time ordering. The second comment is that
we of course still have Ward identities even if we don’t have a nice path integral derivation
for intuition. In particular, the contact terms arise from singularities as the operators in
correlation functions collide.
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1.1.1 Topological Operators

0-Form Symmetries

Given a conserved current ∂µj
µ
a = 0, we can integrate the current over a codimension-1

manifold Σ ⊂M in our d-dimensional spacetime M to produce a conserved charge. To see
this, it is clearest if we first switch to a coordinate free notation, representing the conserved
current as a (dual Lie-algebra valued) 1-form j satisfying d ⋆ j = 0. Then we define the
charge Q(Σ) as

Q(Σ) :=

∫
Σ

⋆j . (1.16)

This charge is conserved in that dQ(Σ) = 0. This most famous example of this occurs
when Σ = Σt is a constant time slice surface, then

∂tQa(Σt) =

∫
Σt

dd−1x ∂tj
t
a = −

∫
Σt

dd−1x ∂ij
i
a = 0 . (1.17)

Clearly the charge Qa(Σt) is conserved and does not care about where it is placed in time.

Start with the Ward identity

d ⟨ ⋆ j(x) Φ(x1) · · ·Φ(xn)⟩ = −i
n∑

i=1

δ(x− xi) ⟨Φ(x1) · · ·GaΦ(xi) · · ·Φ(xn)⟩ , (1.18)

and integrate the expression over a solid d-dimensional volume B, with Σ = ∂B, and
containing xi but none of the other xj, see Figure 1.1. Then∫

B

d ⟨ ⋆ j Φ(x1) · · ·Φ(xn)⟩ = −i
n∑

i=1

∫
B

δ(x− xi) ⟨Φ(x1) · · ·GaΦ(xi) · · ·Φ(xn)⟩ , (1.19)

which implies

⟨Qa(Σ)Φ(x1) · · ·Φ(xn)⟩ = −i ⟨Φ(x1) · · ·GaΦ(xi) · · ·Φ(xn)⟩ . (1.20)

Here we see that the support Σ of Q(Σ) is only topological: it does not depend on the exact
position of Σ, so long as it does not “sweep past” any other insertions in the correlation
functions. If it does sweep past another insertion, then Φ transforms appropriately under
the symmetry. If we pick a particular quantization, so that correlation functions become
time ordered expectation values, this is the statement that charges are the generators of
infinitesimal symmetry transformations
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Φ(x1)
Φ(x2)

Φ(x3)

· · · Φ(xn)B

Figure 1.1: We may integrate the local operator j(x) over a volume B with boundary
Σ = ∂B to produce the correlator with charge operator living on Σ. In this picture, the
charge operator engulfes Φ(x2).

[Qa,Φ] = −iGaΦ . (1.21)

This has all been specific to continuous symmetries which have infinitesimal generators,
but we can consider instead the symmetry group elements Ug(Σ) for any g ∈ G.3 Their
support is also topological. Such an operator is defined by cutting spacetime along the
codimension-1 surface Σ and inserting a g action on the complete set of states for the
Hilbert space living on Σ [7]. Or, as mentioned below (1.20), we can think of the operator
Ug(Σ) living on Σ as introducing a discontinuity in the fields that pass through it, twisting
them by a symmetry transformation. Thus, if the topological operator Ug(Σ) sweeps over
the operator O, it transforms appropriately g ·O. This point-of-view also works for theories
which do not have Lagrangian descriptions or continuous symmetry groups.

The symmetries Ug(Σ) defined above are called 0-form symmetries. They are supported
on codimension-1 manifolds in spacetime and they can couple to 1-form background con-
nections as in (1.6), with gauge invariance under 0-form shifts like (1.8) coming from the
conservation of the 1-form current j.

3In the case of a continuous symmetry group, we can obtain the topological operator by exponentiating
the appropriate collection of infinitesimal symmetry charges, i.e. Ug(Σ) = exp{(iωaQa(Σ))}.
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Higher-Form Symmetries

Higher-form symmetries can be defined simply by generalizing the previous paragraph: a q-
form symmetry groupG(q) consists of symmetry operators Ug(Σ) supported on codimension-
(q+1) surfaces. The operators couple to (q+1)-form background fields B(q+1) which trans-
form under q-form gauge transformations. In the U(1)(q) case, this looks like

B(q+1) 7→ B(q+1) + dβ
(q)
B . (1.22)

In the continuous case, q-form symmetries are associated to (q+1)-form currents J (q+1)

satisfying
d ⋆ J (q+1) = 0 , (1.23)

which is integrated to give the conserved charge just as in (1.16).

One important thing to note is that higher form symmetries must be abelian. This
can be seen essentially trivially from the definition: a higher-form symmetry lives on at
minimum a codimension-2 defect. Now suppose we have two such higher-form symmetry
defects U

(q)
g and U

(q)
h . Due to the dimensionality of their support, there is ambient space-

time to homotope/move the defects past each other before hitting a charged object. As

a result, topologically there is no difference between hitting a charged object with U
(q)
g or

U
(q)
h in that order, or the reverse order. So higher-form symmetry groups must be abelian,

see Figure 1.2.

There is a related mathematical fact to this last point [8]. In particular, given a q-
form symmetry group G, it can be shown that distinct G-bundles on spacetime M are in
correspondence with (homotopy classes of) maps γ :M → BqG. The classifying space for
the background fields BqG := K(G, q + 1) is called an Eilenberg-MacLane space, and this
space only makes sense for q > 0 when G is abelian.

Example 1 (Free Maxwell Theory). Consider free U(1)(0) gauge theory, aka Free Maxwell

Theory in 4d. This theory has two global 1-form symmetries, an electric symmetry U(1)
(1)
e

and a magnetic symmetry U(1)
(1)
m . To see this, start with the action

S = − 1

2g2

∫
F

(2)
A ∧ ⋆F

(2)
A , (1.24)

where F
(2)
A = dA(1) is the usual curvature 2-form associated to the U(1)(0) 1-form gauge

field A(1). Now consider the shift A(1) 7→ A(1) + α(1), this leaves the action invariant if the
shift is d-closed, i.e. dα(1) = 0, i.e. if we shift the gauge field A(1) by a flat connection.
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Φ(x)

M3

L

M3

Figure 1.2: Left, 0-form symmetry operators are codimension-1 and have no freedom to
move past each other before hitting the charged operator Φ(x) in the three-manifoldM3.
Right, 1-form symmetry operators are codimension-2, so there is space to move them
around each other before hitting the line operator L; for consistency, they must have
abelian group composition law.

This is the origin of the U(1)
(1)
e symmetry, but to confirm that this is a 1-form symmetry,

we should confirm it acts non-trivially on line operators. The magnetic U(1)
(1)
m symmetry

is less obvious from this point-of-view unless we go to the electric-magnetic dual frame and
use the dual photon field.

We can compute the associated conserved currents. They are:

J (2)
e =

1

g2
F (2) , J (2)

m =
1

2π
⋆ F (2) . (1.25)

Clearly both d ⋆ J
(2)
e = 0 and d ⋆ J

(2)
m = 0 by the vacuum Maxwell equations, so we have

two independent conserved 2-form currents, as expected.

Following the previous discussions, we can integrate and exponentiate the currents to
get group elements in the electric/magnetic 1-form symmetry groups:

U e
g=eiω(Σ

(2)) = e
i ω
g2

∫
Σ(2) ⋆F , (1.26)

U e
g=eiλ(Σ

(2)) = ei
λ
4π

∫
Σ(2) F . (1.27)

We see that these operators correspond to the total electric/magnetic flux through the
surface Σ(2) respectively, and the charged objects are Wilson and ’t Hooft loops respectively.
To see this last point, and confirm that these 1-form symmetries act non-trivially on some
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operators in the theory, consider the effect on a Wilson loop of shifting the dynamical
gauge field A(1) by a flat connection A(1) 7→ A(1) + α(1):

Wγ,n(A) 7→ Wγ,n(A)e
in

∫
γ α(1)

. (1.28)

For the ’t Hooft loops and the U(1)
(1)
m magnetic symmetry, the corresponding equation

captures the fact that the ’t Hooft lines generate a magnetic flux.

Lastly, it is worthwhile to comment on the existence of higher-group symmetries. For
concreteness, we will describe the simplest case: the case of 2-groups. Roughly speaking,
such symmetries arise when there is an interplay between symmetries of different form
degree. In the particular case of (split) 2-groups, this occurs because the 1-form symmetry
operators themselves are charged under the 0-form symmetry. As a result, the 2-group Γ
is algebraically captured by a group extension

1→ A(1) → Γ→ G(0) → 1 . (1.29)

The splitting of the group extension is described by some cohomology class in the group
cohomology H3(G(0), A(1)), called the Postnikov class. The Postnikov class describes the
obstruction to independently coupling to both a G(0) and A(1) background.

For example, if we have a U(1)(0) 0-form symmetry background A(1), and a U(1)(1) 1-
form symmetry background B(2), a non-trivial Postnikov class κ ∈ H3(BU(1), U(1)) ∼= Z
means a general gauge transformation (α(0), β(1)) shifts

A(1) 7→ A(1) + dα(0) , (1.30)

B(2) 7→ B(2) + dβ(1) +
κ

2π
α(0)dA(1) , (1.31)

see e.g. [9] for more details.

1.1.2 Anomalies

In general, the partition function of a theory on some manifold is both IR and UV divergent.
Both types of divergences can be handled in standard ways: IR divergences can be regulated
with the introduction of a compact spacetime, while UV divergences can be regulated
by the introduction of a UV cutoff. Different choices of the UV regularization scheme
correspond to different choices of UV counterterms in the classical/background fields. As
such, we see that it’s the universal IR physics that is captured by the partition function in
a scheme-independent way.
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Consider the partition function of a theory with a global symmetry G (0-form for
simplicity), and couple the global symmetry to a (classical) background gauge field A. It
is possible that the partition function Z[A] is not gauge invariant in the presence of the G
background

Z[Aα] ̸= Z[A] . (1.32)

We will assume that the partition function transforms by a phase, which is itself deter-
mined by a functional ω that depends locally on the gauge parameter α and background
connection A:

Z[Aα] = Z[A]e−2πi
∫
X ω(α,A) . (1.33)

The statement that ω is a local functional is the statement that ω obeys cutting and
gluing axioms of quantum field theory. In the language of topological defect networks,
Z[A] ̸= Z[Aα] signals the breakdown of the topological nature of symmetry defects when
defects are brought to coincident points/junctions of defects (see [6, 10]).

At first glance, there is nothing interesting about this local phase ambiguity of the
partition function; as we will see, such phase ambiguities can always be removed by coun-
terterms. However, a more interesting question is: can we remove the phase ambiguity
using only local counterterms? Such local phase ambiguities are precisely what people
mean by a scheme. Phase ambiguities that cannot be removed/absorbed by the addition
of local counterterms, i.e. are scheme independent, are called ’t Hooft anomalies.

Note, ’t Hooft anomalies are not “bad.” A theory with an ’t Hooft anomaly simply has
an obstruction to coupling to background gauge fields. Alternatively, you can couple to a
background gauge field but there is a phase ambiguity in how the background gauge field is
presented. These phase differences between otherwise gauge equivalent defect networks can
be viewed as violations of group associativity. Anomalies can also be thought of as contact
terms not satisfying global Ward identities. All in all, ’t Hooft anomalies are actually
“good” invariants for understanding QFTs, this is due in part due to their “rigidity” along
RG flows and other continuous deformations.

Previously we asserted that phase ambiguities could always be removed with the ad-
dition of counterterms if we allow for non-local counterterms. This is the essence of the
anomaly inflow hypothesis (or definition). The inflow hypothesis is the assertion that the
anomalous phase ω(α,A) of the d-dimensional partition function is captured by a classical
invertible field theory Tbulk in (d+1)-dimensions. The name “inflow” comes from the fact
that if our d-dimensional spacetime with the dynamical theory on it is called M , then we
can view M as the boundary of a (d+1)-dimensional manifold N and extend the classical
background gauge fields A into the bulk of N . Then we can construct a local Lagrangian
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Lbulk on N such that

exp

(
2πi

∫
N

Lbulk(A
α)− 2πi

∫
N

Lbulk(A)

)
= exp

(
2πi

∫
M

ω(α,A)

)
. (1.34)

On a closed manifold the classical bulk theory is gauge invariant, but on open manifolds
it reproduces the anomaly of the lower-dimensional theory.

The upshot of all this is that while the theory Z[A] is not gauge invariant on its own,
the d-dimensional dynamical system coupled to the boundary of the (d+1)-dimensional
classical bulk/inflow theory with classical Lagrangian Lbulk actually is gauge invariant. i.e.
the combined partition functions for the bulk-boundary pairing

Z̃[A] := Z[A]e2πi
∫
N Lbulk(A) (1.35)

satisfies
Z̃[Aλ] = Z̃[A] . (1.36)

It is a standard argument to show that ’t Hooft anomalies are given by a cohomolog-
ical classification. This cohomological classification of anomalies in d-dimensions matches
precisely with the classification of SPT/invertible-phases in (d+1)-dimensions. And in-
deed, they are the same classification if we take the anomaly inflow hypothesis as defining
anomalies: the invertible phases that classify anomalies are classified by bulk SPT phases
in one dimension higher [11].4

One final philosophical comment on the topic of anomalies is that, as of time of writing
this, we do not think of theories with ’t Hooft anomalies as necessarily always being coupled
to one-higher dimensional bulk SPT phases whose classical action is tuned to cancel the
’t Hooft anomaly. However, in some systems this does happen from the natural physical
setup: e.g. in a condensed matter setup studying SPT phases, the boundary has an ’t
Hooft anomaly (assuming no symmetry breaking).

1.1.3 Non-Invertible Symmetries

In the previous sections we discussed 0-form symmetries and their anomalies. Algebraically,
0-form symmetry operators were associated with topological codimension-1 operators in
spacetime. As the supports of these operators collide, we discovered that they formed

4Actually, anomalies and SPT phases turn out to have a cobordism-theoretic classification, which
includes the cohomological classification within it.
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a group and the group could be continuous or discrete. Explicitly, the fusion of these
codimension-1 operators had to have inverses and be associative, but they were not nec-
essarily commutative. Associativity ambiguities under fusion were captured by anomalies,
which had a group cohomological classification. The symmetry group also had a unit in
the form of the trivial/identity defect.

After that, we discussed the existence of higher-form symmetries. These higher form
symmetry operators also formed groups, exactly as in the 0-form symmetry case. The
only difference was that these groups were necessarily commutative on account of the high
codimension of their supports. Otherwise, everything else was the same.

Restricting our attention back to the simple starting point, a different type of general-
ization of the (possibly anomalous) 0-form symmetry group we are familiar with is that of
a fusion category. A fusion category arises as we relax the requirement that the supports
of codimension-1 topological defects “fuse like a group,” and instead only require that they
“fuse like a ring.” The way this is usually emphasized in the physics literature, is to em-
phasize that not all of the codimension-1 topological defects necessarily have an inverse.
Perhaps the most famous example of such a defect occurs for the Kramers-Wannier duality
defect line N in the (1+1)d Ising model, whose self-fusion satisfies

N ×N = 1+ η (1.37)

where η is the Z2 symmetry line of the Ising model. We will return to this defect many
times in the bulk of the text.

Note, non-invertible topological defects are not mysterious. For example, in a standard
theory with only a Z2 symmetry, the Z2-projector defect P = 1+ η is a non-invertible
defect (this is clear, since it necessarily loses information when sweeping over charged
operators). What is unique about the non-invertible topological objects that appear in a
general fusion category is that the objects are simple, i.e. they are not just sums of other
fundamental objects.

More generally, if one works physically, one can essentially “derive” the axioms of a
fusion category from the intuition of the rules that should govern the fusion of topological
codimension-1 defects, see e.g. [12]. We will not repeat those derivations here, but we
comment more on the reasonability of these axioms in Section 4.2. Two points require
commentary though:

1. Associativity. When one studies the axioms for a fusion category, one finds that
there is “associator data” which comes in to the definition as one tries to relate
various configuration of topological defects to one another. This associator data
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Gadget Topology Inverses Associativity Supports

0-form Group Disc. or Cts Yes Anomaly Codim-1
p-form Group Disc. or Cts Yes Anomaly Codim-(p+ 1)
p-Group Disc. or Cts Yes Anomaly + Postnikov Codim ≤ p+ 1

Fusion Category Discrete No Pentagon Identity Codim-1
Higher Fusion Category Discrete No Various Various Codim

??? Disc. or Cts. No Various All Codim

Table 1.1: Essential algebraic properties of various common axiomatizations of topological
symmetry operators.

straightforwardly generalizes the anomaly α ∈ Hd+1(G,U(1)) that we encountered
for a 0-form symmetry group in d-dimensions. We will comment on this more in 4.2.

2. Topology. The mathematical axioms of a fusion category do have one very im-
portant restriction compared to the axioms one would derive from purely physical
considerations. In particular, fusion categories necessarily only have a “finite number
of simple objects.” Intuitively, this means that the axioms of a fusion category are
really generalizing discrete symmetry groups.

The last point is doubly important because the discreteness of fusion categories is in part
responsible for their rigidity: a fusion category cannot be deformed continuously to another
fusion category. This point is often cited as the reason for fusion categories being good
quantities to study e.g. under renormalization group flows. Very interesting attempts to
generalize fusion categories away from having a discrete collection of simple objects have
appeared recently [13].

Finally, one can then generalize this discussion to the general formalism of “higher
(multi-)fusion categories,” which in principle should take into account both the non-
invertible and higher-codimension generalization of discrete groups. However, the lack
of a continuous collection of objects leads us to suspect that the right formalism is not yet
completely developed. We provide a summary of these axiomatizations in Table 1.1.

1.2 Phases of Matter

Regardless of starting point everyone would agree on two common elements in a theory of
quantum mechanics [14, 11]:
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1. A state space H. A complex separable Hilbert space of states, finite or infinite
dimensional.

2. A Hamiltonian H ∈ End(H). A non-negative (bounded below) self-adjoint operator
inside the larger algebra of operators. The non-negativity corresponds to positivity
of energy.

The unitary evolution of states is given by a one parameter group on H generated by H.
Namely, a map R→ U(H) given by the time evolution operator

t 7→ Ut = e−itH/ℏ . (1.38)

Since H is non-negative, t can be taken in the entire complex lower half-plane. The
former Lorentzian time-evolution operator can be viewed as the boundary value of the
holomorphic map z 7→ e−izH/ℏ. We can also consider imaginary time evolution in Euclidean
time τ

τ 7→ e−τH/ℏ , τ > 0 . (1.39)

Turning one’s attention from Lorentzian time (along the boundary of the plane) to Eu-
clidean time t ⇝ τ is called Wick rotation. The advantage of Wick rotation is that it
turns oscillatory integrands into exponentially decaying ones, and so makes quantities well-
defined. Although there are some examples where Wick rotation hides essential physics,
e.g. in the study of Lorentzian CFTs.

Example 2 (Particle on a Ring). The Lagrangian of a classical particle on a ring is given
by

L =
1

2
ẋ2 , x ∼ x+ 2π . (1.40)

Naive quantization of this system gives

Ĥ =
1

2
∂2x , H = L2(S1;C) , (1.41)

and so Euclidean time evolution is given by τ 7→ Uτ = e
τ
2
∂2
x (and we have set ℏ = 1). The

eigenfunctions of this quantum system are quantized plane waves

ψn(x) =
einx√
2π

, En =
n2

2
. (1.42)

One can add a θ-angle to this system.

L =
1

2
ẋ2 +

1

2π
θ · x . (1.43)
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Naive quantization of this system gives

Ĥ =
1

2

(
−i∂x −

1

2π
θ

)2

, H = L2(S1;L eiθ) , (1.44)

where the Hilbert space means L2 sections of the complex line bundle on S1 with holonomy
eiθ. Note that θ is quantized θ ∼ θ + 2π and Z[θ] = Z[θ + 2π]. If we view this as a
(0+1)d field theory x : R → S1, then we can view θ as a coupling constant weighting
different topological sectors in the path integral, i.e. different topological solitons. The
eigenfunctions of this quantum system are also quantized plane waves

ψn(x) =
einx√
2π

, En =
1

2

(
n− θ

2π

)2

. (1.45)

The spectrum is shown in the left of Figure 1.3. For more details on this surpisingly
instructive system see [7, 11, 10].

The Hamiltonian in the previous example was gapped. The spectrum of H was bounded
below and the minimum energy (aka ground state energy) was contained in the point
spectrum of H. In other words, there was a spectral gap above the lowest eigenvalue. If a
system is not gapped, it is gapless. Note that θ = π was still gapped, it just had a ground
state degeneracy of 2 [15].

1.2.1 Gapped Phases

Now that we know what we mean by quantum mechanics, we will define a quantum sys-
tem. A quantum system is a many-body system (HN , HN), consisting of a collection of
microscopic Hilbert spaces, i.e.

HN = ⊗Hi , (1.46)

with each Hi corresponding to a finite dimensional Hilbert space, and i some finite in-
dex (typically associated with vertices/edges/faces of a lattice), and N representing some
number defining the size of the index set. The Hamiltonian is given by some schematic
expansion involving more and more distant lattice sites:

HN =
∑
i

Oi+
∑
⟨ij⟩

Oij + . . . . (1.47)

Locality makes the combinatorial approximation of a manifold by a lattice meaningful,
emphasizing the dominance of short-range interactions between sites in the Hamiltonian.
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Figure 1.3: Left, the energy spectrum of a quantum mechanical particle on a ring as a
function of θ angle. Right, the energy spectrum of a generic “quantum system.”

The physical idea is that these “quantum systems” are supposed to describe some
reasonable microscopic lattice model for materials. Then we study the macroscopic (ex-
perimentally probable) features of the quantum system. For example, superconductivity
comes from microscopic electrons condensing to cooper pairs, and macroscopically this
manifests in (measurable) zero electric resistance. Another example of macroscopic infor-
mation are observables based on the topology of the system, e.g. a topological ground
state degeneracy [16].

Naively, any “quantum system” is gapped (as a quantum mechanical model) with this
definition: there are a finite number of sites, each equipped with a finite dimensional
Hilbert space. Clearly we need a better notion of “gapped” for quantum systems defined
in this way. The solution is to work in the “thermodynamic limit” N → ∞, by defining
gappedness for a quantum system as a property of a sequence.

Consider the spectrum of a generic quantum system (HN , HN), the spectrum looks like
the one on the right of Figure 1.3: with a clustering of energy eigenvalues in a band of
width ϵ above the actual ground state, with a gap of size ∆ separating the low energy
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cluster from the rest of the spectrum. Intuitively, the cluster of size ϵ above the ground
state characterizes finite size effects of the eventual phase we are going to study. We define
a sequence of quantum systems {(HN1 , HN1), (HN2 , HN2), . . . } to be gapped if each HNi

is
gapped with ∆N → ∆ and ϵN → 0 as N → ∞. In other words, a sequence of quantum
systems is gapped if all the quantum mechanical models are gapped as the spatial volume
of the lattice N ∼ V →∞, otherwise it is gapless [17].

This story is analogous to classical statistical mechanics. A phase transition in classical
statistical mechanics is detected by a dramatic change in macroscopic response functions,
which correspond to singularities (e.g. a branch cut) in free energy F . But this only occurs
in the thermodynamic limit where many singularities of F condense into a branch cut. For
example, the free energy

F = −kBT lnZ , (1.48)

is singular if the partition function vanishes, Z = 0; this occurs at zeroes of Z[T ] =∑
µ e

−βH[µ]. For example, in the concrete case of the Ising model, the partition function

Z[T ] is a degree 2N polynomial in the variable z = e−βϵ [5]. The roots necessarily lie off
the real axis in the complex T plane for finite N , but condense into a branch cut which cuts
the real temperature axis as N →∞. In either case, the macroscopic responses depend on
the inherently “limit-based” questions that can be asked in the thermodynamic limit.

Two gapped systems are in the same phase if:

• They can be continuously deformed to one another.
• Their ground state wavefunctions can be related by local unitary transforms.

These are actually two different definitions of phase, but both are identifying a phase as
an equivalence class of gapped systems so that the study of phases is the study of the
π0(Gapped Systems) in the “space of theories” [11]. The first definition is more classically
homotopy theoretic, connected to continuous deformations of theories e.g. in the space of
coupling constants. The second option is a quantum information theoretic definition and
is probably more robust (although less obviously connected to standard homotopy theory,
and, therefore rigorous continuum field theory theorems) [18, 15].

A gapped system is in the trivial phase if it can be deformed to a trivial gapped system.
For example, a system (HN , HN) with HN =

∑
iHi and each Hi having a big gap above

the ground state can be continuously deformed to the trivial system, essentially because
there are no interactions between lattice sites and the gaps shouldn’t close due to some
pathological property of the limits. Two gapped systems can be stacked by taking the
composite system with no interaction between them: take the tensor product of Hilbert
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spaces and sum of Hamiltonians. Similarly, two gapped phases can be stacked, with the
same logic, except working in the equivalence class of “gapped phases” rather than the
space of gapped quantum systems. Finally, a gapped system is invertible if there exists
another gapped system such that stacking them together results in a Hamiltonian which
is in the trivial phase.

All of these definitions depend on a notion of continuous deformation. By continuous
deformation we mean “smooth” things like tuning parameters of the system, such as cou-
pling constants or masses of particles; but not discrete things, like changing dimensions or
internal symmetry groups [11]. Moreover, we require that:

1. The gap remains open as we deform in the space of theories.
2. No first-order phase transitions occur. Quantum systems are still gapped at first-

order phase transitions, but in this case a piece of the discrete spectrum comes down
to a minimum and so changes the ground state degeneracy. In other words, on a
fixed topology, ground state degeneracy is an invariant of the phase.

3. Stacking with the trivial phase leaves the phase unchanged.

This is best explained with a concrete example

Example 3 (The Ising Chain). Consider the quantum mechanical Ising spin chain:

H =
∑
ij

ZiZj + g
∑
i

Xi . (1.49)

• When |g| < 1 the system is ordered with energy gap ∆ = 2(1− |g|).
• When |g| = 1 the system is gapless (at low-energies, flows to the Ising CFT with
gapless excitations).

• When |g| > 1 the system is in the disordered phase with ∆ = 2(|g| − 1).

In this example, tuning g is precisely what we mean by a continuous deformation. We
see that it separates different phases because the gap closes as we tune through the value
|g| = 1 (see [19]). We can also see that the second definition of gapped phases in terms
of local unitary transformations also distinguishes the two phases (as it should): on one
side of the gap the theory has a 1-dimensional ground state Hilbert space, and the theory
has a 2-dimensional ground state Hilbert space on the other side, so the ground state
wavefunctions are obviously not related by local unitaries.

To work with continuum QFT, we usually work with systems where the following two
constraints hold [11]:
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1. We assume deformation classes characterizing macroscopic properties are determined
by a low-energy effective QFT.

2. We assume the QFT for a gapped phase reduces to a TQFT in the IR limit, which
describes ground states and responses to external probes (like background connec-
tions).

These assumptions/definitions make it clear what we mean when we say phrases like:
the Arf theory is an invertible phase arising from the low-energy limit of the Kitaev chain.
We mean that the Kitaev chain is some gapped quantum system (HN , HN) (related to
the Ising chain above). The macroscopically probable IR properties are determined by an
effective QFT, describing a Majorana fermion in (1+1)d, that reduces to a TQFT in the
IR limit. There are two phases, roughly corresponding to whether or not the fermion mass
was m > 0 or m < 0, with the gap closing at m = 0.5 One choice of fermion mass flows to
a TQFT with Z[ρ] = 1 and the other flows to a TQFT with Z[ρ] = eiArf[ρ].

1.2.2 SPT Phases

An SPT phase, or “symmetry protected topological” phase, is a gapped phase of matter
(thus the word topological) that is continuously deformable to the trivial phase, but only
by ignoring symmetry. In other words, to deform a gapped system corresponding to an
SPT phase to the trivial system, we would have to break symmetry or undergo a phase
transition.

Based on our discussion in the previous section, we know that the effective QFTs
that capture such quantum systems must flow in the IR to TQFTs. Practically speaking,
the partition function of these effective theories assigns a U(1) number to the (classical)
background field data of the theory, i.e.

ZSPT[M,A] = e2πiSSPT[M,A] . (1.50)

When A = 0 the partition function is 1, which captures the idea that the theory is indis-
tinguishable from the trivial phase except for the effects of symmetry. The SPT phases
in (d+1)-dimensions are exactly the classical bulk theories that classified the anomalies in
d-dimensions by inflow.6 Based on the partition function, we also see that SPT phases are

5There is a subtlety about saying which sign of m corresponds to which phase in the deep IR. We
comment on this more in Section 2.3.1.

6The SPT action may actually depend on the geometry of M , which condensed matter theorists refer
to this as having a “Non-trivial thermal Hall response.” Such theories are simply related to gravitational
Chern-Simons theories (which are classified) and act as inflow theories for gravitational anomalies. Thus
we may restrict our attention to studying purely topological SPTs (no thermal Hall response) [20].
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also great examples of invertible phases.

1.3 The Symmetry TFT

Given a QFT, we can split it broadly into local data and global data. Local data includes
things like the S-matrix and the operator product expansion of point operators. Conversely,
global data includes things like the global structure of some symmetry group (e.g. SO(3)
vs SU(2)) and ’t Hooft anomalies. For example, in 2d RCFT the local data is captured by
the chiral algebra (and anti-chiral algebra, if distinct) and the global data is the modular
invariant.

Example 4 (2d CFT Minimal Models). A 2d RCFT is specified by 3 pieces of data
(V ,V ,M), where V and V are the chiral and anti-chiral algebras and M is a modular
invariant. In the case of 2d minimal models, the chiral and anti-chiral algebra are the
same. The chiral algebra describes the operator product expansions of a finite number of
(chiral) primary operators, which correspond to particular irreducible representations of
the Virasoro algebra [21].

At generic central charge, there are 2 bosonic unitary minimal models. For example, at
c = 4/5 one has the tetracritical ising model or “A-type” or “diagonal” modular invariant
for the chiral algebra V(4

5
), while the critical three-state Potts model is the “D-type”

modular invariant for this chiral algebra pair.

Since these two theories have the same chiral algebra, they have the same OPEs and the
same local dynamics (as captured by three point functions). However, they have different
modular invariants. This manifests itself in the fact that the two models have different
local/twist operators, different torus partition functions, etc. The two topologically distinct
theories are related by Z2 orbifold/gauging.

This last example begs the question:

What are all topological manipulations of a quantum field theory?

By topological manipulations, we mean operations you can perform on a theory which
change the global structure of the theory, but leave the local data unchanged. Some
examples of such operations include: stacking with SPT phases, orbifolding/gauging a
discrete symmetry, GSO projection (bosonization), and Jordan-Wigner transformations
(fermionization). To elaborate on these more:
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• Stacking with SPTs. Topological theories are only global data, essentially by
definition. They have no local dynamics/excitations, so there is nothing to scatter.
To distinguish two topological theories, we need to compute Z, H, etc. on different
topologies and in response to different backgrounds. Thus stacking with a topolog-
ical theory is a good topological manipulation, as it does not talk to the original
local degrees of freedom and simply changes the response of the theory to different
topologies/backgrounds.

• Orbifolding. This operation, unlike stacking with a topological theory, does talk
to the original degrees of freedom. But discrete gauge fields are necessarily flat and
hence have no local dynamics themselves, hence it does not add anything to the
theory.

As we will see, all topological manipulations for a theory with a discrete G global
symmetry are controlled by the topological boundary conditions of a topological G gauge
theory in one higher dimension. This theory now goes by the name “symmetry TFT” in
the literature. This unifies the answer to the above question in a theory independent way:
all topological manipulations involving a global G symmetry are probed by the same G
symmetry TFT. More generally, we can replace G by any fusion category symmetry (see
Section 2.4 and Appendix A.4).
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Chapter 2

Orbifold Groupoids

In this section we review the properties of orbifold operations on two-dimensional quantum
field theories, either bosonic or fermionic, and describe the “Orbifold groupoids” which
control the composition of orbifold operations. Three-dimensional TQFT’s of Dijkgraaf-
Witten type will play an important role in the analysis. We briefly discuss the extension
to generalized symmetries and applications to constrain RG flows.

I would like to thank Theo Johnson-Freyd, Jingxiang Wu, and Matt Yu for helpful
discussions in developing the paper that this section is based on.

2.1 Introduction

Symmetries and associated anomalies are an important tool in the study of Quantum Field
Theory. They increase the amount of topological data attached to a theory, are invariant
under continuous deformations of the theory and, in particular, under the Renormalization
Group flow.

Discrete symmetries also open avenues to important examples of “topological manipu-
lations” in Quantum Field Theory. Indeed, gauge theories for a discrete symmetry group
have no dynamics and are intrinsically topological in nature. If we couple a QFT to a
dynamical discrete gauge field we will obtain a new theory with the same local dynamics,
say encoded in the OPE of gauge-invariant local operators, but different global properties
and correlation functions. This manipulation also commutes with RG flow.

In the context of two-dimensional quantum field theory, the operation of gauging a
discrete symmetry produces an “orbifold.” A surprising feature of Abelian group orbifolds
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is that the resulting theory is always endowed in a canonical way with some new discrete
symmetry, allowing for orbifold operations to be composed in intricate ways. A basic
objective of this note is to understand in detail the “composition law” of such orbifold
operations, for both bosonic and fermionic systems.

An important feature of topological manipulations is that their properties are essentially
independent of the actual underlying theory and only depend on the properties of the
“topological hooks” employed in defining them. For example, the properties of discrete
gauging operations only depend on the symmetry group and its ’t Hooft anomalies. This
fact can be best understood by physically separating the local degrees of freedom from
their symmetry.

We will review a standard strategy to accomplish this counterintuitive feat for orbifolds
with the help of a three-dimensional topological gauge theory. Such a 3d TFT setup will
allow for a simple characterization of orbifold operations and their composition laws in
terms of the automorphisms of the associated 3d TFT. In particular it will allow us to
prove that the composition of two orbifold operations is always an orbifold.

2.1.1 Structure of the Chapter

In Section 2.2 we will discuss orbifolds of bosonic theories and describe in detail the orbifold
composition law for theories with Zp×Zp symmetry, depicted schematically in Figure 2.6.
We will also study the orbifolds of non-trivial Abelian extensions of cyclic groups by way
of example in the case of a Z2 subgroup of Z4.

In Section 2.3 we will discuss orbifolds of fermionic theories and describe in detail the
orbifold composition law for theories with Z2×Zf

2 or Zf
4 symmetry, depicted schematically

in Figure 2.11 and Figure 2.12 respectively.

In Section 2.4 we discuss applications of the 3d setup to theories with generalized
symmetries. In this section, we study the special example of current-current deformations
of WZW models, with extra focus on su(2)k.

We also include some Appendices reviewing: computational aspects of interfaces in
3d TFTs in Appendix A.1; the basics of spin structures in 2d in Appendix A.2; helpful
identities of the Arf invariant and cup products in Appendix A.3; and a general discussion
of topological aspects of QFTs in Appendix A.4.

Throughout, we use “dimensions” to mean the number of space-time dimensions (as
opposed to the number of space dimensions). Hence when we say 2d we mean (1+1)d, and
3d means (2+1)d.

24



2.2 Bosonic Orbifolds and Symmetries of 3d Gauge

Theories

Consider a (not spin) two-dimensional Quantum Field Theory T endowed with some dis-
crete symmetry group G. We may attempt to couple the theory to a background flat G
connection, but this can be obstructed by ’t Hooft anomalies.

We should specify carefully what we mean by “’t Hooft anomaly” here. In principle,
coupling an abstract theory with discrete G symmetry to a G flat connection can be
obstructed in a variety of ways. The most serious anomalies indicate that the correct
symmetry group of the theory is simply not G but some larger generalized symmetry
group [22] generated by topological defects of various codimension [7].

We reserve the term ’t Hooft anomaly for obstructions which can be compared between
different theories and cured by adding appropriate extra degrees of freedom which are
endowed with G symmetry, but are actually decoupled from the theory. In other words,
invariance under G gauge transformations at most fails by invertible topological degrees of
freedom [15].

It turns out that our ability to characterize the possible ’t Hooft anomalies for quantum
field theories in dimension d is limited by our knowledge of “invertible” quantum field
theories in dimension d and lower (with no assumed symmetry) [18, 23]. If we accept
the standard assumption that no non-trivial invertible bosonic theories (without extra
symmetry) exist in dimension 2 or lower, except for invertible numbers in d = 0, then the
’t Hooft anomalies relevant to our setup are encoded in a class µ3(T ) in the third group
cohomology H3(G,U(1)). The standard arguments for this identification are explained in
e.g. [24, 7, 15, 25].

The group cohomology class economically encodes all the phase ambiguities which may
occur when we attempt to couple T to a flat G connection. For example, take space to
be a circle with a non-trivial G flat connection, so that the periodicity of local operators
is twisted by the action of some g ∈ G. A possible manifestation of the ’t Hooft anomaly
is that the corresponding Hilbert space only carries a projective representation of the
centralized C(g) ∈ G of g. The possible ways a representation can be projective are
labelled by a class in H2(C(g), U(1)), which here can be computed as the partial integral
igµ3 of µ3 on a circle with holonomy g.1

In general, we can gauge any subgroup H of G for which the ’t Hooft anomaly vanishes,

1See [26] for a nice discussion of the physical interpretation of this mathematical operation and gener-
alizations to fermionic phases.
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simply by making the 2d background G connection dynamical over the corresponding H
subgroup. In order to gauge the H symmetry, we have to make an actual choice of how
to resolve all the potential phase ambiguities, which essentially means producing an actual
trivialization of the 3-cocycle µ3 restricted to H, i.e. producing a solution ν2 of

δν2 = µ3|H . (2.1)

This choice is usually called a choice of “discrete torsion.” Two choices are inequivalent if
the difference ν ′2 − ν2 is a non-trivial class in H2(H,U(1)).

Equivalently, if we identify T as a “2d theory with a non-anomalous H symmetry” for
which such a choice has been made once and for all, other choices can be obtained by
stacking T with a 2d SPT phase for H, labelled by a class in H2(H,U(1)) [27, 28].

The orbifold operation produces a new 2d theory [T/ν2H], the orbifold of T by H.

2.2.1 Orbifolds and 3d Gauge Theory

There is a standard construction which neatly decouples topological manipulations (like
orbifolds) from the local dynamics of the theory T . There is a bijection between 2d theories
endowed with a G symmetry and boundary conditions for a 3d Dijkgraaf-Witten (DW)
theory, which is the Topological Field Theory defined as a 3d G gauge theory DW[G]µ3

with “action” µ3 [24].

The map in one direction is quite obvious: we simply couple T to the boundary value
α∂ of the dynamical 3d G flat connection α. This produces some “enriched Neumann”
boundary condition B[T ]. The 2d G ’t Hooft anomaly is then cancelled by anomaly inflow
between the bulk 3d G gauge theory and the 2d boundary theory [29, 30, 31, 32, 33],2

schematically depicted in Figure 2.1.

