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Abstract

In this paper, we propose a Machine Learning (ML) approach to predict faults that may occur during the production of fabrics
and that often cause production downtime delays. We worked with a textile company that produces fabrics under the Industry 4.0
concept. In particular, we deal with a client customization requisite that impacts on production planning and scheduling, where
there is a crucial need of limiting machine stoppage. Thus, the prediction of machine stops enables the manufacturer to react to such
situation. If a specific loom is expected to have more breaks, several measures can be taken: slower loom speed, special attention
by the operator, change in the used yarn, stronger sizing recipe, etc. The goal is to model three regression tasks related with the
number of weft breaks, warp breaks, and yarn bursts. To reduce the modeling effort, we adopt several Automated Machine Learning
(AutoML) tools (H2O, AutoGluon, AutoKeras), allowing us to compare distinct ML approaches: using a single (one model per
task) and Multi-Target Regression (MTR); and using the direct output target or a logarithm transformed one. Several experiments
were held by considering Internet of Things (IoT) historical data from a Portuguese textile company. Overall, the best results for
the three tasks were obtained by the single-target approach with the H2O tool using logarithm transformed data, achieving an R2

of 0.73 for weft breaks. Furthermore, a Sensitivity Analysis eXplainable Artificial Intelligence (SA XAI) approach was executed
over the selected H2OAutoML model, showing its potential value to extract useful explanatory knowledge for the analyzed textile
domain.
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1. Introduction

Nowadays, there is a pressure in the manufacturing industry to increase efficiency and reduce lead times. Within
this context, production downtime is one of the most important issues in manufacturing because it directly affects pro-
ductivity, efficiency, and profitability. It can be caused by planned maintenance, tool breaks, adjustments and several
human factors. Machine downtime is one of the attributable causes of variation in a manufacturing system, resulting
in poor reliability of the production schedule [21]. Thus, reducing downtime will increase machine availability which
in turn increases throughput reducing order lead times and increasing customer satisfaction [22].

In this work, we collaborate in the digital transformation process of Somelos, a Portuguese textile company that
produces fabrics, in order to improve the autonomy and performance levels of production planning and control. We
particularly focus on an issue raised by the organization and that is related to machine downtime regarding some
specific operating methods. The loom operating method consists in inserting a weft thread into a warp. For this
process to be possible, the healds cause some of the warp yarns to rise, separating the warp into two sheets; the weft is
inserted, passing the thread through the shed along with the fabric; the reed makes a beat, pushing the inserted thread
against the already formed fabric. This process can generate breaks in the warp yarns. The tensions to which the yarn
is subjected in this process will highlight the weak points of the raw material. Thus, a yarn with thin places will tend
to break when subjected to tension that would not be a problem for other areas of the yarn. Increasing the speed of
the process will increase the friction between the threads (in the process of shedding). Therefore, it will increase the
tensions of the process, leading to more breaks. The thick places and neps tend to increase friction between threads
when producing a fabric with high thread density [2]. This process can cause three major problems related to yarns:
weft breaks, warp breaks and yarn burst. When these faults occur, the operator must stop the machine in order to
reattach the broken yarns and only then she/he can resume the production. Even if this time is included in the article
expected efficiency, the ability to predict a more accurate efficiency will produce a better planning output.

The company has already implemented data collectors in the looms. This information is online and has given the
ability to react to several production events. But all of them are related to past events. By using data collected by
Internet of Things (IoT) sensors from the textile machines and Machine Learning (ML) algorithms, the goal of this
research is to predict the occurrence of the three types of fabric faults, allowing to better support production planning
and also identify the main factors that influence production faults. The collected data is related to fabrics characteristics
and the loom specifications extracted from the company Enterprise Resource Planning (ERP). To reduce the ML
modeling effort, we adopt three Automated ML (AutoML) tools, namely H2O, AutoGluon and AutoKeras, which are
complemented by a manually designed Deep FeedForward Neural Network (DFFN). Furthermore, the best predictive
model is further analyzed by using a Sensitivity Analysis eXplainable Artificial Intelligence (SA XAI) method [8],
which allows to measure the overall impact of the selected inputs on the predictions. This paper is organized as follows:
Section 2 introduces the related work; Section 3 describes the data related to fabrics and production machines, the
ML approaches and the evaluation; Section 4 details the obtained results; and finally Section 5 presents the main
conclusions.

