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Abstract: Aim: Experimental models are a powerful aid in visualizing molecular phenomena. This
work reports how the worm Caenorhabditis elegans (C. elegans) can be effectively explored for students
to learn how molecular cues dramatically condition axonal guidance and define nervous system
structure and behavior at the organism level. Summary of work: A loosely oriented observational
activity preceded detailed discussions on molecules implied in axonal migration. C. elegans mutants
were used to introduce second-year medical students to the deleterious effects of gene malfunctioning
in neuron response to extracellular biochemical cues and to establish links between molecular function,
nervous system structure, and animal behavior. Students observed C. elegans cultures and associated
animal behavior alterations with the lack of function of specific axon guidance molecules (the soluble
cue netrin/UNC-6 or two receptors, DCC/UNC-40 and UNC-5H). Microscopical observations of
these strains, in combination with pan-neuronal GFP expression, allowed optimal visualization of
severely affected neurons. Once the list of mutated genes in each strain was displayed, students could
also relate abnormal patterns in axon migration/ventral and dorsal nerve cord neuron formation in
C. elegans with mutated molecular components homologous to those in humans. Summary of results:
Students rated the importance and effectiveness of the activity very highly. Ninety-three percent
found it helpful to grasp human axonal migration, and all students were surprised with the power of
the model in helping to visualize the phenomenon.

Keywords: neuronal cell biology; axon pathfinding; growth cone; molecular cues; experimental activity

1. Introduction

The development of an adequately wired nervous system is essential for the survival
of many animal species, including humans. This biological “construction” depends on a
tightly regulated genetic program and involves multiple cell proliferation, differentiation,
migration, and elimination steps. Wiring of the nervous system also includes extension,
specification, and elongation of a particular type of cellular process—the axon—in specific
directions, followed by establishing and eliminating synapses, the points of connection
between neurons, and a point of significant plasticity even after development. An im-
portant component of the proper wiring of nervous systems is the guidance of axonal
growth, achieved through the time- and space-specific expression of soluble and diffusible
biochemical cues, adhesion molecules, extracellular matrix components, and receptors
able to sense those cues and transduce signals to the interior of the axonal process, where
cytoskeleton-modifying molecules produce either the advancement of the growth cone
(generating an attraction effect) or its collapse (producing a repulsion movement) (reviewed
in detail in [1–3]). A summary of the main types of molecular performers involved in axonal
pathfinding is presented in Figure 1.
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ephrins are expressed at the target cell surface. Each of these guidance cues binds to specific 
receptors expressed at the growth cone of the traveling pioneer neuron/axon. For instance, Netrins 
bind to DCC or UNC-5 receptors, Slits to Robo receptors, Semaphorins to Plexin and Neuropilin, 
and Ephrins to Eph receptors. These interactions result in differential responses at the growth cone 
(figure showing the most common response and other responses). The seven classes of Semaphorins 
are represented. DCC—deleted in colorectal cancer, Robo—Roundabout. 

The dysfunction of any of the components of this system generates axonal 
pathfinding defects that can vary in severity and their functional impact. In more complex 
nervous systems, there is a significant degree of redundancy. Nevertheless, some genetic 
mutations affecting the most relevant performers in axon guidance will lead to detectable 
behavioral phenotypes and nervous system diseases. In humans, these include some 
autism spectrum disorders and other neurodevelopmental disorders (reviewed in detail 
in [4]), and more specific disorders, such as horizontal gaze palsy with progressive 
scoliosis, caused by mutations in the slit ROBO3 receptor (OMIM 607313; [5]), congenital 
mirror movements that are associated with DCC mutations (OMIM 157600; [6]), 
congenital fibrosis of the extraocular muscles type 3, and TUBB3 syndromes, related to 
mutations in TUBB3 (beta-tubulin III, a subunit of microtubules) (OMIM 600638 [7]). 
Axonal pathfinding disturbances are also increasingly thought to contribute to 
Alzheimer’s disease (AD) pathogenesis [8,9]; in particular, several axon guidance 
performers, such as netrin-1, ephA4 (a receptor of ephrins), and the semaphorin sema3A, 
are being unveiled as modulators (positive/negative) of AD pathogenesis, and prospective 
therapeutic targets. 

