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Abstract

Scala is a multi-paradigm programming language combining the power of functional and
object-oriented programming. While Scala has many features promoting immutability, it
lacks a built-in mechanism for controlling and enforcing reference immutability. Reference
immutability means the state of an object and all other objects reachable from it cannot
be mutated through an immutable reference. This thesis presents a system for reference
immutability in Scala, along with a simple implementation in the Dotty (Scala 3) compiler.
By extending the Scala type system and encoding mutability as types within annotations,
my system enables tracking and enforcing reference immutability for any type. It addresses
challenges such as the complexities of the Scala type system and context sensitivity with
nested classes and functions. The design offers binary compatibility with existing Scala
code, and promotes predictable object behavior, reducing the risk of bugs in software
development.
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Chapter 1

Introduction

Software bugs caused by mutable state are a significant source of frustration and cost
in modern software development. Immutability refers to the state of a variable of an
object cannot be changed after it is created. It has been widely advocated by API and
programming language designers as a way to mitigate bugs and enhance security, with
additional benefits including simple state management, thread-safety, and safe and efficient
sharing [6]. Despite the advantages of immutability, mutation is still preferred in certain
contexts due to its ability to express algorithms naturally and optimize performance.

The functional programming language community is particularly concerned with im-
mutability and purity. Pure programming paradigm emphasizes referential transparency
and does not rely on side effects. Pure functions can also benefit concurrency and paral-
lelism since they can be safely executed in any order without the risk of race conditions
or deadlocks. Code written in a pure functional style is easier to test and it is easier to
reason about its correctness and safety [1].

Reference immutability, which guarantees that the abstract state of an object cannot be
mutated through an immutable reference, is a key aspect of immutability in object-oriented
programming languages. The abstract state is transitive, including the state of the object
and all other objects reachable from it. It is used to give developers more information
about whether an object can be mutated at a certain point. It is possible that an object
is referred to by a mutable reference and a read-only reference at the same time. This
work focuses on reference immutability, which guarantees that only mutable references can
modify an object, while object immutability ensures that only immutable references point
to an immutable object (an object which cannot be mutated after creation). Reference im-
mutability has been extensively studied in existing object-oriented programming languages
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such as Java [19, 18, 13], and formalizations of immutability systems in Featherweight Java
have been demonstrated at [15].

Scala is a multi-paradigm programming language integrating aspects of both functional
and object-oriented programming. It is widely used for developing complex applications
in various domains, including web services, big data processing, and scientific computing.
Scala includes several features that encourage developers to write pure and functional code,
such as immutable variables and collections, lazy evaluation, pattern matching, and tail
recursion. These features facilitate code reuse and reduce the need for mutation. However,
Scala lacks a built-in mechanism for controlling and enforcing reference immutability.

1.1 Previous Approaches on Reference Immutability

Javari and ReIm implemented reference immutability for Java [18, 13]. They modify the
type system of Java and add new keywords to express and enforce immutability constraints.
As shown in the following example, the type qualifier readonly denotes that rd is an
immutable reference. Hence, any mutation operation on rd causes a compile-time error.
Date md = new Date(); // mutable Date by default
readonly Date rd = md; // an immutable reference of Date
md.setHours (1); // OK, md is mutable
rd.setHours (2); // compile time error , rd is immutable

Listing 1.1: An exmaple of immutability in Java.

ReIm also introduced context sensitivity for immutability, encoded using the concept of
viewpoint adaptation from Universe Types [7], which enables immutability to be transitive.
Simply speaking, the references of objects referred to by an object with read-only refer-
ence are also read-only. This ensures the data and behaviours related to a reference are
consistent. The following example illustrates viewpoint adaptation expressed by a special
mutability qualifier polyread. Both the receiver type and the result type of the method
getData are qualified by polyread. When the method is invoked on a mutable reference
dc1, the result type is mutable Data; when it is invoked on a read-only reference dc2, the
result type is readonly Data.
abstract class DateCell {

public polyread Data getData(polyread DateCell this);
}

DataCell dc1 = ...
Data d1 = dc1.getData ()
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readonly DataCell dc2 = ...
readonly Data d2 = dc2.getData ()

Listing 1.2: An exmaple of viewpoint adaptation.

However, these approaches are limited in their usage on generic types and do not
allow for further operations on the qualifiers due to constraints in the Java grammar.
Additionally, nested code is not discussed in their works, which is common in practice (for
example, anonymous classes and lambda expressions).

In contrast, Scala has a richer type system that enables users to benefit from versatile
generic types and various type operations, such as match types, union and intersection
types, and path-dependent types, allowing for more expressive code. Nested methods and
classes are also common in Scala and are the building blocks of functional programming.
Efforts have been made to ensure a smooth transition between Scala 2 and 3, and hence,
adding a new feature should not require programmers to throw away old code. These
requirements must be considered when designing a new feature for Scala.

The only existing research on implementing a reference immutability system for Scala
is the work on roDOT [9], which is a complex extension of DOT calculus [4]. The work
on roDOT only presents a calculus that can serve as a basis for implementation in the
Scala compiler, rather than providing a complete implementation itself. Additionally, the
consideration of backward compatibility is not addressed in this work.

1.2 Reference Immutability Issue in Scala

While most Scala code is immutable by default [12], mutable objects may sometimes be
preferred for reasons such as simplicity and efficiency.

Consider the following Scala code modified from the Dotty compiler that defines nodes
of an abstract syntax tree (AST):
type Untyped = Type | Null

abstract class Tree[+T <: Untyped ]:
protected var myTpe: T = uninitialized

final def tpe: T = myTpe

def withType(tpe: Type)(using Context): Tree[Type] =
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myTpe = tpe
this.asInstanceOf[Tree[Type]]

Listing 1.3: AST from Dotty

The class Tree is parameterized by a type parameter T, which indicates whether the
abstract syntax tree (AST) is typed (T is Type) or untyped (T is Untyped). The tree has a
protected field myTpe with type T to store the associated type. If it is an untyped tree, it is
expected to not get a type from the tree. The withType method can update the associated
type in place for efficiency, and returns a typed tree that is isomorphic to this tree. This
method is called only when it is safe to do so under sharing.

This implementation of withType is straightforward, but it has a potential issue if a
tree is shared in multiple places and updated with different types. Consider the following
code snippet:
def assignType(tree: Tree[Untyped], tp: Type): Tree[Type] =

val newTree = tree.withType(tp)
processTree1(newTree)
processTree2(newTree)
newTree

Listing 1.4: A dangerous example to handle AST.

Looking at this code, a programmer may expect that the tree passed to processTree2
has the type tp, and the correct behaviour of the code may depend on this expectation.
However, this expectation may be violated if processTree1 unexpectedly calls withType
to change the type of the tree.

Suppose these is a type annotation @readonly can be used to indicate that a reference
is immutable. Functions processTree1 and processTree2 can be redefined as following:
def processTree1(tree: Tree[Type] @readonly): Unit = ...
def processTree2(tree: Tree[Type] @readonly): Unit = ...

Listing 1.5: Potential fix.

This way, developers know that the tree should remain immutable at these places, and
any modification causes a warning or error during compilation. Additionally, the type of
val newTree can be declared as @readonly to ensure that none of the methods that it is
passed to can mutate it.

Enforcing reference immutability through a robust type system ensures predictable
object behavior and prevents unintended mutations. This approach in turn can help reduce
the risk of bugs and make code easier to reason about.
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1.3 Challenges of Implementing in Scala

Designing and implementing reference immutability in Scala presents unique challenges
that are not present in Java.

One significant challenge is the complexity of the Scala type system. In Java, a type is a
primitive type, a class, or a generic type. On the other hand, Scala’s type system includes
intersection and union types, singleton types, and match types. The set of values a type
represents and the subtyping relationships among different types are more complicated.
When introducing a general type qualifier in Scala, the compiler cannot directly control
the qualified type to be a class. Therefore, incorporating a mutability constraint into a
type must consider and accommodate these complexities appropriately.

Another challenge is the presence of nested classes and functions. In Scala, nested
classes and functions have access to the entire state of their enclosing scope. This creates
difficulties in determining the mutability of an object, particularly when it is referenced
from a member function of a nested class. Resolving this challenge requires a careful
consideration of the scoping rules and appropriate handling of mutability constraints within
nested contexts.

Additionally, practical considerations add to the challenge of designing and implement-
ing a new feature in Scala. One such consideration is the need to handle existing Scala
projects. Any new features or changes to the compiler must be backward-compatible with
existing code. Furthermore, the changes to the compiler should be as minimal as possible
to minimize disruption. These practical considerations need to be balanced with the desire
to provide a robust and effective feature.

1.4 Solution

To handle the complexities of the Scala 3 type system, I carefully design the encoding
of mutability with compatibility in mind. Mutabilities are represented as types within
type annotations, and mutability operations are encoded as union and intersection type
operations. This encoding allows for elegant checking of mutabilities through subtyping
comparison.

