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RepositóriUM da Universidade do Minho.

Creative Commons Attribution-ShareAlike 4.0 International
CC BY-SA 4.0 https://creativecommons.org/licenses/by-sa/4.0/deed.en

iv

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en


A C K N O W L E D G M E N T S

Quero deixar em primeiro lugar o meu agradecimento ao professor e orientador Miguel
Rocha, por me ter proporcionado a oportunidade para desenvolver esta dissertação,
por toda a formação instruı́da durante o mestrado, pelo acompanhamento e pelas
oportunidades que advieram do trabalho realizado. Quero deixar o meu obrigado também
ao Marcelo Marashin, da Universidade Federal de Santa Catarina, pela orientação
referente aos dados espectrais e análise dos mesmos.

Em segundo lugar, quero agradecer aos meus colegas de mestrado que ao longo dos
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A B S T R A C T

Metabolomics is one of the omics’ sciences that has been gaining a lot of interest
due to its potential on correlating an organism’s biochemical activity and its phenotype.
The applications of metabolomics are being extended as new techniques reveal new
information on metabolic profiles and molecules, thus elucidating biological, chemical
and functional knowledge. The main techniques that collect data are based on mass
spectrometry and nuclear magnetic resonance (NMR) spectroscopy. The last one has
the advantage of analyzing a sample in vivo without damaging it and while its sensitivity
is pointed out as a disadvantage, multidimensional NMR delivers a solution to this issue.
It adds layers of information, generating new data that requires advanced bioinformatics
methods in order to extract biological meaning.

Since multidimensional NMR has different approaches within itself, the need to estab-
lish an integrated framework that allows a researcher to load its data and extract relevant
knowledge has become more imperative over the years. Also, establishing common data
analysis pipelines on one-dimensional and multidimensional NMR remains a challenge
in current scientific research hindering reproducibility across research groups.

In recent work from the host group, specmine, an R package for metabolomics and
spectral data analysis/mining, has been developed to wrap and deliver key metabolomic
methods that allow a researcher to perform a complete analysis.

In this dissertation, tools integrated in specmine were developed to read, visualize
and analyze two-dimensional (2D) NMR. A new specmine structure was created for
this type of data, easing interpretation and data visualization. In terms of visualization
a novel approach towards three-dimensional environments enables users to interact
with their data allowing peak hovering or identification of rich resonance regions. The
selection of which samples to plot, when the user does not specify an input, is based
on a signal-to-noise ratio scale which plots samples with opposite signal-to-noise ratios.
A method to perform peak detection on 2D NMR based on local maximum search was
implemented to obtain a data structure that best benefits from specmine’s functionalities.
These include preprocessing, univariate and multivariate analysis as well as machine
learning and feature selection methods.
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The 2D NMR functions were validated using experimental data from two scientific
papers, available on metabolomic databases and applying the necessary preprocessing
steps to compare spectra and results. These data originated two case studies from
different NMR sources, Bruker and Varian, which reinforces specmine’s flexibility. The
case studies were carried out using mainly specmine and other packages for specific
processing steps, such as, probabilistic quotient normalization. A pipeline to analyze 2D
NMR was added to specmine, in a form of a vignette, to provide a guideline for the newly
developed functionalities.

Keywords: 2D NMR; Metabolomics; Multivariate analysis; Nuclear Magnetic
Resonance (NMR); Univariate analysis



R E S U M O

A metabolómica é uma das ciências ómicas que tem vindo a ganhar muito interesse
devido ao seu potencial para correlacionar a atividade bioquı́mica de um organismo
com o seu fenótipo. As aplicações da metabolómica estão em constante crescimento
à medida que novas técnicas revelam nova informação sobre perfis metabólicos e
moleculares, elucidando conhecimento biológico, quı́mico e funcional. As principais
técnicas para recolher este tipo de dados são baseadas em espectrometria de massa e
em ressonância magnética nuclear (RMN). Esta última tem a vantagem de analisar uma
amostra in vivo sem a danificar e enquanto a sensibilidade da mesma tem sido apontada
como uma desvantagem, surge a abordagem de RMN multidimensional melhorando
a versão tradicional. Através da medição de outros núcleos adiciona camadas de
informação, gerando um novo tipo de dados que requere métodos bioinformáticos
avançados para se extrair significado biológico.

A existência de várias abordagens para realizar RMN multidimensional leva à cres-
cente necessidade da existência de uma ferramenta que integre este tipo de dados, de
forma a permitir ao investigador executar a sua análise de forma eficaz. Adicionalmente,
a consolidação de pipelines comuns para analisar dados de RMN uni- e multidimen-
sional permanece um desafio à investigação cientı́fica, dificultando a reprodutibilidade
de resultados por diferentes grupos de investigação.

Em trabalhos recentes do grupo de acolhimento foi desenvolvido um package para o
programa R focado na metabolómica e na análise/mineração de dados. Este package,
specmine, tem sido melhorado desde o seu desenvolvimento funcionando como uma
ferramenta que engloba diferentes métodos permitindo uma análise total a um determi-
nado conjunto de dados. Baseado neste package, mais recentemente foi desenvolvida
uma plataforma web integrada, WebSpecmine, com o mesmo propósito que providencia
ao utilizador uma interface de utilizador mais fácil e amigável.

Nesta dissertação, ferramentas que permitem a leitura, visualização e análise de
NMR bidimensional (2D) foram desenvolvidas tendo em conta a sua integração no
specmine. Uma nova estrutura foi adicionada ao package, facilitando a interpretação
e esquemetazição dos dados. Quanto à visualização, uma abordagem inovadora para
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ambientes tridimensionais permite ao utilizador interagir com os seus dados através
da identificação de regiões espectrais de interesse ou reconhecimento de picos. A
visualização de espectros 2D, sem especificação por parte do utilizador, tem por base
uma escala de relação sinal/ruı́do que permite numa primeira instância visualizar as
amostras com uma maior e menor diferença entre sinal e ruı́do. Foi também implemen-
tado um método para realizar a deteção de picos em RMN 2D baseado na procura por
valores máximos locais. Esta operação tem por objectivo obter uma estrutura de dados
simplificada que melhor beneficia das funcionalidades do specmine. Estas incluem
operações de pré-processamento, análises uni- e multivariada, métodos de seleção de
variáveis e aprendizagem máquina.

As funções desenvolvidas para RMN 2D foram validadas com dados experimentais
recolhidos de dois artigos cientı́ficos, disponı́veis em bases de dados de metabolómica
e sobre os quais foram aplicados os passos de pré-processamento que permitissem
a comparação de resultados. Estes dados originaram dois casos de estudos que
abordavam diferentes intrumentos utilizados em RMN, Bruker e Varian, reforçando desta
forma a flexibilidade do specmine relativamente às tipologias de dados capazes de
serem lidas. Estes casos foram realizados utilizando principalmente o specmine, no
entanto, a utilização de packages externos foi necessária para passos de processamento
especı́ficos, como por exemplo, a normalização por quociente probabilı́stico. Uma
pipeline para análise de dados RMN 2D foi adicionada ao specmine, sob a forma de
vignette, um formato de documentação longa adequado a packages implementados no
programa R. Desta forma é proporcionado ao utilizador um conjunto de procedimentos,
orientados à utilização correta das funcionalidades implementadas.

Palavras-Chave: 2D NMR; Análise multivariada; Análise univariada; Metabolómica;
Ressonância Magnética Nuclear (RMN)
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Jézéquel, et al.[4] 57

Figure 10 Changes of choline, glutamine, GABA, malate, citrate, sucrose,
fructose, and glucose contents throughout tomato fruit develop-
ment, using ggplot2 and gridExtra on the data from MTBLS131
and MTBLS132 after peak detection, 500 and 700 MHz, respec-
tively. In this figure, the signal intensity (y-axis) is plotted as a
function of fruit development stage (x-axis), for each metabolite in
both frequencies. 58

Figure 11 INADEQUATE of one replicate C. elegans endometabolome, re-
trieved from Clendinen, et al. (a). Plot of the 2D spectra of sample
N2 Control WP1 INAD from the endometabolome dataset, using
specmine (b). 63

Figure 12 (a) Scores plot from the PCA analysis done by Clendinen, et
al, on the endometabolome data. b Scores plot from the PCA
analysis for the endometabolome dataset using specmine after
peak detection and preprocessing. 67

Figure 13 (a) Scores plot from the PCA analysis done by Clendinen, et al, on
the exometabolome data. b Scores plot from the PCA analysis for
the exometabolome dataset using specmine after peak detection
and preprocessing. 68

Figure 14 Scores plot from the PCA analysis for the exometabolome dataset
without second replicate, using specmine after peak detection and
preprocessing. 69



L I S T O F TA B L E S

Table 1 Metabolite quantification tools. 26

Table 2 UF COSY NMR peaks used for the quantification of the 8 targeted
metabolites. Adapted from Jézéquel, et al.[4]. 53
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1

I N T R O D U C T I O N

1.1 CONTEXT

Metabolomics is a field of omics science that investigates the activity and cellular state

through the study of small molecules known as metabolites [5]. It involves the quan-

tification of low molecular weight (<1000 Da) biomolecules produced by cells, i.e.,

the quantification of the metabolome. These metabolites serve as direct signatures

of biochemical activity within biological systems, providing an easier correlation with

phenotypes [5].

In this sense, the characterization of the metabolome has gained more interest in

several biomedical areas, being used, particularly, for diagnosing diseases, understand-

ing disease mechanisms, identifying novel drug targets, customizing drug treatments and

monitoring therapeutic outcomes [6, 7]. Nevertheless, there are other emerging applica-

tions such as biomarker discovery, food authentication and chemical characterization [7,

8].

Metabolomics studies can be divided into two categories, targeted metabolomics

and untargeted metabolomics. The first attempts to describe a specific class of metabo-

lites resulting in a higher sensitivity, caring with the quantification of the sample, whilst

the other provides an identification of new compounds from a broader observation of

metabolites [6].
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The analytical techniques used in metabolomics are usually LC or Gas Chromatog-

raphy (GC) coupled with MS, Infrared Spectroscopy (IR), Raman and

NMR[6]. NMR detects molecular features by measuring an intrinsic magnetic prop-

erty of the atomic nuclei that encodes information about the chemical environment, and

thus its molecular structure [9]. MS is based on the principle that molecules can be

ionized and sorted by their mass. Overall, NMR-based approaches are the gold stan-

dard in terms of structural eludication, biomarker detection or targeted metabolomics

since reproducibility, easier sample preparation leading to low-cost studies and versatility

are key advantages[9]. Despite NMR being less sensitive than MS, recent advances

adding additional dimensions through different properties allows NMR techniques to

push through in the field of metabolomics. Regardless of the technique used, there are

lots of data generated by these platforms that need to be preprocessed and analyzed in

order to infer biological meaning.

Nowadays, there are a lot of available tools for metabolomics data analysis.

They differ regarding the origin of the data, mainly NMR and MS data[10], and the

methods to perform certain preprocessing steps. Basic steps of data preprocess-

ing include peak alignment, peak filtering, peak identification and metabolite identifi-

cation [10]. In Metabolomics Society website http://www.metabolomicssociety.org,

it is possible to access different software ranging from spectral alignment tools to data

handling in metabolic fingerprinting studies. Nevertheless, the main common features

of these tools are their free availability (open-source) and web-based services. Tools

and software to analyze multidimensional NMR, such as, ChemoSpec2D[11], rNMR[12]

and MetaboMiner[13] have novel functionalities that close the gap on sensitivity and

overlapping resonances[9]. MetaboAnalyst is a web application to analyze metabolomics

data and it is considered the most comprehensive tool with the option of structuring a

code based pipeline since they have an R package (MetaboAnalystR)[14].

In recent work from the host group, specmine, a metabolomics and spectral

data analysis/ mining framework, in the form of a package for the R system, has been

http://www.metabolomicssociety.org
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developed to address some of the issues involving the reproducibility of data analysis, the

lack of frameworks to extract important information from metabolomics data, as well as

their integration with previous knowledge [2]. This work aims to develop tools, integrated

with specmine, that allow reading, visualization and analysis of 2D-NMR metabolomic

data.

1.2 OBJECTIVES

Considering the context above, the aim of this work is to explore and extend the function-

alities of the R package specmine developed to process and mine metabolomic data,

namely addressing datasets of 2D-NMR, validating with case studies from experimental

data. The functionalities addressed will be related to data reading, visualization and

analysis, establishing a pipeline for this type of data.

This will encompass, in more detail, the following technological/scientific goals:

• Review the state of the art in metabolomics, with special focus on NMR tech-

niques, and methods/tools for metabolomic data analysis;

• Extend the functionalities of specmine and related tools, integrating novel

features for 2D-NMR data analysis, including a standard workflow to analyze

this type of datasets;

• Validate the functionalities developed with real-world case studies, highlighting

specmine’s capacity of reproducibility towards metabolomics;

• Write the thesis and related publications with the obtained results.
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1.3 STRUCTURE

The present dissertation is divided into five chapters. The first one is an introductory

one where the context is given alongside the motivation and the objectives aimed for this

work. The second one gives insight on the state of the art of metabolomics including the

principal NMR techniques used in the area, the preprocessing steps needed to follow

a correct data analysis and the tools and methodologies needed to retrieve relevant

information with biological meaning.

The following chapter describes the development strategy and the tools used on the

present work to implement 2D-NMR spectra handling functions as well as establishing a

pipeline for its analysis. They are complemented with detailed information on how they

were integrated with specmine in order to close this gap on the package and extended

tools.

The fourth chapter presents two case studies to show the applicability and flexibility

of the methods developed. A brief introduction starts each case, followed by the results

obtained using the tools developed as well as their interpretation in the context of each

case’s problem. Since both case studies’ analysis are structured in the same way, a

pipeline for this type of data was created in the form of a vignette.

The fifth and final chapter provides the main conclusions from this work and an insight

on future work that could be done to extend specmine’s functionalities or to establish a

new package, based on specmine, for 2D metabolomic data.





2

S TAT E O F T H E A R T

This chapter covers the state of the art in the field of metabolomics regarding its tech-
niques with special focus on NMR, as well as the processes for the quantification of
metabolites in NMR and the detection of biomarkers from the data generated by those
technologies.

2.1 NUCLEAR MAGNETIC RESONANCE

2.1.1 1D-NMR SPECTROSCOPY

Together with Liquid Chromatography - Mass Spectrometry (LC-MS) and
Gas Chromatography-Mass Spectrometry (GC-MS), NMR completes the set of the
most used anaytical technologies in today’s metabolomics [9].

Certain nuclei of those presented in a sample have the right magnetic properties
making the basis for this technology: an odd or an even mass number, but an odd atomic
number [15]. These special nuclei have a nuclear spin allowing them to be associated to
a nuclear magnetic moment that interacts with the external magnetic field, β0, applied
by the NMR instrument. It is this interaction that is studied by NMR[16]. The nuclear
spin is characterized by a quantum number, I, and this number has an influence in the
produced spectra, i.e. an I > 1/2 producing broad lines [17]. There is also a magnetic
quantum number,m1, that indicates the number of energy states the nuclei has, which
can be calculated by the formula 2I+1[15]. The application of β0 allows the separation of
these states, and transitions between them can be accomplished through a photon in the
Radio Frequency (RF) region leading ultimately to the slope of magnetization making it
oscillate inducing a voltage, also called the Free Induction Decay (FID), which is then
converted to a NMR spectrum using a Fourier Transformation (FT) [16].

5



2.1. Nuclear Magnetic Resonance 6

This is conventional NMR where excitation and detection occur in different steps. There
is also an NMR-spectroscopy technique in which samples are submitted to excitation and
detection within the same hardware, an RF coil that is located within the NMR magnet[18].
It is called Flow NMR and it is able to enhance spectral intensity, improve signal detection
and provide structural information between different moieties in a molecule[1, 19]. The
most known Flow NMR technique is LC-NMR and it was used to identify tocotrienol
isomers in palm-oil extracts[20] and aromatic compounds in several liquid foods[1]. Fig.
1 represents an NMR chromatogram from a wine phenolic extract which shows good
compound separation and a selection of rows that represent the spectra of identified
compounds in the sample.

Figure 1: (a) LC-NMR/MS chromatogram resulting from the elution of the wine phenolic extract.
(b) Spectra of the selected rows extracted from (a). Adapted from A. M. Gil, et al.[1].