Given the complexity of this field of study, it is rarely addressed in undergraduate 
Biology or Biochemistry programs or during the nervous system courses in medical 
student training. However, the topic provides a unique opportunity to establish links 
between nervous system anatomy, biochemistry, and genetics concepts, taking advantage 
of students’ curiosity towards this very intriguing scientific question. Here, we designed 
a student-centered activity, combining experimental and virtual components, to promote 
active learning of key concepts in axonal pathfinding. 

Figure 1. Summary of the four conserved families of guidance cues that determine neuronal and
axonal migration and their respective receptors. Some guidance cues, such as Netrins, Slits, and a
few semaphorins, are secreted to the extracellular media, while the majority of semaphorins and
ephrins are expressed at the target cell surface. Each of these guidance cues binds to specific receptors
expressed at the growth cone of the traveling pioneer neuron/axon. For instance, Netrins bind
to DCC or UNC-5 receptors, Slits to Robo receptors, Semaphorins to Plexin and Neuropilin, and
Ephrins to Eph receptors. These interactions result in differential responses at the growth cone (figure
showing the most common response and other responses). The seven classes of Semaphorins are
represented. DCC—deleted in colorectal cancer, Robo—Roundabout.

The dysfunction of any of the components of this system generates axonal pathfinding
defects that can vary in severity and their functional impact. In more complex nervous
systems, there is a significant degree of redundancy. Nevertheless, some genetic mutations
affecting the most relevant performers in axon guidance will lead to detectable behavioral
phenotypes and nervous system diseases. In humans, these include some autism spectrum
disorders and other neurodevelopmental disorders (reviewed in detail in [4]), and more
specific disorders, such as horizontal gaze palsy with progressive scoliosis, caused by muta-
tions in the slit ROBO3 receptor (OMIM 607313; [5]), congenital mirror movements that are
associated with DCC mutations (OMIM 157600; [6]), congenital fibrosis of the extraocular
muscles type 3, and TUBB3 syndromes, related to mutations in TUBB3 (beta-tubulin III,
a subunit of microtubules) (OMIM 600638 [7]). Axonal pathfinding disturbances are also
increasingly thought to contribute to Alzheimer’s disease (AD) pathogenesis [8,9]; in par-
ticular, several axon guidance performers, such as netrin-1, ephA4 (a receptor of ephrins),
and the semaphorin sema3A, are being unveiled as modulators (positive/negative) of AD
pathogenesis, and prospective therapeutic targets.

Given the complexity of this field of study, it is rarely addressed in undergraduate
Biology or Biochemistry programs or during the nervous system courses in medical student
training. However, the topic provides a unique opportunity to establish links between
nervous system anatomy, biochemistry, and genetics concepts, taking advantage of students’
curiosity towards this very intriguing scientific question. Here, we designed a student-
centered activity, combining experimental and virtual components, to promote active
learning of key concepts in axonal pathfinding.

We focused on three prototypic molecules: one soluble cue (netrin/UNC-6) with
chemoattractant and chemorepulsive effects on two receptors (DCC/UNC-40 and UNC-
5H, respectively). We used as a basis for the experimental activity the model organism
Caenorhabditis elegans (C. elegans), a nematode for which the structure of the nervous system
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is very well characterized [10] (Figure 2) and easy to visualize with the aid of neuronally
expressed fluorescent proteins given that the animal is transparent. The nervous system
of C. elegans has 302 neurons categorized into at least 118 different neuronal classes, along
with 56 glial cells providing neuronal support [11]. The connectome of C. elegans encom-
passes 4887 chemical synapses and 1447 gap junctions [10]. Furthermore, powerful genetic
approaches have been used to dissect the mechanisms underlying axon guidance [12–14].
This allowed us, as a secondary aim, to convey the relevance of using model organisms for
biomedical research with an impact on human health.
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necessary for the full grasping of the mechanisms of axonal pathfinding. Students were 
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netrin ortholog, is expressed by ventral cells (neurons, glia, epidermoblasts, muscle, and 
vulva precursor cells) and provides positional information by establishing a ventral-
dorsal concentration gradient [16–18]. Animals lacking UNC-6 function (unc-6 mutant) 
are large and healthy but slightly fat and show a kinker motor phenotype. Regarding 
neuronal wiring, phenotypes include a disorganized ventral nerve cord (VNC), and dorsal 
extensions of DD and VD neurons that grow in aberrant directions, failing to reach the 
dorsal nerve cord (DNC) [19].  