Another key aspect of the solution is addressing the issue of parametric mutability
with nested classes and functions. To tackle this, a more general and powerful design is
developed for viewpoint adaptation, based on the previous approach of polyread. This
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design allows the compiler to handle nested code by appropriately deriving the mutability
of a reference based on its enclosing scope.

The solution presented in this thesis successfully addresses the challenges of the Scala
3 type system and nested code, allowing for the enforcement of reference immutability.
Moreover, it provides a foundation for supporting arbitrary constraints on types. This
flexibility opens up possibilities for extending the system to accommodate other type-
related constraints and enables the development of more expressive and robust programs
in Scala.

1.5 This Thesis

This thesis presents a system of reference immutability in Scala along with a simple im-
plementation in the Dotty (Scala 3) compiler. My contributions can be summarized as
follows:

• An expressive and useful design of reference immutability in Scala. The extension
to the type system enables tracking immutability on types without breaking the
complicated type system already in place.

• Flexible mutability constraints purely from types. I encode mutability in types and
mutability comparison in subtyping to support expressing flexible mutability con-
straints.

• A formal model to describe reference immutability in Scala. I present the subtyping
and typing rules for my system as an extension to System F<:>.

• A simple implementation in the Dotty compiler. The implementation closely follows
the rules described in the formal model. The changes to the compiler are enclosed
within a module to minimize the impact on other parts of the compiler.

• Binary compatibility to existing Scala code. I have carefully designed the new types
to ensure backward compatibility both before and after a project’s migration to this
feature.
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1.5.1 Outline

The remaining chapters of this thesis are organized as follows. Chapter 2 provides an
overview of the reference immutability design, including a formal model for the core lan-
guage. It also discusses additional rules specific to Scala language. Chapter 3 focuses on
describing the implementation of the reference immutability system in the Dotty compiler
and backward compatibility. In Chapter 4, various projects and tests are used to evalu-
ate both the design and implementation, and the results of the evaluation are presented.
Chapter 5 surveys related work in the field of reference immutability. Finally, Chapter 6
concludes the thesis by summarizing the contributions and discussing future directions of
research.
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Chapter 2

Reference Immutability in Scala

The reference immutability in Scala is designed with the following constraints in mind to
make it practical and easy to adopt.

• Expressive and Simple: The system should be expressive enough to support com-
mon use cases, yet simple enough to be adopted by users and implemented in the
current compiler.

• Gradual: Existing Scala code should be able to interact with mutability-checked
code.

• Backwards compatible: The system should be compatible with Scala’s type sys-
tem, such that code with mutability annotations can compile even with mutability
checking turned off.

• Safe and efficient: The system should be safe and efficient without introducing
extra runtime overhead in compiled code.

Section 2.1 provides a brief introduction to union and intersection types in Scala 3.
Section 2.2 describes the basic definition of mutability qualifiers and mutability types.
The formal model is presented in Section 2.3, including a syntax, subtyping rules, and
typing rules of the core language. Furthermore, Section 2.4 covers additional rules specific
to Scala. Finally, an overview of a class structure containing different types of fields is
provided in Section 2.5.
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2.1 Background of Union and Intersection Types

Before delving into the definition of mutabilities, it is important to provide a brief intro-
duction to union and intersection types in Scala 3. They are new additions to Scala 3 that
allow for the representation of combinations of types. In the subsequent sections, union
and intersection types are used to represent various combinations of mutabilities within
the context of reference immutability.

2.1.1 Union Types

The | operator is used on types to create a union type. The resulting type, T1 | T2,
represents values that are either of type T1 or of type T2. This operator is commutative,
meaning that T1 | T2 is the same as T2 | T1. According to the subtyping rules, T1 is a
subtype of T1 | T2 and T2 is a subtype of T1 | T2 because a value of type T1 or T2 can
be used wherever a value of type T1 | T2 is required.

As shown in Listing 2.1, the readBook method accepts a parameter named query with
the union type BookName | BookID. The argument passed to it can be either a BookName
or a BookID:
case class BookName(name: String)
case class BookID(id: ISBN)

// Read a book according to the name or ISBN
def readBook(query: BookName | BookID) =

val book = query match
case BookName(name) => lookupName(name)
case BookID(id) => lookupISBN(id)

// handle book here
...

Listing 2.1: An example of union types.

This code is a flexible and type-safe solution that does not require the developer to
create an explicit hierarchy of classes wrapping the two types of input. Attempting to pass
in a value of type other than BookName or BookID results in an error:
readBook("Programming in Scala") // error
// Found: (" Programming in Scala" : String)
// Required: BookName | BookID

Listing 2.2: The error of passing wrong type to a union type.
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2.1.2 Intersection Types

Intersection types, denoted by T1 & T2, represent values that have both the type T1 and
T2 simultaneously. The members (methods and fields) of T1 & T2 are all members that
belong to either T1 or T2. The & operator is commutative as well, meaning that T1 & T2
is equivalent to T2 & T1. According to the subtyping rules, T1 & T2 is a subtype of T1
and T2, because a value of type T1 & T2 can be used wherever a value of type T1 or T2 is
required.

Intersection types can be useful to describe requirements structurally. As shown in
Listing 2.3, the method printAndClose takes a parameter of type Printable[Book]
& Closeable. This method can accept any value as long as it is a subtype of both
Printable[Book] and Closeable.
trait Printable[A]:

def println(a: A): Unit

trait Closeable:
def close (): Unit

val book: Book = ...

def printAndClose(p: Printable[Book] & Closeable) =
p.println(book)
p.close()

Listing 2.3: An example of intersection types.

The use of an intersection type eliminates the need for a nominal helper trait like
PrintableAndCloseable[A] extends Printable[A], Closeable. Instead, a class can
choose to extend the traits that it needs.

2.2 Basic Definitions

The type T @mut[readonly | M] is an example of a type with mutability.

• @mut[...] is a mutability annotation, which adds mutability constraints to a type.
Incorporating types with mutability is disscussed in Section 2.2.3.

• readonly | M is a mutability. It is a combination of a mutability qualifier and a
mutability variable M. These concepts are described in Section 2.2.2.
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• readonly is a mutability qualifier, which is a basic component of mutability. Muta-
bility qualifiers are introduced in Section 2.2.1.

2.2.1 Mutability Qualifiers

My mutability system adds three mutability qualifiers to Scala: mutable, polyread and
readonly. These qualifiers serve as the fundamental components of mutability. They are
implemented as special annotation classes in the standard library and are defined with
a natural subtyping relation of mutable <: polyread <: readonly. This subtyping
relation is established because a mutable reference can be used anywhere that any reference
is expected, and any reference can be used where a readonly reference is expected.

polyread is a special mutability qualifier, which is introduced as a convenience in
expressing polymorphic mutability on member methods without changing their signature.
It represents a possible mutability between mutable and readonly. When a function is
invoked and some of its parameter types contain polyread annotations, all occurrences of
polyread within the function type are instantiated to a specific mutability based on the
context of the function call.

The concept of mutable, readonly, and polyread was originally introduced by Javari
and ReIm [18, 13]. In my system, these qualifiers carry similar meanings but are imple-
mented with different rules to align with the more powerful type system and syntax of
Scala.

2.2.2 Mutability

Mutability is a type that is a subtype of readonly and a supertype of mutable. A valid
mutability can be: a mutability qualifier, a type variable bounded by mutability, or an
intersection or union type with mutability on both sides.

Users can define a type parameter [M >: mutable <: readonly] in Scala to repre-
sent polymorphic mutability. When the type parameter M is instantiated with an argument,
the argument must be a supertype of mutable and a subtype of readonly. When a type
parameter is bounded by mutabilities, it is referred to as a mutability variable.

Intersection and union types can be used to represent the minimum and maximum
of two mutabilities. Given two mutabilities M1 and M2, where M1 <: M2, the maximum
mutability (also referred as the highest) is the union of them: M1 | M2. This follows the
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subtyping rule: M1 <: (M1 | M2) =:= M2 (where =:= designates subtyping in both direc-
tions). Likewise, the minimum mutability (also referred as the lowest) is the intersection of
them: M1 & M2, and M1 =:= (M1 & M2) <: M2. This rule is used when combining mul-
tiple mutability annotations on a single type or computing the mutability of intersection
or union types. The use is presented in the next section.

The mutability qualifiers are special marker types in my system and cannot be instan-
tiated or annotated with any mutability. When mutability qualifiers are used as value
types or combined with value types, the type does not hold any special meaning, such as
a function type readonly => mutable and a union type readonly & String. The two
example types are not subtypes of readonly and supertypes of mutable. Consequently,
the type system prohibits their usage as mutabilities.