The map in the opposite direction employs a second reference topological “Dirichlet”
boundary condition D, which fixes the restriction α∂ of α at the boundary to equal some
2d background G connection. The original theory T is obtained from a compactification
on a segment with endpoints B[T ] and D. Notice that the Dirichlet boundary condition
D is endowed with the global G symmetry of T while the dynamics of T is now localized
at B[T ], as depicted in Figure 2.2. More precisely, G-invariant local operators in T map
to local operators at B[T ], with the same OPE and local dynamics. 3

2This anomaly inflow phenomena may be more recognizable in terms of the traditional example for a
connected continuous group G. In this case, a d-dimensional anomaly is cancelled by adding a (d+1)-
dimensional Chern-Simons action as originally described in [29]. A brief overview of the parallels and
discrepancies between the continuous and discrete case are described in [33].

3Other local operators in T have to be attached to a Wilson line stretching all the way to D.
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3d DW Theory
G Gauge Theory

Action µ3

B[T ]

Connection α
Couple to α∂

T

2d Theory
G Symmetry
Anomaly µ3

Figure 2.1: We take a 2d theory with G symmetry and anomaly µ3 and use it to produce
a boundary condition for the dynamical 3d DW theory with gauge group G and action
µ3. The anomaly of the 2d theory is cancelled by anomaly inflow from the bulk 3d theory.
This picture can also be understood in terms of a boundary state as depicted in Equation
2.2.

B[T ] D

M × [0, 1]

Connection α
Compactify

T

α∂

Figure 2.2: If we take the boundary condition B[T ] for the 3d theory we may produce T by
compactifying B[T ] with Dirichlet boundary conditions on M × [0, 1]. See also Appendix
A.1.

We have thus literally separated the symmetry of T from the dynamics of T . Any
topological manipulation involving the G global symmetry, such as orbifolds, will only
affect the D boundary condition and will not interfere with the B[T ] boundary condition.

For example, the orbifold theory [T/ν2H] is represented by a different segment com-
pactification, involving a topological “partial Neumann” boundary condition NH,ν2 defined
by restricting the gauge group from G to H at the boundary, with a “boundary action”
ν2.

One may immediately wonder if we could define some generalization of an orbifold,
where NH,ν2 is replaced by some other topological boundary condition for the DW theory.
Such boundary conditions have a sharp mathematical description as module categories
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using the theory of fusion categories.4 Irreducible boundary conditions turn out to be
classified precisely by the (H, ν2) data, so no exotic orbifolds are available [35, 36].

At worst, some topological manipulation of T may produce a theory with multiple
superselection sectors, each coinciding with some orbifold of T . We may denote such a
theory as

⊕
i[T/νiHi]. This corresponds to considering a boundary condition

⊕
iNHi,νi

with superselection sectors, i.e. a “decomposable module category”.5

An immediate consequence of the 3d TFT interpretation of orbifolds is that it nicely
organizes the relevant manipulations of partition functions for the 2d theories: it promotes
the collection ZT [α] of partition functions on some reference 2d manifold M with flat G
connection α to the “boundary state” for B[T ]:

|T ⟩ =
∑
α

ZT [α] |α⟩ , (2.2)

where |α⟩ are a natural basis of states for the 3d theory.

General 3d TFT technology provides a variety of useful alternative bases for the Hilbert
space, which will be useful later on. In particular, once we choose a basis of 2-cycles, the
space of states on a 2-torus has an alternative basis labelled by the anyons of the 3d TFT.

In any basis, the partition function of any orbifold theory [T/ν2H] is computed as an
inner product ⟨NH,ν2 |T ⟩ with the boundary state for NH,ν2 . In the α basis, the boundary
state is

⟨NH,ν2| =
∑
α

e
∫
M ν2(α) ⟨α| , (2.3)

where ν2(α) is the pull-back of ν2 to M along α.6

2.2.2 Emergent Symmetries and the Group of Orbifolds

It turns out that the orbifold operation never loses information: one can always find a
topological manipulation of [T/ν2H] which will give back T . Generically, this manipulation

4See [12] for a physics introduction, or [34] for a comprehensive mathematical treatment.
5Physically, any topological boundary condition can be identified by the above bijection with some

enriched Neumann boundary condition involving topological 2d degrees of freedom. As no non-trivial
bosonic 2d order exists, the only possibility is some direct sum

⊕
i NHi,νi . In higher dimensions, the

classification of topological boundary conditions for the DW theory is much richer.
6The inner product ⟨α|β⟩ has to be normalized carefully to account for gauge invariance. For Abelian

H, the normalization is ⟨α|β⟩ = 1
|H|δαβ .
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is not itself an orbifold. It is instead what is called a “generalized orbifold,” or “2d anyon
condensation.”

Rather than summing over 2d flat connections for some global symmetry, a generalized
orbifold involves sums over certain networks of topological line defects described by a fusion
category, encoding a certain hidden “generalized symmetry” of [T/ν2H] [37, 38, 39]. Such
generalized symmetries and orbifolds are quite interesting and we will return to them later
in the note. For now, though, we would like to discuss situations where the orbifold theory
[T/ν2H] has a standard emergent symmetry G′, which can be described without the full
machinery of fusion categories.

The simplest possibility is to take G to be an Abelian group A with trivial(ized) ’t
Hooft anomaly. Then the orbifold [T/ν2A] has an emergent, non-anomalous quantum
symmetry group Â, the Pontryagin dual of A [40]. Notice that Â is isomorphic to A, but
not canonically so.

Intuitively, the new symmetry group arises from the action of Wilson lines for the A
gauge fields, which are labelled by characters in Â. Directly gauging Â gives back T . Of
course, we may decide to add some extra discrete torsion ν̂2 when gauging Â in [T/ν2A],
which will produce a new theory [[T/ν2A]/ν̂2Â] with A symmetry, and so on and so forth. Is
there any relation between these new theories and orbifolds of T? How many new theories
can we possibly produce that way?

In 3d terms, the Â symmetry appears as an emergent symmetry of the NA,ν2 Neumann

boundary conditions. Gauging the two-dimensional Â symmetry of NA,ν2 will produce a

new topological boundary condition [NA,ν2/ν̂2Â] with an emergent A symmetry, and so on.
No matter what we do, the resulting boundary conditions for the 3d A gauge theory will
have the form NB,νB2

for some subgroup B of A, so the new theories we produce will all be
orbifolds of T equipped with some emergent A symmetry.

We thus have some collection of topological operations acting on the space of 2d theories
with non-anomalous A symmetry. We would like to characterize such operations and their
composition law.

2.2.3 Emergent Symmetries and Dualities

In the example above, we encounter two different-looking ways to present the [T/ν2A] gauge
theory: a slab of A gauge theory with B[T ] and NA,ν2 boundary conditions or a slab of

Â gauge theory, with B[[T/ν2A]] and D boundary conditions. Inspection shows that these
are two different descriptions of the same setup. Namely
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• The A gauge theory and the Â gauge theory are different dual descriptions of the
same abstract 3d TFT.

• The boundary conditions NA,ν2 and D are dual descriptions of the same abstract
topological boundary condition.

• The boundary conditions B[T ] and B[[T/ν2A]] are dual descriptions of the same
abstract boundary condition.

In order to understand this better, we need to recall that a 3d TFT is (conjecturally)
fully captured by some categorical data, which is essentially the Modular Tensor Category C
of topological line defects (aka “anyons”). The anyons in a discrete gauge theory DW[G]µ3

include a collection of Wilson lines labelled by irreps of G. Generic anyons can be presented
as disorder defects carrying discrete flux as well as electric charge.

Topological boundary conditions in a 3d TFT support a fusion category S of boundary
line defects/anyons. The specific category depends on the choice of boundary conditions,
but its Drinfeld center Z[S] is isomorphic to the MTC C of bulk anyons. In particular, this
isomorphism encodes which bulk lines can end at the boundary.

The only boundary lines at Dirichlet boundary conditions are the disorder defects imple-
menting the G global symmetry, labelled by elements of G. They form the fusion category
denoted as Vecµ3

G . Only bulk Wilson lines can end at a Dirichlet boundary condition and
vice versa. We can recognize an abstract 3d TFT as a DW theory DW[G]µ3 by presenting
a topological boundary condition with boundary anyons which fuse according to the G
group law. The cocycle µ3 is the associator for the fusion operation.

We can build a duality groupoid G whose objects are DW theories and whose morphisms
are isomorphisms of 3d TFTs. These may include non-trivial identifications of a DW[G]µ3

with itself, remixing the bulk anyons in a non-trivial manner, as well as different ways to
identify DW[G]µ3 with some DW[G′]µ′

3
.

Any such isomorphism in Hom(DW[G]µ3 ,DW[G′]µ′
3
) has enough information to map

any anyon or boundary condition in DW[G]µ3 to a corresponding anyon or boundary condi-
tion in DW[G′]µ′

3
. The image under this map of Dirichlet boundary conditions for DW[G]µ3

must always be some NH′,ν′2
with global G symmetry, so these maps are all orbifolds.

More precisely, we can combine these maps with the identification between boundary
conditions B[T ] of DW[G]µ3 and 2d theories T with G symmetry and anomaly µ3 to obtain
an action of G as a groupoid of orbifold operations acting on 2d theories.

Some of the topological operations do not really change the 2d theory: they only change
the prescription of how the theory is coupled to a flat connection. From the 3d perspective,
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IH,ν2

B Gauge Theory A Gauge Theory

NH,ν2

A× B̄ Gauge Theory
Fold at IH,ν2

Figure 2.3: In the folding trick, we replace the setup with a gauge theory B on the left of
the interface and gauge theory A on the right of the interface, by a product theory A× B̄
with a corresponding boundary condition.

they are automorphisms of DW[G]µ3 which fix the Dirichlet boundary conditions. We will
thus find it useful to refine the duality groupoid to an orbifold groupoid, whose nodes
are associated to 3d TFTs equipped with a specific topological boundary condition and
whose morphisms are isomorphisms of 3d TFTs which identify the corresponding boundary
conditions.

The action of these orbifold transformations on the partition functions of the 2d theories
is particularly simple in an anyon basis: they simply permute the element of the basis in
the same way as they permute the anyons.

Notice that most MTC’s do not admit topological boundary conditions. Even if they
do, they may not admit boundary conditions with a group-like fusion category of boundary
anyons, or may admit only one. DW theories for Abelian gauge groups, though, have large
collections of such boundary conditions and are nodes of a rich duality groupoid, which we
will momentarily describe.

2.2.4 Duality Interfaces

The notion of topological interface is a natural extension of the notion of topological
boundary condition. Indeed, by the folding trick, interfaces between theories A and B are
precisely boundary conditions A× B̄, where B̄ is the mirror image of B. See Figure 2.3.

Every theory has a trivial “identity” interface. If we have a duality between DW[G]µ3

and DW[G′]µ′
3
, we can start from the identity interface in DW[G]µ3 and only apply the

duality transformation to the side on the right of the interface. The result is a “duality
interface” between between DW[G]µ3 and DW[G′]µ′

3
, which can be used to implement the

duality on other objects, such as boundary conditions [41, 42].
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B[T ] Iν2

A Gauge Theory Â Gauge Theory

B[[T/ν2A]]

Â Gauge Theory
Collide Iν2

Figure 2.4: Coupling to the 3d bulk literally decouples a theory T from its topological
manipulations. If T corresponds to some boundary condition B[T ] (in blue), and some
topological manipulation corresponds to the interface Iν2 (in yellow), we may produce the
theory with the topological manipulation included (in green), by colliding the boundary
B[T ] with Iν2 .

A useful perspective is that the orbifold operation T 7→ [T/ν2A] lifts to a simple op-
eration on boundary conditions: the boundary condition B[[T/ν2A]] is obtained by the
collision of B[T ] with the interface Iν2 . The composition of orbifold operations then lifts
to the composition of interfaces Iν2 as depicted in Figure 2.4.7

On general grounds, such an interface must be labelled by some subgroup H of G×G′,
as well as a trivialization ν2 of the pull-back of µ3 − µ′

3 to H. Recovering this data from
the original duality map is not an obvious operation. It must be such that the interface
boundary state

|NH,ν2| =
∑
α,α′

e
∫
M ν2(α,α′) |α⟩ ⟨α′| , (2.4)

agrees with the permutation of anyons in the anyon basis. We will give some explicit
examples later on.

2.2.5 Specialization to Pure Abelian Gauge Theory

Consider now the case of an Abelian gauge group with no anomaly.

The group of anyons is the quantum double A × Â, and the topological spin of an
anyon of charges (a, â) is simply the evaluation of the character χâ(a). So we expect
that the group of orbifold-like topological operations relating theories equipped with an A

7A basic introduction on how to view and manipulate interfaces of the 3d gauge theories found in this
chapter is presented in Appendix A.1.
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symmetry should be the subgroup of Aut(A × Â) preserving the character pairing χ·(·),
which is simply O(A⊕ Â, χ) [43, 44, 45].

In [44] the authors connect the algebraic language of lines in the 3d Dijkgraaf-Witten
theory to the gauge-theoretic description. In particular, for a 3d Abelian DW theory with
µ3 = 0, they show that O(A⊕ Â, χ) is generated by combinations of:

1. Universal Kinematical Symmetries. Symmetries of the stack of A-bundles, Bun(A),
which can be identified with Aut(A).

2. Universal Dynamical Symmetries. Symmetries of the topological action for the
Dijkgraaf-Witten theory µ3, which are elements of H2(A,U(1)). This is the group
of 1-gerbes on the stack of A-bundles. Recall a connection on a 1-gerbe is just a
2-form/B-field.

3. Electric-Magnetic Dualities. Symmetries interchanging elements of A and Â at the
level of anyons.

Together, the universal kinematical and dynamical symmetries have the structureH2(A,U(1))⋊
Aut(A), which we recognize as the group of autoequivalences of the spherical fusion cate-
gory VecA.

Moreover, we can identify these 3d symmetries with operations acting on our 2d bound-
ary theory. The universal kinematical symmetries come from the automorphisms of A. The
universal dynamical symmetries are clearly discrete torsion terms and/or stacking with a
2d SPT phase, this 2d fact was noticed in-terms of a Kalb-Ramond field in the original
work by Vafa [46] and formalized by Sharpe [47]. The symmetry group of the 2d theory
is just the product of the 3d kinematical and dynamical symmetry groups. Finally, the
electric-magnetic dualities are not symmetries of the 2d theory, but, rather, correspond to
orbifolding the 2d theory.

The authors of [44] also give explicit formulas of how these generating automorphisms
of the MTC data turn into (H, ν2) data from this 3d formalism. In the following examples
we obtain the same results as the authors (in the Zp×Zp case in particular) by starting
with a 2d theory.

2.2.6 Examples

In the following examples we will answer the question: how many new theories can we
produce by successive orbifolds? We will warm up by starting from the traditional 2d
orbifold point of view for a theory with A = Z2 symmetry, and then upgrade to slightly
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more sophisticated examples with A = Zp×Zp symmetry (p prime). Keeping in mind
that the orbifold story will also be relevant for the fermionic section where a clear and
organized study of orbifolds has become fruitful in the study of 2d dualities and CFT. In
our final example we will investigate theories with an anomaly in the study of orbifolds of
Z4 symmetric theories.

In each section we will interpret the results in the language of 3d interfaces. We will
find that the interesting interfaces are given in the basis of connections by different cup
products. In particular, SPT phases will be implemented by cup products on one side of
an interface, and orbifolds by cup products across interfaces. As we will see, this similarity
arises because of the folding trick. Lastly, our final example provides a formula for orbifold-
interfaces for arbitrary non-anomalous Abelian groups.

Throughout, we illustrate our formulae explicitly by putting the 2d theory on M = T 2,
although this specialization is not necessary. Appropriate generalizations can be made by
replacing the two torus cycles with, say, 2g cycles for a genus M orientable surface.8

Example: Theories with Z2 Symmetry

Consider a 2d theory T with non-anomalous A = Z2 symmetry on a genus g surface M ,
with partition function ZT . Coupling our Z2 symmetry to a background A connection
allows us to identify the different twisted partition functions, labelled by the holonomies
around the different cycles of M , i.e. ZT [α] where α has 2g-components with αi ∈ {0, 1}.

To gauge the A symmetry, we simply sum over all background flat connections, pro-
ducing

Z[T/A] =
1

|A|
∑
α

ZT [α] , (2.5)

where α ∈ H1(M,A). Furthermore, we know that Z[T/A] has a quantum Â symmetry
arising from the action of the Wilson lines for the A gauge fields. Thus, in the same way
that we identify ZT ∼ ZT [α = 0], we have that Z[T/A] is the untwisted sector for our new

Â symmetry, and so we can write more generally

Z[T/A][β] =
1

|A|
∑
α

ei(β,α)ZT [α] , (2.6)

8Some care is needed to keep track of local curvature counterterms. As commented in Footnote 6, a
good normalization for Abelian gauge theories is a factor of |A|−1

(the dimension of the unbroken gauge
group). Because of this, gauging does not always “square to the identity” because manifolds of different

genus are not flat. However, if we renormalize by the curvature counterterm |A|1−g
on a genus g surface,

then we will arrive at an operation that squares to the identity by collecting a total factor of |A|χ(M)
.
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Gauge A

Figure 2.5: For any theory with non-anomalous finite Abelian A symmetry, we obtain a
new theory with Â ∼= A symmetry by gauging all of A. These correspond to the Dirichlet
and “entirely-Neumann” boundary conditions for the associated DW[A]. In the case of
a non-anomalous A = Zp (p prime) this is the complete orbifold groupoid (suppressing
multi-edges and edges from a vertex to itself), as there are only two bosonic irreducible
topological boundary conditions.

where β ∈ H1(M, Â), and (β, α) is the intersection pairing [12].

Invertibility is a straightforward application of the formula twice:

Z[[T/A]/A][γ] =
1

|A|2
∑
β

ei(γ,β)
∑
α

ei(β,α)ZT [α] = |A|2g−2ZT [γ] . (2.7)

Orbifolding twice gives back the original theory, up to a curvature counterterm.

The simplest examples of theories related by orbifold are the trivial theory, with ZT [α] =
1, and a symmetry-breaking phase, with |A| trivial vacua permuted by the A action, with
ZT [α] = |A|δα,0.

For concreteness, using the basis of flat connections around the cycles of a torus, we
have

Z[T/A][β1, β2] =
1

2

∑
α1,α2

(−1)α1β2−α2β1ZT [α1, α2] , (2.8)

where αi and βi label the holonomies.

At this point, there are no more topological manipulations left for our Z2 theory. There
are no nontrivial automorphisms of Z2, and since H2(Z2, U(1)) = 0 there is no discrete
torsion/SPT phase to add to the action. Indeed, the only topological manipulation is to
orbifold it and produce another Z2 theory.

Note the fact that gauging produces an emergent Ẑ2 symmetric theory and “squares to
the identity” is just capturing Kramers-Wannier duality, see [48, 49, 50, 51, 52] for recent
expositions and applications. From here, we can draw a graph of the orbifold groupoid:
theories correspond to vertices, and two theories are connected by an edge if they are
related by orbifold as in Figure 2.5.

As previously mentioned, we can study the interface that implements the gauging op-
eration in our 3d theory. This is clearly just our intersection pairing from above

Igauge[α; β] = (−1)
∫
α∪β . (2.9)
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This interface collides with the boundary theory described by ZT [α] and produces the
boundary theory described by Z[T/A][β].

If our boundary manifold is just the torus we can be more concrete and just write

Igauge[α1, α2; β1, β2] = (−1)α1β2−α2β1 . (2.10)

Thus far, we’ve been using partition functions of the 2d theory, which can be identified
with components of the boundary state for the 3d theory in a basis labelled by A-holonomy
around a cycle, i.e. the basis of A connections. An alternative basis to work in when dealing
with 3d TFTs is a basis of states labelled by anyons.9

The change of basis is a discrete Fourier transform

f̂ [χ] =
1

|A|
∑
a∈A

χ(a)f [a] , (2.11)

to be applied to the holonomy label for one of the cycles of the torus.

We can thus define

Ẑ[α1, α̂2] :=
1

2

∑
x

(−1)xα̂2Z[α1, x] , (2.12)

where the first index corresponds to magnetic/vortex charge describing the discrete A flux,
and the second index to the electric charge (the electric charge is often labelled as “even”
or “odd” in the Z2 case).

In the A = Z2 case we have the anyons of the 3d DW[Z2] gauge theory

Z1 = Ẑ[0, 0̂] , Ze = Ẑ[0, 1̂] , Zm = Ẑ[1, 0̂] , Zf = Ẑ[1, 1̂] , (2.13)

which are gauge theoretic realizations of the anyons {1, e,m, f} for the toric code with
trivial associator.

In this basis, our interface is simply

Îgauge[α1, α̂2; β1, β̂2] = δα̂2β1δβ̂2α1
. (2.14)

This is immediately familiar, it maps Z1 7→ Z1 and Zf 7→ Zf , but swaps Ze and Zm.
We see the famous statement that the Kramers-Wannier duality in 2d implements the 3d
electric-magnetic duality and vice-versa.

9These are built by a solid torus geometry with an anyon running in the middle. The definition requires
a choice of cycle in the torus
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Moreover, when we claimed we had nothing (topological and bosonic) left to do to our
2d Z2-symmetric theory, we now have proof, because we have connected it to symmetries
of a Dijkgraaf-Witten theory. That is, we know that O(Z2⊕Ẑ2, χ) = Z2, so that we only
have two distinct irreducible bosonic topological boundary conditions for DW[Z2]. These
correspond to “electric” and “magnetic” Dirichlet boundary conditions (if we identify the
bulk Wilson line as being the “electric” line or “magnetic” line respectively).10

The duality groupoid in this case would just include a single vertex, DW[Z2], with a
line connecting it to itself because Hom(DW[Z2],DW[Z2]) = Z2.

The case for arbitrary Zp (p prime) is very similar. As before, we can either orbifold
all of Zp or not, and H2(Zp, U(1)) = 0. The automorphism group of Zp is Zp−1, so
the orbifold groupoid still consists entirely of two vertices joined by a line for the two
topological boundary conditions (we suppress lines from a vertex to itself, or multiple
lines from a vertex to another). The duality groupoid is still just a single vertex. From
the orbifold groupoid it’s not hard to see that the Z2 orbifolding operation and Zp−1 of
automorphisms mix non-trivially, and that the symmetry group of DW[Zp] is a dihedral
group, i.e.

Hom(DW[Zp],DW[Zp]) = O(1, 1;Fp) ∼= D2(p−1) . (2.15)

Here O(p, q;Fp) denotes the split orthogonal group over the finite field of order p and
D2(p−1) denotes the dihedral group of order 2(p− 1).

Example: Gauging Zp in Zp×Zp and Discrete Torsion

We can now enhance our discussion to an example with discrete torsion. From the original
2d perspective, a choice of discrete torsion is a consistent choice of U(1) weights ϵν2(α) for
the twisted sectors

Z[T/ν2A][β] =
1

|A|
∑
α

ei(β,α)ϵν2(α)ZT [α] . (2.16)

It is known that a choice of discrete torsion is specified by an element ν2 ∈ H2(G,U(1))
[46, 47, 55]. In particular, on the torus with flux given by (α1, α2), we have ϵν2(α1, α2) =
ν2(α1, α2)/ν2(α2, α1). As previously mentioned, we can interpret ϵν2(α) ∼ eiSν2 [α] as a
partition function for an SPT phase, so changing discrete torsion amounts to stacking

10In the lattice formulation of the toric code, these topological boundary conditions manifest beautifully
as “smooth” and “rough” boundaries of the lattice [53, 54], where it becomes pictorially clear that one
type of anyon (say, living on plaquettes) is absorbed by the smooth boundary, and vice-versa for the dual.
Superpositions of these topological boundary conditions correspond to a direct sum/reducible boundary
condition.
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our original theory with a 2d SPT phase. Intuitively, it is a consistent way to insert
phase factors at the trivalent junctions of two (meeting and merging) topological symmetry
defects.

The canonical example of discrete torsion is in a theory with non-anomalous A =
Zp×Zp symmetry, then H2(Zp×Zp, U(1)) = Zp. In this case, our 2d manipulations are
(generated by) the automorphisms of Zp×Zp, stacking with an SPT phase, and gauging
subgroups of A. From here we take p to be a prime for simplicity, extensions to non-prime
order cyclic groups are investigated later.

The automorphisms of Zp×Zp form the group GL(2;Fp). For any matrix

M =

(
a b
c d

)
∈ GL(2;Fp) , (2.17)

we can define the associated action πM on (torus) partition functions

πM : Z[αa, αb, βa, βb] 7→ Z[aαa + bβa, aαb + bβb, cαa + dβa, cαb + dβb] . (2.18)

Now, for any prime p, GL(2;Fp) is always generated by two elements. For p = 2 we can
take the generators to be

M1 =

(
1 1
0 1

)
, M2 =

(
1 0
1 1

)
. (2.19)

For p ̸= 2 we have to use the slightly more complicated

M1 =

(
ξ 0
0 1

)
, M2 =

(
−1 1
−1 0

)
, (2.20)

where ξ is any generator for (Fp)
× [56]. We will write π1 and π2 for πM1 and πM2 respectively.

Working on the torus, our topological manipulations include the automorphisms of
Zp×Zp, generated by π1 and π2, changes of discrete torsion (1 ≤ ℓ ≤ p)

Sℓ : Z[αa, αb, βa, βb] 7→ ωℓ(αaβb−αbβa)
p Z[αa, αb, βa, βb] , (2.21)

and gauging the “second” Zp as

O2 : Z[αa, αb, βa, βb] 7→
1

p

∑
δ

ωδaβb−δbβa
p Z[αa, αb, δa, δb] . (2.22)
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Figure 2.6: On the left is the orbifold groupoid for a theory with Z2×Z2 symmetry. On
the right is the orbifold groupoid for a theory with Z3×Z3. Edges correspond to gauging
a Zp subgroup. The number of vertices in a graph is 2(p + 1) and the orbifold groupoid,
with just Zp gauging marked, is the complete bipartite graph Kp+1,p+1.

In this notation, an element of Z2
p is given by a pair (αi, βi) around cycle-i, and ωp is the

principal p-th root of unity. Further note that gauging “one of the other” Zp subgroups of
A, can be done by applying enough of the automorphisms π1 and π2, and then O2.

Of course, we can write these operations algebraically and avoid these torus descriptions,
or write them on an arbitrary genus g surface by use of the cup product. For example, we

could just write the SPT phase factor as ω
ℓ
∫
α∪β

p .

We can draw our orbifold groupoid as before. Two theories live at the same vertex if
they are related by any element of the group generated by the non-orbifolding operations

⟨S1, π1, π2⟩ ∼= Zp⋊GL(2;Fp) . (2.23)

We will denote theories that are related by gauging a Zp subgroup by connecting them by
a line, see Figure 2.6 for p = 2, 3 examples. See also Example 4.3 of [57] for a discussion
in terms of VOAs.

Note from the preceding discussions of 3d gauge theories that if we were also to include
lines denoting gauging the entire Zp×Zp, the graph would be totally connected rather
than just complete bipartite. More generally, for any theory with any symmetry group, if
we were to include lines for all types of orbifolds, then the graph must be totally connected
by virtue of composition of the orbifold interfaces.

Additionally, from both the mathematical theorems and explicitly checking 2d partition
functions, we know that the group of topological manipulations is

⟨S1, π1, π2,O2⟩ ∼= O(Z4
p, χ) = O(2, 2;Fp) . (2.24)
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As before, we can interpret each of our 2d manipulations as corresponding to an interface
of the 3d theory, implementing one of the symmetries of the associated 3d Zp×Zp gauge
theory:

Iπ1 [γ, δ;α, β] = p2

{
δγ,α+βδδ,β if p = 2

δγ,ξαδδ,β if p ̸= 2
(2.25)

Iπ2 [γ, δ;α, β] = p2

{
δγ,αδδ,β+α if p = 2

δγ,β−αδδ,−α if p ̸= 2
(2.26)

ISℓ
[γ, δ;α, β] = p2 δγ,αδδ,β ω

ℓ
∫
α∪β

p (2.27)

IO2 [γ, δ;α, β] = p δγ,α ω
∫
δ∪β

p . (2.28)

As written, the γ and δ are short for “one of the Zp connections” in a Z2
p theory on one

side of the interface, i.e. on a torus γ ∼ (γa, γb); and similarly for α and β on the other
side of the interface.

A Fourier transform allows us to understand the results in terms of anyons. The π1
and π2 are trivial, and the gauging is again the electric-magnetic duality. Of particular
interest is an interface (say on the torus) corresponding to adding an SPT phase,

ÎSℓ
[γ1, γ̂2, δ1, δ̂2;α1, α̂2, β1, β̂2] = p2δα1γ1δβ1γ1δα̂2,−γ̂2+ℓδ1δβ̂2,−δ̂2−ℓγ1

. (2.29)

Interpreting this, the magnetic lines pass through the interface unchanged, but the electric
lines get changed to some new electric lines based on the magnetic flux value. This matches
the physical result in Section 3.2 of [44] after sufficient changes of notation and conventions.

In this case the duality groupoid would still contain just a single node DW[Z2
p], which

would have |O(2, 2;Fp)| lines to itself.

More generally, we can study Zk
p theories. In this case, the group of all (irreducible

bosonic) topological operations on the 2d bosonic theory would be classified by the group

TB := O(k, k;Fp) . (2.30)

The group of operations which only include automorphisms of Zk
p and stacking with SPT

phases is

TB,0 := H2(Zk
p, U(1))⋊ Aut(Zk

p) = Z(
k
2)

2 ⋊GL(k;Fp) . (2.31)

To form the orbifold groupoid for Zk
p, we identify vertices of the groupoid with (right)

cosets of TB/TB,0. Given two vertices TB,0g1 and TB,0g2 they are connected by an edge iff

(O1TB,0g1) ∩ (TB,0g2) ̸= ∅ . (2.32)
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We could also include gauging of larger subgroups (i.e. Zr
p 1 < r ≤ k) if we were so inclined.

Thus the number of irreducible bosonic topological boundary conditions is simply

{# Boundary Conditions} = |O(k, k;Fp)|∣∣H2(Zk
p, U(1))

∣∣|GL(2;Fp)|
. (2.33)

Such facts about group orders are well recorded by mathematicians (see e.g. [58]) and

|O(k, k;Fp)| = 2pk(k−1)(pk − 1)
k−1∏
i=1

(p2i − 1) , (2.34)

|GL(k;Fp)| = (pk − 1)
k−1∏
i=1

(pk − pi) . (2.35)

Plugging this into our formula above tells us that11

{# Boundary Conditions} = 2
k−1∏
i=1

(pi + 1) = (−1; p)k . (2.36)

To wrap up these last two examples, we note that by the folding trick, we can go
back and forth between our topological interfaces between two Zp gauge theories and
the irreducible boundary conditions for a Z2

p gauge theory. Moreover, this explains why
stacking with a 2d SPT phase and orbifolding are both given by a cup product.

For example, if we consider an interface between two non-anomalous Z3 theories, then
by folding it must be a boundary condition for a Z3×Z3 gauge theory. We can enumerate
boundary conditions for the folded theory, because they are labelled by (H, ν2) data, and
find that we get 8 agreeing with our previous discussions:

1. H = {0}. In this case H2(H,U(1)) = 0, and there is only one embedding of H into
Z2

3. Hence there is only one boundary condition of this type. In the unfolded setup
this corresponds to the interface consisting of purely Dirichlet boundary conditions
on both sides of the interface.

2. H = Z3. In this case there are four distinct embeddings ofH into Z2
3, butH

2(H,U(1)) =
0 still. It can embed as (α, 0), (0, α), (α, α), or (α, 2α). The first two boundary con-
ditions unfold to a choice of Neumann boundary conditions on one side, and Dirichlet
boundary conditions on the other. The second pair correspond to interfaces between
two bulk Z3 gauge theories with the same connection, possibly up to some automor-
phism of Z3.

11Here (a; q)k denotes the q-Pochhammer Symbol.
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3. H = Z2
3. In this case, there is only one choice of embedding: (α, β); butH2(H,U(1)) =

Z3. Hence we have 3 choices of topological boundary condition, two of which cor-
respond to stacking with some non-trivial SPT phase, which is given by the cup
product of the connections in the product theory. Of course, when we unfold, we
have two theories with connections α and β on their respective sides of the interface,
but possibly coupled by a cup product across the interface.

Again we have 2(p+1) boundary conditions here in the Z2
p gauge theory, but only listed

2(p − 1) interfaces in the previous Zp gauge theory example. This is because the folding
process produces some interfaces which are not invertible. In particular we notice that the
(0, 0), (α, 0), (0, α), and (α, β) (with no torsion), describe boundary conditions which are
“completely separable.” That is to say, the fields on one side don’t couple to the fields on
the other and the bulk slabs can be moved away from one another.

Example: Gauging Z2 in a Non-Anomalous Z4

Consider a 2d theory T with non-anomalous G = Z4 symmetry, and suppose we want to
gauge the H = Z2 subgroup. Z4 is a non-trivial central-extension of K = Zu

2 by H

0→ Z2
ι→ Z4

p→ Zu
2 → 0 . (2.37)

with ια = 2α and pa = amod 2. We write u (for “ungauged”) to help distinguish the Z2s.

In general, central extensions of K by H are characterized by cohomology classes κ ∈
H2(K,H), the trivial class corresponds to the “direct product extension” H ×K. In our
case, we have H2(Zu

2 ,Z2) ∼= Z2, so Z4 = Z2⋊κ Zu
2 with non-trivial κ.

Gauging H leaves us with a theory with G′ = K × Ĥ symmetry, the K corresponding
to the remaining ungauged symmetry, and the Ĥ corresponding to the new quantum
symmetry from the gauged H.

As explained in Appendix B of [59], and very explicitly in [25],12 the gauging of the
Z2 subgroup of Z4 turns the non-triviality of κ into an anomaly in the resulting theory.
A beautifully explicit and physical way to see the anomaly µ3 ∈ H3(G′, U(1)) from κ is
illustrated in Section 2.2 of [25].

In our case, a representative for the class corresponding to our group extension is
κ(αu, βu) = αuβu. After gauging, the anomaly µ3 ∈ H3(G′, U(1)) is given by

µ3((α
u, α̂), (βu, β̂), (γu, γ̂)) = (−1)γ̂αuβu

. (2.38)

12See also [60, 61].
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This corresponds to the “purely mixed anomaly” in H3(Z2×Z2, U(1)). Mixed, in that
it is only non-vanishing on the “diagonal” Z2 subgroup of G′. Pure in that it is not a
gauge-gravity anomaly.13

We want to know what interface implements the gauging Z4 7→ Zu
2 ×Ẑ2. We will obtain

it in two distinct ways to illustrate the power of the folding trick, and to verify it against
our 2d intuition.

First, the easy way: Consider the folded theory with gauge group Z4×Zu
2 ×Ẑ2, the

topological action is given by the lift of µ3 ∈ H3(G′, U(1)) to µ̃3 ∈ H3(Z4×G′, U(1))
which is trivial on the Z4 factor. The subgroup labelling our interface must be Zd

4×Ẑ2

embedding in Z4×Zu
2 ×Ẑ2 through π(a, α̂) = (a, amod 2, α̂). Notice that this subgroup

reads in a physically meaningful way: the Zu
2 connection corresponds to the proper value of

the Z4 connection that should pass through the orbifold interface, while the Ẑ2 connection
is not dependent on the Z4 data, but will be coupled in some other way. Here, a Roman
letter is used for the Z4 connections, while the Z2 connections are denoted by Greek letters
with appropriate adornments to clarify which Z2 they represent.

On this subgroup, the topological action is given by the pullback

π∗µ̃3((a, α̂), (b, β̂), (c, γ̂)) = (−1)γ̂(amod 2)(bmod 2) . (2.39)

Thus the orbifold interface will be specified by a 2-cochain ν2 on Zd
4×Ẑ2 satisfying

δν2 = π∗µ̃3 . (2.40)

It’s not hard to find such a ν2. If instead we were looking for a ν ′2 such that δν ′2 =
1, then the obvious choice would be the generator for H2(Zd

4×Ẑ2, U(1)) = Z2 given by

ν ′2((a, α̂), (b, β̂)) = (−1)(amod 2)β̂. If we want to be able to produce the anomalous phase
factors we can see that

ν2((a, α̂), (b, β̂)) = ω
(amod 2)β̂
4 , (2.41)

will do. That is

δν2((a, α̂), (b, β̂), (c, γ̂)) =
ν2((b, β̂), (c, γ̂)) ν2((a, α̂), (b+ c, α̂ + γ̂))

ν2((a+ b, α̂ + β̂), (c, γ̂)) ν2((a, α̂), (b, β̂))
(2.42)

= ω
γ̂((amod 2)+(bmod2)−(a+bmod2))
4 (2.43)

= π∗µ̃3 . (2.44)

13In [62], the author presents a basis of 3-cocycles classes for H3(Zk
n, U(1)) = Z(

k
1)+(

k
2)+(

k
3)

n , which is also

used in the literature (e.g. [63]). Our anomaly corresponds to what these authors would call ω
(12)
II . One

can check that, (−1)γ̂αuβu

= ω
γ̂(αu+βu−[αu+βu])
4 .

43



We now have our finished product, the orbifold interface must be

Iν2 [a; amod 2, α̂] = 2ω
∫
(amod 2)∪α̂

4 . (2.45)

We can now compare this to the answer we would produce if we orbifolded by summing
over the connections for the subgroup.

Naively, to get the partition function for the gauged theory, we want to sum over the
H

ι→ G subgroup. The twisted partition function for the gauged theory must be

Z[T/Z2][α
u, α̂] =

1

2

∑
a∈H1(H,M)

ω
∫
2a∪α̂

4 ZT [2a+ αu] , (2.46)

=
1

4

∑
a∈H1(G,M)

Z[a]

2
∑

x∈H1(H,M)

ω
∫
2x∪α̂

4 δa,2x+αu

 . (2.47)

The interface interpolating from a Z4 to a Zu
2 ×Ẑ2 theory is simply

I[a;αu, α̂] = 2
∑

x∈H1(H,M)

ω
∫
2x∪α̂

4 δa,2x+αu . (2.48)

Happily, when αu is precisely amod 2, then this interface is just the one we found before

I[a; amod 2, α̂] = 2ω
∫
(amod 2)∪α̂

4 . (2.49)

We can depict the orbifold groupoid from our Z4 theory as in Figure 2.7.

As we can see, we have a more general result than we set out for. This interface gives
us the ability to gauge any cyclic subgroup of any non-anomalous cyclic group (when 2
is replaced by |H| and mod 2 is replaced by mod |K|). Moreover, since every Abelian
group can be written as a product of cyclic groups, by taking appropriate products of the
interface above and delta-functions we can gauge any non-anomalous Abelian subgroup of
any Abelian group.

