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Abstract: Civil infrastructure monitoring with the aim of early damage detection and acquiring the
data required for urban management not only prevents sudden infrastructure collapse and increases
service life and sustainability but also facilitates the management of smart cities including smart
transportation sectors. In this context, smart geosynthetics can act as vital arteries for extracting and
transmitting information about the states of the strain, stress, damage, deformation, and temperature
of the systems into which they are incorporated in addition to their traditional infrastructural
roles. This paper reviews the wide range of technologies, manufacturing techniques and processes,
materials, and methods that have been used to date to develop smart geosynthetics to provide
rational arguments on the current trends and utilise the operational trends as a guide for predicting
what can be focused on in future researches. The various multifunctional geosynthetic applications
and future challenges, as well as operational solutions, are also discussed and propounded to pave
the way for developing applicable smart geosynthetics. This critical review will provide insight
into the development of new smart geosynthetics with the contribution to civil engineering and
construction industries.

Keywords: civil infrastructures monitoring; smart geosynthetics; damage detection; sustainability;
stress and strain detection; smart cities

1. Introduction

According to the International Geosynthetics Society’s recommended geosynthetics
terminology, mathematical and graphical symbols, and descriptions of geosynthetic func-
tions, geosynthetics are planar, relatively impermeable, synthetic or natural polymeric
sheets for use in civil engineering applications and infrastructures [1]. Most conventional
geosynthetics can be categorised as geomembranes, geogrids, geotextiles, and geocompos-
ites, as shown Figures 1 and 2. Geocomposites are manufactured by integrating various
geosynthetic materials or by merging geosynthetics with non-synthetic materials such as
bentonite clay to optimally and cost-effectively address particular field applications [2].
Geocomposite structures and materials include geosynthetic clay liners (GCLs); geotex-
tile geonets, geomembranes, geogrids, and polymeric cores; geomembrane geonets; and
three-dimensional polymeric cell structures [3,4]. In the last few decades, the application
of geosynthetic materials to various civil projects and ground treatment has considerably
increased owing to the important benefits of geosynthetic materials, has attracted the atten-
tion of scientists, and has advanced geosynthetic production technologies and materials.
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The advantages of using geosynthetic materials include lower repair and maintenance
costs, cost-efficiency, design predictability, installation and transportation convenience,
quick installation, applicability to a wide range of soils, enhanced performance, extended
service life, space savings, good quality control owing to natural homogeneity, increased
safety factors, less environmental sensitivity, and compatibility with field conditions [5,6].
However, these materials must meet certain requirements and be evaluated and tested
before their field applications. The features required for the application of geosynthetic
materials are summarised in Table 1.
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Table 1. Required features of geosynthetic materials.

Property Specification

General characteristics Thickness, material type and manufacturing, specific gravity, mass, roll
dimensions, polymer(s), absorption

Index specifications
Strip tensile strength, flexural strength, burst strength, shear modulus, creep

resistance, Poisson’s ratio, puncture resistance, cutting–trapezoidal tear strength,
penetration, flexibility (flexural strength), grab strength

Endurance specifications Chemical resistance, ultraviolet (UV) stability, wet/dry stability, temperature
stability, biological resistance, long-term durability, abrasion resistance

Performance–fabric/soil specifications Stress–strain, cyclic and dynamic loading, friction/adhesion, soil retention,
creep, filtration

Hydraulic specifications Soil retention, porosity, apparent opening size, permeability/permittivity, clog
resistance, open area percentage, in-plane flow capacity

With the recent development and construction of smart cities, the demand for smart
multifunctional geosynthetic materials has also drastically increased. These materials can
perform their traditional roles such as construction layer structural elements, filtration,
or protective barriers and various other functions while also extracting and transmitting
information about the system into which they are embedded for structural health moni-
toring (SHM) [7–9]. Measuring geosynthetic strain and stress and/or monitoring severe
(e.g., seismic) events are among the most important health monitoring objectives of geosyn-
thetic structures during their service life [10]. The importance of instrumentation and
health infrastructure monitoring is increasingly recognised to address the challenges and
uncertainties of site conditions, construction practice, material properties and behaviour,
environmental effects, and loading conditions [3,11]. The major advantages of the enhanced
techniques for monitoring and measuring geosynthetic structural performance and the
in-soil geosynthetic response include (1) the early detection of initial damage to prevent
the sudden collapse of civil structures and the associated loss of lives and money; (2) the
extraction of current operational data, which has many benefits in various areas of smart
city management such as transportation and traffic flow monitoring; (3) substantial cost
savings in major projects by decreasing uncertainties and thereby minimising the design
safety factors and by accelerating construction to exploit real-time response data gathered
from infrastructure under construction; (4) the advancement of more-accurate and in-depth
structural performance knowledge during construction and about lifetime service capacity
and extreme loading conditions such as natural hazards; and (5) the use of field-scale
databases as a valuable resource for developing validated analytical and numerical models
that can be used to enhance the reliability and cost-effectiveness of current design methods
and develop more economical, safer, and performance-based design approaches [3,12–14].
Infrastructural health monitoring is particularly paramount in supporting critical structures
in urban areas and along transportation corridors or in protecting the environment from
hazardous waste, fuel leakages, or other contaminants [15–17]. However, despite extensive
developments in designing, manufacturing, and testing geosynthetics, other geosynthetic
vital aspects including sustainable development, health monitoring, and instrumentation
have attracted comparatively little attention [3]. Indeed, sensor-integrated, optical fibre-
based, and self-sensing piezoresistive-based multifunctional geosynthetics are the only
efforts and technologies developed to achieve smart geosynthetics. However, there is still a
lack of applicable smart geosynthetics with high field performances, compatibility with
geomaterials, high resistance of sensing technology against aggressive factors, a simple
production process with a low cost, minimum complementary systems, and environmental
friendliness. Additionally, there are few or no comprehensive review papers attempting to
address the aforementioned concerns in the way that is explained above.

