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ABSTRACT The emergence of the Industry 4.0 concept and the profound digital transformation of the
industry plays a crucial role in improving organisations’ supply chain (SC) performance, consequently
achieving a competitive advantage. The order fulfilment process (OFP) consists of one of the key business
processes for the organization SC and represents a core process for the operational logistics flow. The
dispatch workflow process consists of an integral part of the OFP and is also a crucial process in the SC
of cement industry organizations. In this work, we focus on enhancing the order fulfilment process by
improving the dispatch workflow process, specifically with respect to the cement loading process. Thus, we
proposed a machine learning (ML) approach to predict weighing deviations in the cement loading process.
We adopted a realistic and robust rolling window scheme to evaluate six classification models in a real-
world case study, from which the random forest (RF) model provides the best predictive performance. We
also extracted explainable knowledge from the RF classifier by using the Shapley additive explanations
(SHAP) method, demonstrating the influence of each input data attribute used in the prediction process.

INDEX TERMS Anomaly prediction, Dispatch workflow process, Machine learning, Order fulfilment
process, Weighing systems.

I. INTRODUCTION

A. MOTIVATION

The supply chain (SC) represents a complex and unique net-
work composed of several entities, processes and resources
[17], [31], [32]. Logistics consists of a set of fundamental SC
processes, which aim to plan and coordinate the movement
of products in a timely, safe and effective way [15]. More-
over, Logistics management activities comprise inbound
and outbound transportation management, fleet management,
warehousing, materials handling, order fulfilment, logistics
network design, and inventory management, among others.
Over the last few years, the introduction of the Industry
4.0 concept and the profound digital transformation of the
industry associated with globalization and global market
competitiveness has led companies to spend significant time
and effort in re-engineering their SC, changing their business
processes and technology regarding the implementation of an

integrated SC management. Logistics is one of the crucial
factors for SC’s success, and when well managed, it can lead
an organization to improve its competitive advantage and
overall performance.

The global supply chain forum identified eight core pro-
cesses for supply chain management (SCM), namely cus-
tomer relationship management, customer service manage-
ment, demand management, order fulfilment, manufactur-
ing flow management, supplier relationship management,
product development and commercialization, and returns
management [17], [33]. Furthermore, according to [34], an
organization is supported by three core business processes
(pillars), namely the product development process, order
fulfilment process, and customer service process, as well
as several functional entities that support these business
processes (foundations), such as marketing, sales, logistics,
finance, among others. Thus, this work focuses on improving
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the order fulfilment process (OFP), which is a central process
regarding the operational logistics flow [33]. OFP aims to
deliver products in order to fulfil customer orders at the
right time and place, and achieve agility (in terms of effi-
ciency, flexibility, robustness, and adaptability) to deal with
uncertainties from internal or external environments [34]. As
such, it is a complex process composed of several activities
executed by different functional entities [17], [34], which
includes three main activities: order management, manu-
facturing, and distribution (includes the dispatch workflow
process, which consists of the logistic flows of products in
an industry). In addition, OFP improvement can be achieved
by enhancing the operations performed within and between
functional entities [34], involving several methods such as
optimization, simulation or business analytics, among others.

Our study is motivated mainly by (i) the nonexistence
of scientific works that focus on improving OFP, more
specifically regarding the problem of deviation in weighings
during the dispatch workflow process, (ii) the lack of studies
regarding the cement industry supply chain, although the
SCs problems are an attracted topic [16], (iii) the scarce
consideration of ML techniques in SC management scientific
studies [17].

B. RESEARCH OBJECTIVES AND CONTRIBUTIONS
This paper aims to propose an ML approach to predict
weighing deviations in the dispatch workflow or vehicle
dispatch process to improve the OFP process in the cement
industry. The dispatch workflow process is an integral part
of the OFP (distribution activity) and represents a crucial
process in the cement industry SC. Hence, the occurrence
of delays, errors, or weight deviations, which represents an
anomaly in the loading of cement bags, directly impacts
the OFP and consequently the SC performance, resulting in
several losses, including monetary and service level losses.
We explore six different ML classification models, applied
and evaluated in a real-world case study in the company
Cachapuz - Weighing & Logistics Systems, Lda, Portugal.
This work was conducted using the cross-industry standard
process for data mining (CRISP-DM) methodology [35]. The
main contributions can be summarised:

• we proposed a technological ML pipeline that is able to
provide value to the prediction of deviation in weight-
ings during the dispatch workflow process;

• we explore and compared six ML classification models
(decision tree, random forest, support vector machines,
gradient-boosted tree, extreme gradient-boosting tree,
and multilayer perceptron);

• we adopt a realistic and robust experimentation setup,
in which a rolling window (RW) scheme is adopted for
evaluating the ML models during several training and
testing iterations;

• we extract explainable knowledge (XAI) from the pro-
posed ML model by using the Shapley additive expla-
nations (SHAP) method;

• we address a real-world case study using real-world sup-
ply chain data from a Portuguese weighing and logistics
company.

The remaining work in this paper is organized as follows.
Section II introduces the related work. Section III formulates
the problem under consideration. Section IV describes the
industrial case study, materials, data and methods applied
to develop the ML models. Section V reports the obtained
results. Finally, Section VI highlights the main results, future
works and conclusions.

II. RELATED WORK
Nowadays, data-driven approaches such as machine learning
(ML), deep learning (DL), and big data analytics (BDA)
have been increasingly adopted in supply chain management
for improving the logistics decision-making process [20].
Such approaches allow for creating value and competitive
advantages for companies and provide several benefits such
as an increase in revenues, customer satisfaction, and product
quality, among others. Several approaches have been adopted
in the literature to tackle problems related to the dispatch
workflow process. Indeed, this process consists of the logistic
flows of material in the supply chain industry. Moreover,
techniques such as optimization, simulation or simulation-
based optimization are the main and commonly used ap-
proaches regarding the improvement of the such logistic
process (see [15], [60]–[62]). Table 1 consists of an overview
of literature contributions regarding heavy vehicle weighing
processes, which consists of a crucial task related to the
problem of percentage deviation in the weighing process.
Indeed, the vehicle weighing process is an essential step
for society and organizations quotidian [38] once is always
necessary to know the exact weight of the products and ob-
jects transported [42], and therefore brings economic benefits
and service quality [43]. Several scientific contributions have
been proposed that applied ML and DL techniques for the
vehicle weighing process, although none of those focuses on
the improvement of the dispatch workflow process. Thus, to
the best of our knowledge, this research work is the first in
the literature that focuses on the improvement of the dispatch
workflow process or vehicle dispatching process through
the prediction of future deviation in weighings of vehicles
using ML techniques with the objective of avoiding security
consequences and delays in the entire process, which can
cause huge monetary and service level losses. Regarding
studies associated with the vehicle weighing process, [44]
employed an artificial neural network (ANN) for improv-
ing bridge weigh-in-motion (B-WIM) systems. The author’s
proposed approach aims to determine both the gross weight
and individual axis weights of vehicles on a bridge (two
different types of bridges) using data acquired from WIM
systems to train ANN algorithms. [45] proposed a data-
driven framework for estimating the rate of over-weighted
vehicles (i.e., vehicles with the exceeded weight) on a bridge
using data from WIM stations. Afterwards, the results were
combined with national bridge inventory (NBI) data to train a