We verify that these interfaces reduce appropriately when we choose different subgroups
H of G. For example, when H = {0} then K = G and we have

I[a;αu, α̂] = |G|ω
∫
αu∪α̂

|G| = |G| , (2.50)

which, appropriately, does nothing when we insert it. And similarly, when H = G, then

I[a;αu, α̂] = ω
∫
a∪α̂

|G| . (2.51)
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Z4 Ẑ4

(Zu
2 ×Ẑ2)µ3

Gauge Z4

Gauge Z2 Gauge Ẑ2

Figure 2.7: Webs of successive gaugings for a Z4 symmetry form the appropriate orbifold
groupoid above. Gauging the Z4 symmetry of a Z4 theory produces a theory with a Ẑ4

symmetry. Gauging the Z2 subgroup of either produces an anomalous theory.

The orbifold interface must be invertible. It’s not hard to verify the inverse interface
to I is

J [αu, α̂; a] = |K|ω
∫
α̂∪(a−amod |K|)

|G| δαu,amod |K| , (2.52)

up to a local curvature counterterm. Which reduces on the equivalent Zd
4×Ẑ2 subspace to

the cup

J [amod |K|, α̂; a] = |K|ω
∫
α̂∪(a−amod |K|)

|G| . (2.53)

In Figure 2.7 we can get to the Zu
2 ×Ẑ2 node in two different ways. Either by gauging

the Z2 ≤ Z4, or by gauging the Z4 to Ẑ4 and then the Ẑ2 subgroup. The resulting partition
functions are not the same. This makes sense because there are “two theories living at
a Z4 node” and four at the Z2

2 node. The interface that interpolates between these two
theories is obtained by commuting around the diagram

K[αu, β̂; γ̂u, δ] =
∑
b,ĉ

J [αu, β̂; b]IZ4 [b; ĉ]I[ĉ; γ̂
u, δ] ∝ δβ̂,γ̂uδαu,δω

∫
δ∪γ̂u

4 , (2.54)

where the proportionality constant is, again, a local curvature counterterm on g ̸= 1. We

see the corresponding 2-cochain, ν2,K = ωαuβ̂
4 , satisfies δν2,K = ω

γ̂(αu+βu−[αu+βu])
4 , which is

the pullback of the anomaly µ̃3 that we expect.

We see from this analysis that the Z4 DW theory has (unitary) symmetry group Z2
2

(see Table 2. of [64] for a different approach to this result), corresponding to “exchanging
the 1 and 3” in Z4 and gauging, i.e.

Hom(DW[Z4],DW[Z4]) = Z2
2 . (2.55)
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DW[Z4] DW[Z2
2]µ3

Figure 2.8: The different presentations of the Z4 Dijkgraaf-Witten theory (aka twisted
Z2

2 Dijkgraaf-Witten theory) give the duality groupoid for Z4 (in contradistinction to the
orbifold groupoid). The theories DW[Z4] and DW[Z2

2]µ3 (denoted by vertices) are dual.
There is a Z2

2 of isomorphisms/dualities between them (collapsed into a single edge). The
groups of automorphisms/symmetries of these theories are both Z2

2 (and edges from a
vertex to itself have been suppressed).

Moreover, the existence of invertible interface(s) between DW[Z4] and DW[Z2
2]µ3 theo-

ries, tells us that
Hom(DW[Z4],DW[Z2

2]µ3) = Z2
2 , (2.56)

and so there are a Z2
2 of symmetries for the DW[Z2

2]µ3 theory

Hom(DW[Z2
2]µ3 ,DW[Z2

2]µ3) = Z2
2 . (2.57)

The symmetries of the DW[Z2
2]µ3 theory are generated by the automorphism of Z2

2 that
interchanges the two off-diagonal Z2s, and the Z2 of freedom in the toplogical action. We
can draw the duality groupoid for the bulk theories as in Figure 2.8.

2.3 Fermionic Orbifolds and Spin-Symmetries of 3d

Gauge Theories

In this section we focus on fermionic QFTs. We will assume unitarity, so that the Grass-
mann parity of a local operator is tied to its spin. That means we are working with QFTs
which can include local operators of half-integral spin.

At first sight, that requires one to work with manifolds which are equipped with a
spin structure. The correct statement is a bit more nuanced. Every fermionic theory
has a “Grassmann parity” symmetry Zf

2 usually denoted as (−1)F . This symmetry must
commute with other symmetries, but the full symmetry group Gf acting on local operators
may be a central extension of the form

0→ Zf
2 → Gf → G→ 0 . (2.58)

Unitarity requires the QFT to couple to “spin-Gf” connections, i.e. connections whose
curvature equals the image of the second Stiefel-Whitney class w2 in Gf . When Gf =
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Zf
2 × G, that is the same as a choice of a spin structure η and of a G connection α. The

details of the extension affect strongly the possible anomalies and SPT phases for the
system. We will refer to such QFTs as spin-QFTs.

Another crucial point is that the world of spin-QFTs includes several interesting invert-
ible theories: besides U(1) phases in d = 0 one has Grassmann-odd one-dimensional vector
spaces in d = 1 and the Majorana chain/Arf-invariant theory in d = 2, which assigns parti-
tion function (−1)Arf[η] to a manifold depending on whether the spin structure η is even or
odd [65, 66]. For some recent applications of the Arf-invariant see [49, 50, 67, 2, 68, 69, 70].

As a consequence, there is a rich collection of possible ’t Hooft anomalies and discrete
torsion for a 2d spin theory Tf with symmetry group Gf . When Gf = Zf

2 × G, they are
classified by the “supercohomology” classes sH3(G) and sH2(G) respectively. A superco-
homology 3-cocycle α consists of three pieces of data: a “Majorana layer” α1, a “Gu-Wen
layer” α2, and a regular bosonic ’t Hooft anomaly α3.

The most dramatic ’t Hooft anomaly a 2d spin theory can have occurs when some
symmetry elements fail to map the theory T back to itself, but instead maps it to T ×Arf.
Such an anomaly is characterized by a homomorphism G→ Z2 describing which elements
of G have this problem. This is the Majorana layer of the ’t Hooft anomaly, and is specified
by a Z2-valued 1-cocycle, α1.

If the Majorana layer is trivial(ized), the next potential anomaly tells us that the group
G may be extended by a Z2 generator which acts as ±1 on states on a circle, depending
on the circle’s spin structure being even or odd. This is the Gu-Wen layer of the ’t Hooft
anomaly, specified by a Z2-valued 2-cocycle, α2. If the Majorana layer is non-trivial, the
layer is specified by a Z2-valued 2-cochain, α2, such that

δα2 = Sq2α1 , (2.59)

where Sq2 denotes the Steenrod square. In fact, in such a low dimensions, we can always
shift α1 by a coboundary so that Sq2 vanishes, so α2 can be assumed to be a cocycle.

If the Gu-Wen layer is trivial(ized), then we may still be left with a standard phase
anomaly α3 ∈ H3(G,U(1)). If the Majorana layer is trivial and the Gu-Wen layer is
non-trivial, we have

δα3 = (−1)Sq2α2 . (2.60)

A simple way to think about the supercohomology class α encoding the 2d ’t Hooft
anomaly is that it defines an invertible 3d topological action which depends both on a G
flat connection and a spin structure (or a “spin-Gf” flat connection if Gf is not split).
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Similarly, the discrete torsion classes in sH2(G) can be thought of as invertible topological
2d actions.

The notion of “orbifold” should also be refined a bit. If we have a factorization Gf =

Zf
2 × G, or at least Gf = G′

f × G, we can gauge any non-anomalous subgroup H of G by
coupling to a dynamical H connection. The trivialization ν̂2 of the pull-back of µ̂3 to H is
still “super,” so the available choices for such a “fermionic orbifold” are still different from
those available in the bosonic setup. We can even apply a fermionic orbifold operation to
a bosonic theory to produce a new fermionic theory.

If we want to gauge a more general subgroup Hf of Gf , though, we will have to employ
dynamical spin-Hf connections. Effectively, we will be “gauging fermionic parity,” or GSO-
projecting the theory. We should call such an operation a “GSO orbifold.” The resulting
new theory may be bosonic or fermionic, depending on the type of topological 2d action
we employ.

These subtleties carry over to the 3d setups we employ to study orbifolds. When we
study fermionic orbifolds for Gf = Zf

2×G, we may choose to employ a simple generalization
of 3d DW theory fDW[G]µ̂3 of 3d DW theory which employs the supercohomology class µ̂3

as a topological action for a G flat connection and depends on a choice of spin structure in
3d. Such a choice will keep the whole setup fermionic, i.e. the Grassmann parity symmetry
Zf

2 will act everywhere while G only acts at the Dirichlet boundary.

This is an intuitive setup, but it requires one to modify the standard MTC tools to
allow for 3d spin-TFTs. The mathematical machinery to do so is a bit under-developed.

An alternative choice, which is necessary anyway to discuss GSO orbifolds or general
Gf , is to push all symmetries, including Zf

2 , all the way to the topological boundary. This
can be done by employing a 3d theory of dynamical spin-Gf connections with action µ̂3.
We can denote that as sDW[Gf ]µ̂3 . Crucially, this is a standard bosonic 3d TFT, described
by some standard MTC.14 It simply has the property that some of the Wilson lines will
have topological spin −1 instead of 1, depending on the action of Zf

2 on the corresponding
Gf irrep.

The Dirichlet boundary condition for sDW[Gf ]µ̂3 will be “fermionic,” requiring one to
specify the boundary value of the dynamical spin-Gf connection.

Fermionic topological boundary conditions for bosonic 3d TFTs are rather interesting
objects. The simplest example occurs already in the toric code, aka topological Z2 gauge

14It would be interesting to identify such MTC precisely in terms of the data of µ̂3. This is an instance of
the more general problem of reconstructing an MTC from the data of a fermionic boundary condition, in-
verting the construction of [71]. Presumably this requires some variant of the Drinfeld center construction.
We leave details for a future investigation.
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theory. There are two non-trivial anyons e, m of topological spin +1 and one anyon f of
topological spin −1. There are two irreducible bosonic boundary conditions Be, Bm where
either e or m can end (see Section 2.2.6), but there is also a fermionic boundary condition
Bf where f can end. Secretly, the toric code is isomorphic to a topological Zf

2 gauge theory,
such that f is the Wilson line and Bf the Dirichlet boundary.15 We will come back to this
momentarily.

Once we have translated our 2d theory Tf to a bosonic boundary condition B[Tf ] for a
bosonic sDW[Gf ]µ̂3 gauge theory equipped with a fermionic topological Dirichlet boundary
condition, we can study all types of orbifolds by varying the choice of topological boundary
condition. Depending on the latter being bosonic or fermionic, the output of the orbifolds
will be a bosonic or a fermionic 2d theory as well.

Our first step, then, should be to enlarge our duality groupoid. We should include both
DW theories and sDW theories, as well as any isomorphisms between them as bosonic
TFTs.

The simplest connected component of such a groupoid will be relevant for 2d theories
which only have Zf

2 symmetry. The corresponding node is a 3d spin-Zf
2 gauge theory.

This is isomorphic to the toric code. After identifying the Wilson line with the f anyon,
we have two ways to identify the disorder defects with e and m, so we have a non-trivial
isomorphism between the spin-Zf

2 gauge theory and itself. At the level of 2d theories, this
is the operation of tensoring a theory with the Arf theory.

We also have two non-trivial isomorphisms to standard Z2 gauge theory. These map
to the two possible GSO projections of a fermionic theory with Zf

2 symmetry to a bosonic
theory with non-anomalous Z2 gauge symmetry. In this way, the GSO projection is a way
to produce a boundary condition for a Z2 gauge theory from a boundary condition of the
Zf

2 gauge theory, and the Jordan-Wigner transform is the inverse process. With all of
this preceding discussion in mind, we could enhance our picture of duality groupoids as in
Figure 2.9.

When Gf = Zf
2×G, we should still be able to identify which of these isomorphisms cor-

respond to fermionic orbifolds. We claim that they are these which preserve the “canonical
fermion”, i.e. the Wilson line labelled by the trivial representation of G and non-trivial for
Zf

2 . We will comment on this briefly in Section 2.3.2.

15A spin-TFT necessarily requires a choice of spin structure, so that even the trivial spin-TFT has a
dependence on spin-structure. The Zf

2 gauge theory is the “pure spin structure gauge theory” which can

be constructed by summing over spin structures in the trivial spin-TFT. In the language of [72] the Zf
2

gauge theory is the “shadow” of the trivial spin-TFT. We could recover the trivial spin-TFT from the Zf
2

gauge theory by “condensing” the f line.
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Z2 Gauge Theory Zf
2 Gauge Theory

Z2 Z2

Figure 2.9: The duality groupoid for the Z2 and Zf
2 gauge theories can be enhanced as

above. There is a Z2 of symmetries for the Z2 gauge theory, and similarly for the Zf
2 theory.

There are non-trivial isomorphisms between the two, generated at the level of 2d theories
by the GSO/JW transformations.

2.3.1 Fermionic Examples

In the following, we upgrade our previous examples to illustrate the potentially different
phenomena in orbifolds of fermionic theories. This is most interesting when there is a Z2

subgroup of G. Such a subgroup allows a non-trivial mixing of the Z2 flat connections and
spin-structures, since spin-structures are “affine Z2 connections.”

First we will review the case that Tf has just (−1)F symmetry. After that, we return to
Zp×Zp but focus on the new phenomena that occurs when p = 2. Lastly, we complete the
fermionization of our Z4 study from earlier, and understand it explicitly in the example of
a compact boson CFT.

Fermionic Example: Theories with Zf
2 Symmetry

Consider a 2d spin theory Tf with only Gf = (−1)F symmetry. It is now well-known that
the invertible topological phases that can be stacked with such a theory are classified by
Hom(ΩSpin

2 (pt), U(1)) = Z2 [66]. Furthermore, we know that the effective action for the
non-trivial element in this cobordism group is given by a low energy continuum version of
the Majorana-Kitaev chain

eiS[η] = (−1)Arf[η] . (2.61)

In Appendix A.2 we review Arf algebraically and relate it to the quadratic refinement
and the mod 2 index of the Dirac operator. Another equivalent (and possibly more familiar)
way to think about the theory, is as the 2d analog of the Chern-Simons term obtained when
integrating out a fermion in 3d [73, 49, 74], say as

(−1)Arf[η] =
ZMaj.(m≫ 0, η)

ZMaj.(m≪ 0, η)
. (2.62)

50



Some authors may say that the non-trivial Arf phase corresponds to some particular
choice of m > 0 or m < 0 for the fermion. This is true in a specific renormalization scheme.
It can be safer to discuss relative phases if the choice is not clear.

In the language of [75] (see also [76]), a massive Majorana fermion with m > 0 is
isomorphic to the massive Majorana fermion with m < 0 as “anomalous field theories.”
But they are not isomorphic as “absolute field theories” (theories with well-defined partition
functions and Hilbert-spaces). The obstruction to their isomorphism as absolute QFTs is
given precisely by the Arf theory. That is to say, ZMaj.[−m, η] = (−1)Arf[η]ZMaj.[m, η].

If we were now to construct an orbifold groupoid for (−1)F , we would simply have a
single vertex, and inside that vertex would live two absolute theories: our Tf and Tf ⊗Arf.
This is analogous to the bosonic case where T and T ⊗ SPT lived at the same vertex.

We can be more sophisticated in our discussion of orbifold groupoids and ask about
gauging (−1)F/GSO projection, which is obtained by summing over spin-structures [77]. In
this case, each fermionic theory (the one vertex in our case) above has 2 bosonic neighbours,
corresponding to summing over spin structures with or without the Arf theory stacked on
top (relative to one another). These two bosonic neighbours are themselves connected by
a Z2 orbifold. This enlarges our Z2 orbifold groupoid as in Figure 2.10.

Here we are assuming that the gravitational anomaly of Tf , cL−cR in a CFT, is divisible

by 8, which is necessary for the bosonic theory [Tf/Zf
2 ] to exist as an absolute 2d theory.

The gravitational anomaly of a fermionic QFT only needs to be a multiple of 1
2
. Looking

at the example of n chiral fermions, i.e. an SO(n)1 WZW model, we see that the 3d TFT
which appears naturally when we “separate” Zf

2 from the dynamical degrees of freedom
is the Spin(n)1 Chern-Simons theory. This theory is bosonic, has a canonical topological
fermionic boundary condition and a bosonic gapless boundary condition supporting the
Spin(n)1 WZW model. It is a variant of spin-Zf

2 gauge theory, with a different collection
of topological boundary conditions. For example, Spin(8)1 has three fermionic anyons and
three topological fermionic boundary conditions related by a triality symmetry. In that
case, GSO projections produce another fermionic theory and the orbifold groupoid has
three Zf

2 nodes. See also [78].

To undo the process of summing over spin-structures, i.e. to re-fermionize, we can
couple our 2d Z2 connection to a spin-structure, performing a generalized Jordan-Wigner
transformation.

At the level of partition functions we can write stacking with Arf as

SF : ZTf
[η] 7→ (−1)Arf[η]ZTf

[η] . (2.63)
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Figure 2.10: Gauging the (−1)F symmetry of a spin theory Tf produces a bosonic theory
with a Z2 symmetry. A different bosonic theory can be produced if one first stacks with
the invertible Arf theory. These two phases are related by Z2 orbifold. Stacking with Arf
maps the (−1)F node to itself.

Similarly, we have

OGSO : ZTf
[η] 7→ Z[Tf/A][α] ≡

1

2

∑
η

ση(α)ZTf
[η] , (2.64)

The inverse “Jordan-Wigner transformation” is simply

OJW : Z[Tf/A][α] 7→ ZTf
[η] ≡ 1

2

∑
α

ση(α)Z[Tf/A][α] . (2.65)

Here ση(α) = (−1)Arf[α+η]+Arf[α] is the usual quadratic form coupling Z2 gauge fields to
spin-structures (see Appendix A.2).

The corresponding invertible interfaces are simply

ISF
[η; ρ] = 2δηρ(−1)Arf[η] , (2.66)

IGSO[η;α] = ση(α) , (2.67)

IJW[α; η] = ση(α) . (2.68)

We can also revisit the folding trick once more. Suppose we are interested in interfaces
between sDW[Zf

2 ] and DW[Z2]. We already know there should be two of them correspond-
ing to the two possible GSO projections at the level of 2d theories.
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The folding trick tells us that studying such interfaces should be the same as studying
boundary conditions for sDW[Zf

2 ×Z2]. In this case, the boundary conditions are labelled
by a subgroup Hf of the finite supergroup Zf

2 ×Z2 and an element of sH2(Hb).

From our previous experiences, we know that the Hf in question should take the data of
the spin-structure on one side of an interface to the data of a connection on the other side
of an interface, so we should definitely have Hf = Zf

2 ×Z2. The relevant bosonic quotient

is simply Hb = Hf/Zf
2
∼= Z2, and because Hf is a split product of Zf

2 and Gb we have that

sH2(Hb) = H2(Hb, U(1))×H1(Hb,Z2)× Z2 (2.69)

= Z2×Z2 . (2.70)

Where the three factors can be interpreted from left to right as giving bosonic discrete
torsion factors, ση factors, and factors of Arf respectively [79]. Note, if the group does not
split, the product is more complicated.

Now we have 4 potential boundary conditions which we can call: (η, α), (η, α)ση(α),
(η, α)Arf, and (η, α)ση(α)Arf, labelling what the connections look like for such a boundary
condition, and the associated terms in sH2(Z2). It is clear that the two boundary conditions
which are not separable as interfaces are the two which actually couple the Z2 connection
α to η in some way, in particular, the ones which include ση(α) terms.

Thus we conclude that there are two invertible interfaces from sDW[Zf
2 ] to DW[Z2],

and they are given by

IGSO1 [η;α] = ση(α) , (2.71)

IGSO2 [η;α] = ση(α)(−1)Arf[η] . (2.72)

Fermionic Example: Theories with Z2×Zf
2 Symmetry

In the case Gf = Z2×(−1)F , there are a number of operations we can perform on such a
theory: we can shift the spin-structure by our Z2 gauge field, orbifold the bosonic Z2, and
stack with the Arf theory. Of course, we can also perform a GSO projection and continue
with all the manipulations we encountered with our original Z2×Z2 theory.

In order to simplify things, we will only consider the bosonic operations, those that map
our fermionic theory to a fermionic theory. Then, using the fact that each fermionic theory
has two bosonic neighbours, we can construct the full orbifold groupoid. Such bosonic
operations (shown for the torus) are generated by shifting the spin-structure by the Z2

gauge field
πF : ZT [αa, αb, ηa, ηb] 7→ ZT [αa, αb, ηa + αa, ηb + αb] , (2.73)
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Fermionic Bosonic

πF S1

SF O2

O1 O1

Table 2.1: We find that shifting the spin-structure by a Z2 flat connection has the effect of
adding a bosonic SPT phase in the bosonized 2d theory. We see again that stacking with
Arf and bosonizing produces theories related by gauging.

stacking with the Arf theory

SF : ZT [αa, αb, ηa, ηb] 7→ (−1)ηaηbZT [αa, αb, ηa, ηb] , (2.74)

and gauging the bosonic Z2

O1 : ZT [αa, αb, ηa, ηb] 7→
1

2

∑
γ

ωγaαb−γbαa
p Z[γa, γb, ηa, ηb] . (2.75)

These operations correspond to the interfaces

IπF
[γ, η;α, ρ] = 22δγ,αδη,ρ+α , (2.76)

ISF
[γ, η;α, ρ] = 22δγ,αδη,ρ(−1)Arf[η] , (2.77)

IO1 [γ, η;α, ρ] = 2δη,ρ(−1)
∫
γ∪α . (2.78)

The group of interfaces here forms a group of 72 elements, in particular, O(2, 2;F2). This
is exactly what we would expect from the duality groupoid picture.

We can also ask what these operations bosonize to, similar to how the Arf interface
became the Kramers-Wannier interface. That is, if one performs one of these operations
on a theory, and then bosonizes, what effect does it have compared to just bosonizing? It’s
not hard to compute, and this is recorded in Table 2.1.

We can now create an orbifold groupoid of fermionic theories. Since our bosonic theory
had 9 lines corresponding to gauging the “second Z2” (recall Figure 2.6), we expect this
purely fermionic orbifold graph to have 9 nodes (one for each fermionization of a bosonic
pair as in Figure 2.10). This makes sense, the manipulations acting on a node form a
subgroup

⟨πF , SF ⟩ ∼= D8 , (2.79)
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Figure 2.11: On the left, the orbifold groupoid for the bosonic topological manipulations
for a theory with Z2×Zf

2 symmetry. Lines connect two theories related by gauging the
bosonic Z2. On the right, we superimpose this graph with the results from the gauging in
Z2×Z2 theories to produce the entire orbifold groupoid. The bosonic gauging is marked in
blue and red depending on if it originates from a bosonic or fermionic theory respectively,
GSO projections are marked in green.

of the total bosonic operations

⟨πF , SF ,O1⟩ ∼= O(2, 2;F2) , (2.80)

and we see |O(2, 2;F2)|/|D8| = 9. We can draw this orbifold groupoid as before, producing
the left diagram in Figure 2.11.

We can also combine the fermionic-fermionic orbifolds with the bosonic-bosonic orb-
ifolds by including lines denoting GSO projections, producing the right diagram in Figure
2.11. This is investigated from a VOA perspective in [57].16

16As commented in the reference, “when there is no bosonic theory in sight,” i.e. no way to distinguish
vertices, the graph attains its most symmetric description where “vertices correspond to Lagrangian 2-
planes inside symplectic F4

2.” We will address this example a little more in Section 2.3.2.
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Fermionic Example: Theories with Z4 and Zf
4 Symmetry

To complete our story from the bosonic Section 2.2.6, we will fermionize the Z4 and anoma-
lous Z2×Z2 orbifold groupoid which we encountered before.

To make points very concrete, we will phrase everything in terms of the compact boson
CFT, keeping in mind that statements about orbifolds are generic to any theory with that
symmetry and anomaly. Our overview will closely follow the presentation in the paper [50].
We will not review all aspects of the compact boson CFT here, just the relevant points for
our discussion.

Consider the compact boson CFT with radius R, so that X(z, z̄) ∼ X(z, z̄) + 2πR. At
generic R the chiral algebra is extended from Virasoro by the u(1) current generated by
∂X and the local primaries are the vertex operators

Vn,w(R) = VpLpR = eipLXL(z)+ipRXR(z̄) (2.81)

with conformal weights hn,w(R) =
α′

4
p2L and h̄n,w(R) =

α′

4
p2R, where

17

pL =
n

R
+
wR

α′ , pR =
n

R
− wR

α′ . (2.82)

Here n,w ∈ Z and are interpreted as the number quantizing momentum and winding
respectively. Note that the conformal spin is s = nw. The partition function for this
theory S1[R] is simply

Z(τ) =
1

|η(τ)|2
∑
n∈Z
w∈Z

qhn,w q̄h̄n,w . (2.83)

At generic radius, the compact boson has (U(1)n×U(1)w)⋊ZC
2 global symmetry, which

act on the boson by

ZC
2 : XL(z) 7→ −XL(z) , XR(z̄) 7→ −XR(z̄)

U(1)n : XL(z) 7→ XL(z) +
R

2
θn , XR(z̄) 7→ XR(z̄) +

R

2
θn (2.84)

U(1)w : XL(z) 7→ XL(z) +
1

2R
θw , XR(z̄) 7→ XR(z̄)−

1

2R
θw .

17The factor of α′ will be left in for easy comparison to other results.
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where we take θn,w ∼ θn,w + 2π. In terms of the primaries, this says that

ZC
2 : Vn,w 7→ V−n,−w

U(1)n : Vn,w 7→ einθnVn,w (2.85)

U(1)w : Vn,w 7→ eiwθwVn,w .

The ZC
2 symmetry is interesting and is well discussed in a number of papers, for example

[49, 50, 80] as well as most classic references on CFT. Orbifolding by the ZC
2 symmetry

produces some form of “Ashkin-Teller model,” with two local Virasoro primaries σ1 and σ2
both with conformal weights ( 1

16
, 1
16
). This model can be viewed as two copies of the Ising

CFT deformed by a marginal operator coupling their energy densities ε1(z, z̄)ε2(z, z̄).

We are more interested in the two Z2 subgroups of the U(1)n and U(1)w, denoted Zn
2 and

Zw
2 respectively. The Zn

2 symmetry shifts the compact boson half the circumference of the
circle. Intuitively, orbifolding by this Zn

2 symmetry means shifting by half the circumference
of the circle is trivial, hence we see that resultant theory is just the compact boson on a
circle of radius R/2. The conclusion is inverted for the winding orbifold. Altogether, we
have

[S1[R]/Zn
2 ] = S1[R/2] , (2.86)

[S1[R]/Zw
2 ] = S1[2R] . (2.87)

These two Z2’s may be gauged separately, but have a mixed anomaly precisely as we
investigated in our earlier bosonic example of Section 2.2.6. This anomaly is manifest from
our previous argument: in the Zn

2 twisted sector X(z, z̄) is wound half a time so that the
winding modes are shifted by a half-integer. In summary, the twisted sector operators for
the Zn

2 subgroup have fractional winding and vice-versa

Zn
2 twisted: n ∈ Z , w ∈ Z+

1

2
, (2.88)

Zw
2 twisted: n ∈ Z+

1

2
, w ∈ Z . (2.89)

In this case, the twisted partition function can be written

ZS1[R][n1, n2;w1, w2] =
1

|η(q)|2
∑

n∈Z+w1/2
w∈Z+n1/2

(−1)nn2+ww2qhn,w q̄h̄n,w , (2.90)

which we can use to explicitly check all of our previous assertions.
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From this presentation we can also very explicitly see how a Z4 symmetry appears.
When we orbifold the Zn

2 symmetry (summing over all ni = 0, 1 in the previous formula
and setting wi = 0) we compute

Z[S1[R]/Zn
2 ]
[0, 0] =

1

|η(q)|2
(∑

n∈Z
w∈Z

1

2
(1 + (−1)n)qhn,w q̄h̄n,w (2.91)

+
∑
n∈Z

w∈Z+1/2

1

2
(1 + (−1)n)qhn,w q̄h̄n,w

)

=
1

|η(q)|2
∑
n∈2Z
w∈ 1

2
Z

qhn,w q̄h̄n,w . (2.92)

It is clear how the orbifold projects out operators with n ∈ 2Z+1, but adds operators
of half-integer winding w ∈ Z+1

2
. This means that the “Zw

2 symmetry” is now a “Zw
4

symmetry” fitting into the group extension

1→ Ẑn
2 → Zw

4 → Zw
2 → 1 , (2.93)

because the term (−1)w, can now act by ±1 and ±i. Repeating this analysis for Zw
2 , we

reproduce the bosonic orbifold groupoid in Figure 2.7.

We can also fermionize the Zn
2 symmetry by the usual generalized Jordan-Wigner trans-

formation, which we will denote JWn (because it fermionizes the Zn
2 ). Thus, we will define

the theory
Diracn[R] := JWn[S

1[R]] . (2.94)

We use the name Diracn[R] because at R =
√
2α′ the partition function is that of a free

massless Dirac (c = 1) fermion Ψ(z, z̄) = ΨL(z) + ΨR(z). For other radii, it is the Dirac
fermion deformed by the Thirring operator. We will defer points about conformal manifolds
and deformations to the references.

As in [50], we identify the fermion operators ΨL,R for the Diracn[R] theory with the
primaries

ΨL(z) = V1, 1
2
, Ψ†

L(z) = V−1,− 1
2
, (2.95)

ΨR(z̄) = V1,− 1
2
, Ψ†

R(z̄) = V−1, 1
2
. (2.96)
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Bosonic Sector Fermionic Sector Range of n Range of w Primaries

H+
Un. H+

NS 2Z Z V2,0 = ΨLΨR

H−
Un. H+

R 2Z+1 Z V1,0
H+

Tw. H−
R 2Z Z+1

2
V0, 1

2

H−
Tw. H−

NS 2Z+1 Z+1
2

ΨL,ΨR

Table 2.2: Bosonic and fermionic Hilbert spaces and their operators for the Zn
2 -associated

theories, comparing bosonic and fermionic Hilbert spaces for the S1[R],S1[R]/Zn
2 and

Diracn[R] theories, as well as some of their local primaries. Reproduced from Table 1.
of [50].

From this we see that the “Zw
2 symmetry” is once again extended, this time to a Zf

4 on the
fermions, that is

ΨL(z) 7→ +iΨL(z), Ψ†
L(z) 7→ −iΨ

†
L(z) , (2.97)

ΨR(z) 7→ −iΨR(z), Ψ†
R(z) 7→ +iΨ†

R(z) . (2.98)

This is just the Zf
4 subgroup sitting in the U(1)f symmetry of the Dirac fermion

1→ (−1)F → Zf
4 → Zw

2 → 1 . (2.99)

We can summarize our discussion as in Table 2.2.

We can write the Zf
4 twisted partition function for the Diracn[R] theory as

ZDiracn[R][w1, w2] =
∑

k∈{0,1,2,3}

ωkw2
4

∑
n∈2Z+w1/2+kmod2

w∈2Z+k/2

qhn,w q̄h̄n,w . (2.100)

One can check explicitly that we have

ZS1[R][N1, N2;W1,W2] =
1

2

∑
w

ZDiracn[R][w]I[w;N,W ] . (2.101)

where I is the interface taking us from ZDiracn[R][w1, w2] to ZS1[R][N1, N2;W1,W2], and is
given by

I[w;N,W ] = δW,(wmod2)σ
(4)
w−(wmod 2)(N)ωW1N2

4 , (2.102)

where we have written σ
(4)
w (N) = ω2N1N2+w1N2+w2N1

4 .
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We can produce an interface between the Diracn[R] theory and the Zn
4 theory by simply

composing interfaces, the result is that

J [w;N ] = σ(4)
w (N mod 2)ω

∫
w∪(N−N mod 2)

4 ω
−(N1 mod 2)(w2 mod 2)
4 . (2.103)

Lastly, we can compute the interface between the ZDiracn[R] and ZDiracw[R] partition
functions

K[w;n] = σw−wmod 2(nmod 2)σn−nmod2(wmod 2)ω
∫
(wmod2)∪(nmod2)

4 . (2.104)

If we were to write, more suggestively, the connections w and n as combinations of Z2

connections w = 2ξ + α and n = 2ρ+ β, then this interface looks like

σρ(α)ω
∫
α∪β

4 σξ(β) . (2.105)

As before, we can mirror this entire discussion by swapping every statement about n
and w to complete our orbifold groupoid as in Figure 2.12.

We could also phrase this in terms of Narain lattices and lattice VOAs to explicitly
double check our assertions, and make contact with other presentations (e.g. lattice VOAs).

For any compact boson radius R, the spectrum of dimensionless momenta (ℓL, ℓR) =√
α′

2
(pL, pR) forms a lattice in R2. Single-valuedness of the OPE of two of our VOAs

enforces that this ℓ lattice be integral with the diagonal inner-product of signature (1, 1),
and modular invariance enforces that it is even and self-dual.

It is much more convenient to talk about the lattice of n and w, which is very simply
Z2. Integrality becomes the statement that for any two (n,w) and (n′, w′) in the lattice

nw′ + wn′ ∈ Z , (2.106)

and the lattice being even means for any operator Vn,w that

s = nw ∈ Z . (2.107)

If we want to orbifold by a non-anomalous symmetry G, we restrict this Z2 lattice to
the appropriate invariant sub-lattice Λ = (Z2)G under that symmetry. Then we construct
Λ∗ and seek extensions of the invariant sub-lattice Λ into Λ∗ that are even and self-dual. If
we also want to consider fermionic theories, then we can drop the even condition (allowing
s = nw ∈ 1

2
Z).
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Zw
4 Zn

4

Zn
2 ×Zw

2

Zf
4 Diracn Zf

4 Diracw

Figure 2.12: Orbifolding a non-anomalous Z2 subgroup of a theory with a Z2×Z2 symme-
try and mixed anomaly produces a theory with Z4 symmetry. We can also fermionize the
non-anomalous Z2 symmetries to produce two theories with Zf

4 symmetry. By composing
the intermediate interfaces, we can form the complete orbifold groupoid.
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For example, to orbifold the Zn
2 symmetry of our compact boson, we restrict from the

Z2 lattice to the invariant sub-lattice Λ = {n ∈ 2Z, w ∈ Z}, which corresponds to the
shared subspace of local operators H+

Un., and has dual lattice Λ∗ = {n ∈ Z, w ∈ 1
2
Z}. We

can extend the lattice Λ into Λ∗ in three distinct ways

S1[R] : Λ⊕ (Λ + (1, 0)) , (2.108)

[S1[R]/Zn
2 ] : Λ⊕ (Λ + (0, 1/2)) , (2.109)

Diracn[R] : Λ⊕ (Λ + (1, 1/2)) . (2.110)

Clearly in the S1[R] case we are appending H−
Un. to the list of local operators; in the

[S1[R]/Zn
2 ] we are appending H+

Tw.; and in the fermionic case we are extending Λ to an
odd self-dual lattice (by adding the spin-half operator V1, 1

2
) which amounts to adding H−

NS.
This is depicted in Figure 2.13.

2.3.2 Spin-Structure Preserving Interfaces

In the preceding bosonic and fermionic examples we computed a number of invertible
interfaces in different 3d theories. Furthermore, in the bosonic examples, we saw how we
could identify the 2d partition functions with anyons of the 3d bulk very explicitly. Anyons
of the 3d gauge theory arise from the boundary theory partition functions (written in terms
of Z2 connections) by Fourier transform.

Explicitly, in the case of a Z2-symmetric bosonic theory (on the torus), we identified
the anyons in the toric code with the linear combinations

ẐB[0, 0̂] =
1

2
(ZB[0, 0] + ZB[0, 1]) = Z1 (2.111)

ẐB[0, 1̂] =
1

2
(ZB[0, 0]− ZB[0, 1]) = Ze (2.112)

ẐB[1, 0̂] =
1

2
(ZB[1, 0] + ZB[1, 1]) = Zm (2.113)

ẐB[1, 1̂] =
1

2
(ZB[1, 0]− ZB[1, 1]) = Zf . (2.114)

The JW/GSO process provides a way to turn states of the Z2 gauge theory into states
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Momentum n

W
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d
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Momentum n
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w

Figure 2.13: Green diamonds denote the invariant sublattice Λ under the Zn
2 symmetry,

and the red squares denote the dual lattice Λ∗ and have integral spacing along momentum
and half-integral spacing along winding. We see that there are only three ways to extend
Λ into Λ∗: S1[R] corresponds to the extension by the blue diamond, S1[R/2] by the cyan
diamond, and Diracn[R] by the yellow diamond.
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of the Zf
2 gauge theory. Thus we may compute

ẐB[a1, â2] =
1

2

∑
a2

(−1)a2â2ZB[a1, a2] (2.115)

=
1

22

∑
a2,ρ1,ρ2

(−1)a2â2σρ(a)(−1)λArf[ρ]ZF [ρ1, ρ2]

= ẐF [a1 + â2, (λ+ 1)a1 + λâ2] . (2.116)

Here λ = 1 (or 0) if we do (or do not) include Arf in our GSO projection. This tells us
that

ẐF [0, 0̂] =
1

2
(ZF [0, 0] + ZF [0, 1]) = Z1 (2.117)

ẐF [1, 1̂] =
1

2
(ZF [1, 0]∓ ZF [1, 1]) = Ze,m (2.118)

ẐF [1, 0̂] =
1

2
(ZF [1, 0]± ZF [1, 1]) = Zm,e (2.119)

ẐF [0, 1̂] =
1

2
(ZF [0, 0]− ZF [0, 1]) = Zf . (2.120)

This perfectly matches what we’d expect, the Zf line is ẐF [0, 1], the Wilson line of the

Zf
2 gauge theory. We also see there is a choice in identifying the electric and magnetic

lines with the charged or uncharged fermion vortex/Ramond line, and that this factor is
controlled by our choice of adding Arf into GSO projection. Moreover, we see that when
such Ze,m lines pass through the Arf interface of the Zf

2 gauge theory, that their roles are
interchanged.

A natural question to ask is which interfaces in the 3d theory do not change the coupling
to spin-structure, i.e. do not change the spin-structure of the 2d theory upon collision.
Physically, such interfaces in the 3d theory must fix the fermionic Wilson line ẐF [0, 1̂].

This problem is trivial in the case of a Zf
2 theory. We can see from Section 2.3.1 that

the identity interface and Arf interface are the only two.

In the case of Zf
2 ×Z2 symmetry, we learned in Section 2.3.1 that all of the (bosonic)

topological manipulations were generated by the interfaces πF , SF , and O1. Once again,
it’s not hard to see explicitly (or brute-force check) that the operations which do not change
the coupling to spin-structure are ⟨SF ,O1, πFSFπF ⟩ ∼= D12.