Figure 2. Simplified scheme of the C. elegans nervous system. The C. elegans nervous system is
highly organized and comprises five components. The nerve ring is comprised of a bundle of head
neurons, their axons, and processes; the ventral nerve cord is the major cord that spans longitudinally
throughout the ventral midline of the animals and shelters the majority of peripheric neurons, such as
the motor neurons; the dorsal nerve cord primarily consists of processes from the ventral cord motor
neurons; commissures are circumferential tracts of neuronal processes spanning the dorsoventral
axis and linking nerve cords; and the sublateral longitudinal nerves, which run under the body wall
muscle cells and processes from some neurons join the sublateral cords. Scale bar: 100 µm.

Learning Activity Context and Structure

This learning activity was part of the University of Minho School of Medicine curricu-
lum, within a three-unit block of curricular units named Organic and Functional Systems
(I, II, and II), which integrated the contents of human Anatomy, Histology, Physiology,
and Biochemistry, in an organic systems-based approach [15]. The activity was planned
as part of a nervous system-focused module in the fourth semester of the medical course.
Previous modules had included the core concepts of cell biology, molecular genetics, and
biochemistry, and the key concepts in signal transduction necessary for the full grasping
of the mechanisms of axonal pathfinding. Students were also experienced in using the
microscope and had been trained in lab safety.

The activity focused on three prototypical dorsal-ventral axon guidance-related molecules
(Figure 3): netrin, deleted in colorectal cancer (DCC)/neogenin, and UNC5A-D (previously
known as UNC-5H1-4) families. Netrins are evolutionarily conserved molecules that attract
and repel axons to guide their growth. UNC-6, the sole C. elegans netrin ortholog, is
expressed by ventral cells (neurons, glia, epidermoblasts, muscle, and vulva precursor
cells) and provides positional information by establishing a ventral-dorsal concentration
gradient [16–18]. Animals lacking UNC-6 function (unc-6 mutant) are large and healthy but
slightly fat and show a kinker motor phenotype. Regarding neuronal wiring, phenotypes
include a disorganized ventral nerve cord (VNC), and dorsal extensions of DD and VD
neurons that grow in aberrant directions, failing to reach the dorsal nerve cord (DNC) [19].
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Figure 3. Netrin signaling through DCC/UNC-40 and UNC-5. (A) Long-range guidance cue
netrin mediates attraction upon binding to DCC receptors and repulsion upon binding to UNC-5
or DCC/UNC-5 complex receptors at the growth cone. (B) In C. elegans, netrin/UNC-6 forms a
distribution gradient at the ventral midline and is required for both ventral and dorsal projection of
axons. Migrating growth cones expressing DCC/UNC-40 will primarily migrate ventrally, whereas
those expressing DCC/UNC-40 and UNC-5 or UNC-5 will migrate dorsally. As C. elegans body
structure resembles a circumference (in the represented coronal cut), dorsoventral migration also
originates commissures formation.

UNC-6 functions through two C. elegans transmembrane receptors: UNC-40 (mam-
malian DCC and neogenin) and UNC-5 (mammalian UNC5A-D). UNC-40 is the major
conserved receptor involved in attraction to netrin and binds it directly [19,20]. UNC-40
is mainly required for ventral axon projections, causing a general failure of ventralward
migrations, and variable defects in VD and DD commissures. unc-40 mutant animals are
weak kinker, dumpish, and slow but relatively active [21,22].

Repulsion from UNC-6/netrin primarily depends on the action of the UNC-5 trans-
membrane receptor, which also binds directly to netrin [23]. UNC-5 is required for dorsal
projections. unc-5 mutant animals demonstrate comparable growth to wild-type animals
but exhibit severe motor defects (uncoordinated phenotype known as severe coiler), DNC
is absent or almost absent, cord commissures fail to reach targets, and distribution of cell
bodies of the VNC is disorganized. Direct interactions between UNC-40 and UNC-5 cyto-
plasmic domains are induced by binding to netrin. In the UNC-5/DCC receptor complex,
the DCC protein potentiates the UNC-5 repulsive response [19,24,25].