VOLUME 4, 2016 3



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

support vector machine (SVM) model for predicting the sta-
tus of the bridge (bridge deck condition), providing an overall
accuracy of 73.57%, micro-recall of 74.58% and micro-
recall of 74.58%. Later on, [46] developed an automated
field earthmoving quantity statistics (FEQS) framework that
applies vision-based deep learning for classifying vehicles
as full or empty loads. The authors used a total of 2,454
images (1,588 of full-load trucks and 866 of empty trucks) to
train, test, and validate the deep learning convolutional neural
networks (CNN) model. In the same year, [47] proposed a
probabilistic ML framework for predicting the probability
of fatigue failure of bridges related to traffic overloading
using the feedforward neural network and the Monte Carlo
techniques. [49] explored several ML algorithms such as
gaussian naive bayes (GNB), k-nearest neighbour (kNN),
SVM, and decision tree for diagnosing problems in truck
ore in underground mines. The authors use data related to
truck travel time in order to evaluate and determine anomaly
situations during the mineral transport process system in un-
derground mines. Following the application of unsupervised
learning techniques, [50] developed a study regarding the
establishment of truck traffic classification (TCC) groups for
pavement mechanistic-empirical design. TCC groups are cru-
cial for designing specific road pavements. The authors used
data collected at the WIM station (vehicle class and weight
data) to first reduce the high-dimensional traffic features
using the PCA technique and then applied the K-means al-
gorithm to establish appropriate TCC groups. [51] addressed
the problem of payload distribution in goods transportation
vehicles under complex environments. The payload distribu-
tion in the truck is fundamental to ensuring its long useful
life. The authors developed a novel DL-based approach to
predict the pile-up status and payload distribution (PSPD)
in trucks on bridges from images using the CNN model and
backwards-propagation neural network. [52] proposed a DL-
based methodology to identify the transportation vehicle’s
weight using data extracted from bridge WIM. Recently, [53]
focused on applying the DL technique in order to create
a system able to estimate the material quantity transported
in the uncovered dump trucks. They used a total of 4,884
images for training the VGG16 model (convolutional neural
network). Finally, regarding the logistic context, [48] devel-
oped a supervised machine learning classifier (random forest)
to predict the industry group (farm products, mining ma-
terials, chemicals, manufactured goods, and miscellaneous
mixed goods) of the carried goods through the anonymous
freight movement data (trip and stop sequences) extracted
from global positioning system (GPS) of the transportation
vehicle. In this work, we proposed a novel approach, as
highlighted by the last row of Table 1. In sharp contrast with
previous studies (e.g., [44], [45]), we investigate the perfor-
mance (in terms of predictive power) of ML-based models
to predict weighing deviations in the dispatch workflow so
that to avoid monetary, logistic, and security consequences,
which includes long delays due to blockage of transportation
vehicles inside the factory, monetary, and service level losses.

CustomersManufacturer

Cement
storage silos

Raw material
storage

Manufacturing
process

Bagged 
cement storage

Material flow

Information flow

Suppliers Cement delivery

Order

Raw material delivery

Order for raw material

Upstream Downstream

FIGURE 1. Cement industry supply chain network adapted from [16].

We intend to fill several gaps in the literature, namely the
lack of studies associated with the cement industry supply
chain and the exploration of data-driven approaches using
real-world supply chain case study to enhance the OFP by
improving the dispatch workflow process, more properly the
problem of the percentage deviation of weighing.

III. PROBLEM FORMULATION
Fig. 1 illustrates the considered standard cement industry
supply chain topology composed of a single manufacturer
with several suppliers and customers, which stands on the
supply chain operation reference (SCOR) model processes
(Fig. 2).

The SCOR model comprises the following six primary
management processes: plan, source, make, deliver, return,
and enable. The plan process consists of developing plans
to operate the SC, source aims to describe the ordering and
receipt of goods and services, make consists of transforming
products into a finished state in order to meet planned or
actual demand, deliver aims to describe the activities as-
sociated with the creation, maintenance, and fulfilment of
customer orders, return process describes all activities related
to the reverse flow of goods, and enable process describes all
activities related to supply chain management including the
management of business rules, performance management,
and data management, among others. In this paper, we focus
our attention on the delivery management process, more
precisely on the cement distribution operations regarding the
problem of the percentage deviation of weighing during the
dispatch workflow process. The dispatch workflow process
is defined here as the logistic flows of material (cement) in
the cement industry and it is considered a crucial process
in such an industry value chain. The problem of percentage
deviations in the weighing processes out of thresholds stipu-
lated for security purposes compromises the entire dispatch
workflow process, leading to monetary, logistic, and security
consequences, including long delays due to blockage of
transportation vehicles inside the factory, and monetary and
service level losses. In this way, certain improvements in the
cement distribution operations can lead to cost reduction, and
improvement in service levels and consequently achieve SC
performance.

4 VOLUME 4, 2016



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 1. Chronological scientific works regarding heavy vehicle weighing processes using ML techniques.