Accordingly, in this paper, various intelligent geosynthetics based on different diagno-
sis technology were critically reviewed to bridge the existing knowledge and to achieve
the best concept and technique for the development of a practical smart geosynthetic.
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Moreover, the manufacturing processes, theoretical research, materials, and methods that
have been employed to date for developing smart geosynthetics were discussed. Different
applications of smart geosynthetics in several monitoring systems were reviewed. Detailed
tables have been created to describe the state of the art and to give the reader easy access
to the vast amount of studies that have been conducted in this domain. Furthermore, the
knowledge gaps, challenges, and future trends have been outlined to integrate independent
technologies into systems and develop field-applicable smart geosynthetics that convince
both engineers and end-users to adopt them. We believe that this comprehensive and criti-
cal review can brighten the horizons to the new eras of smart geosynthetic development
and provide a roadmap for researchers who are looking toward advancing the state of
the art.

2. Strain-Gauge-Integrated Smart Geosynthetics

Typically, strain gauges are designed to assess the strain and stress behaviours of
materials [18,19]. However, they are often employed with rigid objects such as concrete,
steel bars, and metal plates, and few studies have been conducted on their application to
synthetic materials such as geogrids and soft fabrics. The application of strain gauges to
geosynthetic instrumentation was first reported by Rowe and Gnanendran [20] in 1989
to measure the displacement of a geotextile-reinforced test embankment constructed on
a soft organic clayey silt deposit in Canada. Thirty-four electrical resistors and seven
electromechanical and seven mechanical strain gauges were installed on the symmetry
axis perpendicular to the force applied to a high-strength 360 × 210 cm polyester woven
geotextile exhibiting an ultimate tensile strength of 216 kNm−1 to measure the strain in
the transverse direction. The strain in the longitudinal direction was detected using four
electrical resistance strain gauges installed at different locations. The authors measured
a comparatively small strain (maximum of approximately 2%) when the embankment
thickness was increased to the maximum height. However, they reported that the strain
gauges were easily damaged and that despite considerable care, five of the original 48
were damaged during transport from the storage shed and placement of the geotextile in
the field. In addition, the output electrical resistance of some strain gauges was affected
by humidity.

With increasing knowledge for producing high-precision strain gauges, efforts to
develop intelligent geosynthetics have gradually expanded. For example, Springman
et al. [21] and Bolton and Sharma [22] also integrated geosynthetics with strain gauges to
detect strain in 1992. They used high-performance copper–nickel (Cu–Ni) strain gauges
to measure the load and strain of a woven geotextile independently in prototype field
centrifuge tests. Strain gauges were installed on both sides of a woven geotextile through
two epoxy strips, and the results were compared with Instron and photographic measure-
ments. However, the extension strain gauges were not as effective.

Another strain-gauge-based smart geosynthetic was reported by Gnanendran and
Selvadurai [23]. They installed 12 pairs of foil strain gauges in different directions along the
centreline strand of an 870 × 740 mm extruded polypropylene biaxial geogrid to investigate
the stabilising force provided by a geogrid layer. The geogrid was placed in the body of
a sloped fill loaded from a footing near the crest. The authors found that using only one
strain gauge per location markedly reduced the accuracy of the tensile strain and geogrid
force estimated based on the nominal stiffness, particularly at low loads, and noted that
considerable caution is required when utilising such an approach. Indeed, the geogrid
reinforcement was reliably instrumented by installing strain gauge pairs (i.e., on the bottom
and top faces of the geogrid) at each location across the geogrid reinforcement, and the use
of the average strain minimised the influence of the geogrid flexural strains.