In general, to find the group of interfaces preserving coupling to spin-structure, we are
simply asking what is the stabilizer of Zf (possibly with other restrictions we may wish to
impose).
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Spin-Symmetries

Presenting the group of spin-structure preserving interfaces, or at least finding the gener-
ators, is not particularly different from the Zf

2 ×Z2 example. Especially when the group
splits as Gf = Zf

2 ×G. Morally speaking, the group will be generated by “all the operations
manipulating G” (analogous to O1), “all the fermionic SPT-like operations” (analogous to
SF ), and all the “bosonic automorphisms” and those which act on the fermionic SPT
operations (analogous to πFSFπF ).

While it is easy to present the generators of the group, it’s less simple to determine
which group exactly is generated. Although, in individual cases, the problem is easily
checked by computer.

A partial solution is offered in the slightly broader case where we consider the inter-
faces corresponding to “spin-symmetries.” Spin-symmetries are effectively those that treat
DW[Z2×G] and sDW[Zf

2 ×G] on equal footing. That is to say, they are the symmetries
of the MTC that map anyons to anyons preserving the braiding, but only preserving the
square of the topological spin χ·(·)2 (although this is already implied in preserving the
braiding).

As an example, in the toric code this would mean that interfaces which interchanged
an f line with an e or m line would be included, as opposed to just the usual (non-
trivial) interface swapping e and m. We see that overall there should be 6 such interfaces,
because there is an S3 of valid ways to permute the lines {1, e,m, f} of the toric code while
preserving the braiding.

If we were to consider the duality groupoid in Figure 2.9, we would say it collapses
down to a single point with an S3 of spin-symmetries acting on the point.

This also shows us where the S3 comes from two-dimensionally and group-theoretically.
Recall that the two nodes in the figure are connected by a collection of lines (collapsed
down to one line) corresponding to interfaces which implement a GSO projection (or JW
transformation) in the language of 2d theories. Meanwhile, the two (suppressed) lines
from a node to itself correspond to the two symmetries of DW[Z2] and sDW[Zf

2 ]. These
are generated by the identity interface, and the interface which swaps Ze and Zm, however
it may be presented in either of the respective realizations.

So, two-dimensionally, we see that the group of spin-symmetries acting on a theory
must be isomorphic to the group ⟨SF ,GSO⟩ ∼= S3 in the case of the toric code. In terms of
2d topological manipulations, one can check that the group of spin-symmetries is Sp(4;F2)
when Gf = Zf

2 ×Z2, for example. Of course, we are just deriving, in 2d language, a result
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which is obvious in 3d. Namely that the group of spin-symmetries for, Gf = Zf
2 ×Zk−1

2

say, is Sp(2k;F2).

To summarize everything so far, for a 2d bosonic theory with Zk
2 symmetry, the (irre-

ducible bosonic) topological operations form the group

TB := O(k, k;F2) . (2.121)

This includes automorphisms of Zk
2, stacking with SPT phases, as well as orbifolds. In terms

of the duality groupoid Hom(DW[Zk
2],DW[Zk

2]) = O(k, k;F2). The group of operations
leaving a phase unchanged is

TB,0 := H2(G,U(1))⋊ Aut(G) = Z(
k
2)

2 ⋊GL(k;F2) . (2.122)

The number of nodes in the bosonic orbifold groupoid for Zk
2 symmetry is 2, 6, 30, 270,

4590, . . . 18

Similarly, when we study a 2d spin theory with Gf = Zf
2 ×Zk−1

2 symmetry, the bosonic
topological manipulations of the fermionic theory form the group

TF := O(k, k;F2) ∼= TB . (2.123)

This includes automorphisms of Zk−1
2 , shifting the spin-structure by Z2 gauge fields, bosonic

orbifolds, and stacking with any fermionic SPT phases and Arf. In terms of the duality
groupoid Hom(sDW[Zf

2 ×Zk−1
2 ], sDW[Zf

2 ×Zk−1
2 ]) = O(k, k;F2). The analogous group of

operations to TB,0 which act on a vertex is

TF,0 := (Z
1+(k−1)+(k−1

2 )
2 )⋊ (Zk−1

2 ⋊GL(k − 1; 2)) , (2.124)

which has a nice physical interpretation as the group of fermionic invertible phases19 semidi-
rect product with the group formed by shifting the spin-structure by the k−1 independent
Z2 gauge fields in Zk−1

2 , with an additional action of the automorphism group GL(k−1; 2).

18This is OEIS sequence A028361 “Number of totally isotropic spaces of index n in orthogonal geometry
of dimension 2n.”

19Note ΩSpin
2 (B(Zk

2)) = Z1+k+(k2)
2 [81]. We can give each of the factors a nice physical story, 1 factor

corresponds to the Arf theory, the k factor corresponds to the fSPTs that are not also bosonic SPTs which
are generated by factors of ση in the partition function, and the

(
k
2

)
comes from the fSPTs which are just

bosonic SPTs. We can also “derive” this by treating the k Z2 gauge fields αi and 1 spin-structure σ as
being k+1 independent spin-structures σ0 := σ and σi := σ+αi, then we have k+1 independent Arf-like
factors, and still the

(
k
2

)
phases for the Z2 gauge fields viewed as differences of these spin-structures.
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If we include spin-symmetries, then TF enlarges to TSpin, which is simply the collection
of things preserving braidings in our gauge theory

TSpin = Sp(2k;F2) . (2.125)

Lastly, we can return to the problem of interfaces which preserve coupling to spin-
structure. If we ask which interfaces from TSpin do so, then we are asking what the

collection of operations is that fixes a line in symplectic F2k
2 (when Gf = Zf

2 ×Zk−1
2 ). Such

a stabilizer subgroup forms a maximal parabolic subgroup of Sp(2k;F2). i.e. we want to
know StabTSpin

(Zf ). Finding such stabilizer subgroups is well understood for groups of Lie
type (see for example the lecture notes [82]). In particular

StabTSpin
(Zf ) = (Z2⋊Z2k−2

2 )⋊ Sp(2k − 2;F2) . (2.126)

In the construction provided in the reference, the first Z2 factor corresponds exactly to
stacking with the Arf interface when mapped onto our problem. However, the construction
does not immediately make the interpretation of the other factors physically clear.

We conclude by mentioning that, numerically, it seems that the subgroup of TF preserv-
ing coupling to spin-structure for a Gf = Zf

2 ×Zk−1
2 is Z2×Sp(2k− 2;F2). Physically, this

makes sense because for some fixed even spin-structure η the list of operations which do
not change the spin-structure would be the full group of spin-symmetries Sp(2k − 2;F2),
because here Arf acts trivially. Then for the odd spin-structures we have a non-trivial
action by Arf and collect an extra Z2 factor. It would be nice to understand these points
in more detail.

2.4 Generalized Symmetries and Applications in 2d

QFTs

Some 2d QFTs, such as Rational Conformal Field Theories, are endowed with generalized
symmetries, in the form of a fusion category F of topological line defects. Standard G
symmetries with ’t Hooft anomaly µ ∈ H3(G,U(1)) are a special case where the fusion
category is group-like

F = VecµG (2.127)

with associator given by µ.

Generalized symmetries impose non-trivial constraints on RG flows. In particular,
they may obstruct the existence of trivial massive RG flow endpoints and require an IR
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description involving multiple degenerate massive vacua (or gapless degrees of freedom),
see [83] for a recent exposition, and [80] for a complementary discussion to the one here.

There is a neat trick to classify the possible massive endpoints of such RG flows: pro-
mote the 2d theory T with generalized symmetry F to a 2d boundary condition B for the
Turaev-Viro 3d TFT described by the center Z[F ] [84]. This is a generalization of the
notion of coupling a 2d theory T to a 3d Dijkgraaf-Witten gauge theory with gauge group
G and action µ.20

The map from boundary conditions for Z[F ] to theories with symmetry F is straight-
forward: T is built from a segment compactification with boundary condition B at one
end and the Turaev-Viro canonical boundary condition at the other end. The canonical
boundary condition supports a fusion category F of boundary lines, which is inherited by
T .

The inverse map is a bit less obvious, but still straightforward. For example, a space-
like boundary condition may be described by its pairing to the states in the string-net
description of the Turaev-Viro Hilbert space: a basis for the states is labelled by networks
of F lines, and the pairing is given by the partition function of T in the presence of such
a network of F lines.

A bit more formally, if we start from the 2d theory T and an orientation-reversed
topological boundary with boundary lines F̄ , we can reproduce B by a process of “2d
anyon condensation”, condensing products of lined from F and F̄ .21

The topological coupling of T to Z[F ] does not affect the local dynamics, and thus the
RG flow of T maps to an RG flow of B. The endpoint of the B RG flow will generically
be a gapped boundary condition B′ for the Turaev-Viro theory. Then the corresponding
endpoint of the F -preserving RG flow of T must be the 2d theory obtained from the pairing
of B and B′.

We arrive at the following claims:

• The “gapped phases with generalized symmetry F” are classified by gapped boundary
conditions B′ for Z[F ].

• Each gapped phase is a direct sum of degenerate vacua, to be obtained from a segment
compactification of Z[F ] with endpoints B and B′

20This generalized bulk theory is sometimes referred to as a Levin-Wen model in the condensed matter
literature [85] (see also [86]), where an explicit lattice realization of the bulk 3d TFT is constructed
analogous to the presentation of the toric code as a lattice gauge theory.

21We expect such a strategy to work in any dimension, see Appendix A.4.
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• The gapped phase has an emergent F ⊗Z[F ] F ′ generalized symmetry, where F ′ is
the fusion category of B′ boundary lines.

When F = VecµG, gapped boundary conditions of the Dijkgraaf-Witten gauge theory
are classified by pairs (H, ν) where H is a subgroup of G and ν trivializes the pullback
of µ to H. These are the usual symmetry-breaking patterns of massive theories with G
symmetry.

2.4.1 Special Example: Current-Current Deformations of WZW
Models

Until now, save for the compact boson CFT example, we have focused broadly on general
2d QFTs. But it is hard not to comment on RCFTs, and in particular, the oldest and
most venerable: the Wess-Zumino-Witten models. We will briefly recap some important
points about WZW models and then move on to an example application of our claims.22

The Gk WZW models are 2d RCFTs who are famously equipped with a current algebra

Ja(z)J b(w) ∼ kδab
(z − w)2

+
∑
c

ifab
c

J c(w)

(z − w)
, (2.128)

where the fab
c are the structure constants of g. The Laurent modes satisfy the commutation

relations of the gk affine Lie algebra. All of this is the same for the antiholomorphic sector.

To specify the full CFT, as opposed to just a chiral half, we need to specify a consistent
gluing of the chiral and anti-chiral sectors, or modular invariant. This data is provided by
a “mass matrix”Mij which specifies the multiplicity of the irreps of the form Vi ⊗ V̄j in
the Hilbert space

H =
⊕
i,j

MijVi ⊗ V̄j . (2.129)

Modular invariance enforces thatM commutes with the modular S and T matrices, and
we further impose uniqueness of vacuumM00 = 1.23

22After this article appeared as a preprint, but before it was sent for publication, the article [87] appeared
with similar ideas to those contained in this subsection.

23We do this without loss of substance in our understanding because any CFT withM00 > 1 is just a
direct sum of theories.
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For su(2)k the irreps/primaries Vj are labelled by spins j = 0, 1/2, . . . , k/2, and are
subject to fusion rule

Vj ⊗ Vj′ = V|j−j′| ⊕ V|j−j′|+1 ⊕ · · · ⊕ Vm (2.130)

where m = min{j + j′, k − (j + j′)}.
Moreover, a complete classification of modular invariants for su(2)k was obtained and

shown to follow an ADE classification based on the level k [88, 89, 90, 91]. For convenience
we record the A and D type here in their, rarely found, component form

k = Any MAk+1

ij = δij (2.131)

k = 4ℓ MDk/2+2

ij = δijδimod1,0δjmod1,0 + δi+j,kδimod 1,0δjmod1,0 (2.132)

k = 4ℓ− 2 MDk/2+2

ij = δijδimod1,0δjmod1,0 + δi+j,kδimod 1,1/2δjmod1,1/2 . (2.133)

We note that the A-type or “diagonal” modular invariants are defined for all k, while the
D-type modular invariants are defined only for k even. There are also the E6, E7, and E8

modular invariants at levels k = 10, 16, 28 respectively.

Broadly, Verlinde operators are line defects which act on the conformal blocks of a
theory with some current algebra. They are in one-to-one correspondence with primaries
and satisfy well-understood fusion relations in general [92, 93]. For a diagonal RCFT
where the chiral and antichiral sectors are paired identically, like an A-type su(2)k theory,
a Verlinde line labelled by Vi commutes with the chiral algebra(s), and acts on a primary
by

Vi |ϕj⟩ =
Sij

S0j

|ϕj⟩ . (2.134)

See [83] for an extended discussion. We point out in advance that V k
2
generates a Z2 center

symmetry, and it’s only non-anomalous if k is even.

Said in 3d language, the chiral algebra of the RCFT provides a MTC describing the
anyons of an associated bulk 3d TFT. If we forget the braiding relations for the bulk anyons
(or push the anyons to the boundary) then this forms the fusion category associated with
the Verlinde lines. The authors of [12] call this fusion category Rep(SU(2)k). The Z2

symmetry generated by V k
2
forms a subcategory VecZ2 if k is even, and Vec

[1]
Z2

if k is odd.

As explained in [35] (see also [12]), there is a beautiful bijection between the modu-
lar invariants of su(2)k WZW models and indecomposable module categories (irreducible
boundary conditions). In particular, this means we can obtain any su(2)k WZW modular
invariant by (generalized) orbifold of the diagonal model (and vice-versa by composition of
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orbifolds). The D-type modular invariants are obtained by the straightforward orbifold of
the non-anomalous Z2 symmetry generated by V k

2
. The E6, E7, and E8 orbifolds require

the full power of 2d anyon condensation.

All of this may be said more three-dimensionally, to the point of our story. It is well
known that given a 2d RCFT with some chiral algebra A, the space of conformal blocks of
the 2d RCFT on Σ is the space of states that a 3d TFT assigns to Σ. Mathematically, we
might capture the data of chiral symmetries by some VOA, in which case this statement
is essentially that the representation category of the VOA is a MTC [94, 37].

The most famous example of this relationship is the one relevant to our purposes, which
says that the canonical quantization of a G Chern-Simons theory at level k on some surface
Σ × R produces the space of conformal blocks of the WZW models with matching level
and group. Moreover, if the surface Σ is “punctured” by Wilson lines, then from the 2d
WZW point of view, these points are corresponding operator insertions [95].

The essential mathematical work of [37], and various subsequent pieces, captures all
of the 2d statements about the relationship between 2d RCFT and 3d TFT by using the
mathematical language of algebra objects in the MTC associated to A. We will not review
that here, but will highlight a physical consequence first pointed out in [96] and studied
further in [97].

In particular, the authors of [96] show that the invertible topological interfaces in the 3d
TFT associated to some chiral algebra are in one-to-one correspondence with the modular
invariants of the 2d RCFT. Said in the reverse, a full RCFT (which includes a choice of
modular invariant) is specified by a choice of topological interface in the bulk 3d theory
TFT. For example, the identity interface corresponds to the diagonal modular invariant.
Broadly speaking, the results all originate from variations on the folding trick, by noting
that T × T̄ assigns a vector space HΣ ⊗ H∗

Σ to a 2-manifold, and so unfolding gives
statements about the full CFT and original chiral algebra.

The result also gives a neat interpretation to primaries of the full CFT. A primary is
labelled by a pair of representations of the chiral algebra, hence it is labelled by two line
operators in the MTC. We may write it as ϕi,j where i and j label lines in the bulk TFT.
If we insert such a primary into the CFT, then in 3d terms we must have HΣ punctured
by the line labelled by i, and H∗

Σ punctured by the line labelled by j. Thus we obtain a
bijection between primaries of the full CFT and local operators which interpolate from the
Wilson line i to the Wilson line j on the interface. This is depicted in Figure 2.14.

Viewing modular invariants for 2d RCFTs as interfaces in 3d Chern-Simons, we should
investigate the interfaces corresponding to an su(2)k theory. If we refer to the D-type
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×

HΣ H∗
Σ

Σ× [0, 2]

Figure 2.14: A full RCFT includes a choice of chiral algebras and modular invariant. The
modular invariant of the RCFT can be understood as a choice of interface inbetween the
chiral halves in the associated 3d TFT. The Hilbert space of primaries of the form ϕi,j are
in bijection with operators on the interface which turn a Wilson line of type i into a Wilson
line of type j.

modular invariants of su(2)k as Do if k = 4ℓ − 2, and De if k = 4ℓ, we can obtain the
algebra for the composition of the topological interfaces. The A-type invariant corresponds
to the identity, and the D-type invariants behave as follows

(MDo)2 =MA , (MDe)2 = 2MDe . (2.135)

At k = 10, 16, 28 we also have the E6, E7, and E8 type modular invariants respectively.
These are subject to the commutative relations

ME6MDo =ME6 , (ME6)2 = 2ME6 , (2.136)

ME7MDe = 2ME7 , (ME7)2 =ME7 +MDe , (2.137)

ME8MDe = 2ME8 , (ME8)2 = 4ME8 . (2.138)

Since the classification of SU(3) modular invariants is now understood [98, 99], one
could perform the same process for the 2-category of surface operators in the SU(3) Chern-
Simons theories.

Next we turn to current-current deformations of WZW, which arise by perturbing the
WZW model by terms of the form J(z)J̄(z̄). We do not immediately require that the
perturbation be isotropic in the Lie-algebra indices, that is to say any perturbation of the
form ∑

a,b

cabJ
a(z)J̄ b(z̄) (2.139)

will suffice.
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Such a term is obviously classically marginal, but it’s subject to quantum mechanical
corrections.24 We are most interested in the case that the deformations are marginally
relevant.

Before proceeding further, an obvious question is “how can we couple the two chiral
halves in this 3d picture in a local way?” The answer to this is in the picture: when we
couple the two halves, we quite literally couple them, gluing the segment into a circle.
That is, we compactify the bulk Chern-Simons theory to Σ× S1.

In general, a 3d TFT on Σ× S1 defines an “effective” 2d TFT on Σ. In the functorial
TFT language, this is a special form of “Kaluza-Klein reduction,” where a 2d TFT is
defined from a 3d TFT by Z2d(Σ) = Z3d(Σ×S1) [102]. We recall that a 3d TFT assigns a
Hilbert space HΣ to Σ, and Σ × S1 is simply mapped to the number dimHΣ = TrHΣ

(1).
Since 2d TFTs are largely characterized by their ground state degeneracy, then it would be
instructional to compute this quantity, with the appropriate interfaces inserted of course.

After this compactification move and RG flow, the two joined ends must flow to some
interface in the Chern-Simons theory. Since we have classified all interfaces in Chern-
Simons, it must correspond to some modular invariant MIR. If our original interface
describing the full RCFT was called MUV, then we are left with a circle-compactified
Chern-Simons theory with two topological interface insertions, see Figure 2.15. Of course,
away from the torus, the usual subtleties about local curvature counterterms still apply.
These subtleties are nicely spelled out in the case of an Abelian Chern-Simons theory in
[103] and also in [104].

Armed with our relations for the modular invariants of su(2)k, we can obtain the ground
state degeneracy on the torus. The number of ground states is simply the trace of the
corresponding collision of our two interfaces, Tr

(
MUVMIR

)
. We record these results in

Table 2.3. Clearly, we have an example where the IR fixed point has multiple gapped vacua,
not explained by spontaneous symmetry breaking considerations. Indeed, a spontaneous
symmetry breaking may even result in an IR interface which is the direct sum of multiple
irreducible interfaces, each contributing multiple vacua.

These topological considerations do not tell us, given some JJ̄ deformation of WZW,
which MIR it flows to. The obvious guess is that the one which is “isotropic,” i.e. of
the form

∑
a J

a(z)J̄a(z̄), flows to the diagonal modular invariant. It would be interesting
to answer this question, which will depend on the specific choice of cab couplings. More
precisely, there will be some phase diagram, with phases labelled by by possibleMIR.

24There exists some interesting literature (e.g. [100, 101]) studying the conditions for the theory to still
be conformal after perturbations, and the properties of the resulting conformal manifolds.
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Σ× S1

MIR

Collide

MUV

Σ× S1

Figure 2.15: Deforming the WZW models by a relevant operator and flowing to the IR,
we are left with two topological interfaces in a 3d Chern-Simons bulk on Σ× S1. If we let
the two interfaces collide and then trace, we obtain the partition function of the relevant
2d TFT up to local curvature counterterms.

2.5 Conclusion and Open Questions

Our main conclusion is that bosonic, non-spin 3d TFTs naturally control the combinatorics
of orbifolds and GSO projections of both bosonic or fermionic 2d QFTs. The possible
results of these topological operations are labelled by topological boundary conditions for
the 3d TFT, which may themselves be either bosonic or fermionic.

We have only considered in detail situations where the 3d bosonic TFT is isomor-
phic either to an Abelian Dijkgraaf-Witten (DW) theory, equipped with bosonic Dirichlet
boundary conditions, or a spin-Dijkgraaf-Witten (sDW) theory, equipped with fermionic
Dirichlet boundary conditions.

In general, topological bosonic boundary conditions in an abstract bosonic 3d TFT are
described in terms of Lagrangian algebras in the corresponding MTC. See e.g. [105] and
references within. These detail which bulk lines can end at the boundary, analogously to
Wilson lines in a DW theory ending at a Dirichlet boundary.

Fermionic boundary conditions of a bosonic 3d TFT should admit a similar description
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MA MDo MDe ME6 ME7 ME8

MA k + 1 k
2
+ 2 k

2
+ 2 6 7 8

MDo k
2
+ 2 k + 1 6

MDe k
2
+ 2 k + 4 14 16

ME6 6 6 12
ME7 7 14 17
ME8 8 16 32

Table 2.3: Traces of products of modular invariants for the su(2)k WZW models. Interfaces
in the SU(2)k Chern-Simons theory correspond to such modular invariants. Equivalently,
they compute the ground state degeneracy of the effective 2d TFT on the torus when the
IR and UV theories correspond to one of these interfaces.

in terms of some Lagrangian super-algebras. It would be nice to spell that out in detail.25

25While this work was in the final stages of preparation, it appears that such a description was indeed
spelled out in detail [71].
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Chapter 3

Two More Fermionic Minimal
Models

In this short chapter, we comment on the existence of two more fermionic unitary minimal
models not included in work by Hsieh, Nakayama, and Tachikawa [67]. These theories are
obtained by fermionizing the Z2 symmetry of the m = 11 and m = 12 exceptional unitary
minimal models. Furthermore, we explain why these are the only missing cases.

I would like to thank Davide Gaiotto for pointing out that the exceptional minimal
models should be considered and for comments on the draft of the paper this section is
based on.

3.1 Introduction

In a paper by Hsieh, Nakayama, and Tachikawa, it was shown that there is a fermionic
unitary minimal model for each c = 1 − 6/(m(m + 1)). In particular, it is obtained by
fermionizing the Z2 symmetry in the A or D-type models, and can be thought of as the
fermionic partner to those two bosonic theories [67].12

The goal of this note is two-fold. First, we point out that them = 11 andm = 12 excep-
tional unitary minimal models, also called (A10, E6) and (E6, A12), have a non-anomalous

1Some of these fermionic minimal models were obtained earlier in [106], where the authors studied
fermionic extensions of Virasoro minimal models.

2After this work was published, it was discovered that some of these theories have also appeared in
[107, 108]. The author thanks V. Petkova for bringing this to his attention.
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Z2 symmetry [109]. From general considerations about fermionization, we conclude that
there are two additional unitary fermionic minimal models not included in the list of [67]
and record their partition functions. Moreover, we use this note as an opportunity to
illustrate some notation and simple ideas from Chapter 2.

3.2 Minimal Models

3.2.1 Review and Classification

Minimal models are (1+1)d CFTs whose Hilbert spaces are composed of a finite number of
irreducible representations of the Virasoro algebra. A minimal model will generally have
central charge

c(p, p′) = 1− 6(p− p′)2

pp′
, (3.1)

where p and p′ are positive co-prime integers and p > p′ ≥ 2. The potential highest weights
of a minimal model at c(p, p′) are given by the Kac formula

hr,s =
(rp− sp′)2 − (p− p′)2

4pp′
, (3.2)

where we use the symmetry hr,s = hp′−r,p−s of the Kac formula to produce a closed operator
algebra of (p− 1)(p′ − 1)/2 distinct fields.

The modular invariants of minimal models are well known to have an ADE type clas-
sification [88, 89] (see also Tables 10.3 and 10.4 of [5]), which allows us to read off the
highest weights/state spaces after identification with characters. More precisely, the mod-
ular invariants are in one-to-one correspondence with pairs of simply-laced Lie algebras.
As a consequence of this classification, unless p, p′ = 2, 4, there is always more than one
modular-invariant minimal model at c(p, p′). That is, there are different operator algebras
constructed from the same primaries and closed under OPE.

To obtain unitary minimal models, we specify to (p, p′) = (m+ 1,m) with m ≥ 2, and
can take 1 ≤ s ≤ r ≤ m − 1. For example, at m = 2 we have the c = 0 trivial CFT,
at m = 3 the c = 1/2 critical Ising, and at m = 4 the c = 7/10 tricritical Ising. As
promised, for m = 5 there are A-type and D-type modular invariants, which correspond
to the tetracritical Ising and critical 3-state Potts model respectively. In general, for
m ≥ 5 there is always an A-type theory and a D-type theory, and at the special values
m = 11, 12, 17, 18, 29, 30 there is a third E-type theory, corresponding to the Dynkin
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diagrams E6, E7, and E8 for each consecutive pair. From here out we will only discuss
unitary minimal models.

As mentioned in [67], there is a temptation to call the m = 3 theory a free massless
Majorana fermion, and the m = 4 theory the smallest N = 1 supersymmetric minimal
model. However, this is not strictly correct: the Ising model has only integral spin oper-
ators, and thus is bosonic, while the Majorana fermion has integral and half-integral spin
operators, and thus is fermionic. It is similar for the m = 4 case.

3.2.2 Symmetries and Z2 Orbifold

Symmetries of the operator algebra of a CFT are heavily restricted by conditions of unitar-
ity and modular invariance. For example, h = 1 operators are not unitary in a c < 1 CFT,
so one can rule out continuous internal symmetries in minimal models [110]. However,
there may still be discrete symmetries.

In [109], the authors determine the maximal symmetry group of all unitary minimal
models by studying the theories in the presence of twisted boundary conditions as in
[111, 112]. Said differently, they determine if there are twisted partition functions which
can be consistently added to the theory. Summarizing, their findings are that: All unitary
minimal models have maximal symmetry group Z2, except 6. The critical and tricritical 3-
Potts model have non-commuting Z2 and Z3 symmetry which combine to an S3 symmetry,
and the 4 E7 and E8 minimal models have no symmetry. We note that these symmetries
are the same as the automorphisms of the associated Dynkin diagrams.

As explained in [67], a theory T (put on S1 ×R for concreteness) with non-anomalous
Z2 symmetry can be coupled to a background Z2-connection. We may then consider the
untwisted Hilbert space HUn., and the twisted Hilbert space HTw., depending on whether
or not the background Z2 is trivial, i.e. if states have holonomy around S1. Moreover,
these Hilbert spaces may be further decomposed into states that are even or odd under
the Z2 symmetry

HT,Un. = H+
T,Un. ⊕H

−
T,Un. (3.3)

HT,Tw. = H+
T,Tw. ⊕H

−
T,Tw. . (3.4)

Intuitively, the gauged theory [T/Z2] consists of both untwisted and twisted Hilbert spaces
because it is a sum over all background connections, but it only has those states which are
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gauge-invariant (i.e. have a + superscript). Hence we have that

H[T/Z2],Un. = H+
T,Un. ⊕H

+
T,Tw. (3.5)

H[T/Z2],Tw. = H−
T,Un. ⊕H

−
T,Tw. . (3.6)

More generally, when G ̸= Z2, the splitting “even” and “odd” would be promoted to the
projectors Pχ = 1

|G|
∑

g χ(g)g for characters χ ∈ Ĝ, and we recover the statements that

[T/G] has an emergent Ĝ symmetry, and that [[T/G]/Ĝ] = T [40] (see also [48, 12] for
modern discussions).

For the unitary minimal models, it is (literally) a textbook result (see 10.7 of [5]) that
the Z2 symmetry of any of the A-type theories can be gauged to produce the D-type theory
and vice-versa.3

3.3 Fermionic Minimal Models

3.3.1 Fermionization

Given a bosonic theory Tb with Z2 symmetry, it is possible to fermionize it by a generalized
Jordan-Wigner transformation, turning the Z2 symmetry into a (−1)F Grassmann parity.
Concretely, the partition function is obtained by summing over the Z2 connection and
coupling appropriately to a spin-structure ρ. In particular, on a genus g surface Σ, we
have

ZTf
[ρ] =

1

2g

∑
α∈H1(Σ,Z2)

(−1)Arf[α+ρ]ZTb
[α] . (3.7)

The invertible topological phases that can be stacked with any fermionic theory are
classified by the cobordism group Hom(ΩSpin

2 (pt), U(1)) = Z2 [114]. The effective action
for the non-trivial invertible phase is given by the low energy version of the Kitaev chain

eiS[ρ] = (−1)Arf[ρ] . (3.8)

Here the Arf-invariant Arf[ρ] can be thought of as the mod 2 index of the Dirac operator.
For example, on the torus, Arf[ρ] = 0 for the 3 “even” spin-structures (NSNS, NSR,
RNS), and Arf[ρ] = 1 for the 1 “odd” spin-structure (RR) due to the zero mode (see

3It is shown in [113] that the unitary minimal models do not have any ’t Hooft anomalies by general
MTC considerations.
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Figure 3.1: Gauging the (−1)F symmetry of a fermionic theory Tf produces a bosonic
theory Tb with Z2 symmetry. A different bosonic theory T ′

b is produced if one first stacks
the fixed Tf with the Arf theory. These two theories are related by Z2 orbifold.

[77, 114, 115, 74, 1] and references within for further discussion). In practice, this means
that stacking with this theory changes the relative sign of the even and odd partition
functions in a sum over spin-structures.

Conversely, given a fermionic theory Tf , it is possible to gauge the (−1)F symmetry
and produce a bosonic theory Tb with a Z2 symmetry in two distinct ways,4 by summing
over spin-structures without the Arf phase included

ZTb
[α] =

1

2g

∑
ρ

(−1)Arf[α+ρ]ZTf
[ρ] , (3.9)

or by first stacking5 with Arf to get

ZT ′
b
[α] =

1

2g

∑
ρ

(−1)Arf[α+ρ]+Arf[ρ]ZTf
[ρ] . (3.10)

It is not hard to convince oneself, with the formulas above, that the two distinct bosoniza-
tions are related by gauging the emergent Z2’s, forming Figure 3.1.

4Here we assume the gravitational anomaly, cL− cR, of Tf is divisible by 8 so that the GSO projection
produces an absolute 2d bosonic theory. See Section 3 of [57] for a VOA discussion, and [1, 116] for
discussions in terms of coupling to a bulk TFT.

5It should be stressed that it does not make sense to think of one bosonization as being more funda-
mental. Tf and Tf × Arf are simply related by an invertible topological phase inherently linked to the
Grassmann parity. See Section 2 and 3.1.1 of [1] for further elaboration on this point.
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For a very concrete example, one might take the theory with (−1)F to be a free Ma-
jorana fermion ZMaj[ρ,M ]. Stacking with Arf amounts to switching the sign of the mass
term, that is, ZMaj[ρ,−M ] = (−1)Arf[ρ]ZMaj[ρ,M ]. Bosonizing we attain the (1+1)d Ising
model [115]. Tuning to criticality, we see that the M = 0 free Majorana fermion is the
generalized Jordan-Wigner transformation of the critical Ising CFT.

General points on fermionization and gauging are discussed further from a Hilbert-space
and lattice-friendly point of view in [67], and more from the point of view of partition
functions in [1].

3.3.2 Fermionic Minimal Models

We now briefly outline the work done by Hsieh, Nakayama, and Tachikawa in [67].

Combining the general theory above, the authors are effectively noting that the A and
D-type unitary minimal models are related by a Z2 orbifold. Then, as in Figure 3.1, there
must be a fermionic theory “completing the triangle” between the two bosonic theories. In
the case of the critical or tri-critical Ising, Tb and T

′
b are not distinct theories. This will be

the case for the E6 models, and provides a consistency check for us later, because clearly
if a theory is self-dual under Z2 orbifold its fermionization must have vanishing RR-sector.

Due to the high degree of solubility of the unitary minimal models, the authors are
able to explicitly tabulate the states in each of the theories and indicate which are twisted,
untwisted, and even or odd (and similarly for their fermionizations). Furthermore, because
the Jordan-Wigner transformation has a very concrete implementation when the theory is
presented on a lattice, the authors use it to construct explicit Majorana-chain realizations
of these fermionic minimal models from the bosonic spin-chains.

3.4 The Exceptional E6 Cases

We now come to the main point of this note, which is to point out the following: The
E6 exceptional minimal models at m = 11 and m = 12 also have a non-anomalous Z2

symmetry, and hence there are also fermionic minimal models associated with these.

Interestingly, the E6 minimal models are self-dual under Z2 orbifold. This does make
sense, there are no other unitary CFTs at the same central charge for them to transform into
except possibly the m = 11, 12 A-type and D-type models, but clearly their Z2 symmetries
have already “been spent” relating to one another.
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We can be more explicit and list the partition functions of such theories by borrowing
the expressions from [109]. In particular, we use the twisted partition functions (equations
(7.7) to (7.10) in [109]) to do simple consistency checks on the statements above in the
following subsections.

Moreover, the theory of invertible topological phases and fermionization provides the
tools to complete this procedure for lattice and continuum descriptions of various (1+1)d
theories with non-anomalous Z2 symmetry. However, it would still be interesting to obtain
explicit statistical or Majorana-chain descriptions of these fermionic minimal models and
possibly WZW models.

Lastly, now that all of the Z2 symmetries have been addressed, these exceptional E6

cases, in tandem with the work in [67], cover all possible fermionic unitary minimal models.
Suppose otherwise, then there would be another fermionic model whose GSO projection is
a bosonic unitary minimal model with Z2 symmetry. As we have already determined and
then fermionized all such bosonic Z2s, this additional fermionic model must not exist.

3.4.1 m = 11 Exceptional

This theory is also known as the (A10, E6) unitary minimal model. The torus partition
functions are6

Z(A10,E6)[0, 0] =
10∑

r=1,odd

∣∣χ(r,1) + χ(r,7)

∣∣2 + ∣∣χ(r,4) + χ(r,8)

∣∣2 + ∣∣χ(r,5) + χ(r,11)

∣∣2 (3.12)

Z(A10,E6)[0, 1] =
10∑

r=1,odd

∣∣χ(r,1) + χ(r,7)

∣∣2 − ∣∣χ(r,4) + χ(r,8)

∣∣2 + ∣∣χ(r,5) + χ(r,11)

∣∣2 (3.13)

Z(A10,E6)[1, 0] =
10∑

r=1,odd

∣∣χ(r,4) + χ(r,8)

∣∣2 + {(χ(r,1) + χ(r,7))
∗(χ(r,5) + χ(r,11)) + c.c.

}
(3.14)

Z(A10,E6)[1, 1] =
10∑

r=1,odd

∣∣χ(r,4) + χ(r,8)

∣∣2 − {(χ(r,1) + χ(r,7))
∗(χ(r,5) + χ(r,11)) + c.c.

}
(3.15)

6Throughout we use the notation

ZT [g, h] := TrHg
ĥqL0−

cL
24 q̄L̄0−

cR
24 (3.11)

for bosonic partition functions. For us, g, h ∈ Z2 and Hg is the g-twisted Hilbert space, so that ZT [0, h]
can be thought of as the partition function with h-twist in Euclidean time. For fermionic theories, we will
use the labels NS = AP = 0 and R = P = 1 for the antiperiodic and periodic sectors respectively.
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It is easy to see that the spins coming from the untwisted Hilbert spaces are bosonic. With
some computational work, one may verify that they take values

0,±1,±2, . . . ,±10,±13,±16,±19 . (3.16)

One can also verify the untwisted partition function Z(A10,E6)[0, 0] is invariant under
modular S and T transformations, and that the twisted partition functions transform into
one another under modular S and T . It’s also not hard to check that a Z2 orbifold returns
the original partition function, or more generally that

Z(A10,E6)[α1, α2] =
1

2

∑
β1,β2

(−1)α1β2−β1α2Z(A10,E6)[β1, β2] . (3.17)

The fermionic partition functions can be obtained from equation (3.7) and are

Zf,11[0, 0] =
10∑

r=1,odd

∣∣χ(r,1) + χ(r,7)

∣∣2 + ∣∣χ(r,5) + χ(r,11)

∣∣2
+
{
(χ(r,1) + χ(r,7))

∗(χ(r,5) + χ(r,11)) + c.c.
}

(3.18)

Zf,11[0, 1] =
10∑

r=1,odd

∣∣χ(r,1) + χ(r,7)

∣∣2 + ∣∣χ(r,5) + χ(r,11)

∣∣2
−
{
(χ(r,1) + χ(r,7))

∗(χ(r,5) + χ(r,11)) + c.c.
}

(3.19)

Zf,11[1, 0] =
10∑

r=1,odd

2
∣∣χ(r,4) + χ(r,8)

∣∣2 (3.20)

Zf,11[1, 1] = 0 (3.21)

As promised, the RR-sector (the periodic-periodic sector) partition function is vanishing.
We also note that the fermionic sectors have both integral and half-integral operators, the
spins coming from the NSNS-sector (the antiperiodic-antiperiodic sector) partition function
are

0,±1

2
,±2

2
, . . . ,±10

2
,±13

2
, . . . ,±17

2
,±20

2
,±21

2
,±25

2
,±26

2
,±29

2
,±32

2
,±35

2
,±38

2
,±45

2

(3.22)
the ellipses mean all the spins appear in between (with half-integral step size).
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3.4.2 m = 12 Exceptional

This theory is also known as the (E6, A12) unitary minimal model. The torus partition
functions are

Z(E6,A12)[0, 0] =
12∑

s=1,odd

∣∣χ(1,s) + χ(7,s)

∣∣2 + ∣∣χ(4,s) + χ(8,s)

∣∣2 + ∣∣χ(5,s) + χ(11,s)

∣∣2 (3.23)

Z(E6,A12)[0, 1] =
12∑

s=1,odd

∣∣χ(1,s) + χ(7,s)

∣∣2 − ∣∣χ(4,s) + χ(8,s)

∣∣2 + ∣∣χ(5,s) + χ(11,s)

∣∣2 (3.24)

Z(E6,A12)[1, 0] =
12∑

s=1,odd

∣∣χ(4,s) + χ(8,s)

∣∣2 + {(χ(1,s) + χ(7,s))
∗(χ(5,s) + χ(11,s)) + c.c.