Study T
a

Algorithm
b

Evaluation measures
c

D
d

E
e

P
f

R
g

TD
h

[44] ML ANN ACC Yes HO - - T
[45] ML SVM ACC, Micro-TPR, Micro-PPV,

Macro-TPR, Macro-PPV
Yes CV - 16k T

[46] ML CNN, TL ACC Yes HO - 2.4k I
[47] ML, S ANN, MC MSE No CV - 500k T
[49] ML GNB, KNN, SVM, DT ACC, F1, TPR, PPV Yes CV 15w 33.4k T
[50] ML PCA, KNN RMSE Yes - 1y 564 T
[51] ML CNN ACC, RMSE No HO - 8.8k I
[52] ML CNN ACC, TPR, PPV No HO - 212 I
[53] ML TL ACC No HO - 4.8k I
[48] ML RF TPR, FPR, PPV, ROC, F1 Yes HO - 2k T
This work ML SVM, DT, RF, XGBT, GBT,

MLP
AUC, TPR, FPR Yes RW 2.4y 45k T

a Modeling Technique: ML - machine learning, S - simulation.
b ANN - artificial neural network, SVM - support vector machine, CNN - convolutional neural network, RF - random forest,
KNN - k-nearest neighbours, MLP - multi-layer perceptron MARS - multivariate adaptive regression, GBT - gradient-boosted
tree, XGBT - extreme gradient boosting, DT - decision tree, PCA - principal component analysis, GNB - gaussian naïve bayes,
TL - transfer learning, MC - Monte Carlo.
c RMSE - root Mean square error, MSE - mean squared error, TPR - true positive rate, PPV - positive predictive value, ACC -
accuracy, F1 - f1 score, FPR - false positive rate, ROC - receiver operating characteristic, AUC - area under the ROC curve.
d Empirical Data.
e Model Evaluation scheme: HO - hold-out, CV - cross-validation, RW - rolling window.
f Data Period: w - week, m - month, y - years.
g Data Records: k - thousands of records.
h

Type of Data: T - tabular, I - images.

FIGURE 2. SCOR model extracted from [3].

Let T = {(xi,yi)}ni=1 be the training set with xi ✓ Rp

the vector of predictor variables and yi 2 {0, 1} the response
variable of each individual i. The main goal of this work is
to construct a classification model that predicts the normal
or abnormal percentage deviation in weighings during the
dispatch workflow process (response variable y) by taking
advantage of the predictor variables x.

IV. MATERIAL AND METHODS
A. INDUSTRIAL CASE STUDY
This work was developed in the Engineering and Innovation
Department of Cachapuz - Weighing & Logistics Systems,
Lda, Portugal. This company is a leader in Portugal in the
design and manufacture of weighing equipment and a Euro-

pean reference in the design and implementation of Software
solutions to automate the logistics, dispatchings, and weigh-
ings processes in various industrial sectors (for instance,
the SLV Platform composed by SmartWeigh Solutions and
SLV Solutions). Cachapuz’s integrated weighing systems are
part of the operation of weighing logistics processes in 63
countries from 5 continents. Regarding the cement sector,
Cachapuz designed and developed a framework called SLV
Cement1 (an integral part of the SLV Solutions2) that focuses
only on logistics challenges faced by cement companies. It
represents dispatching and logistics flow control solutions
that aim to automate all processes from the truck’s arrival
at the cement plants to the cement expeditions.

In our case study, the dispatch workflow process consists
of the logistic flows of material (cement) in the cement indus-
try, which contains several areas responsible for a specific
task, as depicted in Fig. 3. This process includes all oper-
ations of entry, exit, and transfer of material (e.g., parking
management, weighing operations, dispatching, entry/exit
gates, bulk/bagged/pelletized cement loading), as illustrated
in Fig. 4. Hence, cement is dispatched from the cement
industry plant directly to customers.

1https://www.slvcement.com/
2https://www.cachapuz.com/slv-solutions/
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(a) Schematic representation.

01: Check-in area 02: Parking station
area 03: Gate-in area

06: Weight-out area 05: Operation station
area 04: Weight-in area

07: Check-out area

(b) Block diagram.

FIGURE 3. Material flow in a cement plant.

Firstly, the client (represented by the driver of the trans-
portation vehicle) performs the check-in (area 01) and heads
to a parking station, waiting for entry to the factory (area 02).
Next, when authorized to enter, the client proceeds to the
gate-in area (area 03) and afterwards to the weight-in area
in order to weigh the vehicle tare, i.e., vehicle empty (area
04). At this point, the client is routed to an operating station
composed of three different stations: bulk station (area 05.1),
automatic station and manual station (area 05.2). At the bulk
station, the transportation vehicles follow the cement silos for
loading. Regarding the automatic station, the transportation
vehicles go to the warehouse for loading using bagged or
pelleted cement, and the manual station aims for loading
using bagged cement. After loading with the ordered quan-
tity, the weighing process is performed again (weight-out) in
order to get the weight of the vehicle fully (area 06). Finally,
at the check-out area (are 07) is verified the percentage
deviations in weighings (difference between weight-in and
weight-out). At this stage, the client proceeds to the gate-out
and leaves the cement plant when the percentage deviation
is between the defined threshold, otherwise is performed the
inspection of the transportation vehicle. This process enables
the transportation vehicle drivers for the loading operations
entirely in self-service mode. In fact, all steps of this process
are carried out for control and security purposes, ensuring
that the customer is carrying the amount previously agreed
and also that the safety weight to be carried by the transport
vehicle is not exceeded.

The aforementioned process is considered crucial in the
cement industry value chain. However, cement industry com-
panies are constantly facing the problem of percentage devi-
ations in the weighing processes (weigh-in and weigh-out)
out of thresholds stipulated for security purposes (in our case
study ]�1;�2][[2; +1[) compromising the entire dispatch
workflow process and consequently leading to monetary
loss, and logistic and security consequences. The expressed
problem leads to several consequences, although, the most
common is the blockage of the transportation vehicle inside

the factory for further inspection when performing the check-
out, which in several circumstances takes a lot of time to be
solved and consequently huge constraints during this process
caused by long delays. As an aggravating factor, such block-
age of the transportation vehicle inside of the factory may
force to restart part of the process, i.e., unload the cement and
redirect the transportation vehicle to the previously assigned
operation station (area 05.1 or 05.2) to repeat this stage of the
process.

B. TECHNOLOGICAL ARCHITECTURE
The proposed data-driven technological architecture is com-
posed of three main components, as depicted in Fig. 5.

1) Machine Learning: this component consists of de-
ploying the selected ML model using a Docker con-
tainer. We have developed a REST API using the Flask
micro-framework, providing two main endpoints: an
endpoint that allows training the selected ML and then
creating a pickle3 of this model, and a second endpoint
that aims to load the pickled model to afterwards be
used to make predictions. In addition, all prediction
results are saved in a structured query language (SQL)
database.