To investigate similitude conditions in modelling geosynthetic geogrid materials,
Viswanadham and König employed special strain gauges on low-elastic-modulus materials
without reducing the gauge sensitivity [24]. Their strain gauges were 3 × 2.3 mm and
exhibited a 9.5 × 4 mm backing and a nominal resistance of 120 Ω. A gauge factor (GF) of
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2.13 and a strain limit of 3% were used. The geogrids were instrumented with tiny strain
gauges adhered using strengthened epoxy adhesive to the base material. Their results were
difficult to calibrate and had to be calibrated during several loading and unloading cycles
until a reproducible response was achieved. In addition, the influence of the base epoxy
adhesive materials on the geogrid tensile strength–strain behaviour must be considered.

Despite recent advances in the design and production of different high-performance
strain gauges, almost all strain-gauge-based smart geosynthetics have involved a limited
number of gauges installed at different geosynthetic points. Because geosynthetics are
planar-shaped reinforcements, the stress and, consequently, the strain are distributed in
different directions on the geosynthetic surface, which sometimes distorts the reinforcement
planar elements. A low installation resolution and the inability of strain gauges to detect
strain in different directions and distortion modes hinder or render almost impossible the
development of an integrated continuous monitoring system. The assembly of strain gauge
circuits required to do so, the complex calibration processes, and the strain gauge sensitivity
and vulnerability to destructive environmental agents have limited the application of strain
gauges as practical long-term solutions to develop smart geosynthetics. Indeed, corrosive
factors, soil moisture, freeze–thaw and wet–dry climatic cycles, and strain gauge sensitivity
to damage during installation, transportation, and construction continuously reduce strain
gauge efficiency in the field.

3. Fibre-Optic-Based Smart Geosynthetics
3.1. Characteristics and Principles of Optical Fibres

Fibre optics or optical fibres (OFs) are tiny strands of

Sustainability 2023, 15, x FOR PEER REVIEW 5 of 45 
 

To investigate similitude conditions in modelling geosynthetic geogrid materials, 
Viswanadham and König employed special strain gauges on low-elastic-modulus materi-
als without reducing the gauge sensitivity [24]. Their strain gauges were 3 × 2.3 mm and 
exhibited a 9.5 × 4 mm backing and a nominal resistance of 120 Ω. A gauge factor (GF) of 
2.13 and a strain limit of 3% were used. The geogrids were instrumented with tiny strain 
gauges adhered using strengthened epoxy adhesive to the base material. Their results 
were difficult to calibrate and had to be calibrated during several loading and unloading 
cycles until a reproducible response was achieved. In addition, the influence of the base 
epoxy adhesive materials on the geogrid tensile strength–strain behaviour must be con-
sidered. 

Despite recent advances in the design and production of different high-performance 
strain gauges, almost all strain-gauge-based smart geosynthetics have involved a limited 
number of gauges installed at different geosynthetic points. Because geosynthetics are 
planar-shaped reinforcements, the stress and, consequently, the strain are distributed in 
different directions on the geosynthetic surface, which sometimes distorts the reinforce-
ment planar elements. A low installation resolution and the inability of strain gauges to 
detect strain in different directions and distortion modes hinder or render almost impos-
sible the development of an integrated continuous monitoring system. The assembly of 
strain gauge circuits required to do so, the complex calibration processes, and the strain 
gauge sensitivity and vulnerability to destructive environmental agents have limited the 
application of strain gauges as practical long-term solutions to develop smart geosynthet-
ics. Indeed, corrosive factors, soil moisture, freeze–thaw and wet–dry climatic cycles, and 
strain gauge sensitivity to damage during installation, transportation, and construction 
continuously reduce strain gauge efficiency in the field. 

3. Fibre-Optic-Based Smart Geosynthetics 
3.1. Characteristics and Principles of Optical Fibres 

Fibre optics or optical fibres (OFs) are tiny strands of ⌀~0.2 mm glass [25]. OFs are 
light-transmitting cylindrical dielectric waveguides consisting of high-purity, low-loss op-
tical materials—most commonly silica, although other plastic and polymer materials are 
also commercially available [26]. Owing to dopants, the refractive index of the central axis 
or core (approximately 1.46 for silica) is slightly higher than those of the cladding and the 
surrounding material [27]. Because internal optical waves moving almost parallel to the 
axis reach the interface at an angle above that required for total reflection according to 
Snell’s law, the optical waves remain restricted to the core. However, light escapes when 
the fibre is bent through a large local radius [28]. A plastic covering (i.e., buffer) protects 
the OFs from scratches, and numerous OFs are frequently bundled with high-strength 
fibres such as Kevlar to prepare durable optical cables that can endure industrial handling 
and applications [29]. Typically, conventional acrylate-protected and nonbuffered OFs ex-
hibit exterior diameters of 250 and 125 µm, respectively [30]. OFs are classified as single- 
and multi-mode exhibiting core diameters of approximately 10 and 30–100 µm, respec-
tively [31]. Single-mode OFs offer lower optical attenuation because of the smaller differ-
ence between the core and cladding refractive indexes, which requires lower dopant con-
centrations. However, dispersed distinct modes travelling at various velocities distort 
multi-mode fibre group signals. In multi-mode fibres, the larger core enables easier align-
ment with the optical sources and connectors, which is highly advantageous for light-
guide applications [32]. However, multi-mode fibres may only be used for intensity-based 
sensing applications. Optical power losses are very small, approximately 0.03 dB/km in 
multi-mode fibres. However, although OF power losses are irrelevant for sensing appli-
cations, 1550 nm is still the preferred window because the required opto-electronic com-
ponents are more readily available [33]. 

