
Convolutional Neural Networks in space

weather predictions

Master's thesis
Iina Leppänen

Y52840513
Research Unit of Mathematical Sciences

University of Oulu
July 23, 2023

Tiivistelmä

Nykyaikainen elämämme maapallolla on haavoittuvainen avaruussään vaiku-
tuksille. Myrskyinen avaruussää voi muun muuassa aiheuttaa häiriötä satel-
liittiliikenteeseemme, ja siksi Maan lähiavaruuden sähkövirtojen ennustami-
nen on tärkeää. Vaikka virtojen yleiset piirteet ovat tiedossa, niiden pienem-
män skaalan käyttäytymisen ennustaminen voi olla hankalaa. Tässä pro gradu
-tutkielmassa toteutetaan kaksi erilaista konvoluutioneuroverkkoa ennusta-
maan ionosfäärin sähkövirtojen käyttäytymistä aikasarjan pohjalta. Kon-
voluutioneuroverkot ovat erikoistapaus keinotekoisista neuroverkoista, kone-
oppimismenetelmistä, jotka kykenevät oppimaan hyvinkin monimutkaisia piir-
teitä saamastaan syötteestä.

Tässä tutkielmassa tutustutaan lyhyesti Maan lähiavaruuden sähkövirtoi-
hin ja niiden takana vaikuttaviin perusvoimiin. Tämän lisäksi käydään läpi
neuroverkkojen teoriaa ja keskitytään erityisesti konvoluutioneuroverkkoihin.
Ennustamiseen käytetyistä arkkitehtuureista ensimmäinen on ResNet, joka
hyödyntää niin kutsuttua residuaalista oppimista ja päättyy täysin kytket-
tyyn kerrokseen. Toinen arkkitehtuuri on U-Net, niin sanottu enkoodaus-
dekoodaus arkkitehtuuri, joka käsittelee saamaansa syötettä usealla resoluu-
tiolla ja päättyy konvoluutiokerrokseen. Molemmat arkkitehtuurit osoittau-
tuvat kykeniviksi ennustamaan ionosfäärivirtojen käyttätymistä, joskin en-
nusteissa esiintyy virtojen voimakkuuden aliarviointia. Lisäksi vaikuttaa siltä,
että U-Net muodostaa liian vahvan avaruudellisen riippuvuuden syötteen yk-
sittäisten elementtien välille, mikä näkyy ResNetin ennusteita sileämpinä tu-
losteina ja viittaisi viimeisen täysin kytketyn kerroksen tärkeyteen.

1

Abstract

Our modern life on Earth is vulnerable to the e�ects of space weather, as
it can for example disturb our satellites. Thus being able to predict the
electric currents �owing in the near-Earth space is of importance. However,
while the large scale features of these currents are known, their small scale
behaviour can be harder to predict. In this thesis two di�erent convolutional
neural network architectures are implemented to predict ionospheric currents
from time-series input. Convolutional neural networks are a special case of
arti�cial neural networks, a machine learning approach capable of learning
complicated features from the input data.

In this thesis a brief introduction to the current systems in the near-Earth
space and the fundamental forces behind them is given. In addition to this
the theory of arti�cial neural networks is introduced, with a special interest
in convolutional neural networks. The �rst one of the two implemented neural
networks is ResNet, utilising so called residual learning and ending in a linear
layer. The other network is U-Net, a fully-convolutional encoder-decoder ar-
chitecture investigating the input at multiple resolutions. Both architectures
are capable of predicting the behaviour of the ionospheric currents, but tend
to underestimate the strength of the largest currents. It also appears that
U-Net creates too strong spatial dependency between the components of the
input resulting in overly smooth predictions. This indicates the importance
of the �nal fully-connected layer.

2

Foreword

This thesis was done in association with a research project. Thus I would like
to thank all the research members for their insights and discussion, including
Anita Aikio, Timo Asikainen, Ilkka Virtanen, Marcus Pedersen and Mikko
Sillanpää. I would especially like to thank Jemina Manninen for providing
me the interpolated data and some of the code used for plotting in Section
5.3, and Heikki Vanhamäki for his feedback on Section 2. I would also like to
thank the group members Snizhana Ross and Soléne Four for providing part
of the code used to plot the results in Section 5.3. And last but certainly not
least I would like to thank �nal group member and my supervisor Andreas
Hauptmann for his guidance and suggestions that have helped to shape this
thesis.

3

Contents

1 Introduction 6

2 Space weather 8

2.1 Electric current . 8
2.2 Solar wind, magnetosphere and ionosphere 9
2.3 Current systems in ionosphere and magnetosphere 10

2.3.1 Ring currents . 12
2.3.2 Field-aligned currents 13
2.3.3 Pedersen, Hall and equivalent currents 14

3 Deep learning 15

3.1 Learning framework . 15
3.2 An Arti�cial Neural Network 17

3.2.1 Activation . 19
3.2.2 Depth and width . 22

3.3 Optimisation . 29
3.3.1 Gradient Descent . 30
3.3.2 Introducing stochasticity 31
3.3.3 Adam . 32

3.4 Loss functions and regularisation 33

4 Convolutional Neural Networks 36

4.1 Convolution . 36
4.2 ResNet . 39

4.2.1 Skip connection . 39
4.3 U-Net . 41

4.3.1 Downsampling . 41
4.3.2 Upsampling . 44

5 Predicting space weather 45

5.1 Data . 45
5.1.1 Preparation . 47

5.2 Model architectures and training 48
5.2.1 ResNet . 49
5.2.2 U-Net . 50

5.3 Results . 52

4

6 Discussion 63

6.1 Architecture and hyperparameters 63
6.2 Quantitative analysis . 64
6.3 Qualitative analysis . 65

7 Conclusions 67

5

1 Introduction

Even though not always visible to us, the near-Earth space is �lled with
electric currents. These electric currents are driven greatly by the activity of
the Sun, which can subsequently have signi�cant, even dramatic e�ects on our
modern life on Earth. At highly active times, the Sun can for example cause
disturbances in satellite navigation services, radio communications or even
cause a blackout in a power grid [26]. The activity of the Sun, space weather,
can also manifest itself in auroras. The ability to model and predict the space
weather, or the electric currents in the near-Earth space or upper parts of the
Earth's atmosphere, would help to prepare for these events. While the large-
scale structures of these currents are known to an extent, the smaller and
more dynamic structures are harder to model. Multiple di�erent modeling
techniques have been used, from physics-based models to the empirical and
data-driven ones.

In this thesis a data-driven approach to predict the space weather is taken.
More precisely a form of machine learning called the arti�cial neural network
(ANN) is used to predict the behaviour of ionospheric currents. ANNs in
general require large amounts of data, which is combined into complex func-
tions and �nally into a model within the ANN. This model construction is
done algorithmically and with minimal human intervention as is typical for
machine learning approaches. Today, deep ANNs have been used to various
tasks on many �elds, their successes ranging from winning games to helping
in protein design [38, 19]. However, the drawbacks of ANNs are their typical
black-box nature, as it is not usually clear to why the ANN produces the out-
put it does, their need for a large amount of data, and the expensiveness of
the training in terms of required computational power and memory capacity.

Convolutional neural networks (CNNs) are a particular family of ANNs
utilising a speci�c mathematical operation called convolution. The bene�ts
of CNNs over the regular fully-connected neural networks comprise of smaller
memory and computational capacity requirements and their ability to detect
features anywhere within the input by design. While CNNs are particularly
suited for image-processing tasks, such as image classi�cation, denoising or
segmentation, they have also been used for other signal processing tasks and
time-series data. In this thesis two di�erent convolutional neural networks
will be trained to predict the ionospheric currents from a set of time-series
data.

The �rst of these architectures is ResNet, a neural network utilising resid-
ual learning and the other is U-Net, an encoder-decoder architecture. As im-
plemented for this thesis, the ResNet architecture does not extract features
at multiple scales, as is done in the U-Net. But possibly the most impor-

6

tant di�erence between these architectures is their ending layer. ResNet ends
with a linear layer, meaning it takes a linear combination of all the nodes
in the previous layer, while U-Net is implemented as a fully convolutional
network, meaning it maintains the location information encoding stronger
spatial dependencies between neighbouring nodes.

To this end, this thesis will �rst describe shortly some of the basic phe-
nomena behind the electric currents, and give a brief introduction to the
near-Earth space and the currents �owing there in Section 2. Then the gen-
eral features of the feed-forward ANNs and their training are described in
Section 3. In Section 4 the convolution operation and the basic features of
CNNs will be introduced together with a general description of the two neural
network architectures that will be used for the prediction. Finally, in Section
5 the practical implementation will be described together with the obtained
results, and in Section 6 these results will be discussed. In Section 7 the �nal
remarks will be made.

7

2 Space weather

Space weather is a term used to describe the phenomena in the near-Earth
space and Earth's upper atmosphere caused by the activity of the Sun. The
out�ow of charged particles from the Sun, and their interaction with the mag-
netic �eld and the atmosphere of the Earth causes electric currents to �ow in
the near-Earth space and the upper parts of Earth's atmosphere. Ultimately
the currents can be explained through electromagnetism, but their behaviour
can be more easily explained through plasma physics. These subjects will be
discussed brie�y in the following subsection.

2.1 Electric current

An electric current is, similar to other currents such as ocean currents, a �ow
of particles. But whereas a neutral current is described as net shift of mass,
an electric current is described as net �ow of charge (current density), j = ρv,
where ρ is the charge density and v is the speed. On Earth electric currents
�ow in for example power cords, or they can be seen in lightning strikes. In
space electric currents �ow in plasmas, substance constituting of electrons
and ions. To understand better the way electric currents are created, it is
useful to understand the interplay between electric and magnetic �elds. This
description is based on [37].

An electric charge denoted with q is an attribute of some particles, such
as protons and electrons. Protons and electrons, together with neurons that
have no charge, make up the atoms, building blocks of (almost) everything
we see around us. A particle with a charge produces an electric �eld E, and
another particle with a charge will experience that �eld as an electric force
FE = qE. The strength of the �eld (and subsequently the force) depends
inversely from the square of distance on the source of the �eld, meaning
the �eld is stronger closer to the source. A charge can be either positive or
negative, and if two particles have both positive or both negative charges
they repell one another, whereas two particles with opposite charges attract.

When electric charge carriers (particles for example) are in motion, they
exert an another �eld, namely the magnetic �eld B. Similarly to electric
�elds, another charged particle in motion with charge q and speed v will
experience this �eld as a magnetic force FB = qv × B, while introducing a
magnetic �eld of its own. Thus an electric current, being a �ow of charge,
induces a magnetic �eld of its own and is a�ected by one. Magnetic �elds
are always divergence free, meaning that over any closed surface there are
as many entering �eld lines as there are leaving. The interaction between
magnetism and electrostatics does not, however, stop there. A change in

8

magnetic �eld will induce an electric �eld and, assuming that the �eld is
strong enough to make charges �ow, an electric current, and then this electric
current will create a magnetic �eld. To be precise, already the changing
electric �eld produces a magnetic �eld.

While it is possible to describe the motions of the single charged particles
using the simple interactions between them, this description becomes overly
complex quickly when the number of particles in the system grows. Thus it
is usually more practical to describe the overall behaviour of the electric cur-
rents or, as would be more relevant for this thesis, the plasmas in space. This
thesis will not, however, dive into the exact description of the mechanisms
of plasmas, but will instead focus on the general features and behaviours of
the electric currents �owing in near-Earth space. But to understand what
drives these currents, even on a shallow level, it is important to know what
is happening in the near-Earth space.

2.2 Solar wind, magnetosphere and ionosphere

The Sun is a star of average luminosity and size. It provides a source for
steady radiation, without which life on Earth would not be possible. This
radiation is powered by the fusion reaction in the core of the Sun combining
light-weight elements into heavier ones. See for example [32] for a description
of the reaction chain. Solar wind is the �ow of charged particles, electrons
and ions, from the Sun. It can be divided into two parts, namely the slow
and the fast solar wind based on their origin and characteristics as described
for example in [36]. The slow solar wind comes from strong closed magnetic
�eld loops on the surface of the Sun, and the particles forming the fast solar
wind escape along radial magnetic �eld lines called coronal holes.

The magnetic �eld of the Sun, the solar magnetic �eld, can have a very
varying shape. While at times it appears dipolar close to Sun, it changes
with the activity of the Sun and can be highly structured as shown in [36].
The solar wind drags out this solar magnetic �eld into the interplanetary
space creating the interplanetary magnetic �eld, or IMF for short. The IMF
is distorted into a spiral by the rotation of the Sun. The Sun also emits
charged particles in bursts such as �ares and dense plasma clouds called
coronal mass ejections (CME). These bursts occur above sunspots, places of
strong localised magnetic �elds that appear as darker patches on the Sun.
Sunspots speak of the activity of the Sun, with more sunspots at more active
times. This activity changes in approximately eleven year cycles during which
the Sun's activity goes from minimum to maximum and back. These cycles
are known as the solar cycles and the polarity of the Sun, and thus the
polarity of the interplanetary magnetic �eld, is reversed during each cycle.

9

The magnetic �eld of the Earth, the geomagnetic �eld, is a�ected greatly
by the activity of the Sun [36]. While the geomagnetic �eld is near an ideal
dipole close to the Earth, it is highly distorted by the solar wind at larger
distances giving it a comet-like shape. The pressure from the solar wind
compresses the sunward side of the geomagnetic �eld and elongates the side
away from the Sun into a tail structure. The supersonic solar wind hitting the
geomagnetic �eld creates a free-standing shock wave called a bow shock. Be-
neath this surface is the magnetosheath, where the particles are decelerated,
heated and de�ected causing magnetic perturbations throughout the area.
Magnetopause is a boundary layer that separates the magnetised solar wind
plasma in the magnetosheath from that con�ned in the Earth's magnetic
�eld. Beneath the magnetopause is the magnetosphere, a vast region where
the geomagnetic �eld dominates. There the plasma originates from both the
solar wind and the Earth.

The ionosphere is the ionised part of the upper atmosphere of the Earth
beneath the magnetosphere and it extends from about 60 to beyond 1000
kilometres according to [36]. The charged particles in ionosphere are mainly
produced by photoionisation, where radiation from the Sun makes a neutral
molecule loose an electron, or by energetic particles from the magnetosphere
and the Sun. These particles can then further interact with other particles, or
escape the ionosphere at high latitudes as so called polar wind along the geo-
magnetic �eld lines. Similarly the solar wind can access the atmosphere of the
Earth directly at so called cusps (or polar cusp at northern hemisphere) along
the �eld lines. The solar wind-magnetosphere interaction causes plasma to
�ow away from the Sun over the polar cap in the ionosphere and back equa-
torward of so called auroral ovals that surround the cusp regions. Poleward
from the auroral oval is the polar cap (on northern hemisphere).

2.3 Current systems in ionosphere and magnetosphere

Before diving into the current systems in the near-Earth space, it is important
to understand the directions used to describe events happening in this space.
The x-axis is chosen to point directly from the Earth to Sun, with Earth in
the origin. The half of the Earth on the positive x axis is on the day side as
the Sun shines on it, and the night side is the half on the negative x axis. The
z axis is somewhat parallel with the Earth's rotational axis intersecting the
sunlight terminator and pointing approximately towards the north pole. As
the Earth spins counter-clockwise around its axis, the left half of the Earth (in
the direction of the x axis) is rotating to noon and the right half to midnight.
These halves are deemed the dawn and dusk sides, respectively. Dawn is the
point between day and night side on the post-midnight sector, and dusk is

10

similar point on the pre-midnight sector. These areas are described in Figure
1. The post-midnight sector is located on the dawn side near midnight and
the pre-midnight sector is on the dusk side near midnight. The y axis points
then from dawn to dusk and is perpendicular to x and z axes.

Sun

Direction of
Earth’s rotation

Night side

Dawn

Day side

Dusk

Counter-clockwise
Or eastward

Clockwise
Or westward

Noon Midnight

Dawn side

Dusk side

Figure 1: A simpli�ed diagram of di�erent sections of Earth relative to the
Sun. The Sun is on the left, and the Earth is viewed on the plane where
z = 0. See text for details.

The currents �owing in the near-Earth space are higly in�uenced by the
Sun's activity. Substorms are quasi-periodic increases in the auroral activity
on the nightside lasting a few hours. They can be divided to three phases,
namely the growth phase in which the auroral oval moves to lower latitudes
and polar cap expands, expansion phase in which the ionospheric conductance
is increased at the ovals and the polar cap contracts, and the recovery phase
in which the conditions return to a state similar to the one preceding the
storm as described in [25, 36]. A geomagnetic storm is a signi�cant magnetic
perturbation caused by greatly increased energy input from the solar wind.
This follows after a sudden storm commancement (SSC) which is caused by
a sudden change in the solar wind dynamic pressure. This pressure change
can occur as a result of a CME or a �are. Geomagnetic storm has an initial
phase in which the geomagnetic activity starts to increase and electric �eld

11

grows stonger, the main phase, when the energy levels reach their peak, and
recovery phase during which the storm slowly resides [25, 36].