NMR brings its uniqueness into metabolomics because it is nondestructive with mini-
mum sample preparation, allowing for any biological analytes, even living ones, to be
analyzed, for a long period of time, thus measuring free small molecules independently
of their chemical nature [21]. Furthermore, with various nuclei that can be used in a
NMR experiment, i.e. 1H, 13C, 15N, 31P [21], it is possible to assess different metabolite
classes and establish a correlation between them with multidimensional NMR [9].
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2.1.2 2D-NMR SPECTROSCOPY

Multidimensional NMR, specially two-dimensional, can also treat overlapping peaks,
thus performing a better peak assignment [22]. There are multiple forms of 2D-NMR
that allow this task and they are summarized by the process of untangling these peaks
into a second dimension, based on different physical properties that will define the
bidimensional technique itself [9].

One of the oldest and fastest 2D-NMR techniques is Two-Dimensional J-Resolved
Nuclear Magnetic Resonance Spectroscopy (2D-JRES-NMR) [23], where the second
dimension is created by representing the coupling constant (J value) of each signal,
and thus the overlapping peaks are viewed as singlets[24]. This reduces the complexity
of the spectrum, allowing for a better peak assignment compared to One-Dimensional
Nuclear Magnetic Resonance Spectroscopy (1D-NMR) experiments [25]. However,
2D-JRES-NMR provides insufficient structural information and the values of coupling
constants cannot be used as a query to search in a database[22]. This means that
metabolite identification with this technique can only be performed in an effective way with
prior knowledge of the compound’s chemical composition and reference spectra of the
main constituents. Despite being a relatively quick technique, it is still a 2D experiment
and when applied to metabolomics studies, which have a large number of samples, the
acquisition time becomes a disadvantage [9]. Efforts have been made in order to reduce
the acquisition time, optimizing single-scan 2D methods integrated with J-resolved NMR
[26], but they lack sensitivity and require high metabolite concentrations [9].

Proton-decoupled projected One-Dimensional (1D) J-Resolved NMR is a technique
that applies the base of coupling constants to 1D experiments, thus providing the speed
of 1D experiments and key advantages of 2D-JRES-NMR [27]. This technique has been
applied in the metabolomics field to resolve overlapped peaks of minor metabolites
present in human urine and blood [28], solve superimposed peaks presented in 1D
spectra that enabled peak assignment for 150 compounds in Cerebrospinal Fluid (CSF)
[29] and clarify signal congestion of 1D-based metabolomics on eleven Ilex species
making possible their chemotaxonomic classification [30].

Diffusion Ordered Spectroscopy (DOSY) [31] plots in the second dimension the dif-
fusion coefficients associated to each NMR signal, instead of the coupling constant
that 2D-JRES-NMR uses [22]. DOSY separates mixture components, without any prior
treatment, by their molecular hydrodynamic properties which means that small molecules
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decay faster than large molecules, having a higher diffusion coefficient [32]. However it
has not been effective in isolating individual components’ signals in spectral regions that
have overlapping peaks, which means it is not effective on metabolomic studies due to
the fact that separation in these regions is essential for peak assignment [33]. This lack of
efficiency happens because an overlapped signal displays only one diffusion coefficient,
which is the average of the metabolite’s coefficients that take part in the intensity of the
signal, making the only diffusion coefficient ambiguous [34].

To fight this issue, DOSY was coupled to other techniques, such as COSY and
Heteronuclear Multiple-Quantum Correlation/Coherence Spectroscopy (HMQC), to spread
the proton signals into another dimension, through a proton dimension or carbon di-
mension, respectively[22]. A. Sobolev, et al. [35] used a combination of DOSY with
another 2D-NMR techniques to report for the first time the proton spectra of aqueous
and organic extracts of lettuce leaves. This technique allowed to separate components
of the complex patterns and assign a large number of water-soluble metabolites to their
classes such as carbohydrates, organic acids and amino acids. S. Balayssac, et al.[36]
used a three-dimensional DOSY-COSY experiment on seventeen herbal drugs for the
enhancement of sexual function to investigate their formulations. This technique provided
virtual separation and structural data as it allowed to observe COSY subsepctra for each
component of interest [36].

Homonuclear Approaches

COSY is considered to be the simplest of all 2D-NMR experiments, as it is based on
the application of two ninety degree RF pulses that generate an evolution time (t1) and
a period time (t2) which are then converted into a spectrum by FT [9, 32]. This allows
cross peaks in this generated spectrum that indicate pairs of coupled nuclei connected
by through-bond highlighting homonuclear correlations (1H-1H) [9]. Despite standard
COSY’s advantages, improvements on cross-peak resolution or signal filtering have been
made to enhance COSY’s results interpretation [32].

One of those improvements was applying another layer of ninety degrees RF pulse
after the second one, ensuring that only signals with spin-spin coupled belonging to a
double or higher quantum system are detected [37]. This is called Double Quantum
Filtered Correlation Spectroscopy (DQF-COSY) and allows singlet signals, such as water,
to be filtered out and to phase correct diagonal and cross-peaks efficiently [32].
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COSY experiments, in general, suite metabolomics research because they are sim-
ple, fast and easy to interpret. However, the type of sample to analyze needs to be
considered [9]. Samples such as urine, that have many small molecules, have spectral
complexity high enough so that grouping information about individual spin-spin couplings
into a molecular system is very difficult [32]. COSY experiments are then suitable for
known and unknown metabolite identification, whereas in full assignment of signals or
metabolite’s quantification studies, COSY experiments underperform [22]. A protocol
for NMR-based metabolomic analysis of plants describing sample preparation (drying,
weighing and extraction) followed by NMR analysis with different techniques (1D-NMR,
2D-JRES-NMR,COSY and Heteronuclear Multiple Bond Correlation (HMBC)) followed
by chemometric approaches was developed, being fast (40 minutes) and suitable for
analysis of both primary and secondary metabolites [38]. A COSY experiment was also
performed to analyze and measure the absolute metabolite concentration in three breast
cancer cell line extracts, accessing fourteen relevant metabolites highlighting differences
between cell lines [39].

To gather information about the network of atoms in a molecule that is not directly
coupled, an extension of COSY experiment was developed, called Total Correlation
Spectroscopy (TOCSY) or homonuclear Hartmann-Hahn (HOHAHA) [9, 32, 37]. This
method is based on a spin-lock field that bounds magnetizations to that RF field, enabling
coupled nuclei to share the same spin system even if they are not directly coupled [32,
37]. This spin-lock is performed applying a pulse train which creates an environment that
removes chemical shift differences leaving J-coupling interactions intact, being MLEV-17
the most widely used spin-lock sequence [37]. With TOCSY one can analyze coupling
networks that may represent groups of proton signals, understanding their correlations,
while having in mind that intensity does not translate the number of bonds within coupled
protons[32].

Despite its advantages, Two-Dimensioanl Total Correlation Spectroscopy (2D-TOCSY)
is an experiment that takes a long time to acquire, so the TOCSY principle was applied
to 1D, lowering the acquisition time and easing the analysis [9]. An One-Dimensional
Total Correlation Spectroscopy (1D-TOCSY) spectrum is characterized by signals from
nuclei that share the same spin system as the excited signal and is specially useful
on metabolite quantification with signal overlapping [9]. P. Sandusky, et al. [40] used
Pearson correlation applied to this technique to establish an approach to metabonomic
analysis of rat and human urines, achieving a more sensitive and reliable method that the
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standard 1D-NMR spectra. Selective 1D-TOCSY was also used to evaluate authenticity
of Turnera diffusa extracts and commercial botanical remedies with the intent to support
this method as a quality control proof towards bioactive compounds [41].

TOCSY experiments are also very good in metabolite assignment due to existing
databases that have TOCSY results incorporated and can be used to be queried against
[32]. COLMAR [42] was a web server that performed the analysis of complex mixtures
from NMR, with emphasis on 2D-TOCSY. The method underneath consisted in reducing
the 2D-TOCSY spectrum into a cluster of non-redundant sections through covariance,
that represented individual metabolites in the mixture, which would be queried against
NMR spectral databases. A new version of this tool emerged, called COLMARm [43],
that allows co-analysis of up to three 2D-NMR spectra for metabolite identification pur-
poses, with the advantage of validating manually possible metabolites by superimposing
generated cross-peaks with experimental ones.

COSY and TOCSY perform homonuclear correlation spectroscopy, but the study of
bond correlations can be applied to different nuclei. There are different heteronuclear
correlation spectroscopy techniques that differ on how magnetization is transferred
between nuclei and in the number of bonds between them.

Heteronuclear Approaches

Heteronuclear Single Quantum Correlation/Coherence Spectroscopy (HSQC) is based on
the principle of transferring a nuclear spin polarization from a more sensitive nucleus (1H)
to one that has lower sensitivity (mainly 13C and 15N due to their biological importance)
and then transferred back for detection [9, 32]. This is called Insensitive Nuclei Enhanced
by Polarization Transfer (INEPT) and correlates chemical shifts between the directly and
indirectly measured dimensions of coupled nuclei that are further plotted to produce a
2D spectrum [9]. This ability to produce one cross-peak for each chemical pair singularly
bonded resolves and assigns metabolite signals arising from complex biofluid mixtures,
as well as protein structures [44–46].

In terms of metabolite quantification, a new and fast strategy of 2D 1H–13C-HSQC,
named Fast Metabolite Quantification (FMQ), has been developed quantifying, in twelve
minutes, fourty metabolites from biological samples, being optimal for NMR metabolomic
studies with samples around fifty milligrams of weight [47]. Together with COSY, HSQC
can also complement the structural elucidation of metabolites by understanding the
one-bond linkage between hydrogen and carbon in molecular specific studies [32].
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HMQC is very similar to HSQC as its results highlight the same type of correlations
[9]. The difference is in the evolution period when the pulse sequence is applied: in
HMQC double and zero quantum coherences are maintained which means both coupled
nuclei experience magnetization effects involving both spins, while in HSQC only single
quantum coherences are maintained [32, 37]. HMQC has the advantage of using shorter
pulse sequences which means it has fewer errors caused by the quality of the magnetic
field. However, nowadays there are high standards regarding magnetic fields and pulses
resulting on HSQC to be the preferred choice [32].

In the metabolomics field, HMQC has not been receiving much support because it
produces broader peaks than HSQC thus presenting more peak overlaps which leads
to worse resolution [9]. On the other hand, in proteomics, a technique was developed,
SOFAST-HMQC [48], that can record correlation spectra of proteins of different sizes
within seconds and higher sensitivity compared to standard 1H–15N correlation experi-
ments [49]. HMQC and HSQC can also be used together, showing its usefulness when
trying to assign NMR signals to metabolites because this enables new compound iden-
tification if their concentration levels are within spectrometer’s boundaries [22]. This
was proven by Y. S. Liang, et al. [50] when using both techniques, finding a new
phenylpropanoid in methyl jasmonate treated Brassica rapa leaves.

Another technique of heteronuclear 2D-NMR, similar to HSQC and HMQC, is HMBC,
which accounts for coupled nuclei that have two or more chemical bonds [9, 32]. It only
selects small J-values, filtering out single bonded correlations, such as C–H, highlighting
quaternary and carbonyl carbons [9, 37]. This advantage means that sometimes HMBC
is the only technique that is able to establish the connection between protonated carbon
structures separated by these quaternary carbons, such as cis- and trans-aconitic acid
molecules [51]. Usually, this technique works best with other heteronuclear approaches
complementing the chemical structure determination of unknown metabolites since
there is the acknowledgement of the compound’s backbone and side chains [32]. In a
metabolomics study, if there is a large number of samples, heteronuclear approaches
are not the best option because they have long acquisition times and their use is optimal
for a subset of samples if further analysis is needed [32]. P. Bernini et al. proved 1H–13C-
HMBC utility by combining it with other 2D-NMR techniques to improve metabolite
identification in twelve urine samples [52]. HMBC was also used in a combination with
2D selective TOCSY to obtain NMR data for each impurity in active pharmaceutical
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ingredient samples to distinguish responses, without prior chromatographic separation
[53].

Multidimensional NMR is also a partial solution to fight the principal disadvantage of
NMR, sensitivity, through the addition of chemoselective isotope labels, reacting with
specific groups [54]. A larger magnetic field brings higher costs in an NMR experiment
but can enhance the sensitivity and resolution of the final spectra. When employing a
multidimensional experiment, the key is time because they require longer acquisition
times due to sampling along with indirect frequency dimensions [54].

Recent advances in NMR metabolomics

Another way to fight the lack of sensitivity is through Dynamic Nuclear Polarization (DNP)
methods in which the sample to be analyzed is previously frozen, submitted to microwave
radiation and then melted to be transferred to an NMR spectrometry[55]. In the radiation
step, the free-radicals presented in the microwaves induce a transfer of polarization from
electrons to nuclei that is caused by the temporary hyperpolarization on spin-active nuclei,
which results ultimately in over 10.000-fold increased sensitivity [56]. Another aspect to
be improved in NMR metabolomics is the detection of low-concentrated metabolites, that
are being acknowledged to be diagnostic biomarkers as important as high-abundance
metabolites and yet only a few hundred have been detected in human fluids metabolomes
(such as urine, CSF and serum) [9].

Besides DNP, which is a hyperpolarization method, fast NMR methods are also a
new approach to NMR in the field of metabolomics [9]. As said before, multidimensional
approaches usually take longer acquisition times, which is the disadvantage of 2D-NMR
experiments, for example. Nonlinear sampling (NLS) is one of the methods that can
ease the acquisition time by reconstruction of a complete spectrum from only a small
number of optimally selected experimental data points, using nontraditional schemes,
such as nonlinear FT, to process signals [57]. Another fast approach to 2D methods
is Hadamard spectroscopy, in which direct irradiation at signal-bearing sites is done
based on Hadamard matrices, encoded in multiplex excitation schemes that generate
signals that need to be decoded using the same scheme [58]. Ultrafast 2D-NMR is
based on the principle that a sample can be divided into slices, where different evolution
periods are experimented simultaneously by the active nuclei on those slices in the same
scan, being the signals processed by specific software capable of creating the 2D-NMR
spectrum [59]. According to Emwas et al. [9], the majority of these methods are difficult
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to implement in high-throughput metabolomic studies because they are not particularly
quantitative, being ultrafast 2D-NMR the one that, together with hyperpolarized NMR
techniques, holds the most promise for NMR-based metabolomics.

Recent food-related studies have been done using NMR-based approaches to char-
acterize samples, evaluating the metabolic profiles or establishing new biomarkers.
Blakebrough-Hall et al. [60] identified phenylalanine, lactate, hydroxybutyrate, tyrosine,
citrate and leucine as high-importance metabolites to classify blood samples from an-
imals that have or do not have Bovine Respiratory Disease. To prevent adulteration
and to assure quality of sesame seeds, the development of a discrimination model
and potential biomarker investigation for differentiation of the geographical origin was
performed using NMR-based metabolic profiling [61]. Yang et al. [62] investigated the
effect of wooden breast myodegeneration on the metabolite profile of chicken meat and
found that WB-affected samples showed higher specific metabolites (such as leucine,
valine, taurine and glutamate) and lower levels of other metabolites (such as histidine,
creatine, acetate and serine), using 1H NMR. Very recently, NMR-based metabolomics
approaches have been used in areas, besides food-related ones, such as hazardous
materials [63], environmental pollution [64] and biomedicine and pharmacotherapy [65].

2.2 DATA PREPROCESSING

Preprocessing techniques are tasks performed to datasets to prepare them for knowledge
extraction. These tasks intend to reduce data size, remove outliers, treat missing values,
extract features, normalize data and transform them[66]. In order to achieve such
objectives operations that clean, integrate, transform and reduce data have to be done.
This supports that data preprocessing is a critical step in any metabolomics pipeline
because raw data is usually complex and needs to be eased for subsequent data analysis
and interpretation [67].

2.2.1 MISSING DATA AND OUTLIERS

The process to clean data is the first step in preprocessing, which normally detects in-
complete records with missing values, atypical and inconsistent data points [66]. Missing
data can occur mainly through three mechanisms [68] that characterize their produced
missing values:



2.2. Data Preprocessing 14

• missing completely at random - missing values are randomly distributed in a
data matrix and do not depend on the known values [69].

• missing at random - missing values have an association due to possible variable
dependency to other known variables (X) but not to response variables (Y) [70].

• not missing at random - there is a pattern and dependency within missing
values in a variable. The dependency can be related to values on other variable
and on the value of the missing data itself. There is no consensual method to
treat these missing values[71].

Since data collection is expensive there are two categories of methods to handle
missing data: deletion and imputation methods [72]. However, based on the work of
Kapil[71], there are different categories of methods to handle missing values, having the
imputation ones a lot of variations, such as parameter estimation approaches or machine
learning models.