Various increasingly complex theories have been proposed to explain OF light refrac-
tion characteristics. The simplest and most basic model, known as ray optics, posits that 

~0.2 mm glass [25]. OFs are
light-transmitting cylindrical dielectric waveguides consisting of high-purity, low-loss
optical materials—most commonly silica, although other plastic and polymer materials
are also commercially available [26]. Owing to dopants, the refractive index of the central
axis or core (approximately 1.46 for silica) is slightly higher than those of the cladding and
the surrounding material [27]. Because internal optical waves moving almost parallel to
the axis reach the interface at an angle above that required for total reflection according to
Snell’s law, the optical waves remain restricted to the core. However, light escapes when
the fibre is bent through a large local radius [28]. A plastic covering (i.e., buffer) protects the
OFs from scratches, and numerous OFs are frequently bundled with high-strength fibres
such as Kevlar to prepare durable optical cables that can endure industrial handling and
applications [29]. Typically, conventional acrylate-protected and nonbuffered OFs exhibit
exterior diameters of 250 and 125 µm, respectively [30]. OFs are classified as single- and
multi-mode exhibiting core diameters of approximately 10 and 30–100 µm, respectively [31].
Single-mode OFs offer lower optical attenuation because of the smaller difference between
the core and cladding refractive indexes, which requires lower dopant concentrations.
However, dispersed distinct modes travelling at various velocities distort multi-mode fibre
group signals. In multi-mode fibres, the larger core enables easier alignment with the optical
sources and connectors, which is highly advantageous for light-guide applications [32].
However, multi-mode fibres may only be used for intensity-based sensing applications.
Optical power losses are very small, approximately 0.03 dB/km in multi-mode fibres.
However, although OF power losses are irrelevant for sensing applications, 1550 nm is still
the preferred window because the required opto-electronic components are more readily
available [33].

Various increasingly complex theories have been proposed to explain OF light refrac-
tion characteristics. The simplest and most basic model, known as ray optics, posits that
light follows the shortest path possible (Fermat’s principle) [34]. Huygens proposed a scalar
wave model to express light diffraction [35]. Maxwell explained polarisation by considering
light as electromagnetic (vectorial) waves [36]. Quantum optics refers to more complex
Schrodinger-equation-based models and determines the energy exchanged between matter
and radiation [37,38].
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3.2. Types of Fibre-Optic Sensors

The focus of this discussion is mainly on strain, humidity, and temperature measurements—
all of which are critical to geotechnical applications [27,39–43]. However, OF sensors are
employed in various other applications including electrical fields and chemical sensors
for which comprehensive reviews may be found in the literature [44–48]. The benefits
of applying OF sensors to geotechnical health monitoring stem from their low weights,
small sizes, and non-electrical characteristics—which not only makes them impervious
to electromagnetic interference and electrical noise but also enables them to operate with
high-voltage electricity in explosive environments, mines, and train tunnels. Furthermore,
in addition to topological classifications (e.g., intrinsic, extrinsic, local, or distributed),
OF sensors can be fundamentally classified based on the optical parameters impacted by
external factors such as phase, intensity, wavelength, and polarisation.

3.2.1. Intensity Sensors

These instruments are the simplest OF sensors and, thus, were the first to be imple-
mented. Moreover, they are still used as proximity and fibre breakage damage detection
sensors and to monitor composite material curing and smart geosynthetic and infras-
tructural health. Intensity sensor devices are composed of an optical fibre—preferably a
multi-mode fibre for increased power transmission—a photodetector, and a stable light
source, as shown in Figure 3.
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Figure 3. Schematic of OF-based intensity sensor configuration.