2.2.3 Types with Mutability

Scala 3 includes an experimental feature that allows annotations with type parameters.
Utilizing this feature, the mutability annotation is defined as class mut[M >: mutable
<: readonly] with one type parameter that accepts a mutability, such as @mut[mutable]
or @mut[readonly | mutable].

The mutability qualifiers can be used as annotations directly, like @mutable,
@readonly, and @polyread. These are desugared to @mut[mutable], @mut[readonly],
and @mut[polyread], respectively. To attach a mutability other than these qualifiers, it
must be placed within the @mut annotation.

The goal of utilizing annotations to attach mutability to a type is to provide users with
an intuition that the underlying type’s meaning remains unchanged while restrictions on
mutation are imposed.

• T @mutable: An object with a mutable type can be mutated. As a qualifier,
@mutable keeps the original mutability of T. For compatibility with existing Scala
code, this annotation is optional, and the type T is equivalent to T @mutable for any
type T.

• T @readonly: @readonly gives the highest mutability to the type. An object with
a readonly type, and any objects referred to by it, cannot be mutated. Specifically,
assignment to a field of a readonly reference is prohibited (after initialization), and
all references reachable from this object are also readonly. This restriction ensures
that the object and its references remain immutable.

12



• T @mut[M]: An object with a type annotated by @mut[M] has mutability that de-
pends on some mutability M. M can be a concrete mutability qualifier, a mutability
variable, or a combination of mutabilities. This restriction is particularly useful when
the mutability of a type is uncertain.

• T @polyread: The mutability of a polyread type is polymorphic, meaning that the
reference can be either mutable or readonly, and all polyread references in the same
function scope have the same mutability. The mutability of a polyread reference is
determined by its use in the program. It has special rules and restricted usage in the
system. The scope of a polyread is always implicitly the innermost method in which
it is used. Therefore, polyread can be used without modifying the signature of any
method or class to add a mutability type parameter. Unlike @polyread, @mut[M]
can express more complex mutability bounds and dependencies beyond functions.
However, the mutability variable must be explicitly declared somewhere as a type
parameter of some method or class.

For each reference type T, T @readonly is a supertype of T. The new type hierarchy is
shown in figure 2.1. The black part is the original type hierarchy, and the red part is the
newly added types and subtype relations.

AnyRef

C

AnyRef @readonly

C @readonly

Figure 2.1: The new type hierarchy in reference immutability.

Types in this setting can have multiple mutability annotations, unlike in existing work
on Java [18, 13]. This can happen if a type parameter is annotate with mutability, and it
is instantiated with a type with other mutability annotations. The mutability of a type is
defined as the highest mutability of its annotations, which can be nicely expressed as the
union of all the mutabilities from annotations. For instance, T @readonly @mutable is a
valid type and is equivalent to T @readonly, which can be shown as T @mut[readonly]
@mut[mutable] =:= T @mut[readonly | mutable] =:= T @mut[readonly].

The context sensitivity of reference immutability refers to the mutability of reachable
objects being dependent on the mutability of the object reference itself [13], which is
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usually achieved through viewpoint adaptation from Universe Types [7]. For instance, if
an object reference a is read-only and has a mutable field x, the expression a.x is assigned
a readonly type, even though the type of x is mutable at its definition site. To enable
viewpoint adaptation, a key requirement of the implementation is that the compiler must
be able to, given any type, determine the mutability of that type. The mutability of a
type must be expressible and not partial. For example, given a member selection a.b, the
mutability of this selection depends on the mutability of a. If the mutability of a cannot
be expressed as a type, then its mutability cannot be passed to the type of the selection.

Therefore, the lower and upper bounds of each type parameter must have the same
mutability so that that type parameter can itself be given that mutability. The function
signature [T >: C1 @mutable <: C2 @readonly](x: T): T is not allowed, because
the mutability of T is uncertain and cannot be expressed in the current system. Note
that type T itself is not a mutability, and @mut[T] is not a valid expression. Instead, the
effect can be achieved by introducing a mutability variable as follows: [M >: mutable <:
readonly, T >: C1 <: C2](x: T @mut[M]): T @mut[M], such that, the mutability
of T @mut[M] is M. While this might appear similar to polyread, it is not appropriate to
say the mutability of T >: C1 @mutable <: C2 @readonly is polyread because the
mutability of a type parameter can be independent from function’s polyread parameters.
The definition and rules for polyread are given in Section 2.4.2.

While existing work deals with reference immutability in a setting with classes, Scala
3 adds intersection and union types, which need to be accounted for in the reference
immutability system.

Since the mutability annotations do not affect the run-time behaviour, a readonly ref-
erence has the same run-time representation as the underlying reference. For the union
type C | C @readonly, while it is sound to distinguish C or C @readonly, doing so in
Scala is challenging as the objects of both are only known to be of class C at run time.
To resolve this, intersection and union types are weakened to select the smallest (resp.
highest) mutability from both sides of the operation. Thus, the mutability of the union
type T1 | T2 is the largest mutability of both sides of the union, and the mutability of an
intersection type T1 & T2 is the smallest mutability of both sides of the intersection. This
avoids having a type that is partially read-only and partially mutable. For instance, C |
C @readonly is equivalent to C @readonly.

This rule can be stated using intersection and union types on the mutability as well. For
example, the mutability of T1 @mut[M1] & T2 @mut[M2] is M1 & M2, and the mutability
of T1 @mut[M1] | T2 @mut[M2] is M1 | M2.

Furthermore, this rule helps to determine the mutability of methods. Suppose class A
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s, t ::= Terms
| λ(x : S).t term abstraction
| Λ(X : S..T ).t type abstraction
| x term variable
| s(t) application
| s[T ] type application
| {x1 : s1, x2 : s2, . . .} records
| s.x field read
| s.x = t field write

S, T,M ::= Types
| ⊤ top type
| ⊥ bottom type
| Mutable mutable quantifier
| Readonly readonly quantifier
| X type variable
| S → T function type
| ∀(X : S1..S2).T abstraction type
| {x : T} record type
| S | T union type
| S & T intersection type
| T @mut[M] mutability type

Figure 2.2: The core syntax of reference mutability.

has two subclasses, B and C, and A has a method f that mutates a field. f should only
be invoked on a mutable reference. If an object has type B @readonly | C, it becomes
challenging for the compiler to decide whether f is callable from this type, as it has to
compute callable members using mutability from both sides and make an intersection. By
applying the above rule, the mutability of B @readonly | C can be easily determined to
be readonly, making it forbidden to call f on this object.

2.3 Formal Model

2.3.1 Core Language

Figure 2.2 shows the syntax of the core language of reference immutability, based on System
F<:> [2] with records, intersection, and union types; changes from System F<:> are noted in
grey.

The mutability qualifiers Mutable and Readonly are defined as first-class types. Since
polyread can be desugared into type parameters, it is not included in the core language.
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2.3.2 Subtyping Rules

The mutability of a type T as Mut(T) is formally defined in Figure 2.3. The definition
follows the rules described in Section 2.2.3.

Mut(X) = Mut(T ) (where X >: S <: T ∈ Γ)
Mut(S | T ) = Mut(S) | Mut(T )
Mut(S & T ) = Mut(S) & Mut(T )

Mut(T @mut[M]]) = Mut(T ) | M
Mut(_) = Mutable

Figure 2.3: Definition of the mutability of a type T.

As an example, the process of computing the mutability of (A @readonly & B) | C
@readonly is shown in Figure 2.4, where A, B, and C are regular classes.

Mut((A @mut[Readonly] & B) | C @mut[Readonly])
= Mut(A @mut[Readonly] & B) | Mut(C @mut[Readonly])
= (Mut(A @mut[Readonly]) & Mut(B)) | Mut(C @mut[Readonly])
= (Readonly & Mutable) | Readonly
= Mutable | Readonly
= Readonly

Figure 2.4: Computing the mutability of (A @readonly & B) | C @readonly.

In this way, any type can be split into two parts: the underlying type and the mutability.
Since mutabilities are normal types, checking subtyping of types with mutabilities becomes
checking subtyping of the mutabilities and checking subtyping of the underlying types.