2) SLV Cement: this platform is part of the SLV Platform
and is proprietary of the Cachapuz - Weighing & Lo-
gistics Systems, Lda. It is responsible for automating
the material flow in cement plants and aims to improve
and optimize the dispatch procedures, allowing the
monitoring and control of operations so that to lead
to logistics and service level performance. In addition,
this platform is integrated with SAP enterprise resource
planning (ERP). All data used by the ML models are
ingested from the SQL databases of this platform.

3) Visualization: this component allows the creation
of data visualizations for the end-users using the
PowerBI4 tool.

3https://docs.python.org/3/library/pickle.html
4https://powerbi.microsoft.com/pt-pt/desktop/
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FIGURE 4. Steps of the analized dispatch workflow process.
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FIGURE 5. Technological architecture of the solution.

Figure 6 illustrates the exploratory diagram of the method
applied for the prediction of weighing deviations in the
dispatch workflow process.

C. MACHINE LEARNING PIPELINE
Fig. 7 illustrated the proposed ML pipeline composed of the
following three main steps:

1) Data Preparation: this step comprises data process
tasks such as data selection, data cleansing, data con-
struction and formatting, which are more detailed in
Section IV-D.

2) Modeling and Evaluation: several ML models are
implemented and then evaluated its predictive power
adopting evaluation metrics, as detailed in Sections
IV-H.

3) Deployment: the selected ML model is deployed from
a REST API developed using the Flask5 framework,
running in a Docker6 container. During this process, an
ML model is selected and trained, and subsequently, a
pickle of the trained model is created to perform future
predictions. Additionally, all predictions are stored in a
SQL Database.

D. DATA PREPARATION
1) Weighing process data
The data used in this work are proprietary of the Cachapuz -
Weighing & Logistics Systems, Lda, Portugal, collected from
the SQL databases of the SLV Cement platform between
December 2019 and March 2022, containing all the dispatch-

5https://flask.palletsprojects.com/
6https://www.docker.com/
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FIGURE 6. Exploratory diagram (dispatch workflow process and prediction of weighing deviations).

ing workflow process (all steps from the truck’s arrival at
the cement plant to the cement expeditions). The collected
data include a total of 45,000 examples with 22 features, as
described in Table 2. These data were used as a basis for
the feature engineering process, where new variables were
generated using the business domain expert knowledge in
order to improve the predictive power of the ML models (see
Section IV-D2).

We performed the exploratory data analysis (EDA), and
we found that the class distribution of our target output
is imbalanced [18], i.e., the class distribution is biased or
skewed as depicted in Fig. 8. We found that 91.2% of dis-
patch workflow occurs normally without abnormal weighing
deviations (class “0"), and only 8.8% represents an alarmist
situation, where trucks are blocked for further inspections
due to such deviations in the weighing process (class “1").

It is common sense that imbalanced classification repre-
sents a challenge for predictive modeling since severe class
imbalance between majority and minority classes can bias
the predictive performance of ML algorithms, especially
regarding the minority class. Furthermore, in this context,
the minority class is usually most interested and therefore
the problem is more sensitive to misclassification for the
minority class than the majority one. We address this problem
by adopting the synthetic minority over-sampling technique
(SMOTE) [19] in the training set in order to generate new
artificial instances of minority class to balance the class
distribution. It should be noted that the test sets are analyzed
using their original class distribution values, thus are highly
unbalanced. In addition, we also performed data cleansing

tasks in order to remove duplicated data and fill rows with
missing values. We assess the relationship between variables
through the correlation matrix, as illustrated in Fig. 9. Note
that, there is a high correlation (correlation coefficient whose
magnitude is greater than 0.50) between some of the dataset
variables. Furthermore, after the feature engineering task,
using the variable inflation factor (VIF), we performed the
multicollinearity calculation between variables and gradually
removed the variables with high multicollinearity until the
level of the remaining variables’ multicollinearity drops sig-
nificantly.

2) Feature Engineering

Feature engineering consists of creating new features from
original ones by using domain knowledge in order to improve
the prediction capability of ML models [30], [37]. Hence, we
created a set of new features based on both the interpretation
of data after the exploratory data analysis (EDA), and mul-
tiple brainstorming meetings with the domain expert from
Cachapuz - Weighing & Logistics Systems, Lda - Portugal,
as follows:

• Historical percentage of vehicle blockages - the per-
centage of vehicle blockages may influence future
blockages, i.e., if a given transportation vehicle is fre-
quently blocked inside the factory for further inspection,
there is a high probability that it happens again.

• Average of percentage deviation at operating sta-

tions weekly - a weekly average of deviations regarding
a given operating station.

8 VOLUME 4, 2016
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FIGURE 7. Machine Learning pipeline.

FIGURE 8. Distribution of output target.

• Average of percentage deviation at operating sta-

tions hourly - an hourly average of deviations regarding
a given operating station.

• Average of n deviation at operating stations - the
average of deviations regarding the last five weighings
from a given operating station.

• Hour of weighing (*) - Hour of the weigh-in operation.
There are certain hours of the day when alarmistic
deviations occur frequently.

• Day of weighing (*) - Day of the weigh-in operation.
The day of operation may influence future alarmistic
deviations.

FIGURE 9. Correlation between variables.

• Day of week of weighing (*) - Day of the week re-
lated to the weigh-in operation. The day of the week
regarding the operation may influence future alarmistic
deviations.
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TABLE 2. Summary of the weighing process data attributes.

Context Attribute Description (format, example) Feature

Vehicle
Documentation Type of documentation (text, ‘20190320’) No
Type of vehicle Configuration of truck (Axles) (text, ‘Z002’) No
Licence plate Licence place of the truck (text, ‘01-MH-RD’) No

Product Product number Product ID (text, ‘FH123201’) No
Description Description of the product (text, ‘Cement bag’) No

Order Quantity Ordered quantity (number, 3000) Yes

Weighing
Tare Weight of truck tare (number, 4500) Yes
Gross Weight Gross weight (number, 8000) No
Net weight Net weight (number, 3500) No

Operation

Station Operating station (text, ‘Station 1’) No
Creation date Date of record creation (date, ‘20211212’) No
Entrance date Date of truck entrance in the factory (date, ‘20211212’) No
Tare Date Date of weighing truck tare (date, ‘20211212’) No
Start Operation date Date of operation start (date, ‘20210202’) No
End Operation date Date of operation end (date, ‘20211212’) No
Gross Date Date of weighing truck fully (date, ‘20211212’) No
State State of the operation (text, ‘C’) No
Exit date Date of a truck exit of factory (date, ‘20211212’) No

Entity & Driver
Entity number Entity ID (text, ‘XD-125-D’) No
Driver number Driver ID (text, ‘SS02RD6’) No
Driver name Name of the driver (text, ‘John Phillips’) No

Target Deviation Deviation from weighing process (ordered quantity vs. net
weight) (number, 1)

Yes

• Month of weighing (*) - Month of the weigh-in op-
eration. The month of operation may influence future
alarmistic deviations.