According to intensity measurements, although intrinsically micro-bending OF sensors
is favourable for monitoring strain and stress in geosynthetics and geotechnical applications
(Figure 4), these sensors lose efficiency because of high strains or stresses in coarse angular
grains when the sensors are severely bent.
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Indeed, the incidence angle of the light in the optical fibre is lower than the critical
reflection angle at the core–cladding interface, which causes the light to remain in the
optical fibre, except at sharp bends from which the light can escape (Figure 5).
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In other words, if the OF sensor is sandwiched between two rough surfaces, applying
more pressure causes the OF to bend even more, thereby increasing the optical losses.
Although research has previously been conducted based on this concept, it is currently
practically abandoned because of violent fluctuations in the light source optical power,
calibration challenges, connectors, and temperature effects—all of which worsen system
accuracy [26]. However, this effect must be acknowledged, especially in geosynthetics,
textiles, and fabric composites wherein roughness-induced micro-bending losses can com-
pletely fade out optical signals. Therefore, before attempting to incorporate OFs into
geosynthetics (i.e., geotextiles), the fibres must first be protected against micro-bending.

3.2.2. Interferometers or Phase Modulators as of Sensors

Interferometry is one of the most important laboratory techniques for precisely measur-
ing distances. Interferometers have been used to obtain phase information from intensity
measurements [26]. A Mach–Zender interferometer schematic is shown in Figure 6.
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Figure 6. Schematic of Mach–Zender interferometer.

In this system, a single-frequency monochromatic laser wave is split into two light
beams (with either an optical fibre coupler or a conventional optic partial mirror) prop-
agating through routes of different lengths (approximately 380 nm for He–Ne laser red
light) before being recombined, which delays one wave relative to the other and leads to
oppositely summed electromagnetic fields. Therefore, the output intensity will be zero. As
shown in Figure 7, when the length of one of the paths is increased or decreased by half a
wavelength, the interferometer signal travels from the input power level to zero. Studies
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have shown that in highly accurate experiments, even 10 nm changes in the optical path
length can be identified. However, because both optical paths are highly sensitive to any
disturbance, utilising these OF sensors in field applications remains problematic because
changes in the environmental temperature can induce many maximum and minimum
drifts [49].
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Figure 7. Power output from OF-based interferometer sensor.

Mach–Zender, Michelson, and Fabry–Perot are three other common traditional OF-
based interferometer architectures.

3.2.3. Bragg Gratings or Wavelength-Based Sensors

Fibre Bragg grating (FBG) sensors are intrinsic, multiplexable, local, absolute, and
interruption-proof OF-based strain sensors that have attracted considerable attention since
their invention in the early 1990s. The main concept is to periodically modulate the fibre core
refractive index over a short distance (approximately 1 cm) to act as a collection of weakly
uniformly spaced mirrors diffracting the incident light and reflecting the wavelength
proportional to the refractive index and spacing. As shown in Figure 8, the Bragg grating
behaves as an extremely thin optical filter. When a broadband light pulse is transferred
through the fibre, most of the light passes through the FBG except for a specific frequency,
which is reflected. The reflected wavelength peak shifts when the temperature is changed
or the grating is subjected to a uniform axial strain owing to changes in the refractive
index and spacing. These changes can be monitored using an optical spectrum analyser
(OSA) and are consequently converted into usable data. Multiple Bragg gratings centred
at various wavelengths can be written in the same OF and simultaneously interrogated
because commercially available white light sources exhibit an ~40–60 nm wide spectrum
and because the maximum strain- or temperature-induced drift is approximately 5 nm [50].

FBG multiplexing is simple to implement. Indeed, because information is encoded in
the wavelength, the sensor is extremely resistant to aging, which enables long-term strain
measurements without having to recalibrate the device.

Brillouin distributed optical fibre sensors (DOFSs) are also among the wavelength-
based OF sensors that have gained considerable attention for application to geotechnical
health monitoring in recent decades [50–53]. Because DOFSs are insensitive to external dis-
turbances, small, corrosion resistant, and lightweight and because DOFSs exhibit fast data
collection and low measurement cost, they are advantageous for application to geotechnical
health monitoring. However, the high installation cost and complex geosynthetic encapsu-
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lation remain some of the leading obstacles to DOFS field applications [54–56]. Because
DOFSs were initially proposed based on distinct light wavelength effects, they can be cate-
gorised as Raman-, Rayleigh-, and Brillouin-scattering-based distributed sensors [57–59].
An overview of scattering-based distributed sensors is illustrated in Figure 9.
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Figure 10 depicts the primary OF sensors for field applications, including powerful
temperature and strain sensors designed and adopted for monitoring tunnelling [60,61].

Polyurethane-sheathed OF sensors offer a lower elastic modulus and, hence, ex-
hibit higher sensitivity toward soil deformation. However, metal-cable-reinforced OF
sensors—e.g., glass-fibre-reinforced polymer (GFRP) reinforcers, aluminium pipes, and
metal reinforcers—strongly couple with coarse grains and/or rocks, thereby providing
more options for field strain, stress, displacement, and temperature sensing. Sun et al.
(2014) provided an overview of several encapsulated DOFSs applied to geosynthetics for
slope monitoring and considered various material properties [62,63]. Figure 11 illustrates
the basic DOFS structures applied to slope monitoring.
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Figure 11. DOFS structures applied to slope monitoring: (a) rippled metal-sheathed, (b) metal-
reinforced single core, and (c) aluminium-packaged fibre-reinforced cables.