2. Related Work

There are several characteristics of a yarn, such as uniformity and hairiness, that can increase tension in weaving,
and that combined with the winding tension of the beam can cause faults that stop production, such as warp and
weft breaks. In this regard, several authors presented empirical, statistical and instrumental methodologies to solve
the warp breaking problem [9]. Over the last years, different approaches based on ML techniques were also proposed
to solve this challenge. For instance, [5] proposed a program based on mathematical models through relationships
between specific elements of the yarn and its breaking strength, with the goal of predicting yarn breaks in the weaving
process, and concluded that weft breaks are significantly influenced by the weft insertion length and type of insertion,
given that increasing the machine width will have a higher probability of breakage. In [26] the authors employed a
feedforward back-propagation Neural Network (NN) to forecast the rate of warp breakage, obtaining a model that used
a single sigmoid hidden layer with four neurons, allowing to infer that the prediction of warp breakage is feasible (a
correlation coefficient of 99.5% was obtained between the predicted and true values). In [20] the authors also adopted
an NN to predict yarn break elongation and then inspected the influence of the input parameters and NN properties
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on prediction. On the neural functions used, the best performance was achieved with Purelin algorithm and the best
NN architecture was obtained using Levenberg-Marquardt training function. The six most influential factors of the
obtained NN were: yarn twist, yarn count, fiber elongation, length, length uniformity and spindle speed. In another
study, [27] proposed the use of NN with feedforward back-propagation to predict the warp breakage rate using the
yarn quality index as input. The selected ML model contained only one hidden layer and eight neurons, obtaining
a correlation coefficient of R2=99.3%. These works support the idea that NNs can forecast warp breaking rates and
that they are a useful approach with great potential for the textile industry. The ANOVA technique was used in [1]
work to detect the effects of the variables on yarn breaks on the warping machine and a regression model to predict
the number of yarn breaks, with the goal of inferring the impact of cotton/polyester blending ratio, cotton type, yarn
twist, and yarn count on yarn breaks on the warping machine. In terms of the impact factor, the findings reveal that the
cotton/polyester blending ratio has a considerable impact on yarn breaks, and that the number of yarn breaks varies
directly with single and plied yarn counts. According to [10], the most important factors affecting the efficiency of
an air-jet weaving machine are warp and weft breaks. The authors used a back-propagation algorithm to train a NN
to predict the number of weft breaks per million meters, and obtained a R2 of 0.955 between the actual number of
weft breaks and the predicted value, indicating that weft breaks can be predicted using NNs. In another study, [23, 24]
proposed the use of automatic methods to predict different properties of woven fabrics based on design and finishing
features using an Automated Machine Learning (AutoML) during the modeling stage of the CRISP-DM.

More recently, [25] developed a linear regression model to check if there is a link between warp breakage on the
weaving machine and mechanical yarn stretch. This link was corroborated by the obtained results (R2= 84.4%).

Within our knowledge, none of the related works was conducted under an Industry 4.0 environment, which allows
to easily collect big data. Moreover, the related works did not employ current state-of-the-art ML approaches, such as
AutoML and DL, which is addressed in this work.

3. Material and Methods

3.1. Textile and Machine Production Data

For the creation of the analyzed dataset, we have merged data attributes concerning the characteristics of the fabrics
and the textiles machines. Two tables from the textile company database were utilized to collect fabric characteris-
tics: one with 20,999 records that showed generic characteristics of all fabrics and another with 28,249 records that
corresponded to the features of the fabrics produced on the machines. On the other hand, the data related to the ma-
chine characteristics came from four different database tables: one with general machine characteristics (264 records),
two tables with the link between work orders and machines (24,484 and 30,964 records) and one with two years of
sensory data on machine downtime, with a total of 5,517,384 records corresponding to 29,959 work orders, of which
only 11,855 correspond to the remaining tables.

For extraction purposes, a combination of inner joins operations were used between the primary keys of the tables
to create just one data set, resulting in 1,966,217 records. To get the number of weft breaks, warp breaks, and yarn
bursts, the data had to be grouped using code_fabric, idShift, the work order identifier, and the MachineTypeCode,
which resulted in three new columns representing the number of warp breaks, weft breaks and yarn bursts, reducing
the dataset to 1,502 records.

Apart from the three targets (number of warp breaks, number of weft breaks and number of yarn bursts), the final
dataset has twenty different features, 18 of which are numeric, one categorical, and one nominal. In particular, the
work order identifier feature was discarded because it consists of a simple incremental identification code. Table 1
summarizes the attributes of the final dataset. The first group of attributes are related to fabric characteristics and the
second group is related to textile machine characteristics. The value ranges for the three target attributes (the number
of Warp Breaks, Weft Breaks and Yarn Bursts) are: [1, 226], [1,236], and [1, 15].