Figure 2.5 shows the subtyping rules ( <: ) of the core system, which is presented as an
extension to the original subtyping relation. <: is the subtyping relation with mutability
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Subtyping Γ ⊢ S <: T

Γ ⊢ T <:’ T (refl)

Γ ⊢ S <:’ ⊤ (top)

Γ ⊢ ⊥ <:’ S (bottom)

Γ ⊢ Mutable <:’ Readonly
(mutable-readonly)

Γ ⊢ R <:’ S Γ ⊢ S <:’ T

Γ ⊢ R <:’ T
(trans)

X : S..T ∈ Γ

Γ ⊢ X <:’ T
(tvar-upper)

X : S..T ∈ Γ

Γ ⊢ S <:’ X
(tvar-lower)

Γ ⊢ T1 <:’ S1 Γ ⊢ S2 <:’ T2

Γ ⊢ S1 → S2 <:’ T1 → T2

(arrow)

Γ ⊢ R1 <:’ R2, S2 <:’ S1

Γ, X : R2..S2 ⊢ T1 <:’ T2

Γ ⊢ ∀(X : R1..S1).T1 <:’ ∀(X : R2..S2).T2

(all)

Γ ⊢ S <:’ T Γ ⊢ T <:’ S

Γ ⊢ {x : S} <:’ {x : T}
(record)

Γ ⊢ S & T <:’ S (inter-left)

Γ ⊢ S & T <:’ T (inter-right)

Γ ⊢ S <:’ T1 Γ ⊢ S <:’ T2

Γ ⊢ S <:’ T1 & T2

(inter)

Γ ⊢ S <:’ S | T (union-left)

Γ ⊢ T <:’ S | T (union-right)

Γ ⊢ S1 <:’ T Γ ⊢ S2 <:’ T

Γ ⊢ S1 | S2 <:’ T
(union)

Γ ⊢ S <:’ T

Γ ⊢ S @mut[M] <:’ T
(m-ignore-1)

Γ ⊢ S <:’ T

Γ ⊢ S <:’ T @mut[M]
(m-ignore-2)

Γ ⊢ wf S Γ ⊢ wf T Γ ⊢ Mut(S) <:’ Mut(T )
Γ ⊢ S <:’ T

Γ ⊢ S <: T
(subtyping-main)

Figure 2.5: Subtyping rules for reference immutability based on System F<:>.
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Well-formed Types Γ ⊢ wf T

Γ ⊢ wf ⊤ (wf-top)

Γ ⊢ wf ⊥ (wf-bot)

Γ ⊢ wf Mutable (wf-mutable)

Γ ⊢ wf Readonly (wf-readonly)

X : S..T ∈ Γ

Γ ⊢ wf X
(wf-tvar)

Γ ⊢ wf S

Γ ⊢ wf {x : S}
(wf-record)

Γ ⊢ wf S Γ ⊢ wf T

Γ ⊢ S → T
(wf-arrow)

Γ ⊢ wf S1 Γ ⊢ wf S2

Γ ⊢ Mut(S1) <: Mut(S2)
Γ, X : S1..S2 ⊢ wf T

Γ ⊢ ∀(X : S1..S2).T
(wf-abstr)

Γ ⊢ wf S Γ ⊢ wf T

Γ ⊢ wf S & T
(wf-inter)

Γ ⊢ wf S Γ ⊢ wf T

Γ ⊢ wf S | T
(wf-union)

Γ ⊢ wf T Γ ⊢ wf M

Γ ⊢ Mutable <: M Γ ⊢ M <: Readonly

Γ ⊢ wf T @mut[M]
(wf-mt)

Figure 2.6: Well-formed types in reference immutability.

and <:’ is the subtyping relation ignoring mutability, which can be considered as the
original subtyping rules of Scala.

The well-formed types are also defined in Figure 2.6 to ensure that the mutability in
an annotation is always a subtype of Readonly and a supertype of Mutable, and type
parameters do not have bounds with different mutabilities.

2.3.3 Typing Rules

The typing for the core language is defined in Figure 2.7.

The typing rule (record-update) defines the essence of reference immutability: an
object can only be modified through mutable references. Attempting to modify the field
b on the object a with type A @readonly results in an error stating "trying to mutate a
field b on readonly a".

The field selection is context sensitive, which means the objects referred to by a field
from an object with a read-only type should also be read-only. This is known as viewpoint
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Typing and Runtime Typing Γ ⊢ t : T

x : T ∈ Γ

Γ ⊢ x : T
(var)

Γ ⊢ wf S Γ, x : S ⊢ t : T

Γ ⊢ λ(x : S).t : S → T
(abs)

Γ ⊢ wf S1 Γ ⊢ wf S2

Γ ⊢ Mut(S1) =:= Mut(S2)

Γ, X : S1..S2 ⊢ t : T

Γ ⊢ Λ(X : S1..S2).t : ∀(X : S1..S2).T
(t-abs)

Γ ⊢ t : S → T Γ ⊢ s : S

Γ ⊢ t(s) : T
(app)

Γ ⊢ t : ∀(X : S1..S2).T
Γ ⊢ S1 <: S Γ ⊢ S <: S2

Γ ⊢ t[S ′] : T [X 7→ S ′]
(t-app)

Γ ⊢ ti : Ti

Γ ⊢ {xi : ti . . .} : {xi : Ti} & . . .
(record-intro)

Γ ⊢ t : {x : T} @mut[M]

Γ ⊢ t.x : T @mut[M]
(record-elim)

Γ ⊢ s : {x : T} @mut[Mutable] Γ ⊢ t : T

Γ ⊢ s.x = t : T
(record-update)

Γ ⊢ s : S Γ ⊢ S <: T

Γ ⊢ s : T
(sub)

Figure 2.7: Typing rules for reference immutability based on System F<:>.
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adaptation in existing work [13, 7] and is achieved in the system by letting the mutability
of a selection be dependent on the mutability of the receiver. More generally, if an object
a has type A @mut[M], the type of a.b would be B @mut[M], which is shown in the typing
rule (record-elim). If the field type is already defined with a mutability annotation,
the mutability from the receiver is simply attached to the whole type, and the overall
mutability is the maximum mutability from all its annotations. Listing 2.4 illustrates the
behaviour of viewpoint adaptation.
class A:

var b: B

val a1: A = new A
val a2: A @readonly = a1

a1.b: B
a2.b: B @readonly

Listing 2.4: Viewpoint adaptation on different types of references.

In System F<:>, enforcing valid bounds on the declaration site in type abstraction is not
required, as noted by [2]. This relaxation allows for fully user-defined subtyping relations.
Although users can define conflicting bounds, such as X : ⊤..⊥, instantiating a type checks
the lower and upper bounds, ensuring that code with incorrect bounds is not executed and
maintaining the type system’s soundness. In the system, users are required to define type
parameters with the same mutability on the upper and lower bounds, as shown in section
2.2.3. This requirement is enforced by the well-formedness rule (wf-abstr) and typing
rule (t-abs).

2.4 Other Rules

This section describes other typing rules for reference immutability in Scala that are not
covered in the formal model, as well as some additional useful features.

2.4.1 Field Initializers and Special Fields

When a field definition is type checked, the this reference is considered to be mutable in
the initializer (the right hand side of the definition) since a field of a class is initialized
when the constructor is invoked. Listing 2.5 below shows that giving a mutable type to this
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is safe as long as it is not escaped or captured. To avoid expensive escaping or capturing
analysis, a simple checking is added in the implementation: if the this reference is passed
to a function or captured by a class or a closure, the compiler issues a warning.
class C:

val self: C = this // safe
val getC: () => C = _ => this // unsafe capture of the mutable
reference

val c: C @readonly = ...

c.self: C @readonly
c.getC(): C // danger

Listing 2.5: A field initialized to refer to the object itself.

It is useful to keep some fields always mutable even in a read-only reference, mak-
ing caching and delayed computation possible. Javari also offers a similar feature [18].
When a field is annotated with a concrete @mutable annotation, it is referred to as an
always-mutable field. An always-mutable field can be modified through references with any
mutability, and viewpoint adaptation does not apply to the field type. To avoid referring
to the read-only part as mutable through an always-mutable field during initialization, the
this reference is considered to be readonly in the initializer of an always-mutable field.
class C:

// danger , can turn a readonly C into mutable
@mutable var next: C = this

val c1: C @readonly = ...
val c2: C = c1.next

Listing 2.6: The danger of mutable this inside always-mutable fields.

Listing 2.6 shows the danger of allowing mutable this reference in an always-mutable
field. If the this reference is not considered to be readonly, it would be possible to define
a field storing the mutable reference. Even if only the read-only reference c1 is exposed
after creation, a user can turn the read-only C into a mutable C.

A lazy field is a field whose initialization is deferred until the first use. Since the
computation of a lazy field can happen at any time after the object is created, it is desired
that the read-only part of a read-only reference is not mutated accidentally. Therefore,
a similar restriction should be imposed on the initializer of the lazy field, with viewpoint
adaptation on the type as well. Specifically, in the initializer of a lazy field, the this
reference is considered to be readonly.
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Another way to think about a lazy field is to consider it as a polyread method and
some always-mutable fields. Listing 2.7 illustrates a conceptual implementation of lazy
fields (the actual implementation of lazy fields in the Scala compiler is more complicated
for efficiency and thread safety [17]). Each lazy field can be transformed into two always-
mutable fields and a polyread method. Using the lazy field becomes calling the polyread
method. The method uses an always-mutable field as a flag to remember if the lazy field
has already been initialized. If the flag is true, the method returns the value stored in
another always-mutable field. Otherwise, the value of the field is computed and stored,
the flag is set to true, and the value is returned.
class C:

lazy val i: A = <RHS >
// is desugared into the below:
@mutable private var value_i: A = _
@mutable private var flag_i: Boolean = false
@polyread def i: A @polyread =

if flag_i then value_i
else

val result: A = <RHS >
value_i = result
flag_i = true
result

Listing 2.7: A simple implementation of lazy vals.