Some of the large current systems �ow mainly at the magnetopause, such
as the Chapman-Ferraro magnetopause current around the cusps, and the
tail current at the tail of the magnetopause having closure through the equa-
torial plane (see [8] for a description of these current systems). This thesis
is however more interested of the current systems within the magnetosphere
and ionosphere, and next the large scale features of these current systems
will be introduced. The description of the current systems will mostly follow
[8], except for the ionospheric currents for which [9] is the primary source.

2.3.1 Ring currents

Ring current is an electric current �owing around the Earth at the equatorial
plane in magnetosphere in a toroidal shape. The ring current consists of
an inner current �owing counter-clockwise (or eastward) and an outer part
�owing clockwise (westward). The clockwise �owing ring current tends to be
of higher density than the inner one, and it induces a magnetic �eld opposite
to the direction of geomagnetic �eld. While the ring currents are thought to
be symmetric, in practise the currents are more or less asymmetric in terms of
current density depending on the space weather. At disturbed times, when
the plasma pressure distribution becomes highly asymmetric in the inner
magnetosphere, the asymmetric part of the clockwise �owing ring current
can be separated as partial ring current, having its own closure path through
ionosphere. The asymmetric part of the counter-clockwise ring current can
be accounted to a banana current �owing along both of the symmetric ring
currents. The outer clockwise ring current does not �ow as one system either,
but instead divides to two branches on the dayside. This branching part is
known as the cut-ring current.

During a geomagnetic storm, the positively charged particles from the tail
move through the inner magnetosphere and to the dayside magnetopause.
This added pressure increases �rst the size of the banana current, as most
of the clockwise ring current is closed through the inner, counter-clockwise
ring current. Then in the main phase the plasma pressure is at its highest
further inward, and at that point the partial ring current becomes dominant
as the asymmetric part of the outer ring current grows proportionally larger
than the inner ring current, and needs a di�erent closure path. Finally at
the recovery phase, when the plasma pressure becomes fairly uniform, the
symmetric outer ring current becomes stronger.

12

2.3.2 Field-aligned currents

One of the major contributors to the solar wind-magnetosphere-ionosphere
coupling are the �eld-aligned currents, or FACs for short, meaning they trans-
port energy, momentum, charge and mass between magnetosphere and iono-
sphere. By their name, the �eld-aligned currents �ow somewhat along the
geomagnetic �eld's �eld lines. Two main regions of the �eld-aligned current
system can be recognised, and some smaller ones.

The Region 1 FACs �ow to magnetopause at the pre-midnight sector,
connecting to the magnetopause, and then �ow back to the ionosphere on
the post-midnigth sector. Part of the currents connect at the dayside and
other part connects at the night side of the magnetopause. The �eld-aligned
part of the region 1 currents is at the poleward side of the auroral ovals,
with the part connected to dayside �owing along the open �eld lines, and the
other �owing along the closed ones. The Region 2 �eld-aligned currents �ow
equatoward of the region 1 �eld-aligned current, and closer to Earth. The
currents �ow away from ionosphere around dawn and back to the ionosphere
around dusk. At equatorial plane, the region 2 FACs connect to the partial
ring current. The region 2 FACs tend to be smaller than those in region 1.

There are also other �eld-aligned currents than the two mentioned above.
Region 0 current, located poleward from the auroral oval, is adjacent to region
1, and it can be considered to be a part of the region 1 current. Region 0
current depends largely on the IMF component in the direction of the y
axis marked as By, and it �ows mostly out of ionosphere for positive and
into for negative By in the northern hemisphere and opposite to this in the
southern. The so called northward Bz or NBZ current appears during strong
northward (or positive) IMF Bz component (component in the direction of
z axis), and it �ows mostly out of ionosphere at dawn and into at dusk. The
substorm current wedge or SCW system is associated with magnetospheric
substorms �owing into ionosphere at dawnside and out of at dusk. The SCW
is a simpli�ed presentation of the current system associated with substorms,
and it can form even without a substorm.

The region 1 FAC system increases when the IMF turns southward (Bz

component becomes negative). Increase in or change to southward direction
in IMF causes the magnetopause shift closer to Earth as the magnetic �ux
on dayside is eroded away. The transport of the magnetic �ux to nightside
with the �ow increase in high-latitude ionosphere causes the region 1 FACs
grow larger. When the IMF turns northward, the region 1 FACs similarly
diminish. This is also when the NBZ current appears. The region 2 FACs on
the other hand increase during the main phase of geomagnetic storms, as the
asymmetric outer ring current closes through them.

13

2.3.3 Pedersen, Hall and equivalent currents

As said the �eld-aligned currents �ow in and out of the ionosphere at di�erent
places. Pedersen currents �ow in the ionosphere closing the circuit of region
1 and 2 FACs across the auroral zones. They also �ow (although less) across
the polar cap in the ionosphere, increasing the �ow for the region 1 FACs,
which come to ionosphere closer to the cap. The electric �eld in the iono-
sphere points in the same direction as the Pedersen currents. Hall currents,
on the other hand, �ow perpendicular to the electric �eld, and constitute
the eastward auroral electrojet at dusk and the westward auroral electrojet
at dawn, �owing mainly at the auroral oval, where the conductance is typi-
cally highest. Weaker Hall currents also �ow across the polar cap in sunward
direction. See [25] for a schematic of these currents.

In practise it is hard to measure the currents in terms of the charge car-
riers, and instead the magnetic perturbations they cause are measured. The
Pedersen currents are thought to produce only little magnetic perturbations
on ground, as the region 1 and region 2 FACs somewhat cancel out their e�ect.
The perturbations caused by the Hall currents on the otherhand can be mea-
sured. These measured perturbations can be rotated to produce equivalent
current maps, as the connection between the direction of the perturbation
and that of the associated electric current is known. In practise this is a 90
degrees rotation clockwise, see e.g. [30]. However, these equivalent current
maps obviously also include for example the e�ects of more distant currents.
None the less some characteristic patterns have been identi�ed, namely the
DP1, DP2 and DPY. DP1 pattern is associated with substorms, showing up
mainly at the nightside auroral zone. DP2 pattern is produced by the Hall
currents appearing on the dawn and dusk auroral zones and, as the Hall cur-
rents like the Pedersen currents are associated to the region 1 and 2 FACs,
tells about the strength of the region 1 and 2 FACs. DPY on the other hand
is associated with the region 0 FACs.

14

3 Deep learning

Machine learning is an algorithmic approach to �nding a computational
model capable of describing empirical data according to [45]. In machine
learning especially the construction of the model happens almost without
human interaction by optimising the model algorithmically according to the
speci�ed criteria. Arti�cial neural networks, or ANNs for short, are a sub-
�eld of machine learning where the model construction was inspired by the
workings of biological neural network, brain, that is. In these arti�cial neural
networks simple features or functions are combined in a hierarchical way to
construct more complicated ones. When a neural network is considered deep
enough it is deep learning, although sometimes the terms deep learning and
neural networks are used interchangeably. It is also not always clear what
su�ces for a deep network, or how its depth should be computed.

3.1 Learning framework

Like statistical learning, machine, and subsequently deep, learning can be
divided into three categories, namely supervised, unsupervised and reinforce-
ment learning, although these categories are not always considered to be
completely distinct or all-inclusive scenarios and one can also have combined
learning types such as semi-supervised and multi-instance learning as de-
scribed in [11]. In supervised learning the data is divided into independent
and dependent variables. In this case the di�erence between the model's
prediction and the dependent variable can be computed and optimised. In
unsupervised learning (see [11]) there is no dependent variable, but the in-
tention can be for example to cluster the data into similar groups, or �nd
the optimal representation of the data under some constraints. Unsupervised
learning can be used to prepare the data for other types of learning. In re-
inforcement learning (see [20]) the agent (in this case the machine learning
system) learns what it should do next based on the current state of its envi-
ronment and its internal state. The action taken by the agent is followed by a
reward, and based on this reward the taken action (or a function) is re�ned.
Supervised learning is the most common learning type also among arti�cial
neural networks, and it is the approach taken in this thesis. Thus next the
structure of the data for supervised learning will be de�ned more closely.

For supervised learning the sample space is of the form Z = X × Y .
The collected or empirical data, z ∈ Z, consists of n ∈ Z+ input variables
x = (x1, x2, . . . , xn) ∈ X usually referred to also as covariates or explanatory,
predictive or independent variables or features depending on the context, and
m ∈ Z+ target variables y = (y1, y2, . . . , ym) ∈ Y also known as outcome, re-

15

sponse or dependent variables. Next it will be assumed that the data consists
of N ∈ Z+ observations and a pair (x, y)k = (xk, yk), where k = 1, 2, . . . , N ,
corresponds to each observation. Then all the data is collected into a dataset
Sdata In general and especially in the case of neural networks the input can
have very di�erent shapes, and the shape can even be di�erent between ob-
servations. This can happen for example when the input consists of images of
varying sizes and each observation is one of these images [11]. For simplicity
in the future it will be assumed that all of the n input variables obtain a
scalar value per observation, i.e., for the kth observation we have a vector
xk = (x1

k, x
2
k, . . . , x

n
k) ∈ Rn. In addition it will be assumed that the tar-

get is continuous and also obtains m scalar values for each observation, i.e.,
yk = (y1k, y

2
k, . . . , y

m
k) ∈ Rm, where k = 1, 2, . . . , N . It is common to assume

that the observations are independent and independently distributed (i.i.d),
although in practice this is rarely met [43]. As in [11], the notation pdata is
used for the data producing distribution.

In machine learning the construction of the model is an iterative process
in which the trainable parameters of the chosen machine learning method,
such as a neural network, are optimised in step-wise manner according to a
chosen metric [45, 11]. This phase is known as the learning phase and in the
case of ANNs it can also be referred to as training. For this phase a subset,
denoted with Strain, of the complete data is chosen, i.e., Strain ⊂ Sdata . In
the next phase the constructed model is validated, i.e., the performance of
the trained model is measured against new observations, coming from a new
subset Svalidate ⊂ Sdata. Validation phase is used to improve the generalisa-
tion of the model, or its success on new observations by tuning so called
hyperparameters. Hyperparameters are pre-determined before training, and
the machine learning algorithm can not optimise them during the training
phase. After the hyperparameter tuning, we come back to the learning phase
to improve the trainable parameters further. These phases are altered until
the model performs well enough, at which point the model is further tested
against a third subset Stest ⊂ Sdata. This is called the testing phase and it is
meant to de�ne the performance of the model.

Eventhough the training and validation phases were described as com-
pletely separate above, they are commonly done in partially parallel so that
the generalisation ability of the model can be assessed throughout the train-
ing and the training can be ended early if necessary. Also, although typically
the subset are distinct from each other, i.e., Strain ∩ Svalidate ∩ Stest = ∅, in
some cases the validation set is not completely separate from the training set,
but instead a subset of the training set not used for training on that round
is used for validation as described for example in [11]. The test set, however,
is always separate from the others.

16

3.2 An Arti�cial Neural Network

Arti�cial neural networks are partially based on the idea of modelling the
functioning of brains mathematically. As an oversimpli�ed model of brain,
ANNs consist of simple computational units called neurons stacked together
so that the output of one neuron is the input of another. Typically these
neurons create structures called layers in the networks, and the function
realised by the neural network is combined from the outputs of these layers.
The de�nition for a neural network to be instroduced is based on the source
[5], but also the sources [35] and [13] are utilised. The de�nition is meant
for a feed-forward neural network, that is, a neural network with directed
connections going only to unseen neurons, as these kinds of networks are of
interest here.

In general the architecture of a neural network can be presented as a
graph in the following way.

De�nition 3.1 (Architecture of an Arti�cial Neural Network). The archi-
tecture of an arti�cial neural network can be written as a graph

G = (V , E),

where V = {v1, v2, . . . , vk}, k ∈ Z+, is the set of nodes in the neural network
and E ⊂ V × V is the set of edges or connections.

It is required from the set of nodes and set of edges that each element v
in V must be connected to at least one edge e ∈ E , and each connection is
always associated with a scalar we ∈ R called the weight. The set of nodes V
can further be divided into three subsets, namely the input layer I consisting
of the inputs x to the network, the output layer O which gives the output ŷ
of the neural network, and the hidden layers H = V \ (I ∩ O) in between.
In addition all the nodes, except for those in the input layer, are commonly
associated with an activation function σv : R→ R and a bias bv ∈ R. In the
future the notation Ev will be used for the edges ending in the node v ∈ V ,
i.e.,

Ev = {e ∈ E| e = (v′, v), v′ ∈ V}.

De�nition 3.2 (An Arti�cial Neuron). Except for the input layer I each
node v ∈ V \I in the neural network de�ned by the architecture G = V , E) is
associated with a simple computation unit, a neuron of an ANN, computing

xv = σv(
∑

e=(v′,v)∈Ev

wexv′ + bv).

17

In a neural network the neurons are thus computing the intermediate
results, which can be combined into a more complicated function. Typically
the neurons are organised in layers.

De�nition 3.3 (Layer, Depth and Width of a Layer of an ANN). The neu-
rons (and the associated nodes) of a neural network de�ned by the architec-
ture G = V , E) are said to be in layer l if the path of the edges from the input
layer to the said neuron is of length l. The layer l ∈ {0, 1, . . . , L}, L ∈ Z+ of
a neural network consists of all the neurons (or nodes) in that layer.

The depth of a neural network is the longest path of edges from the input
to the output layer, or in a layered network the number of layers L ∈ Z+.
Note that the input layer I is not counted into the number of layers.

The width of a layer l of a neural network is the amount of neurons in
that layer, Nl ∈ Z+.

Because all the neurons in the same layer typically use the same activation
function the activation function used in layer l will be denoted with σl when
needed. Furthermore the same activation function may be used in all of the
layers of a neural network (except for the output layer, which usually has
the identity as the activation), in which case the subscript will be omitted
completely and simply the notation σ will be used for the activation. In
addition the weights and biases in the layer l can be stacked into matrices,
in which case it is possible to write the computation of the layer l as

xl = σl(W
l⊺xl−1 + bl),

where Wl ∈ RNl×Nl−1 , bl ∈ RNl , and xl−1 ∈ RNl−1 is the output of the
previous layer (or the input of this layer) and xl ∈ RNl is the output of this
layer. The mapping xl+1 7→Wl⊺xl−1 + bl is the a�ne-linear transformation
of the neural network in layer l, and when needed one may mark it with Tl

for example. The architecture of a neural network can also be de�ned in a
layer-wise manner as a organised collection of the activation functions and
a�ne-linear transformations as is done in [13]. See Figure 2 for a description
of a simple two layered ANN.

Commonly at least the weights we and biases bv, for all e ∈ E and v ∈ V , of
a neural network de�ned by the architecture G = (V , E) constitute the set of
trainable parameters θ ∈ Θ ⊂ RM , where M ∈ Z+. In addition, for example
the activation functions σv can have some trainable parameters as is described
in [6]. The architecture of an ANN on the other hand is determined through
the hyperparameters. The hyperparameters typically include the depth L of
a network, the used activation functions σv, and the widths of di�erent layers.
In addition to these, for example the optimisation algorithms used for the
training have their own set of hyperparameters.

18

x2

h3

h1

h2

x3

x1

y

Input layer Hidden layer

Output layer

h3

h1

h2

Hidden layer

Figure 2: A simple graph of a two layered ANN.

An ANN de�ned by the architecture G determines a function class FG,
consisting of all the functions possible to produce with the network by chang-
ing the values of the trainable parameters θ [43]. For example a feed-forward
network of depth L, whose layers only consist of activations and a�ne-linear
transformations determines a function class

FG = {f | f : Rn → Rm, f(x) = (σL ◦ TL ◦ . . . ◦ σ2 ◦ T2 ◦ σ1 ◦ T1)(x)}
= {f | f : Rn → Rm, f(x) = σL(TL(. . . (σ2(T2(σ1(T1(x))))) . . .))},

using the previous layer-wise notation.

3.2.1 Activation

Activation functions are meant to activate the input coming to it. In the
hidden layers of neural networks activation functions are typically nonlin-
ear, which enables the ANNs to learn highly complex functions, but the
activation function σL in the output layer can also be a linear transform,
usually the identity x 7→ x (see e.g. [20, 6, 5]). Including nonlinearities to
the network in the form of activation functions is essential if one wishes the
network to produce nonlinear functions. Normally activation functions oper-
ate element-wise over the input, so for example given the intermediate result
x′l = Tl(x

l) ∈ RNl+1 in the layer l + 1 and the activation function σl+1, we
have that

σl+1(x
′l) = σl+1((x

′l
1 , x

′l
2 , . . . , x

′l
Nl+1

)) = (σl+1(x
′l
1), σl+1(x

′l
2), . . . , σl+1(x

′l
Nl+1

)).