3.2. Data Preprocessing

The data preprocessing phase was divided into two approaches which are factor of comparison in the Table 2. In ap-
proach A, the data preprocessing phase involved the transformation of the categorical and nominal data as well as the
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Table 1: List of input attributes used for the regression tasks.

Attribute Description (data type) Range

Fabric
Characteristics

code_fabric Fabric type code (numeric) [4009531, 5152412]

fabrictype
Code that identifies if the fabric is raw
or finished (nominal code) 2 Levels

WarpDrawingCode Code that identifies the warp design (categorical code) 508 Levels
WeftDrawingCode Code that identifies the weft design (numeric) [1, 999]
WidthFabric Fabric width in centimeters (numeric) [127, 187]
TotalWeft_Yarns Quantity of weft yarns (numeric) [2992, 19000]
Nweft_Yarn_Inch Number of weft yarns per inch (numeric) [51, 318]
TotalWarp_Yarns_Rapport Quantity of warp yarns (numeric) [1, 1880]
Reed Width Fabric Width of the reed for the fabric in centimeters (numeric) [155.59, 235]
N_EndHeald Quantity of healds in the extremity (numeric) [0, 4]
Linear_Weight_CrudeItem Linear weight of the raw material (numeric) [105, 534]
N_Heald_FabricBody Quantity of healds in the body of the fabric (numeric) [4, 28]

Perc_QualMaterialWeaving
Percentage of second quality article in the
weaving mill (numeric) [0.25, 4]

Machine
Characteristics

idShift Identification working shift (numeric) [1, 3]
MachineTypeCode Code that identifies the type of loom (numeric) [21, 81]
Npicks_Inch_RawMat Number of picks per inch for raw material (numeric) [34, 146{]

Npicks_Inch_Warp_FinishedMat
Number of warp picks per inch for
finished material (numeric) [37, 150]

Weight_Finished_Fabric Weight of finished article (numeric) [64, 336]
MachineSpeed Speed of the loom (numeric) [400, 900]
Reed Width Width of the reed in centimeters (numeric) [190, 260]

numerical attributes that represented identification codes such as code_fabric, MachineTypeCode and WeftDrawing-
Code. For the transformation of the nominal attribute, taking into account that it had only two levels, a label-encoder
was used. In the remaining transformations, the Inverse Document Frequency (IDF) proposed by [4] was used. IDF is
a data transformation process where a categorical value is encoded according to the following equation:

IDF(l) = ln( N
fl

) (1)

where N denotes the total number of instances (values), and fl represents the number of occurrences of level l in the
training data. When using this transform, a closer numeric value to 0 means that the level is persistent in the data. The
higher the value, the less frequent the level is, with the less frequent levels being grouped closer. This transformation
methods is particularly useful when the cardinality of categorical features is substantially high [16, 15]. In order to
standardize the values of the data set, a standard scaler was applied to all attributes (except targets). Approach B
followed all the previous procedures, but the function log(y+ 1) was applied to the output targets. This transformation
is commonly adopted when the target distribution is skewed to the left, as shown in Fig. 1. It should be noted that once
a ML is trained, the inverse logarithm function is applied to the model predictions, in order to analyze the approach
B results using the original target scale (as performed for approach A). The application of the logarithmic function
made the distribution more centered, removing the left skewed distribution that was mainly seen in the number of
warp breaks and the number of weft breaks, as presented in Fig. 2.

3.3. Machine Learning Methods

Considering that the same fabric can have all three faults in a single production order, this research compares two
main ML approaches: single-target and multi-target. The former assumes a distinct model selection and fit for each of
the three analysed tasks, while the latter, known as Multi-Target Regression (MTR), adopts a single ML model with
three outputs, one for each task. The implementation of the AutoML procedure automatically selects the best among
several state-of-the-art ML algorithms and allowed us to better focus on feature engineering, which is a non-trivial
task in this domain.
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Fig. 1: Distribution of the warp break (left), weft break (middle) and yarn burst (right) regression targets

0.5 1.0 1.5 2.0
Number of Warp Breaks

0

20

40

60

80

100

120

140

160

Co
un

t

0.5 1.0 1.5 2.0
Number of Weft Breaks

0

20

40

60

80

100

120

140

160

Co
un

t

0.4 0.6 0.8 1.0 1.2
Number of Yarn Bursts

0

200

400

600

800

Co
un

t

Fig. 2: Distribution of warp break (left), weft break (middle) and yarn burst (right), after the application of the logarithmic function.