2.4.2 Methods

Although mutability annotations can be attached to types, the syntax of a method defini-
tion does not provide any place to express the type of the receiver of the method. Therefore,
a mutability annotation is allowed on a method definition itself, and it is interpreted to
qualify the type of the method receiver.
class C(val next: C):

var i: Int

@readonly def m(): C @readonly =
// unable to mutate i here
i += 1 // error
next // the type of next is read -only C
// the field of read -only this is also read -only

def n(): C =
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i += 1 // ok
next

Listing 2.8: A method showing the behaviour of this.

Listing 2.8 shows an example of adding mutability constraint to the receiver of a member
function. The method m can be invoked on a receiver with a mutability less than or equal
to readonly (i.e., any mutability level). Inside the method body, the this (and super)
instance is considered to be of type C @readonly, so the fields of this can be only read
but not mutated. In contrast, The method n can only be invoked on a mutable receiver.

While the mutability annotations mutable and readonly can be attached to types and
methods, the polyread annotation is restricted to member methods, their parameter types,
and types used inside the method body. When calling a polyread method, the compiler
computes the maximum of the mutability of the actual arguments passed for polyread
parameters, and replaces polyread in the method return type with the new mutability.
Listing 2.9 illustrates the usage of polyread annotations.
def f(x: X @polyread , y: Y): Z @polyread = ...

val x: X = ...
val rox: X @readonly = x
val y: Y = ...
val roy: Y @readonly = y
f(x, y): Z
f(x, roy): Z
f(ro , y): Z @readonly

Listing 2.9: A polyread method and applying it with different mutabilities.

If the polyread annotation is applied to a parameter type, it must be placed at the
outermost level, as in List[C] @polyread rather than List[C @polyread]. This place-
ment allows the compiler to locate the polyread annotations and compute the mutability
at these points simply. If neither the method nor its parameters have polyread anno-
tations, the result type and other types inside the scope of the method cannot use the
polyread annotation. A polyread method can be conceptually considered as two methods:
one where polyread is replaced by readonly, and another where polyread is replaced by mu-
table as shown in Listing 2.10. The two copies could then be checked separately, and the
polyread qualifier would never be encountered during any subtype checking. While the
overriding version is not supported in the current implementation (the reason is provided
in section 2.4.3), the same result can be achieved through a single checking pass.
// the f above can be transformed into:
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def f(x: X @readonly , y: Y): Z @readonly = ...
// and
def f(x: X, y: Y): Z = ...

Listing 2.10: A possible translation of polyread methods.

Javari and ReIm [18, 13] treat polyread as a normal mutability between readonly and
mutable. If the usage of polyread did not follow the above rules and were treated as a
normal mutability between readonly and mutable in the system, the type system would
become unsound. This is because polyread annotations from different scopes can represent
different mutabilities, as illustrated in Listing 2.11. Previous work does not involve nested
methods and classes, thus avoiding the unsoundness issues.
// Assume ro_c should be readonly
val ro_c: C @readonly = ...
var i: C @polyread = null
class Op:

@polyread def set(x: C @polyread): Unit =
// unsafe , because the polyread of x and i are different
i = x

@polyread def get: C @polyread = i
val op: Op = new Op
val ro_op: Op @readonly = op
ro_op.set(ro_c)
val c: C = op.get
// the object refered by ro_c is mutated here
c.x = ...

Listing 2.11: Showing polyread is not a normal mutability qualifier.

A more robust way to implement the polyread annotation is to desugar it into a mut
annotation with a fresh mutability variable. For example, def f(x: X @polyread): Y
@polyread can be translated to def f[M >: Mutable <: Readonly](x: X @mut[M]):
Y @mut[M]. However, this requires modifying the signature of f to add the type parame-
ter M, and calling f without providing the mutability explicitly would require mutability
inference, which is currently not supported in the implementation.

While polymorphism of polyread is limited at the function level, mutability variables
can express more complex mutability bounds and dependencies beyond functions, as shown
in the following example:
class WrapArray[M >: mutable <: readonly , E, R](a: Array[E] @mut[M]):

def process[N >: M <: readonly ](f: Array[E] @mut[N] => R): R =
f(a)
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val ss: Array[String] = ...
def isValid: String => Boolean = ...

val readonlyCheck: WrapArray[readonly , String , Boolean ](ss)
// can only pass a check function
// that does not mutate the underlying array
readonlyCheck.process[readonly] { as: Array[String] @readonly] =>

as.forall(isValid)
}

val checkAndMutate: WrapArray[mutable , String , Unit](ss)
// change invalid elements
checkAndMutate.process[mutable] { as: Array[String] =>

for i <- as.indices do if !isValid(as(i)) then as(i) = ""
}

Listing 2.12: An application of mutability variables.

In Listing 2.12, a class WrapArray is defined to hide an underlying array. The class has
a process method that applies a given function to the wrapped array. M is a mutability
variable that indicates whether the wrapped array can or cannot be mutated by process.
readonlyCheck is an instance of WrapArray[readonly, String, Boolean]. The func-
tion passed to readonlyCheck.process has parameter type Array[String]@readonly,
so the array can only be read here. In contrast, checkAndMutate is an instance of
WrapArray[mutable, String, Unit]. The function passed to checkAndMutate.process
is able to read and update an array with type Array[String]. The mutability variable
M has been used across the class and function, which cannot be achieved by the polyread
annotation.

2.4.3 Override and Overload

To override a method in Scala, the overriding method must have the same signature of the
parameter types and a result type that is a subtype of the overridden method’s result type.
This system follows a similar rule. The overriding and overridden members must match
with mutability. Specifically,

• the result type or field type of the overriding member must be a subtype of the type
of the overridden member;

• the parameter types of the overriding member must be equivalent (=:=) to the types
of the overridden member, ensuring that they have the same mutability;
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• the overriding method must have the same mutability annotation as the overridden
method.

In Scala, it is possible to override a field with a method with no parameters. However,
this system has different rules for fields and methods, so this kind of overriding is forbidden.
To achieve similar behaviour, users can create a method with the same name as the field
that simply returns the value of the field. Subclasses can then override this method to
simulate overriding a field.

Currently, overloading with types differing only in mutability in Listing 2.13 is not
allowed, because the methods have the same signature after being compiled to the target
platform (JVM). This feature will be supported in the future by mangling the names
automatically.
class C:

// currently , the following overloading is not supported in the
implementation

def f(that: C): Unit = ...
def f(that: C @readonly): Unit = ...

Listing 2.13: Overloading with types differing only in mutability.

2.4.4 Read-only Classes

In many Scala projects, most classes are intended to be immutable [12]. These classes
do not have mutable fields, so the read-only version should exhibit the same behaviour
as the mutable version. Rather than requiring the programmer to annotate all uses of a
class name as readonly, this can be done once at the class definition site. When defining
a class, it can be marked as readonly using the @readonly annotation, which makes its
mutability readonly by default, even without any explicit annotation. The compiler checks
that a readonly class can only have immutable fields (i.e., val rather than var), and the
mutability of all field types must be readonly. All the member methods of a readonly class
are automatically annotated with @readonly as the receiver mutability.

A readonly class can be extended by a mutable class, but a read-only class can only ex-
tend other read-only classes (except Any and AnyRef, which are handled specially). There-
fore, it is safe to override these methods inside a mutable class, as the fields cannot be
modified (the overriding methods are also forced to inherit the readonly annotation). List-
ing 2.14 shows an example of defining read-only classes and illustrates the rules.
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// A is a mutable class
class A

@readonly class B:
val a: Int // ok
val b: A @readonly // ok
val c: A // error , the type of c is not readonly
var d: Int // error , d is a mutable field

def f = ... // f is marked as readonly automatically

class C extends B: // C is mutable , but ok
var e: Int // ok
override def f = ... // error , f must be annotated with readonly

// error , the parent classes of an immutable class must be immutable
@readonly class D extends C

Listing 2.14: An example of read-only classes.

The concept of read-only classes shares similarities with the immutable classes presented
in [19], although there are differences. Immutable classes cannot be mutated after creation,
and only immutable references can point to immutable objects. In contrast, this design
permits mutable references of a subclass to point to an object that is also an instance of
a read-only class. If the rule requiring subclasses of a read-only class to be read-only were
enforced as well, the definition would be equivalent to that of immutable classes.