19

Because of this an activation function will be marked to map from R to R,
even though sometimes an activation function will be given input in a vector
(or higher dimensional) form.

Besides introducing nonlinearity to the function class, activation functions
determine whether a neuron is considered active or in-active, that is whether
or not the neuron has an impact to the output. According to [45] this stems
from the fact that neural networks were used to model the brains, and the
�rst activation function was the binary stepfunction, obtaining either the
value 1 (active) or 0 (in-active). So the used activation function was

σ(x) =

{
0, when x < 0

1, when x ≥ 0

This is in practise a di�cult activation function for any deeper networks,
because it has a dichotomous response and thus a lot of information of the
input is lost in activation, and one can not train a network utilising this
activation function with gradient-based methods as the objective function
to be optimised becomes piece-wise constant [11, 45]. An activation function
that can be optimised with gradient-based methods but that reminds the
binary stepfunction is called logistic sigmoid function [45].

De�nition 3.4 (The logistic sigmoid function). The logistic sigmoid is a
function σ : R→ [0, 1],

σ(x) =
1

1 + e−x
.

The logistic sigmoid function can estimate the binary stepfunction arbi-
trarily well by weighting the input with w ∈ R, w > 0 according to [45]. This
can be easily seen by examing the limits of σ(wx):

lim
w→∞

σ(wx) =

lim
w→∞

1
1+e−wx = lim

w→∞
1

1+ew|x| = 0 when x < 0

lim
w→∞

1
1+e−wx = lim

w→∞
1

1+e0
= 1

2
when x = 0

lim
w→∞

1
1+e−wx = lim

w→∞
1

1+e−w|x| = 1 when x > 0.

The logistic sigmoid is di�erentiable everywhere and its derivative is

σ′(x) =
d

dx

1

1 + e−x
=

d

dx
(1 + e−x)−1 =

e−x

(1 + e−x)2
,

so a neural network using this activation can be optimised with gradient-
based methods. However, using the logistic sigmoid as the activation function
can lead to a problem known as the vanishing gradient as described in [6]. In

20

the vanishing gradient problem the gradient of the loss function goes to zero
with respect to some parameters, which slows down or inhibits the update
of those parameters completely and thus the learning process itself. This is
especially a problem with deep networks as the problem cumulates through
layers. The problem with logistic sigmoid is that it maps any absolutely large
values close to zero or one, and its derivative similarly maps absolutely large
values near (or to) zero leading to the diminishing gradient as the learning
proceeds.

Another di�culty with the logistic sigmoid is the fact that it maps to
range [0, 1], which slows learning down [33]. A usually better choice but still
similar activation function is the hyperbolic tangent σ(x) = tanh(x), which
maps all the values to range [−1, 1], and symmetrically around zero meaning
that any activation occuring near zero behaves similarly to the identity and
eases learning. However, like the derivative of logistic sigmoid, the derivative
of hyperbolic tangent maps values far from zero near zero, which can still lead
to the problem of vanishing gradient although the problem is slightly milder
for hyperbolic tangent as is shown in [33]. Both the hyperbolic tangent and
logistic sigmoid have use in the output layer assuming that it is �tting for the
task at hand to do so. In addition these activation functions have use in some
neural network architectures, such as in recurrent neural networks (RNN)
that have connections also to previous neurons, and with an appropriate
initialisation of the trainable parameters they can achieve comparable results
[33, 11].

Today a common choice of activation function is the recti�ed linear unit,
or ReLU for short.

De�nition 3.5 (ReLU). Recti�ed Linear Unit is the function σ : R→ [0,∞[,

σ(x) = max(0, x) =

{
0, when x ≤ 0

x, when x > 0.

The bene�t of ReLU over the sigmoid and tanh activation functions is
computational simplicity and its capability to set a part of the input to
absolute zero. ReLU functions as identity to all positive input meaning that
it preserves the output of active neurons as is [11, 33]. This property can,
however, result in exploding gradient problem in which the estimated gradient
becomes too large making the learning unstable or in halting it all together,
if the gradient estimate goes beyond what the computer can represent with a
set number of bits. This can happen because ReLU, unlike tanh and sigmoid,
is unrestricted and allows for arbitrarily large numbers. Exploding gradient is,
however, more of a problem with recurrent neural networks [11], and ReLU,
functioning as the identity, does not at least accumulate the problem.

21

The derivative of ReLU is

σ(x) =

{
0, when x < 0

1, when x > 0,

but when x = 0, it is not de�ned. This is however not a problem in practise.
The subdi�erential of ReLU at the origin is ∂σ(0) = [0, 1], and in practise
typically the left derivative of ReLU is used at the origin if needed (see [11]
and [2]).

Another problem that may arise with ReLU is the dying ReLU problem
[11]. Because ReLU sets all negative inputs to absolute zero, it may inacti-
vate too many neurons already at the early stages of learning. In principle
inactivating some of the neurons can be seen as a good thing, as it reduces
the computational load and removes the unecessary neurons from use, but if
too many neurons are set to inactive too early, the neural network may be
unable to learn the appropriate function. The dying ReLU may be avoided
by initialising the values of trainable parameters appropriately at the start.

There are also variants of ReLU that allow some values for negative inputs
as well, as to not kill the learning completely at them. These activation
functions are for example the Leaky ReLU, which allows a negative input
x to obtain value αx, and the everywhere di�erentiable Exponential Linear
Unit, or ELU, giving value α(ex + 1) to negative input x. Here α ∈ R is
some positive constant. These are described for example in [33] and [6]. Both
Leaky ReLU and ELU act as the identity for any positive input. There are
also variants of activation functions, whose parameters can be altered during
training as described in e.g. [6]. ReLU, however, is considered as a good
starting point for an activation function at least for FNNs.

3.2.2 Depth and width

Deep or wide enough networks can be universal approximators, i.e., a neural
network with an appropriate architecture G can approximate any continuous
and bounded function to an arbitrary accuracy. In the following this property
is proven for a shallow neural network, i.e., a network having only one hidden
layer. For simplicity it will also be assumed that the neural network has a
scalar output. The proofs and concepts in this section are mainly based on
[43]. Let us �rst de�ne a universal approximator.

De�nition 3.6 (Universal approximator (real case)). Let F be a function
class. F is a universal approximator over some compact, i.e., closed and re-
stricted, area S if for every continuous function g : S → R and approximation

22

parameter ε ∈ R, ε > 0 there exists f ∈ F so that

sup
x∈S
|f(x)− g(x)| ≤ ε.

While the above de�nition is given only for real-valued functions, as that
is more �tting for the purposes of this thesis, universal approximator can also
be de�ned for function classes with vector-valued functions by changing the
absolute value to an appropriate norm.

The Stone-Weierstrass theorem shows that function classes ful�lling cer-
tain properties are universal approximators, and it can be highly useful when
proving the universal approximator property. The current standard for the
proof of the following theorem is by Bernstein, but let us take it here as
given.

Theorem 3.7 (Stone-Weierstrass). Let F be a function class ful�lling the
following properties.

1. Each f ∈ F is continuous.

2. For each x ∈ Rn there is f ∈ F so that f(x) ̸= 0.

3. For each x′ ̸= x there is f ∈ F so that f(x) ̸= f(x′).

4. F is closed under multiplication and addition.

Then F is a universal approximator.

For a shallow network producing a scalar output and without any ad-
ditional operations besides the activations and a�ne-linear transformations,
the function class induced by that neural network is

FG = {f : Rn → R | f(x) = a⊺σ(W⊺x+ b)}

where σ is the activation function used by all the neurons in the hidden layer,
a ∈ Rs is the weight matrix of the output layer, W ∈ Rn×s is the weight
matrix of the hidden layer, b ∈ Rs is the bias vector of the hidden layer, and
s ∈ Z+ is the number of neurons in the hidden layer. In the following the
universal approximator property for a shallow network having an unusual
activation function, namely the cosine, will be proven. This will then be used
to prove the universal approximator property for a shallow, ReLU activated
neural network.

23

Lemma 3.8. Let the function class induced by the neural network with ar-
chitecture G be

FG = {f : Rn → R | f(x) = a⊺ cos(W⊺x+ b), a ∈ Rs,W ∈ Rn×s,b ∈ Rs}.

Then FG is a universal approximator.

Proof. Let us prove this in four sections using the Theorem 3.7:

1. Clearly each f ∈ FG is continuous since for each component fi in f it
holds that

fi(x) = ai cos(w
⊺
i x+ bi) = ai cos(

n∑
k=1

wkixk + bi),

where i = 1, 2, . . . , s, wi is the ith column in matrix W and wki is the
kth element in the ith column, consists of a combination of continuous
function and is thus continuous. As each component in f is continuous,
f is continuous.

2. Let us notice that a⊺ cos(0⊺x + 0), where a⊺ = (1, 0, . . . , 0) ∈ Rs, is in
FG. Since for each x ∈ Rn it holds that a⊺ cos(0⊺x+ 0) = cos(0) = 1 ̸=
0, then for each x ∈ Rn there exists f ∈ FG so that f(x) ̸= 0.

3. Let x′ ̸= x. Then f(z) = a⊺ cos((x−x′)
||x−x′||2

⊺
)(z − x′)), where a ∈ Rs is

de�ned as before, is in FG. Thus

f(x) = a⊺ cos(
(x− x′)

||x− x′||2

⊺

)(x− x′)) = cos(1)

̸= cos(0) = a⊺ cos(
(x− x′)

||x− x′||2

⊺

)(x′ − x′)) = f(x′),

i.e., for each x′ ̸= x there is f ∈ FG so that f(x) ̸= f(x′).

4. Let us �nally show that FG is closed under multiplication and addition.

24

Let f, g ∈ FG. Now

(fg)(x) =f(x)g(x) = a⊺ cos(W⊺x+ b)c⊺ cos(V⊺x+ d)

=

(
s∑

i=1

ai cos(w
⊺
i x+ bi)

)(
t∑

k=1

ck cos(v
⊺
kx+ dk)

)

=
s∑

i=1

t∑
k=1

aick cos(w
⊺
i x+ bi) cos(v

⊺
kx+ di)

=
s∑

i=1

t∑
k=1

aick
1

2
(cos(w⊺

i x+ bi + v⊺
kx+ dk)

+ cos(w⊺
i x+ bi − (v⊺

kx+ dk)))

=
s∑

i=1

t∑
k=1

(
aick

1

2

)
(cos((w⊺

i + v⊺
k)x+ (bi + dk))

+ cos((w⊺
i − v⊺

k)x+ (bi − dk))) ∈ FG

and

(f + g)(x) =f(x) + g(x) = a⊺ cos(W⊺x+ b) + c⊺ cos(V⊺x+ d)

=
s∑

i=1

ai cos(w
⊺
i x+ bi) +

t∑
k=1

ck cos(v
⊺
kx+ dk)

=
s+t∑
i=1

oi cos(u
⊺
ix+ pi) ∈ FG,

where oi = ai, ui = wi and pi = bi, when i = 1, 2, . . . , s, and oi = ci,
ui = vi and pi = di, when i = s+ 1, s+ 2, . . . , t.

Then according to Theorem 3.7 FΦ is a universal approximator.

Theorem 3.9 (Universal approximator theorem (shallow, ReLU activated
neural network)). Let the activation function σ : R→ R of a shallow neural
network be ReLU, i.e., σ(x) = max(0, x). Then the function class induced by
the network with architecture Φ

FΦ = {f : Rn → R | f(x) = a⊺σ(W⊺x+ b), a ∈ Rs,W ∈ Rn×s,b ∈ Rs}

is a universal approximator.

25

Proof. Let S ⊂ Rn be a compact area, g : S → R be a continuous function
and ε ∈ R, ε > 0. Then according to Lemma 3.8 the function class induced
by a cosine activated shallow neural network with unlimited width FΨ is a
universal approximator, i.e., there is h ∈ FΨ, h(x) = c⊺ cos(V⊺x+d), so that

sup
x∈S
|h(x)− g(x)| ≤ ε

2
.

Now, if we can approximate function h with function f ∈ FΦ, we can
prove that FΦ is a universal approximator.

Let us �rst show, that we can approximate parts of function h with func-
tion f , when n = 1. Let us �rst notice that cosine is Lipschitz continuous,
i.e., there exists L > 0 so that

| cos(x)− cos(y)| ≤ L|x− y|.

Set S is now the closed interval [s, t] (as n = 1). Let us choose points ki,
i = 0, 1, . . . , K from the interval [s, t] so that k0 = s, kK = t and ki−ki−1 = l,
where l = min(ε

4|c|L ,
ε

4|c|) and c ∈ R, for all i = 1, . . . , K, and form function
f in the following way:

f(x) =
K−1∑
i=0

aiσ(x− ki) +
K−1∑
i=0

(−1)aiσ(x− ki − l)

=
K−1∑
i=0

ai (σ(x− ki)− σ(x− ki − l)) ,

where

a = (a0, a1, . . . , aK−1) = c(cos(k1), cos(k2)−cos(k1), . . . , cos(kK)−cos(kK−1).

Now

(σ(x− ki)− σ(x− ki − l)) =

0, when x− ki − l < x− ki < 0

x− ki, when 0 ≤ x− ki < l

1, when x− ki ≥ l.

=

0, when x < ki

x− ki, when ki ≤ x < l + ki = ki+1

1, when x ≥ ki + l = ki+1.

26

Let x ∈ S, and ko be the largest point ki, i = 0, 1, . . . , K, so that ko ≤ x.
We can aproximate

|c cos(x)− f(x)| = |c cos(x)− c cos(ko) + c cos(ko)− f(ko) + f(ko)− f(x)|
= |c|| cos(x)− cos(ko)|+ |c cos(ko)− f(ko)|+ |f(ko)− f(x)|
≤ |c|L|x− ko|

+ |c cos(ko)−
K−1∑
i=0

ai(σ(ko − ki)− σ(ko − ki − l))|

+ |
K−1∑
i=0

ai(σ(ko − ki)− σ(ko − ki − l))

−
K−1∑
i=0

ai(σ(x− ki)− σ(x− ki − l))|

=|c|Ll + |c cos(ko)−
l−1∑
i=0

ai|+ |
l−1∑
i=0

ai −
l−1∑
i=0

ai − al(x− ko)|

≤ε

4
+ |c|| cos(ko)− cos(k1)− cos(k2) + cos(k1)− . . .

− cos(ko) + cos(ko−1)|+ |c|| cos(ko+1)− cos(ko)||x− ko|

≤ε

4
+ 0 + 2|c|l ≤ ε

4
+

ε

2
< ε.

Let us prove next that this can be generalised to a case where n > 1, i.e.,
that we can approximate function h = c⊺ cos(V⊺x+ d) with an appropriate
f ∈ FΦ. Notice now that h can be written as

h =
s∑

i=1

ci cos(
n∑

j=1

vijxj + di) =
s∑

i=1

ci cos(zi).

We showed previously that we can approximate c cos(x), where c ∈ R to
arbitrary accuracy with fFΦ when n = 1. Let us use the notation fi for
these functions and choose them so that

sup
zi∈[si,ti]

|fi(zi)− ci cos(zi)| <
ε

2s
,

where [si, ti] is the real interval, to which xi maps to. By choosing f(x) =
s∑

i=1

fi(zi) we obtain that

|h(x)−f(x)| = |
s∑

i=1

ci cos(zi)−
s∑

i=1

fi(zi)| =
s∑

i=1

|ci cos(zi)−fi(zi)| < s
ε

2s
=

ε

2
.

27

Furthermore

|g(x)− f(x)| = |g(x)− h(x) + h(x)− f(x)| = |g(x)− h(x)|+ |h(x)− f(x)|

<
ε

2
+

ε

2
= ε,

and so sup
x∈S
|g(x)− f(x)| < ε. And thus FΦ is a universal approximator.

The above universal approximator theorem has only been proven for the
ReLU activation, but the original proof given by Hornik, Stinchcombe and
White (cf. [15]) was written for sigmoidal activation functions [43]. In fact,
the universal approximator theorem for shallow neural networks can be gener-
alised for neural networks with non-polynomic activation functions, see [24].
Theorem 3.9 is not particularly useful in the sense that it is an existence proof,
and does not for example state how many neurons the shallow architecture
might need to able to learn the desired function. It is however possible to
compute a grude estimate for the needed amount and there are also di�erent
proves giving approximates for the required amount. For a shallow network,
in the worst case the width of a network will depend exponentially on the
number of elements in the input, an expression of the curse of dimensionality
(see [11, 43]).

The depth of a neural network is commonly more important for the e�ec-
tiveness of the network than the width, as typically a deeper neural network
is capable of approximating the desired function with fewer neurons. There
are multiple theoretical results for the approximator abilities of deeper net-
works, encompassing for example di�erent architectures, and many of them
show that a deeper network requires notably fewer neurons than a similar
shallow one (see for example [16] and [43]). In [43] (referering to the proofs
given in [41] and [42]) it is shown that a ReLU activated neural network with
certain depth can not be approximated by a shallower network, if it has less
than exponential amount of nodes compared to the depth.