The single-target experiments were run through two AutoML tools, namely AutoGluon [11] and H2O AutoML
[6], where a 10-fold internal validation was employed to select and tune the best ML model. The AutoML tools
were set up to automatically select the optimal model and its hyperparameters for each fold by minimizing the Mean
Absolute Error (MAE) measure, with a maximum execution duration of 1 hour per fold. In each iteration of the H2O
AutoML execution, the following ML families were accessible during the search: Distributed Random Forest (DRF),
Generalized Linear Model with Regularization (GLM), XGBoost, Gradient Boosted Machines (GBM) and Stacked
Ensembles (SE). The SE can be build by using all searched ML models (all) or by using only the best model for each
ML algorithm type (best of family). In turn, the ML algorithms searched by the AutoGluon tool were: LightGBM,
CatBoost Boosted Trees, RF, Extra Trees (XT), k-NN, Multiple Linear Regression (MR), as well as a DL dense
architecture that employs ReLU activation functions, dropout regularization, and batch normalization layers, and also
heuristics to adjust the hidden layer sizes. These AutoML tools provide a performance based stopping criterion, which
will stop the search process when the performance does not improve by a specified amount. In our case, we assumed
the default baseline performance criterion for each AutoML tool.

The AutoKeras tool [14] and a deep Multilayer Perceptron (MLP), also known as Deep FeedForward Neural
Network (DFFN) [13], were adopted for the MTR approach that handled all three targets (described in Section 3.1)
by using the same ML model.

The AutoKeras is an AutoML tool for DL, thus it automatically searches for the best DFFN model, tuning the
number of dense layers, units, type of activation functions utilized, dropout levels, and other DL hyperparameters
through a Bayesian Optimization [12]. The AutoKeras tool was configured similarly to the single-target AutoML
tools, namely the search used a 10-fold internal validation and the selection criterion was the average (of the three
tasks) MAE value. By default, the AutoKeras model tests a maximum of 100 models and chooses the model that
produces the best loss value. At the end and for each of the ten folds, the best models were stored on the machine.
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The manually designed DFFN adopted the Keras Python module and consisted of a setup that is identical to that
used in [17, 18, 19], with the exception that the DFNN contains three output nodes with the ReLU activation function.
In this work, the manually designed DFFN uses a triangular shape MLP, in which each subsequent layer size is
smaller: Input > L1 > ... > LH > 3. This structure is composed by H = 8 hidden layers being composed as follows:
(I, 1024, 512, 256, 128, 64, 32, 16, 8, 3).

3.4. Evaluation

In order to obtain a robust evaluation, all regression approaches were evaluated by using a 10-fold external cross-
validation method. To measure the quality of the results, the Mean Absolute Error (MAE), the Normalized MAE
(NMAE), and the R2 for each fold were calculated and then averaged over the 10 iteration folds. The NMAE measure
normalizes the MAE by the output target range on the test set, resulting in a scale-independent percentage that is easy
to understand and is represented by the following formula:

NMAE = MAE
(ymax−ymin) (2)

where the ymax and the ymin represents the highest and the lowest values of the target, respectively. Note that better
predictions are indicated by higher R2 values (the perfect value is 1), as well as by lower NMAE and MAE values (the
perfect value is 0).

4. Results

Table 2 summarizes the obtained predictive results. For each predicted task(Objective), we detail the used ML
technique (Tools) and the two strategies (Str) used. As previously explained, the results are shown in terms of the
average of the test scores for the external 10 folds (MAE, NMAE and R2). For the MAE measure, the table also
includes the standard deviation of the 10-fold external iterations (±s, where s is the standard deviation value) and the
mode of the most selected model for each approach. The best values are highlighted by using a boldface text font.

When analyzing the obtained results, it becomes clear that the single-target approach presents better predictive
performances when compared with the multi-target approach, independently of the preprocessing strategy of AutoML
tool used. Overall, and considering both MAE based and R2 measures, the best ML approach was obtained by the
single-target H2OAutoML tool and output logarithm transform (strategy B). Indeed, this approach obtained: the best
NMAE and R2 results for the Weft Breaks task, the best NMAE for the Warp Breaks target, with the R2 being only
1 percentage point worst than the best value; the third best NMAE result for the Yarn Bursts task, while obtaining an
R2 value of 0.43 and that is substantially higher than the one obtained for the methods with better NMAE values.