Therefore, our rationale for the learning activity was to use guidance-related mutants,
specifically unc-6, unc-5, and unc-40, which exhibit several motor and nervous system
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defects (Tables 1 and 2). These phenotypes are a consequence of gene malfunctioning,
resulting in impaired axon guidance.

Table 1. Phenotype scoring form for students. After observation, students were given several
keywords to phenotypically characterize the mutant animals: uncoordinated (unc) movement,
dumpy, coiler, kinker, paralysis, abnormal locomotion tracts, and disorganized body. Students were
expected to fill the table according to the annotation appearing in grey. ?—Punc-119::GFP (quiz strain).

Strain Observations Genotype

N2

Sinusoidal (normal) locomotory movement (note worm tracts in the
bacteria lawn)

Body appearance
Body structures: pharynx and intestine

WT

A unc, abnormal locomotion tract, kinker ∆A

B unc, abnormal locomotion tracts, coiler, paralysis (in some animals) ∆B

C unc, abnormal locomotion tract, dumpy, disorganized body ∆C

Quiz Similar to N2 strain ?

Table 2. Nervous system defects form for students. Students were given keywords to characterize the
nervous system defects of mutant animals after observation: present, absent, normal, or abnormal.
Students were expected to fill the table according to the annotation appearing in grey. VNC—ventral
nerve cord, DNC—dorsal nerve cord.

Mutant Animals Nervous System Phenotype

WT

VNC: present, normal
DNC: present, normal

Commissures: present, normal
Sublateral nerve tracts: present, normal

A = unc-6 mutant

VNC: present, abnormal
DNC: present, abnormal

Commissures: absent
Sublateral nerve tracts: present, abnormal

B = unc-5 mutant

VNC: present, normal
DNC: absent

Commissures: absent
Sublateral nerve tracts: present, abnormal

C = unc-40 mutant

VNC: present, normal
DNC: present, normal

Commissures: present, abnormal
Sublateral nerve tracts: present, abnormal

The activity included the distribution of pre-class materials, namely a summary of the
state of the art on the mechanisms of axonal pathfinding prepared by the teaching staff,
two critical scientific articles for students to be able to go deeper into the subject if they so
desired [18,26] and the activity guide. The lab activity lasted 90 min and was organized for
classes of 45 students, each by 2 teachers. Students were organized into groups of three
to five, each with access to a stereomicroscope. It started with a brief introduction of the
work to be completed and of the C. elegans experimental model by the teacher (~10 min),
including a brief overview of the structure of their nervous system. This was followed
by the distribution of Petri dishes with the wild type (WT) and mutant nematode strains
(named A to C) and of a score table to fill in (Table 1) with the morphological and behavioral
phenotypes observed in these strains at the stereomicroscope (~25 min). Illustrative videos
were recorded for each strain and are provided as supplementary material (Supplementary
Video S1).
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Additionally, one unidentified strain (the “quiz strain”) was provided to the students.
The students promptly said that it resembled WT animals. Then, the teacher explained (and
showed using a fluorescence stereomicroscope) that the quiz strain expressed a transgene
driving the expression of GFP to all C. elegans neuronal cells. Next, confocal microscopy
images of the animals from each strain (wild-type and mutants) crossed with the quiz
strain were projected and printed versions of the photos distributed to students (Figure 4),
the aim being for each group to compare the structure of the nervous system between the
wild-type and each mutant strain and register the observed differences (~20 min) (Table 2).
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Figure 4. Confocal microscopy images of C. elegans nervous system, visualized via pan-neuronal
expression of GFP (Punc-119::GFP). Wild-type animals show a complete and organized nervous system,
while unc-6, unc-5, and unc-40 mutant animals exhibit defects in axonal migration, most visible at
the nerve cords, sublateral nerves, and commissures. Arrows in the WT panel indicate the presence
and normal nervous system structures, while arrowheads in the mutant animals represent a lack of
structures. Defective structures are labeled with an asterisk. Orange—DNC; yellow—commissures;
and blue—sublateral nerves. Scale bar: 100 µm. WT—Wild-type; DNC—dorsal nerve cord.
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Finally, the identity of the mutants was revealed, and the groups (15 min), then the
whole class (~20 min) discussed the possible mechanistic relationship between the absence
of each specific guidance molecule or receptor and the observed phenotypes, considering
their function(s).