This is proven through the use of a piecewise-a�ne function ∆ : R→ R,

∆(x) = 2σ(x)− 4σ

(
x− 1

2

)
+ 2σ(x− 1) =

2x, when x ∈ [0, 1

2
[

2x− 2, when x ∈ [1
2
, 1[

0, otherwise,

where σ is the ReLU activation. When this function is combined with itself,
it produces an exponential amount of copies of itself that are equally spaced
on the interval [0, 1]. More precisely, combining this function l ∈ Z+ times
with itself (∆l = ∆ ◦∆ ◦ . . . ◦∆) produces 2l−1 copies. Now, the number of

28

oscillations a ReLU activated neural network can represent is limited poly-
nomially in the width but exponentially in depth of the network, and the
number of oscillations in ∆l grows exponentially with l. What is proven, is
that a ReLU activated neural network with 3l2 + 2 nodes and 2l2 + 4 layers
can represent the function ∆l2+2, where l ≥ 2, but a ReLU activated network
with fewer than 2l+1 nodes and l+1 layers can not. Showing that a shallow
network requires exponential width to represent this highly oscillating func-
tion whereas an adequately deep network requires a constant width and thus
notably fewer parameters.

Using a deep neural network architecture is also assertion of the assump-
tion that the required function is a combination of simpler ones, and empir-
ically it appears that deeper networks learn better than the shallower ones
[11].

3.3 Optimisation

Optimisation is �nding the minimum or maximum of some function j. The
function j is called the objective function, although when minimising it can
also be called loss or cost function. To be precise, these names are used in
slightly di�erent situations, but in the future the function to be minimised
will be mainly referred to as loss function. Also, as maximation of j is equiva-
lent to minimising −j, only the minimisation problem is considered. Accord-
ing to [11] optimisation in terms of training a neural network is somewhat
di�erent from the pure optimisation, as the aim is not typically exactly the
minimisation of the chosen loss function. Instead the loss function works as a
proxy to the actual goal, which can for example be a well generalising model.
In addition the training is not always continued to the global or even local
minimum, if doing so would result in over�tting. The following section is
largely based on [11], although for section 3.3.3 also the source [21] is used.

Usually the performance is optimised relative to the training set Strain.
In this case the di�erence between the output of the network ŷi = f(xi),
where f ∈ FG for the observation i, and the target yi is optimised relative to
the trainable parameters θ. As the produced output or rather the function f
depends on the choice of trainable parameters θ, the notation ŷi = f(xi, θ)
will be used in the future to make the connetion to the parameters clearer.
For observation i the loss is thus

j(ŷi,yi) = j(f(xi, θ),yi),

and the intention is to minimise the expectation of the losses over the whole

29

training set

Ĵ(θ) = E(x,y)i∼p̂data(j(f(xi, θ),yi)) =
1

Ntrain

Ntrain∑
i=1

j(f(xi, θ),yi),

where Ntrain is the number of observations in the training set and p̂data is the
empirical distribution de�ned by the training set.

However, in the ideal case the loss could be minimised relative to the true
data generating distribution pdata, i.e.,

J(θ) = E(x,y)i∼pdata(j(f(xi, θ),yi))

would be minimised. This is known as risk and the measure constrained to
the empirical distribution is the empirical risk, in which case we speak of
empirical risk minimisation.

Empirical risk is sometimes prone to over�tting, where the neural network
learns to model the training set too well in the sense that it fails on new
observations. Sometimes a regularisation term is added to the empirical risk
Ĵ .Regularisation term can for example emphasize the sparsity of the trainable
parameters θ or their small size. In this case the task is to minimise

Ĵ(θ) =
1

Ntrain

Ntrain∑
i=1

j(f(xi, θ),yi) + λP (θ),

where λ ∈ R dictates the strength of the regularisation and P : Θ → R is
the regularisation function.

The optimisation task is thus to �nd values that minimise the empirical
risk for the trainable parameters θ ∈ Θ. In other words, the task is to �nd θ̂
so that

θ̂ = argmin
θ∈Θ

Ĵ(θ).

There are of course many ways to optimise a function, but especially in
the training of neural networks common methods are stochastic version of
the gradient descent and its variations. The estimation of the gradient is
typically implemented with backpropagation algorithm that uses the chain-
rule recursively as described for example in [11].

3.3.1 Gradient Descent

In general the gradient of a function f at point θ = (θ1, θ2, . . . , θM) ∈ Θ gives
the direction of the steepest ascent for the function in space Θ at the given
point assuming that the function f is di�erentiable around the point θ.

30

De�nition 3.10 (The gradient of a function at a given point). Let f be a
function f : RM → R and x = (x1, x2, . . . , xM) ∈ RM . Then the gradient of
a function f at point x is

∇f(x) =
(

∂

∂x1

f(x),
∂

∂x2

f(x), . . . ,
∂

∂xM

f(x)

)
,

assuming that the partial derivatives ∂
∂xi

f(x) exist for all i = 1, 2, . . . ,M .

Because the gradient of a function gives the direction of steepest ascent,
the negative of the gradient −∇f gives the direction of the steepesct descent.
By moving short distances or steps in the direction of the negative gradient
and by updating the gradient at every new point, the function f can be
updated iteratively. If we now assume the empirical risk Ĵ is di�erentiable, the
algorithm can be de�ned as shown in 1. The learning rate in the Algorithm
1 dictates the length of the step at each round.

Algorithm 1 Gradient descent

Require: Learning rate λ ≥ 0, λ ∈ R
Initialise the trainable parameters
θ ← θ0
while stopping criterion has not been met do

Initialise gradient at point θ
g ← ∇θĴ(θ)
Update the trainable parameters
θ ← θ − λg

end while

3.3.2 Introducing stochasticity

In practise gradient descent tends to be too heavy when training neural net-
works, as it requires the computation of the gradient over the whole training
set. This is a particularly costly operation with neural networks because not
only do the deep networks have multiple trainable parameters making the
computation of the partial derivatives demanding, but there is also typically
heeps of data. Thus the training set (and the other sets as well to speed-up
the computations) are divided into subsets calledmini-batches, and the gradi-
ent is estimated over one mini-batch at a time. To ensure that the estimated
gradient would describe the training set as well as possible, the division is
usually done randomly and without replacement. When done this way, the
mini-batches constitute of i.i.d. observation on the �rst run-through of the

31

training set and give an un-biased estimate of the gradient computed over
the training set at once. Dividing the training set into mini-batches randomly
also sometimes helps to maintain the generalisation ability of the network,
and ease the learning in varying loss landscapes, as SGD takes more steps
during optimisation and can follow the true landscape more easily with the
same learning rate as GD (cf. [46]).

In stochastic gradient descent (SGD) the gradient is always estimated
over one randomly selected mini-batch instead of the whole training set. As
the estimation of the gradient over a smaller subset induces some bias to the
estimate especially when running through the set again, it is important that
the learning rate diminishes with increasing rounds. Otherwise the bias may
cause the learning to never converge, as the estimated gradient might not
be zero even in global optimum thanks to the bias. That is, assuming the
learning can reach a minimum. The SGD algorithm is described in 2 for the
empirical risk Ĵ .

Algorithm 2 Stochastic gradient descent

Require: Learning rates λt for each iteration round t = 1, 2, . . . , T
Require: Size of the mini-batch b

Initialise the trainable parameters
θ ← θ0
Intialise the counter
t← 0
while stopping criterion has not been met do

Update the counter
t← t+ 1
Randomly select a mini-batch B ⊂ Strain of b observations
Compute the gradient estimate at the point θ over the batch

ĝ ← 1
b
∇θ

b∑
i=1

j(f(xi, θ),yi)

Update the trainable parameters
θ ← θ − λtĝ

end while

3.3.3 Adam

GD and SGD algorithms utilise the gradient to �nd the optimum, but they
do not for example consider the previous behaviour of the gradient and they
can oscillate highly if the loss function changes rapidly in regard to some
variables but not with others. These kind of areas are known as valleys and

32

they can slow down the learning process. In addition to this the learning
rate needs to be determined separately for each round in SGD, or at least its
dependancy of the round number need to be pre-determined. This increases
the amount of hyperparameters that need to be set separately to the train-
ing process. Tuning the hyperparameters can be a computationally expensive
process as the neural network needs to be re-trained always after updating
the hyperparameters. Finding an adequate learning rate can also be one of
the most crucial hyperparameters, as with a too large learning rate the train-
ing might not converge at all and the results might change vastly between
iterations but a learning rate too small will slow down the training or make
it halt altogether.

As it is important to �nd a good learning rate, there are attempts to
automate the search for it during training. This is what optimisation methods
with adaptive learning rate intend to do, and one of these algorithms is
Adam, which is described in [21]. The name Adam comes from adaptive
moment estimation, and this optimisation method computes the estimates
of the �rst and second moments of the gradient over each mini-batch, and
computes individual learning rates for each of the parameters. The estimates
of the moments are updated based on the previous iterations, and thus Adam
utilises knowledge of the previous behaviour of the gradient to the current
step. The algorithm for Adam is described in 3. The step length α creates an
approximate upperbound to the invidual learning rates used in the update,
but the actual learning rates are adapted based on the estimated moments.
The bias correction in the Algorithm 3 is done to avoid biasing towards zero
in the estimates, created by the zero initialisation.

3.4 Loss functions and regularisation

Loss functions measure the similarity between the output of the neural net-
work ŷi = f(xi, θ) and the target yi for some observation i, where i ∈
{1, 2, . . . , N}. In tasks with real valued targets, loss functions typically mea-
sure the distance between the output and the observation. Regularisation
terms can be used to induce additional requirements to the trainable param-
eters for example, and they are used to improve the generalisation ability
of the network. The loss functions introduced in this section are based on
sources [4] and [44].

De�nition 3.11 (Absolute error). The absolute error between the output
of a neural network ŷ and measured target y is

||y − ŷ||1 =
m∑
i=1

|yi − ŷi|.

33

Algorithm 3 Adam
Require: Step length α ∈ R
Require: Exponential decay rates for the moments β1, β2 ∈ [0, 1[
Require: Initial values for the trainable parameters θ0
Require: Small constant ϵ to ensure numerical stability

Initialise the �rst and second moment
m0 ← 0
v0 ← 0
Initialise the counter
t← 0
while stopping criterion has not been met do

Update the counter
t← t+ 1
Estimate the gradient at round t over the batch B

gt ← 1
b
∇θ

b∑
i=1

j(f(xi, θt−1), yi)

Update the biased estimates of the �rst and second moments
mt ← β1 ·mt−1 + (1− β1) · gt
vt ← β2 · vt−1 + (1− β2) · g2t
Compute the unbiased estimates
m̂t ←mt/(1− βt

1)
v̂t ← vt/(1− βt

2)
Update the trainable parameters
θt ← θt−1 − α · m̂t/(

√
v̂t + ϵ)

end while

In other words absolute error is the L1 norm of the residual r = y− ŷ, ||r||1.

Absolute error measures thus scale of the di�erence between the output
and target, and the losses for each of the observations impact the total error
in direct relation to their scale. This makes the absolute error robust to
outliers (when compared to for example squared error introduced below),
but the gradient is not dependent on the scale of the error, which may make
the training harder for small errors. The absolute error also su�ers from the
same problem as ReLU, i.e., it is not di�erentiable at origin. A simple variant
of absolute error is to take its average, 1

m
||y − ŷ||1.

De�nition 3.12 (Squared error). The squared error between the ouput of
a neural network ŷ and the target y is

||y − ŷ||22 =
m∑
i=1

(yi − ŷi)
2,

34

which is the L2 norm or Euclidean norm of the residual, ||r||22.

Squared error reacts more to large errors than the absolute error making
it emphasize outliers more. Squared error is di�erentiable everywhere and its
gradient changes according to the changes in the component of the residual,
which improves learning for gradient based optimisation methods. A simple
transform of the squared error is the mean squared error (MSE), which takes
the average of the squared error, and the squareroot of the MSE (RMSE),
which gives the loss on the same scale as the target.

Losses combining the robustness of the absolute error and the di�erentia-
bility of the squared error are the Hubert loss and the log-cosh loss. Hubert
loss achieves this by straigthfowardly using the absolute error for di�erences
above a certain threshold and squared error otherwise, while log-cosh takes
a di�erent approach and computes the logarithm of the hyperbolic cosine
transformation of the residual. The threshold parameter for the Hubert loss
needs to be chosen, while log-cosh induces no extra hyperparameters, but is
computationally more expensive. Root mean squared logarithmic error takes
the root of the average di�erence between logarithmic transformations of the
output and target. This error is again fairly robust to outliers and emphasizes
under-estimation more than over-estimation of the target, but it can not be
computed to negative values.

Regularisation is used to hinder the model from over�tting [11]. A com-
mon way is to for example prefer small or zero weights in the model when
the corresponding input does not have a signi�cant e�ect. Adding L2 norm
of the weights to the risk makes the model to search for smaller weights, and
the L1 norm of the weights drives the weights of the least signi�cant inputs to
zero ensuring sparsity of the matrix representation. Regularisation can also
be achieved through architectural choices. For example using convolutional
layers instead of fully-connected ones ensures sparsity of the weight matrix.

35

4 Convolutional Neural Networks

Convolutional neural networks, or just convolutional networks, CNNs for
short, are a special kind of arti�cial neural networks utilising the convolu-
tion operation as their a�ne-linear transform, at least in one of their layers
according to [11]. Part of the design of convolutional networks was inspired
by the workings of the mammalian visual system, and they are commonly
used for image processing tasks, but they also have use for other types of
data, such as signals and time-series. Depending on the choice of convolution
and whether or not an operation known as pooling is applied in the network,
convolutional neural networks can be shown to be universal approximators
[1], but even without that property CNNs are good at detecting and sub-
stracting features in the data, and they are less expensive to teach then the
fully-connected ANNs.

4.1 Convolution

Convolution is an operation over two functions, and it can be de�ned as
below (see [39]).

De�nition 4.1 (Convolution). Given two functions f : Rn → R and k :
Rn → R, for which their absolute value is Lebesque integrable over domain
Rn, i.e., ∫

Rn

|f(x)| dx <∞,

convolution is de�ned as

(f ⋆ k)(x) =

∫
Rn

k(x− y)f(y) dy.

The function k is commonly referred to as the kernel.

Convolution is commutative, so one can write it equally as

(f ⋆ k)(y) =

∫
Rn

k(x)f(y − x) dx.

Actually convolution can be extended to for example complex numbers and
it is also possible to have a two-dimensional convolution, in which case the
convolution is taken over both dimensions. However, for the purposes of this

36

thesis, we are mainly interested in n = 1, i.e.,

(f ⋆ k)(y) =

∞∫
−∞

k(x)f(y − x) dx

and its discrete version.
In a discrete setting, as is the case when implementing the machine learn-

ing algorithms, the functions f and k can be viewed to obtain values only at
integers, and the convolution can be written as below (see e.g. [11]).

De�nition 4.2 (Discrete convolution). Given two functions f : Z→ R and
k : Z→ R, discrete convolution is de�ned as

(f ⋆ k)(y) =
∞∑

i=−∞

k(y − i)f(i),

where y ∈ Z.

Of course in the case of machines the sum is not taken over in�nitely
many points as the values for both functions need to be stored. Instead the
functions or, as they can also be viewed, vectors are thought to obtain zero
values everywhere but in the �nite set of values we are interested in and so
the sum can be reduced to a sum over that set, say S [11].

The discrete convolution operation takes thus a weighted sum over all the
values of the function (or a vector) f , and the weights are determined by the
kernel k. Let us now consider the notation for a neuron from section 3.2 for
a node v, which was

xv = σv

 ∑
e=(v′,v)∈Ev

wexv′ + bv

 .

For simplicity of notation let us as assume that the neurons in the network
construct layers as is commonly the case, and index all the nodes in the lth
layer with xl

i, where i = 1, 2, . . . , Nl. Now when we are dealing with neurons
that implement convolution the weights are actually the values taken by the
kernel k (or kl for the kernel in layer l), and the outputs of the previous layer
l− 1 constitute the function or vector f (denoted here fl for outputs of layer
l). So the output of the ith neuron in layer l is

xl
i = fl(i) = σl

i

(
Nl−1∑
j=1

kl(i− j)fl−1(j) + bli

)
= σl

i

(
(fl−1 ⋆ kl)(i) + bli

)
.

37

And for the whole layer the computation could be written as

xl = σl(fl−1 ⋆ kl + bl) = σl(xl−1 ⋆ kl + bl).

The di�erence between a regular fully-connected neuron and one that
utilises the convolution is that the kernel is typically chosen to obtain non-
zero values on a substantially smaller range of indices than the function fl−1.
For example, the kernel can be chosen to have a size of three, in which
case the kernel can obtain non-zero values only at indices −1, 0 and 1. This
results in sparse interactions (or sparse connections or weights), i.e., a node
in (l − 1)th layer is connected only to a few nodes in the next layer. The
bene�ts of sparse weights is the reduced memory and computational losses,
since there are less connections for which the weights need to be stored and
optimised [11].