For data deletion there are two methods commonly used: listwise deletion and pairwise
deletion[72]. Listwise deletion discards observations on one or multiple variables that
have missing values. On the other hand, pairwise deletion only excludes missing data
from variables when they are used in a statistical procedure. However, this method has
limited application due to similar results when compared with listwise deletion and it is
not supported in many statistical packages [72]. There is also an option to delete based
on the extent of the missing values which means that if a feature or an observation have
a high share (e.g. over 5 per cent) of missing values they can be discarded [71].

As for data imputation, there are a lot of methods to treat missing values. Mean
imputation estimates the mean and can be done on numerical data to replace the
missing values [71]. This method excels when dealing with continuous variables that
are not related to other independent variables because the estimation performed does
not affect other cases not leading to efficiency loss [73]. It is also possible to replace
the missing value by estimating the median or other statistical measures. There is also
the K-Nearest Neighbour (KNN) Imputation method to estimate and substitute missing
data, by taking into account K number of observations that share similarity to the missing
value considering other variables [71, 74]. KNN imputation can treat continuous and
categorical missing data by considering the most frequent and the mean of the values
in the k nearest neighbour, respectively[71]. Also, it takes into consideration the data
structure and does not need to create a predictive model [75]. There are also Regression
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methods, using predictive models, that take the observed data as input variables to
create the model and a replacement for the missing value is predicted as a response
variable [76].

The parameter estimation methods includes expectation maximization, maximum
likelihood and Bayesian estimation and are more complex and considered to be more
accurate than the previous ones [71]. Expectation maximization has two stages wherein
the first it begins by estimating missing values based on observed data and the parame-
ters underlined whereas in the second the values estimated are imputed to maximize the
likelihood function to obtain new parameters for the next iteration [71]. The other two are
model specific methods that try to optimize model parameters through complete data
likelihood. All methods within parameter estimation are best used when the missing data
is missing at random [71].

Outliers are data values that behave differently in comparison to other data values and
are intended to be deleted for further analysis because on their own they can influence
statistical metrics and univariate analysis. Outliers can emerge from different sources
such as human error, instrument error or faults in systems and its detection has different
methodologies based on statistics, neural networks, machine learning (with decision
trees) and even hybrid systems [77].

2.2.2 SPECTRAL PREPROCESSING

Spectral preprocessing is a key component in metabolomics because the instruments
from MS and NMR techniques generate background noise, peaks that are not related to
the biological sample and systematic variations to data [67]. To fix these issues, a set
of preprocessing techniques can be applied to this type of data such as noise filtering,
peak detection, deconvolution, deisotoping, alignment and normalization [67]. In NMR
metabolomics, it is necessary to retain that the spectrum has to be transformed from FID
into frequency spectra leading to preprocessing steps of zero-filling, apodization, Fourier
transformation and phase correction before the techniques previously stated [78].

When analysing a biological sample in MS, there is a lot of background signaling
coming from two sources, electronic and chemical. Electronic noise is a natural char-
acteristic form the mass spectrometer and it is constant throughout the experience,
whereas chemical noise originates primarily from the entire chromatographic system
being the column bleeding or the presence of contaminants in the mobile phase the
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main causes [79]. In a NMR experiment, the electronic component can also take part
in producing noise, but the chemical noise has the most influence in the spectra itself.
Sample parameters such as pH, salt type, salt concentrations, presence of paramagnetic
ions, solvent chosen and dissolved oxygen content are just examples of causes to create
noise and to induce variations on the spectra [80]. So, the process to filter the noise aims
to eliminate spectral information non-related to the biological sample analyzed to clear
the signal coming from the compounds presented there [67].

Peak detection is performed with specific algorithms that usually analyze each sample
spectrum individually [81]. This process is comprised by two analytical steps: spectra
smoothing and the actual detection [82, 83]. Smoothing a spectra intends to modify
individual data points that are higher and/or lower than the immediately adjacent points,
reducing and/or increasing them, respectively [84]. This aims to reduce the high fre-
quency noise, as well as maintaining the ones with low frequency, thus improving the
Signal-to-Noise Ratio (SNR) always depending on the frequency distribution of the noise
[84].

These steps can be done by different filters such as Gaussian, Savitzky-Golay and
moving average [83]. Despite higher computation time, Wavelet transform-based filters
have higher performance because they can handle the usual unequal peak widths in
metabolomic spectra [82]. SNR compares the level of a desired signal to the level of
background noise [85] and has an important role in peak detection. These algorithms
use local SNR, depending on the peak amplitude relative to the surrounding electronic
and chemical noise levels as a reference and if there is a local maximum, above a certain
threshold [86]. There is an opportunity to apply the threshold to other parameters (i.e.,
intensity, area of each peak) [83] and, in studies with a large number of samples, a
frequency filter can be applied to peaks, being selected peaks that appear in a certain
percentage of samples [82].

Deconvolution is a signal processing technique that allows to decompose a spectral
region with multiple peaks by the relative area corresponding to each individual peak[82].
To be able to decompose such region, prior knowledge of the compounds in the mixture
is needed (from a template library), so this technique is useful in targeted metabolomics
[82]. For NMR data, the methods available are based on Bayesian model selection
being Bayesian Automated Metabolite Analyser for Nuclear Magnetic Resonance spectra
(BATMAN) [87] one of the open-source, user-friendly interfaces most frequently used and
with very similar performance compared to NMR Suite (Chenomx Inc., Edmonton, AB,
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Canada [88]), a proprietary software package and gold standard for NMR metabolomics
[82].

2D-NMR provides the means to treat signal overlapping, which means an accurate
identification and quantification of metabolites is possible using this technique. How-
ever, there is not a software that can provide a framework for the complete analysis of
these spectra, being flexible for different 2D techniques and providing means to ease
chemometric and quantifying methods. This task is particularly hard because each 2D
experiment has specific data projected to the second dimension that is influenced by mag-
netic resonance characteristics. In addition to this, 2D-NMR has its own disadvantages
which are being overcome with the recent advances in the area [9].

The process of spectral alignment allows for the correct position match of peaks, that
belong to the same metabolic feature, in a multiple spectra study [82]. This is specially
useful for metabolite identification and biomarker selection, because we cannot have
variability on the position of peaks when they are associated within multiple spectra and
to samples, leading to false biological meaning. The peaks suffer this change in position
due to non-linear shifts and depending on if the study is NMR-based or MS-based, the
causes to those shifts are different [82]. Non-linear shifts in NMR-based studies occur in
the ppm axis and they are caused by ionic strength, pH or protein content [88], whereas
in MS-based they occur in the retention time axis resulting from changes in the stationary
phase of the chromatographic column [89].

Spectral alignment algorithms can be done before (spectral alignment methods) or after
(peak-based alignment methods) the peak detection phase. The former use segments
for the alignment, whereas the latter ones use peak coordinates [82]. Spectral alignment
methods are classified into warping and segmentation methods, where the first applies a
non-linear transformation to the respective axis (ppm for NMR and retention time to MS)
and the second one applies a constant shift to all spectral points [82].

Warping methods aim for a correlation maximization between spectral segments
by stretching or shrinking these segments, being correlation optimized warping and
dynamic time warping the most commonly used and based in dynamic programming
[90]. Segmentation methods also aims for correlation maximization between spectral
segments but their segments are originated from spectra splits or they just consider the
overall spectra, being the Icoshift algorithm [91] one of the commonly used and usually
combined with automatic segmentation methods [92].
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Peak-based methods are implemented in the XCMS software [93] and the algorithm
computes, through a kernel density estimator, the retention time boundaries of the
observed peaks to identify the ones that share the same metabolomic feature on different
samples [82].

Data normalization is generally required to highlight biological differences in complex
biofluids where there is a high entropy of metabolite concentration, in order to remove
systematic biases [82]. It is defined as a row operation applied to each sample and
allows all samples to be comparable to each other [94]. Regarding metabolomics data,
there are numerous methods to normalize data, that can be grouped into two classes
[95, 96]. The first class intends to reduce heteroscedasticity among metabolites and the
second intends to remove sample-to-sample variations [97]. There are also normalization
methods based on internal standards and/or quality control metabolites that are capable
to remove unwanted variations [98].

There is also a method of normalization that sets each observation (spectrum) to
have unit total intensity by expressing each data point as a fraction of the total spectral
integral, also known as normalization to a constant sum [94]. This normalization method
is specially useful to approximate the relative concentration of species in a series of
spectra with highly similar internal peak ratios and differences in total intensity [94].

2.3 METABOLITE QUANTIFICATION WITH NUCLEAR MAGNETIC RESO-
NANCE

Metabolite quantification, in general, is tightly related to metabolite identification, since
both concepts are usually mentioned together and in some extent they both share
similar methodologies, such as comparing experimental data to a reference [9, 99, 100].
Metabolite identification and quantification is possible in NMR due to the underneath
principle that the observed spectrum is the sum of individual spectra for each of the
metabolites presented in the sample analyzed [100, 101]. Each metabolite is then
characterized as a set of peaks which are defined by three parameters (height, center
and width) that are constant across different spectra of the same frequency, where
concentration scales linearly with height [102].

There are different ways to perform metabolite quantification in NMR metabolomics,
while their basis is usually the same which is comparing the NMR experimental spectrum
to a spectral reference library, also called as targeted profiling [88]. The process involves
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matching and fitting the reference peaks to the sample peaks (should be in the same or
similar acquisition standards) which enables identification and quantification at the same
time [100]. This methodology requires precise sample control, curve-fitting software
and databases with pure metabolite information (including pH values and spectrometer
frequencies used in data collection) [100].

Targeted profiling means that absolute metabolite quantification happens in targeted
metabolomics, which aims to analyze a set of known metabolites, whereas in untargeted
metabolomics the quantification procedure is relative (since there may not be a reference
to compare) and aims to provide hypothesis for future investigations [103]. To optimize
quantification processes efforts have been made to fully automate curve-fitting software
and build comprehensive and complete databases [100].

Accordingly to C. Zheng et al. [99] there are three broad categories that classify the
means to obtain metabolite concentrations: binning, curve-fitting without a database and
curve-fitting with a database.

Binning is the process of partitioning the spectrum into individual equally or variably-
sized contiguous segments, called bins, allowing for specific regions to be omitted
thus reducing NMR spectra complexity and providing descriptors for further analysis
[104]. These bins have their intensity (total Area Under the Curve (AUC)) measured
and averaged to isolate distinct resonance signals and to be integrated for metabolite
quantification [99, 100, 105, 106]. However, integrated intensity values of bins do not
represent an individual metabolite due to overlapping peaks, chemical shift variations
across samples, signal contamination and even fluctuations across bin boundaries
that may lead to incorrect intensity values on adjacent bins [99, 105, 106]. These
characteristics along with the lack of biological interpretability and improvements on
software supported the development of deconvolution techniques to replace binning[9,
105].

Curve-fitting without a database attempts to recover non-negative source signals from
individual metabolites directly from the spectra through algorithms [99]. To perform an
accurate curve-fitting process, the spectra has to be phase and baseline corrected since
water signals and metabolites itself can create phase distortions or non-zero baselines
[100].

As said before, NMR spectra can be viewed as a linear combination, with unknown
proportions, of individual spectra from each metabolite. Thus, specific algorithms (usually
Non-negative Matrix Factorization (NMF) methods) are able to untangle this combination
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and provide each metabolite’s spectrum [99]. Bayesian spectral decomposition is a
probabilistic approach that uses Markov Chain Monte Carlo (MCMC) to sample from the
possible solutions to obtain a small number of basis spectra with their localized amplitudes
[107]. It was successfully used to perform deconvolution in 1H NMR spectra of urine
rat samples, to understand metabolites involved in liver toxicity after an administration
of the hepatotoxin hydrazine [108]. With time, new methods incorporating Bayesian
approaches to identify and quantify metabolites have emerged, that will be presented
later since they are based on curve-fitting with a database. Alternating least squares
[109] was another NMF algorithm aimed at decomposing the data matrix as a product of
a scores (concentration) matrix and a loadings (component spectra) matrix, estimating
initial values for those matrices and executing a while loop until convergence. P. Soininen
et al. [110] developed an integration strategy based on constrained total-line-shape fitting,
using an optimization problem by minimizing the residual sum of the squares between
the line-shape function [111] (sum of Lorentzian, dispersion, Gaussian and dispersive
Gaussian functions) and the observed spectrum.

Curve-fitting with a database is the method that was above mentioned and enabled
simultaneously metabolite identification and quantification. It interprets, usually 1H NMR
spectra, as linear combinations of reference peaks that are available in a library [100].
This method is the one that provides both interpretability and accuracy on obtaining real
metabolite concentrations and for a long time they were performed manually which was
inefficient [99].

Speeding up the process of deconvoluting an NMR spectrum and fitting reference
spectra to it has been an active research area in NMR-based metabolomics [112], so
numerous tools have been developed, the first one appearing in 2001 [113]. NMR
Suite (Chenomx Inc., Edmonton, AB, Canada [88]) is a well-known commercial software
that allows users to estimate metabolite concentrations with a comprehensive database,
through manual deconvolution. Its accuracy is dependent on the correct peak assignment
by spectroscopists which requires expertise and may lead to errors [106]. AMIX (Bruker)
is another commercial spectral deconvolution software that is making advances in semi-
automatic approaches for high-throughput analysis [114]. Recently, Bruker presented
WineScreener and JuiceScreener, two commercial software tools to perform automated
deconvolution on NMR spectra of wines, juices and honey. However, they require
specifications on the NMR spectrometer which makes them expensive [114]. As any
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given commercial software, its cost implies a great investment so research groups started
to develop their own deconvolution and quantification approaches [100].

2.3.1 TOOLS FOR 1D-NMR SPECTRA ANALYSIS IN METABOLOMICS

a (BQuant) [99] is an R package that identifies and quantifies metabolites in a fully
automated way, based on a Bayesian model selection and a database of candidate
metabolites. It models the observed spectra as a combination of reference signals and
candidate metabolites are viewed as variables, which are then submitted to a stochastic
search to find highly likely matches [99]. Despite its good reported performance compared
to the existing automated approaches by the time it was developed, BQuant has not
been widely applied to NMR metabolomics, specially to cellular extracts and culture
media [115]. This may be justified due to the prior requisites before identification and
quantification, such as pre-aligned and partitioned into bins spectra, and due to peak
shifts that are also not incorporated that influence overlapped peaks and quantification
[87].

One of the well-known and open-access programs, also based on Bayesian approach,
aimed specifically for an automated quantification of metabolites, was BATMAN [87]. It
only focuses on 1H NMR spectra and is available as an R package. BATMAN models
the NMR spectrum as a two-component joint equation, where metabolite peaks are
interpreted as catalogued if their characteristic patterns are known to the user and
uncatalogued otherwise [87]. The catalogued peaks are modelled as a sum of all the
template metabolites’ resonance information (chemical shifts, J-couplings and intensity
ratios) which is obtained from the Human Metabolome Database (HMDB) (having a freely
available file with around 2500 peak patterns, corresponding to 600 metabolites [116])
and used to construct a spectrum that fits the data [117]. The uncatalogued peaks are
modelled as a linear combination of wavelet functions that can be characterized by a
probability density model whose distribution is further modelled by a truncated Gaussian
that connects global precision to each wavelet [87]. A MCMC algorithm samples from the
joint posterior distribution of the model parameters, with block updates and adaptation to
peak shifts that are described in Astle et al. [106].

An advantage of BATMAN is its flexibility and adaptability since the user can set up
prior spectra information deciding which resonance to fit and allowing for different spectra
from different spectrometers to be integrated [105, 115]. BATMAN was successfully
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applied to analyze 86 single-gene transposon insertion mutant strains of Pseudomonas
aeruginosa, quantifying 25 extracellular metabolites [118]. For complex 1D-NMR spectra,
there is also a protocol published on Nature Protocols using BATMAN for deconvolution
and quantification purposes, that helps users to fit the software usage to their necessities
and experiment specifications [117]. However, BATMAN’s fitting algorithm is quite slow
(hours to complete) and limited to mixtures with 20-25 compounds [114].

To address the issue of analyzing complex mixtures (mainly biofluids), a software called
BAYESIL[102] was developed and implemented through a web server, available at http://
bayesil.ca/. It performs fully automated spectral processing and profiling, allowing users
to quickly and accurately analyze complex mixtures (under two minutes and mixtures
with 60 compounds), measuring reliable metabolite concentrations [114]. This software
enhances metabolite quantification reproducibility and consistency by performing zero-
filling, Fourier and Hilbert transformation, phasing and baseline correction, smoothing,
chemical shift referencing and reference deconvolution without manual intervention [102].