• Inspection period during a day - Period of the day
with an inspector for manual loading of cement to the
transportation vehicles.

(*) After EDA from the data, we find patterns associated
with these features.

E. FEATURE PREPARATION AND HYPERPARAMETER
TUNING
1) Feature scaling
Feature scaling is a crucial data pre-processing task for
good classification performance. It aims to scale or transform
data in order to make an equal contribution to each feature.
Certain ML algorithms such as k-nearest neighbors (k-NN),
artificial neural networks (ANN), and support vector ma-
chines (SVM) are sensitive towards feature scaling. Among
several feature scaling methods, Min-Max [0, 1] and Z-score
methods were reported to be the best ones [2]. In this work,
we adopted the Z-score method to be the most sensitive to
outliers. Thus, the mean and standard deviation are calculated
from the training set (oldest data) to then be used to re-scale
the data (train and test sets) by using (1) in order to features
have zero mean and unit variance.

x
0
i,n =

xi,n � µi

�i
(1)

2) Feature selection
Feature selection aims to select a subset of features by
removing all unnecessary, irrelevant, and redundant data that
may negatively affect the performance of ML models [29].
According to [29], two main approaches can be followed or a
combination of both to accomplish this task, namely manual
and automatic selection. In addition, the authors highlighted
the importance of manual selection, but also the usefulness
of automatic selection. In this work, we only performed a
manual feature selection using business domain knowledge,
since there was no need to resort to a further automatic
feature selection process given that the manual selection
resulted in a rather small number of features.

3) Hyperparameter tunning
Hyperparameter tuning represents a crucial task in every
ML project and aims to define the optimal hyperparameters
for a given ML model. In this work, we adopted Bayesian
optimization using the HyperOpt library combined with k-
fold cross-validation for hyperparameters optimization using
only the training set. First, we define the search space and
then, in the objective function, we consider the symmetrical
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AUC metric (�1 ⇥ AUC) as the criterion to be minimized
over 10 iterations of the tree of parzen estimations (TPE)
method [22].

F. MODELING: CLASSIFICATION ALGORITHMS
We tested six ML classification algorithms: decision tree,
random forest, gradient-boosted tree, extreme gradient-
boosting tree, support vector machine and multilayer percep-
tron.

1) Decision tree (DT)
A decision tree (DT) represents a popular method used for
classification and regression tasks due to its ease of inter-
pretation. It consists of a tree structure scheme (representing
a set of rules) composed of a collection of decision nodes
(input variables) connected by branches extending from root
nodes to leaf nodes (decision outcomes or targets). Such a
tree structure scheme express a general pattern of recursive
partition/split, in which, starting at the root node, attributes
are tested on decision nodes, resulting in multiple branches
(which can be visualized as a set of IF-THEN statements)
and similarly, each branch can lead to another decision node
or a leaf node [26].

2) Random forest (RF)
Random forest (RF) is an efficiently and commonly used ML
algorithm for classification and regression tasks, formulated
by [23]. It consists of an ensemble of decision trees built by
combining the bagging technique (also known as bootstrap
aggregation) with random feature selection regarding the
reduction of overfitting risk and achieving better predictive
power [14]. The bagging technique consists of a general
aggregation scheme, which aims to generate bootstrap sam-
ples from the original dataset using the CART method and
decrease Gini impurity (DGI) as the splitting criterion [12],
[13]. When building each tree, at each split, only a subset of
features randomly selected (mtry) are considered candidates
for splitting. In addition, the split is performed in order to
maximise the CART criterion [13]. For the classification task,
the final prediction of the ensemble is determined by majority
voting [5].

3) Gradient-boosted tree (GBT)
Boosting consists of a technique formulated in [11], which
aims to improve the accuracy of a predictive function by con-
verting weak learners into strong learners in an iterative way.
It applies weak learners in a sequential fashion to repeatedly
re-weighted versions of the training data [1], [25]. The weight
for the incorrectly classified examples is increased after each
boosting iteration, whereas the weight for correctly classified
ones is decreased [25]. Gradient boosting consists of building
additive regression models by fitting in a sequential fashion
a parameterized function (base learner) to pseudo-residuals
(gradient of the loss function L(yi, F (xi)) being minimized)
by least squares at each iteration [10]. Randomization can be
introduced into the iterative procedure in order to improve

the approximation accuracy and execution speed of gradient
boosting, improving the robustness against overfitting of
the base learner (tree). [6] proposed the gradient boosting
machine (GBM) using the connection between boosting and
optimization [10].

4) Extreme gradient boosting (XGBoost)
The extreme gradient boosting (XGBoost) algorithm consists
of an ensemble of decision trees based on gradient boosting
proposed by [4] in order to be efficient and highly scalable
[5], [14]. It introduces the regularization term into the objec-
tive function in order to prevent the overfitting phenomenon
[4], [5]. Thus, the XGBoost build an additive expansion
of the objective function through the minimization of the
loss function, similarly to gradient boosting, which can be
expressed as follows [5]:

Lxgb =
NX

i=1

L(yi, F (xi)) +
MX

m=1

⌦(hm) (2)

where L(.) is a convex loss function and ⌦(.) represents
the regularization function used to prevent overfitting by
controlling the complexity of the model.

⌦(h) = �T +
1

2
� kwk2 , (3)

where T denotes the number of leaves nodes of the tree, w
is the output scores of the leaves, and � and � represent the
regularization parameters that determine the relative weight
of the penalty term.