Another bene�t that naturally occurs with convolution is the parameter
sharing. The kernel k stays the same for all the neurons in the layer, meaning
that the trainable weights determined by the kernel are the same for that
layer. This way one only needs to store the weights of one kernel for that layer
further reducing the memory cost. Sharing the parameters across a layer also
gives convolution its property of equivariance to translation, meaning that if
the input to the layer is shifted in some direction, than the output is shifted
equally [11]. According to [20] this is particularly bene�cial for detecting
features in the input data, as it no longer matters where in the input some
feature appears, it will still be detected.

It should be noted, that while it was previously stated that only one kernel
needs to be saved for each layer, this is not what is done in practise. In a
convolutional neural network one kernel learns one feature from the data,
such as horisontal lines. To learn more features from the data, more kernels
per layer are needed. This is why a convolutional layer typically computes
multiple convolutions parallel for the input and its output constitutes of
multiple feature maps, each separating di�erent features from the data [11].
The later layers take in these feature maps and combine them together to
form more complicated features. While the need to save more kernels per
layer is more costly than saving just one, the overall cost can still be much
smaller than the cost for having a fully-connected layer assuming the kernel
is chosen to be small. So for a convolutional layer l obtaining input xl−1 with
t ∈ Z+ feature maps, the computation could be written as

xl,j = σl(
t∑

i=1

(xl−1,i ⋆ kj
l) + bl,j),

where j = 1, 2, . . . , u ∈ Z+ encompasses all the feature maps extracted at
layer l.

38

4.2 ResNet

When training a deep neural network one can encounter di�culties, that do
not occur with the shallower versions. One of these problems is the vanish-
ing or exploding gradients already introduced in the context of activation
functions in section 3.2.1. Another problem discovered empirically for deep
networks was that while the training could converge, the deeper networks
had higher errors than their shallower (but suitably deep) counterparts. This
problem is known as the degradation problem and it is not due to over�tting,
as even the training error is higher for the deeper network [1]. In theory a
deeper network should perform at least as well as its shallower counterpart
if the deeper layers can learn the identity exactly or approximate it arbi-
trarily well. Thus the degradation problem is thought to be a problem with
learning the identity mapping when needed in practice. A Residual Neural
Network or simply ResNet is a neural network design that addresses this
problem through residual learning. The following description of ResNet and
skip-connections is based on [14].

In residual learning, instead of trying to �nd the optimal mapping h :
Ω→ Rc, where Ω ⊂ Rd and c, d ∈ Z+, one tries to learn the residual version
f : Ω→ Rc, f(x) = h(x)− x. (More precisely one tries to �nd the trainable
parameters θ̂ ∈ Θ so that f(x, θ̂) = h(x) − x, where f : Ω × Θ → Rc.)
Then the optimal function can be written as h(x) = f(x) + x and in the
extreme case, where the optimal mapping is the identity, the learner (the
neural network) can simply set the weights coverning the shape of f to zero
to obtain h(x) = x. A ResNet applies residual learning by using shortcut
connections in its architecture called skip or residual connections. See Figure
3 for a depiction of simple convolutional ResNet having kernel of size 3.

4.2.1 Skip connection

A skip connection is a shortcut connection that connects a neuron in a layer
l− a to another neuron in layer l, where a ∈ Z, i > 1, and so the connection
skips at least one layer in between. In a ResNet the connection sums the
output of layer l − a and the output of layer l (before activation) together
element-wise, and so either the outputs of both layers need to be of the same
size, or they are changed to match each other through some linear projection
applied to the output of layer l−a. For the ith neuron in the lth layer which
is connected to ith neuron in layer l − a, assuming convolutional layers and
using the same notation as before, the computation can be written as

xl
i = σl

i

(
(fl−1 ⋆ kl)(i) + bli + xl−a

j

)
.

39

x2

h3

h1

h2

x3

x1

y

Input layer Hidden layer

Output layer

h3

h1

h2

Hidden layer

Figure 3: A simple convolutional ResNet. Notice the sparse connections.

To simplify the notation further for the layer-wise case, the convolution
and the addition of bias vector for layer l will be marked with Tl, i.e.,

Tl

(
xl−1

)
= Tl

((
xl−1
1 , xl−1

2 , . . . , xl−1
Nl−1

))
= ((fl−1 ⋆ kl)(1), (fl−1 ⋆ kl)(2), . . . , (fl−1 ⋆ kl)(Nl−1)) + bl.

Then for the layer l the skip connection from layer l − a can be written as

xl = σl
(
Tl(x

l−1) + xl−a
)
,

where σl is the activation used in all the nodes of the layer (as is typically
the case) and xl−a,xl−1 and bl are as before.

If we next assume that a = 2, then the corresponding computation in the
layer l will be

xl =
(
σl ◦

(
Tl ◦ σl−1 ◦ Tl−1 + I

)) (
xl−2

)
= σl

(
Tl

(
σl−1

(
Tl−1

(
xl−2

)))
+ I

(
xl−2

))
,

where I is the identity.
Having the residual connections allows the network to skip some of the

layers with identity when needed. Having the shortcut connections also allows
for a better gradient �ow in backpropagation. Skip connections can also be
implemented in a di�erent way. For example in U-Nets (see [34]) the skip
connection concatenates the feature maps from layer l − a to layer l rather
than using the summation as in ResNet. This allows the features extracted
in the earlier layer to be directly used in the current one.

40

4.3 U-Net

U-Net is a so called encoder-decoder architecture as it consists of a con-
tracting path, that encodes the input, and an expansive path decoding the
encoded part to output [1]. U-Net was created to do cell segmentation tasks
for medical images (see [34]), and it has use especially in inverse problems
for imaging science. The contracting path of U-Net consists of blocks of con-
volutional layers using ReLU activations and these blocks are separated by
a pooling operation used to make the resolution of the input smaller. When
the resolution is diminished the number of feature maps is doubled. On the
expanding path, the input is upsampled to increase the resolution back, and
the number of feature maps is halved in the process. Each upsampling is fol-
lowed by a similar block of convolutional layers as on the contracting path,
but the input to each block is concatenated with the output from a block on
the contracting path on the same scale. This results in the paths being fairly
symmetric to each other and giving the network a u-shape.

The contracting path is thus decreasing the resolution of the input image
one scale at a time, while extracting features from it. Extracting features
on smaller resolutions allows the network to learn features on a larger scale.
On the expanding path the resolution is increased again. By concatenating
the higher resolution features extracted on the contracting path to the input
on the expanding path, the intention is to give context information that has
been lost on the contracting path back to the network. See Figure 4 for an
illustration of the U-Net architecture, the �gure is adapted from [34]. Notice
that this is a layer-wise depiction and di�ers from the earlier presentations
(see e.g. Figure 2 in Section 3.2).

4.3.1 Downsampling

Downsampling is used to decrease the size of the input to or output from a
layer. One of the bene�ts of downsampling is the decreased computational
complexicity as the input to the following layer becomes smaller. In convo-
lutional neural networks the convolution operation can be used to achieve
downsampling by choosing stride to be larger than one. Stride can be viewed
as skipping part of the input nodes (see [7] for illustration in two dimensions).
Another possibility is to use pooling. Pooling operation in general combines
values of the input over some region and produces an summary statistic as
the output [11]. Pooling creates invariance to small transformations of the
input and makes the the model more robust to noise (by combining multiple
points into a single statistic) and it can be used to make the network accept
varying sizes of input [11, 3].

41

1x1 convolution

3x3 convolution, ReLU

2x2 transposed convolution

skip-connection

max-pooling

Figure 4: Illustration of the U-Net, adapted from [34].

In the following a few simple pooling methods will be introduced. As said,
pooling is always performed over regions of the input to a layer, say xl. These
regions can be chosen to overlap or be distinct from each other, and they can
be chosen to be of di�erent sizes or of the same size. The sizes can even be
chosen randomly as is done for example in fractional max pooling (see [12]).
So for example, choosing 2 × 2 pooling regions, which is a typical choice,
computes a statistic over four neighbouring elements. A pooling region of
size 2× 1 (or 2 depending on the shape of the input) would simply compute
the statistic over two neighbouring elements. These pooling regions will be
marked with Ri, where i = 1, 2, . . . , t and t ∈ Z+, and their exact shapes will
be omitted.

De�nition 4.3 (Max pooling). Given the pooling regions R1, R2, . . . , Rt as
above of the input xl−1, the max pooling operation computes

xl
i = max

r∈Ri

(r),

for all i = 1, 2, . . . , t.

So the max pooling operation takes always the largest value at the region.
Another simple pooling strategy is to use average pooling, which takes the
mean over the pooling region.

42

De�nition 4.4 (Average pooling). Given the pooling regions R1, R2, . . . , Rt

of the input xl−1 as before, the average pooling operation computes

xl
i =

∑
r∈Ri

r

|Ri|
,

for all i = 1, 2, . . . , t, where |Ri| denotes the number of elements in Ri.

Whether max or average pooling is the ideal choice for a network is a
data dependent question. However, some empirical results show that max
pooling performs slightly better than average pooling in general and some
combination of the two tends to outperform both (see for example [3]). Both
of the afore mentioned strategies are also deterministic, which can sometimes
cause over�tting. Stochastic pooling (see [47]) can help with over�tting by
introducing stochasticity to the choise of the elements of the output.

De�nition 4.5 (Stochastic pooling). In stochastic pooling one counts the
probabilities pj for each element rj in every pooling region Ri (as de�ned
above) by normalising the elements with

pj =
rj∑

rj∈Ri

rj
.

These probabilites pj then de�ne the multinomial distribution from which
to sample a location s within the pooling region Ri and the element at that
location is used, i.e., for each i = 1, 2, . . . , t we have

xl
i = rs, where s ∼ P (p1, p2, . . . , p|Ri|).

According to [47] stochastic pooling can also be viewed as giving copies
of the same input to the model, with each copy having di�erent small local
distortions.

Stochastic pooling should not be used as is for testing or validation phases
as it introduces noise to the network's predictions. Instead in testing or val-
idation phase a weighted sum of the elements in region Ri should be used.
That is, compute

xl
i =

∑
rj∈Ri

pjrj,

for all i = 1, 2, . . . , t, where the probabilities pj are computed as before.
According to [47] this probabilistic weighting can be seen as model averaging,
as in training only some of the nodes get connected to the following layer
when stochastic pooling is used, and this connectivity pattern changes at
each run. Then in the testing phase using the probabilities as weights to the
sum, is similar to averaging over all the afore mentioned models, without the
need of training all these models separately.

43

4.3.2 Upsampling

Upsampling is used to increase the size of input to (or output from) a layer
by adding the number of elements in the input. The values in these new
nodes can be chosen for example through di�erent interpolation methods,
or operations such as unpooling or deconvolution. Unpooling and deconvolu-
tion can be thought of as the inverse operations of pooling and convolution
operations respectively, although they are not inverse operations in the math-
ematical sense as they do not necessarily produce the original input to the
corresponding pooling or convolution operation.

A simple interpolation method is linear interpolation. In linear interpo-
lation a linear curve is �tted between two consecutive points, and the points
to be added are taken from the line. To add a new point to index p in the
output of layer l one would compute

xl
p = xl−1

u

v − p

v − u
+ xl−1

v

p− u

v − u
,

where u, v ∈ Z+ are the indices of the points based on which were are in-
terpolating. Bilinear interpolation is a generalisation of linear interpolation
to two dimensional space, where the linear interpolation is taken over both
dimentions.

Unpooling (see [49]) is used together with pooling. During the pooling
phase, the location of each pooled statistic xl

i within its pooling region Ri is
saved. Then in the unpooling phase the value (at the same location as the
pooled statistic) xk

i (k > l) is placed to the same place within the pooling
region Ri as the statistic. The other elements within the pooling region obtain
some prechosen value, typically zero. Unpooling results in a sparse output
and the amount of sparsity depends on the choice of the pooling regions.

Deconvolution (introduced in [48]) does the opposite of convolution in
the sense that it expands a given input element according to the kernel
k. Deconvolution can also be called transposed convolution or fractionally
strided convolution [7]. Deconvolution can be viewed as the backward pass
of convolution, when computing the gradient in backpropagation algorithm.
Deconvolution can be obtained by multiplying the input with the transpose
of the convolution matrix, a speci�c shape of matrix �lled with zeros and
repetitions of the kernel on the diagonal, or it can be implemented through
convolution by �rst enlargening the input appropriately with zeros and then
applying convolution (see [7]). Deconvolution is more versatile than the other
upsampling methods introduced above, as the kernel can be optimised in the
training phase as is the case with convolution.

44

5 Predicting space weather

Space weather, especially at the most active times, can have signi�cant ef-
fects on the modern life on Earth, as it can cause di�erent disturbances for
example in satellite navigation systems, radio communications or even prob-
lems with the power grid [26]. While the large scale structures of the electric
currents �owing in the near-Earth space are somewhat known, the more dy-
namic and small scale behaviour of the currents is can still be di�cult to
predict accurately. To this end, next the data used to predict the ionospheric
currents is described and the implemented neural network architectures will
be introduced.

5.1 Data

Previously [22] used a ResNet to predict the �eld-aligned current measure-
ments provided by the satellites in AMPERE project. Following that idea
this thesis aims to predict the equivalent current vectors measured on Earth
as given by the SuperMAG collaboration on the high polar latitudes (see
[10]). The data for SuperMAG is gathered from di�erent organisations and
agencies operating and maintaining nearly 600 magnetometers all around the
world [28]. As described in [10, 29] the raw data coming in various forms is
resampled to 1-minute temporal resolution, units are converted to nanotesla,
the data is rotated into local magnetic coordinate system, the NEZ-system,
and the baseline caused by the Earth's magnetic �eld is removed. In the
NEZ-system the measured magnetic perturbations are de�ned by three com-
ponents, the local magnetic north component BN pointing towards the mag-
netic pole, the local magnetic east component BE, and the vertically down
component BZ . The rotation to this system is done so that the magnetic east
component is minimised and the north component maximised.

As stated previously in section 2.3 the magnetic perturbation measure-
ments can be rotated to produce the equivalent current maps. For this thesis
the east and north components of the equivalent current vectors, deemed as
Je and Jn respectively, were chosen as the target. These current vectors (or
their corresponding magnetic perturbations) can be plotted spatially over
a grid of magnetic latitude (MLAT) and magnetic local time (MLT) coordi-
nates. Magnetic latitude is similar to geographic latitude but instead of being
centered to geographich north or south pole magnetic latitude is centered to
the magnetic north or south pole. Magnetic local time is similar to longi-
tude but instead of being �xed with respect to Earth it is �xed with respect
to the Sun. It is de�ned against magnetic longitude, which is orthogonal to
magnetic latitude, and follows the time of day in the sense that at the points

45

where MLT is equal to 12 the Sun is directly overhead (noon) and where
MLT is 24 it is midnight. For a closer description of the magnetic coordinate
systems see [23].

The chosen target had a grid size 25 × 24 encompassing the magnetic
latitudes from 40 degrees north to all the way up to the North pole every
2 degrees, and all the magnetic local times every 1 hour. Thus the target
for one observation consisted of two matrices in R25×24 (or vectors in R600

depending on the presentation) determining the east and north components
of the equivalent current vectors at all spatial locations at a chosen minute.
See Figure 5 for an example of a polar plot of the equivalent current vectors
and the grid. This target was predicted based on a timeseries of thirteen
input variables, and for each observation the target was the equivalent current
vectors at the time point at the end of that time series. The training data
consisted of the solar cycle 23 consisting of the years 1997 to 2008. (As the
whole years were used, this time interval actually extended slightly over the
solar cycle.) For validation the year 2015 was used. Only one year was chosen
for validation in order to make the training faster. For testing, the year 2016
was used.

SuperMAG equivalent current vectors
13-Oct-2016 16:45:00

16

20

24

04

08

12
 40°N

 50°N

 60°N

 70°N

 80°N

200 nT

Figure 5: An example of the target for one of the observations depicted as a
polar plot.

The thirteen variables used for the input were the x, y, and z components
of the interplanetary magnetic �eld (Bx, By, and Bz, respectively), the �ow
speed (v) and proton density (Np) of the solar wind, the solar radio �ux at
10.7 cm also known as f10.7 index, �ve provisional activity indexes (SME,
SMU, SML, ASY-H and SYM-H), and sine and cosine transformation of the

46

date number (dnsin and dncos, respectively). These were mainly acquired from
NASA/GSFC's OMNI data set through OMNIWeb (see [31]), except for the
SMU, SML and SME indices, which were part of the SuperMAG data [27].
All of the input variables obtain a scalar value for every minute of the data.