BAYESIL’s key innovation is their efficiency of solving the problem of fitting a set
of reference compounds to the observed spectrum, finding the correct combination of
concentrations and chemical shifts [102]. It divides the spectrum and the loss function
into interrelated regions and functions that serve as convergence point for probabilistic
graphical models (factor-graphs). This is possible due to BAYESIL’s Gibbs distribution
[119] approach to evaluate shift variables and concentration assignments to those regions
as probabilities, transforming the loss function into a probability distribution. Using a
sequential Monte Carlo inference method [120], the distributions are narrowed in each
iteration and when convergence is achieved, the distribution over each concentration
and shift variable approximates the most probable assignment, relative compound quan-
tification [102]. BAYESIL’s spectral library was obtained through 1D 1H NMR reference
spectra collection for each of the compounds using pure compound information from
HMDB[102]. There are also specific sub-libraries for serum and CSF, thus improving
spectral fitting performance.

There are other automated quantification tools based also on probabilistic models such
as ASICS [121], rDolphin [122] and AQuA [123] which complement quantitative profiling
of aqueous metabolites. Despite this great effort in automated quantification in 1D-NMR,
this technique lacks spectral resolution limiting its accuracy, metabolome coverage and
the ability to deal with spectral overlap [112].

http://bayesil.ca/
http://bayesil.ca/
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In order to improve spectral resolution and resolve overlapping issues, 2D-NMR has
been applied to quantify metabolites and is also a growing research area [124]. However,
one has to take into account that in 2D-NMR peak volumes do not depend only on
metabolite concentration since there are other resonance properties such as J-couplings
and relaxation times that influence how signal and concentration is related [125]. Despite
this, it was proven that for a specific biological sample, honey, a selective TOCSY-based
quantification approach correlated peak intensities directly with concentration in amino
acids samples, when there is not a high degree of variation in its composition [126].

2.3.2 2D-NMR FOR METABOLITE QUANTIFICATION

One solution and the most used is one that was already mentioned, FMQ. It involves the
preparation of calibration standards of targeted previously identified metabolites, which
allow the construction of a reference curve that relates signal intensity and concentration
for each analyte [47]. The metabolites with unknown concentrations are then submitted
to these standards, integrating the signals of interest, allowing the concentration of
the targeted metabolites to be calculated from the regression of the calibration curves
[47]. Despite this approach, instrument response can influence the sample calibration
and complexity of biological samples are not always accounted for [125]. Using three
calibration curves through AMIX software, R. Wedeking et al. were able to quantify the
metabolic changes of roots and leaves of drought-stressed sugar beets throughout time
[127]. This approach was also applied to 1H NMR to quantify biodiesel and vegetable oil
in diesel-biodiesel blends [128]. It was able to correctly quantify biodiesel content even
in the presence of vegetable oil, thus providing an efficient alternative to check blends’
adulteration.

One alternative that takes into account matrix effects is replacing external calibration
by repeatedly analyzing the samples of interest with a mixture of metabolites in known
concentrations [125]. This is a standard addition procedure, i.e., sample spiking, where a
curve is fitted for each metabolite by a linear regression that relates the 2D spectrum peak
volume with concentration [129]. This was used to absolutely quantify 15 metabolites that
revealed significant differences between breast cancer cell lines from a 2D experiment
[129]. However, for high throughput analysis, this approach is not optimal since it requires
practical work on spiking each sample of interest with this mixture and getting the absolute
metabolite quantification [125].
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Another approach that does not require an identification of metabolites prior to quan-
tification is based on getting the metabolite concentration information directly from the
peaks [125]. This is possible by acquiring multiple 1H–13C HSQC spectra, repeating
the pulse sequence block between excitation and acquisition, which will remove peak
dependencies on J-coupling factors and relaxation times, a work developed by K. Hu
et al. [130]. It is named time-zero 13C HSQC and can provide absolute concentrations,
if an internal standard of known concentration is added to sample; otherwise, relative
concentrations are determined from cross peak intensities. This pulse sequence was
applied by S. Halouska et al. [131] to study how D-Cycloserine affects Mycobacterium
tuberculosis resistant strains metabolome, with a carbon-13 source supplement. This
strategy is limited to this 2D technique and it takes a longer acquisition time due to the
multiple pulse sequence block which lowers overall sensitivity [125].

Adapting the same technique, C. Mauve, et al. [132] developed a version of 1H–13C
HSQC that aims to quantify low concentration metabolites from complex mixtures with a
special focus on vegetal extracts. QUantItative, Perfected and pUre shifted Heteronuclear
Single Quantum Correlation/Coherence Spectroscopy (QUIPU-HSQC) is based on a set
of changes to the normal HSQC pulse sequence to ensure that signals are not modulated,
thus providing an even proportion between peak volume and concentration [132]. Using
this approach and an internal standard, the authors quantified key low concentrated
metabolites involved in cellular death and Krebs cycle embedded in complex vegetal
matrices. This was possible due to pure-shift elements in the acquisition phase that
decoupled J-coupled protons, increasing sensitivity and efficiency [125]. A framework
attempting to speed up QUIPU-HSQC was developed that was able to reduce the acqui-
sition time through spectral aliasing, nonuniform sampling and variable repetition time
while maintaining its resolution [133]. Such approach was applied to breast-cell extracts
to prove its potential being sensitive to metabolites with submillimolar concentrations.

In terms of software tools aimed for 2D quantification, MetaboQuant [134] emerged
as a tool that combined individual peak calibration and outlier detection for both 1D 1H
and 2D 1H–13C HSQC NMR spectra. This software tool requires the spectral data to be
preprocessed with separate software for peak fitting and integration. It was developed
under Matlab environment and is accessed via a graphical user interface. According to the
authors, the novel feature implemented on their NMR quantification is a reliability check
based on the proportion between visible and non-visible signals of a compound [134].
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Other key components of the software is having a set of calibration factors incorporated
and user defined threshold to ensure high likelihood of correct quantification.

Dolphin [135] is another software package that despite not being aimed to quantify 2D
spectra, uses 2D-JRES-NMR spectra to find and integrate additional information to im-
prove their line-shape fitting algorithm. This algorithm allows an automated quantification
of a fixed target set of metabolites, achieving the best results when there is a referencing
between the 1D and 2D-JRES-NMR spectra, usually alpha-D-glucose doublet [136]. The
presence of each target metabolite is assessed by a subset of its spectral pattern in
the 2D-JRES-NMR spectra, information that is obtained from public domain databases
such as HMDB or BioMagResBank (BMRB) [137] or commercial packages such as NMR
Suite and AMIX [135].

2D-NMR provides the means to treat signal overlapping, which means an accurate
identification and quantification of metabolites is possible using this technique. How-
ever, there is not a software that can provide a framework for the complete analysis of
these spectra, being flexible for different 2D techniques and providing means to ease
chemometric and quantifying methods. This task is particularly hard because each 2D
experiment has specific data projected to the second dimension that is influenced by mag-
netic resonance characteristics. In addition to this, 2D-NMR has its own disadvantages
which are being overcome with the recent advances in the area [9].

The tools and softwares to quantify metabolites in NMR, described in this section, are
summarized on Table 1. Some of the techniques applied to 2D-NMR were left out of the
table because they were considered modifications to specific techniques.

2.4 BIOMARKER DISCOVERY

Metabolomics is connected to clinical research because metabolites hold high potential
as biomarkers for diseases through early diagnostics or follow-up prognosis [138]. This
potential is due to the assumption that diseases influence biochemical pathways in a
cell that change its metabolic fingerprint to a new metabolic state that is disease-specific
[139]. One other field is plant metabolomics where metabolites can be biomarkers of
environmental or nutritional perturbations [140].

A metabolite is recognized as a biomarker when it is quantitatively capable of being
detected, has high sensitivity and specificity, thus representing a measurable indicator
of a physiological state [141]. This only happens when the reproducibility and validity
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Table 1: Metabolite quantification tools.

Tool Type Spectral
Data Availability

BQuant R package 1D-NMR Free at https://www.stat.purdue.
edu/∼ovitek/BQuant-Web/

BATMAN R package 1D-NMR
Free at https://cran.r-project.org/
web/\packages/batman/index.
html

BAYESIL Web tool 1D-NMR Free at http://www.bayesil.ca

ASICS R package Complex
1D-NMR

Free at https://www.bioconductor.
org/packages/release/bioc/html/
ASICS.html

rDolphin GUI R package 1D-NMR Free at http://github.com/
danielcanueto/rDolphin

AQuA MATLAB script 1D-NMR Free through their article, here

MetaboQuant
Executable file
and MATLAB

script

1D-NMR
and 1H–13C

HSQC

Free at https://www.
uni-regensburg.de/medicine/
statistical-bioinformatics/
software/
software-from-gronwald-group/
metaboquant/index.html

Dolphin MATLAB
software package 1D-NMR Only by request. Link to article here

Chenomx
NMR Suite Software 1D-NMR

Commercial with a evaluation ver-
sion at https://www.chenomx.
com/products/

Bruker AMIX Software 1D-NMR
and HSQC Commercial, available here

https://www.stat.purdue.edu/~ovitek/BQuant-Web/
https://www.stat.purdue.edu/~ovitek/BQuant-Web/
https://cran.r-project.org/web/\ packages/batman/index.html
https://cran.r-project.org/web/\ packages/batman/index.html
https://cran.r-project.org/web/\ packages/batman/index.html
http://www.bayesil.ca
https://www.bioconductor.org/packages/release/bioc/html/ASICS.html
https://www.bioconductor.org/packages/release/bioc/html/ASICS.html
https://www.bioconductor.org/packages/release/bioc/html/ASICS.html
http://github.com/danielcanueto/rDolphin
http://github.com/danielcanueto/rDolphin
https://pubs.acs.org/doi/10.1021/acs.analchem.7b04324
https://www.uni-regensburg.de/medicine/statistical-bioinformatics/software/software-from-gronwald-group/metaboquant/index.html
https://www.uni-regensburg.de/medicine/statistical-bioinformatics/software/software-from-gronwald-group/metaboquant/index.html
https://www.uni-regensburg.de/medicine/statistical-bioinformatics/software/software-from-gronwald-group/metaboquant/index.html
https://www.uni-regensburg.de/medicine/statistical-bioinformatics/software/software-from-gronwald-group/metaboquant/index.html
https://www.uni-regensburg.de/medicine/statistical-bioinformatics/software/software-from-gronwald-group/metaboquant/index.html
https://www.uni-regensburg.de/medicine/statistical-bioinformatics/software/software-from-gronwald-group/metaboquant/index.html
https://link.springer.com/article/10.1007/s00216-014-8225-6
https://www.chenomx.com/products/
https://www.chenomx.com/products/
https://www.bruker.com/products/mr/nmr/software/amix.html?gclid=CjwKCAjwiMj2BRBFEiwAYfTbCofvIl6L-VveoBZ4S7eN7j9AOV1P088s-dx8xGDBVZ8TDIn6DWaAXRoC4RcQAvD_BwE
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of the primary results are confirmed, through new independent samples, and then
compared against traditional methods [142, 143]. However, metabolites’ measurements
rely on analytical methods [144] (mainly NMR and MS-based techniques) and different
independent labs use different methods [142]. This translates into a difficulty when a
biomarker study is published and needs to be validated and the protocols developed
followed [145].

In metabolomics, we can either perform a targeted analysis or untargeted analysis
based on the study we want to perform, and if there is or not an underlying hypothesis, re-
spectively [146]. Usually, for biomarker research, the choice is untargeted metabolomics,
in a scenario of hypothesis-generation research to extract biological meaning of a dataset
with hundreds or thousands of metabolites [146, 147]. Due to the complexity and vol-
ume of the data generated in metabolomics, pattern recognition methods together with
multivariate statistical approaches, allow for metabolic signature identification that can
differentiate and discriminate certain cell’s physiological patterns associated to patho-
physiological frameworks[51].

Independently of the analytical method used in the study, unsupervised and supervised
methods of multivariate statistical analysis are employed to reduce data dimensional-
ity, find trends and search for discriminating features to give a clear interpretation of
metabolome’s alterations [148–151]. Univariate analyses may also be employed to find
differential expressed metabolites. However, since metabolomics datasets have a lot of
variables, it is fundamental to adjust the p-value [152].

The difference between unsupervised and supervised methods rely on the prior
knowledge required. Unsupervised methods do not require prior knowledge and are used
for data analysis, finding clusters of data classification and give an unbiased view of the
data [148, 151]. On the other hand, supervised methods require prior knowledge about
sample class and are used for optimal sample class segregation, generate clusters of
patterns and new data prediction [139, 148]. To both methods it is highly recommendable
to validate findings either by cross-validation or a second sets of samples to achieve
higher truthfulness in the results obtained [148].

2.4.1 UNSUPERVISED METHODS

Principal Component Analysis (PCA) is the most commonly used unsupervised method
in metabolomics [153] and it is used to identify patterns and trends in large volumes of
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data [149]. In order to do this, multidimensional data is reduced by creating new variables,
called Principal Components (PCs), which result from linear combinations of the original
variables and are orthogonal to each other [151]. These new variables are intended to
explain the maximum amount of variance, not accounted for previous PCs [152].

When we perform PCA, two new matrices are created, scores and loadings, and they
enable the interpretation of how spectra are related to each other and which variables
contributed the most to principal component’s variance, respectively [148, 151]. Usually,
scores are plotted to evaluate the scatter of the samples and if they are clustered
together they have similar metabolomics compositions, otherwise they are characterized
by different properties. Clustering in these circumstances should be evaluated through
loadings since potential biomarkers are normally characterized for having high variance.
However, this does not guarantee a relevant biomarker and further statistical validation is
required [148].

Clustering methods, such as Hierarchical Clustering (HC) or K-means, intend to
subgroup heterogeneous data so that each subgroup has high homogeneity, through
a measure of similarity [154, 155]. HC requires the user to choose the distance metric
by which similarity will be calculated and the function that will link clusters, having both
choices influence on the dendogram structure [151]. On the other hand, K-means only
needs to be given an integer number, k, that defines the number of clusters that will be
formed [155]. Clustering methods should be combined with PCA to provide an unbiased
mechanism of analyzing groups of metabolites that share similar metabolic content, thus
providing potential sets of biomarkers [148].

Regarding NMR, Statistical Total Correlation Spectroscopy (STOCSY)[156] is a method
applied to complex 1D-NMR spectra to retrieve more information regarding spectral peak
intensities [148]. It is based on a correlation matrix between all intensities of the NMR
spectra and this matrix can then be plotted achieving a graphical representation similar to
TOCSY, a 2D correlation NMR experiment on one sample [151]. STOCSY has numerous
applications, such as, drug metabolite identification in human urine samples [156], cross-
experiment analysis (NMR and MS simultaneously) [157], clustering combination for
higher accuracy between peaks from the same molecule [158] and supervised technique
combination for relevant metabolite signature linkage [156].

Unsupervised methods do not actually give us information on which metabolites can
differentiate classes, but rather an overview of potential groups of metabolites that share
similar properties and are somehow correlated, thus the need to combine with supervised
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methodologies. Supervised methods can take advantage of these potential groups of
metabolites to narrow the variance coming from other sources thus improving their
performance and easing computational effort[82].

2.4.2 SUPERVISED METHODS

The objective of supervised methods is to learn patterns and rules from the metabolomic
dataset to predict new data, through an input matrix (i.e., NMR or MS spectra) and an
output vector of responses (either continuous or discrete data) [151]. These methods
rely on feature selection to identify a subset of variables that can discriminate classes
with the objective to build a robust model for classification or regression [158].

There are three types of feature selection methods, based on how they are correlated
to the model[159]. The first type are the filter methods that select features according
to statistical tests independent of the machine learning algorithm, mainly univariate
approaches such as Analysis of Variance (ANOVA) or chi-square[159]. Since so many
tests are performed using, i.e., ANOVA, it is highly recommended a p-value adjustment
to detect significant differently expressed metabolites [152]. However, univariate filtering
methods do not account for feature dependency leading to worse performances which
gave rise to a number of multivariate filter techniques [160].