5) Support vector machine (SVM)
Support vector machine (SVM) is a powerful learning and
popular algorithm for classification and regression purposes
developed by [8], based on statistical learning theory [7]. It
uses the nonlinear mapping (�) to transform the input x for
a high m-dimensional space (m > I , where m represents
the number of features) with kernel function (K(x, x0) =Pm

i=1 �i(x)�i(x0)) to afterwards find the best linear sepa-
rating hyperplane (see (5)) regarding a set of support vector
points in the feature space [7]. Among several kernel func-
tions, e.g. linear, polynomial or sigmoid, the most popular is
the Gaussian kernel (4):

K(x, x0) = exp(�� kx� x
0k2), � > 0 (4)

byk = w0 +
mX

i=1

wi�i(xk) (5)

The output target of the binary classification is given in the
range y 2 [�1, 1] and the classification function:

f(xk) =
mX

j=1

yi↵jK(xj , xk) + b (6)

were b and ↵j represent the model coefficients.
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6) multilayer perceptron (MLP)
Multilayer perceptron (MLP) is one of the most popular
neural networks for pattern classification tasks. It consists of
a feed-forward neural network composed of three different
layers, which include an input layer, one or more hidden
layers and an output layer fully interconnected forming the
network topology, trained using the back-propagation algo-
rithm [25]. Initially, each connection represents a random
weight, then it is adjusted during the learning process. The
input layer is intended to receive inputs from the outside
world, as such the number of neurons in this layer is de-
fined by the input data. The output layer provides the result
of the predictions to the outside world, and therefore, the
number of neurons is determined by the number of classes.
The hidden layer aims to link the input layer to the output
layer, extracting useful features and subfeatures from the
input patterns with respect to the prediction output. Thus,
the number of hidden layers and neurons in each hidden
layer are both user-defined considering the problem under
consideration [9], [26], [28]. Moreover, the hidden neurons
use the sigmoid transfer function:

f(zi) =
1

(1 + exp(�zi))
(7)

zi =
nX

j=1

wixj (8)

where xj represent the activity of the jth input neurons and
f(zi) the activity of the ith neurons of hidden layer.

G. EXPLAINABLE ARTIFICIAL INTELLIGENCE
Over the last few years, artificial intelligence (AI) has in-
creasingly been considered a key driver of value creation
for companies. However, even with these unprecedented
advances, several AI-based systems lack transparency due to
their “black-box" nature [39], [54]–[56]. Indeed, black-box
ML methods, such as SVM, ANN, DL, RF, and XGBoost,
among others, are increasingly being used for addressing
problems related to different areas of activity, providing
powerful and accurate predictions [39], [41]. As such, these
methods are very complex and consequently not directly
explained or easily understood by humans. Nevertheless, in
general, humans are sceptical about adopting techniques that
are not directly interpretable, tractable and trustworthy, even
worse for making important decisions [39], [41], [56]. Yet,
explainable artificial intelligence (XAI) proposes to make AI
more transparent [39], [55], [56]. In this work, we adopted
the Shapley additive explanations (SHAP)7 for providing
interpretability for the proposed ML models. This XAI ap-
proach was proposed by Loyd Shapley and uses Shapley
Values from the games theory to interpret the output of ML
models [57]. Indeed, the Shapley value of a feature repre-
sents the difference between the average prediction value of
samples considering and not considering this feature [14].

7https://shap.readthedocs.io/
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FIGURE 10. Rolling window scheme adapted from [36].

H. EVALUATION
We adopted a realistic and robust rolling window (RW)
scheme for evaluating the classification models, as depicted
in Fig. 10. This scheme is realistic because it produces a set
of training and test iterations over time, simulating the real
environment in which the ML model will be used. Further-
more, in contrast to the popular single hold-out train and test
scheme, it is robust because it allows a set of predictions to
be produced regarding each iteration, thus allowing multiple
evaluations of the ML model over time.

This scheme works in a systematic way, as following
described. Firstly, the model is trained using a fixed training
window W which contains the oldest samples and afterwards
makes predictions using the subsequent T samples from the
first iteration of RW (U = 1). Then, the training window
slides in S instances in the second RW iteration (U = 2),
causing the replacement of the S oldest samples of the train-
ing window by the S recent ones. Therefore, a new model
is fitted and then predicts the new subsequent T samples. As
aforementioned, this process is systematic and repeats until
the last RW interaction. The total number of RW iterations is
calculated by using (9).

U =
(D � (W + T ))

S
(9)

1) Measuring model performance
The overall predictive performance of classification models
is given by the AUC of receiver operating characteristic
(ROC) analysis, also known as AUC or AUC-ROC [24]. The
ROC analysis is obtained by considering the predictions as
probabilities (p) for a binary class. The class is assumed true
if p > D, where D is a decision threshold. The predicted class
labels can be used to compute the confusion matrix regarding
a fixed D. Fig. 11 depicts an example of the confusion matrix,
which matches predicted outcomes with the actual values. It
includes four main statistics for the binary classification task
[28]:

1) True positives (TP) - number of positive class correctly
classified;
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2) True negatives (TN) - number of negative class cor-
rectly classified;

3) False positives (FP) - number of negative class incor-
rectly classified as positive class, and;

4) False negatives (FN) - number of positive class incor-
rectly classified as negative class.

TNN

N

FP

P

FNP TP

Actual

value

Prediction outcome

N - Negative; P - Positive

FIGURE 11. Confusion matrix for a binary classification task.

Moreover, we also considered other classification metrics
which are obtained from the confusion matrix, as follows
described [21], [26]:

1) True positive rate (TPR), recall, hit rate or sensitivity:

TPR =
TP

TP + TN
(10)

2) False positive rate (FPR) or fall-out:

FPR =
FP

FP + TN
(11)

The ROC curve is a two-dimensional graphical represen-
tation technique for visualizing, organizing, and selecting
classifiers based on their performance. It aimed to summa-
rizes the trade-off between the TPR (y-axis) and FPR (x-
axis) for several threshold points (D), which ranges from
0.0 to 1.0 [21], [24], [27], [28]. Moreover, the ROC curve
is commonly used to measure the overall prediction accuracy
of the model [27]. The AUC aims to measure the quality of
the probabilistic classifier and is calculated by using (12). A
random classifier has an AUC of 0.5 and a perfect classifier
has an AUC of 1 [27].

AUC =

Z 1

0

TP

TP + FN
d

FP

FP + TN
d

=

Z 1

0

TP

P
d

✓
FP

N

◆ (12)

V. EXPERIMENTS AND RESULTS
All experiments in this work were conducted using the
scikit-learn library8 and code written in Python programming
language, executed on a personal computer (Lenovo E590)

8https://scikit-learn.org/

with Intel Core i7-8565U processor, CPU 1.80-2.00GHz and
16GB RAM installed.