For demonstration purposes, Fig. 3 shows the Regression Error Characteristic (REC) curves [3] for the three target
prediction and 7th external k-fold iteration. Each REC curve plots the percentage of correctly predicted examples (y-
axis) for a given absolute error tolerance (x-axis). For instance, the left plot of Fig. 3 reveals that more than 70% of
the warp break predictions are correct when adopting a small tolerance of 0.4 points. To complement the visualization
of the obtained results, Fig. 4 presents the scatter plots of the measured (x-axis) versus the predicted values (y-axis).
Visually, it can be seen that the predictions for the warp and weft breaks are close to the ideal prediction diagonal
line. While the same effect is not that visible for the yarn burst predictions, it should be noted that in the left of Fig. 4
several of the predicted points do overlap. Thus, a better visual analysis is obtained in the right of Fig. 3, showing that
interesting predictions were obtained (e.g., more than 80% of the burst predictions are correct for a 0.4 tolerance).
Moreover, we highlight that the obtained predictive results were shown to the textile production experts, which provide
a positive feedback, found them very interesting to support production planning.

To further demonstrate the value of the selected predicted models (H2O tool and logarithm transform), we applied
a SA XAI approach to the 7th external fold iteration results, namely the 1-D SA, as implemented by the rminer
package [7, 8]. For this iteration, the AutoML tool selected a GBM model. The left of Fig. 5 plots the relevance of
the input variables (total of 20 input features). For instance, the most influential input is related with the number of
yarns on the weft by inches (total relevance of 14%). Moreover, the top 9 inputs account for 66% of the total influence
in the GBM model. As for the right of Fig. 5, it shows the Variable Effect Characteristic (VEC) curves for the top 5
relevant input variables. The VEC curve shows the average influence of one input in the output target when varying its
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Table 2: Obtained predictive results (best results per task are in bold)

Regression Metrics

Objective Tools Str MAE NMAE R2 Most Selected Model

WarpBreaks

H2O A 14.11 ± 0.77 8.18% 0.58 GBM
B 13.93 ± 1.02 8.07% 0.57 GBM

AutoGluon A 14.30 ± 0.76 8.28% 0.58 SE (all)
B 14.17 ± 0.93 8.22% 0.58 SE (all)

Keras A 17.82 ± 1.55 10.19% 0.41 DFFN
B 18.51 ± 1.58 10.58% 0.39 DFFN

AutoKeras A 17.97 ± 2.23 10.33% 0.40 DFFN
B 19.20 ± 2.09 10.97% 0.35 DFFN

WeftBreaks

H2O A 10.96 ± 0.81 6.59% 0.72 GBM
B 10.65 ± 0.98 6.47% 0.73 SE (best of family)

AutoGluon A 11.25 ± 1.02 6.79% 0.71 SE (all)
B 10.77 ± 1.13 6.50% 0.72 SE (all)

Keras A 15.05 ± 2.58 8.99% 0.44 DFFN
B 14.69 ± 2.35 8.64% 0.46 DFFN

AutoKeras A 13.27 ± 1.33 8.03% 0.60 DFFN
B 15.29 ± 1.23 9.09% 0.45 DFFN

YarnBurst

H2O A 0.69 ± 0.08 7.93% 0.44 GBM
B 0.68 ± 0.09 7.79% 0.43 XGBoost

AutoGluon A 0.68 ± 0.12 7.68% 0.19 SE (all)
B 0.68 ± 0.08 7.81% 0.32 SE (all)

Keras A 0.83 ± 0.12 8.74% 0.10 DFFN
B 0.76 ± 0.11 7.70% 0.17 DFFN

AutoKeras A 0.84 ± 0.12 8.55% 0.23 DFFN
B 0.73 ± 0.06 7.52% 0.27 DFFN

Fig. 3: REC curves for the warp break (left), weft break (middle) and yarn burst (right) predictions.
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Fig. 4: Regression scatter plot of best models for the warp break (left), weft break (middle) and yarn burst (right) predictions.

range through L = 7 distinct levels. The plot clearly reveals that the most influential input (Nweft Yarn Inch) produces
the largest GBM output response change (thus impacting more on the model). In general, an increase in the numeric
input also produces an increase in terms of the number of weft breaks. The obtained XAI knowledge was also provided
to the textile production experts, which confirmed that both input influence and input effects are in accordance with
their expert empirical knowledge.
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Fig. 5: Extracted XAI knowledge from the GBM model using the SA XAI method: input variable relevance (left) and top 5 VEC curves (right).