Prompts for discussion were launched to the students. Some examples are given below:

1. What is the function of each of the molecules missing in each mutant strain?
2. Name the mammalian orthologue(s) of each molecule.
3. Name mediator(s) of attraction and repulsion signals.
4. Why do unc-5 mutant animals have the DNC almost absent?
5. Why do unc-40 mutant animals have VNC?

Students were asked to complete the image in Figure 5 and to explain their choices.
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Figure 5. Summary of the model for specifying the dorsoventral positioning of longitudinal nerves
in C. elegans. In WT animals, the ventrally biased gradient of UNC-6 modulates axonal migration by
attracting growth cones expressing UNC-40 or repulsing those expressing UNC-5 or UNC-40/UNC-5.
Growth cones expressing UNC-40/UNC-5 heterodimers migrate into more dorsal positions when
compared to UNC-5 alone. In unc-6 mutant animals, the lack of UNC-6 gradient prevents dorsoventral
migration. Therefore, migrating neurons only travel in the anterior-posterior axis. Students were
asked to complete the names of the receptors expressed at the growth cone for each migrating pattern
(dashed boxes).

2. Materials and Methods
2.1. List of Materials Necessary for the Experimental Activity

- Stereomicroscope (SZX7, Olympus, Shinjuku, Japan);
- Nematode growth medium (NGM) plates seeded with Escherichia coli strain OP50 strain;
- Score tables;
- Fluorescence stereomicroscope (SZX16, Olympus, Shinjuku, Japan) or pre-acquired

images of the strains (Figure 4).

2.2. C. elegans Strains and Growth Conditions

Standard methods were used for maintaining and culturing C. elegans [27]. Nematodes
were grown on nematode growth medium (NGM) plates seeded with Escherichia coli (E.
coli) OP50 strain at 20 ◦C (Table 3).
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Table 3. C. elegans strains used.

Strain ID Genotype

N2 Bristol WT

unc-6 CB78 unc-6 (e78) X

unc-5 DR169 che-3 (e1378) I; unc-5 (e53) IV

unc-40 MT324 unc-40 (n324) I

quiz/GFP OH441 otIs45 [Punc-119::GFP] V

unc-6; GFP MAC113 otIs45 [Punc-119::GFP] V; unc-6 (e78) X

unc-5; GFP MAC281 unc-5 (e53) IV; otIs45 [Punc-119::GFP] V

unc-40; GFP MAC283 unc-40 (n324) I; otIs45 [Punc-119::GFP] V

2.3. Generation of Mutant Strains with Fluorescent Nervous System

Males of the quiz strain were generated by mating with N2 (WT) males. To generate
double mutant animals, hermaphrodites at the L4 stage of mutant unc-5 (e53), unc-6 (e78),
and unc-40 (n324) animals and GFP-positive males were placed on an NGM 30 mm seeded
plate at 16 ◦C for 48 h. Adult hermaphrodites were singled out, and male progeny were
evaluated after three days. L4-stage fluorescent animals were singled out, and F2 progeny
were selected by UNC phenotypic manifestation and expression of the fluorescent marker
(GFP-positive animals). These strains are available upon request.

2.4. Microscopy—Stereomicroscope and Video Acquisition

Ten gravid adult hermaphrodite animals of WT, unc-6, unc-5, and unc-40 mutant
strains were transferred to climatized 60 mm NGM plates seeded with OP50 and allowed
to lay eggs for 2 h. After the elimination of the adult animals, eggs were allowed to develop
at 20 ◦C for 4 days. On day 4, plates were renamed mutant A, B, or C and ready for
class. For the recording of animals’ motor behavior, the recording system set up comprised
a stereomicroscope (SZX7, Olympus), a digital camera (SC30, Olympus), and imaging
software (Olympus cellSens Entry 3.2 Software). Recordings were performed in 30 mm
seeded NGM plates or liquid media (M9 buffer). A 0.8× zoom lens was used to maximize
the field of view. The recording was made for 20 s at a rate of 15 frames per second.
Recorded images are shown in real-time.