The IMF coordinates, solar wind speed and density and the f10.7 index,
an indicator of solar activity (see e.g. [40]), describe the activity of the Sun
and thus the interplanetary conditions. The SMU and SML indices (see [27])
describe the auroral electrojet activity by giving the largest and smallest
value for the north component of the magnetic perturbations at every time
point. The SME index is the di�erence between the largest and the smallest
north component, i.e., SML substracted from SMU. SYM-H index describes
the symmetric (average) north component of the magnetic disturbances at
mid-latitudes, and is used to describe the symmetric part of the storm time
ring current. ASY-H index describes the asymmetric portion of the north
component, and thus the asymmetric portion of the storm time ring current
(see [18]). The sine and cosine transformations of the date number combined
are used to indicate the time of the year and help to encode the seasonal
pattern to the model.

5.1.1 Preparation

As said the data for the target and the SME, SMU, and SML indices was
accessed from the SuperMag site, and the rest of the input data was accessed
from the OMNIWeb. Under 10 minute gaps of missing values in the input
data were interpolated using linear interpolation, and gaps beyond this were
imputed with zeros, e�ectively setting these input values to the average of
that input variable. The sine and cosine transformations of the date number
were obtained by �rst shifting the date number to start from zero and then
scaling with the last date number of the �rst year of data. In other words

dnsin = sin

(
2π

(
dn− dn0

dn525599 − dn0

))
for the sine transformation, and

dncos = cos

(
2π

(
dn− dn0

dn525599 − dn0

))
for the cosine transformation. Here dn0 stands for the �rst date number and
dn525599 stands for the last date number in the �rst year of data. Transforming
the date number this way allows to distinguish between di�erent seasons as
the transforms have a full cycle in one year, but they are at a di�erent phase.

47

After this a z-score was taken from each input variable xi, where i =
1, 2, . . . , 13, by substracting the empirical mean x̂i computed over the train-
ing set and dividing by the empirical standard deviation computed over the
training set si. In other words

xi
z−scored =

xi − x̂i

si

Z-scoring gives each variable zero mean and unit variance, which helps the
training process by simplifying (making it more symmetric?) the loss lanscape
[45]. The means and standard deviations used for z-scoring are in Table 1.
The validation and test data were z-scored using the means and standard
deviations from the training set.

Variable mean SD
Bx -0.06 3.94
By 0.11 4.45
Bz -0.04 3.75
v 446.43 106.87

Np 6.27 5.21
f10.7 120.18 47.69
SME 250.74 248.04
SMU 96.90 88.48
SML -153.84 181.63

ASY-H 22.06 17.61
SYM-H -13.86 22.06

dnsin 17.76 · 10−6 0.71
dncos 0.69 · 10−3 0.71

Table 1: Means and standard deviations (SD) of the input variables.

5.2 Model architectures and training

Below the general features of the architectures chosen for this thesis and
some of the initial architectural choices are described. Also a visual depiction
of the networks are given. It should be noted that instead of describing the
networks through the node presentation (as is done in section 3.2), these
�gures represent the network architectures in layer wise manner, where the
dimensions of the input to a layer is described with a box and the arrows
describe the computations done in (or between) layers. As for the training of
the neural networks Adam was used for optimisation with the default choices

48

of 0.001 learning rate and 0.9 and 0.999 for the decay parameters of the �rst
and second moments respectively. These are also suggested in [21]. For the
loss function the squared error was used. The training was ran for two to
three epochs, which are complete run throughs of the entire training data
set, and 128 observations constituted a mini-batch. The number of minutes
in a time-series was chosen to be 60 following the convention in [22].

5.2.1 ResNet

The implemented ResNet was chosen to have two to three blocks of layers
that are connected through the identity mapping, and a �nal linear, also
known as fully connected, layer that �attens the output into two vectors of
600 elements and takes a linear combination of them. Each block consists of
two convolution layers with batch normalisation and ReLU activations. Batch
normalisation (see [17]) computes the means and variances of the mini-batch
it receives as input during training, and reduces the means from the input
and divides it with the standard deviations (this is done for each element in
the input). Then it scales and shifts the elements as determined by trainable
parameters γ and β. This is intended to ease the learning by �xing the distri-
bution of the inputs to the following layer while still maintaining the repre-
sentation abilities of a layer through the linear transform. For validation and
testing phases, batch normalisation uses estimates of means and variances
gathered from the training set for normalisation. The skip-connection was
done by adding the input of a block to the output through identity when
the dimensions matched. The �nal activation with ReLU was done after the
skip-connection. See Figure 6 for a visual depiction of one of the implemented
architectures.

Having two blocks in the network appeared to be the most appropriate
choise as the model did not start over-�tting, but could still learn as well
as a three blocked version. However, as the squared error does not provide
complete information, also the three blocked version was assesed. Similarly,
while having 32 feature maps appeared an adequate amount, also 64 maps
were tested and assessed to further see which choise appeared better. The
convolution was done with zero-padding so that the size of the output did not
change through convolution. Zero-padding means that the size of the input
to a convolution layer is padded with zeros at the edges, which e�ectively
allows the convolution to be used even for the edges. (This is also how the
convolutional layer is described in the Section 4) For the skip-connection,
the identity was used, except for the case of the �rst skip-connection, which
required the input to have more dimensions to be added to the output of
that block thanks to the larger number of feature maps. To achieve matching

49

dimensions, a convolution with 1 × 1 kernel was used as suggested in [14].
Following the idea in [22], no maxpooling was used.

60
x

13

60
x

13 60
x

13

60
x

13

60
x

13

60
x

13

60
x

13

60
x

13

60
x

13

+ +

1

64 64

2 x 600

64 64 64 64 64 64

+

Identity mapping

3x3 convolution, batch normalisation and activation (ReLU)

Activation (ReLU)
(Except at the end a flattening, fully-connected linear layer)

Figure 6: The implemented ResNet consisting of three blocks and having 64
feature maps in convolutions, see text for details.

5.2.2 U-Net

The implemented U-Net had two downsampling operations meaning the con-
tracting path had three scales altogether. Similar to the implemented ResNet,
each scale (on the contracting path) had a block consisting of two convolu-
tional layers with batch normalisation and ReLU activation. On the expand-
ing path the blocks were similar to those on the contracting path, except
that the input to a block was concatenated with the output of a block at the
same scale on the contracting path. See Figure 7 for a visual depiction. As
the input to the neural network (a 60×13 matrix) had a fairly di�erent shape
to the output (two 25× 24 matrices), the down- and up-samplings needed to
be done more or less asymmetrically to obtain the correct shape. Similarly to
this, the skip-connections could not simply crop and concatenate the outputs
to inputs as is done in [34], but had to also do some resizing. After the last
block on the expanding path a convolution with kernel of size 1×1 was done

50

to �nally reduce the number of feature maps to two to obtain the correct
output shape.

At an initial state it was validated that a shallower U-Net would not be
able to produce good results, while the implemented version did produce re-
sults comparable to those of the implemented ResNets. As the deeper U-Net
is heavier to train, a deeper version still was not even tested after concluding
that the results were adequate. For the lowest scale 16, 32 and 64 feature
maps were tested. Also following the choices in the ResNet, a kernel of size
3 × 3 was used for convolution and zero-padding. For downsampling max-
pooling with pooling region of size 2 × 1 was used, e�ectively halving the
height of the second dimension at each downsampling. After downsampling
the number of feature maps was doubled following the common convention
used for example in [34]. For upsampling transposed convolution was used
with �rst kernel of size 6×7 and then with kernel of size 6×6 without padding
to obtain the correct output shape. To be able to concatenate the outputs
of the contracting path to the inputs of the expanding path, the image was
resized bilinearly.

60
x

13

60
x

13

30
x

13

15
x

13

60
x

13

30
x

13

20
x

19

20
x

19

20
x

19

15
x

13

25
x

2425
x

24

15
x

13

30
x

13

25
x

2425
x

24

1

64 64

64

64 64

128 128 128 128

128

2

128

256 256

256

Down- and upsampling,
respectively

Skip-connection
Convolution and activation (ReLU)
(Except at the end only convolution.

Figure 7: The implemented U-Net, see text for details.

51

5.3 Results

To assess the model performance during training and to decide at which state
each of the architectures were producing the best �tting model, the training
and validation losses were monitored. In Figure 8 the losses are depicted as
root mean squared errors, as that gives a more intuitive scale for them, al-
though the original loss metric was squared error. To make the plots more
readable, only the most relevant architectures are included, and for the train-
ing loss a sliding window mean of the 100 nearest losses is depicted to have
a better sense of the general behaviour of the losses. Based on the validation
loss in the top panel of Figure 8, it appears that the versions with at least
64 feature maps begin to over�t, although even for the ResNet the increase
is around 1 nT and thus fairly small. All the versions with 32 feature maps
appear to be performing as well as the larger ones, and not over�t similarly,
although in the case of the ResNets, they too begin to over�t slightly as
the training proceeds. Based on the validation loss, the U-Net architectures
appear to be performing worse than the tested ResNets in general, although
again the di�erence is around 1 nT. For further testing the best performing
model was chosen, although a run of at least one epoch was required, so that
the neural network would have seen the complete training dataset.

For further investigation, the average di�erences between the norms and
the angles of the targets y and the predictions of the neural network ŷ over the
test data were computed for both the temporal and the spatial dimensions.
In the following the east component of the target will be marked with y1

and north component with y2 (or ŷ1 and ŷ2 for the predictions of the neural
network). The observations will be considered to be vectors of 600 elements,
and the number of observations in the target will be marked with t. Subscripts
i and j will be used to denote the element in temporal and spatial dimensions
respectively, i.e., y1i,j is the east component of the equivalent current vector
at time i and location j, or the jth element of the ith observation.

To compute the average di�erence in norms over all locations, �rst the
euclidian norm of both the target and the output is computed as li,j =√
(y1i,j)

2 + (y2i,j)
2 and l̂i,j =

√
(ŷ1i,j)

2 + (ŷ2i,j)
2. Then the average di�erence is

taken over all the locations j = 1, 2, . . . , 600 at time point i,

rinorm =
1

s

s∑
j=1

lij − l̂ij.

To obtain the average over time at location j

rjnorm =
1

t

t∑
i=1

lij − l̂ij

52

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Number of seen observations #10 7

20

22

24

26

28

30

32

34

36

R
M

S
E

 [n
T

]
RMSE loss, validation phase

ResNet 3x64
U-Net 256
U-Net 128
ResNet 2x32
ResNet 3x32
ResNet 2x16

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Number of seen observations #10 7

19

20

21

22

23

24

25

R
M

S
E

 [n
T

]

RMSE loss, training phase

ResNet 3x64
U-Net 256
U-Net 128
ResNet 2x32
ResNet 3x32
ResNet 2x16

Figure 8: The validation (top) and training (bottom) losses as RMSE for all
the trained models.

is computed. In the top panel of Figure 9 means of the averages over locations
for norms are depicted against the SME index. The SME index is binned
to intervals [0, 100[, [100, 200[, · · · , [2600, 2700[, and the means are computed
over these bins. It should be noted that the number of observations within
the bin decreases with the growing SME index, and this is presented by the
changing circle size.

In the middle panel of Figure 9 the average di�erence in norms over
locations j = 1, 2, . . . , 600 is related to the maximum norm length at that

53

time, i.e.,

rinorm =
1

s

(
max

j∈{1,2,...,600}
lij

)−1 s∑
j=1

lij − l̂ij

is computed. This plotted against the SME index as before. Similarly the
average of relative di�erence in norms over time is computed as

rjnorm =
1

t

(
max

i∈{1,2,...,t}
lij

)−1 t∑
i=1

lij − l̂ij.

In Figure 10 the average relative di�erences are plotted for four di�erent
models.

The average di�erence in angles over locations is obtained by �rst com-
puting the angles for both the target and the output as four-quadrant inverse
tangent, which gives the angle as radians in range] − π, π]. The computed
angles for the target γi,j and output γ̂i,j are changed to degrees through
multiplication by 180

π
. Then the absolute value of the di�erence between the

angles is taken as ai,j = |γi,j − γ̂i,j| for all locations j at time point i. If
the di�erence is over 180◦, it is substracted from 360 to obtain the actual
di�erence (âi,j = 360 − ai,j, when ai,j > 180). The average is taken over all
the locations j = 1, 2, . . . , 600 at time point i as

riangle =
1

s

s∑
j=1

âi,j.

To obtain the average di�erence in angle over time at location j,

rjangle =
1

t

t∑
i=1

âi,j

is computed. As previously, the averages over locations for the angles are
depicted against the SME index in the bottom panel of Figure 9. The average
di�erences in angles are depicted in Figure 11 for the four most interesting
models, as the to lessen the number of plots. The four chosen models were
ResNet with two blocks and 32 feature maps (deemed as ResNet 2x32),
ResNets with three blocks and 32 and 64 feature maps (ResNet 3x32 and
3x64, respectively) and the largest U-Net with 256 feature maps at the lowest
resolution (U-Net 256). In Figure 15 there are predictions for the ResNet 2x32
model and the corresponding targets for a time which was predicted as falsely
active, and one which was predicted quiet, although the target is more active.
While similar times exist for the other models as well, these plots were similar
to others, and so these are shown only for one model.

54

To further observe the di�erent behaviour at di�erent times and have
a clearer understanding of the error, di�erent polar plots were produced.
In Figure 12 the predictions of three chosen models are plotted with the
corresponding target when the equivalent current vectors are at their largest
on average. The models chosen for this were ResNet 2x3, ResNet 3x64 and
U-Net 256. In Figure 13 the predictions and the corresponding target are
depicted at the time point, when the SME index was at its largest, for the
same three models. Also the time point when the di�erence in norms was at
its largest on average is shown in Figure 14 for the three architectures. For
U-Net this was not exactly the time point with the largest di�erence, as that
was minute earlier, but the results were very similar, and thus for simplicity
the one shown was chosen.

55

5 0 1 5 0 2 5 0 3 5 0 4 5 0 5 5 0 6 5 0 7 5 0 8 5 0 9 5 0 1 0 5 0 1 1 5 0 1 2 5 0 1 3 5 0 1 4 5 0 1 5 5 0 1 6 5 0 1 7 5 0 1 8 5 0 1 9 5 0 2 0 5 0 2 1 5 0 2 2 5 0 2 3 5 0 2 4 5 0 2 5 5 0 2 6 5 0

S M E i n d e x [n T]

- 4 0

- 2 0

0

2 0

4 0

6 0

8 0
||
t
ar

g
et
||
 -

 |
|
pr

e
di

cti
o
n|
|
[
n

T]

U- N et 2 5 6

U- N et 1 2 8

R e s N et 3 x 6 4

R e s N et 2 x 3 2

R e s N et 3 x 3 2

5 0 1 5 0 2 5 0 3 5 0 4 5 0 5 5 0 6 5 0 7 5 0 8 5 0 9 5 0 1 0 5 0 1 1 5 0 1 2 5 0 1 3 5 0 1 4 5 0 1 5 5 0 1 6 5 0 1 7 5 0 1 8 5 0 1 9 5 0 2 0 5 0 2 1 5 0 2 2 5 0 2 3 5 0 2 4 5 0 2 5 5 0 2 6 5 0

S M E i n d e x [n T]

- 0. 3

- 0. 2

- 0. 1

0

0. 1

0. 2

0. 3

0. 4

0. 5

(|
|t

ar
g
et
||
 -

 |
|
pr

e
di

cti
o
n|
|)

 /
 (
||
t
ar

g
et
||
)
[
n

T]

U- N et 2 5 6

U- N et 1 2 8

R e s N et 3 x 6 4

R e s N et 2 x 3 2

R e s N et 3 x 3 2

5 0 1 5 0 2 5 0 3 5 0 4 5 0 5 5 0 6 5 0 7 5 0 8 5 0 9 5 0 1 0 5 0 1 1 5 0 1 2 5 0 1 3 5 0 1 4 5 0 1 5 5 0 1 6 5 0 1 7 5 0 1 8 5 0 1 9 5 0 2 0 5 0 2 1 5 0 2 2 5 0 2 3 5 0 2 4 5 0 2 5 5 0 2 6 5 0

S M E i n d e x [n T]

2 0

2 5

3 0

3 5

4 0

4 5

5 0

5 5

6 0

dif
f
er

e
nc

e
b
et

w
e
e
n
t
h
e

a
n
gl

e
of
 t

h
e
t
ar

g
et

a
n
d
t
h
e

a
n
gl

e
of
 t

h
e

pr
e
di

cti
o
n
[
d
e
gr

e
es

]

U- N et 2 5 6

U- N et 1 2 8

R e s N et 3 x 6 4

R e s N et 2 x 3 2

R e s N et 3 x 3 2

(||target|| - ||prediction||) / ||target||
between 07-Mar-0002 and 19-Apr-0000

16

20

24

04

08

12
 40°N

 50°N

 60°N

 70°N

 80°N

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

%

(||target|| - ||prediction||) / ||target||
between 07-Mar-0002 and 19-Apr-0000

16

20

24

04

08

12
 40°N

 50°N

 60°N

 70°N

 80°N

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

%

(||target|| - ||prediction||) / ||target||
between 07-Mar-0002 and 19-Apr-0000

16

20

24

04

08

12
 40°N

 50°N

 60°N

 70°N

 80°N

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

%

(||target|| - ||prediction||) / ||target||
between 07-Mar-0002 and 19-Apr-0000

16

20

24

04

08

12
 40°N

 50°N

 60°N

 70°N

 80°N

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

%

Figure 10: The average relative di�erence in norms over time for architectures
ResNet 2x32 (top left), ResNet 3x32 (top right), ResNet 3x64 (bottom left)
and U-Net 256 (bottom right).