The second one is named wrapper methods and they select features by training
and testing a specific model, starting with a possible set of features and searching
the ones that provide the best performance [160]. They are mainly defined by their
searching methods that can be divided into three categories: exponential, sequen-
tial/deterministic and randomized [159]. Exponential is an exhuastive search that is
impractical in metabolomics due to the dimension of the search space[159]. There a
lot of different sequential/deterministic approaches being forward selection and back-
ward selection the most well-known [161]. The first begins with an empty set and
incorporates features with each iteration whereas backward selection begins with all
possible features and eliminates the ones that affect performance the most [161]. There
is an instance of backward selection, Recursive Feature Elimination (RFE), that ranks
features with each iteration providing the user a feature ranking according to the elim-
ination order [162, 163]. Randomized approaches perform heuristic searches in the
possible feature space[159] through different algorithms such as genetic algorithm[164,
165] and particle swarm optimization. Wrapper methods perform better than filter



2.4. Biomarker discovery 30

methods[159, 162], however there is a higher overfitting risk and processing computa-
tional demand [160].

The last type of feature selection methods are the embedded ones where the search for
the optimal set of features is built into the model construction [160]. Features are selected
at the same time that the model is trained easing computational effort and cost while im-
proving model’s performance [159]. This method can thus provide the advantages of the
previous methods, the wrapper’s feature-model interaction and the filter’s lower computa-
tional demand (higher than filter methods but lower than wrapper ones). There different
types of embedded methods being the regularization models the ones that are usually
used due to their good performance[161]. Features are associated with coefficients that
are forced to be small or zero (eliminating the respective feature) by objective functions
that minimize fitting errors [161]. Examples of this models are Lasso Regularization[166],
Adaptive
Lasso[167], Bridge Regularization[168, 169] and Elastic net regularization[170] that
are reviewed by J. Tang, et al.[161].

For biomarker discovery purposes, building discriminant classification models is nor-
mally the path to go because the problem is based on class membership differentiation
[151]. When using supervised classification methods, a fundamental step is validation
because models that fit the data perfectly loose the ability to predict correctly new data
and, in some cases, they can give a correct classification despite the lack of relationship
in the data [151]. Therefore, it is necessary to validate the model’s predictive performance
either through cross-validation, double cross-validation, permutation, an external valida-
tion set or through a new independent validation set [151]. Since a new set of samples
coming from an independent new experiment is rare, the use of an external validation set
by means of data partitioning algorithms provide reliable predictive performance results
[151].

Besides validation, evaluation of a classification model performance is also a key step
when using machine learning approaches. This can be achieved through many ways
such as classification accuracy rate, root-mean-squared estimates of model loadings,
R2/Q2 plot and Receiver Operating Characteristic (ROC) curve analysis [171, 172].

ROC curves are a non-parametric measurement utility that assesses the performance
through sensitivity and specificity rather than the prevalence of an outcome [173]. These
curves plot one minus the specificity on the x-axis and the sensitivity on the y-axis
and the classifier potential is often summarized by the AUC [172]. The AUC can be
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interpreted as a probability that characterizes the classifier on its instances ranking
capability of true positives before true negatives [173].

When taking into consideration AUC analysis in metabolomics Confidence Intervals (CI)
should be calculated for the probability, since a potential biomarker intends to be applied
on a larger population [173]. One way to achieve CI is through bootstrap percentile re-
sampling [174], a method that constructs new samples from the original ones and where
the 2.5 and 97.5 percentiles are taken to produce the 95% CI [173]. It has to be taken into
consideration that when multiple comparisons are performed, a correction to the CI has
to be employed such as Bonferroni or Benjamini-Hochberg False Discovery Rate (FDR).
Since some machine learning methodologies can compute internal measurements of
each metabolite’s importance, it is possible to combine this information with the projection
algorithm to produce a ROC curve that enables the selection of a useful metabolite subset
[173]. In terms of biomarker performance evaluation, ROC curve analysis is considered
to be the go-to statistically valid method [175, 176].

Linear methods

Partial Least Squares - Discriminant Analysis (PLS-DA), the classification approach
of the regression technique Partial Least Squares (PLS), calculates latent variables
(linear combinations of the original variables, similar to PCs in PCA) that maximize the
covariation between observed data and categorical response variables [148, 149, 151,
152]. Since latent variables come from linear combinations of the original variables, the
PLS-DA model can be expressed as Y = Xb + r, where Y is the class membership
vector, X the data matrix, b a vector of regression coefficients and r a vector of residuals
[151]. PLS-DA performs best when the variables are highly correlated and the potential
markers can be obtained from latent variables and interpreting their contribution to the
variation and correlation within the dataset [149, 151].

Despite the better separation of classes done in PLS-DA, compared to PCA, there is
still variation present in the scores that is not correlated directly to the response classes
[177]. To fix the problem of this direct and indirect correlated variation an orthogonal
approach was developed, Orthogonal Projections to Latent Structures (O-PLS) [178],
later applied to classification problems, Orthogonal Partial Least Squares - Discriminant
Analysis (OPLS-DA). In order to obtain an orthogonal model, it is necessary to apply
an orthogonal signal correction filter, separating variation linearly related to response
from the one uncorrelated [177]. So, when the response estimation occurs, only the
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variation linearly correlated is used, producing a model with higher interpretability and
without structured noise [151]. It can happen that the original dataset has low or none
uncorrelated variation naturally, which means the predictive performance of an OPLS-DA
will be identical to PLS-DA.

Non-linear methods

Non-linear methods have been highly considered for pattern recognition due to the
fact that biological processes are complex, with interactions that lead to a non-linear
metabolic response [151]. They are also capable of being influenced by external factors
which are not linearly related to different classes[151].

Support Vector Machine (SVM) is a kernel-based non-parametric machine learning
technique that can be used for classification and regression problems [179]. It performs
a kernel transformation to map data into a high-dimensional space allowing for different
group separation [180]. Only a small fraction of the samples are identified, the support
vectors, that enable the creation of a discriminative hyper-plane between the two classes
[151, 180]. Depending on the problem to solve, the kernel transformation applied can
be linear or non-linear providing this technique the necessary flexibility to different
problems. There are different kernels available, such as, polynomial, Gaussian and
sigmoid functions [181]. However, the results are not transparent because there is no
easy way to visualize them[180].

SVM allowed for a classification of lung cancer cases versus control with an accuracy
of 93.3%, suggesting that blood plasma metabolites analysis through Electrospray
Ionization (ESI)-MS hold clinical potential in early-stage human lung cancer diagnosis
[182]. Guan et. al [183] also applied SVM with RFE to LC-MS data in order to distinguish
ovarian cancer samples from control, achieving over 90% accuracy. Allied to least
squares, SVM with Gaussian kernel was applied to NMR data to classify patients with
major depressive disorder achieving an accuracy of 96% in the test set, providing an
auxiliary diagnostic tool for this disorder [184].

Random Forests (RdF) are a combination of decision trees, that sample different
sets of random variables to build them [185]. The method uses bootstrapping with
replacement to split the data, getting around 63% of all samples in the training sets and
the remain on the test sets [186]. RdF have several advantages as they can be robust
to over-fitting and outliers, handle missing data, deal with complex datasets without
deleting variables, which results in a highly accurate classifier [180]. There are different
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variable importance measures that may differentiate feature selection schemes, i.e.,
Gini importance and permutation importance[187]. Gini importance demonstrated to
be biased when predictor variables vary in their scale or number of categories while
permutation importance showed reliability when constructing decision trees based on
subsampling wihtout replacement [188].

In 2013, T. Chen et. al [172] compared four classifiers (PLS, SVM, Linear Discriminant
Analysis and RdF) on discriminating healthy patients versus patients with colorectal
cancer from a GC-MS analysis, where RdF had better predictive ability than the other
three classifiers. L. Zhao et. al [189] applied RdF models to investigate the syndromes
associated to Coronary heart disease in NMR data, achieving a visual discrimination of
two syndromes associated with this disease and obtaining twelve metabolites that could
be considered as potential biomarkers.





3

D E V E L O P M E N T

This chapter covers the development process of the necessary functions to analyze
2D-NMR spectra that ended with a general workflow for this type of data, available through
specmine package in the form of a vignette. Vignettes are long-form documentation
guides to packages or even specific problems that the package is intended to solve[190].In
this case, a vignette was done to guide the user through the new functionalities developed,
regarding data input, visualizing, peak detection and further analysis.

All the tools and technologies used to achieve this goal are described, with special focus
on the R package specmine, which integrated the work developed and served as a basis
for the development. The code was developed using RStudio (version 1.3.1073)[191], an
integrated development environment for R and Python. This work can be divided in the
following processes of data analysis and structuring:

• Representation of two-dimensional data;

• Data reading;

• Data summary;

• Data visualization;

• Dimensional reduction.

3.1 specmine

In the past few years, the host group developed and improved an R package, called
specmine[2], that provides methods for metabolomic data analysis in a user-friendly
environment integrating functions from other R packages for a complete workflow. The

34
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package has the capability to read data from different metabolomic techniques such
as NMR, MS-based (GC and LC), Ultraviolet - visible (UV-vis) and IR[2]. This means
different file formats are supported through functions from xcms[192] (NetCDF, mzDATA
and mzXML data), ChemoSpec[193] for (J)DX data and R itself for Comma (or Tab)
Separated Values (CSV or TSV) files[2]. Metadata files can be given to the data reading
function in CSV/TSV file format.

Independently of the data format, specmine represents a dataset as an R list with
several fields that characterize the data, presented graphically in Figure 2. This sup-
ports reproducibility in metabolomics as well as flexibility, since it provides the same
data structure for different original data formats. The users can then establish their
own framework of analysis by performing the necessary preprocessing steps, univari-
ate, principal components, clustering and regression analysis as well as machine
learning approaches to build predictive models [2]. It is also possible to perform
feature selection to choose a subset of discriminatory variables with biological inter-
est. Metabolite identification is possible through MAIT (https://www.bioconductor.
org/packages/release/bioc/html/MAIT.html) which means it is only available for
LC-MS data. In terms of visualizing any results obtained, the package implemented
base graphic R functions, while, in some cases specmine relies on ggplot2(https:
//www.rdocumentation.org/packages/ggplot2/versions/3.3.0).

In terms of preprocessing steps, specmine is able to perform treatment of missing
values, remove unecessary data or variables (accordingly or not to the presence of
missing values), transform data, scaling, correction, smoothing interpolation, conversion
of metadata variables to factors, mean centering, subset the dataset by samples and/or
variables, data fusion, flat pattern filtering or data/metadata replacement. It is possible to
treat a missing value by replacing it with a specific one (user-defined), according to the
mean or median of the variables, using K-nearest neighbour averaging or with a linear
approximation. One can perform a logarithmic or cubic root transformation.

In terms of scaling, there are four options available: auto, range, Pareto and interval.
Background, offset and baseline corrections are available and the user can choose the
baseline method when baseline correction is desirable. For smoothing interpolation
the methods available are Bin, Loess and Savitzky-Golay. Data normalization can be
achieved through the median, a reference sample/variable or the sum of a constant
(user-defined). Low variance variables can be filtered out by specific functions such

https://www.bioconductor.org/packages/release/bioc/html/MAIT.html
https://www.bioconductor.org/packages/release/bioc/html/MAIT.html
https://www.rdocumentation.org/packages/ggplot2/versions/3.3.0
https://www.rdocumentation.org/packages/ggplot2/versions/3.3.0
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Figure 2: Graphical representation of a specmine’s dataset structure. Retrieved from C. Costa, et
al. [2]

as interquantile range, relative standard deviation, median absolute deviation, mean or
median using a percentage or threshold given by the user.

Using the stats R package, specmine can provide several functions to perform univari-
ate, correlation and regression analysis. The user can execute t-test, one-way and/or
multifactorial ANOVA with the Tukey HSD post-hoc test and non parametric tests such
as Kruskal-Wallis and Komolgorov-Smirnov. The parametric tests can handle multiple
testing providing the ajusted p-values according to the FDR. Fold change analysis can be
performed in each variable comparing two groups or in two specific variables for precise
analysis and the results can be visualized in tabular and graphical forms.

Unsupervised multivariate analysis performed by specmine include PCA and two
clustering methods. It is possible to perform classical and robust PCA, using this last
one the R package pcaPP[194], and the user can visualize the results through scree
plots, scores plots, biplots and pairs plots[2]. Regarding clustering methods, k-means
and hierarchical are available with the option to the user to choose the different distance
metric in the case of hierarchical one and the number of clusters on the other one.
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Supervised and feature selection methods are provided through the application of
functions from the R package caret. One can train, use and evaluate machine learning
classification or regression approaches with validation methods such as k-fold cross-
validation, leave-one-out cross-validation, resampling, repeated cross-validation and
leave group out cross-validation. Error metrics estimated by these methods are also
available including accuracy, AUC ROC analysis, Kappa statistic for classification, Root
Mean Square Error (RMSE) and the coefficient of determination for regression. In terms
of feature selection, both filter and wrapper methods are provided in order to determine
which attributes present more value for the problem in question.

Since the release of the package, several improvements have been done to extend
the capability analysis of the framework. Pathway analysis was implemented through
connection to Kyoto Encyclopedia of Genes and Genomes (KEGG) and HMDB databases
where it is possible to retrieve the organism and compounds’ names. Another functionality
was metabolite identification for NMR peak data, a work developed based on the R code
proposed by Jacob et al. [195]. The method is based on peak clustering (through igraph
package) according to a correlation value where each cluster is considered to be a
potential metabolite [196]. After setting a library of reference metabolites, from HMDB, it
is possible to compare each cluster to a reference metabolite using the Jaccard index.

In a recent work, developed by the host group, a web-based application of the package
specmine was created to provide users, with no programming skills, means to per-
form metabolomic analysis. WebSpecmine(https://webspecmine.bio.di.uminho.pt/)[3]
is an easy-to-use and freely accessible tool with the capability to be flexible towards
different metabolomics experiments since there is not a fixed workflow for data pre-
processing and following analysis. WebSpecmine’s interoperability with specmine is
overviewed on Figure 3 where it is also presented the tools that made possible this
connection. In addition to this, Webspecmine is able to store data which MetaboAna-
lyst(https://www.metaboanalyst.ca/) cannot, also a website based on an R package
(MetaboAnalystR[197]) with the same purposes.

The package specmine was used in four case studies to prove its capability and to
provide useful pipelines for data analysis[2, 198]. Their entire analysis is available here,
work developed by C. Costa [198].

https://webspecmine.bio.di.uminho.pt/
https://www.metaboanalyst.ca/
http://hdl.handle.net/1822/36620
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Figure 3: Overview of WebSpecmine’s implementation and features based on specmine and the
tools Shiny, MySQL and Docker. Retrieved from S. Cardoso, et al.[3].

3.2 REPRESENTATION OF TWO-DIMENSIONAL DATA

In order to develop tools to analyze 2D-NMR metabolomic data it is needed an object
that can represent this type of data in specmine. Currently, it is implemented the structure
presented on Figure 2. However, a similar structure is not possible when a sample is
considered a 2D matrix where the variables across the dataset are combinations of
values from two different dimensions. In 1D, a single x axis can represent the resonance
frequency of a 1D-NMR study and y axis values represent the intensity measured. In
2D-NMR, two x axis are necessary to provide the resonance frequencies of an experiment
(one for each dimension) and intensity values shift from y axis to z axis, where each point
results from two resonance frequencies. The directly measured dimension resonance
frequencies’ are present in the columns and the indirectly measured ones are present in
the rows of a matrix. To ease user’s interpretability it was considered the basic structure
of a specmine dataset, an R list, with changes in the data field and addition of new fields.
A 2D dataset on specmine will consist on the following fields:

• data - The metabolomics experiment data’, stored in a list of numeric matrices
where columns represent ppm values’ from the direct dimension and rows represent
ppm values’ form the indirect dimension. Each matrix represents a sample and
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values in the matrix represent the 1D-corresponding y axis, intensity values for the
combination of resonance frequencies. The names of this field in the object keep
the sample identifiers;

• type - String indicating the type of data. Currently it is only allowed ”2d-nmr” and
”undefined”;

• description - String that describes the dataset and possible pre-processing steps
performed on it;

• metadata - Extra variables regarding information on samples, stored in a data
frame (columns are variables and rows are samples);

• F1 ppm - A numerical vector that represents the resonance frequency for the
indirect dimension (F1);

• F2 ppm - A numerical vector that represents the resonance frequency for the direct
dimension (F2);

• labels - list that allows the user to define labels for each axis; defaults: x-axis ($x)
and y-axis ($y) are ”ppm” and z-axis($val) is ”intensity”.