2.5 Overview of a Class Structure

Listing 2.15 is an overview of a class with different types of fields:
@readonly class A:

val a: A

val b: Int

class B extends A:
val c: B

var d: Int

@mutable var e: Int

lazy val f: Int = b

Listing 2.15: Coloring different types of fields.
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The green-colored fields represent read-only fields that are never changed after creation.
The yellow-colored fields are those that may change depending on the mutability of the
reference. The always-mutable and lazy fields are colored in red, indicating that their
states may change at any time.

Suppose an object is immediately turned into a read-only reference after creation, and
its fields are initialized in order (safe object initialization). In this scenario, the fields in
green and any objects reachable from them can be safely referred to by other parts of the
object. However, the fields in yellow can only be referred to as read-only by the fields in
red.
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Chapter 3

Implementation

In this section, the implementation details of the system inside the Dotty compiler are
discussed, covering aspects such as the language features, type-checking algorithms, and
optimizations made to ensure efficient and accurate checking. The challenges encoun-
tered during the implementation process are presented, along with the solutions adopted
to address them. By providing a comprehensive overview of the implementation, valu-
able insights for future improvements and potential adaptations of the system to other
programming languages are offered.

3.1 Dotty Compiler

The Dotty Compiler, also known as the Scala 3 compiler, is the next-generation compiler
for the Scala programming language. It has been designed from the ground up to improve
upon the existing Scala 2 compiler. The compiler itself is written in Scala 3, which allows
it to fully utilize the new features and capabilities of the language.

In the Dotty compiler, the Tree data structure is the core component that represents
the abstract syntax tree (AST) of Scala programs. It has several subclasses to represent
different types of nodes, such as Select, Apply, and Ident. Each node has a field to store
its associated type information. During compilation, the compiler first parses the source
code and builds these trees. However, the trees are still untyped. The type-checking phase
assigns types to these trees, and they are transformed into typed trees that contain all the
necessary type information.

29



The type information of an expression or a term is represented by the Type class.
Type not only holds the information of possible values but also captures the relations with
other types, terms or symbols. Given a variable val x: List[String], the type of x is
encoded as: AppliedType(TypeRef(..., "List"), List(TypeRef(TermRef(NoPrefix,
"scala"), "String"))), which means the type reference String is applied to a type
reference List. "List", "scala", and "String" in the type are not strings or names.
They are symbols referring to the declarations of those entities. When the expression
x is type-checked, its type is TermRef(NoPrefix, "x"), instead of the underlying type
List[String]. This approach gives developers more information that the value of this
expression is the same as the variable x holds, without checking the AST. It is possible to
obtain the underlying type by widening the TermRef.

Listing 3.1 shows the Dotty compiler is organized into three sets of phases: frontend
phases, transform phases, and backend phases. The frontend phases deal with parsing,
name resolution, and type checking, producing typed trees that are ready for further trans-
formations. The transform phases are responsible for transforming the typed trees into a
backend tree. These phases apply various optimizations and transformations to the trees.
One of the important phases in this group is the erasure phase, which rewrites the Scala
types to the JVM model. The backend phases generate the final bytecode or JavaScript
code, depending on the target platform.
class Compiler:

def phases: List[Phase] =
frontendPhases ::: transformPhases ::: backendPhases

/** Phases dealing with the frontend up to trees ready for TASTY
pickling */

protected def frontendPhases: List[Phase] =
new Parser :: // Compiler frontend: scanner , parser
new TyperPhase :: // Compiler frontend: namer , typer
... :: // Additional checks and cleanups after type
checking
Nil

/** Phases dealing with the transformation from typed trees to backend
trees */

protected def transformPhases: List[Phase] =
... // Containing transformation phases and erasure
phase

/** Generate the output of the compilation */
protected def backendPhases: List[Phase] =
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new GenBCode :: // Generate JVM bytecode
... :: Nil

Listing 3.1: An overview of Dotty compiler internal.

The overall process of compiling code from Scala source code to JVM bytecode can be
shown in Listing 3.2.
def runCompile(c: Compiler , source: CompilationUnit): BCode =

c.phases.foldLeft(source)((cu , p) => p.runOn(cu)).getBCode

Listing 3.2: The overall process of compiling.

The Typer phase is the most important phase in the compiler, responsible for type-
checking an untyped AST and turning it into a typed AST. The Typer class contains
methods for type-checking various tree nodes, such as typedSelect, typedApply, and
typedThis as shown in Listing 3.3.
class Typer:

def typedSelect(tree: untpd.Select , pt: Type)(using Context): tpd.Tree
= ...

def typedApply(tree: untpd.Apply , pt: Type)(using Context): tpd.Tree =
...

def typedThis(tree: untpd.This , pt: Type)(using Context): tpd.Tree =
...

...

def typed(tree: untpd.Tree , pt: Type)(using Context): tpd.Tree =
tree match

case tree: untpd.Select => typedSelect(tree , pt)
case tree: untpd.Apply => typedApply(tree , pt)
case tree: untpd.This => typedThis(tree , pt)
...

Listing 3.3: The structure of the Typer.

During the transform phases, a utility phase called Recheck can be utilized to recompute
and recheck all types in a typed program. This serves as the foundation for phases that
refine the original type system with new types and rules, such as the capture check feature
[16]. The structure of Recheck is similar to Typer. It also contains methods for various
tree nodes. By extending the Recheck class and overriding certain methods, the developer
can implement new rules on these types of trees.
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3.2 Implementing Mutability

The three mutability qualifiers are defined as classes within the standard library as shown
in Listing 3.4. Their subtyping relationships are established through inheritance. The
mut annotation contains a type parameter with the bound >: mutable <: readonly,
ensuring that only a mutability can be passed to it. When qualifiers are used directly as
annotations (since they are subtypes of StaticAnnotation), they are translated into a
mutability annotation containing themselves as type arguments. For example, @readonly
is translated into @mut[readonly].
// mutability qualifiers
class readonly extends StaticAnnotation
class polyread extends readonly
class mutable extends polyread
// mutability annotaion
final class mut[M >: mutable <: readonly] extends StaticAnnotation

Listing 3.4: Mutability in the standard library.

3.3 New Subtyping with Mutability

The TypeComparer class is where the subtyping comparison logic is located, and its entry
point is def isSubType(tp1: Type, tp2: Type): Boolean. Within the isSubType
function, the mutabilities of the two types are calculated and compared via subtyping first.
If the mutabilities follow subtyping, the underlying types are then compared for subtyping,
ignoring all mutability annotations. This algorithm follows the subtyping rules outlined in
figure 2.5. By isolating most of the mutability-related logic within this single function, the
goal is to ensure that the majority of the subtyping comparison logic remains unaffected.

3.3.1 Mutability Variable Constraint Handling

As mutability variables are treated as regular type parameters, constraint handling is auto-
matically provided for them. Listing 3.5 demonstrates how the mutability of its arguments
is constrained using mutability variables:
def f[M1 >: mutable <: readonly ,

M2 >: mutable <: readonly ,
M3 >: M1 <: M2](x: C @mut[M1]): C @mut[M2] =
// know that M1 <: M2 at this point
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// hence , C @mut[M1] <: C @mut[M2]
x

Listing 3.5: Constraint handling on mutability variables.

However, type inference happens during type checking (Typer) and, at that phase,
the compiler ignores all mutability annotations. Consequently, the Typer may infer types
with incorrect mutability. Nevertheless, since constraint handling for mutability variables
already exists, it is not difficult to modify the Typer phase and type inference to account
for mutability in the future.

3.3.2 Scala Types

In the context of actual Scala programs, it is important to consider additional types that
are not explicitly mentioned in figure 2.2:

• SingletonType: SingletonTypes represent types that are guaranteed to contain
only a single non-null value. TermRef, ThisType, SuperType, and ConstantType
are all SingletonTypes. In most cases, the mutability of these types aligns with
the mutability of their underlying types. However, special handling is required for
ThisType and SuperType since the mutability of this and super depends on the
annotations of their enclosing member methods.

• TypeRef: TypeRef is a reference to a specific type. If it refers to a concrete class,
the mutability is determined by whether the class is labelled as read-only by the
annotation. If it is a type alias, the mutability is determined by its underlying type.

• AppliedType: When checking the subtyping of AppliedType’s arguments, a new
subtyping check ( <: ) needs to be initiated. In this case, the mutability of the type
constructor should not affect the mutability of the arguments.

3.3.3 Read-only Types by Default

In Scala, primitive types (such as Int and Boolean) and certain special reference types
(like String) are inherently immutable. By marking these types as read-only by default,
working with them and their members becomes more convenient and seamless.
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3.4 Recheck for Reference Immutability

After type checking and the majority of transformation phases, a rechecking phase,
CheckMutability, is introduced to verify the properties of reference immutability. The
types of the AST are recomputed and rechecked with the rules for reference immutability.
Only during the CheckMutability phase are the special subtyping rules for mutability en-
abled within the TypeComparer. The CheckMutability phase does not modify the AST,
and the generated code only contains mutability annotations, ensuring no runtime overhead
is introduced by the feature.