A. EXPERIMENTAL SETUP
In this study, we explore six ML classification models (RF,
GBT, XGBoost, SVM, MLP, and DT) by adopting the rolling
window (RW) scheme to evaluate these models, producing
several training and test iterations and thus simulating a
real environment. After consulting logistics domain experts,
we configured the RW scheme considering the values W
= 31500, T = 635 and S = 635 (thus, the test sets do
not overlap), producing a total of U = 20 iterations. For
each iteration of the RW, both train and test sets are scaled
using the Z-score technique. Thus, we use the first iteration
(U = 1) to calculate the mean and standard deviation on the
features of the training set and then infer them to the features
of the training and test sets of all iterations. Afterwards, we
use only the training set for hyperparameter tuning adopting
Bayesian optimization. For each tested model, we defined
the hyperparameter space and the objective function to be
minimized over 10 iterations (maximum number of evalua-
tions) of the tree of parzen estimators (TPE) method [22].
Yet, in the objective function, we employed 5-fold cross-
validation [59] to further calculate the AUC metric (loss
or the criterion to be minimized). Indeed, the AUC metric
provides several advantages, such as the quality values are
not affected when the classification data is unbalanced and
it is easily interpreted by humans (50% – random classifier,
60% – reasonable, 70% – good, 80% – very good, 90% –
excellent, and 100% – perfect) [58].

Thus, for the DT model, we defined the hyperpa-
rameter search space under the ranges max_depth 2
{2, 5, 10, 20, 30} and min_samples_split 2 {2, 6, 10}.
The RF and GBT models considered the same hy-
perparameter space of the DT model, setting addition-
ally the number of trees to train n_estimators =
200. Regarding the SVM model, we defined the search
space C 2 {0.01, 0.1, 0.5, 1.0, 2.0} and kernel 2
{“linear”, “poly”, “rbf”, “sigmoid”}. In the case of MLP,
we defined a network with one hidden layer with H neu-
rons determined using the heuristic H = round(N/2)
where N denotes the number of inputs and also trained
with 500 epochs (max_iter = 500). We additionally
considered alfa 2 {0.0001, 0.05}, solver = “sgd” and
learning_rate 2 {“constant”, “invscaling”, “adaptive”}.
Lastly, for the XGBoost model, we defined the ranges
eta 2 {0.0, 0.25, 0.5,
0.75, 1.0}, max_depth 2 {2, 5, 10, 20, 30} and max_bin 2
{10, 20, 40, 80, 100}.

Furthermore, we adopted the non-parametric Wilcoxon
signed-rank test for paired samples [40] to calculate a
pseudo-median of the AUC metric for each model explored
over twenty RW iterations (U = 20) and determine whether
are significantly different from one model to another.
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FIGURE 12. Evolution of AUC score over the RW iterations.

B. OVERALL PREDICTIVE PERFORMANCE
Table 3 presents the overall predictive power of tested ML
models in terms of median AUC regarding 20 iterations of
the RW scheme. The last two columns denote the median
computational effort, in terms of the training and prediction
time. The results show that the RF model provides the best
predictive performance with a median AUC of 0.937, in
contrast with the DT model which provides the smallest
median AUC, although, it needs less time to train and predict.
In addition, we applied the Wilcoxon signed-rank test [40]
for the AUC significance, which indicated that the RF model
is statistically significant regarding the GBT, SVM, and DT
classification models.

Fig. 12 illustrates the evaluation of the AUC metric over
the RW iterations U 2 {1, 2, ..., 20}. Furthermore, to demon-
strate the quality of the obtained results and better measure
the impact of the selected RF model, we selected the test set
of iteration U = 19 to find and fix the best threshold (Th) D
(see Fig. 13) and then extract the confusion matrix at iteration
U = 20 using the fixed threshold (D = 0.285), as illustrated
in Fig. 14. Table 4 describes the RF model prediction for the
selected threshold D in terms of TP, TN, FP, and FN which
allows calculating the TPR and the FPR metrics.

Fig. 15 illustrates the ranking of the top 11 most important
features and their influence regarding the output classes for
the selected RF model using SHAP for the RW iteration
U = 20. Note that, the feature Average_Station_Hourly

represents the most important when predicting percentage
deviation in the weighing process, followed by the feature
Percentage_Blocks. Moreover, eight of these most impor-
tant features were created in the feature engineering process
(see Section IV-D2).

Fig. 16 and 17 deepen the feature importance analysis,
helping to understand the probabilities of features in terms
of the class “0" (i.e., normal or acceptable percentage de-
viation). Thereby, both figures exemplify the influence of
several attributes in the model’s decision-making. For that,
we applied SHAP to visualize the Force plot in two dif-
ferent weighing processes: in the first case, the RF model

FIGURE 13. RF ROC curve at iteration U = 19 and selected decision
threshold D = 0.285.

505N

N

80

P
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value
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FIGURE 14. Confusion matrix of the RF model at RW iteration U = 20 when
using D = 0.285.

FIGURE 15. Feature importance for the RF model.

provides the result of prediction as a class "0", and for
the second case, as a class "1". Fig. 16 illustrates a Force
plot of a normal weighing and determines that the features
Average_Station_Hourly and Percentage_Blocks con-
tributed the most to the prediction of class “0", with a total
probability of 0.84.

Fig. 17 illustrates the behaviour of the features in a sce-
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TABLE 3. Comparison of the optimized ML models (best values in bold).

Models AUC Training time (s) Predict time (s)

random forest (RF) 0.937
* 14.71 0.031

gradient-boosted Tree (GBT) 0.917 177.71 0.015
extreme gradient-boosting (XGBoost) 0.932 10.89 0.001
support vector machine (SVM) 0.928 318.48 0.374
multilayer perceptron (MLP) 0.933 15.19 0.000

decision tree (DT) 0.887 0.18 0.000

* Statistically significant under paired comparison with GBT, SVM and DT.

FIGURE 16. Force plot: Impact of features on normal weighing (percentage deviations within the thresholds).

TABLE 4. Prediction results of the RF model at RW iteration U = 20 when
using D = 0.285.

Th (D) TP TN FP FN TPR FPR

0.285 47 505 80 2 95.91% 4.08%

nario where the result of a prediction was class “1" and
shows how they impacted the probability of class “0". Thus,
we can note that features Average_Station_Hourly and
Average_Station_Weekly contributed the most to decreas-
ing the probability of class “0" and, on the other hand, feature
Percentage_Block contribute the most to increasing such
probability.

Fig. 18 depicts a dashboard implemented using the
PowerBI tool in order to create visualizations for the end-
users and therefore facilitate the integration of the proposed
in the case-study company.