57

Difference between the angle of the target and the angle of the prediction
between 07-Mar-0002 and 19-Apr-0000

16

20

24

04

08

12
 40°N

 50°N

 60°N

 70°N

 80°N

20

25

30

35

40

45

50

55

60

65

70

75
degrees

Difference between the angle of the target and the angle of the prediction
between 07-Mar-0002 and 19-Apr-0000

16

20

24

04

08

12
 40°N

 50°N

 60°N

 70°N

 80°N

20

25

30

35

40

45

50

55

60

65

70

75
degrees

Difference between the angle of the target and the angle of the prediction
between 07-Mar-0002 and 19-Apr-0000

16

20

24

04

08

12
 40°N

 50°N

 60°N

 70°N

 80°N

20

25

30

35

40

45

50

55

60

65

70

75
degrees

Difference between the angle of the target and the angle of the prediction
between 07-Mar-0002 and 19-Apr-0000

16

20

24

04

08

12
 40°N

 50°N

 60°N

 70°N

 80°N

20

25

30

35

40

45

50

55

60

65

70

75
degrees

Figure 11: The average di�erence in angles over time for architectures ResNet
2x32 (top left), ResNet 3x32 (top right), ResNet 3x64 (bottom left) and U-
Net 256 (bottom right).

58

Predicted SuperMAG equivalent current vectors
13-Oct-2016 16:39:00

16

20

24

04

08

12
 40°N

 50°N

 60°N

 70°N

 80°N

200 nT

SuperMAG equivalent current vectors
13-Oct-2016 16:39:00

16

20

24

04

08

12
 40°N

 50°N

 60°N

 70°N

 80°N

200 nT

Predicted SuperMAG equivalent current vectors
13-Oct-2016 16:39:00

16

20

24

04

08

12
 40°N

 50°N

 60°N

 70°N

 80°N

200 nT

Predicted SuperMAG equivalent current vectors
13-Oct-2016 16:39:00

16

20

24

04

08

12
 40°N

 50°N

 60°N

 70°N

 80°N

200 nT

Figure 12: Polar plots of the target (top right panel) and the predictions of
the di�erent models when the equivalent currents vectors were at their largest
on average. Predictions are from models ResNet 2x32 (top left), ResNet 3x64
(bottom left) and U-Net 256 (bottom right).

59

Predicted SuperMAG equivalent current vectors
21-Dec-2016 16:05:00

16

20

24

04

08

12
 40°N

 50°N

 60°N

 70°N

 80°N

200 nT

SuperMAG equivalent current vectors
21-Dec-2016 16:05:00

16

20

24

04

08

12
 40°N

 50°N

 60°N

 70°N

 80°N

200 nT

Predicted SuperMAG equivalent current vectors
21-Dec-2016 16:05:00

16

20

24

04

08

12
 40°N

 50°N

 60°N

 70°N

 80°N

200 nT

Predicted SuperMAG equivalent current vectors
21-Dec-2016 16:05:00

16

20

24

04

08

12
 40°N

 50°N

 60°N

 70°N

 80°N

200 nT

Figure 13: Polar plots of the target (top right panel) and the predictions of the
di�erent models when the SME index was at its largest in 2016. Predictions
are from models ResNet 2x32 (top left), ResNet 3x64 (bottom left) and U-
Net 256 (bottom right).

60

Predicted SuperMAG equivalent current vectors
08-May-2016 06:12:00

16

20

24

04

08

12
 40°N

 50°N

 60°N

 70°N

 80°N

200 nT

SuperMAG equivalent current vectors
08-May-2016 06:12:00

16

20

24

04

08

12
 40°N

 50°N

 60°N

 70°N

 80°N

200 nT

Predicted SuperMAG equivalent current vectors
08-May-2016 06:12:00

16

20

24

04

08

12
 40°N

 50°N

 60°N

 70°N

 80°N

200 nT

Predicted SuperMAG equivalent current vectors
08-May-2016 06:12:00

16

20

24

04

08

12
 40°N

 50°N

 60°N

 70°N

 80°N

200 nT

Figure 14: Polar plots of the target (top right panel) and the predictions of the
di�erent models for the time point when the average di�erence between the
norms was (nearly) absolutely largest. Predictions are from models ResNet
2x32 (top left), ResNet 3x64 (bottom left) and U-Net 256 (bottom right).

61

Predicted SuperMAG equivalent current vectors
07-Jul-2016 18:26:00

16

20

24

04

08

12
 40°N

 50°N

 60°N

 70°N

 80°N

200 nT

SuperMAG equivalent current vectors
07-Jul-2016 18:26:00

16

20

24

04

08

12
 40°N

 50°N

 60°N

 70°N

 80°N

200 nT

Predicted SuperMAG equivalent current vectors
11-Feb-2016 20:49:00

16

20

24

04

08

12
 40°N

 50°N

 60°N

 70°N

 80°N

200 nT

SuperMAG equivalent current vectors
11-Feb-2016 20:49:00

16

20

24

04

08

12
 40°N

 50°N

 60°N

 70°N

 80°N

200 nT

Figure 15: Polar plots of the targets (right panels) and the predictions of the
ResNet 2x32 (left panels) to showcase a few uncommon times.

62

6 Discussion

In this section the results shown in Section 5.3 are discussed further. First
the validation results are evaluated and the architecture and hyperparameter
choices are discussed. Then the few chosen models are compared further, �rst
looking at their general performance over the complete test dataset, and then
at few individual time points to have a better understandment as to where
the di�erences may be occuring.

6.1 Architecture and hyperparameters

To choose the best performing models for further evaluation, one needs to
look at the validation losses. Based on these losses (see Figure 8 top panel), it
would appear that having 64 feature maps does not signi�cantly improve the
model and only results in over�tting, and for both the ResNets and U-Nets
32 appears an adequate amount (in the case of U-Nets this is the number of
feature maps at the scale with the highest resolution. Having 32 feature maps
at the highest scale results in 128 feature maps for the lowest resolution, which
is the number used in the legends to separate between U-Nets). However, in
the case of ResNet even 16 feature maps appears to produce comparable
results. Also it seems that having only two blocks for ResNet appears to
be a suitable depth, as increasing the depth does not signi�cantly improve
the results. Based on the training losses in Figure 8 bottom panel (and the
gradients, which were monitored but are not plotted here) none of the models
have reached a minima, but as there were no improvements in the validation
losses, the training was still halted to save computation time. For the smallest
models that were not over�tting (mainly ResNet with 16 feature maps), a
further training may still improve their results.

It appears that all of the models plotted in Figure 8 achieve similar levels
of performance on the training and validation sets, after which they are more
inclined to start over�tting the training data, with the largest architectures
showing this behaviour clearly sooner than others. This indicates that the
larger models are incapable of extracting more general information from the
training data then their shallower counterparts, even though they would have
the capacity. This may be a problem with some of the untested hyperparam-
eters, such as the learning rate or the error metric. These were left out to
lessen the number of tunable hyperparameters, but they may still change the
results. Poor initialisation may cause issues, such as the dying ReLU prob-
lem, but that does not seem to be the case here, as the gradients were still
fairly big and the training error was becoming smaller. It may also be, that it
is not possible to extract more general features from the training data. There

63

is also a separation in performance on the validation data between ResNets
and U-Nets with U-Nets performing worse in general. This is, however, not
visible in the training loss, which may indicate that U-Nets are either learn-
ing features more inherent to the training data, and thus generalise worse on
new data, or then the one year validation data may be missing some features,
that are present in the training data, and for which the U-Nets are actually
performing better.

6.2 Quantitative analysis

As the validation loss encompasses only one year and truncates the di�erence
between the target and prediction into one statistic, more evaluation was re-
quired to have a clearer picture of the di�erences between the models. The
average di�erence in norms over locations (see Figure 9 top panel) appears
to be very similar for all of the architectures when the SME index is below
250 nT. After this, the ResNets with 32 feature maps begin to perform seem-
ingly better to the rest of the models. When the SME index reaches values
beyond 1600 nT, the errors begin to oscillate for all of the observed networks.
This is because for higher values of SME index there are less observations,
and especially for index values beyond 2200 nT the average is taken over 5 to
2 time points meaning that an unusual observation may throw the average
o�. While all of the models have a tendency to underestimate the length of
the vectors, both U-Nets tend to do this most on average, as the di�erence in
norm is generally highest for them, and slightly suprisingly especially for the
U-Net with 128 feature maps on the lowest resolution, despite the validation
loss showing similar performance to the larger U-Net. All of these features
are still visible when comparing the relative di�erences (see the middle panel
of Figure 9).

For the average di�erence in angles over locations (see Figure 9 bottom
panel, the largest U-Net actually appears to be estimating the directions best
in general, although for SME index values below 1700 nT there are not many
di�erences between the models. When the SME index begins to reach more
uncommon values, reaching beyond 2100 nT, the ResNet with three blocks
and 32 feature maps appears to be performing best, although the largest
U-Net is close or better on average. However, at these points the averages
are taken over only few observations, and as before an odd observation may
be throwing the error o�. Similarly to the relative di�erence in norms, the
most quiet times (having the lowest SME index values) have highest errors.
One explanation as to why all the models struggle in predicting the quiet
times correctly may be that the inevitable noise in the measurements is
more dominant. Alternatively the chosen error metric, squared error, may

64

be ignoring the more quiet times as it emphasizes larger errors. This is not
necessarily unwanted behaviour, as the prediction of the more active times
is more of interest.

For the average relative di�erences in norms and average di�erences in
angles over time (see Figures 10 and 11) all of the models appear to be pro-
ducing similar patterns with the dawn side at the lowest magnetic latitudes
and noon or afternoon at magnetic latitudes 60− 70 degrees north being the
hardest to predict. From the relative error in norms, it is clear that the U-
Net has the hardest time getting the lengths of the vectors right, and slightly
suprisingly (when comparing to the behaviour seen in Figure 9 bottom panel)
is also getting the angles slightly more wrong than the other architectures.
As for the ResNets there are no signi�cant di�erences, although it seems that
the largest ResNet is predicting the lengths of the vectors at the lowest mag-
netic latitudes slightly better than the others while the two blocked version
appears to be most on point at inner areas, and both three blocked ResNets
appear to predict the angles at the edges slightly better than the two blocked
version. It may be that the 64 feature maps are capable at cathcing the e�ect
of ring currents better, although it is di�cult to say without further analysis.
This will, however, be left out as it is outside the scope of this thesis.

6.3 Qualitative analysis

At invidual time points only three models were assessed to lessen the num-
ber of �gures. These models were ResNet 2x32, ResNet 3x64 and U-Net 256,
mainly as these were the best performing models with most di�erences be-
tween them. Even so, there are no substantial di�erences between the predic-
tions, especially when comparing the two ResNets (see later �gures in Section
5.3). All of the models predict cleaner equivalent current vectors, and typ-
ically underestimate the length especially for the largest vectors. However,
they all seem to also catch the general patterns fairly well. The di�erences
between the two ResNets are focusing mainly to the center, although it ap-
pears the ResNet with three blocks has more changes at lower latitudes than
the two blocked version. Comparing U-Net to the ResNets, U-Net tends to
produce smoother plots, with a greater underestimation of the vector lengths
as was seen from the previous comparisons. This could be explained by the
di�erence between the fully convolutional U-Net and the ResNets that end
with a linear layer. As U-Net is fully convolutional, it encodes the location
information into the output. This may cause it to encode too high spatial de-
pendency between the vectors. In Figure 15 a falsely active time is shown in
the bottom panels, and a falsely quiet time in the top panels. However, for the
falsely quiet time, the target is fairly chaotic, possibly indicating erroneuos

65

measurements.

66

7 Conclusions

In general the tested ResNets and U-Nets were capable of producing the
equivalent current vectors fairly well, and especially for more active times.
While all of the models were able to predict the general patterns well, they
all tended to underestimate length of the largest vectors. This was especially
true for U-Net, which may be explained by the stronger spatial dependency
in the model, resulting in overly smooth polar plots and underestimated
vector lengths. Thismay indicate the necessity of the �nal linear layer. Having
a ResNet with two blocks and 32 feature maps appeared to be adequate,
although a version with three blocks appeared to catch the variability at
the lowest latitudes better, and there did not seem to be any signi�cant
di�erences between the predictions.

Overall it would seem that convolutional neural networks are capable
of predicting the ionospheric currents from time-series data, at least at the
end of the time-series, and even a fairly light-weight neural network su�ces.
Future research may look into testing di�erent error metrics to see if it were
possible to overcome the underestimation problem. It should also be tested
how far into the future the predictions can be made based on the given time-
series. And of course, there are multiple di�erent arti�cial neural network
architectures that may have the potential to perform better in this particular
task, and �nding the optimal one is a question of its own.

67

References

[1] Julius Berner, Philipp Grohs, Gitta Kutyniok, and Philipp Petersen, The
modern mathematics of deep learning, Mathematical Aspects of Deep
Learning, Cambridge University Press, dec 2022, https://doi.org/10.
1017/9781009025096.002, pp. 1�111.

[2] David Bertoin, Jérôme Bolte, Sébastien Gerchinovitz, and Edouard
Pauwels, Numerical in�uence of relu'(0) on backpropagation, Advances
in Neural Information Processing Systems (Paris, France), Advances in
Neural Information Processing Systems 34 (NeurIPS 2021), December
2021, https://hal.science/hal-03265059.

[3] Y-Lan Boureau, Jean Ponce, and Yann LeCun, A theoretical analysis
of feature pooling in visual recognition, Proceedings of the 27th Inter-
national Conference on International Conference on Machine Learning
(Madison, WI, USA), ICML'10, Omnipress, 2010, p. 111�118.

[4] Lorenzo Ciampiconi, Adam Elwood, Marco Leonardi, Ashraf Mohamed,
and Alessandro Rozza, A survey and taxonomy of loss functions in ma-
chine learning, 2023, https://doi.org/10.48550/arXiv.2301.05579.

[5] Ronald DeVore, Boris Hanin, and Guergana Petrova, Neural network
approximation, 2020, https://doi.org/10.48550/arXiv.2012.14501.

[6] Shiv Ram Dubey, Satish Kumar Singh, and Bidyut Baran Chaud-
huri, Activation functions in deep learning: A comprehensive survey and
benchmark, Neurocomputing 503 (2022), 92�108, https://doi.org/
10.1016/j.neucom.2022.06.111.

[7] Vincent Dumoulin and Francesco Visin, A guide to convolution arith-
metic for deep learning, 2016, https://doi.org/10.48550/ARXIV.

1603.07285.

[8] Natalia Ganushkina, Michael Liemohn, and Stepan Dubyagin, Cur-
rent systems in the earth's magnetosphere, Reviews of Geophysics 56
(2018), no. 2, 309�332, https://doi.org/https://doi.org/10.1002/
2017RG000590.

[9] Natalia Ganushkina, Michael Liemohn, Stepan Dubyagin, Ioannis
Daglis, Iannis Dandouras, Darren De Zeeuw, Yusuke Ebihara, Raluca
Ilie, Roxanne Katus, Marina Kubyshkina, Steve Milan, Shin Ohtani,
Nikolai Ostgaard, Jone Reistad, Paul Tenfjord, Frank To�oletto, Sorin

68

https://doi.org/10.1017/9781009025096.002
https://doi.org/10.1017/9781009025096.002
https://hal.science/hal-03265059
https://doi.org/10.48550/arXiv.2301.05579
https://doi.org/10.48550/arXiv.2012.14501
https://doi.org/10.1016/j.neucom.2022.06.111
https://doi.org/10.1016/j.neucom.2022.06.111
https://doi.org/10.48550/ARXIV.1603.07285
https://doi.org/10.48550/ARXIV.1603.07285
https://doi.org/https://doi.org/10.1002/2017RG000590
https://doi.org/https://doi.org/10.1002/2017RG000590

Zaharia, and Olga Amariutei, De�ning and resolving current systems in
geospace, Annales Geophysicae 33 (2013), 12721�, https://doi.org/
10.5194/angeo-33-1369-2015.

[10] Jesper W. Gjerloev, The supermag data processing technique, Journal
of Geophysical Research: Space Physics 117 (2012), no. A9, https:
//doi.org/https://doi.org/10.1029/2012JA017683.

[11] Ian Goodfellow, Yoshua Bengio, and Aaron Courville, Deep learning,
MIT Press, 2016, https://www.deeplearningbook.org.