3.3. Production Processes and Applications of Fibre-Optic-Based Geosynthetics

A suitable production or encapsulation method is one of the most important pre-
requisites for protecting OF sensors and generating essential coupling between geotechnical
structures and sensors [64–66]. However, packaging or encapsulation may induce intricate
mechanisms for transferring strain and stress from host materials to the OF core [66].
Indeed, comparatively investigating common production and encapsulation techniques
elucidates the primary challenges of using OF-based geosynthetics to monitor geotechnical
health and the basic perspectives to develop other smart geosynthetics.

Figure 12 illustrates a cross-sectional schematic of a sequence of optical fibres packed
into a geotextile wherein OF sensors are incorporated into and adhered to geotextiles using
epoxy resin and then coated with another geotextile layer to form a classic “sandwich”
structure. This form of packaging can be performed swiftly in the field [67].
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A schematic of an OF-sensor-based geosynthetic fabric at a settlement test trench
is shown in Figure 13. In this method, a system consisting of multiple OF cables was
connected to the sensing fibre chains at both ends of the measurement sensing unit. A
large box was separated into two portions to simulate soil settling such that one part could
be quickly set up and withdrawn following the test requirements [68,69]. The fabricated
OF-sensor-based geosynthetic was implanted between 3 and 20 cm thick sand and gravel–
sand composite layers, respectively. This monitoring system is like those used to monitor
railway embankments with sensor-equipped geosynthetics [70] and reinforce slopes under
surcharge loads with OF-based geogrids [71].
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In the latter monitoring investigations, 200 m tight-buffer-covered and 900 m tight-
buffer-jacketed OF sensors were encapsulated and fastened to the geosynthetic using
epoxy resin.

OF-sensor-based geosynthetics effectively sense strain distributed over long distances
and can, thus, be integrated into geomaterials to predict landslides around dams or
dikes [70]. A schematic of a typical OF-based geosynthetic monitoring system placed
at the landside foot of a dike is shown in Figure 14. To monitor geotextile unidimensional
strain fields, distributed OF sensors were utilised, and this method outperformed current
landslide monitoring methods. In this system, OF sensors were integrated into a geotextile
by a series of warp-knitted fixation positions between the fabric and OF sensors. While the
OF sensors are installed into the geotextile, a minimum bending diameter of 10 mm should
be avoided to protect the optical fibre sensor from damage in the field. In addition, suitable
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3 mm protective coating materials were used for this purpose.
OF sensors can also be incorporated into various fabric elements such as braided bars,

fibre-reinforced polymers (FRPs), and glass-fibre-reinforced polymer (GFRP) bars for field
applications [72–74]. Figure 15a,b show schematics of the OF-sensor-based FRP anchor and
GFRP bars, respectively. Although this production and encapsulation method is relatively
structurally simple, it includes a complex fabrication process [75,76]. The FRP fibre and OF
sensor were first braided together and then fed through pre-drilled holes in a dividing plate.
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Then, the braided OF and FRPs were impregnated with epoxy and cured at approximately
200 ◦C.
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Figure 15. Schematics of OF-sensor-integrated (a) fibre-reinforced polymer (FRP) rod and (b) glass-
fibre-reinforced polymer (GFRP).

This smart braided composite worked effectively with the host materials and offered
a proper sensing coefficient of approximately 0.050 MHz/µε. Figure 15b depicts the en-
capsulation method including the pre-stress initially applied to the OF sensors (up to
approximately 3000 µε) and the sensors subsequently fastened to the GFRP bars utilising
worn metal driving clamps. During the field application, the monitored GFRP bar exhib-
ited a diameter and length of 46 and 30 m, respectively. The extracted strain data were
converted to elongation data and were confirmed using a theoretical model published in
the literature [77,78].

A summary of OF-sensor-based geosynthetic applications in geotechnical monitoring
is listed in Table 2.
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Table 2. Summary of OF-sensor-based geosynthetics applied to geotechnical monitoring.

OF Sensor Type
Measurement Precision

Detection Area References
Strain (µε) Spatial

Resolution (m)
Temperature

(◦C)

BOTDR * 30 <1 - Landslide [78]
BOTDR 30 0.5 - Secant-piled wall [79,80]

BOTDA ** 100 2 - Dike [81]
BOTDA 2 1 - Landslide [82]

BOTDA 10 2 0.5
Ground

movement and
pipeline

[83]

BOTDR 30 1 - Landslide [84]
BOTDR 20 1 1 Soil deformation [85]
BOTDA 2 1 0.1 Pipeline [86]

BOTDA <2 0.5 <0.1
Energy of pipe
cast-in-place
concrete pile

[87]

BOTDA 20 1 1 - [88]

BOTDA 20 0.5 1 Rock
deformation [89]

* Brillouin optical time domain reflectometry, ** Brillouin optical time domain analysis.