The left side of the developed dashboard shows infor-
mation regarding the dispatching workflow process, namely
the product ID associated with the process ID, dispatching
date and the probabilities of class “0" and “1" from the RF
model, providing useful information regarding the results of
predictions. Moreover, it shows more detailed information
regarding the operation, product and ordered quantity, as
well information regarding the ranking of top more important
features such as average deviation (average deviation at the
station and average deviation at the station over time, hourly,
daily and weekly), helping to explain the model prediction
results.

VI. CONCLUSIONS
Industry 4.0 is significantly impacting the supply chain of
organizations by helping to support and improve complicated

and dynamic processes as well as manage large-scale pro-
duction and customer integration in order to achieve compet-
itive advantage and improved organizational performance. In
today’s globally competitive market, managing costs, man-
ufacturing, and product deliveries represent key drivers for
competitive advantage. In this context, we focus on improv-
ing the order fulfilment process through the improvement
of the dispatch workflow process, more specifically in the
process of loading cement into the transportation vehicle.
Hence, the occurrence of anomalies (deviations) in such a
process represents a complex problem that directly affects
cement industry organizations in terms of security, service
level, and monetary losses. Indeed, in this work, we propose
an ML approach to predict weighing deviations in the dis-
patch workflow or vehicle dispatch process. Moreover, we
proposed an ML pipeline for exploring six ML classification
models and afterwards the selected model is deployed using
the technological architecture (see Fig 5). Regarding the data
preparation step of the proposed pipeline, we first extracted
the data from the databases of the SLV Cement platform
related to the aforementioned process. The data extraction
activity resulted in a total of 45,000 records which were
stored in CSV file format. Then, we perform data selection
in order to select relevant features and also the cleansing
tasks to remove inaccurate and incorrect records. Finally, in
the features engineering task, we created new features based
on the original ones using the domain expert knowledge and
also the knowledge acquired from the data after performing
the exploratory data analysis (EDA).

During the modeling stage, we adopted the RW scheme to
evaluate six ML classification models: decision tree, random
forest, gradient-boosted tree, extreme boosting tree, support
vector machine, and multilayer perceptron. All the features
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FIGURE 17. Force plot: Impact of features on abnormal or alarmistic weighing (percentage deviation without the thresholds).

Power BI Desktop
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Prob.
Class 1

 

2 11-10-2021 63,00% 37,00%

3 09-10-2021 63,50% 36,50%

3 09-10-2021 63,50% 36,50%

3 15-10-2021 63,50% 36,50%

42 11-10-2021 64,50% 35,50%

37 14-10-2021 66,00% 34,00%

2 12-10-2021 68,00% 32,00%

3 08-10-2021 70,38% 29,63%
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FIGURE 18. Dashboard: Predicting deviations of weighings in workflow dispatch process.

selected to compound the models’ input sets are standardized
using the z-score technique. We also adopted AUC as the
evaluation metric to compare the predictive power of the
explored models. Regarding the results, we find that the RF
model provides better predictive power with a median AUC
of 0.937 over the twenty iterations of the RW, followed by
the GBT, XGBT, SVM, MLP, and DT models. However, in
terms of computational effort, the DT model requires the
least amount of training time, approximately 0.18 seconds,
whereas the RF model requires 14.71 seconds to train. The
SVM model requires the most time to train (approximately
318.48 seconds). Furthermore, after applying the Wilcoxon
signed-rank test, we found that the RF model is statistically
significant over GBT, SVM, and DT. The RF model is
selected as it stands out as the best classifier in terms of
prediction power. To better evaluate the performance of the
selected model in a realistic setting, we set the iteration U
= 19 to search for the best threshold (D) of the ROC curve.
Thus, we obtained and fixed the threshold D = 0.285 and

subsequently it is used in iteration U = 20 to obtain the
confusion matrix. From the confusion matrix, we calculated
the true positive and false positive rates, resulting in TPR
= 95.91% and FPR = 4.08%. In addition, we explainable
knowledge from the RF model by using the SHAP method,
demonstrating the influence of each feature in the prediction
outcomes. Hence, we provide the top ranking of features
and demonstrate that eight of the eleven features consid-
ered were created in feature engineering tasks (see Section
IV-D2). Moreover, we find that Average_Station_Hourly

(created in the feature engineering task) represents the most
influential feature for the RF model. Lastly, the proposed
model (RF model) is deployed in a micro-service which is
connected to the SLV platform, using its data to train and
predict anomalies in the bag’s loading process. We also build
a Dashboard using the PowerBI tool, which aims to make
easier visualization of model predictions, as well as several
useful pieces of information for a better comprehension of
the prediction outcomes.
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The proposed ML approach provides operational and fi-
nancial advantages for the organization. Regarding the oper-
ational advantages, it allows getting information in advance
regarding probable blockage of transportation vehicles inside
of the factory at the check-out stage and consequently enables
monitoring and inspecting the entire process in order to pre-
vent long delays to solve the problem or restarting the entire
process. Moreover, security questions such as the violation of
federal regulations/norms of maximum gross vehicle weight
(e.g., overweight transportation vehicles) can be avoided.
The financial advantage is associated with the possibility of
avoiding sending orders in quantities greater than the order.
In future work, we plan to train the explored ML classifiers
with a large historical dataset, explore techniques to monitor
and estimate the performance of ML models (confidence-
based performance estimation and direct loss estimation)
post-deployment (without access to targets) and detect data
drift using tools such as NannyML9, measure the impact
of a model misclassification on the logistic performance of
the concerned company, explore other classifiers and also
AutoML tools for benchmarking purposes, and create new
features to improve the prediction performance of the pro-
posed ML models.
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APPENDIX

TABLE 5. List of acronym.

Acronym Description

SC supply chain
OFP order fulfilment process
ML machine learning
RF random forest
SHAP Shapley additive explanations
SCM supply chain managemenet
RW rolling window
XAI explainable knowledge
DL deep learning
BDA big data analytics
ANN artificial neural network
B-WIM bridge weigh-in-motion
SVM support vector machine
FEQS field earthmoving quantty statistics
SCOR supply chain operation reference
ERP enterprise resource planing
SQL structured query language
EDA exploratory data analysis
SMOTE synthetic minority over-sampling technique
VIF variable inflation factor
ROC receiver operating characteristic
AUC area under ROC curve
TPE tree of parzen estimations
DT decision tree
GBT gradient-boosted tree
XGBoost extreme gradient-boosting tree
MLP multilayer perceptron
U number of rolling window iterations
D size of dataset
W fixed training set size
T fixed size of testing set
S window slide size
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