}
(3.25)

Z(E6,A12)[1, 1] =
12∑

s=1,odd

∣∣χ(4,s) + χ(8,s)

∣∣2 − {(χ(1,s) + χ(7,s))
∗(χ(5,s) + χ(11,s)) + c.c.

}
(3.26)

As before, we can see the spins coming from the untwisted Hilbert spaces are bosonic,
and that the modular S and T relationships between sectors is satisfied. The fermionic
partition functions can be obtained from equation (3.7) and are

Zf,12[0, 0] =
12∑

s=1,odd

∣∣χ(1,s) + χ(7,s)

∣∣2 + ∣∣χ(5,s) + χ(11,s)

∣∣2
+
{
(χ(1,s) + χ(7,s))

∗(χ(5,s) + χ(11,s)) + c.c.
}

(3.27)

Zf,12[0, 1] =
12∑

s=1,odd

∣∣χ(1,s) + χ(7,s)

∣∣2 + ∣∣χ(5,s) + χ(11,s)

∣∣2
−
{
(χ(1,s) + χ(7,s))

∗(χ(5,s) + χ(11,s)) + c.c.
}

(3.28)

Zf,12[1, 0] =
12∑

s=1,odd

2
∣∣χ(4,s) + χ(8,s)

∣∣2 (3.29)

Zf,12[1, 1] = 0 (3.30)
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Chapter 4

Duality Defects in E8

In this section we classify all non-invertible Kramers-Wannier duality defects in the E8

lattice Vertex Operator Algebra (i.e. the chiral (E8)1 WZW model) coming from Zm

symmetries. We illustrate how these defects are systematically obtainable as Z2 twists
of invariant sub-VOAs, compute defect partition functions for small m, and verify our
results against other techniques. Throughout, we focus on taking a physical perspective
and highlight the important moving pieces involved in the calculations. Kac’s theorem for
finite automorphisms of Lie algebras and contemporary results on holomorphic VOAs play
a role. We also provide a perspective from the point of view of (2+1)d Topological Field
Theory and provide a rigorous proof that all corresponding Tambara-Yamagami actions
on holomorphic VOAs can be obtained in this manner. We include a list of directions for
future studies.

I would like to thank Theo Johnson-Freyd for suggesting this project, for immeasur-
ablely helpful comments throughout the research process, and feedback at various stages
of the draft this section is based on. I would also like to thank Sven Möller for provid-
ing my collaborators and I with Magma code to perform twisted character calculations
and for explanations of the VOA literature. I would also like to thank Davide Gaiotto
for illuminating discussions on 2d CFT and (2+1)d TFT and feedback on the draft this
section is based on; and Matt Yu for discussions on anyon condensation. I also would like
to acknowledge the participation of Alicia Lima and Melissa Rodŕıguez-Zárate in the early
stages of the project that led to the paper that this chapter is based on.
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4.1 Introduction

A topological defect line in a 2d QFT corresponds to some oriented (possibly charged) 1d
inhomogeneity in the system, which is invariant under continuous deformations, so long as
the deformation does not move the inhomogeneity past any other operators. Historically,
such topological defect lines have been of interest in CFT for their connection to BCFT,
twisted boundary conditions, and orbifolds [112, 117, 118, 119, 37, 120, 121, 122, 123]. How-
ever, more modern applications have exploded in recent years, including: notions of gen-
eralized orbifolds and duality [38, 124, 125]; connections to anyon condensation [126, 127];
better understanding of defects in statistical physics systems [128, 129]; constraints for RG
flows [130, 80, 1, 131]; constraints for 2d modular bootstrap [132, 133, 134, 135]; and even
statements about confinement in (1+1)d QCD [87, 136, 137] and quantum gravity [138].
Very broadly, these ideas fit into a series of research programs studying applications of
symmetries in quantum field theory and their generalizations to “higher-form symmetries”
(see e.g. [7]) and “non-invertible symmetries” (see e.g. [12] in 2d).

Our goal in this chapter is to understand the construction of Zm duality defects in the
chiral (E8)1 WZW model, i.e. lines which separate the theory from its Zm orbifold, and
their associated twisted partition functions. Equivalently, we will focus on Zm Tambara-
Yamagami category actions on the E8 lattice Vertex Operator Algebra (VOA). Let us
briefly motivate some of these choices of specialization.

First, duality defects are an interesting object of study in the realm of non-invertible
symmetries. They are non-invertible topological defect lines which separate a theory from
a gauged theory, and help to explain phenomena such as Kramers-Wannier duality in
statistical physics [139, 140, 141, 38] (see [142, 143, 144, 145] for related work in 4d). They
also provide “spin-selection rules” (see e.g. [130]) and other constraints on CFTs, which
play a role in e.g. the 2d modular bootstrap. There is also a sense (which we will review)
in which duality defects are the simplest defects after symmetry defects, this makes them
a good tool for understanding the physics of non-invertible defect lines.

To motivate the choice of chiral (E8)1, we compare to two other systems with duality
defects: the Ising CFT and the Monster CFT. The Ising CFT has a Z2 duality defect,
and all of the properties of this defect can be understood from the fact that it has a
(2+1)d interpretation as one of the three simple anyons in the Ising TFT. By comparison,
the TFT/MTC associated to chiral (E8)1 is trivial (it has no irreducible modules besides
itself), so we cannot use this approach to study its duality defects. Moving on, the Monster
CFT has Zp duality defects (where p is a prime dividing the order of the Monster group)
and in [146] the Z2 defects of the Monster CFT were found by fermionization (see Section
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4.3.5). Generalizing such an analysis to a “parafermionization” could be possible [147, 148],
but our analysis evades the technical difficulties involved with this process.

All in all, our strategy should generalize to theories with duality defects who do not lift
to lines in the representation category of the theory, and which are more formidable than
minimal models, such as the Monster and other Sporadic group CFTs. Additionally, we
conjecture that it will work for higher n-ality defects.

The chiral (E8)1 theory is also interesting in its own right. For example, it is the unique
holomorphic VOA with central charge 8, and hence describes the boundary edge modes
of Kitaev’s (2+1)d E8 phase [149] (see [150] for a recent discussion). Commutant pairs
inside the chiral (E8)1 theory have also appeared in general CFT contexts and the study
of MLDEs and the conformal bootstrap [151, 152, 133, 135].

Note: throughout the chapter, as with the rest of this thesis, we will always write the
total number of spacetime dimensions.

4.1.1 Outline of the Chapter

In this chapter we want to construct Zm duality defects of the chiral E8 theory, but a side-
mission will be to carve a pathway through the literature in a ground-up way for physicists,
focusing on examples and highlighting various moving pieces to enable explicit calculations.
We also hope this will be of benefit to non-physicists to understand the physical point of
view. We do not review any formal mathematical definitions (e.g. of fusion categories or
vertex algebras) as such reviews have been done better in other places, although we do pro-
vide references to those materials throughout. When we do introduce some mathematical
formalism, we try to emphasize the physical context so that the mathematical definitions
seem “inevitable.”

In Section 4.2 we provide background for defects in 2d CFT. We recap how topological
defect lines appear in CFTs in Section 4.2.1 and how they relate to gauging symmetries
(or orbifolds) in Section 4.2.2; we also set notation for the rest of this thesis. We briefly
recount the story of the critical Ising model for concreteness in Section 4.2.3. We conclude
in Section 4.2.4 by providing the data needed to define the fusion categories VecG and
TY(A,χ, τ) and provide a physical story for those data.

In Section 4.3 we build all the tools necessary to compute duality defects in the chiral
(E8)1 theory. Since we prefer to think of this theory from the lattice VOA viewpoint, we
describe the construction of lattice VOAs in Section 4.3.1. Understanding symmetries of
VOAs with all the technical details is important for our construction, so in Section 4.3.2
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we recount the classic story about lifts from the underlying lattice, Kac’s theorem for finite
order automorphisms of Lie algebras, and a (computer-implementable) way to compute
the relevant twisted characters. In Section 4.3.3 we discuss orbifolds from the lattice VOA
perspective to make both calculations and the connections to physics concrete. In Section
4.3.4 we explain how to compute duality defected partition functions in the chiral E8

theory, and in Section 4.3.5 we implement our proposal for Z2 symmetries and compare to
the result obtained by fermionization.

In Section 4.4 we show the duality defected partition functions for Z3, Z4, and Z5. The
purpose of this section is not just the enumeration of tables of defects, but to show-off
potential complications that may arise in computing defects. For instance, we see the
relevance of order-doubling in Section 4.4.1, and what happens when the invariant sub-
VOA does not come from a root lattice in Section 4.4.2 and Section 4.4.3. In Section
4.4.2 we also describe a computer algorithm for systematically computing (q-expansions
of) defects.

In Section 4.5 we rephrase our discussion of duality defects from the point of view of
(2+1)d TFTs and gapped boundary conditions. In Section 4.5.1 we provide a brief review
of the relationship between (2+1)d TFTs, Modular Tensor Categories (MTCs), and their
gapped boundary conditions, then discuss how orbifolds of 2d theories (and duality defects)
can be understood from this picture in Section 4.5.2. We conclude with a description of
how this applies to holomorphic VOAs (like the E8 lattice VOA) in Section 4.5.2.

We end the chapter with a list of open problems in Section 4.6. Namely those where
explicit computations could give examples of the underlying physics.

In Appendix B.1 we give an alternative way to compute one of our Z3 duality defects
from the Potts CFT, framing it from a (2+1)d point of view. In Appendix B.2 we make
some technical comments on canonicality and symmetric non-degenerate bicharacters as-
sociated with the duality defects.

4.2 Topological Defects in 2d

The first example of a topological defect line in 2d occurs in the study of 0-form symme-
tries.1 Given a theory with a global G symmetry, each element g ∈ G corresponds to a
topological line defect Xg in the 2d theory: if Xg sweeps past an operator insertion, it acts

1Since we will not discuss higher-form symmetries at all (until Section 4.5), from here out we will drop
the word 0-form.
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by g in the appropriate way (see e.g. [7, 48]). In the case that G is a continuous group,
these topological lines are simply the (exponentials of the) Noether charges obtained by
integrating the conserved currents associated to G along the line. Their topological nature
can be understood as a consequence of the Ward identities for such currents.

Continuous or discrete, the topological defect lines associated with symmetries compose
in a natural way: if two symmetry defects labelled by g, h ∈ G are brought sufficiently
close together, in parallel, and with the same orientation, they fuse as Xg ⊗ Xh = Xgh.
As a result, we find that topological defect lines associated with symmetries are invertible,
with Xg−1 the left and right inverse of the line Xg.

However, not all topological defect lines in a theory are invertible. Such non-invertible
defect lines in QFTs provide a rich source of information about a theory, because they are
a manifestation of some non-trivial topological data including dualities, anomalies, and
other constraints on RG flows.

The classical example of a non-invertible topological defect line is the “Kramers-Wannier”
duality defect in the Ising model [140, 141, 38], which relates correlators in the Ising model
to disorder correlators. We briefly review this in Section 4.2.3 (see also [78, 50, 146] for
recent discussions of the Kramers-Wannier duality defect).

Another source of topological defect lines are the “Verlinde lines” of Rational Conformal
Field Theories (RCFTs), which are not mutually exclusive from the two previous examples.
Verlinde lines are a natural consequence of the bulk-boundary relationship between a 2d
RCFT and its associated (2+1)d TFT: they can be understood as 2d topological defects
coming from anyons of the associated bulk (2+1)d TFT, brought to the boundary where
the 2d RCFT data lives [92, 119].

In this chapter, we will focus on topological defect lines which are captured by the
mathematical data of a fusion category. Fusion categories describe theories of topological
defect lines which are particularly discrete in that they are defined to only have a finite
number of simple (irreducible) lines. In addition to being mathematically tractable, fu-
sion categories are also interesting because they are “rigid” and cannot be “continuously
deformed” (under RG flows, say), which is mathematically captured by the concept of
Ocneanu rigidity [153]. This means that they put constraints on RG flows very closely
related to those implied by ’t Hooft anomalies [154], see Section 7 of [130] for a modern
discussion.

By now, fusion categories have appeared in a variety of ways in the physics literature,
broadly in the intersection of fields that study topological aspects of quantum field the-
ories. This includes more traditional “high-energy” contexts (e.g. [130, 87, 12, 80, 1])
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and especially in the study of condensed matter systems and quantum computation (e.g.
[127, 155, 156, 51, 52]).

Rather than re-define fusion categories, we recommend the enthusiastic physics reader
to check out [12] for the definitions of a fusion category (called a “symmetry category”
there) and to Section 3 of [130]. For the reader in a hurry, we recommend Section 5 and
Appendix A of [87].

4.2.1 CFT and Defect Partition Functions

Since a defect is an inhomogeneity in our system, part of defining a line defect in 2d involves
specifying boundary conditions for fields on either side of the defect line. We can do this
in a 2d CFT by describing how it acts on states of the Hilbert space.

In a 2d CFT on the plane, any defect line X defines an operator X̂ on the Hilbert space
H of states on a circle, which acts as follows: place a state ϕ ∈ H at the origin and the
defect on the unit circle. Then the state that this setup provides is by definition X̂ϕ ∈ H
[38]. Said more cylindrically, prepare the state ϕ in the infinite past and have the defect
line waiting “half way” up the cylinder, then the out state is by definition X̂ϕ.

From this, we obtain a very algebraic definition of a topological defect line as one that
commutes with all the modes of the stress tensor

[L̂n, X̂] = 0 = [ ˆ̄Ln, X̂] . (4.1)

The topological defect line X does not need to lie on a closed path. However, if we do
have a defect line along an open oriented path, then we will also have to specify how the
line operator ends. The Hilbert spaceHX of operators upon which X can end is the Hilbert
space of the theory on a circle, except with a single future oriented X defect piercing the
circle.

To obtain the CFT partition functions, we simply periodicitize time in the cylinder
setups. The partition function with the X line inserted along a spacelike slice (a twist in
Euclidean time) is given by

ZX(τ, τ̄) := TrH X̂q
L0− c

24 q̄L̄0− c
24 , (4.2)

where q := e2πiτ . Likewise, the partition function with the X line inserted along a timelike
slice (a twist in space) is given by

ZX(τ, τ̄) := TrHX
qL0− c

24 q̄L̄0− c
24 . (4.3)
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X X

Figure 4.1: On the left, an X defect line (red) is inserted along a spatial slice, this gives
a “twist” by X in the time direction. On the right, the defect line is inserted along the
time direction. Periodicitizing this setup on the right, we get the trace over the X-twisted
Hilbert space HX .

We illustrate these setups in Figure 4.1. Note that the two are related by the modular S-
transformation τ 7→ − 1

τ
(and similarly for antiholomorphic), because the S-transformation

swaps the two torus cycles.

As an almost trivial example, ifX− is a topological defect line generating a Z2 symmetry,
then, basically by definition, if ϕi is charged under the Z2 symmetry we have

X̂− |ϕi⟩ = − |ϕi⟩ . (4.4)

When tracing over the states in the Hilbert space to obtain ZX−(τ, τ̄), for example, we will
need to consider the signs from the charged states.

When studying a RCFT, another natural collection of topological defects comes from
Verlinde line operators [92, 119, 130]. Verlinde lines are in one-to-one correspondence with
primaries, and for a diagonal RCFT, a Verlinde line Xi commutes with the whole chiral
algebra and acts on a primary by

X̂i |ϕj⟩ =
Sij

S0j

|ϕj⟩ , (4.5)

where Sij is the modular S-matrix of the CFT. It is a straightforward application of
Verlinde’s formula to show that the Verlinde lines then fuse according to the fusion rules
of the associated primaries, i.e.

Xi ⊗Xj =
⊕
k

Nk
ijXk . (4.6)
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ϕ
X =

Xϕ ϕ
X =

1

dimX

 Xϕ
X

 +
ϕ′

X

X

Figure 4.2: On the left, a topological defect lineX encircles a ϕ insertion in the plane. Since
the line is topological, this is equivalent instead to the local operator Xϕ. On the right, a
topological defect line X sweeps past the ϕ insertion leaving behind a local operator and
a defect operator ϕ′. The defect operator is connected to X by a topological tail (dotted).

Given any topological defect line X encircling a local operator ϕ in the plane, we can
take an equivalent view where the line X squashes down leaving us with only the local
operator Xϕ in the plane. If, instead of a general ϕ, we had chosen the identity operator,
it’s clear we are just computing the expectation value of a loop of X in the plane, aka the
quantum dimension of X. Throughout, we will denote this as dimX rather than ⟨X⟩.

More generally, when a defect line X sweeps past a local operator ϕ, the result is not
necessarily a local operator, but can be written as a local operator plus a defect operator
ϕ′ that lies on the end of a topological tail adjoined to X, as depicted in Figure 4.2.

There are some interesting and important subtleties about all of this machinery, which
are described in Section 2 of [130]. We have overlooked them because they are not partic-
ularly pressing for our discussion, but we will mention two immediate ones.

The first is that the diagram on the right of Figure 4.2 simply does not reduce to the
diagram on the left, we are left with the naive answer plus a topological tadpole. The
vanishing of this tadpole can be proven if one assumes that the topological defect lines act
faithfully on the bulk local operators. This condition can be violated in the case the CFT
has multiple ground states, but such CFTs are just a direct sum of theories and won’t be
relevant for us.2

The second subtlety is that in 2d there are local curvature counterterms which may be
added to the action. Since we are only really concerned with producing torus partition
functions, this will not play any role because the torus is flat. In any case, following such
terms would just change overall phases.

2There exists some recent literature on this topic and its interplay with higher-form symmetries [87,
157, 158].
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4.2.2 Orbifolding Abelian Symmetries

To warm-up, consider a 2d CFT T on M with a global finite Abelian symmetry A. If the
symmetry is non-anomalous, then we can couple the theory to a background A-connection
in a well-defined way. Since A is finite, this connection is necessarily flat and is specified
by an α ∈ H1(M,A) which labels the holonomies around the different cycles of M .

Framed in terms of topological defects, we can represent a background A-connection
by a network of topological A-defect lines meeting at trivalent junctions (see [25] and
diagrams within for an introduction). When a local operator passes the topological defect
line labelled by g ∈ A, it applies the appropriate (linear) g-action.

For each background connection α ∈ H1(M,A) we obtain a “twisted partition func-
tion” of the theory ZT [α], which is like the “regular” partition function with (invertible)
topological symmetry defect lines inserted around non-contractible loops. For example, on
the torus, we have the |A|2 twisted partition functions

ZT [g, h] := TrHg X̂hq
L0− c

24 q̄L̄0− c
24 . (4.7)

Here g, h ∈ A, Hg = HXg is the g-twisted Hilbert space, and we have suppressed depen-
dence on τ and τ̄ .

The orbifold theory [T/A] is the theory obtained by gauging the discrete A symmetry
of T . As is familiar from the path integral, gauging a symmetry is making the background
connection dynamical, so the orbifold is obtained by summing over the twisted partition
functions. Moreover, when we orbifold there is an emergent dual symmetry, given by
the Pontryagin dual Â of A, which comes from the action of the Wilson lines for the A
gauge fields [40]. This new dual symmetry can be coupled to a background flat connection
β ∈ H1(M, Â), and we obtain a formula relating the twisted partition functions in the
different theories

Z[T/A][β] =
1√

|H1(M,A)|

∑
α∈H1(M,A)

ei(β,α)ZT [α] . (4.8)

The exponential denotes the intersection pairing between H1(M,A) and H1(M, Â). Non-
Abelian symmetries can be treated with only a bit more work.3

Equation (4.8) is not necessarily the most general possible way to orbifold by a symme-
try. In particular, one can include extra U(1) weights ϵ(α) in front of the twisted partition

3Even more generally, we can gauge by “symmetric Frobenius algebras” in a theory with fusion cate-
gory symmetry by inserting the corresponding triangulating trivalent mesh of topological defect lines as
described in [38, 159, 12]. We discuss fusion categories more in Section 4.2.4.
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functions, and still obtain a gauge invariant partition function. In the CFT language, such
a choice is known as a choice of “discrete torsion” [46, 55, 47]. Such a choice of U(1) phase
is classified by a group cohomology class ν2 ∈ H2(A,U(1)), so that most generally we have

Z[T/ν2A][β] =
1√

|H1(M,A)|

∑
α∈H1(M,A)

ei(β,α)ϵν2(α)ZT [α] . (4.9)

ϵν2 is obtained from ν2 by evaluating it on a triangulation of M , e.g. on the torus with
fluxes in the cycles given by (α1, α2), so ϵν2(α1, α2) = ν2(α1, α2)/ν2(α2, α1).

The two (commensurate) modern viewpoints on this discrete torsion phase are as fol-
lows: Anomalies of 2d theories manifest as phase ambiguities in coupling T to a background
connection, which in turn are encoded in a cohomology class µ3 ∈ H3(A,U(1)). When a
theory is non-anomalous, we don’t just need to know that the cohomology class is trivial,
but must pick a trivialization ν2 ∈ H2(A,U(1)) that consistently resolves all phase am-
biguities. Alternatively, we may view the phase as the partition function for a 2d SPT
phase ϵν2(α) ∼ eiSν2 [α]. Then orbifolding with discrete torsion is equivalent to taking a
non-anomalous theory T , with phase ambiguities already resolved, and then stacking with
such a 2d SPT phase before orbifolding [28, 32] (see also [20]).

Example: Z2 Orbifold

To get a better appreciation of what happens at the level of the Hilbert spaces, and see
where the dual symmetry comes from, consider a theory T with a non-anomalous (bosonic)
Z2 symmetry. The untwisted orbifold partition function on the torus is

Z[T/Z2][0, 0] =
1

2

∑
g,h∈Z2

ZT [g, h] (4.10)

=
∑
g∈Z2

TrHg

[(
X̂+ + X̂−

2

)
qL0− c

24 q̄L̄0− c
24

]
. (4.11)

The term in round brackets just projects us onto the states which are invariant under the
Z2 symmetry when we trace over Hg. This shows that the operators that contribute to the
untwisted orbifold partition function are those in both the untwisted and twisted Hilbert
spaces, H+ and H− respectively, but only those which are invariant under the Z2 action.

Said differently, we can decompose these Hilbert spaces into sums of even and odd
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subsectors

H+ = HEven
+ ⊕HOdd

+ , (4.12)

H− = HEven
− ⊕HOdd

− . (4.13)

Then the untwisted orbifold Hilbert space contains just even (i.e. gauge-invariant) opera-
tors, while the twisted orbifold Hilbert space contains just odd operators

HEven
Orbi. = HEven

+ ⊕HEven
− , (4.14)

HOdd
Orbi. = HOdd

+ ⊕HOdd
− . (4.15)

Hence we see the emergent Ẑ2 symmetry appear in the definition of this new twisted
orbifold Hilbert space. For A = Zm orbifolds we have to replace “Even” and “Odd” by the
appropriate Zm projectors, which are labelled by representations of A, i.e. elements of Â.

4.2.3 Example: The Ising CFT

Consider the (full) c = 1
2
Ising CFT, which describes the Ising model at criticality. The

theory has 3 Virasoro primaries: the identity operator 1, the energy operator ϵ, and the
spin operator σ, with conformal weights (h, h̄) = (0, 0), (1

2
, 1
2
), ( 1

16
, 1
16
) respectively [21].

The fusion rules are

[σ][σ] = [1]⊕ [ϵ] , [σ][ϵ] = [σ] , [ϵ][ϵ] = [1] . (4.16)

The Ising CFT also has exactly 3 simple topological defect lines, these are the Verlinde
lines naturally associated with the 3 primaries: X1, Xϵ, and Xσ. They fuse according to
the fusion rules of the primaries in Equation (4.16) above, and so it is clear that the σ line
is not-invertible. The action of X1 on primaries is straightforward. Xϵ is the Z2 symmetry
line, so acts only non-trivially on the Z2 charged operator(s) (σ, ψ, ψ̄, etc.) as in Equation
(4.4). The action of Xσ on the Ising CFT primaries are depicted in Figure 4.3.

Famously, in the Ising model (not necessarily at criticality), the correlator of spins at
some inverse temperature β is equal to the correlator of disorder/twist operators at the
Kramers-Wannier dual inverse temperature β̃, i.e. ⟨σ(z1) · · · σ(zn)⟩β = ⟨µ(z1) · · ·µ(zn)⟩β̃.
This exhibits some duality between weak and strong couplings and can be used to under-
stand the critical point of the Ising model [139, 140] (see also [128, 129]).

However, the disorder fields µ are not local operators in the theory alone, but have to be
accompanied by a topological “line of frustration,” which has to end similarly on another
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σ
Xσ

=
µ

Xϵ
Xσ

Xσ
ϵ

Xσ
= −ϵ

Xσ

Figure 4.3: Left, the Xσ defect sweeps past a σ primary, turning it into the disorder
operator µ, plus a topological Z2 tail. Such a µ is traditionally called a “twist-field.”
Right, the Xσ defect sweeps past the relevant operator ϵ and turns it into −ϵ.

Z2 “twist-field.” In the CFT context above, this line of frustration is the Z2 symmetry line
Xϵ, and the Z2 twisted Hilbert space is Hϵ = span{µ, ψ, ψ̄}.

A statistical interpretation of the Xσ line is not immediately clear, but can be realized
by first studying how it acts on the primaries in the CFT picture. In particular, when we
sweep the Xσ line past a σ insertion, we are left with a µ insertion and a topological Xϵ

tail. But in the orbifold CFT [T/Z2], µ is a local operator (the Z2 line becomes invisible
when we gauge), and σ must be accompanied by a topological tail.

Moreover, when Xσ sweeps past an ϵ insertion, it leaves behind a −ϵ insertion. The
energy operator ϵ is a relevant operator in the Ising CFT and deformations by it flow the
Ising CFT to the high-temperature (unbroken) or low-temperature (broken) phases. The
action of Xσ reflects the fact that the Ising model and its orbifold see this deformation
oppositely. This also explains why Kramers-Wannier duality holds away from criticality.

For these reasons, Xσ is the archetypal duality defect. It extends the algebra of topo-
logical defects in the Ising model from a collection of Z2 group-like defects to a Tambara-
Yamagami category (see Section 4.2.4).

It is important to stress two basic facts about the duality defect line. The first is that
it is not the non-simple topological defect line XProj. := X1⊕Xϵ. Inserting a triangulating
mesh of XProj. into the original theory T just produces [T/Z2]. Indeed, Xσ separates the
theory T from [T/Z2]. The second basic fact is that it is not the orbifold duality defect
line XProj.... but it does square to it! This is important because when the Xσ line collides
with itself (e.g. when deformed around a cycle of the torus) it does produce a XProj. defect.

It is also instructive to compare the twisted and “defected” partition functions for this
theory. The twisted partition functions can be written in terms of the usual Virasoro
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characters as

ZT [0, 0] = |χ0|2 + |χ 1
2
|2 + |χ 1

16
|2 , (4.17)

ZT [0, 1] = |χ0|2 + |χ 1
2
|2 − |χ 1

16
|2 , (4.18)

ZT [1, 0] = χ0χ̄ 1
2
+ χ 1

2
χ̄0 + |χ 1

16
|2 , (4.19)

ZT [1, 1] = −χ0χ̄ 1
2
− χ 1

2
χ̄0 + |χ 1

16
|2 . (4.20)

While the defected partition function, with an Xσ inserted around the spatial S1, is easily
computable with the help of Equation (4.5) for Verlinde lines on primaries

ZT [0, Xσ] =
√
2|χ0|2 −

√
2|χ 1

2
|2 . (4.21)

Such a structure for the defect partition function is typical, and can be understood from
the second important fact about Xσ. Since Xσ ⊗Xσ = X1 ⊕Xϵ = XProj. we can compute

(without identifying Xσ with the Verlinde line) that X̂Proj. |ϕ⟩ = 2 |ϕ⟩ if ϕ corresponds to
a Z2 uncharged operator, and is 0 otherwise. This means that

X̂σ |ϕ⟩ = ±
√
2 |ϕ⟩ (4.22)

if ϕ is uncharged under the Z2, and is 0 otherwise. Hence the defected partition function
is just a sum over all of the uncharged primaries, and all we have to do is resolve a sign.

4.2.4 Fusion Categories for Physics

Here we will recap the pertinent properties of the 2 most important fusion categories for
our purposes: the fusion category of G graded vector spaces VecG and Tambara-Yamagami
categories TY(A,χ, τ).

Fusion Category: Graded Vector Spaces VecG

Given a finite symmetry group G, the topological defects associated to the symmetry group
form a unitary fusion category in a natural way. Simple objects of the category are oriented
lines labelled by group elements g, h ∈ G. If two such lines are brought sufficiently close
together, in parallel, with the same orientation, then they fuse according to the group
multiplication law

Xg ⊗Xh = Xgh for g, h ∈ G. (4.23)
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Xg Xh Xk

(Xg ⊗Xh)⊗Xk

= α(g, h, k)

XkXhXg

Xg ⊗ (Xh ⊗Xk)

Figure 4.4: Mathematically, the associator α is an element of Hom((Xg ⊗Xh)⊗Xk, Xg ⊗
(Xh⊗Xk)) that defines in what way the two tensor products are equal. Physically, given a
theory with non-trivializable anomaly α ∈ H3(G,U(1)), two networks of symmetry defect
lines can be different up to a U(1) phase.

The category is unitary because the orientation reversal of a line is (by definition) the
inverse X∗

g = X−1
g = Xg−1 .4

Given three simple lines labelled by g, h, k ∈ G, the data of an associator isomorphism
α is needed to relate the object (Xg⊗Xh)⊗Xk to Xg⊗ (Xh⊗Xk). In practice, this means
that there can be an overall phase ambiguity between the background connection depicted
with Xg and Xh fusing first or Xh and Xk fusing first as in Figure 4.4.

Such an α is required to satisfy the familiar “pentagon identity,” which asserts that
whatever α is, it must agree when we consider the multiple ways to fuse four G defects as
in Figure 4.5.5 In this case, such α are classified by an element of the group cohomology
H3(G,U(1)) (see e.g. [160, 24]). Such phase ambiguities in coupling a theory to a back-
ground G connection, which cannot be removed by adding local counterterms, are the ’t
Hooft anomalies from the physics literature.

All considered, such a collection of defects labelled by elements of G with a choice
of group cohomology class α ∈ H3(G,U(1)) form the fusion category VecαG of G-graded

4Since we are technically dealing with objects in a category, by = we mean that there exists a natural
isomorphism between objects in the category.

5Readers may be familiar with the data of an associator presented in the form of an F -symbol or
6j-symbol.
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(Xg ⊗Xh)⊗ (Xk ⊗Xℓ)

((Xg ⊗Xh)⊗Xk)⊗Xℓ Xg ⊗ (Xh ⊗ (Xk ⊗Xℓ))

(Xg ⊗ (Xh ⊗Xk))⊗Xℓ Xg ⊗ ((Xh ⊗Xk)⊗Xℓ)

αα

α⊗1

α

1⊗α

Figure 4.5: Given 4 defect lines Xg, Xh, Xk, and Xℓ, we only demand that the pentagon
diagram commutes. This is familiar to those in RCFT as the pentagon identity for F-
symbols.

vector spaces. In practice, we are going to be interested in the case where the symmetry in
question does not have an anomaly, so that we can orbifold by that symmetry, the fusion
category VecG.

It may not be a surprising fact, when paralleled with our discussion of coupling a
CFT in the regular group symmetry framework, that the group of “autoequivalences”
of the fusion category VecG (basically, automorphisms of VecG as a fusion category) is
Aut(G) ⋉ H2(G,U(1)). The Aut(G) roughly corresponding to renaming of G lines, and
H2(G,U(1)) corresponding to stacking with 2d SPT phases [12].

Fusion Category: Tambara-Yamagami TY(A,χ, τ)

In the previous subsubsection we started with a set of desired fusion rules (and unitary
structure) and then were left with classifying the associators compatible with those fusion
rules/unitary structure and pentagon identity. This is the same thing that Tambara and
Yamagami do in a ground-up approach in their seminal paper [161] (see also [162]), except
their fusion rules are minimally enriched by a duality defect.

Start with a finite Abelian group A, the simple objects of TY(A,χ, τ) are again associ-
ated with elements a ∈ A, but the fusion algebra is now extended by an additional object
m of quantum dimension

√
|A|.6 In addition to the familiar VecA fusion rules, we also

6In fact, such a fusion ring makes sense if the group is not Abelian, but it is only categorifiable if A is
Abelian (see [34] Example 4.10.5).
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demand

Xa ⊗Xm = Xm , (4.24)

Xm ⊗Xm =
⊕
a∈A

Xa . (4.25)

What Tambara and Yamagami show, by direct computation, is that the data of poten-
tial associators is classified by a symmetric non-degenerate bicharacter χ : A×A→ U(1),
and a sign or “Frobenius-Schur indicator” τ = ±1/

√
|A| [161, 162] (see also [163, 12, 80,

129]). In particular, the non-trivial associators are

αa,m,b = χ(a, b)1m , (4.26)

αm,a,m =
⊕
b

χ(a, b)1b , (4.27)

αm,m,m = (τχ(a, b)−1 1m)a,b . (4.28)

A first point of note, which will be relevant later, is that TY categories are a Z2-
extension of VecA. In general, a G-extension of a fusion category D is a G-graded fusion
category

F =
⊕
g∈G

Fg , (4.29)

satisfying Fe
∼= D.

Another thing to note is that χ : A×A→ U(1), as opposed to the more familiar pairing
of A with Â. This means χ is an assignment of (magnetic) A charges to A defect lines, in
contradistinction to the natural Fourier-like pairing in orbifolds ρ : A×Â→ U(1). Pushing
further, a bicharacter χ defines a homomorphism A→ Â, and non-degeneracy implies that
this is an isomorphism. Since T and [T/A] have A and Â symmetry respectively, this χ
reflects the freedom of choice in picking an isomorphism from A to Â (or rather reflects the
non-canonicality of A ∼= Â). By the same logic, χ determines an isomorphism from Â→ A,
and while A and its dual Â are not canonically isomorphic, A is canonically isomorphic

to its double dual
ˆ̂
A. The symmetric property ensures that whatever isomorphism χ

determines from A to Â, and Â to A, that it respects the canonicality A =
ˆ̂
A i.e. it is

honestly the identity on A and not some random automorphism of A.

The role of τ is less physically obvious, and shows up in the crossing relations for m
[80]. It originates categorically as an associativity-like constraint similar in spirit to the
associator in VecαA [163], but could be better understood physically.
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As a closing remark, the Ising Fusion category that we are familiar with forms TY(Z2, 1,+1/
√
2)

(see Section 4.1 of [80] for elaboration).

4.3 Duality Defects in (E8)1

The main goal of this chapter is to classify and construct Zm duality defects in the chiral
WZW-model (E8)1. Said differently, we want to understand the actions of Zm Tambara-
Yamagami categories on the holomorphic lattice VOA VE8 .

Vertex Operator Algebras are widespread in physics as the axiomatization of “chiral
algebras,” which glue together to form a “full CFT” in two dimensions. We refer readers
to the standard mathematical texts on VOAs [164, 165, 166, 167, 168] or any standard
textbook on 2d CFT or string theory for an introduction (a nice review for both commu-
nities appeared in [169]). Lattice VOAs are also prominent in the physics literature, but
understanding subtleties of their construction, automorphisms, and characters is important
for our purposes, so we review them briefly in the following sections. Some particularly
helpful reviews on lattice VOAs besides those already listed include [170, 171, 172, 173].

4.3.1 Lattice Vertex Operator Algebras

Given a positive definite even lattice L one can construct a lattice VOA VL. Mathemat-
ically, VL = Mĥ(1) ⊗ Cϵ[L] where the first factor is the “Heisenberg VOA” describing
oscillator modes of chiral bosons (also called Bos(h)), and the second factor is the “twisted
group algebra” describing “quantized momentum.”7

We start the construction with the quantized momentum modes: for every vector α ∈ L
we have a state |α⟩ which is created by the vertex operator Γα. By definition, the states
are orthonormal ⟨α|β⟩ = δαβ. There are also chiral bosonic oscillators ain, n ∈ Z and
1 ≤ i ≤ rk(L), satisfying the usual Heisenberg commutation relations

[aim, a
j
n] = mδijδm+n,0 , (4.30)

with ai†m = ai−m.

Combining the two, the positive oscillator modes should annihilate the |α⟩

ain |α⟩ = 0 , if n > 0, (4.31)

7See e.g. Section 5 of [173] and references listed within for the formal mathematical construction of
these objects and proof VL is rational, C2-cofinite, self-contregredient, and of CFT type.
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and ai0 should actually behave as the momentum operator, i.e.

ai0 |α⟩ = αi |α⟩ . (4.32)

The physical Hilbert space is thusly generated by the ai−n, n > 0, acting on the |α⟩, so
that a general basis state is of the form

aiN−nN
· · · ai2−n2

ai1−n1
|α⟩ . (4.33)

Such a state has integral conformal weight

h =
1

2
(α, α) +

N∑
i=1

ni , (4.34)

where ( . , . ) denotes the inner product on the lattice L.

As mentioned, the vertex operator Γα creates the state |α⟩, and one expects that
ΓαΓβ ∝ Γα+β. However, asking for Γ to be a representation of the lattice is too strong;
locality requires us to consider projective representations, i.e.

ΓαΓβ = ϵ(α, β)Γα+β , (4.35)

where ϵ : L × L → {±1} is a (normalized) 2-cocycle satisfying ϵ(α, β) = (−1)(α,β)ϵ(β, α).
This skew condition on the 2-cocycle determines ϵ up to a coboundary, and so ϵ ∈
H2(L, {±1}), which will play a role for us in understanding automorphisms.8

When L is the root lattice of a simply laced Lie algebra g, this construction gives a
vertex-representation of the ĝ1 WZWmodel (see e.g. Section 15.6.3 of [5]). In this case, the
sign ambiguities which occur in trying to build VL from the root lattice L are precisely the
same as those in trying to build the Lie algebra g from L. For non-simply laced algebras
(or when the level k > 1), one must add a free fermion (or parafermion) respectively.

Up to isomorphism, the untwisted irreducible modules of VL are labelled by elements
of the discriminant group DL := L∗/L, here L∗ is the dual lattice to L [175]. The MTC
of representations Rep(VL) has DL group-like fusion in the obvious way. For some λ ∈ L∗,
the character of the irreducible VL-module Vλ+L

χVλ+L
(τ) = trVλ+L

qL0− c
24 =

θλ+L(τ)

η(τ)rk(L)
, (4.36)

8In other words, the Γα furnish, at minimum, a representation of a double cover L̂ of the root lattice
L. The freedom of choice in ϵ (due to the central extension defining the double cover not splitting) reflects
the fact that there is no functor from root lattices to vertex algebras, i.e. a choice of ϵ is required [174].
Double covers of L coming from differing choices of ϵ are isomorphic, which is why one can non-canonically
write VL = Mĥ(1)⊗ C[L] if they settle some signs once and for all.
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where θλ+L(τ) is the theta function of the shifted lattice λ+ L, i.e.