4. Self-Sensing Geosynthetics

With the advent and development of smart infrastructures and intelligent cities in
recent years, demand has increased for multifunctional elements and materials exhibiting
improved mechanical performance while monitoring health and warning about potential
risks [90–93]. Self-diagnosing or self-sensing geosynthetics are multifunctional composites
that can sense their own conditions such as strain, stress, deformation, damage, and temper-
ature [94–97]. In contrast to most smart geosynthetics, self-sensing composites intrinsically
exhibit piezoresistivity-based sensing capabilities, which enable more practical, integrated,
and real-time infrastructural monitoring [7]. In addition to exhibiting improved mechanical
properties and early damage detection capability, self-sensing geosynthetics can provide
the information required for instrumenting and managing smart urban infrastructural
development such as transportation systems. Self-sensing geosynthetics are composed of
conductive phases including various conductive particles and fibres and non-conductive
phases or host materials including different polymeric or natural fibres and fabrics [98].

The conductive phase generates conductive paths between the host materials. Owing
to percolation and quantum electron tunnelling, several random conductive paths are gen-
erated between nano-/micro-particles and/or -fibres [99–102]. Conductive path electrical
resistivity is affected by external factors such as stress, strain, and temperature, which can
be detected by measuring the fractional change in the electrical resistivity [103–106].

Despite the many advantages of self-sensing geosynthetics over other smart geosyn-
thetics, few studies have been conducted to develop applicable self-sensing geosynthet-
ics [92]. However, smart textiles, fabrics, and polymeric filaments developed for mon-
itoring structural components could also be used in geotechnical applications. Hence,
recent progress in self-sensing geosynthetics and polymeric elements for applications
to geosynthetic components is discussed to provide insight into the evolution of smart
geosynthetics.

4.1. Metal-Based Self-Sensing Geosynthetics

Most fillers in this category are metal oxide and metal nano- and micro-particles such
as iron, gold, and silver. The characteristics of these nano-materials vary drastically and
are vastly different from their bulk counterparts. These nano-particles are semiconductors,
making them suitable candidates as sensitive components for applications to different
self-sensing geosynthetics.

Tao et al. [105] developed a metal nanoparticle-based polymeric rod sensor from
400 nm gold and 20 nm chromium thin films. Because a polyimide substrate and an
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easy production method (i.e., magnetron sputtering) were used, the sensor performance
metrics—including GF and sensitivity—were also reasonable (4.4–6.9 and 0.0086 Ω/ppm,
respectively).

Min et al. [107] described a straightforward method of incorporating non-carbonaceous
fillers into a polymer matrix. Different weight fractions of ~100 nm silver nano-particles were
dispersed in ethylene glycol solvent and were stabilised by incorporating a polyvinylpyrroli-
done (PVP) surfactant. The silver nano-particle suspensions were drop-cast in moulds
composed of polyimide tape on a glass slide. The silver films were then annealed for
20 min at 160 ◦C. Subsequently, a two-part poly-dimethyl siloxane (PDMS) mixture was
poured over the annealed silver films and cured for 2 h at 70 ◦C. The PDMS film thickness
was maintained at approximately 0.5 mm. The composite films were then peeled from
the glass slides, and the electromechanical activity and morphology were analysed using
a universal testing bench and scanning electron microscopy, respectively. Owing to the
fabrication approach, PDMS penetrated the voids in the silver film, resulting in strong
interfacial locking and void elimination. This also increased the resistance of the deposited
silver film. The component sensitivity and GF were affected by both the silver nano-particle
concentration and the applied strain. GF also increased owing to increased inter-particle
spacing between percolating nano-particles with increasing strain. The authors reported a
GF of approximately 109.4 for 130% strain and 0.3 wt.% silver nano-particles. The speci-
mens containing 0.1 wt.% silver nano-particles exhibited an even greater GF, i.e., 268.4 for
the maximum strain of 110%. Although the sensor behaviour stabilised after the initial
“perturbations” during the normalised resistance cyclic response, the early cycle tests re-
sulted in the emergence of micro-cracks in the silver films, which negatively impacted
experimental repeatability.