This new modified structure is presented on 4. As in spemcine’s 1D structure, the data
and type fields cannot be NULL. Furthermore, data field has to be a list and names for
both rows and columns have to be numerical, otherwise the dataset will be considered
invalid. This R list can be generalized to other types of 2D metabolomics data, enhancing
specmine’s flexibility.

3.3 DATA READING

The function create 2d dataset allows to create the structure above mentioned and it
is called by the functions that read the 2D-NMR data. Following the work developed by
the host group, it was necessary to read from two different NMR instruments: Bruker
and Varian. Available data from Bruker is structured in a different way that it is when
collected through Varian instruments. This demanded two different functions to allow a
complete implementation of 2D-NMR data reading on specmine, increasing it’s readability
of available metabolomic spectra.
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Sample 4 0.40 0.45 0.50 …

1.40 15200.21 215412 654121 …

1.45 51510 213854 101785 …

1.50 214542 6754 2187 …

… … ... … …

data
list

Variable 1 Variable 2 …

Sample 1 Y 32.1

Sample 2 N 13.4

…

metadata
data frame

Sample identifiers

Sample 3 0.40 0.45 0.50 …

1.40 15200.21 215412 654121 …

1.45 51510 213854 101785 …

1.50 214542 6754 2187 …

… … ... … …

Sample 2 0.40 0.45 0.50 …

1.40 15200.21 215412 654121 …

1.45 51510 213854 101785 …

1.50 214542 6754 2187 …

… … ... … …

Sample 1 0.40 0.45 0.50 …

1.40 15200.21 215412 654121 …

1.45 51510 213854 101785 …

1.50 214542 6754 2187 …

… … ... … …

Direct dimension (F2)

Indirect dimension (F1)

Metadata labels

Figure 4: Representation of the structure of 2D data in a specmine dataset.

3.3.1 BRUKER DATA

In the case of Bruker files, additional files regarding the second dimension are identifiable
through the number two in their name. A simple scheme of how files from Bruker
instrument are displayed is present on the Figure 5. The most important files to read
2D Bruker spectra are 2rr (processed data), procs (processing parameters for the first
dimension) and proc2s (processing parameters for the second dimension).

The implementation on specmine followed the code already developed for 1D-NMR
from Bruker files, changing the function that reads only one NMR spectrum. The modifi-
cation was calling the function read Bruker from the package mrbin[199] assigning the
folder parameter to each sample spectrum and the dimension parameter to ”2D”. This
function returns an intensity matrix containing raw ppm values for the direct and indirect
dimensions (columns and rows, respectively). The ppm values are then rounded to two
decimal places and the matrix is appended to a list of matrices associated by sample id.
The new function read Bruker files 2d includes also parameters that users can change,
i.e., description, metadata file and labels for each dimension.
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Spectrum directory

pdata

1

2rr

procs

proc2s

Other files

acqus

acqu2s

Other files

Figure 5: Organization of Bruker files from a 2D metabolomics experiment. Icons designed by
DinosoftLabs from Flaticon.

3.3.2 VARIAN DATA

Regarding Varian files, they follow the same scheme as 1D raw spectra. The files present
in a Varian sample directory are the fid file (contains the raw spectrum, in binary format),
log file (contains the recorded events on the acquisition process), procpar file (contains
the parameters of the experiment) and text file (contains additional information of the
experiment). The second dimension is provided by the fid file and key varian instrument
parameters in procpar that allow a correct preprocessing of the spectra.

Following the code developed to read 1D Varian data, was developed a script in
Python3[200], using the package mrglue[201]. As far as preprocessing the fid file, the
example provided here shows that 2D Varian data should be preprocessed in both dimen-
sions, performing for each dimension an apodization, zero-filling, a fourier-transformation,
phase-correction and imaginary numbers removal. There are multiple ways to perform an
apodization and nmrglue provides a set of them, including generic, exponential, lorentz-
to-gauss and sine bell. The apodization that the developed script uses is exponential
since this apodization was the one already used in the 1D script. The script consists in a

https://nmrglue.readthedocs.io/en/latest/examples/process_pipe_2d.html
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function that takes the same arguments as 1D (directory folder, fid file, procpar file and
two boolean values to either perform or not apodization and zero filling) and returns a
data matrix and a list of two vectors of ppm values. This script it is incorporated in an R
function that is present in the general function read varian 2dspectra raw, whichs reads
multiples sample spectra from a directory. In order for this function to work, the user must
have Python3 and the package nmrglue installed on the computer.

3.4 DATA SUMMARY

In order to access some initial information on the dataset the functions check 2d dataset
and sum 2d dataset were developed. Both functions were developed based on the
existing corresponding functions for 1D. The first validates or not a 2D specmine dataset.
This type of dataset is not valid if:

• data field is null;

• the number of sample spectra in data field does not match the number of rows in
metadata (when it is not null);

• the type of data is not allowed for this type of dataset;

• the column/row names are not numeric values (it considers the first spectrum as
reference).

The second function presents to the user a summary of the dataset with some statistics
if the stats option is TRUE. It iterates over the multiple matrices and applies different
functions to obtain different information. Currently, it prints if the dataset is valid, its
description, type of data, number of samples, number of data points and information
regarding metadata and labels, if they are not null. In case stats equals TRUE it prints
the number of missing values, mean, median and standard deviation for each spectrum.

3.5 DATA VISUALIZATION

The plotting of one or more 2D spectra is achieved by the incorporation of the package
plotly [202]. This package is an R version of the open source plotly graphing libraries,
helping to build interactive and high-quality graphs. It works similarly to the ggplot2[203]
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f (x) =
xi,j

σxa,b

(1)

where,

xi,j =


z1,1 z1,2 · · · zi,j
z2,1 z2,2 · · · zi,j

...
... . . . ...

zi,1 zj,2 · · · zi,j


a =

σi

i
> 15

b =
σj

j
> 15

Formula 1: Signal-to-noise ratio of a spectrum.

package for R, where a user can create a plotly object and add multiple customizable
fields, such as, labels, colors, axes, text annotations, . . . . It was developed a function,
plot 2d spectra, that allows the user to visualize a single/group of spectra within the
same plot, in an interactive way. Interactivity enables the user to zoom in/out, hover a
peak (receiving information regarding its intensity and F1 and F2 dimension indexes),
rotate the plot and select which spectra to plot. Besides interactivity, if the user does not
give any samples to plot, the function will generate a plot with four spectra, the two with
higher and lower SNR.

The SNR of a spectrum can be calculated as it shows in Formula 1.
It was formulated based on the work of Wang et al.[204], where they related the

Coefficient of Variance (CV) (σ
µ ) and the SNR in NMR-based metabolomics studies.

In their case, they used a specific noise region (9.5 - 10 ppm) to extract its standard
deviation and divide the intensity of a peak by that value. In a generalized case the
noise region has to be identified based on the data and it is supported by the literature
that noise regions have a high CV (above 15 %)[204–206]. Following this information,
noise regions are represented as a subset of the spectra, where ppm values of both
dimensions are selected if their CV is higher than 15. Instead of looking for possible
peaks across spectra with higher CV (in 2D-NMR metabolomics , combinations of ppm
values) it looks for regions of the spectra which is computational quicker and easier to
interpret. The mean of intensity values in the spectra is divided by the standard deviation
of the calculated noise regions achieving the SNR of a spectra.
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The function plot 2d spectra can be divided in sections that represent the steps to
build the entire plotly object. The first section involves sample selection, whether if it
is done through SNR as described above or by user input (either through a character
vector with sample names or numerical vector with indexes). The second section is the
buttons list building, a necessary list that for each sample selected in the previous section
creates a graphical button in the interactive plot, presented as a dropdown menu. The
third section adds the selected sample’ spectra into a single plotly object as surfaces
and they are colored differently if a metadata variable is given or not. If this variable is
not given, each spectrum has a different color. The fourth and last section adds the final
layout to the plot, including the title (given by the user), axis names, the dropdown menu
with the buttons and the legend.

3.6 DIMENSION REDUCTION

Extracting information from the 2D-NMR specmine structure, mentioned in the first
section of this chapter, is a computational challenge because any operation iterated
over a list of large matrices will take a long time to obtain results. With this in mind the
objective of the function peak detection2d is to perform peak detection and build a 1D
structured specmine dataset with the combination of ppm values as variables (rows) and
samples in the columns.

The algorithm to perform peak detection is a search for local maxima, finding points in
the matrix that are larger than all surrounding points, taking from the rNMR[12], an open
source software for NMR data analysis. The user can establish the degree of a filter that
correlates the defined threshold with the points in the spectra, influencing if all/none of
the points should be above the threshold or row/column points should be searched for
local maxes. The search itself is based on the intersect function, within R base package,
where two vectors (in this case, the same matrix with added Not Available (NA)s) are
compared to find points that belong to both vectors. An example of how this function
works in the algorithm is represented on 6. It returns a vector with matrix indexes which
is further used to obtain the corresponding intensity values and the pair row/column
that characterizes the peak. Regarding the threshold, if it is not given by the user, it is
determined by calculating the mean of the intensity values of the spectra.

For each spectra in the 2D specmine list, a new matrix is built filled with NAs. This
will serve as the template for the new 1D dataset because it is easier to work with an
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x [8    6    3    7    2    9    10    4    1    5]
The intersect function will analyse two results of comparisons:

NA    8    6    3    7    2    9    10    4    1    5

8    6    3    7    2    9    10    4    1    5    NA

Which index values on the upper vector are smaller
than the ones on the lower vector?

Which index values on the upper vector are higher 
than the ones on the lower vector?

NA    8    6    3    7    2    9    10    4    1    5

8    6    3    7    2    9    10    4    1    5    NA

4    6    7    10 1(2)    2(3)    4(5)    7(8)    8(9)

-1 to find common
solution

Intersect both sets

[8    6    3 7 2 9 10 4 1    5]

4 7

Figure 6: Example on a simple vector of how intersection function is implemented on the local
max search algorithm.

empty matrix rather the original. From the peak list (result of the peak detection phase),
each pair (row/column) that had a peak will have its intensity value in the empty matrix
on the same pair. This will result in a matrix filled with NAs except on the points that
were detected as peaks, for every sample. With the new list of recent matrices it is built a
Three-Dimensional (3D) array and columns or rows that have negative ppm values are
removed, according to the user input. The 3D array is then converted into a 2D matrix
using the function two.d.array, from the R package geomorph[207]. Due to the existence
of identical ppm values in different dimensions, it was necessary to establish unique
names for the new variables which was possible through the base function make.names.
The next step was to remove variables that had an empty expression of peaks, i.e.,
the row had only NAs throughout the samples. With this step done, it is now possible
to create a 1D specmine dataset with the function create dataset. This reduction of
dimensionality will allow the use of the already developed functions for 1D datasets which
eases the process of 2D-NMR analysis. One has to take into account that the newly
created dataset has high percentage of NAs and a method for NA imputation should be
used before analysis.
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3.7 FURTHER ANALYSIS

After peak detection phase it is possible to apply the functionalities of specmine to
analyze the standard 1D-NMR dataset, as mentioned on the last paragraph. In this
section, the main options for uni- and multivariate analysis available in specmine will be
summarized.

In terms of univariate parametric analysis it is possible to perform student’s t-test
and one-way and multifactor ANOVA. As for univariate non-parametric analysis it is
possible to perform Kruskal-Wallis and Kolmogorov-Smirnov tests. It is also possible
to perform fold change analysis on each variable of the dataset and on two specific
variables for targeted differences of groups. Despite the test, the option to plot the results,
highlighting different features, is always available providing meaningful tools to interpret
any approach.

Regarding multivariate analysis, the main tool available is PCA. The user can perform
either classical or robust PCA which means it has the option to customize how this
analysis is conducted, being able to choose how to center and scale the dataset. In
terms of visualization there is a wide range of methods to plot the PCA results. Ranging
from a scree plot to k-means pairs plot, it is possible to understand the variance explained
by each principal component and the contribute of each samples/variable to the result.

There are also methods to perform clustering, regression and correlation analysis.
The user has the option to perform hierarchical and k-means clustering within the same
function, being able to select which metrics to use for hierarchical and the number of
clusters for k-means. The methods implemented for regression and correlation analysis
allow to test all variables at once and in the case of correlations tests it is possible to
visualize the result through heatmap.

In more specific cases there are methods implemented in specmine for feature selec-
tion and machine learning. The methods are wrappers for functions and models from
package caret and there are several customizable options which provides users the tools
to try different approaches.





4

C A S E S T U D I E S

In this chapter, the new developed functions will be tested with real data, creating pipeline
examples of how this type of data can be analyzed, using specmine. The case studies
will be divided according to NMR recording instrument. The first case study involves
two MetaboLights[208] studies (MTBLS131 and MTBLS132) regarding an absolute
quantification experiment of tomato fruit extracts using different frequencies. These
will also serve as examples of how further analysis can be done by incorporating both
datasets using the frequency as a metadata variable. The second case study is from a
Varian Metabolomics Workbench[209] study (ST000103) where a new untargeted NMR
approach was applied to compare the exometabolome and endometabolome of worms.

Negative chemical shift values are present in both case studies. One of the steps
within signal processing is direct current correction which is usually performed by the
instrument software. In terms of 2D experiments the multiple FID’s are short and have
fewer data points which means this correction is more challenging and less accurate,
causing offsets on chemical shifts[210]. Manual phase cycling procedures before the first
FT are recommended to remove offsets[210]. The results presented in this chapter do
not include manual processing of these offsets since available data is already processed
and remaining chemical shifts should not hinder visualization or analysis.

4.1 TOMATO FRUIT EXTRACTS

4.1.1 INTRODUCTION

One-dimensional proton NMR protocols have been widely used as an untargeted ap-
proach due to its efficiency and post-analysis comparison[211, 212]. However, efficient
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discrimination of metabolite quantities is not possible due to signal overlapping and a
more targeted strategy (identification and quantification of a low number of metabolites)
becomes more reliable when searching for biomarkers[4]. Despite the advantages of
targeted approaches on the quantification of metabolites, complex biological samples
limit the deconvolution process that allow the necessary fitting of individual metabolite
1D spectra[213]. Complex spectral patterns, lack of universal reliable internal standards,
sample size or limited dynamic range are some factors that prevent precise quantification
through 1D-NMR and 2D-NMR emerged as one way of reducing spectral overlap[4, 214].

The use of 2D-NMR for quantitative metabolomics is hampered by the long experiment
duration which can influence unstable samples or provide noisier data and most of them
rely on a calibration procedure[4]. Ways to overcome these challenges comes from
reducing the acquisition time, using an ultrafast method where a 2D spectrum is obtained
from a single scan[26]. This methodology has been evolving during the last decade, in
order to provide a higher resolution spectra, emerging new hybrid strategies where single-
scan experiments are repeated several times to improve the quality of the spectra[59].
These hybrid strategies have been applied to different studies of metabolomics, such as
breast cancer cell extracts[39] or pig lipid serum[215], and guidelines have been made
to ease its implementation and use[216, 217]. The most simple hybrid approach is the
Multi-Scan Single Shot (M3S) acquisition method and by accumulating ultrafast scans
over a period of time (determined by the duration of the pulse sequence and the number
of accumulations) it is possible to achieve higher sensitivity per unit of time[218].

In the work that originated this case study, M3S COSY experiments were applied to
tomato fruit pericarps in order to validate this technique as a method for quantification of
major metabolites in biologically relevant samples. Tomato fruit pericarps were chosen
as biologically relevant samples because their major metabolites signals’ are overlapped
on 1D proton spectra[4], it has a well characterized metabolism[219], its compositional
changes across fruit development are also well characterized[220] and it is considered as
a model species for the study of fleshy fruits[221]. The authors performed the experiment
on two different acquisition frequencies, with calibration standards, to provide insight on
the method’s applicability and compare quantitative results regarding key metabolites on
different stages of fruit development.

The aim of this case study is to access these major metabolites using the functions
developed and achieve consistent results with metabolic behaviour of tomato fruit by
comparing with the authors’ results.
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4.1.2 2D-NMR DATA

The tomato samples (Solanum lycopersicum L. cv Moneymaker) used in this study were
harvested at four different stages post anthesis (DPA) and on three different trusses,
with three biological replicates for each truss on each development stage. A total of 36
samples were collected and each stage (8, 21, 34 and 55 days) has 9 samples. These
9 samples are divided by the three different trusses (5, 6 and 7). The ultrafast COSY
experiments were recorded on two different spectrometers (500 and 700 MHz), having
a final spectral width of 4.5 ppm in both dimensions and 5 ppm (F2) x 5.4 ppm (F1),
respectively.

