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Abstract: The polar clusters generated by random non-central impurities in 

quantum paraelectrics determine to a great extent the complex dielectric 

behaviour observed in systems like SCT, KTN or KTL. The competition 

between a quantum paraelectric phase and an impurity-driven ferroelectric or 

glass phase depends on the concentration and on the nature of the interaction 

between clusters. This work presents a simple model in which each cluster is 

represented by a quantum two level system involving an effective Ising 

dipolar moment   and a tunneling energy A. The interactions between 

clusters are taken into account by following the guide-lines of the Sherrington-

Kirkpatrick model for spin glasses. General expressions for the polarization 

(P) and the Edwards-Anderson order parameter (q) are given and the phase 

diagram involving temperature, the normalized mean interaction energy J0/J 

and  tunneling energy A/J0 is built.    
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INTRODUCTION 

 

Quantum paraelectric with non-central impurities like KTL (LixK1-xTaO3), 

KTN (KTa1-xNbxO3) or SCT (Sr1-xCaxToO3) display interesting and complex 

dielectric properties at low temperatures[1,2]. In the pure compounds (x=0), the 

ferroelectric order is suppressed by quantum fluctuations and the material 

remains in a paraelectric phase. The linear electric susceptibility 
l

 increases 
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to very high values as the temperature decreases, and saturates at very low 

temperatures. The general temperature dependence of )(T
l

 is well described 

by the Barrett law [3]. 

The presence of dopants induces electric dipoles that are randomly distributed 

in the host lattice and are capable of being reoriented between several 

directions dictated by the symmetry of the lattice [4,5]. Due to the high 

susceptibility of the system, the local dipole field polarizes the lattice and 

originates the rise of local and highly correlated polar domains, with 

dimensions of the order of 1-100 nm [6].  Within a certain approximation, each 

polar domain can be described by its effective or dressed dipolar moment η . 

At very low dopant concentrations, the nano-domains interact very weakly 

and the system behaves like a quantum super-paraelectric. As x is increased, 

dielectric peaks arise at finite temperatures, non-linear susceptibilities become 

more intense, dielectric dispersion and relaxation become more complex and 

aging and ergodicity breaking is observed [6-10] 

The nature of dipolar order stabilized at low temperatures depends on the 

nature of the cluster interaction, as well as on their concentration. For high 

enough concentrations (x>Xc) an impurity-driven transition to a more or less 

disordered ferroelectric phase is observed. At intermediate concentrations  

(x>Xg), random-site electric dipoles may freeze into a glass like polar phase.  

Mean-field models were used to describe the contributions of the random 

polar clusters to linear and non-linear susceptibilities. The conventional series 

expansion and a classic Langevin-type approximation were used to describe 

the contributions of the host lattice and the clusters respectively [6]. This 

classical approach is at variance with the importance of quantum fluctuations 

and, moreover, implicitly assumes that the host lattice and of the polarized 

clusters produce independent contributions to  (T,E). More recently, the 

transverse Ising model was used to interpret both the linear and the non-linear 

electric susceptibility in pure strontium titanate [11]. Along the same lines, the 

same model was adapted to KTL by considering two sets of interacting 

pseudo-spins, describing the host lattice and the dopants, respectively [12].  

These models have the drawback of neglecting the effects of disorder and the 

possible freezing of dipoles or the onset of a glass phase.  

In a recent work we discussed the linear and non-linear susceptibilities in low 

doped SCT by using a model where the dipolar moments within each cluster 

were represented by an equivalent quantum two-level system [13]. Effects of 

disorder were taken into account and the competition between ferro and glass 

phases were discussed by using appropriate analytic solutions. 
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The idea of considering a finite tunneling between up and down states of an 

effective pseudo-spin to describe the dielectric properties of some disordered 

dielectrics is not new. In fact, the simplest prototype model for a proton glass 

such as RADP (Rb1.x(NH4)xH2PO4), as an example, is the random-exchange 

version of the Ising model with a transverse field representing the tunneling of 

protons [14,15]. This model has been previously applied to describe random-

fields tend to smear out the dielectric cusp observed at the glass transition or 

to discuss the dynamics of the freezing transition in a deuteron glass. 

However, the idea of representing the polar clusters in systems like SCT or 

KTL as random interacting quantum two level systems is simple and stresses 

the importance of the quantum fluctuations induced by the host lattice.  

In this work, we report general expressions for the temperature and field 

dependence of the Edward-Anderson [16] order parameter (q) and of the 

electric polarization (P) of interacting two level systems with an effective 

dipolar moment  .  Following the guidelines of the Sherrington-Kirkpatrick 

model [17], the interaction is considered to be random by assuming that the 

coupling constants follow a Gaussian distribution with a mean energy 0J  and 

width J . The equations for q and P are numerically solved and the phase 

diagram involving the temperature, the normalized mean energy JJ /0  and the 

tunneling energy 0/ JA is constructed.  