θλ+L(τ) =
∑

ξ∈λ+L

q
1
2
(ξ,ξ) . (4.37)

Example: VE8 as a VE8 Module

The E8 root lattice is positive-definite, even, and self-dual, therefore VE8 itself is the only
irreducible VE8 module (aka the “adjoint module”). VOAs whose only irreducible module
are the adjoint module are called holomorphic, i.e. Rep(VE8) = Vec.

Using the description of the E8 lattice as points in Z8 ∪(Z+1
2
)8, whose coordinates sum

to an even integer, we obtain the E8 partition function

trVE8
qL0− c

24 =
1

η(τ)8

∑
ξ∈E8

q
1
2
(ξ,ξ) (4.38)

=
1

2η(τ)8

∑
x∈Z8

(
1 + (−1)

∑
xi
) (
q

1
2

∑
x2
i + q

1
2

∑
(xi+

1
2
)2
)

(4.39)

ZE8(τ) =
1

2η(τ)8
(
θ1(τ)

8 + θ2(τ)
8 + θ3(τ)

8 + θ4(τ)
8
)

(4.40)

Note: even though this expression is not modular invariant, since cL−cR ∈ 8Z its modular
non-invariance can be cured by a (2+1)d gravitational Chern-Simons term [176, 95] (see
[150] for a recent discussion).

4.3.2 Automorphisms and Twisted Partition Functions

Describing Automorphisms

Recall that a VOA V has an automorphism/symmetry given by an (invertible) linear map
ĝ : V → V , if the action of ĝ preserves the vacuum ĝ |0⟩ = |0⟩, preserves the (chiral)
stress-tensor ĝT (z) = T (z), and commutes with the state operator map

(ĝϕ)(z) = ĝϕ(z)ĝ−1 . (4.41)

Suppose VL is a lattice VOA constructed from the even lattice L. The subgroup of
Aut(VL) which maps the subalgebra of bosonic oscillators to itself is given by the (usually)
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non-split extension T.O(L). Here O(L) are the symmetries of the lattice itself and T :=
Rrk(L) /L∗ is the torus dual to L. T carries the natural action of O(L) viewed as a subgroup
of O(rk(L),R) [177].

The subgroup T < T.O(L) acts trivially on the bosonic oscillators, and simply modifies
the group algebra of quantized momentum modes by phases. That is, for any x ∈ T we
have the induced map

ain 7→ ain , (4.42)

Γα 7→ e2πi(x,α)Γα . (4.43)

Note again that this map is actually trivial if x ∈ L∗, and so we are only interested
in xmodL∗. Conversely, the O(L) factor acts on the bosons and also permutes the Γα

[178, 177, 173, 172, 179] (see also Section 4.4 of [180]).

In this vein, suppose g ∈ O(L) is any automorphism of the lattice L, then g preserves
the skew form (−1)( · , · ). Since the skew condition determines the 2-cocycle ϵ up to a
2-coboundary, we see that ϵ(α, β) and ϵ(gα, gβ) are in the same cohomology class; and so

ϵ(α, β)

ϵ(gα, gβ)
=
u(α)u(β)

u(α + β)
, (4.44)

for all α, β ∈ L and some 1-cocycle u : L→ {±1}.
It is a classic result that such a g ∈ O(L) and choice of 1-cocycle u define a lift to an

automorphism ĝu ∈ T.O(L) < Aut(VL) [178, 177]. This automorphism also acts in a nice
way

ĝu(an) = (ga)n , (4.45)

ĝuΓα = u(α)Γgα . (4.46)

Furthermore, one can always choose “a standard lift” such that u(α) = 1 on Lg [178]. We
will not work with standard lifts right away, but with foresight we quote the fact that: any
two standard lifts are conjugate in Aut(VL) [172].

9

Given a positive definite even lattice L and a lifted automorphism ĝu ∈ Aut(VL), the
irreducible ĝu-twisted modules can be constructed and classified similar to the untwisted

9The term standard lift is a bit of a misnomer and does not have the properties one might expect: for
example, there can be more than one “standard” lift; moreover, since the extension T.O(L) is not split
(i.e. it is not a semi-direct product), the product of standard lifts is not necessarily standard. All of this
richness can be traced back to the fact that there is no canonical way to construct a Lie algebra and lattice
VOA from the root lattice L. For further discussion see [172, 173, 174] and references within.
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modules [181, 182, 173]. In short, they are labelled by elements of the discriminant L∗/L
fixed under the g action. i.e. they are of the form Vλ+L, where λ + L ∈ (L∗/L)g = {λ ∈
L∗/L : (1−g)λ ∈ L}.

The twisted characters are

trVL
ĝuq

L0− c
24 =

θLg ,u(τ)

ηg(τ)
, (4.47)

where we’ve defined the generalized theta function

θLg ,u(τ) :=
∑
α∈Lg

u(α)q(α,α)/2 . (4.48)

The eta product ηg(τ) is given by

ηg(τ) :=
∏
t|m

η(tτ)bt , (4.49)

when g ∈ O(L) has cycle shape
∏

t|m t
bt . The cycle shape can be determined by calculating

the characteristic polynomial of the matrix representing the automorphism, which is of the
form

∏
t|m(λ

t − 1)bt .

More physically, factors of η(τ) arise in characters/partition functions from the contri-
butions of each independent tower of (chiral) bosonic modes. If g is, for example, a Z2

symmetry swapping the a1m and a2n towers, then one expects to get factors of η(2τ) in the
vacuum character of the invariant sub-VOA due to the “extra length” of the combined
Z2-invariant tower.

Finally, given an order m automorphism g ∈ O(L), a standard lift ĝu ∈ Aut(VL) has:
order m if m is odd; order m if m is even and (α, gm/2α) ∈ 2Z for all α; and order 2m
otherwise (see e.g. Corollary 5.3.6 of [173]).

All of these technicalities about canonicality, lifts, and order doubling may seem overkill,
but actually plays an important role in constructing as many duality defects as possible.

Finding Automorphisms

To understand how to find automorphisms of lattice VOAs, it is helpful to expand on the
structure of the automorphism group of a VOA and its relationship to Lie algebras and
physics.

105



We use the following fact for orientation: For a VOA V of “CFT-type” (like lattice
VOAs or the Monster), the weight one subspace V1 is a (possibly trivial) complex Lie
algebra with bracket [u, v] = u0v. Moreover, all the weight spaces of V -modules are Lie
algebra modules for V1 (including the weight spaces of the adjoint module, i.e. the Vn), so
that we can see the VOA and its modules as strata of V1 Lie algebra modules [183]. From a
physics perspective, we are not surprised that the currents form a Lie algebra under which
things transform, this is just Noether’s theorem and Wigner’s theorem.

There are two extreme examples for the Lie algebra V1 in relation to V : the symmetry
currents V1 generate V and Aut(V1) ∼= Aut(V ), as in affine Kac-Moody VOAs or their
semi-simple quotients; or alternatively, there are no currents and V1 = 0, as with the
Virasoro algebra Aut(Vir) = {1}, and the Monster CFT Aut(V ♮) = M [177].

The key move is to note that any automorphism/symmetry ĝ ∈ Aut(V ) restricts to
a Lie algebra automorphism of V1.

10 Hence we ask: to what extent can we understand
Aut(V ) by lifting automorphisms of the Lie algebra Aut(V1)?

The answer to this question is known for lattice VOAs. For lattice VOAs, the weight
one subspace is

(VL)1 = H⊕
⊕
α2=2

C{Γα} , (4.50)

where H is a Cartan subalgebra spanned by the weight-1 chiral bosons and the C{Γα}
play the role of the root spaces. The exact Lie algebra structure constants depend on the
choice of ϵ, but all choices are isomorphic to a Lie algebra g with root lattice L.

Using this, in [177] the authors prove that Aut(VL) is a non-split product

Aut(VL) = K.O(L̂) , (4.51)

whereK = ⟨{eu0 : u ∈ (VL)1}⟩ is the inner automorphism group generated by (exponentials
of) “currents.” In other words, we have that der(VL) := Lie(Aut(VL)) = g, and so we will
be interested in finite order automorphisms of g.11 Note that what we called T before is
the maximal toral subgroup, i.e. T = ⟨{eu0 : u ∈ H}⟩.

Beautifully, conjugacy classes of finite order automorphisms of (semi-)simple Lie alge-
bras were classified by Kac [184, 185] (also see Section 8.3.3 of [174] and [173] for examples).

10A supersymmetry would relate operators of V1 to operators with different spins.
11If we were studying the derivations of a non-rational VOA, whose representations need not form an

MTC and thus not be so discrete, its possible that der(V ) isn’t entirely formed by currents. In this case we
could ask about infinitesimal outer automorphisms out(V ) := der(V )/{currents} = der(Rep(V )), which
correspond to smooth deformations of the representation category. This is not exotic: consider n free
chiral bosons, V = Bos(n), in this case Aut(Rep(V )) ∼= O(n).
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This includes both inner and outer automorphisms! Even better, the classification gives
an easy way to read off the fixed point Lie subalgebra under that symmetry! The theorem
is as follows:

Theorem 1 (Theorem 8.6, [185]). Let g a finite dimensional simple Lie algebra with

Dynkin diagram Xn, choose k = 1, 2, 3 and write X
(k)
n for the corresponding affine Dynkin

diagram (or “twisted Dynkin diagram” if k > 1) with ℓ+1 nodes. Then choose non-negative
relatively prime integers s = (s0, · · · , sℓ) and set

m = k
ℓ∑

i=0

aisi , (4.52)

where ai are the marks of X
(k)
n . Then the following statements are true:

1. The choices (k, s) define an order m automorphism gk,s ∈ Aut(g). For k = 1, if one
chooses a set of simple roots and works in the usual Chevalley basis, the action is
given by

g1,s(E
j) = e2πisj/mEj . (4.53)

For k = 2, 3 the definition of Ej is slightly more complicated (see [185]).
2. Up to conjugation, all order m automorphisms of g are obtained this way.
3. Two automorphisms gk,s and gk′,s′ obtained in this way are conjugate by an automor-

phism of g if and only if k = k′ and the sequence s can be transformed into s′ by an
automorphism of the diagram X

(k)
n .

4. The number k is the least positive integer for which gkk,s is an inner automorphism.
i.e. k = 1 automorphisms are inner, and k = 2, 3 automorphisms are outer.

5. Let i1, · · · , ip be all the indices such that si1 = · · · = sip = 0. Then the fixed-point
Lie subalgebra ggk,s is isomorphic to a direct sum of: the (ℓ− p)-dimensional center
∼= Cℓ−p, and a semisimple Lie algebra whose Dynkin diagram is the subdiagram of
the affine diagram X

(k)
n consisting of the nodes i1, · · · , ip.

Kac’s theorem is great for 3 purposes: enumerating finite order automorphisms of g,
finding the fixed Lie subalgebra ggk,s , and understanding the systematic construction of
x ∈ T < Aut(VL) describing inner automorphisms of lattice VOAs like Equation (4.43). In
particular, for an order m inner automorphism, x is constructed from the sequence s using
the basis of fundamental weights ω1, . . . , ωl, dual to the basis of simple coroots:

x =
1

m

l∑
j=1

sj ωj . (4.54)
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On the other hand, it is systematically easier for calculations of twisted characters of
outer automorphisms to use a slightly different procedure from [179], which we describe in
the remainder of this section.

Let VL be a lattice VOA and fix a choice of Cartan subalgebraH of (VL)1 as in Equation
(4.50), further fix a choice of simple roots ∆. Then it can be shown that: up to conjugacy,
every finite-order σ̂ ∈ Aut(VL) is of the form

σ̂ = e2πi(x, · ).ĝ (4.55)

where ĝ is a (fixed) choice of standard lift of g ∈ H∆ and x ∈ Lg ⊗ Q is some phase
understood modulo (Lg)∗. By H∆ := O(L){∆} we mean the setwise stabilizer of ∆ in
O(L), note that H∆

∼= O(L)/W which is in turn isomorphic to the automorphism group
of the Dynkin diagram associated to L, its just key that we’ve fixed a base ∆. See [177]
and Theorem 2.13 of [179] for details.

This theorem allows for a simple computation of the σ̂-twisted traces

trVL
σ̂ qL0− c

24 =
1

ηg(τ)

∑
α∈Lg

e2πi(x,α)q(α,α)/2 . (4.56)

Importantly, if σ̂ is built from the standard lift ĝ of g ∈ O(L) as above, then σ̂ has
order |g| if and only if

x ∈

{
0 + (1/m)(L∗)g and |ĝ| = m

ζ + (1/m)(L∗)g and |ĝ| = 2m
(4.57)

where ζ ∈ (1/2m)(L∗)g.

The short of all this is that: rather than studying finite order automorphisms of (VL)1
and lifting to automorphisms of the VOA, we can take a more ground-up approach. For
example, suppose we want to find all σ̂-twisted characters of a VOA VL up to conjugacy,
and we want σ̂ to have order 2. Then we fix a set of simple roots for L and enumerate all
g ∈ H∆ of order 1 or 2. For each g, we make some choice of standard lift ĝ ∈ Aut(VL), so
ĝ has order 1, 2, or 4. Then we enumerate all inner automorphisms of order up to 4 (by
making choices of vectors x as described previously). Finally, we combine all of our choices
as in (4.55), and throw away whichever do not have order 2. The theorem guarantees that
we have produced all σ̂ of order 2 up to conjugacy.
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4.3.3 Orbifolds of VE8

Now that we understand automorphisms of lattice VOAs, we may study their associated
orbifolds. Throughout, let V := VE8 be the holomorphic VOA12 constructed from the E8

root lattice L as in Example 4.3.1. V is the unique (up to isomorphism) holomorphic CFT
with chiral central charge cL = 8, and gauging by any non-anomalous Zm symmetry will
simply produce another holomorphic CFT with the same central charge, so [V/Zm] ∼= V .

For this reason, computing orbifold partition functions isn’t particularly illuminating,
they are all just as in Equation (4.40). However, while the orbifold theory [V/Zm] is
isomorphic to V , they are not identical (just as in the Ising model). To appreciate this, we
should look at what it means to orbifold V at the level of lattices.

For this, we will follow the conventions of [186]. In particular, L will be spanned by
simple roots

α1 = (−1, 1, 06),
α2 = (0,−1, 1, 05),

...

α7 = (06,−1, 1),

α8 =

(
1

2

5

,−1

2

3
)
,

(4.58)

which fit into the Dynkin diagram

α1 α2 α3 α4 α5 α6 α7

α8

. (4.59)

This diagram can be extended to its affine version with the help of the highest root

αhigh = 2α1 + 3α2 + 4α3 + 5α4 + 6α5 + 4α6 + 2α7 + 3α8 , (4.60)

which yields

(−αhigh) α1 α2 α3 α4 α5 α6 α7

α8

. (4.61)

12Also simple, rational, C2-cofinite, self-contregredient, CFT-type. We will ignore such technical details
from here out in this section.
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Now, let G = ⟨gs⟩ ∼= Zm be a subgroup of T < Aut(V ) generated by the sequence s
as in the previous section (and with k = 1) i.e. G acts by a phase on the group algebra.
Explicitly, write x :=

∑
xjωj with xj := sj/m, then

ain 7→ ain ,

Γα 7→ e2πi(x,α)Γα ,
(4.62)

with (x, αi) ≥ 0, (x, αhigh) ≤ 1, and xi ∈ 1
m
Z.

Such a symmetry is non-anomalous and can be orbifolded if we can extend the invariant
sub-VOA V G by twisted sectors to a distinct VOA.13 In physics terms, the orbifold Hilbert
space is obtained as an extension of the subspace of unscreened/invariant operators, as in
Equation (4.14) for a Z2 symmetry. The anomaly classifies the obstruction to this extension
procedure.

The group action above leaves the chiral Cartan bosons unscreened as well as the vertex
operators with (x, α) ∈ Z. This last condition distinguishes a sublattice L0 ⊂ L of index
m, so that the fixed sub-VOA V G is the lattice VOA constructed from L0. Said in reverse,
rk(L0) = rk(L) both define the same Heisenberg module of chiral bosons, but in V G only
the momentum states corresponding to L0 are admissible.14

Our question then becomes: can we extend L0 to an even self-dual lattice L′, distinct
from L, inside L∗

0?
15 This can be depicted

L0

⊆

⊆

L = L∗

L′ = L′∗ ⊆

⊆
L∗
0 . (4.63)

Such an L′ exists (and is unique) if and only if

q(x) :=
(x, x)

2
∈ 1

m
Z . (4.64)

Generally, q(x) ∈ 1
m2 Z because mx ∈ L, so the anomaly class is the class

[q(x)] ∈
(

1

m
Z
)
/

(
1

m2
Z
)
∼= Zm . (4.65)

13Note: If V is a lattice VOA, then under an inner automorphism the fixed sub-VOA V G is always
another lattice VOA.

14Note: in the mathematics literature, V G is often called the “orbifold VOA,” but we will always mean
the full extension.

15Dropping the even requirement is how one produces fermionic orbifolds.
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[V/Zm] [V/Zm]
1 · · · [V/Zm]

m−1

V H0
0 H1

0 · · · Hm−1
0

V1 H0
1 H1

1 · · · Hm−1
1

...
...

...
. . .

...
Vm−1 H0

m−1 H1
m−1 · · · Hm−1

m−1

Table 4.1: The holomorphic VOA V decomposes as a direct sum of the untwisted Hilbert
spaces, where the upper grading denotes the “electric” Zm charge. The orbifold VOA
decomposes as a direct sum of the gauge invariant Hilbert spaces, where the lower index
grading denotes the dual “magnetic” Ẑm charge.

Note: H3(Zm, U(1)) = Zm, so the matchup with anomalies is evident.

In the language of VOAs we are just saying that the irreducible representations Irr(V G)
have group like fusion, with a fusion group given by a central extension of Zm by Zm,
reflecting the structure of L∗

0/L0 when we try to factor through L. The structure of the
fusion group is controlled by a class living in H2(Zm, Ẑm) = Zm, but should not be confused
with the group of anomalies. The anomaly does influence this group, but the map between
anomalies and fusion rules is not 1-to-1 (see [172]), as can be seen in following examples
with Z2. However, in the case that G acts non-anomalously, then Irr(V G) = Zm×Zm for
sure.

If we suggestively label the elements of Irr(V G) as Hi
j, mimicking the decomposition

following Equation (4.12), then Irr(V G) can be organized like Table 4.1. The original VOA
decomposes into the “electrically charged” sectors

V =
m⊕
i=1

Hi
0 , (4.66)

and the orbifold VOA, if it exists, decomposes into the “magnetically charged” sectors as

[V/Zm] =
m⊕
j=1

H0
j . (4.67)

Each of the Hi
j ∈ Irr(V G) is associated with a coset of L∗

0/L0, and the discriminant q(x)
is simply telling us the conformal weight in that sector. In the non-anomalous case, the
conformal weight of a vector in Hi

j is
ij
m
+Z which gives Irr(V G) the structure of a “metric

Abelian group” (see Section 4 of [173] for more details).
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We record the automorphisms of V , anomaly, and corresponding Lie algebra for small
m in Table 4.2. In Table 4.3 we record just the non-anomalous symmetries with the marked
Dynkin diagram.

Example: Z2 Orbifold of VE8

Let V := VE8 throughout. By Kac’s theorem and the discussion of Section 4.3.2, V has
two automorphisms of order 2 up to conjugacy (see Table 4.2). Call the non-anomalous
one 2A and the anomalous one 2B, they are generated by

xA :=
1

2
ω7 (4.68)

xB :=
1

2
ω1 . (4.69)

Let us start with the 2A symmetry. In this case, our fixed sub-VOA is V ZA
2 = VD8 .

To see this at the level of lattices, first note (xA, αi) = 0 for all i except i = 7, so
the only nontrivial action is Γα7 7→ −Γα7 . Vertex operators like Γ2α7 do remain in-
variant though, so the invariant VOA is the lattice VOA constructed from the span of
{α1, . . . , α6, 2α7, α8}. The reason why Kac’s theorem works is because of the form of the
highest root αhigh in Equation (4.60), which guarantees that the fixed sublattice is also
spanned by {α1, . . . , α6,−αhigh, α8}. It is then clear from the way these vectors fit inside
of the affine Dynkin diagram in Equation (4.61) that they span a D8 lattice.

Since 2A is non-anomalous, the preceding discussion tells us that the fusion group is a
metric Abelian group Irr(V ZA

2 ) = Z2×Z2 with two isotropic subgroups. To see this at the
level of lattices, we note that the E8 lattice can be presented as the span of the rows of

2 0 0 0 0 0 0 0
−1 1 0 0 0 0 0 0
0 −1 1 0 0 0 0 0
0 0 −1 1 0 0 0 0
0 0 0 −1 1 0 0 0
0 0 0 0 −1 1 0 0
0 0 0 0 0 −1 1 0
1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2


, (4.70)

as in Chapter 4 of [186] (these are not roots). Similarly, the D8 lattice and D∗
8 lattice can
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be written as the span of the rows of

−1 −1 0 0 0 0 0 0
1 −1 0 0 0 0 0 0
0 1 −1 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 1 −1 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 1 −1 0
0 0 0 0 0 0 1 −1


and



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2


(4.71)

respectively. Conveniently for us, [186] also records the following elements of D∗
8 which are

representatives of separate classes in D∗
8/D8:

[0] := (0, 0, . . . , 0) , (4.72)

[1] := (1
2
, 1
2
, . . . , 1

2
) , (4.73)

[2] := (0, 0, . . . , 1) , (4.74)

[3] := (1
2
, 1
2
, . . . ,−1

2
) . (4.75)

From this we see that D∗
8/D8

∼= Z2×Z2 with decomposition and discriminant

D∗
8 =

D8 + [0] D8 + [1]
D8 + [3] D8 + [2]

Weight
⇝ qA(x) =

0 0
0 1

2

. (4.76)

Note that (D8 + [0]) ∪ (D8 + [1]) and (D8 + [0]) ∪ (D8 + [3]) both give E8 lattices in D∗
8,

and that they’re not the same (their intersection is only a D8 lattice).

The characters can be obtained as in Section 4.3.1 and are

trVD8+[0]
qL0− c

24 =
1

2η(τ)8
(
θ83(q) + θ84(q)

)
, (4.77)

trVD8+[1]
qL0− c

24 =
1

2η(τ)8
(
θ82(q) + θ81(q)

)
, (4.78)

trVD8+[2]
qL0− c

24 =
1

2η(τ)8
(
θ83(q)− θ84(q)

)
, (4.79)

trVD8+[3]
qL0− c

24 =
1

2η(τ)8
(
θ82(q)− θ81(q)

)
. (4.80)

Since θ1(τ) = 0, we can clearly see how to decompose V into VD8 modules in two distinct
ways just by comparing twisted partition functions.
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Looking at the 2B symmetry, V ZB
2 = VA1×E7 and has fusion group Z2×Z2 as well. We

may write the discriminant in this case and it’s

qB(x) =
0 0
3
4

1
4

. (4.81)

As expected, the only isotropic subgroup corresponds to the decomposition we started with
initially.

It would be remiss not to point out that qA(x) and qB(x) are the spins of simple
anyons in the Z2 gauge theory and twisted Z2 gauge theory (also called semion-antisemion)
respectively.

Generally, since V is well-behaved, Rep(V Zm) is a modular tensor category (this follows
rigorously from technical results of [187, 188, 189]) whose simple objects, the irreducible
modules Hne

nm
, correspond to simple anyons in a (2+1)d TFT which is interpretable as a

(possibly twisted) Zm gauge theory. If we couple V Zm to the bulk TFT as a 2d boundary
theory, then the anyon associated to Hne

nm
may terminate on operators from the corre-

sponding module. We will elaborate on these (2+1)d points further in Section 4.5 (see also
[1]).

4.3.4 Computing Defected Partition Functions in (E8)1

In this section we use our general results about automorphisms of lattice VOAs to explain
how to compute Zm “duality defected” partition functions in the chiral (E8)1 WZW model,
i.e. we compute twisted characters for TY(Zm) actions on the lattice VOA V := VE8 .

Suppose we want to find partition functions with a duality defect line X twisting
the Euclidean time direction, ZV [0, X], separating V from some Zm orbifold [V/Zm]. In
practice, we proceed as follows for order m symmetries:

1. Following Kac’s theorem, we find all inner automorphisms of the E8 Lie algebra
of order m. Using Equation (4.64), we compute which symmetries of V are non-
anomalous and thus can actually be gauged. Note: there may be multiple conjugacy
classes of non-anomalous symmetries e.g. for m = 5 there are two (see Table 4.3).

2. Taking one of the non-anomalous symmetry groups G ∼= Zm, the fixed-point sub-
VOA V G is a lattice VOA and is obtained as described in Section 4.3.3. The irreps
A := Irr(V G) form a metric Abelian group (A, h), with A ∼= Zm×Ẑm and metric
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function h(i, j) = ij/m. V and [V/G] decompose as direct sums over the isotropic
subgroups with irrep labels (i, 0) and (0, j) respectively, i.e.

V =
⊕
i

Hi
0 , (4.82)

[V/G] =
⊕
j

H0
j . (4.83)

3. Finding automorphisms of V G which “swap the axes” corresponding to V and [V/G]
in A, we obtain the defected partition functions as the twisted characters for this
second automorphism.

We’ve already seen the first two points in detail, so we elaborate on the final point.

Write O(A, h) for the group of automorphisms of A which preserve h. For simplicity,
consider the case that m is prime, then we have that

O(A, h) = Z×
m ⋊Z2 . (4.84)

The Z×
m factor corresponds to the freedom in redefining the action of G on V and is the nor-

mal subgroup SO(A, h) which preserves the axes of A. This leaves Z2 = O(A, h)/SO(A, h)
to act by swapping the axes of A. The Z2 factor acts by electric-magnetic duality in the
(2+1)d TFT. We can work this group out for more general m, but generally O(A, h) is
just the group of symmetries of Zm Dijkgraaf-Witten theory [24] aka the group of braided
auto-equivalences of Z(VecG) (see [1, 64] for physics discussions, and [163, 44, 45] for
mathematics discussions).

Now, any automorphism of V G induces an automorphism of A which preserves the
conformal weight h. Note: many elements of Aut(V G) induce the same automorphism in
O(A, h).

Our principal claim for this chapter is that: (V G)Z2 = V TY(G) if and only if the Z2

action on V G switches the axes of A. We prove this in Theorem 2. At the level of partition
functions, this means if σ̂ ∈ Aut(V G) induces a Z2 action on A which “swaps the axes” of
Irr(V G), then there is a Zm Tambara-Yamagami line Xσ̂ in V , whose partition function is
the σ̂-twisted character of V G

ZV [0, Xσ̂] = trV G σ̂qL0− c
24 . (4.85)

In practice, this is where the technical details about lifts becomes relevant. We will
identify Z2 symmetries of the underlying lattices associated to V G which should switch the
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axes, and then consider their lifts to the VOA. This means even after we have picked a
non-anomalous Zm symmetry and a Z2 which switches the axes, there is still degeneracy
in the partition function depending on how the Z2 lifts to a VOA automorphism, leading
to different TY-lines.

Comparing to the end of Section 4.2.3, we see a 2d shadow of this equation. We already
saw that the duality defected partition function involves only uncharged operators, and that
we just had to resolve a sign in the partition function which tracks “if V and [V/G] see
the primary ϕ differently.” This role of the σ̂-twisted character is to track this sign.

4.3.5 Z2 Duality Defects

Given V := VE8 , there is one non-anomalous Z2 symmetry up to conjugation, and there are
4 duality defected partition functions, i.e. Z2 Tambara-Yamagami lines or duality defects.
In this section we will compute them in detail using our VOA-theoretic techniques and
then compare to the result using fermionization as in [78, 50, 146].

Z2 Duality Defects from Lie Theory

We start by following our general procedure outlined in the previous section. There is one
non-anomalous Z2 action on V , generated by xA = 1

2
ω7 in the sense of Equation (4.62),

fixing the subalgebra V ZA
2 ∼= VD8 . We found this by taking the affine E8 Dynkin diagram

and “chopping” the 7th root to produce the D8 Dynkin diagram.

We know from our discriminant calculations in Section 4.3.3 that there are two ways
to extend the D8 root lattice into the E8 lattice. In fact, we can see these two extensions
directly from the Dynkin diagram

(4.86)

To obtain a TY-category, we want a Z2 action on V Z2 which swaps the axes of Irr(V Z2).
At the level of root lattices, this means swapping the two E8’s in D∗

8, and the Z2 which
does this is obvious: the D8 Dynkin diagram automorphism.

We start by looking at the conjugacy classes of Z2 outer automorphisms of so(16),
which all come from the D8 Dynkin diagram automorphism. Using Kac’s theorem with
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m = 2 and k = 2, we need to study the Dynkin diagram D
(2)
8 . This is given (with its

marks) by

1 1 1 1 1 1 1 1
α0 α1 α2 α3 α4 α5 α6 α7

(4.87)

Kac’s theorem tells us that there are four different outer Z2 automorphisms, which
are given by sequences (s0, . . . , s7), where all components vanish except si = 1 with i ∈
{0, 1, 2, 3}.16 The theorem also produces the fixed Lie subalgebras

so(1)⊕ so(15) , so(3)⊕ so(13) , so(5)⊕ so(11) , so(7)⊕ so(9) . (4.88)

The fixed Lie subalgebras tell us about the weight-one subspace of the four different
(VD8)

Z2s. Of course, so(1) doesn’t really exist, but the demand for its appearance in
the pattern becomes clear if we recall that so(n)1 is the theory of n free fermions. The
patterns above reflect that the four different (VD8)

Z2s are just breaking into theories of
(1, 15), (3, 13), (5, 11), and (7, 9) left-moving free fermions. We address this further in
Section 4.3.5.

Moving on, let’s compute the appropriate Z2-twisted characters of VD8 . By the result
of [179] they all take the form σ̂i = e2πi(x

i, · ).ĝ and have twisted character formula given
by Equation (4.56). The first piece for the computation is the twisted eta product ηg(τ).
Using (4.49), the D8 Dynkin diagram automorphism gives

ηg(τ) = η(τ)6η(2τ) =
η(τ)8√
θ3(τ)θ4(τ)

. (4.89)

Moreover, the invariant root lattice Lg can be read off from the D8 Dynkin diagram

. . .
Invariant

. . . (4.90)

Note that the fixed root lattice is actually a C7 lattice, not the B7 lattice that we might
naively expect from looking at the fixed point Lie subalgebras.

16To be very explicit, if we think of so(n) as being n × n antisymmetric matrices, then these four
classes of outer automorphisms can be thought of as coming from the adjoint actions of the four matrices
diag(+12i+1,−115−2i) ∈ O(16).
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The Dynkin diagram automorphism does not experience order doubling, so we can
obtain the weights e2πi(x

i,α) by finding vectors in (1/2)(D8
∗)g as described in Theorem 2.13

of [179]. We find four choices:

so(1)⊕ so(15) : x0 = 0 , (4.91)

so(3)⊕ so(13) : x1 =
1

2
ω1 , (4.92)

so(5)⊕ so(11) : x2 =
1

2
ω2 , (4.93)

so(7)⊕ so(9) : x3 =
1

2
ω3 . (4.94)

We can then finally sum over the C7 root lattice, with these weights inserted, and
combine with the twisted eta functions to obtain the following four duality defects:

trVD8
σ̂i q

L0− c
24 =

√
θ3(τ)θ4(τ)

2η(τ)8
(
θi3(τ)θ

7−i
4 (τ) + θ7−i

3 (τ)θi4(τ)
)
. (4.95)

In terms of so(2r + 1)1 characters

χ
(r)
ω̂0
(τ) =

1

2

(
θ3(τ)

r+ 1
2 + θ4(τ)

r+ 1
2

η(τ)r+
1
2

)
, (4.96)

χ
(r)
ω̂1
(τ) =

1

2

(
θ3(τ)

r+ 1
2 − θ4(τ)r+

1
2

η(τ)r+
1
2

)
, (4.97)

χ
(r)
ω̂r
(τ) =

1√
2

θ2(τ)
r+ 1

2

η(τ)r+
1
2

, (4.98)

we have (up to normalization)

ZV [0, Xi] = χ
(i)
ω̂0
(τ)χ

(7−i)
ω̂0

(τ)− χ(i)
ω̂1
(τ)χ

(7−i)
ω̂1

(τ) . (4.99)

Fermionization

Given a bosonic theory Tb with a non-anomalous global Z2 symmetry, we may produce a
fermionic theory Tf by turning the Z2 symmetry into a Zf

2 “Grassmann parity” i.e. (−1)F
symmetry, whose background connection is the spin structure on the manifold (an affine
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Z2 connection).17 This is a generalization of the classic “Jordan-Wigner transformation.”
In practice, on a spacetime M , this Jordan-Wigner transformation is given by

ZTf
[ρ] =

1√
|H1(M,Z2)|

∑
α∈H1(M,Z2)

(−1)Arf[α+ρ]+Arf[ρ]ZTb
[α] , (4.100)

where Arf[ρ] = 0 for even spin structures and Arf[ρ] = 1 for odd spin structures. In other
words, it is the number of zero modes of the Dirac operator mod 2 [190, 191, 77, 115].

In modern language, the partition function (−1)Arf[ρ] is the generator of the group
Hom(ΩSpin

2 (pt), U(1)) = Z2 of invertible topological phases that can be stacked with a
theory with (−1)F symmetry [66]. It can also be thought of as the effective action for the
continuum version of the Majorana-Kitaev chain. Practically, the effect of stacking with
the Arf phase is to change the relative sign of the even and odd partition functions.

Conversely, given any fermionic theory Tf (with cL − cR ∈ 8Z), it is always possible
to gauge the (−1)F symmetry, i.e. sum over spin-structures, and produce a bosonic the-
ory Tb with a non-anomalous global Z2 symmetry by the inverse of the Jordan-Wigner
transformation, or “GSO projection” (see [77, 74]). This can be done in two ways, by

ZTA
b
[α] =

1√
|H1(M,Z2)|

∑
ρ

(−1)Arf[α+ρ]+Arf[ρ]ZTf
[ρ] , (4.101)

or by first stacking with Arf

ZTB
b
[α] =

1√
|H1(M,Z2)|

∑
ρ

(−1)Arf[α+ρ]ZTf
[ρ] . (4.102)

The two bosonizations are related by gauging the emergent Z2 symmetry [139, 115, 78] as
shown in Figure 2.10, i.e.

[GSO[Tf ]/Z2] = GSO[Tf × Arf] . (4.103)

For more examples of this procedure in action, see [146, 50, 67, 2, 68, 69, 192].

When we gauge (−1)F we can ask what happens to the chiral fermion parities (−1)FL

and (−1)FR . As explained in [78, 146, 50] they become TY(Z2) duality defect lines sepa-
rating TA

b from TB
b .

17We assume unitarity so that spin and statistics are related.
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To make all this concrete, recall the partition function(s) for a chiral (left-moving say)
Majorana-Weyl fermion in it’s different sectors

trNS q
L0− c

24 =

√
θ3(τ)

η(τ)
, (4.104)

trR q
L0− c

24 =

√
θ2(τ)

η(τ)
, (4.105)

trNS(−1)F qL0− c
24 =

√
θ4(τ)

η(τ)
, (4.106)

trR(−1)F qL0− c
24 =

√
θ1(τ)

η(τ)
. (4.107)

A “full” Majorana fermion (with both left and right-moving contribution) has the spin-
structure dependent partition function

ZFull[ρ] = ZMaj.[ρ]Z̄Maj.[ρ] . (4.108)

For example, we can GSO project the Majorana-Weyl fermion using the formulas above,
and in either case we get the Ising partition function

ZTA,B
b

[0, 0] =
1

2

(∣∣∣∣θ3η
∣∣∣∣+ ∣∣∣∣θ2η

∣∣∣∣+ ∣∣∣∣θ4η
∣∣∣∣± ∣∣∣∣θ1η

∣∣∣∣) . (4.109)

To recover the Ising duality defected partition function, we need to gauge the diagonal
spin-structure but first insert a line twisting by the chiral fermion parity i.e. we have∑

ρ

ZMaj.[ρ1, ρ2 + 1]Z̄Maj.[ρ1, ρ2] ∝
√
2|χ0|2 −

√
2|χ 1

2
|2 . (4.110)

More generally, all of this comes from the fact that (−1)FL has one unit of the “mod
8 anomaly” coming from Hom(ΩSpin

3 (B Z2), U(1)) = Z8. For n Majorana fermions the
bosonization is the Spin(n)1 WZW model, and the (−1)FL symmetry line bosonizes to
TY(Z2, 1,+1/

√
2) if n = 1, 7 mod 8 and TY(Z2, 1,−1/

√
2) if n = 3, 5 mod 8. See [78, 50,

193, 194] and references within for more technical details.
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Duality Defects from Fermionization

From Section 4.3.1 we see that chiral theory V := VE8 is just 16 chiral Majorana-Weyl
fermions. From the discussion in the previous section, we see that we have 4 choices of
duality defect based on if we’re going to view the E8 theory as coming from the GSO
projection of

Z1
Maj.[ρ]Z

15
Maj.[ρ] , Z3

Maj.[ρ]Z
13
Maj.[ρ] , Z5

Maj.[ρ]Z
11
Maj.[ρ] , Z7

Maj.[ρ]Z
9
Maj.[ρ] . (4.111)

Let Xp (p = 1, 3, 5, 7) be the duality defect obtained from bosonizing (−1)FL in the
Zp

Maj.[ρ]Z
16−p
Maj. [ρ] setup. Then the partition function with Xp inserted along the spatial S1

is

ZV [0, Xp] ∝
1

2

∑
ρ

Zp
Maj.[ρ1, ρ2 + 1]Z16−p

Maj. [ρ1, ρ2] , (4.112)

=
(θ3(τ)θ4(τ))

p
2

2η(τ)8
(
θ3(τ)

8−p + θ4(τ)
8−p
)
. (4.113)

This precisely matches the results of Equation (4.95), where no intimate knowledge of
superfusion categories, bosonization, or fermionic anomalies were required.

4.4 Higher Order Duality Defects

In this section, we investigate duality defects for higher order cyclic symmetries. Along the
way we highlight a number of potential phenomena that one might encounter in enacting
our defect hunting procedure described in Section 4.3.4, such as order doubling and u(1)
factors. We compute the q-expansions of the defect partition functions using Magma [195].

4.4.1 Z3 Duality Defects

As explained in Section 4.3.2, there is only one non-anomalous Z3 symmetry up to conju-
gation. We will see that this symmetry gives rise to seven Z3 Tambara-Yamagami lines,
which we will investigate using both numerical and analytical methods.

In Section 4.3.3 we found that the non-anomalous Z3 symmetry is given by x = 1
3
ω2.

Following our procedure, we obtain the fixed sub-VOA by “chopping” the second root of
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the affine E8 Dynkin diagram

(4.114)

Therefore, we find that (VE8)
Z3 ∼= VA2×E6 .