2.5. Confocal Microscopy and Image Building

Four-day-old unc-6; GFP, unc-5; GFP, unc-40; GFP animals, synchronized by egg laying,
were immobilized with 3 mM levamisole (Sigma-Aldrich, Missouri, USA) and mounted
on a 3% agarose pad. Images of the nervous system of live animals were captured using
an Olympus LPS Confocal FV1000 microscope (Confocal microscope, Olympus, FV1000)
under a 60× oil (NA = 1.35) objective. Z-series imaging, covering the animal’s total length,
was performed using a 488 nm laser excitation line for GFP. The pinhole was adjusted to 1.0
Airy unit of optical slice, and a scan was acquired every ~0.5 µm along the Z-axis. Maximal
projection of Z-series images was obtained using Olympus software (FluoView FV1000
Software v2.6, Olympus, Shinjuku, Japan), and images combined using ImageJ (Fiji v1.5)
and Adobe Photoshop (CS6, Adobe Systems) software.

2.6. Activity Rating

Subjects included the second-year medical students who agreed to participate in the
rating of the activity (n = 44), which happened right after the end of the class. All students
answered eight questions about using C. elegans as a model system to understand axonal
guidance (4 questions) and the activity (4 questions).
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3. Results and Discussion

We used this learning activity as part of a nervous system-focused module over
14 years (2004 to 2018), with very positive informal feedback from participants. We applied
a formal activity assessment questionnaire in one of the teaching years (n = 44). The
students’ perception of the activity was gathered with eight questions in a Likert 4-points
scale (scores from totally disagree to totally agree), the results of which are shown in
Figure 6. This confirmed the students’ satisfaction with the activity and its perceived
utility for the acquisition of the core mechanisms underlying axonal pathfinding and the
relationship of this process with whole organism structural and behavioral phenotypes.
It also shows that the secondary aim of promoting awareness of the relevance of model
organisms in biomedical research was achieved. Specifically, regarding using C. elegans
as a model system to understand axon guidance, nearly all the students agreed that this
model allowed the visualization of the biological phenomenon and mimicked the human
scenario (100% and 93.2%, respectively). The majority of the students also highlighted that
there is a good correlation between phenotypes and the genetic mutation underlying it,
and considered that the use of C. elegans improved their interest in the course (Figure 6A).
Regarding the learning activity, most students considered it relevant to the course objectives,
and thought that it contributed to their learning improvement and activity engagement.
Notably, 80% of the students indicated they would have participated in the activity even if
not mandatory (Figure 6B).
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of axon guidance, and (B) its impact on learning, using a Likert 4-points scale (totally disagree,
disagree, agree, and totally agree). All students indicated that using C. elegans permitted visualization
of the phenomena (100%). The majority thought it allowed mimicking the human mechanisms
of axonal pathfinding (81.8% agreed and 11.4% agreed totally, while only 6.8% disagreed), and
establishing a good correlation between worms’ genotype and phenotype (57.1% agreed, 23.8%
agreed totally, and 19.1% disagreed), therefore improving their interest on the course (totally agree
2.3%, agree 69.8%, disagree 20.9%, and totally disagree 2.3%). The majority of the students also
highlighted the relevance of the activity for their understanding of the course aims (totally agree
15.9%, agree 75%, and disagree 9.1%), contributing to learning improvement (totally agree 23.3%,
agree 67.4%, and disagree 9.3%). Students agreed to be more engaged in the tasks and discussions
(totally agree 20.5%, agree 65.9%, and disagree 13.6%) and would have participated in the class, even
if not mandatory (totally agree 13.6%, agree 56.8%, disagree 27.3%, and totally disagree 2.3%).

This activity has the potential to be used for teaching medical students, as we did here,
but also biology, biochemistry, or neuroscience students at the undergraduate or graduate
levels. The conversion of this activity into a virtual laboratory could be used on its own for
online learning or combined with a laboratory activity to reinforce learning.

If taught at the graduate level, the activity can be expanded to additional molecules
and molecule types to add diversity and complexity and make each student group have
their own project. Concepts, such as the relevance of receptor-receptor interactions, the
contribution of adhesion molecules, the role of the extracellular matrix in establishing
molecular gradients, and the role of transcriptional regulation and post-translational modi-
fications of the key molecules, can be introduced in these more advanced contexts. This
can also be completed using the virtual lab setup if additional components are added.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biomedicines11061731/s1, Supplementary Video S1: Videos
of wild-type and axonal migration C. elegans mutants. WT, unc-40, unc-6 and unc-5 animals were
recorded crawling in solid agar plates (showing a population or single animals) and swimming in a
liquid drop. Videos are shown at normal speed.
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