[12] Benjamin Graham, Fractional max-pooling, 2014, https://doi.org/

10.48550/ARXIV.1412.6071.

[13] Rémi Gribonval, Gitta Kutyniok, Morten Nielsen, and Felix Voigt-
laender, Approximation spaces of deep neural networks, 2020, https:
//doi.org/10.48550/arXiv.1905.01208.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, Deep resid-
ual learning for image recognition, 2015, https://doi.org/10.48550/
arXiv.1512.03385.

[15] Kurt Hornik, Maxwell Stinchcombe, and Halbert White, Multilayer
feedforward networks are universal approximators, Neural Networks
2 (1989), no. 5, 359�366, https://doi.org/10.1016/0893-6080(89)
90020-8.

[16] Xia Hu, Lingyang Chu, Jian Pei, Weiqing Liu, and Jiang Bian, Model
complexity of deep learning: A survey, 2021, https://doi.org/10.

48550/arXiv.2103.05127.

[17] Sergey Io�e and Christian Szegedy, Batch normalization: Accelerating
deep network training by reducing internal covariate shift, 2015, https:
//doi.org/10.48550/ARXIV.1502.03167.

[18] T Iyemori, T Araki, T Kamei, and M Takeda, Mid-latitude geomagnetic
indices asy and sym (provisional) no. 1, 1989, Data Analysis Center for
Geomagnetism and Space Magnetism, Kyoto University, Kyoto (1992),
Retrieved from https://wdc.kugi.kyoto-u.ac.jp/aeasy/asy.pdf.

[19] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael
Figurnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates,
Augustin Zídek, Anna Potapenko, Alex Bridgland, Clemens Meyer,

69

https://doi.org/10.5194/angeo-33-1369-2015
https://doi.org/10.5194/angeo-33-1369-2015
https://doi.org/https://doi.org/10.1029/2012JA017683
https://doi.org/https://doi.org/10.1029/2012JA017683
https://www.deeplearningbook.org
https://doi.org/10.48550/ARXIV.1412.6071
https://doi.org/10.48550/ARXIV.1412.6071
https://doi.org/10.48550/arXiv.1905.01208
https://doi.org/10.48550/arXiv.1905.01208
https://doi.org/10.48550/arXiv.1512.03385
https://doi.org/10.48550/arXiv.1512.03385
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.48550/arXiv.2103.05127
https://doi.org/10.48550/arXiv.2103.05127
https://doi.org/10.48550/ARXIV.1502.03167
https://doi.org/10.48550/ARXIV.1502.03167
https://wdc.kugi.kyoto-u.ac.jp/aeasy/asy.pdf

Simon Kohl, Andrew Ballard, Andrew Cowie, Bernardino Romera-
Paredes, Stanislav Nikolov, Rishub Jain, Jonas Adler, and Demis Hass-
abis, Highly accurate protein structure prediction with alphafold, Nature
596 (2021), 1�11, https://doi.org/10.1038/s41586-021-03819-2.

[20] John Kelleher, Deep learning, MIT Press essential knowledge series, MIT
Press, 2019.

[21] Diederik P. Kingma and Jimmy Ba, Adam: A method for stochastic
optimization, 2014, https://doi.org/10.48550/ARXIV.1412.6980.

[22] Bharat S. R. Kunduri, Maidina Maimaiti, Joseph B. H. Baker, J. Michael
Ruohoniemi, Blake J. Anderson, and Sarah K. Vines, A deep learning-
based approach for modeling the dynamics of ampere birkeland currents,
Journal of Geophysical Research: Space Physics 125 (2020), no. 8,
e2020JA027908, https://doi.org/10.1029/2020JA027908.

[23] Karl Laundal and Arthur Richmond, Magnetic coordinate systems.,
Space Science Reviews 206 (2017), no. 1-4, 27 � 59, https://doi.org/
10.1007/s11214-016-0275-y.

[24] Moshe Leshno, Vladimir Ya. Lin, Allan Pinkus, and Shimon Schocken,
Multilayer feedforward networks with a nonpolynomial activation func-
tion can approximate any function, Neural Networks 6 (1993), no. 6,
861�867, https://doi.org/10.1016/S0893-6080(05)80131-5.

[25] Steve Milan, Lasse B. N. Clausen, John C. Coxon, Jared A. Carter,
Maria-Theresia Walach, Karl Laundal, Nikolai Østgaard, Paul Tenfjord,
Jone Peter Reistad, Kristian Snekvik, Hank Korth, and Blake J. Ander-
son, Overview of solar wind-magnetosphere-ionosphere-atmosphere cou-
pling and the generation of magnetospheric currents, Space Science Re-
views 206 (2017), no. 1-4, 547�573 (English), https://doi.org/10.
1007/s11214-017-0333-0.

[26] Steven K. Morley, Challenges and opportunities in magnetospheric space
weather prediction, Space Weather 18 (2020), no. 3, e2018SW002108,
https://doi.org/10.1029/2018SW002108.

[27] Patrick T. Newell and Jesper W. Gjerloev, Evaluation of supermag au-
roral electrojet indices as indicators of substorms and auroral power,
Journal of Geophysical Research: Space Physics 116 (2011), no. A12,
https://doi.org/10.1029/2011JA016779.

70

https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.48550/ARXIV.1412.6980
https://doi.org/10.1029/2020JA027908
https://doi.org/10.1007/s11214-016-0275-y
https://doi.org/10.1007/s11214-016-0275-y
https://doi.org/10.1016/S0893-6080(05)80131-5
https://doi.org/10.1007/s11214-017-0333-0
https://doi.org/10.1007/s11214-017-0333-0
https://doi.org/10.1029/2018SW002108
https://doi.org/10.1029/2011JA016779

[28] SuperMAG Organization, About supermag, https://supermag.

jhuapl.edu/info/, Retrieved: July 19, 2023.

[29] , Download data (about), https://supermag.jhuapl.edu/

mag/?fidelity=low&tab=description&start=2001-01-29T02%3A30%

3A00.000Z&interval=1%3A00%3A00, Retrieved: July 19, 2023.

[30] , Polar plots (about), https://supermag.jhuapl.

edu/rBrowse/?fidelity=low&start=2001-01-29T02%

3A30%3A00.000Z&step=300&tab=about&layers=

bg-bump-fg-imagefuv-polarvis-magfit-magvec-rbsp.

foot-swarm.foot-tgrd-imf.clock-refvec.supermag-refvec.

supermag-fit-refvec.ulfband-colorkey.imagefuv-colorkey.

polarvis-colorkey.ulf-time-, Retrieved: July 19, 2023.

[31] Natalia E. Papitashvili and Joseph H. King, Omni 1-min data [data
set], https://doi.org/10.48322/45bb-8792, 2020, Retrieved: Novem-
ber 20, 2022.

[32] Alexander Piel, Plasma physics: An introduction to laboratory, space,
and fusion plasmas, Springer Berlin Heidelberg, 2010, https://doi.
org/10.1007/978-3-642-10491-6.

[33] Andrinandrasana Rasamoelina, Fouzia Adjailia, and Peter Sincak, A
review of activation function for arti�cial neural network, 01 2020,
https://doi.org/10.1109/SAMI48414.2020.9108717, pp. 281�286.

[34] Olaf Ronneberger, Philipp Fischer, and Thomas Brox, U-net: Con-
volutional networks for biomedical image segmentation, 2015, https:
//doi.org/10.48550/arXiv.1505.0459.

[35] Jürgen Schmidhuber, Deep learning in neural networks: An overview,
Neural Networks 61 (2015), 85�117, https://doi.org/10.1016/j.

neunet.2014.09.003.

[36] Robert Schunk and Andrew Nagy, Ionospheres : Physics, plasma
physics, and chemistry., Cambridge Atmospheric and Space Science Se-
ries, vol. 2nd ed, Cambridge University Press, 2009, https://doi.org/
10.1017/CBO9780511635342.

[37] R. Shankar, Fundamentals of physics ii : Electromagnetism, optics,
and quantum mechanics., Fundamentals of Physics, no. II, Electromag-
netism, optics, and quantum mechanics, Yale University Press, 2016,
https://doi.org/10.2307/j.ctv10sm90h.

71

https://supermag.jhuapl.edu/info/
https://supermag.jhuapl.edu/info/
https://supermag.jhuapl.edu/mag/?fidelity=low&tab=description&start=2001-01-29T02%3A30%3A00.000Z&interval=1%3A00%3A00
https://supermag.jhuapl.edu/mag/?fidelity=low&tab=description&start=2001-01-29T02%3A30%3A00.000Z&interval=1%3A00%3A00
https://supermag.jhuapl.edu/mag/?fidelity=low&tab=description&start=2001-01-29T02%3A30%3A00.000Z&interval=1%3A00%3A00
https://supermag.jhuapl.edu/rBrowse/?fidelity=low&start=2001-01-29T02%3A30%3A00.000Z&step=300&tab=about&layers=bg-bump-fg-imagefuv-polarvis-magfit-magvec-rbsp.foot-swarm.foot-tgrd-imf.clock-refvec.supermag-refvec.supermag-fit-refvec.ulfband-colorkey.imagefuv-colorkey.polarvis-colorkey.ulf-time-
https://supermag.jhuapl.edu/rBrowse/?fidelity=low&start=2001-01-29T02%3A30%3A00.000Z&step=300&tab=about&layers=bg-bump-fg-imagefuv-polarvis-magfit-magvec-rbsp.foot-swarm.foot-tgrd-imf.clock-refvec.supermag-refvec.supermag-fit-refvec.ulfband-colorkey.imagefuv-colorkey.polarvis-colorkey.ulf-time-
https://supermag.jhuapl.edu/rBrowse/?fidelity=low&start=2001-01-29T02%3A30%3A00.000Z&step=300&tab=about&layers=bg-bump-fg-imagefuv-polarvis-magfit-magvec-rbsp.foot-swarm.foot-tgrd-imf.clock-refvec.supermag-refvec.supermag-fit-refvec.ulfband-colorkey.imagefuv-colorkey.polarvis-colorkey.ulf-time-
https://supermag.jhuapl.edu/rBrowse/?fidelity=low&start=2001-01-29T02%3A30%3A00.000Z&step=300&tab=about&layers=bg-bump-fg-imagefuv-polarvis-magfit-magvec-rbsp.foot-swarm.foot-tgrd-imf.clock-refvec.supermag-refvec.supermag-fit-refvec.ulfband-colorkey.imagefuv-colorkey.polarvis-colorkey.ulf-time-
https://supermag.jhuapl.edu/rBrowse/?fidelity=low&start=2001-01-29T02%3A30%3A00.000Z&step=300&tab=about&layers=bg-bump-fg-imagefuv-polarvis-magfit-magvec-rbsp.foot-swarm.foot-tgrd-imf.clock-refvec.supermag-refvec.supermag-fit-refvec.ulfband-colorkey.imagefuv-colorkey.polarvis-colorkey.ulf-time-
https://supermag.jhuapl.edu/rBrowse/?fidelity=low&start=2001-01-29T02%3A30%3A00.000Z&step=300&tab=about&layers=bg-bump-fg-imagefuv-polarvis-magfit-magvec-rbsp.foot-swarm.foot-tgrd-imf.clock-refvec.supermag-refvec.supermag-fit-refvec.ulfband-colorkey.imagefuv-colorkey.polarvis-colorkey.ulf-time-
https://supermag.jhuapl.edu/rBrowse/?fidelity=low&start=2001-01-29T02%3A30%3A00.000Z&step=300&tab=about&layers=bg-bump-fg-imagefuv-polarvis-magfit-magvec-rbsp.foot-swarm.foot-tgrd-imf.clock-refvec.supermag-refvec.supermag-fit-refvec.ulfband-colorkey.imagefuv-colorkey.polarvis-colorkey.ulf-time-
https://doi.org/10.48322/45bb-8792
https://doi.org/10.1007/978-3-642-10491-6
https://doi.org/10.1007/978-3-642-10491-6
https://doi.org/10.1109/SAMI48414.2020.9108717
https://doi.org/10.48550/arXiv.1505.0459
https://doi.org/10.48550/arXiv.1505.0459
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1017/CBO9780511635342
https://doi.org/10.1017/CBO9780511635342
 https://doi.org/10.2307/j.ctv10sm90h

[38] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou,
Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai,
Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan Hui, Laurent Sifre,
George Driessche, Thore Graepel, and Demis Hassabis, Mastering the
game of go without human knowledge, Nature 550 (2017), 354�359,
https://doi.org/10.1038/nature24270.

[39] Elias M. Stein and Guido Weiss, Introduction to fourier analysis on
euclidean spaces (pms-32), Princeton University Press, 1971, http://
www.jstor.org/stable/j.ctt1bpm9w6.

[40] Ken F. Tapping, The 10.7 cm solar radio �ux (f10.7), Space Weather
11 (2013), no. 7, 394�406, https://doi.org/10.1002/swe.20064.

[41] Matus Telgarsky, Representation bene�ts of deep feedforward networks,
2015, https://doi.org/10.48550/arXiv.1509.08101.

[42] Matus Telgarsky, Bene�ts of depth in neural networks, 29th Annual
Conference on Learning Theory (Columbia University, New York, New
York, USA) (Vitaly Feldman, Alexander Rakhlin, and Ohad Shamir,
eds.), Proceedings of Machine Learning Research, vol. 49, PMLR, 23�26
Jun 2016, https://proceedings.mlr.press/v49/telgarsky16.html,
pp. 1517�1539.

[43] Matus Telgarsky, Deep learning theory lecture notes, 2021, https://
mjt.cs.illinois.edu/dlt/ Version: 2021-10-27 v0.0-e7150f2d (alpha).

[44] Qi Wang, Yue Ma, Kun Zhao, and Yingjie Tian, A comprehensive survey
of loss functions in machine learning, Annals of Data Science 9 (2022),
https://doi.org/10.1007/s40745-020-00253-5.

[45] Jeremy Watt, Reza Borhani, and Aggelos K. Katsaggelos, Ma-
chine learning re�ned: Foundations, algorithms, and applications, 2
ed., Cambridge University Press, 2020, https://doi.org/10.1017/

9781108690935.

[46] D. Randall Wilson and Tony R. Martinez, The general ine�-
ciency of batch training for gradient descent learning, Neural Net-
works 16 (2003), no. 10, 1429�1451, https://doi.org/10.1016/

S0893-6080(03)00138-2.

[47] Matthew D. Zeiler and Rob Fergus, Stochastic pooling for regulariza-
tion of deep convolutional neural networks, 2013, https://doi.org/
10.48550/ARXIV.1301.3557.

72

https://doi.org/10.1038/nature24270
http://www.jstor.org/stable/j.ctt1bpm9w6
http://www.jstor.org/stable/j.ctt1bpm9w6
https://doi.org/10.1002/swe.20064
https://doi.org/10.48550/arXiv.1509.08101
https://proceedings.mlr.press/v49/telgarsky16.html
https://mjt.cs.illinois.edu/dlt/
https://mjt.cs.illinois.edu/dlt/
https://doi.org/10.1007/s40745-020-00253-5
https://doi.org/10.1017/9781108690935
https://doi.org/10.1017/9781108690935
https://doi.org/10.1016/S0893-6080(03)00138-2
https://doi.org/10.1016/S0893-6080(03)00138-2
https://doi.org/10.48550/ARXIV.1301.3557
https://doi.org/10.48550/ARXIV.1301.3557

[48] Matthew D. Zeiler, Dilip Krishnan, GrahamW. Taylor, and Rob Fergus,
Deconvolutional networks, 2010 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 2010, https://doi.org/
10.1109/CVPR.2010.5539957, pp. 2528�2535.

[49] Matthew D. Zeiler, Graham W. Taylor, and Rob Fergus, Adaptive de-
convolutional networks for mid and high level feature learning, 2011 In-
ternational Conference on Computer Vision, 2011, https://doi.org/
10.1109/ICCV.2011.6126474, pp. 2018�2025.

73

https://doi.org/10.1109/CVPR.2010.5539957
https://doi.org/10.1109/CVPR.2010.5539957
https://doi.org/10.1109/ICCV.2011.6126474
https://doi.org/10.1109/ICCV.2011.6126474

	Introduction
	Space weather
	Electric current
	Solar wind, magnetosphere and ionosphere
	Current systems in ionosphere and magnetosphere
	Ring currents
	Field-aligned currents
	Pedersen, Hall and equivalent currents

	Deep learning
	Learning framework
	An Artificial Neural Network
	Activation
	Depth and width

	Optimisation
	Gradient Descent
	Introducing stochasticity
	Adam

	Loss functions and regularisation

	Convolutional Neural Networks
	Convolution
	ResNet
	Skip connection

	U-Net
	Downsampling
	Upsampling

	Predicting space weather
	Data
	Preparation

	Model architectures and training
	ResNet
	U-Net

	Results

	Discussion
	Architecture and hyperparameters
	Quantitative analysis
	Qualitative analysis

	Conclusions