Before starting the analysis of the Tambara-Yamagami lines, let’s study VA2×E6 more
carefully and verify that we can extend it into two different versions of VE8 . For this, recall
the following theta functions for A2 and E6 (for details see [186]):

θA2(τ) = θ2(2τ)θ2(6τ) + θ3(2τ)θ3(6τ) , (4.115)

θE6(τ) =
1

4
f(τ)3 + θA2(τ)

3 , (4.116)

where
f(τ) = θA2

(τ
3

)
− θA2(τ) . (4.117)

The A2 and E6 lattices have three cosets inside their respective duals. These cosets are
parametrized by shift vectors which we will call [1] and [2] in both cases. This gives two
shifted theta functions for each lattice given by

θA2+[1](τ) = θA2+[2](τ) =
1

2
f(τ), (4.118)

θE6+[1](τ) = θE6+[2](τ) =
3

4
f(τ)2 θA2(τ). (4.119)

We organize the cosets of A2 × E6 inside its dual as a 3 × 3 square, where the first
column and the top row give two different extensions to an E8 lattice inside the dual of
the A2 × E6 lattice:

(A2 × E6)
∗ =

A2 ⊕ E6 A
[1]
2 ⊕ E

[2]
6 A

[2]
2 ⊕ E

[1]
6

A
[1]
2 ⊕ E

[1]
6 A

[2]
2 ⊕ E6 A2 ⊕ E[2]

6

A
[2]
2 ⊕ E

[2]
6 A2 ⊕ E[1]

6 A
[1]
2 ⊕ E6

Weight
⇝ qA(x) =

0 0 0
0 1

3
2
3

0 2
3

1
3

.

(4.120)
This shows explicitly that this order three symmetry is non-anomalous. Summing the
relevant theta functions we obtain

θE8(τ) = θA2(τ)
(
f(τ)3 + θA2(τ)

3
)
. (4.121)
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Now we turn towards the duality defects of this Z3-symmetry. For this purpose, we
need to study order two symmetries of the A2 × E6 lattice and their possible lifts to the
corresponding VOA. After that, we investigate which of the Z2 symmetries switch the two
E8 extensions and swap the axes of Irr(V Z3).

We actually start by looking at the automorphisms of the relevant Lie algebras. The
A2 Lie algebra has two inner automorphisms of order ≤ 2 (up to conjugation) and one
outer automorphism of order 2. To see this, note the affine and twisted Dynkin diagrams
are

A
(1)
2 =

1

1

1

A
(2)
2 =

2 1
(4.122)

The inner automorphisms can be read off from the affine Dynkin diagram. Kac’s Theorem
tells us we can either chop one node with weight si = 2, or we can chop two nodes with
weights si = sj = 1; by the symmetry of the affine Dynkin diagram, it doesn’t matter
which we chop. In the first case we get the trivial automorphism, and in the second case
we get an inner automorphism of order 2 fixing an A1×u(1) Lie algebra. There is only one
outer automorphism which comes from chopping the node marked 1 with weight 1, fixing
an A1 Lie algebra. Standard lifts of this automorphism experience order doubling (as we
will explain in Section 4.4.1).

The E6 case is similar, we have

E
(1)
6 =

1 2 3 2 1

2

1

E
(2)
6 =

1 2 3 2 1
(4.123)

We find 3 inner automorphisms of the E6 Lie algebra up to conjugation, given by: chopping
a node marked 1 with weight 2 (the trivial automorphism); chopping a node marked 2 with
weight 1, fixing A1×A5; or chopping two nodes marked 1 with weight 1, fixing D5× u(1).
We find 2 outer automorphisms of E6, fixing an F4 or a C4 Lie algebra.

Putting everything together, we have 15 automorphisms of the A2 × E6 Lie algebra
of order less than or equal to 2. These automorphisms can be organised as in Table 4.4.
Similar to the D8 case, we can read off automorphisms which switch the axes of Irr(V Z3)
by looking at the chopped E8 Dynkin diagram (4.114). We see that there are two ways
to recombine the A2 and E6 into an (affine) E8: by gluing the chopped node back in, or
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by acting with one of (the lifts of) the Dynkin diagram automorphisms of A2 or E6, but
not both, and then gluing. From the off-diagonals of Table 4.4, this gives a total of seven
automorphisms switching the axes and hence seven Tambara-Yamagami lines. However,
before computing the defect partition functions, we need to look at order-doubling in the
A2 lattice.

Example: Order Doubling in A2

Before moving forward, let’s consider a standard lift of the one non-trivial outer automor-
phism of A2, as it is a prototypical example of order-doubling.

So let g be the automorphism of the A2 lattice that comes from the Dynkin diagram
automorphism; switching the two simple roots α1 and α2. As described in Section 4.3.2, g
can be lifted to a symmetry ĝ of the lattice VOA in a “standard way”: swapping the chiral
bosons a1n ↔ a2n, and sending Γα 7→ u(α)Γα, with u(α) = 1 on the fixed sublattice. In this
case, the fixed sublattice is a “long A1” spanned by α1 + α2

Invariant
(4.124)

Clearly ĝ2 is the identity on the chiral bosons, but

ĝ2Γα = u(α)u(gα)Γα . (4.125)

Using Equation (4.44) we have

u(α)u(gα) =
ϵ(α, gα)

ϵ(gα, g2α)
u(α + gα) = (−1)(gα,α)u(α + gα) . (4.126)

Thus the order of ĝ is doubled if and only if (gα, α) /∈ 2Z.

Better yet, we explicitly see the origin of order doubling here: we get order doubling
because the Dynkin diagram automorphism folds together two simple roots which were
not originally orthogonal. Hence, just by looking at Dynkin diagrams, we can tell which
automorphisms will have order doubling.

At the end of Section 4.3.2 we saw all outer order 2 automorphisms of VA2 can be
viewed as a product of a (fixed) standard lift of this Dynkin diagram automorphism, and
a twist by an “inner” automorphism (see Equation (4.55)). Now we see the importance
of allowing twists by inner automorphisms of order up to 4. If we had not, we might
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falsely conclude that “there are no outer automorphisms of VA2 of order 2,” which would
directly contradict the results of [177] and the fact known to physicists that the lattice
automorphism α 7→ −α always lifts to a “charge conjugation automorphism” of order 2 in
the VOA (note: α 7→ −α is not in the Weyl group of the A2 lattice).

If instead we choose u so that u(α1 + α2) = −1 the lift has order two, and we can
compute the appropriate twisted theta function. The fixed sublattice is a long A1 lattice
with theta function θ3(2τ), but, due to the non-trivial lift, we adjust some signs and obtain
θ4(2τ).

Z3 Duality Defects from Lie Theory

The partition functions corresponding to the seven Tambara-Yamagami lines can be com-
puted using similar techniques to the order two case. A careful study of the lattices and
partition functions gives the following list of theta functions

θA2,inner(τ) = θ3(2τ)θ3(6τ)− θ2(2τ)θ2(6τ) (4.127)

θA2,outer(τ) = θ4(2τ) (4.128)

θE6,inner 1(τ) = 2θA5(τ)θ3(2τ)− θE6(τ) (4.129)

θE6,inner 2(τ) = 1 + 8q − 50q2 + 80q3 − 88q4 + . . . (4.130)

θE6,outer 1(τ) =
1
2
(θ43(τ) + θ44(τ)) (4.131)

θE6,outer 2(τ) = θ44(2τ) . (4.132)

The missing theta function corresponding to an inner E6 symmetry is particularly messy,
so we display the first few terms of its q-expansion. The twisted eta products are easily
computed being η(τ)6η(2τ) for the outer A2 symmetries and η(τ)4η(2τ)2 for the outer E6

symmetries. In summary, we have the following seven defected partition functions:
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ZV [0, X
(1)
A2

] =
θA2,outer(τ)θE6(τ)

η(τ)6η(2τ)
, (4.133)

ZV [0, X
(2)
A2

] =
θA2,outer(τ)θE6,inner 1(τ)

η(τ)6η(2τ)
, (4.134)

ZV [0, X
(3)
A2

] =
θA2,outer(τ)θE6,inner 2(τ)

η(τ)6η(2τ)
, (4.135)

ZV [0, X
(1)
E6

] =
θA2(τ)θE6,outer 1(τ)

η(τ)4η(2τ)2
, (4.136)

ZV [0, X
(2)
E6

] =
θA2,inner(τ)θE6,outer 1(τ)

η(τ)4η(2τ)2
, (4.137)

ZV [0, X
(3)
E6

] =
θA2(τ)θE6,outer 2(τ)

η(τ)4η(2τ)2
, (4.138)

ZV [0, X
(4)
E6

] =
θA2,inner(τ)θE6,outer 2(τ)

η(τ)4η(2τ)2
. (4.139)

We have recorded the q-expansions of these defect partition functions (in the same order)
with their fixed Lie subalgebras in Table 4.5. We also obtain the defect in Equation (4.136)
from the Potts CFT in Appendix B.1.

As a final check, we’ve obtained the same q-expansions using computer algebra software
Magma (in a way that we will explain in the following section) that matches with (at least)
the first 11 terms of the q-expansions of the exact theta series above. This convinces us
that our numerical methods work in the order three case, and justifies the computation of
Z4 and Z5 defected partition functions using numerics only. In principle, exact formulas
are obtainable in those cases following the techniques above.

We comment on data relevant to the symmetric non-degenerate bicharacter in Appendix
B.2.

4.4.2 Z4 Duality Defects and Computer Implementation

Moving to the order 4 defects, our direct Lie algebra methods become less useful. As
seen in Table 4.3, the only non-anomalous order 4 symmetry of E8 has fixed Lie algebra
A7 × u(1). This is not a simple Lie algebra and thus does not have an associated root
system.
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An Algorithm for Computing Defects

In this case, we can still construct the fixed sublattice as in the beginning of Section 4.3.3.
The symmetry is generated by the vector

x =
1

4
ω8. (4.140)

Accordingly, the fixed sublattice is

L0 = Zα1 ⊕ · · · ⊕ Zα7 ⊕ Z4α8. (4.141)

We can now compute q-expansions of our defect partition functions with the aid of
Magma [195].18 The code is effectively an implementation of Theorem 2.13 of [179]. The
algorithm is as follows:

Step 0. Input an even lattice L0. This can be done in Magma by providing a basis for L0 as
above with built-in function BasisWithLattice( ).

Step 1. Compute the automorphism group O(L0) with built-in function Automorphism-
Group( ) and the setwise stabilizer of a fixed set of roots H∆. To obtain H∆ is
more involved:

(a) Enumerate a full set of simple roots (of length 2) ∆ and split them into positive
and negative roots. Note: this collection of simple roots may not be full rank,
e.g. if there are u(1)’s involved and the lattice is not a root-lattice.

(b) Find the subgroup of O(L0) stabilizing some choice of simple roots by looking
at group orbits with built-in function OrbitAction( , ). It is possible that O(L0)
won’t act faithfully on the collection ∆, in which case continually append ∆
with vectors of higher norm until O(L0) acts faithfully, then obtain H∆.

In view of [179], every finite-order automorphism of the VOA VL can be constructed
by considering a fixed set of representatives ν of the conjugacy classes of H∆. Ob-
tained with built-in function ConjugacyClasses( ).

Step 2. Compute the centralizer CO(L)(ν) of ν in O(L) or, more precisely, a fixed set of orbit
representatives of its action on Lν ⊗Z Q/πν(L′). Here πν is the projection of L⊗Z C
onto Lν ⊗Z C, with Lν the sublattice fixed by ν. These are our “outer Z2” actions.
Proposition 2.15 of [179] guarantees that in order to find automorphisms of order 2
swapping the axes, we only need to look at order 1 and 2 lattice automorphisms, ν,
and restrict the choice of h’s according to whether or not the standard lift of ν has
order doubling.

18We thank Sven Möller for providing us with our original Magma code and helpful Magma lessons.
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Step 3. Loop through all ν and compute all possible independent h for each ν. For each ν
loop over all h to create the automorphism ν̂e2πih(0).

Step 4. Implementing the formula in Equation (4.56), compute the q-expansions of our Z2-
twisted characters for V Zm by summing over weighted lattice vectors.

At this point, we have enumerated all order 2 automorphisms of our VOA VL0 and the
(q-expansions of the) Z2 twisted characters. However, not all order 2 automorphisms swap
the axes of the metric Abelian group A ∼= Zm×Ẑm. Fortunately, this is simple to check
within the code described above. To do this, note that our automorphisms extend to all of
R8 and hence to our original E8 lattice L. Thus, by looking at the image of the basis vectors
under ν, we can determine if the automorphism leaves the original E8 invariant. In the
case that it is not left invariant, then L must be mapped to a different lattice, which must
be the second E8 extension L

′ by orthogonality of the automorphism. A similar procedure
also tells us about the symmetric non-degenerate bicharacter, see Appendix B.2.

The Z4 Defects

Let bi = αi for i = 1, . . . , 7, and let b8 = 4α8. Following our algorithm above, we find three
non-trivial lattice automorphisms ν of L0 = Z{bi}8i=1. As matrices bi 7→ (νk)ijbj, we have

ν
(4)
1 , ν

(4)
2 and ν

(4)
3 , which are respectively

0 0 0 0 0 0 1 −4
0 0 0 0 0 1 0 −8
0 0 0 0 1 0 0 −12
0 0 0 1 0 0 0 −12
0 0 1 0 0 0 0 −12
0 1 0 0 0 0 0 −8
1 0 0 0 0 0 0 −4
0 0 0 0 0 0 0 −1


,



1 0 0 0 0 0 0 −3
0 1 0 0 0 0 0 −6
0 0 1 0 0 0 0 −9
0 0 0 1 0 0 0 −12
0 0 0 0 1 0 0 −15
0 0 0 0 0 1 0 −10
0 0 0 0 0 0 1 −5
0 0 0 0 0 0 0 −1


,



0 0 0 0 0 0 1 −1
0 0 0 0 0 1 0 −2
0 0 0 0 1 0 0 −3
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 3
0 1 0 0 0 0 0 2
1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1


.

(4.142)
To reiterate, these are representatives for the 3 conjugacy classes of Z2 automorphisms of
the lattice L0. We can check the actions of these matrices on the E8 basis vectors spanning
L, and find that ν

(4)
2 and ν

(4)
3 do not leave L invariant, and hence swap the two distinct

E8’s in L
∗
0/L0. Neither ν

(4)
2 nor ν

(4)
3 experience order doubling.

Combining everything, we find six defected partition functions, with the weight one
subspaces and q-expansions recorded in Table 4.6 for the Z4 case.
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These results are plausible from Lie theory. Ignoring the u(1) factor there are several
symmetries of the A7 Lie algebra. First one can leave the roots of the A7 Dynkin diagram
unchanged. The corresponding phase factors can then be chosen to obtain the fixed Lie
subalgebras A6−i × Ai × u(1). The other option is to swap the roots in the A7 Dynkin
diagram. In this situation the fixed subalgebra is given by C4. This compares well to the
structure presented in Table 4.6, where the first three lines correspond to the first case and
the next two lines to the second case.

More generally, in the case of Zm symmetries with m not prime, its also important to
keep in mind that we need to “totally swap” the axes, since there can be Z2 automorphisms
of Irr(V Zm) which only swap a subgroup of Zm with a subgroup of Ẑm.

We record results on the symmetric non-degenerate bicharacter at the end of Appendix
B.2.

4.4.3 Z5 Duality Defects

There are two non-anomalous Z5 symmetries up to conjugacy, and so two families of duality
defects of order 5. We will arbitrarily call the two Z5 conjugacy classes ZA

5 and ZB
5 with

generators

xA :=
1

5
ω4 , (4.143)

xB :=
1

5
ω1 +

1

5
ω7 . (4.144)

The sub-VOAs V ZA
5 and V ZB

5 have weight one subspaces isomorphic to A4 ×A4 and D6 ×
u(1)2 respectively.

ZA
5 Duality Defects and A4 × A4

The invariant sublattice LA
0 under the ZA

5 symmetry is a genuine root lattice spanned by
the A4 ×A4 inside E8, so we can proceed in a straightforward way. Consider the chopped
Dynkin diagram

(4.145)

Focusing on just one A4, the A
(1)
4 and A

(2)
4 Dynkin diagrams tell us that the A4 Lie algebra

has 3 inner automorphisms of order less than or equal to 2, with fixed Lie subalgebras: A4
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(trivial); A3×u(1); and A2×A1×u(1). Similarly, there is one order 2 outer automorphism
with a fixed B2 subalgebra.

Since we have two A4 Dynkin diagrams life is slightly more complicated than the Z3

case. First, there are the usual commuting Z2 actions on each A4 Dynkin diagram σ1 and σ2
say; but we can also exchange the diagrams themselves in different ways, this gives another
Z2 action τ . The three together generate a dihedral group of order 8 ⟨σ1, σ2, τ ⟩ ∼= Di8.

However, we are not interested in all eight elements of this group, but in the conjugacy
classes. There are three classes which do not switch the axes of Irr(V Z5) given by {e},
{σ1σ2} and {σ1τ, σ2τ} and two classes switching the axes given by {σ1, σ2} and {τ, σ1σ2τ}.

As before, we can obtain explicit matrix representatives of these classes. If we represent
the A4 × A4 lattice as the span of bi = αi for i ̸= 4 and b4 = 5α4, then representatives for
the non-trivial lattice automorphisms ν

(5)
[σ1σ2]

, ν
(5)
[σ1τ ]

, ν
(5)
[σ1]

, and ν
(5)
[τ ] are given respectively by

1 0 0 0 0 0 1 0
2 0 1 −5 0 0 0 0
3 1 0 −5 0 0 0 0
1 0 0 −1 0 0 0 0
6 0 0 −10 0 1 0 0
4 0 0 −10 1 0 0 0
2 0 0 −5 0 0 0 1
3 0 0 −5 0 0 1 0


,



0 0 0 −5 0 0 1 1
0 0 0 −10 1 0 2 0
0 0 0 −10 0 1 3 0
0 0 0 −2 0 0 1 0
0 0 1 −15 0 0 6 0
0 1 0 −10 0 0 4 0
1 0 0 −5 0 0 2 0
0 0 0 −5 0 0 3 0


,



1 0 0 0 0 0 1 0
2 0 1 −5 0 0 0 0
3 1 0 −5 0 0 0 0
1 0 0 −1 0 0 0 0
6 0 0 −12 1 0 0 0
4 0 0 −8 0 1 0 0
2 0 0 −4 0 0 1 0
3 0 0 −6 0 0 0 1


,



0 0 0 −5 0 0 1 1
0 0 0 −10 1 0 2 0
0 0 0 −10 0 1 3 0
0 0 0 −2 0 0 1 0
0 1 0 −14 0 0 6 0
0 0 1 −11 0 0 4 0
0 0 0 −3 0 0 2 0
1 0 0 −7 0 0 3 0


.

(4.146)

The elements of this A4 “flipping” conjugacy class {σ1, σ2} flip roots of one A4 while
leaving one copy of A4 invariant. In this case, the fixed Lie subalgebra is one of the inners
multiplied by a B2 coming from the A4 outer automorphism, giving 3 duality defects for this
conjugacy class. Note that standard lifts from this class experience order doubling because
the outer automorphism folds roots together which are not orthogonal. The “exchange”
conjugacy class τ fixes a “diagonal” A4 Lie subalgebra giving 1 final duality defect. It
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does not experience order doubling. We enumerate these 4 cases with their q-expansions
in Table 4.7.

ZB
5 Duality Defects and D6 × u(1)2

For the case of D6 × u(1)2 the solution is slightly less elegant and cannot be read off just
by looking at Dynkin diagrams. Proceeding as in Section 4.4.2, we can realize the fixed
sublattice as the span of bi = αi for i ̸= 1, 7, and b1 = 5α1 and b7 = 4α1 + α7. We
use our previous methods to obtain representatives of the conjugacy classes of non-trivial
automorphisms ν

(5)
1 , ν

(5)
2 , ν

(5)
3 , ν

(5)
4 , given respectively by

−1 0 0 0 0 0 0 0
−10 1 0 0 0 0 −9 0
−10 0 1 0 0 0 −10 0
−10 0 0 1 0 0 −11 0
−10 0 0 0 1 0 −12 0
−5 0 0 0 0 1 −7 0
0 0 0 0 0 0 −1 0
−5 0 0 0 0 0 −6 1


,



−5 0 0 0 0 0 −4 0
−3 1 0 0 0 0 −2 0
0 0 1 0 0 0 0 0
3 0 0 1 0 0 2 0
6 0 0 0 1 0 4 0
6 0 0 0 0 1 4 0
6 0 0 0 0 0 5 0
3 0 0 0 0 0 2 1


,



5 0 0 0 0 0 3 0
−16 1 0 0 0 0 −12 0
−20 0 1 0 0 0 −15 0
−24 0 0 1 0 0 −18 0
−28 0 0 0 1 0 −21 0
−18 0 0 0 0 0 −13 1
−8 0 0 0 0 0 −5 0
−14 0 0 0 0 1 −11 0


,



−7 0 0 0 0 0 −5 0
5 1 0 0 0 0 2 0
10 0 1 0 0 0 5 0
15 0 0 1 0 0 8 0
20 0 0 0 1 0 11 0
15 0 0 0 0 0 9 1
10 0 0 0 0 0 7 0
10 0 0 0 0 1 5 0


.

(4.147)

The automorphisms switching the axes of Irr(V ZB
5 ) are ν

(5)
2 and ν

(5)
3 . The standard

lifts of both of these experience order doubling. In total, there are 7 defected partitions
functions, 4 which lift from ν

(5)
2 and 3 which lift from ν

(5)
3 . They are recorded in Table 4.8.

4.5 A (2+1)d TFT Perspective

There is a natural (2+1)d perspective which sheds light on our previous discussions and
the procedure in Section 4.3.4 and Equation (4.85). This all follows from the theory of
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modular tensor categories, fusion categories, and their relationship to gapped boundary
conditions for (2+1)d TFTs.

The relevant pieces of this formalism are well-described in mathematical physics works
such as [97, 127] and are well-known in the condensed-matter literature (see e.g. [22, 196]).
For this reason, we will provide only a small recap of the beautiful connection between
(2+1)d TFTs, their gapped boundary conditions, and the relevant mathematics, before
turning to duality defects. Helpful mathematical references include [197, 34].

4.5.1 Topological Boundaries of (2+1)d TFTs

Given a fusion category A it’s Drinfeld center Z(A) is naturally a braided fusion category.
This leads to the natural mathematical question: are all braided fusion categories the
Drinfeld center of some fusion category? The answer is no, as already demonstrated by
various Chern-Simons theories [198].

The next simplest question in this line of thinking is: if one has a braided (non-
degenerate19) fusion category C, when is C = Z(A) for some fusion category A? The
answer to this question is also known: the data of a braided equivalence C ∼= Z(A) deter-
mines a Lagrangian algebra object A ∈ C; and inversely, each Lagrangian algebra object
A ∈ C determines a braided equivalence C ∼= Z(CA) where CA is the category of right-
A modules in C. Finally, fixing some fusion category A, it is known that the collection
of fusion categories B such that there is a braided autoequivalence Z(A) ∼= Z(B) are in
bijection with indecomposable A-module categories [202, 203]. Altogether, one has the
following result:

Proposition 1 ([204], Proposition 4.8). Let A be a fusion category and C = Z(A). There
is a bijection between the sets of (isomorphism classes of) Lagrangian algebras in C and
(equivalence classes of) indecomposable A-module categories.

These questions arise naturally in physics as well, as the data of a (2+1)d TFT are
encoded as a Modular Tensor Category of topological line defects or anyons [205, 197, 206].
A question of interest when studying a (2+1)d TFT is: does the (2+1)d theory admit any
topological boundary conditions?

19Non-degenerate means that the S-matrix is non-degenerate. By definition this is true for a MTC, so
applies to e.g. reps of a rational VOA. More broadly, non-degeneracy is satisfied iff there are no anyons
which are invisible to braiding with the entire rest of the category (Theorem 3.4 of [199]), known as “remote
detectability” [200, 156, 76]. So-called “slightly degenerate” braided fusion categories are also of interest
in the study of fermionic topological orders [201, 76].
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In the physical case, the MTC of anyons C is the braided fusion category of interest, and
it can be shown that if C ∼= Z(A) for some A, then the bulk admits a topological boundary
condition B with boundary line defects modelled by A. So we see that the natural question
for physicists is essentially the same as those studying braided fusion categories [97, 127].

More generally, the theory of “anyon condensation” allows one to describe topological
interfaces between two TFTs, described by MTCs C and D, in the case that the anyons of
C “condense” to a new vacuum for D at the separating interface [126, 127]. The formalism
allows one to easily compute condensation interfaces for C, the new phase D, and the exci-
tations on the interface (see Theorem 4.7 of [127] and [207] for computational references).
In particular, the search for topological boundary conditions is a condensation to vacuum,
controlled by Lagrangian algebra objects A ∈ C.20

It is common in the physics literature to talk about a particular realization of a (2+1)d
TFT modeled by the MTC C, rather than just discuss abstract MTC data. For example, in
Turaev-Viro/Levin-Wen models [84, 208] one chooses a particular “input fusion category”
A and constructs the (2+1)d TFT whose anyons are modeled by the MTC C = Z(A).
From this frame, the boundary condition with excitations modeled by A is particularly
distinguished as a “reference” or “Dirichlet” boundary condition, and one identifies gapped
boundaries with indecomposable A-module categories [196].21 By Proposition 1 these are
in bijection with the Lagrangian algebras.

Similarly, if the theory admits a gauge theory description, making such distinctions
are equivalent to saying “who the Wilson line is” in the TFT. The choice of a particular
boundary condition B defines the Wilson line by declaring that B is the Dirichlet boundary
condition for the bulk gauge fields in that frame. Mathematically, the Wilson lines are the
kernel of our particular bulk-boundary map Z(A)→ A, i.e. their image is a sum of copies
of the vacuum operator on the boundary.

The simplest and most well known example of this relationship in physics is in the
toric code [209]. Algebraically, the simple anyons of the (2+1)d TFT are described by the
irreducible representations of the untwisted quantum double D(Z2), or more geometrically
as (2+1)d Dijkgraaf-Witten theory with gauge group Z2 and trivial topological action
[24]. In short, the simple anyons in this model are {1, e,m, f} with spins {0, 0, 0, 1/2}
respectively and non-trivial fusion relations

e⊗m = f , e⊗ f = m, m⊗ f = e . (4.148)

20We only care about bosonic anyon condensations and bosonic topological boundary conditions. For
results on fermionic anyon condensation and fermionic topological orders see [71] and references within.

21We will use the term Dirichlet boundary condition to mean the canonical boundary condition for the
Turaev-Viro theory based on A.
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Famously, such a model admits two bosonic indecomposable topological boundary con-
ditions as described in [54], where they manifest in the microscopic description as “smooth”
and “rough” boundaries of the square lattice. Such a description makes it pictorially clear
how certain anyons of the toric code “condense” as they reach the boundary. For example,
the e anyon living along a string of vertices is condensed at a rough boundary, but the m
anyon gets stuck and becomes a boundary defect line (see also [125] and [86]). In other
words, the “rough” topological boundary condition Be condenses the e anyon to the vac-
uum on the topological boundary, and corresponds to the Lagrangian algebra object 1⊕ e.
The topological boundary condition is populated with boundary excitations {1⊕e,m⊕f},
which behave like Ae = VecZ2 .

4.5.2 Duality Defects

Gauging 2d theories has a simple (2+1)d interpretation in terms of boundary conditions and
interfaces in topological gauge theories (see e.g. [210, 1, 124] for an extended explanation
and [211] for an application). In particular, given any 2d theory T with non-anomalous
Zm symmetry, the theory provides an “enriched Neumann” boundary condition B[T ] for a
(2+1)d Zm Dijkgraaf-Witten theory by coupling the boundary value of the bulk connection
to T . The local operators of B[T ] are effectively the local operators of T Zm .

In this case, the 2d theory T (on M say) can be understood as a compactification
of a slab of this Zm gauge theory on M × [0, 1], with the boundary condition B[T ] for
one boundary, and the reference (topological) Dirichlet boundary condition for the other.
Similarly, [T/Zm] can be understood as the same setup but with the (topological) fully-
Neumann boundary condition instead.

However, by the same logic, [T/Zm] can also be viewed as a sandwich of Ẑm gauge
theory with boundary condition B[[T/Zm]] and Dirichlet boundary condition for Ẑm on
the other. These two descriptions are dual, what has changed is the identification of the
bulk TFT as an “electric” Zm gauge theory or a “magnetic” Ẑm. By our previous section,
the MTC data is the same, but we have presented a different topological boundary condition
as “Dirichlet”. The two pictures are related by an electric-magnetic duality interface Iem,
which composes with B[T ] to produce B[[T/Zm]] and turns the electric Dirichlet boundary
condition into a magnetic Neumann boundary condition. We depict all of this in Figure
4.6.

Since a duality defect separates a theory from its orbifold, we recognize a duality de-
fect as a potential ending line for the interface Iem, separating the electric and magnetic
Dirichlet boundary conditions in a slab picture i.e. as a Zem

2 twist line operator, see Figure
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a) B[T ]
b) Dire

Iem

Electric Zm

Gauge Theory
Magnetic Ẑm

Gauge Theory

a) B[[T/Zm]]
b) Neum

Magnetic Ẑm

Gauge Theory

Collide Iem

Figure 4.6: On the left, a slab of Zm gauge theory and Ẑm gauge theory separated by
an (invertible topological) electric-magnetic duality interface Iem (yellow). If one moves
the interface Iem all the way to the left, then all that remains is Ẑm gauge theory with a
new boundary condition (green). a) If the left boundary condition (blue) is an enriched
Neumann boundary condition B[T ], then when it collides with the interface it appears as
the enriched Neumann boundary condition B[[T/Zm]]. b) If the left boundary condition
(blue) is a Dirichlet boundary condition for the Zm gauge theory, then it appears as a
Neumann boundary condition for the Ẑm gauge theory.

4.7a. Gauging the electric-magnetic Zem
2 0-form symmetry of the bulk TFT (with Neu-

mann boundary conditions on the left and Dirichlet boundary conditions on the right of
Figure 4.7a), produces a new bulk TFT where the interface Iem “becomes invisible,” leav-
ing the twist line behind, as in Figure 4.7b. In Section XI of [22] (also Section 3.5 of [72])
the authors show explicitly how the boundary twist line left behind after gauging has the
fusion rules of TY(Zm).

This is simply squaring two commensurate pictures. In one case, we are thinking of
T as having a Zm symmetry with topological line defects for the symmetry modeled by
the fusion category D = VecZm , and so we can couple it to a Z(VecZm) bulk and view
the duality defect line as the endpoint of an electric-magnetic duality wall. Alternatively,
we can view T as having “categorical symmetry” F = TY(Zm), in which case it can be
coupled to a bulk of Z(TY(Zm)) theory, and the duality defect line is understood simply
as a condensate of bulk lines on the topological boundary.

In general, suppose D admits a G-extension

F =
⊕
g∈G

Fg (4.149)

with identity piece F e
∼= D, then the (2+1)d TFT Q with MTC Z(D) and reference

Dirichlet boundary condition D necessarily has topological surfaces with a G-composition
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law. If we gauge this G symmetry to produce a new (2+1)d TFT [Q/G], then the new
MTC data is given by Z(F) with reference boundary condition F . This follows from the
work of [212, 22].

Application to Holomorphic VOAs

Following [173], we call a VOA nice if it is simple, rational, C2-cofinite, self-contragredient,
and of CFT-type. Examples of nice VOAs include lattice VOAs built from even lattices
and the Monster V ♮.

Proposition 2. Given a conformal inclusion of nice VOAs W ⊂ V there is a canonical
fusion category F determined by the inclusion.

This follows from the theory of anyon condensations described in Theorem 4.7 and
Section 6.4 of [127]. In the VOA literature, the proposition is typically phrased in the
reverse direction as being about extensions of the VOA W .

Proof. Since W and V are nice, their representation categories are MTCs [213], let C :=
Rep(W ) and D := Rep(V ). Since W ⊂ V , V can be decomposed into a finite direct sum
of irreducible W modules, we will write this as A ∈ C. By [214] (and the classical results
Theorem 5.2 of [215] and Section 6 of [204] in the holomorphic case), A is a commutative,
connected, and separable algebra object in C.22

The fusion category we seek is F = CA, the category of right A-modules in C. In [215]
this is called RepA, the category of twisted V -modules

In the language of conformal nets, the proof runs parallel, with the algebra object A
now called a “Q-system,” and F the “category of solitons” obtained by “α-induction”
[216, 217, 218].

Generally, if W ⊂ V as in the proposition, then we will write W as V F and say that F
acts nicely on V . Note if F acts nicely on V and A is a fusion subcategory, then A also
acts nicely on V .

22In fact, when V is holomorphic A is actually a Lagrangian algebra. This can be seen since
FPdim(A)2 FPdim(C0A) = FPdim(C), but FPdim(C0A) = FPdim(Rep(V )) = 1. From the anyon-
condensation point-of-view this is because the conformal inclusion is describing a gapped boundary for C,
rather than a gapped interface between two phases C and D.
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As an example, consider the case W = V G where G is a finite group of automorphisms
of a holomorphic VOA V , then F ∼= VecαG as in the celebrated-results of [219, 220] (see
[124, 221] for conformal nets).

Physically, F is a collection of topological defect lines which acts on V andW is the sub-
VOA of V which commutes with the lines of F . More explicitly, if X ∈ F is a topological
defect line in F which acts on V , then it has a vector space of (not necessarily topological)
twist operators HX which X can end on. Since any element of HX is not a true local
operator, but must be attached to a topological X tail, a generic operator of V will collect
X-monodromy if it encircles the endpoint operator; the operators of W are exactly those
which collect no monodromy.

In [189], the authors prove the following

Proposition 3 ([189], Corollary 5.25). Let V be a nice VOA and G a finite solvable group
of automorphisms of V then V G is nice.

In fact, the result they prove makes weaker “niceness assumptions” than what we’ve stated
here. In the context of duality defects, we will be concerned with the case that G is cyclic.

So suppose V is holomorphic and F = TY(Zm) is a Tambara-Yamagami category
which acts nicely on V . Note: here we are being ambiguous about the associator data.
The degree-0 subcategory of F defines a Zm action on V which acts nicely, so that V F ⊂
V Zm ⊂ V is an inclusion of nice VOAs. By Proposition 2, V Zm ⊂ V determines a fusion
category isomorphic to VecZm and so V F ⊂ V Zm determines a fusion category of order 2.
Thus we have

V TY(Zm) = (V Zm)Z2 , (4.150)

where the Z2 action on V Zm may be anomalous.

We see that the data of a TY(Zm) action on V is defined by a choice of Zm action on
V and Z2 action on V Zm , but not all of the former actions realize a TY(Zm) action. As
explained in Section 4.3.4, our claim is that it does so if and only if the Z2 action “fully
swaps the axes” of the metric Abelian group A = Irr(V Zm). By “fully,” we mean the Z2

action truly maps all elements of A to elements of Â and vice-versa, i.e., it doesn’t just act
non-trivially on a subgroup of order dividing m.

Theorem 2. The inclusion (V Zm)Z2 ⊂ V corresponds to a Zm Tambara-Yamagami action
on V when the Z2 action fully swaps the axes of the metric Abelian group A = Irr(V Zm).

Proof. First suppose it does not fully swap the axes, i.e. that Z2 ⊂ SO(A, h), then the Z2

action is only acting by automorphisms on the individual axes, permuting the contents of
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Zm and Ẑm, but not amongst each other. So it is really just acting as an automorphism on
Zm, hence there is a finite group action G = Zm .Z2 acting on V such that (V Zm)Z2 = V G.

Now suppose we have an order 2 automorphism in O(A, h) which does swap the axes.
We must show that F determined by (V Zm)Z2 ⊂ V is a Tambara-Yamagami category. We
know that F is some Z2 extension of VecZm with total dimension 2m, so it will suffice to
show that the part in degree 1 has one simple object (which will then be dimension

√
m).

In other words, if we write F = VecZm ⊕A, then we want to show A has exactly one simple
object.

A is an invertible bimodule category for VecZm .
23 Now, bimodule categories of VecZm

are in bijection with module categories for Z(VecZm). In any case, module categories for
VecG are labelled by (H, β) where H < G and β ∈ H2(H;U(1)) [163].

Since Z(VecZm)
∼= VecZm ×Ẑm

as fusion categories, the module categories are labelled as
above. Physically, the (H, β) data are labelling a topological boundary condition for the
Zm gauge theory described in our previous section. The Z2 action is defining an electric-
magnetic duality which swaps our Dirichlet and Neumann boundary conditions, and we
are convincing ourselves that at the end of the wall lives a Z2 twist-line with Tambara-
Yamagami like properties.

There is a distinguished module category given by our Z2 action. In particular, the Z2

axis-swapping action defines an isomorphism χ : Zm → Ẑm whose graph is our subgroup
H = Zm < Zm×Ẑm. Physically speaking, this is telling us if the electric-magnetic duality
is swapping the axes and sending things of “electric charge 1” to things with “magnetic
charge 1” or also rearranging the definitions of electric and magnetic charge.

Now the module category of Z(VecZm) defined by that diagonal Zm (with trivial cocycle
since H2(Zm, U(1)) is trivial), gives us a bimodule category of VecZm using the bulk-
boundary functor Z(VecZm) → VecZm . In particular, the data is simply the projection
onto the first factor in π : Zm×Ẑm → Zm. Following our particular module category
(H, 1), we get a VecZm module category (we don’t need the full bimodule category to count
simple objects).

The simple objects of A are the simple module-objects for the VecZm algebra object
π((H, 1)), but these correspond to subgroups Zm < Zm, of which there is only 1. So A has
one object.

23Note: physically, this is not saying that the TY line is invertible, but that the 2d wall which extends
off of it into the (2+1)d bulk is invertible.
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4.6 Conclusion

In this chapter we studied duality defects of the holomorphic E8 lattice VOA V which
separate a theory from its orbifold by a cyclic subgroup Zm. We computed the defect
partition functions explicitly as Z2 twists of the invariant sub-VOAs V Zm and compared
our results to fermionization in the m = 2 case and a particular conformal inclusion in the
m = 3 case (see Appendix B.1), and obtained matching results. We also explained this
computation using the (2+1)d topological field theory perspective of 2d orbifolds.

Focusing on V gave us the ability to understand the group actions very explicitly.
In fact, since the non-anomalous Zm symmetries of V are systematically enumerable, as
well as Z2 actions of the invariant sub-VOA, we have actually classified all Zm Tambara-
Yamagami actions on the E8 lattice VOA (but see the open problems list). They are given
as a pair consisting of a non-anomalous Zm symmetry of V and a (possibly anomalous) Z2

action which “swaps the axes” of the metric Abelian group of irreducible representations
Irr(V Zm).