 

 

RESULTS 

 

As referred to above, each polar cluster is represented by a quantum two level 

system involving an Ising dipolar moment and a tunnelling energy A.  The 

hamiltonian of a single cluster in the presence of an applied field can therefore 

be represented by the matrix:  

 

    













EA

AE
ĥ    (1), 

 

where E,  and A are the applied field, the effective dipolar moment of the 

cluster and the tunneling energy, respectively. Referred to the eigenstates of 

(1), the dipolar moment of each cluster is: 
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 
)cos(ˆˆ

22





 


 

EA

E
DD            (2) 

 

where  )
2

sin()
2

cos(


  are the eigenvectors of (1) with 

energies 2

1

222 )( EAe  and )(tan 1

E

A


  

. 

A tunneling energy 0A has therefore the two-fold effect of reducing the 

effective dipolar moment of the cluster ( )   and modify the Zeeman 

energy )(  eE . 

The inter-cluster interactions can now be included, by considering the 

coupling 
ji

jiijJH
,

int
ˆ  , where j,i  means that each distinct pair is 

counted once.  

For simplicity we can assume now the general framework of the mean-field 

model of Sherrington and Kirkpatrick for spin glasses. Due to the random 

distribution of the clusters, one considers that Jij follows a Gaussian 

distribution with average interaction energy J0 and standard deviation J. The 

general results of the S-K model [17] for the local electric field E(z), the electric 

polarization P and the Edwards-Anderson order parameter q can therefore be 

used with the necessary modifications:  

  

zq
J

P
J

EzE


 0
0)(                     (3) 
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These set of equations must be solve numerically in order to obtain the 

temperature dependence of P(T) and q(T). We used Simpson rule to integrate 

and a self-consistent iterative method to solve equations 3-5. The calculations 
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were performed assuming no external applied electric field. The temperature 

dependencies of P and q, as well as critical temperatures, were obtained as 

functions of the normalized mean interaction energy J0/J and tunneling energy 

A/J0. The observed phases are paraelectric when P=0 and q=0, ferroelectric 

when P0 and q0, and glass when P=0 and q0. 

Figure 1 shows the corresponding phase diagram, involving the critical 

temperatures, the normalized mean interaction energy J0/J and tunneling 

energy A/J0. For A=0 (no tunneling energy) the model exactly reduces to the 

mean-field theory of Sherrington and Kirkpatrick for spin glasses as shown in 

the inset of fig. 1. Accordingly, ferroelectric order is found for J0/J>1.25 and 

T<Tc= BkJ /2
0  (Tc being the Curie Temperature), and a glass phase is 

obtained for J0/J<1 and T<Tf= BkJ /2  (Tf  being the freezing temperature). 
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FIGURE 1: Phase diagram involving temperature, the normalized 

tunneling energy A/J0 and the normalized mean interaction energy J0/J (for 

1 ). The inset shows the results for A=0 (J0/J-kBT/J plane).  
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In the intermediate region (1<J0/J<1.25), the glass phase is stable at low 

temperatures and a ferroelectric phase appears, sandwiched between this phase 

and the paraelectric phase. This behaviour, known from the S-K model, can be 

clearly seen in the temperature dependence of the polarization, as shown in 

figure 2a). In fact, P =0 and q 0  at low temperatures (fig. 2b), which is 

characteristic of the glass phase. This stability of the glass phase at low 

temperatures has been considered a consequence of the mean field approach. 

However, a finite tunneling energy tends to decrease Tf and suppresses the 

glass phase, as can be observed in figures 2a) and 2b). In fact, for high enough 

tunneling energies, the system becomes ferroelectric below Tc and the P 

versus T curves do not present the characteristic maximum at intermediate 

temperatures.  

Figures 2c) and 2d) show the temperature dependencies of the polarization P 

and order parameter q for J0/J in the ferroelectric region (J0/J>1.25). As the 

tunneling energy A is increased, the Curie temperature Tc progressively  
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FIGURE 2: Temperature dependencies of the electrical polarization P and 

order parameter q in the phase diagram regions: a) and b) 1<J0/J<1.25; c) 

and d) J0/J>1.25.  
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decreases towards zero, so that for AJ0 the ferroelectric phase is not stable. In 

the glass region (J0/J<1), the tunneling energy reduces the freezing 

temperature Tf and, for AJ, the system remains paraelectric. 

The previous analysis shows that the stabilization of the glass phase depends 

essentially on the relative values of the tunneling energy A and the parameter 

J, while the stabilization of the ferroelectric phases results from the balance 

between the tunneling energy A and the intensity of the ferroelectric coupling 

J0. This can be clearly seen in figure 3, where A/J0 is plotted as a function of 

J0/J:  the line representing the transition from paraelectric to glass corresponds 

to the condition A=J, while the line corresponding to the transition from 

ferroelectric to paraelectric corresponds to the condition A=J0 

In conclusion, the model reported incorporates a non-zero tunneling in the S-K 

model and allows an analysis of the competition between different phases 

found in some disordered quantum paraelectrics. It may provide a simple 

framework for an analysis of phase diagrams and temperature dependencies of 

the linear and non-linear susceptibilities, in systems like SCT and KTL. This 

analysis of the susceptibilities in these systems is presently under course. 
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FIGURE 3: Projection of the phase diagram on the T=0 plane, showing 

the stability ranges of the different phases  
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