3.4.1 Recheck Class Definition

When rechecking a class, trait, or object, the compiler enforces the following rules:

• The type parameters have bounds with the same mutability, as outlined in rule (t-
abs).

• If the class has a @readonly annotation:

– the parent classes must be read-only classes as well (with the exception of
AnyRef, since it is the default parent for all reference classes and cannot be
modified);

– all fields must be immutable (defined by val instead of var);
– the mutability of all field types must be readonly.

3.4.2 Recheck Value and Function Definition

To enforce the rules described in Section 2.4.1 and 2.4.2, it is necessary to consider the
mutability of this or super references.

The mutability annotation on a member method determines the mutability of the re-
ceiver. Following the type checking phase, each this identifier is linked to its corresponding
class (like C.this). Therefore, the mutability of C.this is computed according to the en-
closing method that is a member of this class C.

The algorithm can be described as follows:

1. Start with the owner symbol of this or super;
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2. If the symbol is a member definition, and the owner of the symbol is the target class,
then return the symbol;

3. Otherwise, set the symbol to its owner and repeat the previous step.

Once the member symbol is identified, the type of this or super becomes the class
type with the mutability annotation from the member definition. Except for fields with
a concrete @mutable annotation and lazy value definitions, the type is the read-only class
type. In the case of a symbol representing a nested class, a subsequent search is required,
this time with the nested class serving as the target class. The mutability of this or super
depends on the member inside the nested class.

Consider the classes in Listing 3.6: class B is nested inside a member of class A, and h is
a non-member nesting function, when checking A.this in h, the mutability is derived from
the annotation of f. Similarly, the mutability of B.this is derived from the annotation of
g. It is important to note that the mutability annotations from non-member functions are
neither checked nor utilized. Furthermore, if class C is a nested class of A, the mutability
of C relies on A. Consequently, the mutability of both this inside i depends on i.
class A:

class C:
def i =

A.this
C.this
// the mutability of both this depends on i
// since the mutability of C depends on A

def f =
class B:

def g =
// h is not a member method ,
// never check mutability annotations of h.
def h =

A.this // check mutability according to f
B.this // check mutability according to g

Listing 3.6: this inside nested classes and functions.

For function definitions, the type parameters must have bounds with the same muta-
bility (t-abs).

If the body of a function or the return type contains the @polyread annotation, the func-
tion itself or at least one of its parameters must be annotated with @polyread. polyread
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cannot be treated as a normal qualifier between mutable and readonly. Adding a mu-
tability variable to each polyread method and rewriting every @polyread annotation is
difficult to implement and can break compatibility due to change of signature. To avoid
the soundness issue, each @polyread annotation is bound to its corresponding method
symbol internally. As a result, polyreads with the same method symbol are subtypes of
each other; polyreads with different method symbols are not subtypes of each other, as
shown in Figure 3.1.

readonly

mutable

polyread(f1) polyread(f2) polyread(f3)

Figure 3.1: The subtype relations of polyreads, mutable, and readonly.

3.4.3 Recheck Method Application

For convenience, the receiver of a member method can be considered as an additional
parameter in the method signature. As such, the application of member methods follows
normal typing rules.

Listing 3.7 demonstrates the rule for polyread functions. If the applied method has a
@polyread annotation or at least one of the parameters has a @polyread annotation, the
maximum of the mutability is computed from the actual arguments for polyread parameters.
The @polyread in the return type is substituted by the maximum mutability.
// a polyread function
def f(a: A @polyread , b: B, c: C @polyread): D @polyread = ...

// M is a mutability variable
val i: A @mut[M] = ...
val j: B = ...
val k: C = ...
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// the first and third parameters have polyread annotation.
// the mutability of the first argument is M,
// the mutability of the third argument is mutable.
// the maximum mutability of these arguments is M | mutable ,
// so the result type is D @mut[M | mutable]
f(i, j ,k): D @mut[M | mutable]

Listing 3.7: Applying a polyread function.

3.4.4 Recheck Pattern Matching

Pattern matching has a similar issue to the one regarding union and intersection types as
shown in Listing 3.8. During runtime, it becomes indistinguishable between readonly and
mutable references that share the same underlying type.

Despite the fact that a mutable type is considered a subtype of a readonly type, it is
inappropriate to transform a readonly type into a mutable one during the matching case.
Consequently, when matching a value, the binding variable type of all cases must have
mutability greater than or equal to the value type.
// a readonly instance of C
val c: C @readonly = ...
c match

case c: C =>
c.x = 1 // danger

Listing 3.8: Pattern matching on a read-only reference.

3.5 Compatibility

The typing rules for reference immutability and the rechecking phase are enabled through
a compiler option. It is important to note that no additional code is inserted into the
compiled program. If this option is not set, the mutability annotations are ignored and
the type checking is performed as in standard Scala. This approach ensures that projects
using mutability annotations behave the same way as non-annotated projects when the
feature is disabled. In other words, the simple mutability annotations do not change the
signatures or affect the compilation process if the feature is disabled.
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Chapter 4

Evaluation

The experience of adopting reference immutability is presented in this chapter, where the
usability, effectiveness and compatibility of this feature is tested. The test suite includes
the CS 241E compiler solution, the collection strawman test, and a selection of commu-
nity projects. These tests demonstrate how the implementation performs in real-world
scenarios. To determine the difficulty of using this feature, existing projects are migrated
using only the simple mutability annotations: @mutable, @readonly, and @polyread. The
results, as shown in table 4.1, are utilized to fix bugs and improve the design.

4.1 CS Course Compiler Solution

CS 241E is an advanced second-year compiler course at University of Waterloo, where
students are required to develop a bare-bones compiler written in Scala. The majority of
the project code is immutable, and almost all classes can be labeled with the @readonly

Item CS Compiler Collection Fansi discipline
Total Lines 3305 653 1490 441
Changes 44+, 54- 215+, 77- 32+, 32- 17+, 5-
Errors 25 0 27 4
- Collection Errors 22 0 27 4
- Other Errors 3 0 0 0

Table 4.1: Table of migrating existing projects.
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annotation. Only two classes have mutable state, either through a mutable field or a
mutable collection within.

One such example is the Procedure class, which represents a procedure tree. It contains
a mutable field called code, which is initialized after the object is created and mutated
during various transformations. To handle this, the class is renamed to ProcedureImpl
and a type alias is defined: type Procedure = ProcedureImpl @readonly. The class
type ProcedureImpl is only used in places where its mutable field is updated, maintaining
read-only references throughout the rest of the project.

The second column labeled "CS Compiler" in table 4.1 shows the result. The size of
the CS 241E compiler is around 3300 lines, and the migration modifies 50 lines. There are
25 errors remaining after migration. Because the Scala standard library is not annotated
with mutability, most of the error messages reported by the compiler are caused by uses
of the standard collections library, for example, calling a member on a read-only reference.
Three remaining errors are related to a class in an external library, which could not be
annotated.

4.2 Collections Strawman

The collections strawman is a self-contained test suite that serves as a testing architecture
for possible new designs of the collections framework in the Scala standard library. The
strawman code does not reference the existing collections classes in the standard library.

The test CollectionStrawMan5 in the Dotty compiler test suite is migrated by adding
mutability annotations. This code is chosen due to the presence of numerous collection
classes with mutable state.

The third column labeled "Collection" in table 4.1 shows the result. The size of
CollectionStrawMan5 is around 650 lines, and the migration modifies 215 lines. There is
no compile-time error reported on the ported library

One interesting finding is that adding mutability checking required minor design changes
in this library. Specifically, trait IterableOnce[+A] is a base trait for all collections. It
has a method iterator that returns an iterator over the collection. The iterator should
be mutable to store the state of the iteration. The method is allowed to be called on any
collection (mutable or immutable). Hence, the signature of iterator is @readonly def
iterator(): Iterator[A], indicating that it can be called on a readonly reference to a
collection.
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The original design defines Iterator[+A] to be a subtype of IterableOnce[+A] – this
means that an iterator is also itself considered to be a collection. The implementation of
the iterator method in the Iterator class just returns this. However, this design does
not work when the iterator (the receiver of the method) is readonly: the method then
cannot return a mutable reference to it.

To fix the error, IterableOnce[+A] is removed from the super classes of Iterator[+A].
The method iterator in Iterator[+A] becomes def iterator(): Iterator[A] = this.
This new method can only be called on a mutable reference to an iterator.

The higher ratio of changes to total lines in this project compared to others can be
attributed to two primary reasons. First, this project requires the design change men-
tioned above, which introduces modifications across several classes. Secondly, due to the
nature of this test, mutations play a significant role in its collections. Consequently, the
class definitions cannot be directly annotated as read-only, and each member function re-
quires individual annotations. This comprehensive annotation process contributes to the
increased ratio of changes observed in this project.