However, the (2+1)d discussion of duality defects did not actually rely very particularly
on the details of V , so similar constructions should work for arbitrary holomorphic theories
that are sufficiently “nice,” as demonstrated in Theorem 2. Generally, by the results of
[222] (see also Appendix D of [1]), we expect a modified version of this procedure to work
for more complicated theories in higher dimensions (as in [142, 143, 144]), as it’s all simply
a manifestation of the higher-dimensional TFT perspective on these topological defect
operators.

Open Problems

1. Full associator data. In this chapter, we do not obtain the full associator data
for our Tambara-Yamagami categories. From a 2d perspective, data like the sign τ
has an effect on the associativity relations for the duality defect line in the CFT.
Based on our discussion, we suspect it is controlled by whether or not the Z2 action
is anomalous or non-anomalous. Comparing to the (2+1)d TFTs, there is similarly a
question of whether or not we stack with an invertible phase of matter before gauging
the Zem

2 bulk 0-form symmetry, as H3(Z2;U(1)) = Z2. It would be fun to work this
data out explicitly and compare with the formalism of G-crossed categories [212, 22].

2. n-ality defects. In [80, 148], the authors discuss higher n-ality defectsN with fusion
rules

Xg ⊗N = N = N ⊗Xg , N n =
∑
g∈G

g . (4.151)
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There is nothing particularly restrictive about our procedure for finding duality de-
fects that could not be extended to these higher n-ality defects. In particular, for
E8, one could use Kac’s theorem to construct automorphisms G so that the weight-
one subspace (VE8)

G has an so(8) subalgebra, then try twisting by (a lift of) the Z3

automorphism of the D4 Dynkin diagram. This would give a triality defect of a very
different origin than those discussed in [148].

3. Matching to and from other examples. To gain physical insight into other
theories, the E8 theory, or the structure of duality defects more broadly, it could be
helpful to compare the constructions of defects in more specific cases. For example,
using parafermionization or playing games with conformal inclusions as in Appendix
B.1. The fact that factors of u(1) appear in the weight-one subspaces of various
fixed VOAs ((V Zm)Z2)1 indicates the possibility of explicit character decompositions
mirroring those in Appendix B.1 but with free bosons attached.

4. Other Theories. We focused on the E8 VOA, but our strategy should apply to
arbitrary holomorphic VOAs without extra complications, although the lattice de-
scriptions may not be available. From the discussion in Section 4.5, we actually
expect it to apply to duality interfaces in more general theories.
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Order Automorphism Zm Anomaly
Fixed

Subalgebra

2
(0,0,0,0,0,0,0,1,0) 0 D8

(0,1,0,0,0,0,0,0,0) 1 A1 × E7

3

(0,0,0,0,0,0,0,0,1) 1 A8

(1,0,0,0,0,0,0,1,0) 2 D7 × u(1)
(0,0,1,0,0,0,0,0,0) 0 A2 × E6

(1,1,0,0,0,0,0,0,0) 1 E7 × u(1)

4

(1,0,0,0,0,0,0,0,1) 0 A7 × u(1)
(2,0,0,0,0,0,0,1,0) 2 D7 × u(1)
(0,0,0,0,0,0,1,0,0) 3 A1 × A7

(0,0,0,1,0,0,0,0,0) 2 A3 ×D5

(1,0,1,0,0,0,0,0,0) 3 A1 × E6 × u(1)
(2,1,0,0,0,0,0,0,0) 1 E7 × u(1)
(0,1,0,0,0,0,0,1,0) 1 A1 ×D6 × u(1)

5

(2,0,0,0,0,0,0,0,1) 4 A7 × u(1)
(3,0,0,0,0,0,0,1,0) 2 D7 × u(1)
(0,0,0,0,0,0,0,1,1) 1 A7 × u(1)
(1,0,0,0,0,0,0,2,0) 3 D7 × u(1)
(1,0,0,0,0,0,1,0,0) 2 A1 × A6 × u(1)
(0,0,0,0,1,0,0,0,0) 0 A4 × A4

(1,0,0,1,0,0,0,0,0) 1 A2 ×D5 × u(1)
(2,0,1,0,0,0,0,0,0) 3 A1 × E6 × u(1)
(0,0,1,0,0,0,0,1,0) 4 A2 ×D5 × u(1)
(3,1,0,0,0,0,0,0,0) 1 E7 × u(1)
(0,1,0,0,0,0,0,0,1) 3 A1 × A6 × u(1)
(1,1,0,0,0,0,0,1,0) 0 D6 × u(1)2

(0,1,1,0,0,0,0,0,0) 2 A1 × E6 × u(1)
(1,2,0,0,0,0,0,0,0) 4 E7 × u(1)

Table 4.2: The finite order automorphisms of the E8 Lie algebra can be enumerated, up to
conjugacy, by Theorem 1. The automorphism is given by a sequence s which describes the
automorphism. In physics terms, s describes how the operators of VE8 are screened and
the anomaly of that symmetry.
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Order Automorphism
Fixed

Subalgebra

2
0 0 0 0 0 0 0 1

0

D8

3
0 0 1 0 0 0 0 0

0

A2 × E6

4
1 0 0 0 0 0 0 0

1

A7 × u(1)

5
0 0 0 0 1 0 0 0

0

A4 × A4

1 1 0 0 0 0 0 1

0

D6 × u(1)2

Table 4.3: List of non-anomalous symmetries of the E8 Lie algebra and fixed point Lie
subalgebras up to order m = 5. Instead of listing the corresponding sequence s for the
automorphism, we mark s onto the (affine) E8 Dynkin diagram, illustrating the origin of
the fixed Lie subalgebras.

E6 inner (3) E6 outer (2)

A2 inner (2) 6 4
A2 outer (1) 3 2

Table 4.4: There are 15 automorphisms of the A2 × E6 Lie algebra of order less than or
equal to 2. The row and column labels denote the origin of the A2 × E6 automorphisms.
For example, there are 4 Z2 actions on A2 × E6 which come from one of the (2) inner
actions on A2 times one of the (2) outer actions on E6.
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((V Z3)Z2)1 q-Expansion of Z3 Duality Defects

A1 × E6 q−
1
3 (1 + 76q + 574q2 + 3000q3 +O(q4))

A1 × A1 × A5 q−
1
3 (1− 4q + 14q2 − 40q3 +O(q4))

A1 ×D5 × u(1) q−
1
3 (1 + 12q − 2q2 + 56q3 +O(q4))

A2 × F4 q−
1
3 (1 + 34q + 304q2 + 1446q3 +O(q4))

A1 × F4 × u(1) q−
1
3 (1 + 26q + 80q2 + 350q3 +O(q4))

A2 × C4 q−
1
3 (1 + 2q − 16q2 + 38q3 +O(q4))

A1 × C4 × u(1) q−
1
3 (1− 6q + 16q2 − 34q3 +O(q4))

Table 4.5: List of the defect partition functions of order 3, with defect twisting time. On
the left are the weight one subspaces of (V Z3)Z2 ; these are Lie algebras, not invariant
lattices. On the right are q-expansions of the defect partition functions from Equations
(4.133 – 4.139). The first 3 defects are lifted from outer A2 lattice actions, the next 4 are
lifted from outer E6 lattice actions.

((V Z4)Z2)1 q-Expansion of Z4 Duality Defects

A7 q−
1
3 (1 + 62q + 784q2 + 5088q3 +O(q4))

A1 × A5 × u(1) q−
1
3 (1 + 14q + 16q2 + 96q3 +O(q4))

A3 × A3 × u(1) q−
1
3 (1− 2q + 16q2 − 32q3 +O(q4))

C4 × u(1) q−
1
3 (1 + 10q + 80q2 + 224q3 +O(q4))

C4 × u(1) q−
1
3 (1 + 10q + 16q2 + 96q3 +O(q4))

D4 × u(1) q−
1
3 (1− 6q + 16q2 − 32q3 +O(q4))

Table 4.6: List of the defect partition functions of order 4, with defect twisting time. The
first three come from the lattice automorphism ν

(4)
2 while the rest come from ν

(4)
3 .
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((V ZA
5 )Z2)1 q-Expansion of ZA

5 Duality Defects

A4 ×B2 q−
1
3 (1 + 20q + 34q2 + 140q3 +O(q4))

A3 ×B2 × u(1) q−
1
3 (1 + 4q − 14q2 + 28q3 +O(q4))

A1 × A2 ×B2 × u(1) q−
1
3 (1− 4q + 10q2 − 28q3 +O(q4))

A4 q−
1
3 (1 + 24q + 124q2 + 500q3 +O(q4))

Table 4.7: List of the defect partition functions of order 5A, with defect twisting time. The
first 3 defects come from the {σ1, σ2} “flip” conjugacy class lattice action. The final defect
lifts from the {τ, σ1σ2τ} “exchange” conjugacy class lattice action.

((V ZB
5 )Z2)1 q-Expansion of ZB

5 Duality Defects

D5 × u(1)2 q−
1
3 (1 + 26q + 80q2 + 352q3 +O(q4))

A5 × u(1)2 q−
1
3 (1 + 6q + 32q2 + 32q3 +O(q4))

A5 × u(1)2 q−
1
3 (1 + 6q + 32q2 − 44q3 +O(q4))

A3 × A3 × u(1) q−
1
3 (1− 6q + 16q2 − 32q3 +O(q4))

B5 × u(1) q−
1
3 (1 + 44q + 266q2 + 1268q3 +O(q4))

A1 ×B4 × u(1) q−
1
3 (1 + 12q + 10q2 + 84q3 +O(q4))

B2 ×B3 × u(1) q−
1
3 (1− 4q + 10q2 − 28q3 +O(q4))

Table 4.8: List of the defect partition functions of order 5B, with defect twisting time. The
first four come from the automorphism ν

(5)
2 , while the rest come from ν

(5)
3 .
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T

[T/Zm]

←→ Iem

Zm Gauge Theory

Ẑm Gauge Theory

T Zm

[T/Zm]
Ẑm

Dire

Dirm

(a) The 2d theory T (blue) is separated from [T/Zm] (purple) by a duality defect
(red). This picture can be blown up to a slab of electric Zm gauge theory (front)
and magnetic Ẑm gauge theory (back) separated by an electric-magnetic duality wall
(yellow). Zm invariant local operators of T live at the left boundary and similarly for
[T/Zm]. Electric and magnetic Dirichlet boundary conditions for the respective gauge
theories are established at the right boundary. The duality defect is a twist line for the
bulk Zem

2 symmetry.

T

[T/Zm]

←→ Z(TY(Zm)) Bulk

TTY(Zm) TY(Zm) Dir

(b) The same 2d picture can be blown up into a slab of Z(TY(Zm)) bulk with TY(Zm)
invariant local operators on the left boundary and Dirichlet boundary conditions on the
right boundary. The duality defect now lives at the end of the trivial wall. Z(TY(Zm))
has 2m lines with quantum dimension

√
m, hence many bulk lines condense to the same

line at the Dirichlet boundary.

Figure 4.7: Two different (2+1)d blow-ups for a theory with a duality defect line inserted.
To go from (a) to (b), one must gauge the Zem

2 0-form symmetry generated by the duality
wall Iem, with Neumann boundary conditions for Zem

2 on the left and Dirichlet on the right.
This makes the duality wall Iem “become invisible,” leaving behind the duality defect. To
go from (b) to (a), one must gauge the bulk Zem

2 1-form symmetry of Z(TY(Zm)).
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Appendix A

Appendices for Chapter 2

A.1 Basics of 3d Interfaces

Here we will give some intuition on how to think about interfaces as used in the 3d discus-
sions in this paper.

Suppose we are working with some 3d topological theory, then from the axioms for a
TFT, a boundary condition specifies a state. For example, a Dirichlet boundary condition
for a bulk 3d connection, which sets the connection equal to α at the boundary, naturally
provides us with some state

D[α] 7→ |A| |α⟩ . (A.1)

Here the |A| factor is required by our convention below for the normalization of states.
It can be justified as following from the fact that Dirichlet boundary conditions break
the A gauge symmetry, while the state is defined by fixing the connection modulo gauge
transformations.

Since we will be dealing concretely with Abelian gauge theories, we normalize the inner
product of these states as

⟨α|β⟩ = 1

|A|
δαβ . (A.2)

From this, we can understand how to recover the 2d theory from the 3d picture very
easily on a slab M × [0, 1]. T induces a boundary condition,

|T ⟩ =
∑
α

ZT [α] |α⟩ , (A.3)
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on one side of the slab. Now, if we put Dirichlet boundary conditions on the other side,
then we are constructing some segment which computes the partition function of the 2d
theory

T [0, 1]D[α] = |A| ⟨T |α⟩ = ZT [α] . (A.4)

Similarly, Neumann boundary conditions in the path integral provide us with some
state |N⟩ =

∑
α |α⟩. Hence, to recover the gauged theory, we use Neumann boundary

conditions on one side

T [0, 1]N = ⟨T |N⟩ = 1

|A|
∑
α

ZT [α] . (A.5)

Intuitively, an interface is like a two sided boundary condition because it interpolates
between two bulks glued together. Thus in the way a boundary condition corresponds to
a state, an interface corresponds to an operator.

The simplest interface we can construct is the identity interface I1. If in our given basis
it is

I1 =
∑
α,β

I1[α, β] |α⟩⟨β| , (A.6)

then if we say it should be constrained to the reasonable consistency condition I1 = I1×I1,
we have that

I1[α, β] = |A| δαβ . (A.7)

In general, for any interface

I =
∑
α,β

I[α, β] |α⟩⟨β| , (A.8)

we have
I[α, β] = |A|2 ⟨α|I|β⟩ . (A.9)

Which corresponds to Dirichlet boundary conditions on both ends of a slab, with the
topological interface I inserted somewhere in between.

Lastly, we should describe how to compose two topological interfaces. Suppose that
the topological interface K is produced by fusing I and J , i.e. that

K

=

I J

(A.10)

166



Or less pictorially, K = I × J . In terms of the coefficients we have∑
α,β

K[α, β] |α⟩⟨β| =
∑

α,β,γ,δ

I[α, β] |α⟩⟨β| J [γ, δ] |γ⟩⟨δ| (A.11)

=
∑
α,β

(
1

|A|
∑
γ

I[α, γ]J [γ, β]

)
|α⟩⟨β| , (A.12)

which implies that

K[α, β] =
1

|A|
∑
γ

I[α, γ]J [γ, δ] . (A.13)

In general, we see the product of interfaces comes with a factor of |A| in components.

Let us pass through three of the simplest examples. First, we see how the identity
interface functions. We know that I1[α, β] = |A|δαβ, so that if we hit ZT with I1 we have
the component relation

1

|A|
∑
α

Z[α]I1[α, β] = Z[β] . (A.14)

The next simplest example is to see how to extract an interface (say the orbifold inter-
face for a Z2 theory). Well, we know that we can write

Z[T/A][β] =
1

2

∑
α

(−1)
∫
α∪βZT [α] . (A.15)

Then we see that the orbifold interface is given by

IOrbi.[α, β] = (−1)
∫
α∪β . (A.16)

Finally, we can check that the interfaces compose properly in component form. Using
the orbifold interface above, we obtain

1

2

∑
γ

IOrbi.[α, γ]IOrbi.[γ, β] =
1

2

∑
γ

(−1)
∫
α∪γ(−1)

∫
γ∪β (A.17)

= 2δαβ

= I1[α, β] . (A.18)
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A.2 Basic Facts About Spin Structures in 2d

Here we recall some basic facts about spin theories and Z2-structures on a 2d orientable
genus g surface that will be useful in understanding examples.

The “background connection” for a spin theory is a choice of spin-structure η on the
manifold, specifying the periodicity condition of the fermions around a given cycle as either
Ramond (periodic) or Neveu-Schwarz (anti-periodic).

Counting, we see there are 22g spin structures onM ; 2g−1(2g−1) of them are “odd” and
2g−1(2g + 1) are “even.” The terms odd and even refer to the number of (fixed chirality)
Dirac zero modes modulo two. To count the splitting of these spin structures one just
needs the fact that the number of Dirac zero modes modulo two is invariant under gluing
of Riemann surfaces, i.e. it is a bordism invariant. Armed with this fact, one can build up
inductively, noting that there is only one odd spin-structure (RR) on the torus, because
only the purely periodic torus spin-structure could have a Majorana zero mode [77].

Now we divert our attention to Z2 structures. We recall that on a surface of genus g
there is a symplectic basis for H1(M,Z2) given by the “a-cycle” and “b-cycle” around each
hole (equivalently our Z2-gauge fields in H

1(M,Z2) by Poincaré duality in 2d). This basis
satisfies ai ∩ bj = δij with the cap denoting the intersection pairing.

A quadratic form on H1(M,Z2) is a function q : H1(M,Z2)→ Z2 that satisfies

q(x+ y) = q(x) + q(y) + x ∩ y , (A.19)

and is thusly called a “quadratic refinement” of the intersection number. For example, one
particular quadratic refinement is

qcan(ciai + djbj) = cidi , (A.20)

with sums implied over repeated indices.

Given any quadratic refinement q, the Arf invariant

Arf[q] =

g∑
i=1

q(ai)q(bi) (A.21)

is actually a basis independent quantity, uniquely classifying q up to isomorphism of
quadratic forms.
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Now, a result of Johnson [190] is that there is a bijection between spin structures
on M and quadratic forms on H1(M,Z2). Furthermore, the bijection is simple: given a
spin-structure η define

qη(ai) =

{
0 if η is anti-periodic around ai ,

1 if η is periodic around ai .
(A.22)

And similarly for qη(bi). From this, we see it makes sense to define the quantity

Arf[η] := Arf[qη] . (A.23)

As an example, on the torus equipped with spin-structure (η1, η2) we have

Arf[η] = qη(a1)qη(b1) = η1η2 . (A.24)

Coming full circle, it is a result of Atiyah [191] that Arf[η] is precisely the mod 2 index
of the Dirac operator described above.

Of course, by Poincaré duality, we have equivalently produced a quadratic form q̃η :
H1(M,Z2)→ Z2 satisfying

q̃η(α + β)− q̃η(α)− q̃η(β) =
∫
M

α ∪ β . (A.25)

We will be using a multiplicative notation throughout, so it is useful to define

ση(α) = (−1)q̃η(α) . (A.26)

See also [49, 74] for further discussion. Some identities for cups and Arf are included in
Appendix A.3.

A.3 Identities for Cups and Arf

By construction, the term ση(α) coupling Z2 gauge fields to spin-structures satisfies

ση(α)ση(β) = ση(α + β)(−1)
∫
α∪β . (A.27)

Such a function can also be written in terms of the Arf invariant, which is typically the
form that people present when defining GSO projection in the literature

ση(α) = (−1)Arf[α+η]+Arf[η]. (A.28)
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Conversely, the Arf invariant can be written in terms of ση by a normalized sum over
all connections

(−1)Arf[η] =
1√

|H1(M,Z2)|

∑
α

ση(α) . (A.29)

Since Arf[η] is the number of Dirac zero modes modulo 2, then summing over (−1)Arf[η]

will simply count the difference in number between even and odd spin structures, hence

1 =
1√

|H1(M,Z2)|

∑
η

(−1)Arf[η] . (A.30)

For cyclic groups, a helpful identity for colliding interfaces with cup products is

δα,γ =
1√

|H1(M,Zn)|

∑
β

ω
∫
α∪β

n ω
∫
β∪γ

n , (A.31)

where ωn is a principal n-th root of unity.

A.4 Topological Aspects of QFTs

There are several variations on the idea of symmetry. A broad generalization of the notion
of discrete symmetry involves collections of topological defects of various dimensionality,
closed under fusion operations. Such collections of defects can be formalized mathemati-
cally in terms of (higher) categories. Because of the topological nature of the defects, this
categorical data is also an RG flow invariant.

We will thus say that some QFT T has a categorical symmetry S if it is equipped with a
collection of topological defects encoded in some higher category S. We will leave implicit
the mathematical properties required on such a symmetry category, which may depend
sensitively on the dimensionality of spacetime, on the bosonic or fermionic nature of the
QFT, etc.

An important observation is that S can be quite large. In particular it could be larger
than the type of categories which are encountered as categorical symmetries of TQFTs.
For example, a gapless 2d theory may have a categorical symmetry S which is too large to
be described by a fusion category.

The existence of categorical symmetries may also allows one to perform certain topo-
logical manipulations on a QFT, akin to the operation of gauging a non-anomalous discrete

170



symmetry. These manipulations produce new QFTs which have the same local dynamics
as the original one, and share a large collection of local operators, but have different global
properties. Such topological manipulations will commute with RG flow.

To the best of our knowledge, topological manipulations can only employ sub-collections
of S which satisfy the axioms for categorical symmetries of TQFTs. In the discussion
below, we will either restrict to the case where S is sufficiently finite, or only focus on a
fixed sub-category of S which is sufficiently finite.

One may ask a variety of natural questions:

• Do the theories resulting from topological manipulations carry categorical symmetries
as well?

• Are such topological manipulations invertible?
• What is the result of composing topological manipulations?
• What collection of new theories can be obtained in this manner?

The answers to these questions are independent on the dynamics of the underlying QFT.
Indeed, they are expected to be independent of the specific choice of QFT as well and to
only depend on the actual symmetry category S.

Another general expectation is that the symmetry can be completely decoupled by
the dynamics by a topological sandwich construction, where T is realized as a segment
compactification of a topological field theory D[S] defined in one dimension higher. At one
end of the segment we place a topological boundary condition B[S] supporting a symmetry
category S of boundary defects. At the other end we place a possibly non-topological
boundary theory B[T ;S] which captures the local dynamics of T .

For a standard discrete symmetry, D[S] would be a Dijkgraaf-Witten discrete gauge
theory and B[S] would be Dirichlet boundary conditions.

We expect to have a complete bijection between the collection of “absolute QFTs with
symmetry category S” and the collection of “boundary theories for D[S]”. The map from
the latter to the former is the segment compactification. Invertibility of the map is not
obvious, but it is expected. It is an operation analogue to the operation of coupling T to
a discrete gauge theory in one dimension higher.1 We discuss it in two dimensions in 2.4.

The higher-dimensional perspective helps answer many of the above-mentioned ques-
tions in a theory-independent manner. Topological manipulations can be applied to B[S]
to produce new topological boundary conditions B′. The resulting QFTs will be described

1Mathematically, it should be a canonical condensation of Sop × S in the sense of [222]
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as segment compactifications involving B[T ;S] and B′. It will have a categorical symmetry
given by the category of topological defects in B′. Indeed, the collection of all possible
theories which can be obtained from T by manipulating the symmetry S should coincide
with the collection of all possible topological boundary conditions B′.
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Appendix B

Appendices for Chapter 4

B.1 A Z3 Defect from the Potts Model

In Section 4.3.5 we obtained our Z2 duality defects from fermionization to contrast it to the
Lie-theoretic method. We can also obtain other duality defects by playing similar games
with parafermions and/or various conformal inclusions.

We will explain how to obtain one of our Z3 duality defects from the Potts Model. This
largely just amounts to doing representation theory for 2d CFTs, but we take a (2+1)d
TFT and anyon condensation viewpoint to highlight the story in Section 4.5. The final
answer is given in Equation (B.20).

The (bosonic) c = 4
5
minimal models are constructed by pairing data from the chiral

algebra m6,5 and the anti-chiral algebra m6,5 in a modular invariant way. m6,5 has 10 chiral
primaries with spins [21]

{0, 2
5
, 1
40
, 7
5
, 21
40
, 1
15
, 3, 13

8
, 2
3
, 1
8
} . (B.1)

The chiral algebra data may pair up via the diagonal (or “A-type”) modular invariant,
which corresponds to the tetracritical Ising model, with 10 full CFT primaries and a
Z2 symmetry group. Alternatively, there is also a non-diagonal (or “D-type”) modular
invariant, which corresponds to the critical three-state Potts model, with 12 primaries (we
use the notation of [130])

10,0, ϵ 2
5
, 2
5
, X 7

5
, 7
5
, Y3,3,Φ 7

5
, 2
5
, Φ̃ 2

5
, 7
5
,Ω3,0, Ω̃0,3, σ 1

15
, 1
15
, σ∗

1
15

, 1
15
, Z 2

3
, 2
3
, Z∗

2
3
, 2
3
, (B.2)

and an S3 symmetry group. The two are related by Z2 orbifold.
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By the construction of [96], the Potts CFT on Σ can be blown up to a slab of (2+1)d
TFT on Σ × I with bulk M := Rep(m6,5). The TFT assigns the vector space HΣ of
conformal blocks of m6,5 to the chiral boundary (and HΣ to the other).1 From this point of
view, the choice of D-type modular invariant is specified by a topological interface ID(6,5),

2

so that we may draw a picture like

Potts

←→

ID(6,5)

M M

m6,5 m6,5

(B.3)

where “←→” means “blows up to” in one direction and “compactifies down to” in the
other.

The untwisted (torus) partition function for the three-state Potts model describes this
D-type pairing, it is given by

ZPotts[0, 0] = |χ1,1 + χ4,1|2 + |χ2,1 + χ3,1|2 + 2|χ4,3|2 + 2|χ3,3|2 . (B.4)

However, it is also well known that the Potts model can be realized as the diagonal modular
invariant for the W3 algebra

ZW3 [0, 0] = |χ1|
2 + |χϵ|2 + |χZ |2 + |χZ∗|2 + |χσ|2 + |χσ∗|2 . (B.5)

The fact that the Potts model can also be written as the diagonal modular invariant
CFT for a W3 algebra signals that there exists an anyon condensation wall between M
and W := Rep(W3), condensing the 10 anyons ofM down to the 6 bulk anyons of W (as
we will confirm). Pictorially, there exists a topological interface IM|W such that

IM|W

M W

m6,5 W 3

(B.6)

1We label the boundaries of the (2+1)d TFT by the chiral algebras to avoid overcluttering.
2One can quickly obtain ID(6,5) as one the only two (irreducible bosonic) gapped boundary conditions

ofM×M using the Lagrangian algebra discussion outlined in Section 4.5. The interface ID(6,5) satisfies
I2D(6,5) = 2ID(6,5).
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The 10 lines ofM = Rep(m6,5) are

{00, 1 2
5
, 2 1

40
, 3 7

5
, 4 21

40
, 5 1

15
, 63, 7 13

8
, 8 2

3
, 9 1

8
} , (B.7)

where the subscript denotes the chiral spin of the operator they correspond to (but will
henceforth be dropped). Note that spin in the (2+1)d TFT is only meaningful mod 1 so
that lines 0 and 6 have the same spin. At this point, there’s only one bosonic condensation
we could even try to perform; it must be that the new vacuum line is φ = 0 + 6. This
makes sense since the spin-3 operator generates the W3 algebra.

To understand the condensation at the interface IM|W , we compute the fusion rules of
the (non-trivial) lines inM with the new vacuum φ

φ× 1 = 1 + 3 , φ× 2 = 2 + 4 , φ× 3 = 3 + 1 ,

φ× 4 = 4 + 2 , φ× 5 = 51 + 52 , φ× 6 = 6 + 0 , (B.8)

φ× 7 = 7 + 9 φ× 8 = 81 + 82 , φ× 9 = 9 + 7 .

Fusions like φ×1 = 1+3 are straightforward, as the fusion rules of lines inM match those
of primaries in m6,5. One subtlety is the appearance of terms like φ× 5 = 51 + 52, where
the subscript reminds us that the line formerly known as 5 splits into two simple objects
on IM|W . Altogether, the lines living on IM|W , coming from the condensation, are

{φ, (1 + 3), (2 + 4), 51, 52, (7 + 9), 81, 82} . (B.9)

We note that the lines (2 + 4) and (7 + 9) cannot be lifted to the bulk W phase because
the constituent anyons have different spins and so the combined object cannot be given a
braiding; in the language of [207] they are “totally confined.” The anyons of the phase W
must be

W = {φ0, (1 + 3) 2
5
, (51) 1

15
, (52) 1

15
, (81) 2

3
, (82) 2

3
} , (B.10)

which matches what we know about the W3 algebra.

One can now verify thatW has the same fusion rules, but opposite spins, as the category
C := Rep(su(3)1 × (f4)1). In particular, the spins are

(f4)1 : {0, 35} , (B.11)

su(3)1 : {0, 13 ,
1
3
} , (B.12)

C : {0, 1
3
, 1
3
, 3
5
, 14
15
, 14
15
} , (B.13)

and we have C =W .
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This means we can draw a picture like

IM|C

M G × C

m6,5 su(3)1 × (f4)1

(B.14)

where we have flooded the right-hand side with G , which denotes the k = −1 gravitational
Chern-Simons theory, to soak up the gravitational anomaly [176, 150]. Recall c(m6,5) =
+4/5, c(su(3)1) = +3, and c((f4)1) = +26/5.

By folding just the C phase, we obtain the way to blow up the CFT VE8 as m6,5 ×
su(3)1 × (f4)1 with a topological boundary condition (or an interface to a gravitational
Chern-Simons phase) on the other end

G

VE8

←→

BM×C

M×C G

m6,5×
su(3)1 × (f4)1

(B.15)

In terms of characters, all these pictures have just been to say that

χE8(τ) = (χ1,1(τ) + χ4,1(τ))χ
A2
0 (τ)χF4

0 (τ) + (χ2,1(τ) + χ3,1(τ))χ
A2
0 (τ)χF4

3
5

(τ)

+ 2χ4,3(τ)χ
A2
1
3

(τ)χF4
0 (τ) + 2χ3,3(τ)χ

A2
1
3

(τ)χF4
3
5

(τ) (B.16)

where we recognize the shadow of the original Potts partition function from Equation
(B.4). For implementation purposes, it may be helpful to know that the (f4)1 characters
can similarly be written in terms of so(9)1 characters (given in (4.96)) and the c = 7

10

tricritical ising characters (see [223] for a cool application)

χF4
0 (τ) = χ

m5,4

1,1 (τ)χB4
0 (τ) + χ

m5,4

2,1 (τ)χB4
1
16

(τ) + χ
m5,4

3,1 (τ)χB4
1
2

(τ) , (B.17)

χF4
3
5

(τ) = χ
m5,4

3,2 (τ)χB4
0 (τ) + χ

m5,4

2,2 (τ)χB4
1
16

(τ) + χ
m5,4

3,3 (τ)χB4
1
2

(τ) . (B.18)
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In [119] the authors enumerate the simple topological defect lines of the Potts model,
with defect partition functions. We can use our character decompositions to similarly
produce a Z3 defect partition function for E8. There are actually two Z3 duality defect
lines in the Potts model, related by charge conjugation (see [130]), they have the same
defect partition function

ZPotts[0, XTY] =
√
3(χ1,1(τ) + χ1,5(τ))(χ̄1,1(τ̄)− χ̄1,5(τ̄))

+
√
3(χ3,1(τ) + χ3,5(τ))(χ̄3,1(τ̄)− χ̄3,5(τ̄)) (B.19)

So that translated to VE8 we have

ZVE8
[0, XTY] =

√
3(χ1,1(τ) + χ1,5(τ))χ

A2
0 (τ)χF4

0 (τ)

+
√
3(χ3,1(τ) + χ3,5(τ))χ

A2
0 (τ)χF4

3
5

(τ) (B.20)

whose q-expansion matches our result in Equation (4.136).

With hindsight, the path to this result is somewhat obvious. Kac’s theorem tells us
about the weight one subspace of (V Z3)Z2 , one of them happens to be A2 × F4 (where the
F4 appeared as the invariant subalgebra under the Z2 Dynkin diagram automorphism for
E6). If we assume these are both reflecting the presence of level-1 WZW models, then we
only have to explain a missing central charge of 4

5
, and we know that the Potts model has

a Z3 symmetry and is self-dual under Z3 orbifold (because there’s no other theory for it to
map to with Z3 symmetry).

As a related exercise, one can reobtain the results from fermionization with their asso-
ciator data by noting that TY(Z2, 1,+1/

√
2) ∼= Ising and TY(Z2, 1,−1/

√
2) ∼= su(2)2 as

fusion categories and using techniques of anyon condensation.

Such manipulations would become rather cumbersome if one wants to enumerate all
duality defects. The treatment given in the main text provides a more systematic way
to obtain these same results. A combined approach could be of physical interest to bet-
ter understand the final expressions for the duality defects in terms of the characters of
(V Zm)Z2 .

B.2 Symmetric Non-Degenerate Bicharacters and “Re-

arrangement Data”

Tambara-Yamagami categories are specified by an Abelian group G, a symmetric non-
degenerate bicharacter χ : G × G → U(1), and a Frobenius-Schur indicator τ = ±

√
|G|.
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In the main body of this paper we largely focus on the fusion rules, but the symmetric
non-degenerate bicharacter is also a mostly accessible piece of data.

Recall that a symmetric non-degenerate bicharacter gives isomorphisms χG : G → Ĝ
and χĜ : Ĝ → G such that χĜ ◦ χG = 1G and χG ◦ χĜ = 1Ĝ. In our case, G = Zm, and

Irr(V Zm) ∼= Zm×Ẑm is a metric Abelian group (with metric function given by the natural
pairing between Zm and Ẑm).

In this paper, we look for Z2 symmetries of V G which act to “swap the axes” of A. The
data of a symmetric non-degenerate bicharacter describes whether or not the axes are also
“rearranged” when they are swapped. To what extent can we obtain this “rearrangement
data” of our Z2 action?

There are many “non-canonicalities” involved in this axis-swapping. For example, Zm
∼=

Ẑm, but not-canonically, with
∣∣Z×

m

∣∣ isomorphisms between them. Even then, when dealing
with cyclic group symmetries, there isn’t really a meaning of “one” unit of electric charge.
We claim that we can distinguish, at minimum, if two different Z2 actions on V G lead to
different symmetric non-degenerate bicharacters.

We are dealing with some concrete data, we have:

1. An “original” E8 lattice L.
2. A sublattice L0 ⊆ L which is obtained as a fixed sublattice of L under our original

(non-anomalous) Zm action.
3. A dual lattice L∗

0 such that L ⊆ L∗
0 and L∗

0/L0
∼= A.

4. Another E8 lattice L′ ⊆ L∗
0 such that L ∩ L′ = L0.

The first piece of data in some sense explains if we can identify G or Ĝ inside of A, as we
can identify if some element is in L. But this will not be of primary concern.

Let {σi} be a collection of order 2 automorphisms of L0 (whose actions extend to all
of R8 by linearity), and {σ̂i} the (well-defined) induced actions on A = L∗

0/L0. We will
only concern ourselves with those σi such that σ̂i swaps the axes of A. We can determine
if they correspond to different symmetric non-degenerate bicharacters as follows:

1. We start with the lattice L0 and obtain L∗
0/L0. In particular, we obtain a list of rep-

resentatives for the m2 equivalence classes. We can identify elements corresponding
to equivalence classes “on the axes” by using the discriminant (which is well-defined
on the equivalence classes), i.e. checking which representatives are even vectors.

2. Next we pick some representative ξ with discriminant 0 and order m, and declare
that the coset ξ + L0 generates the subgroup corresponding to L in A. We define
things in the sector ξ + L0 to have reference electric charge 1.
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3. Now we pick one of our Z2 actions, σ1 say, and declare that the operators in ω + L0

have reference magnetic charge 1, where ω = σ1(ξ). In other words, σ̂1 maps the
sector with electric charge 1 to the sector with magnetic charge 1. This part is
non-canonical in that σ1 picks a particular isomorphism σ̂1 : G→ Ĝ inside A.

4. Finally, we act with all other σi on ξ to find the “image magnetic charge” relative to
(ξ, σ1). i.e. σ̂i(ξ + L0) = miω + L0 for some mi ∈ Z×

m.

We see that relative to the declarations that ξ has electric charge 1 and σ1 maps it to
magnetic charge 1, mi tells us whether or not σi also “rearranges” the axes when it swaps
them, and so constitutes the data we want.

To what extent do our choices matter? On one hand, note that if we had chosen
a different reference electric charge ξ′, then σ1 would define a different generator ω′ +
L0 = σ̂1(ξ

′ + L0) for the magnetic subgroup. But ξ′ + L0 = kξ + L0 for some invertible
kmodm. Thus, multiplying both sides by k, we see σ̂i(ξ + L0) = miω + L0 if and only
if σ̂i(ξ

′ + L0) = miω
′ + L0 since k is invertible. So it’s not our choice of reference electric

charge sector ξ + L0 that matters, just σ1.

On the other hand, mi does depend on our original choice of σ1 in defining the sector
with one unit of magnetic charge. This is obvious since mi = 1 relative to itself. We will
denote this “rearrangement number” relative to σ1 as Rearrσ1(σ̂i) = mi.

We can do slightly better though, as ratios of mi are meaningful independent of σ1. To
see this is the same as before. Fix some ξ and suppose we have two reference isomorphisms
σ and σ̃ with their respective ω and ω̃, and suppose µ̂ is some Z2 action of interest. Then
relative to σ and σ̃ we have

Rearrσ(µ̂) =: mµ , Rearrσ̃(µ̂) =: m̃µ . (B.21)

Then, by definition, this means µ̂(ξ+L0) = m̃µω̃+L0 = mµω+L0. But ω̃+L0 = kω+L0

for some invertible k, so mµ = km̃µ and the statement about ratios of rearrangement
numbers for two µ̂1 and µ̂2 follows.

B.2.1 Our Results from the Text

We note that this only depends on how the Z2 automorphism acts on the underlying lattice,
so duality defects that are lifted from the same underlying lattice action on L0 are in the
same rearrangement class.

Our data is as follows:
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Z2 Case The fixed lattice is L0 = D8 and L∗
0/L0

∼= Z2×Z2. There is no rearrangement data
in this case.

Z3 Case The fixed lattice is L0 = A2 × E6 and L∗
0/L0

∼= Z3×Z3. There are 7 duality defects
which come from the Dynkin diagram automorphism on A2 or on E6, but not both.
We find that these are in different rearrangement classes, and thus have rearrange-
ment number 2 relative to each other.

Z4 Case The fixed lattice is given in (4.141), and there are 6 duality defects coming from lifts

of 2 of the 3 non-trivial Z2 lattice automorphisms, namely ν
(4)
2 and ν

(4)
3 in Equation

(4.142). Since
∣∣Z×

4

∣∣ = 2 there are only two possibly rearrangement classes. We find
that they are in different rearrangement classes, having rearrangement number 3
relative to each other.

ZA
5 Case The fixed lattice is given by the A4×A4 root lattice inside E8, and there are 4 duality

defects coming from lifts of 2 of the 5 conjugacy classes of outer automorphisms.
These correspond to the {σ1, σ2} class “flipping” one A4, and the {τ, σ1σ2τ} class
“exchanging” A4’s. We find that these are in different rearrangement classes, with
the “exchange” conjugacy class having rearrangement number 2 relative to the “flip”
conjugacy class, of course this means the flip-class has rearrangement number 2−1 = 3
relative to the exchange-class.

ZB
5 Case The fixed lattice is described at the start of Section 4.4.3, and there are 7 duality

defects coming from lifts of 2 lattice automorphisms ν
(5)
2 and ν

(5)
3 given in Equation

(4.147). We find that they are in different rearrangement classes, with the ν
(5)
3 defects

having rearrangement number 2 relative to ν
(5)
2 defects.
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