5. Conclusions

Under the Industry 4.0 paradigm, there is currently an opportunity to automatically collect data using IoT sensors
linked to production machines and then employ ML approaches to increase efficiency and reduce lead times. In this
work, we collaborate in the digital transformation process of Somelos, a Portuguese textile company that produces
fabrics, in order to improve the autonomy and performance levels of their production planning and control. In par-
ticular, we focus on three regression tasks that can improve the planning of fabric production: the number of warp
breaks, weft breaks and yarn bursts. Using real data, collected from IoT devices and the analyzed production system
database, we explore two preprocessing strategies (with and without a target logarithm transform) and two main ML
fitting approaches (single and multi-target). In order to reduce the ML modeling effort, we compared several AutoML
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tools, namely H2O, AutoGluon and AutoKeras. Overall, the best predictive results were obtained by the single-target
approach, assuming the H2O tool and a logarithm target transform. Interesting performances were achieved, resulting
in a NMAE value that ranges from 6.5% to 8.0% and R2 that varies from 0.43 to 0.73. The selected model was further
analyzed by using a SA XAI procedure, allowing to demonstrate valuable knowledge that can be extracted from the
fitted ML. For instance, the increase in the number of weft yarns per inch tends to increase the number of warp breaks.

The obtained ML results were discussed with the textile manufacturer experts, which returned a positive feedback.
Indeed, in future work, we aim to deploy the proposed ML approach in the real textile industrial setting.

Acknowledgments

This work is supported by the European Structural and Investment Funds in the FEDER component, through the
Operational Competitiveness and Internationalization Programme (COMPETE 2020) [Project PPC4.0 - Production
Planning Control 4.0; Funding Reference: POCI-01-0247-FEDER-069803].

References

[1] Almetwally, A.A., Mourad, M., Mohammed, A.E.E., 2013. A study of yarn breaks on warping machines. Life Science Journal 10, 108–114.
URL: http://www.lifesciencesite.com/lsj/life1001/016_12676life1001_108_114.pdf.

[2] Araújo, M.d., Rocha, A.M., 1989. Tecnologia da tecelagem. DGI, Lisboa. URL: http://catalogo.biblioteca.min-economia.pt/
cgi-bin/koha/opac-detail.pl?biblionumber=137876. vol. 1. - 257, [1] p.

[3] Bi, J., Bennett, K., 2003. Regression error characteristic curves, pp. 43–50. URL: https://www.aaai.org/Papers/ICML/2003/
ICML03-009.pdf.

[4] Campos, G.O., Zimek, A., Sander, J., Campello, R.J.G.B., Micenková, B., Schubert, E., Assent, I., Houle, M.E., 2016. On the evaluation
of unsupervised outlier detection: measures, datasets, and an empirical study. Data Mining and Knowledge Discovery 30, 891–927. URL:
https://doi.org/10.1007/s10618-015-0444-8.
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Changes Made after Revision

• "A few typo and mistakes like in page 4. f_t , N and t are variable that are not linked to any function." –
We altered the IDF function and subsequent text to match the equation variables. Also we corrected the typos
in the manuscript.
• "subsection3.1: are authors referring to columns or rows?" – We have rewritten the text in order to make it

more clear and altered table 1 to include a better context.
• "The authors rely on AutoML without any explanation. Why using these approches knowing they require

parameter optimization?"– We now detail this question by adding the following text in section 3.3: [The
implementation of the AutoML procedure automatically selects the best among several state-of-the-art ML
algorithms and allowed us to better focus on feature engineering, which is a non-trivial task in this domain.]
• "The authors stops optimization after 1 hour, how do you ensure the parameters are optimal."– We now

detail this comment by adding the following text in section 3.3 : [These AutoML tools provide a performance
based stopping criterion, which will stop the search process when the performance does not improve by a
specified amount. In our case, we assumed the default baseline performance criterion for each AutoML tool.]
• "I am not sure why the a autokeras has not been used to develop three separate NN for each fault?

How can the developed NN predict three different faults with one single model? are faults somehow
linked?"– We have rewritten the text in order to make it clearer. We have added the following text in section
3.3 : [Considering that the same fabric can have all three faults in a single production order, this research
compares two main ML approaches: single target and multi-target.]