4.3 Other Community Build Projects

The feature is also tested in several other projects within the Scala Community Build,
which serves as an extended test suite for the Scala compiler consisting of important open
source projects written in Scala. Notably, the Fansi and discipline projects were ported
for this purpose.

The fourth and fifth columns in table 4.1 show the result of those projects. These
projects do not extensively rely on mutation, which contributes to the lower ratio of changes
to total lines.

To assess the usability of the read-only class feature, a majority of the classes in these
projects are annotated as read-only. The remaining errors encountered are primarily re-
lated to the usage of the standard collections library within these projects. Despite the
annotations applied, the behavior of the annotated projects remains unchanged, meaning
they can still be successfully compiled and pass all associated tests, even if the feature is
disabled.
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4.4 Pain Points

Unfortunately, the standard library lacks annotations, leading to a considerable number of
errors on commonly used classes like String, Array, and various collections. To alleviate
this issue, a list (in Listing 4.1) of such classes and certain methods is compiled, exempting
them from mutability checking during the evaluations.
def isReadonlyClass(using Context): Boolean =

sym.isValueClass
|| sym == defn.CharSequenceClass
|| sym == defn.StringClass
|| sym == defn.Mirror_SingletonClass
|| sym == defn.Mirror_ProductClass
|| sym == defn.Mirror_SumClass
|| sym == defn.EqualsClass
|| sym == defn.ProductClass
|| sym == defn.SerializableClass
|| sym == defn.ThrowableClass
|| sym == defn.ExceptionClass
|| sym == defn.RuntimeExceptionClass
|| sym == defn.ScalaStaticsModuleClass
|| sym == defn.ConversionClass
|| defn.isFunctionSymbol(sym)
|| sym.isClass && (sym.findMutability.isRef(defn.ReadonlyClass))

def relaxApplyCheck(using Context): Boolean =
val owner = sym.owner
sym.is(Flags.Synthetic)
|| defn.pureMethods.contains(sym)
|| owner == defn.ScalaStaticsModuleClass
|| owner == defn.OptionClass
|| owner == defn.StringClass
|| sym == defn.Any_asInstanceOf
|| sym == defn.Any_typeCast
|| sym == defn.Array_apply
|| sym == defn.Array_length
|| owner == defn.IterableOpsClass
|| owner == defn.SeqOpsClass
|| owner == defn.IntegralProxyClass

Listing 4.1: A list of classes and methods exempted from mutability checking.

An additional challenge encountered is that the mutability checking phase occurs after
the type checking phase in the compiler. This ordering presents a problem since type
inference takes place during type checking, resulting in potential inaccuracies when the
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compiler makes incorrect assumptions regarding type arguments. To overcome this issue,
certain sections of the code required manual type annotations to ensure accurate typing
results.
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Chapter 5

Related Work

The concept of reference immutability and its applications have been widely studied, and
some mainstream languages have adopted similar concepts. In this section, an overview
of the most relevant research and approaches is provided, that have contributed to the
understanding and development of reference immutability systems.

5.1 Javari and Relm

Reference immutability in Java was first modeled by Birka and Ernst [5] in Javari, an
extension to Java that enforces reference immutability. This paper presents a type sys-
tem, language, implementation, and evaluation of a safe mechanism for enforcing reference
immutability, preventing side effects on objects reachable from an immutable reference.
Javari specifies immutability constraints using the keyword readonly on reference types,
methods, and classes. Subsequently, Tschantz and Ernst [18] extended this work with
formal type rules based on Lightweight Java and support for Java generics, also introduc-
ing syntactic sugar romaybe to implement limited parametric mutability methods using
overloading.

ReIm [13] focuses on method purity inference, so it has a simpler design compared
to Javari. ReIm assigns a single mutability to a whole structure, making it impossible
to exclude a field or a type parameter from the immutability check. ReImInfer is the
corresponding type inference analysis. The type system is concise and context-sensitive.
The type inference analysis is precise and scalable, and requires no manual annotations. In
addition, they present an application of the reference immutability type system: method
purity inference.
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5.2 Immutable Generic Java

Immutable Generic Java (IGJ) [19] is a Java extension that incorporates reference im-
mutability into the language without changing Java’s syntax. The mutability is encoded
as a type parameter of every class. IGJ features three immutability parameters: Mutable,
ReadOnly, and Immutable. This system ensures both reference immutability and object
immutability simultaneously. Reference immutability guarantees that only mutable ref-
erences can modify an object, while object immutability ensures that only immutable
references point to an immutable object.

5.3 roDOT

roDOT [9] is an extension of the Dependent Object Types calculus to support reference
immutability. A special marker type with a type member { M : ⊥..⊤} is introduced.
A type can be combined with the marker type using an intersection type to track its
immutability: T & { M : ⊥..⊤}. This design makes it possible for a type to depend
on the mutability of a reference x using the type selection x.M. roDOT only presents a
calculus that can support an implementation in the Scala compiler, without a complete
implementation. If the implementation follows roDOT directly, then the migrated code
may become incompatible because the representation of an intersection type with the
marker type is different from the original type after compiling.

5.4 C/C++ and D

C/C++ utilizes the keyword const to indicate that an object or variable is not modifiable.
The const keyword specifies a variable’s value as constant, instructing the compiler to
prevent the programmer from altering it. When a member function is declared with the
const keyword, the object cannot be modified by the function, and it can invoke only
const member functions. C++ has limited viewpoint adaptation, as reading a field from
a const object results in a const field. However, this rule does not apply to pointers or
references.

The D programming language is a general-purpose, statically-typed programming lan-
guage that prioritizes efficiency, expressiveness, and safety. Designed as a successor to
C/C++, D provides comprehensive reference immutability and viewpoint adaptation through
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its transitive immutable and const qualifiers. When an immutable reference is used, any
data accessible through it is also immutable, and the same principle applies to the const
qualifier.

5.5 Rust

In Rust, references are either mutable or read-only, and only one mutable reference can
exist for any given value, which is achieved by tracking the ownership of an object. This
approach enforces safety and helps avoid data races in concurrent programs.
let mut s = String ::from("hello");

// a reference to a String
// cannot modify underlying data through it
let r1 = &s;
r1.push_str(", world"); // error

// a mutable reference to a String
// borrow ‘s‘ as mutable
let r2 = &mut s;
r2.push_str(", world"); // ok

// a mutable reference to a String
// error , cannot borrow ‘s‘ as mutable more than once at a time
let r3 = &mut s;

println !("{}, {}", r2, r3);

In the provided code snippet, a mutable String named s is instantiated. Following that,
a read-only reference named r1 is defined, pointing to the same String object. Attempting
to modify the underlying data through r1 is forbidden and leads to a compile-time error.

Subsequently, a mutable reference named r2 is created by borrowing the mutability of s.
This declaration enables modifying the underlying data through r2, while still preserving
the read-only nature of r1.

However, attempting to create an additional mutable reference r3 to the same String
and then printing both r2 and r3 simultaneously using println on the last line would result
in a compile-time error in Rust. This error serves as a preventive measure, disallowing the
existence of multiple mutable references to the same value simultaneously.
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In Rust, references can be qualified by lifetime parameters, but the mutability aspect
remains concrete and fixed. As a result, it is not possible to express mutability polymor-
phism in the language.
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Chapter 6

Conclusion

In this thesis, I have addressed the issue of reference immutability in Scala, a multi-
paradigm programming language that combines functional and object-oriented program-
ming. While Scala promotes immutability through features like immutable variables and
collections, it lacks a built-in mechanism for controlling and enforcing reference immutabil-
ity.

I have presented a system of reference immutability in Scala with a formal model for
the core language. The system is designed to handle the complexities of the Scala type sys-
tem. Mutabilities are encoded as types inside annotations, and mutability operations are
encoded using union and intersection type operations. This design allows for the expres-
sion of flexible mutability constraints and enables checking mutabilities through subtyping
comparisons. I have carefully designed the new types to ensure backward compatibility
both before and after a project’s migration to this feature.

One of the key challenges addressed is handling nested classes and functions, which is
ignored in previous work. I developed a more general design for viewpoint adaptation and
an algorithm to derive appropriate mutability of a reference based on its enclosing scope.

I have implemented the feature in the Dotty compiler, closely following the rules de-
scribed in the formal model. The changes to the compiler are encapsulated within a single
module to minimize their impact on other parts of the compiler.

The design presented in this thesis establishes a foundation for incorporating arbitrary
constraints on any types in Scala. When developing a new feature that requires constraints,
developers can simply define the constraints as classes and implement the corresponding
rules in a new phase by checking them using subtyping. One advantage of this design
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is that the annotation mechanism and handling of nested code can be reused, without
worrying about backward compatibility.

In conclusion, my work on reference immutability contributes an expressive and useful
design to control and enforce reference immutability by extending the type system. This
feature promotes more predictable behavior and prevents unintended mutations, reducing
the risk of bugs and making code easier to reason about.
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