The entire data for the experiment is available via MetaboLights under the accession
numbers MTBLS131 (tomato samples recorded in 500 MHz), MTBLS132 (tomato sam-
ples recorded in 700 MHz), MTBLS133 (calibration samples at 500 MHz) and MTBLS134
(calibration samples at 700 MHz).

Using specmine’s function get metabolights files assay it is possible to retrieve all
data files from one assay, related to a study. After retrieving data files, using the newly
developed function to read Bruker NMR data will generate an output in R identical to
the one presented below. Warnings may arise from the lack of a metadata file or the
existence of a temporary folder that needs to be replaced when data files are zipped.

Reading Metadata f i l e
Reading sample P21 . 5 . 1 700 66 i n C : / temp / P21 . 5 . 1 700 66 / 66 / pdata / 1
Reading sample P21 . 5 . 2 700 67 i n C : / temp / P21 . 5 . 2 700 67 / 67 / pdata / 1
( . . . ) ( . . . ) ( . . . )
Creat ing dataset ( t h i s may take a while )
Done .

Listing 4.1: Example of an output of correctly read data files in R.

4.1.3 DATA SUMMARY AND VISUALIZATION

Initial accessment to the datasets allows to identify their key aspects, both for MTBLS131
and MTBLS132. In the example code below, a description of the dataset MTBLS132 is
presented where it is possible to assess the number of missing values, mean, median
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and standard deviation of each sample spectrum. Both datasets were considered
valid datasets and none of the samples in each dataset had missing values. Standard
deviation values should be high, considering intensity matrices where peak values
regarding molecular interactions should be significant to identify spectral metabolite
signatures. This condition was validated on both datasets which will increase the quality
of peak detection.

Dataset summary :
Va l i d dataset
Desc r i p t i on : MTBLS132 − 700 MHz tomato samples
Type of data : 2d−nmr
Number o f samples : 36
Number o f data points 524288
Number o f metadata v a r i a b l e s : 2
Label o f x−axis values : ppm
Label o f y−axis values : ppm
Label o f p a i r ’ ( x , y ) values : i n t e n s i t y
Number o f missing values i n data :
P21 . 5 . 1 700 66 P21 . 5 . 2 700 67 ( . . . )

0 0
P34 . 5 . 3 700 68 P34 . 6 . 1 700 66 ( . . . )

0 0
( . . . ) ( . . . )
Mean of data values :
P21 . 5 . 1 700 66 P21 . 5 . 2 700 67 ( . . . )

9354.143 9426.771
P34 . 5 . 3 700 68 P34 . 6 . 1 700 66 ( . . . )

11636.760 11302.586
( . . . ) ( . . . )
Median of data values :
P21 . 5 . 1 700 66 P21 . 5 . 2 700 67 ( . . . )

183.9023 207.4102
P34 . 5 . 3 700 68 P34 . 6 . 1 700 66 ( . . . )

211.2031 213.7734
( . . . ) ( . . . )
Standard d e v i a t i o n :
P21 . 5 . 1 700 66 P21 . 5 . 2 700 67 ( . . . )

99801.96 99816.54
P34 . 5 . 3 700 68 P34 . 6 . 1 700 66 ( . . . )

123293.76 119494.93
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( . . . ) ( . . . )

Listing 4.2: Example of a 2D dataset summary.

In terms of data visualization, the sample spectra corresponding to extract 514 was
used to assess the capabilities of the developed function. Figure 7 shows the direct
comparison between the reference spectra obtained by the authors for both frequencies,
500 and 700 MHz, which correspond to sub-figures a and b, respectively. The plot
obtained on sub-figures c and d allow to dynamically visualize the spectrum, possible
peaks of interest and it is not limited to the static sub-figures presented.
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a

b

c

d

Figure 7: Fast M3S COSY spectra of a tomato fruit pericarp extract (extract 514, 34 days post
anthesis) recorded in 5 min at 298 K on 500 (a) and 700 (b) MHz Bruker NMR spec-
trometers equipped with cryogenically cooled probes, taken from Jézéquel, et al.[4].
Plot of the second biological replicate of the same extract on 500 (c) and 700 (d) MHz,
using specmine package.

It is possible to identify the main interactions between nuclei which are present on
the diagonal of the spectra, for both frequencies. The layout of these interactions and
ppm scales are consistent with the reference aswell as the difference in resolution from
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Table 2: UF COSY NMR peaks used for the quantification of the 8 targeted metabolites. Adapted
from Jézéquel, et al.[4].

Name Abbreviation
UF COSY peak used for quantification

500 700 Mhz
F2 (ppm) F1 (ppm) F2 (ppm) F1 (ppm)

Glucose Glc 3.31 0.74 3.25 4.61
Fructose Fru 4.12 4.12 4.12 4.12

Glutamine Gln 2.47 2.15 1.91 3.01
Citric Acid Cit 2.57 2.69 2.57 2.69
Sucrose Suc 4.22 4.22 4.22 4.22
GABA GABA - - 3.01 1.91

Malic acid Mal 2.67 2.38 2.67 2.38
Choline Cho - - 3.20 3.20

spectra with different frequencies. Peaks that are further away from the diagonal and
have biological meaning, such as glucose (Glc), are also identifiable which represents a
validation mark for this tool. The figures generated will always be colored with a gradient
since the object is a surface, however, gradients can hinder discrimination of regions
and peaks with low intensity values, such as the region where citric acid (Cit), glutamine
(Gln) and malic acid (Mal) are detected for this experience. Despite this characteristic,
the available option for the user to zoom in/out coupled with hover feature allows one to
clarify these regions.

4.1.4 STATISTICAL ANALYSIS

The search for peaks in the two datasets allowed to test the local search algorithm
by comparing the combinations of ppm obtained with the reference ppm values for 8
targeted metabolites that were quantified using calibration samples. The reference values
can be found on table 2. Table 3 has the number of hits for the combinations of ppm
values across all samples. Regarding the count process, peaks with more or less 0.10
ppm than the reference on either dimensions were discarded. The threshold to detect
the peak was calculated by the function, as described on the previous chapter.

There were detected 1529 peaks across all samples for the dataset MTBLS131 and
868 peaks for the dataset MTBLS132. This means that most of the noise from the dataset
was removed and from a search space with more than one million variables (MTBLS131)
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Table 3: Number of samples for which peaks were detected using specmine’s function for 2D-NMR
spectra. Accounted peaks with reference +/− 0.10 ppm.

Name Number of samples for each metabolite
500 Mhz 700 Mhz

Glucose 9 7
Fructose 13 10

Glutamine 8 7
Citric Acid 6 21
Sucrose 9 5
GABA - 8

Malic acid 8 5
Choline - 14

and more than half million variables (MTBLS132) it was possible to get 1529 and 868
variables, respectively. Considering the results on Table 3, the developed functions for
peak detection were validated for Bruker NMR data since it was possible to identify more
than one peak for each metabolite’ peak reference information. Overall the MTBLS132
dataset should present a higher number of peaks since it has higher resolution and
peaks are better separated. This was not validated for most of the metabolites (glucose,
fructose, glutamine, sucrose and malic acid) although the number of peaks obtained is
similar between datasets. This can be explained by the rounding step of ppm values
done when reading spectral data and intensity values immediately close to each other
which makes intersect function not validate such values as individual peaks.

Regarding analysis, the first step after any procedure of peak detection done with the
developed function is to treat the resulting NA values. In dataset MTBLS131, 51296 NA
values were replaced and in dataset MTBLS132 were 27419, both sets of values were
replaced with 5e− 04, using specmine’s function to perform missing values imputation.
This replacement is intended to mimic noise throughout the samples, since a replacement
by mean or other positive value could shadow peaks that were detected with low intensity
values. Negative intensity values that passed through the peak detection step are also
being transformed to 5e− 04 because further analysis require non-negative values and
the purpose of the original study (quantification of metabolite concentration) require
positive values.
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Table 4: ANOVA results from dataset MTBLS131 after peak detection with development stage
metadata.

Combination of ppm
(X.F1ppm.F2ppm) pvalues logs fdr tukey

X3.72.4.06 1.584e-06 5.800 1.866e-04 21-8; 34-8; 55-8
X4.12.4.14 (Fru) 1.586e-06 5.800 1.866e-04 21-8; 34-8; 55-8
X0.75.3.24 (Glc) 1.597e-06 5.797 1.866e-04 21-8; 34-21; 55-21
X0.75.3.33 (Glc) 1.618e-06 5.791 1.866e-04 21-8; 34-21; 55-21

X3.83.3.85 1.622e-06 5.790 1.866e-04 21-8; 34-21; 55-21
X3.81.3.95 1.623e-06 5.790 1.866e-04 21-8; 34-8; 55-8
X3.57.3.77 1.632e-06 5.787 1.866e-04 21-8; 34-8; 55-8
X3.63.3.62 1.637e-06 5.786 1.866e-04 21-8; 34-8; 55-8
X3.88.3.95 1.663e-06 5.779 1.866e-04 21-8; 34-8; 55-8
X3.41.3.51 1.713e-06 5.766 1.866e-04 21-8; 34-8; 55-8

X0.76.3.3 (Glc) 1.785e-06 5.748 1.866e-04 21-8; 34-8; 55-8
X3.26.3.34 1.793e-06 5.746 1.866e-04 21-8; 34-8; 55-8

In terms of univariate analysis, the one-way ANOVA and Tukey’s Honestly Significant
Difference (HSD) post-hoc test results can be seen in Table 4 for dataset MTBLS131
after peak detection.

The first column of the Table 4 refer to the variables of the dataset MTBLS131 after
peak detection, i.e., X3.72.4.06 is the variable formed by the 3.72 ppm and 4.06 ppm on
the indirect and direct dimension, respectively. The results from this table indicate that,
by cross-referencing to Table 2, variable X4.12.4.14 (Fructose) have significant effect in
discriminating the tomato samples harvested at 8 days of development over the other
stages, while variable X0.75.3.24 (Glucose) have significant effect in discriminating the
tomato samples harvested at 21 days of development over other stages.

Figure 8 shows the dendrogram plot resulting from hierarchical clustering (Euclidean
distance and average linkage) with the different development stages as label colors,
using dataset MTBLS131.

This dendrogram indicates that the samples are reasonably grouped on the devel-
opment stages 8, 21 and 34 while samples from development stage 55 are spread
throughout the clusters. The third biological replicate samples from 55 days of devel-
opment stage, independent of the truss number, seem to have an average of detected
peak intensities similar to development stages 21 and 34. This can be explained by
combinations of ppm values that may represent metabolites produced on later stages of
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Figure 8: Dendrogram plot with development stages as label colors. Data from dataset MTBLS131
after peak detection.

development. On the other hand, combinations that may represent metabolites produced
on earlier stages can explain the grouping of samples from all stages with the cluster
from 8 days.

To further validate the tools developed, a graphical representation similar to the one
presented in Figure 9 was plotted using data from both datasets after peak detection. The
objective was to reproduce the changes in the pericarp metabolite contents throughout
tomato fruit development. Figure 10 shows the multiple plots obtained through ggplot2
and gridExtra package.

The results present on Figure 10 show that the approach to group combinations of
ppm, which could be reasonably considered a metabolite signature, is not efficient on
producing the same results overall. It is necessary to take into account that the Figure 9
was done using calibration samples and the metabolite content represented in y-axis is a
measured concentration, where as in case of Figure 10, the values on y-axis are signal
intensities that came from a mean of all the variables that were considered peaks from
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Figure 9: Changes of choline, glutamine, GABA, malate, citrate, sucrose, fructose, and glucose
contents throughout tomato fruit development. Results obtained with the fast quantitative
COSY at 500 MHz (a–h) and 700 MHz (i–p) on polar extracts. Taken from Jézéquel, et
al.[4]
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Figure 10: Changes of choline, glutamine, GABA, malate, citrate, sucrose, fructose, and glucose
contents throughout tomato fruit development, using ggplot2 and gridExtra on the data
from MTBLS131 and MTBLS132 after peak detection, 500 and 700 MHz, respectively.
In this figure, the signal intensity (y-axis) is plotted as a function of fruit development
stage (x-axis), for each metabolite in both frequencies.
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each metabolite. Nonetheless there are changes throughout tomato fruit development
obtained with specmine that are similar to the ones found with precise measurements.
Sucrose, citrate, choline on the dataset MTBLS132 and glucose on MTBLS131 present
similar patterns to the reference. This can be explained by the quality of the peaks
detected that translated to the quality of the group selected downstream to represent
the corresponding metabolite. A deeper analysis on group selection could allow a
better characterization of the changes on each development stage by each metabolite,
reproducing patterns identical to the reference.

4.2 WORM (Caenorhabditis elegans) METABOLOME

4.2.1 INTRODUCTION

In the previous case study, the 1D proton NMR was mentioned as the standard for an
untargeted approach due to its efficiency which comes from the natural abundant 1H and
the highest frequency, leading to higher sensitivity. Another alternative is to consider the
nuclei 13C due to its large chemical shift dispersion, ability to detect quaternary carbons
and direct measurement of metabolites backbone structure’[222]. The use of this nuclei
is hampered by its low sensitivity, that comes from low natural abundance and decreased
gyromagnetic ratio γ and in addition to these factors, solutions such as isotopic labelling
can be expensive and challenging[222]. One effort that has been made to solve this
issue and extend the use of 13C-based approaches is the use of 2D techniques and
creation of specific metabolite databases. In example, the database TOCCATA[223]
stores information on 13C chemical shifts that allow the identification of metabolites,
their spin systems and isomeric states that come from 13C–13C TOCSY experiments of
complex mixtures.

One approach that was developed as an alternatative to NMR untargeted metabolomics
is using INADEQUATE (incredible natural abundance double quantum transfer experi-
ment) network analysis[224]. This 2D technique records 13C chemical shifts in the direct
dimension and 13C–13C double quantum correlations in the indirect dimension, providing
carbon correlated networks that allow direct metabolite identification[224]. It has been
shown that INADEQUATE-like experiments could be used to obtain direct 13C–13C corre-
lations in complex spectra[225–228] which led to the development of a software package
to automatically identify these correlations. The package’s name is INETA (INADEQUATE
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network analysis) and it was developed by the authors that generated the data for this
case study. They tested this package with samples from the endo- and exometabolome
of C.elegans that were heat-shocked or maintained at room temperature (control).

This case study has the objective to identify metabolites and their changes on the
samples from C.elegans’ endo- and exometabolome submitted to a heat-shock condition.
To achieve the results the same processing steps and PCA analysis will be carried
out using specmine’s functions. The peak detection results obtained using specmine
were not compared directly with the peak detection done by the authors that lead to
metabolite identification. In their work (Clendinen, et al.[224]), a new approach to identify
metabolites through correlated networks was employed to INADEQUATE spectra. The
double quantum frequency in an INADEQUATE experiment allows to establish a double
quantum diagonal with slope of 2 that correlates pairs of coupled 13C nuclei. These
pairs are symmetric to the diagonal at a given double quantum frequency which allows to
establish connections between peaks through INADEQUATE rules. If the peaks satisfy
this inequation |(CS1 + CS2)− [DQ1 + DQ2]| < SDT, where the pairs (DQ1, CS1) and
(DQ2, CS2) represent the coordinates of the peaks (indirect dimension, direct dimension)
and SDT is the user defined symmetric/diagonal tolerance, then the peaks are considered
double quantum correlated. Vertical chemical shift correlations are satisfied when the
difference between the peaks’ chemical shifts is less than a user defined threshold. With
both correlations (double quantum frequency and chemical shifts) checked, peaks can
be connected translating their 13C nuclei into a network that identifies the backbone of
a metabolite. The identification process is possible because peaks that form a network
match their metabolite 1D 13C spectra.

4.2.2 2D-NMR DATA

This study comprises 8 million 99% 13C labeled young adult organisms of Caenorhabditis
elegans splitted in 8 samples. These 8 samples were equally divided into control and
condition. Four replicates were directly stored at room temperature (22ºC) where the
other four were heat shocked at 33ºC for 30 minutes and then stored at room temperature.
After incubation both endo- and exometabolome were extracted from all replicates and
submmited to an INADEQUATE experiment. This originated two datasets, one for each
metabolome, where the direct dimension (F2) has a final spectral width of 202 ppm and
the indirect dimension (F1) has 404 ppm.
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The data to this study is available at the NIH Common Fund’s National Metabolomics
Data Repository (NMDR) website, the Metabolomics Workbench,
https://www.metabolomicsworkbench.org where it has been assigned Project ID
PR000095. The data can be accessed directly via it’s Project DOI: https://doi.org/10.
21228/M8S88T. The work is also supported by NIH grant, U2C- DK119886.

In this case, the developed function to read Varian data had to be changed in terms of
the apodization function (exponential to Lorentz-to-Gauss) in order to match the spectral
preprocessing done by the authors. Besides this step, after reading the data into R and
perform peak detection, four different sets of data were tested to compare results with
the authors. Two datasets of endo- and exometabolome were tested to compare results
with the authors, one was submitted to probabilistic quotient normalization and to a log
scale after peak detection and the other without these preprocessing steps.

4.2.3 DATA SUMMARY AND VISUALIZATION

The datasets from this case study are very large with more than 16 million data points for
each sample, as shown in the code below. Each sample is a matrix of 4096 rows and
4096 columns and in the entire endometabolome dataset there is not a single missing
value across samples. However, the sample N2 Control1 INAD in the exometabolome
dataset has 3898 columns instead of 4096. In the author’s work they identified one
control sample, using PCA analysis, in the exometabolome dataset that was considered
an outlier. Since there is not a specification of the control sample by the author’s, the
removal of the sample N2 Control1 INAD before peak detection was not considered.
Instead, the integration of this sample in the peak detection phase may lead to the
propagation of the peaks that characterize this sample as an outlier in this case study’
PCA analysis. Both endo- and exometabolome datasets have zero missing values across
samples and standard deviations are high which means the values are not closer to the
mean, thus enhancing peak detection.

Dataset summary :
Va l i d dataset
Desc r i p t i on : Endometabolome INAD
Type of data : 2d−nmr
Number o f samples : 8
Number o f data points 16777216

https://www.metabolomicsworkbench.org
https://doi.org/10.21228/M8S88T
https://doi.org/10.21228/M8S88T
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Number o f metadata v a r i a b l e s : 1
Label o f x−axis values : ppm
Label o f y−axis values : ppm
Label o f p a i r ’ ( x , y ) values : i n t e n s i t y
Number o f missing values i n data :
N2 Cont ro l WP1 INAD N2 Cont ro l WP2 INAD N2 Cont ro l WP3 INAD

0 0 0
N2 Cont ro l WP4 INAD N2 HS WP1 INAD

0 0
N2 HS WP2 INAD N2 HS WP3 INAD N2 HS WP4 INAD

0 0 0
Mean of data values :
N2 Cont ro l WP1 INAD N2 Cont ro l WP2 INAD N2 Cont ro l WP3 INAD

75369.68 71522.44 75187.47
N2 Cont ro l WP4 INAD N2 HS WP1 INAD

74703.18 81922.96
N2 HS WP2 INAD N2 HS WP3 INAD N2 HS WP4 INAD

81413.00 70712.09 81845.13
Median of data values :
N2 Cont ro l WP1 INAD N2 Cont ro l WP2 INAD N2 Cont ro l WP3 INAD

44485.50 50967.11 43562.82
N2 Cont ro l WP4 INAD N2 HS WP1 INAD

40650.65 42538.45
N2 HS WP2 INAD N2 HS WP3 INAD N2 HS WP4 INAD

45765.93 41042.20 44326.70
Standard d e v i a t i o n :
N2 Cont ro l WP1 INAD N2 Cont ro l WP2 INAD N2 Cont ro l WP3 INAD

593004.9 272944.5 638784.8
N2 Cont ro l WP4 INAD N2 HS WP1 INA

747510.5 827350.3
N2 HS WP2 INAD N2 HS WP3 INAD N2 HS WP4 INAD

708588.2 688280.4 771142.3

Listing 4.3: Summary of Endometabolome’s 2D dataset.

In terms of data visualization, there is not a specific reference sample spectra to
compare a specific plot result. Since there is no information on what sample was used,
the sample N2 Control WP1 INAD was plotted to compare its INADEQUATE spectra to
the one published by the authors, shown on Figure 11.
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a

b

Figure 11: INADEQUATE of one replicate C. elegans endometabolome, retrieved from Clendi-
nen, et al. (a). Plot of the 2D spectra of sample N2 Control WP1 INAD from the
endometabolome dataset, using specmine (b).
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Visualization of a spetrum with 4096 rows and columns was not possible due to the
size of the surface. To achieve the plot presented on Figure 11, half the rows and columns
were merged, having the new rows and columns the mean values of their originals. This
means that the sample plotted has 2048 rows and columns, however, it is possible to
compare the results since spectra are similar. The high values of some peaks hinders the
comparison between spectra because the color gradient is applied to all values and not
regions. Despite this difficulty, the result obtained allows to identify the same regions of
metabolite resonances found on the published spectrum. A darker blue on the obtained
plot allows to recognize regions of interest, i.e., 100-150 double quantum ppm and 50-80
13C chemical shift where the peaks with higher intensity values are located. Considering
that the user can zoom in and out with greater image quality than the one presented on
Figure 11, the function to plot 2D spectra is validated for both Bruker and Varian datasets.

4.2.4 REDUCE DIMENSIONALITY AND ANALYSIS

In this particular case study, the results in this subsection will be limited to the analysis
of the datasets after peak detection. The directly comparable results will be the PCA
analysis where similar scores plots will validate the peak detection phase. As said
in the subsection 4.2.2 this analysis will be done with and without preprocessing on
either datasets, however, the results presented on this subsection are from datasets with
preprocessing.

Since there is no information on the double quantum frequencies or chemical shifts
of the peaks that were picked it is not possible to compare directly the results obtained
when detecting peaks through the functions developed for this purpose. Despite the lack
of information reagrding which peaks were picked, there is information on thresholds
(minimum and maximum) that were used in the process. The mean of these values (5e7
and 7e7) for endo- and exometabolome datasets, respectively, were used as thresholds
for peak detection and a noise filter 1 was used for the endo- and exometabolome
datasets. A mild filter was applied due to the high number of peaks detected without filter
in earlier stages which hinders future analysis. In the example code below it is shown
the output of the peak detection function for the endometabolome dataset. A total of
401 peaks were detected for this dataset where as for the exometabolome dataset were
detected 908 peaks. The number of peaks is relevant because a higher number of peaks
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translates into a larger dataset which usually leads to higher data variance that needs to
be explained by each principal component in PCA analysis.

> endo peaks <− peak detec t ion2d ( endometab , base l ine thresh = 5e7 , n o i s e F i l t
= 1)

Sample : N2 Cont ro l WP1 INAD has 38 peaks
Sample : N2 Cont ro l WP2 INAD has 7 peaks
Sample : N2 Cont ro l WP3 INAD has 50 peaks
Sample : N2 Cont ro l WP4 INAD has 61 peaks
Sample : N2 HS WP1 INAD has 74 peaks
Sample : N2 HS WP2 INAD has 51 peaks
Sample : N2 HS WP3 INAD has 59 peaks
Sample : N2 HS WP4 INAD has 61 peaks

Listing 4.4: Example of a 2D peak detection; Endometabolome dataset.

In terms of univariate analysis, t-tests were performed on all variables and the results
for both the endo- and exometabolome are presented in Table 5 and Table 6, respectively.

Table 5: t-test results from Endometabolome dataset after peak detection and preprocessing with
Temperature metadata.

Combination of ppm (X.F1ppm.F2ppm) pvalues logs fdr
X257.49.77.54 0.023 1.630 0.316
X52.29.77.54 0.024 1.629 0.316
X28.51.18.99 0.024 1.620 0.316
X128.55.68.02 0.024 1.620 0.316

X58.7.23.04 0.024 1.620 0.316
X33.25.23.04 0.024 1.620 0.316
X55.35.29.2 0.024 1.620 0.316

X60.18.27.82 0.024 1.620 0.316
X59.69.23.04 0.024 1.620 0.316
X56.33.79.17 0.024 1.620 0.316
X51.99.77.54 0.024 1.620 0.316
X56.23.79.17 0.024 1.620 0.316

The tables allow to compare the different peaks selected for each metabolome. The
main difference is that peaks detected on the endometabolome dataset have statiscally
different means regarding the Temperature metadata variable. Only one peak (36 x 58
ppm) from the exometabolome dataset was able to achieve the same result. In Table 5 it
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Table 6: t-test results from Exometabolome dataset after peak detection and preprocessing with
Temperature metadata.

Combination of ppm (X.F1ppm.F2ppm) pvalues logs fdr
X36.5.58.8 2.289e-10 9.640 1.513e-07

X25.75.12.43 1.340e-01 0.873 4.490e-01
X36.5.58.9 1.340e-01 0.873 4.490e-01

X25.75.12.53 1.340e-01 0.873 4.490e-01
X31.37.190.23 1.340e-01 0.873 4.490e-01
X264.8.133.73 1.340e-01 0.873 4.490e-01
X25.95.128.99 1.340e-01 0.873 4.490e-01
X264.89.188.57 1.340e-01 0.873 4.490e-01
X25.95.116.12 1.340e-01 0.873 4.490e-01
X161.11.167.86 1.340e-01 0.873 4.490e-01
X25.95.129.09 1.340e-01 0.873 4.490e-01

X19.73.92.1 1.340e-01 0.873 4.490e-01

is possible to consider the regions between 30-60 and ppm on indirect dimension and
14-30 ppm on direct dimension as set of variables that could discriminate the heat shock
condition on C.elegans. It is important to note that although Table 6 does not highlight
statistically significant peaks, it does not follow the same exact peak region as Table 5,
which could mean that different metabolites are present on different metabolomes under
a specific condition. On the other hand, similar peaks detected on both datasets allow
to study the metabolic changes of an organism under an environmental condition, by
comparing to it’s default behaviour (control).

In terms of PCA analysis, three results were obtained that compare the scores plots
(PC1 and PC2) from the endo- and exometabolome. These plots are shown on Figure
12 and Figure 13, respectively.

In Figure 12 (b) it was not possible to observe a good separation along the PC1 for
all samples as the authors obtained. Nonetheless, the majority of the samples can
be separated along the PC1 following the same distribution regarding to Temperature
metadata, i.e. most control samples have negative values on PC1 axis where heat shock
samples have positive values. This means that the heat shock condition has an effect
on C.elegans’ endometabolome. The variation explained by each PC is similar to the
one obtained by the authors, a difference of 2-3%, which suggests that the eigenvalues
for each PC are identical. Despite the lack of information regarding which peaks were
picked by the authors’ pipeline, the results obtained after peak detection suggest that
this step selected relevant information for future analysis in the endometabolome dataset.
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a b

Figure 12: (a) Scores plot from the PCA analysis done by Clendinen, et al, on the en-
dometabolome data. b Scores plot from the PCA analysis for the endometabolome
dataset using specmine after peak detection and preprocessing.

The other two samples that do not follow the values for the first principal component
could be a result of differences in spectral preprocessing, the hierarchical alignment of
2D spectra[229] performed by the authors and the quality of the peaks detected for those
samples.

As it is shown on Figure 13 (b) there is no good separation along PC1 as it happens
on the first plot of the figure. There is no possible separation between conditions which
indicates that the exometabolome is not affected heat shock. However, this scores plot
was done using an exometabolome dataset with an outlier. According to the authors
this outlier was identified in their PCA analysis and Figure 13 (b) shows that there is
one control sample with the highest positive value along PC1, opposing the negative
values found in other control samples. This indicates that the outlier spectra propagated
through specmine analysis and was also identifiable in the PCA analysis, validating
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a b

Figure 13: (a) Scores plot from the PCA analysis done by Clendinen, et al, on the exometabolome
data. b Scores plot from the PCA analysis for the exometabolome dataset using
specmine after peak detection and preprocessing.

the functions developed. The sample was the second replicate N2 Control2 INAD and
presented the highest number of peaks detected in the this dataset (206). Figure 14
shows the scores plot (PC1 and PC2) from the exometabolome dataset after removing
the second control replicate before peak detection. The results are different from the
first scores plot, however, the clear separation on Figure 13 (a) is not achieved. In fact,
two samples from heat shock condition have negative loadings for PC1 which indicate
similarity with control samples. Therefore it is not possible to state through this plot
that the heat shock condition has an effet on C.elegans’ exometabolome. Despite this
result, the peak detection on this dataset was validated. As it is shown on Figure 14, all
control samples have negative loadings for PC1 and loadings for PC2 are similar to the
ones shown in Figure 13 (a). The other heat shock replicates have also correct loadings
for PC1 and similar loadings for PC2. The variance explained by the first two principal
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Figure 14: Scores plot from the PCA analysis for the exometabolome dataset without second
replicate, using specmine after peak detection and preprocessing.

components is identical to the authors’ work, however, PC1 explains less 8% variance
which overall does not affect the outcome of those two specific heat shock replicates
along PC1 axis due to the same reasons explained in the previous paragraph.
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C O N C L U S I O N A N D F U T U R E W O R K

In order to update the functionality and capability of the R package specmine towards
metabolomics, new functions were developed to provide tools for a new type of data,
2D-NMR. Since 1D-NMR lacks the sensitivity to treat overlapping resonances on more
complex samples, 2D-NMR has been applied and adapted to provide easier to inter-
pret and more informative data. This led to the development of key functions that
enable 2D-NMR analysis with specmine, supporting the purpose of providing tools for
metabolomic data analysis in a complete and user-friendly environment.

The functions developed start with reading data into a new specmine structure (list of
matrices), following by initial assessment of the data (missing values, data points, number
of metadata variables, ...) and data visualization. In this work, the user is capable of
visualizing one or multiple spectra in a 3D interactive environment, presenting a novel
feature for 2D-NMR analysis with R. A peak detection method allows to reduce the size
of the data, changing it to a standard 1D structure with relevant information enabling
further analysis using specmine’s functionalities. At this point the user can apply different
methods of preprocessing and data analysis, such as, univariate, clustering or PCA. The
package flexibility was ensured through easy-to-use functions with configurations that
can be changed according to the user input. Validation of the tools was done using
real-world case studies, where results from specific pipelines were compared to the
ones presented on this dissertation, thus helping to find where to improve the methods
developed.

This new feature implemented on specmine will enhance its flexibility
towards metabolomics since 2D-NMR is relatively new and with scope for growth. There-
fore, specmine has also scope for growth in this area, giving its users an up-to-date tool
they can use with or without informatics background. Extending its functionalities while
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maintaining easy-to-interpret data structures helps researchers link data from different
experiments without the usual need for multiple packages.

The most recent version of specmine available on CRAN will have the developed
functionalities as well as a vignette which provides a pipeline on 2D-NMR analysis with
information on each step of this process. Unfortunately the vignette does not show
outputs due to data storage issues.

For future work, there are different paths in which specmine can be improved regarding
2D metabolomics, either by improving the functions developed, adding new features to
analyze 2D spectra or integrating the functions in the web version, WebSpecmine. The
future work includes:

• Support to more types of 2D metabolomics data, i.e., 2D MS;

• If this support is given, considering a new package (based on specmine) is a good
idea focusing only on 2D metabolomics data. The package would integrate the
functions already developed for NMR and the new ones for MS;

• Implement preprocessing methods specific for 2D spectra which takes into account
the properties of variables in this type of data. These methods should have the
flexibility to be applied on specific samples, according to user input;

• Add more visualization methods for data exploration and reproducibility, i.e. 2D
representation (on an xOy cartesian plane) of a sample;

• Improve/Optimize the peak detection method since it can take a long time for large
datasets and an increase in efficiency eases computational demand;

• Integrate the fundamentals of the work developed with WebSpecmine, i.e., data
reading, visualization and peak detection;
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à agroindústria (pp. 18–43).

[7] Kim, S. J., Kim, S. H., Kim, J. H., Hwang, S., & Yoo, H. J. (2016). Understanding
metabolomics in biomedical research. Endocrinology and metabolism (Seoul,
Korea), 31(1), 7–16.

72



73

[8] Cevallos-Cevallos, J. M., Reyes-De-Corcuera, J. I., Etxeberria, E., Danyluk, M. D.,
& Rodrick, G. E. (2009). Metabolomic analysis in food science: a review. Trends
in Food Science and Technology, 20(11-12), 557–566.

[9] Emwas, A.-H., Roy, R., McKay, R. T., Tenori, L., Saccenti, E., Gowda, G. A. N., . . .
Wishart, D. S. (2019). NMR spectroscopy for metabolomics research. Metabolites,
9(7), 123.

[10] Lamichhane, S., Sen, P., Dickens, A. M., Hyötyläinen, T., & Orešič, M. (2018). An
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