4.2. Carbon-Black-Based Self-Sensing Geosynthetics

Carbon black (CB, CAS No. 1333-86-4) is prepared by rigorously controlling the
thermal decomposition of carbon-rich feeds in an oxygen-depleted (partial combustion)
or inert (pyrolysis) atmosphere [108–110]. CB is the most cost-effective and industrially
manufactured nano-carbon, with an annual output expected to reach 15 Mt by 2025. CB
dwarfs the carbon nano-tube (CNT) market (15 kt by 2022), and at 1 USD/kg, it is consid-
erably less expensive than the cheapest grade of CNTs currently available on the market
(600 USD/kg) [108].

Cui et al. [5,111,112] investigated the piezoresistivity of conductive-polymer-doped
geobelts, which serve not only as reinforcements but also as monitoring devices. The
self-sensing geobelt was composed of CB-filled high-density polyethylene (HDPE) and was
fabricated for both industrial and laboratory applications. For the laboratory-developed
self-sensing geobelt, the optimal CB filler content was 47.5%. For the industrial specimens,
the optimal CB concentration was slightly less. The authors also performed tensile and pull-
out tests to investigate the mechanical properties and piezoresistivity of the self-sensing
geobelt and found that quadratic polynomial and linear functions defined the relationship
between the self-sensing geobelt normalised resistance and strain in the ranges 0–10% and
0–7%, respectively. Furthermore, the authors showed that both the tensile strength and
elongation at the break of the cyclically loaded self-sensing geobelt both decreased with the
increasing number of loading cycles and amplitude compared with the non-loaded self-
sensing geobelt. However, the pre-strain only slightly affected the mechanical properties
of the self-sensing geobelts. The authors also reported that by increasing the pre-strain
and the number and amplitude of the loading cycles, the electrical conductivity of the
self-sensing geobelts became more strain sensitive after cyclic loading.

Fathi et al. [113] evaluated the effects of the CB type on the mechanical perfor-
mance, percolation threshold, and piezoresistivity of low-density polyethylene (LDPE)
and polypropylene (PP) composites for application to self-sensing geosynthetics. The CB
structure is influenced by the primary CB particle shape, size, and aggregate size. Owing
to the higher attractive interactions of the inter-aggregates in smaller primary particles,
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CB exhibits higher agglomeration and a larger structure. In contrast, when aggregates are
composed of only a few primary particles, a smaller CB structure is generated [114]. Owing
to the low cost of CB, slightly changing the CB concentration in existing geosynthetic
formulations (i.e., 1–4%) is unlikely to markedly impact the geosynthetic manufacturing
cost, nor does it necessitate major changes in the manufacturing processes of existing
geosynthetic products.

The observations of Fathi et al. [113] supported the theory that the CB percolation
threshold concentration was inversely related to the CB structure. Furthermore, their stud-
ies showed that composites containing larger CB particles exhibited sharper piezoresistivity.
In addition, the piezoresistivity response of PP composites was higher than that of LDPE
composites, as listed in Table 3. Regardless of the host polymer utilised, the unitised self-
sensing geosynthetic specimens indicated greater gauge factors (GFs) relative to normal
commercial strain gauges (i.e., GF = 2).

Table 3. Average gauge factors obtained for different polymer composites composed of various
CB structures.

Polymer Type Type of CB
Structure

Percolation
Threshold

(wt.%)

Maximum
Strain (%)

Gauge Factor
(Average)

LDPE
Low 10 10 3–15

Moderate 5 10 10
High 5 10 9

PP
Low 7 4 25

Moderate 7 10 17

In the mechanical property characterisation, a CB percentage of up to 20 wt.% reduced
the PP composite tensile strength by approximately 50% while leaving the LDPE composite
tensile strength virtually intact. The increased PP crystallinity (45–55% for LDPE vs.
70–80% for PP [115]) could explain the more drastic drop in tensile strength. Furthermore,
incorporating 30% CB into PP reduces the PP crystallinity by approximately 33% [116].
Indeed, the CB agglomerates and particles break the weak chemical connections and
bonding between PP monomers, thereby promoting porosity and amorphous areas in the
polymer and reducing the polymer strength [117]. The findings of Fathi et al. also showed
that adding a modest CB content to both the PP and LDPE composites markedly reduced
the strain at failure.

Recent research on the development of self-sensing geosynthetics has primarily fo-
cused on woven and knitted ones. CB-filled PVC is a polymer composite often used to coat
woven and knitted geosynthetics. Polyvinyl chloride (PVC) is a low-crystallinity thermo-
plastic insulating polymer, which means that incorporating even low CB concentrations
into the PVC matrix could weaken the composite mechanical performance including the
elastic modulus, ductility, and strength. Hence, the CB content should be minimised in
PVC composites.

However, to fabricate a conductive PVC composite, a high CB concentration (i.e.,
5 wt.%) is typically required. These opposing requirements should be met simultaneously
through a well-controlled manufacturing process that includes proper mixing, moulding,
and curing stages. In PVC-coated PET yarn self-sensing geosynthetics, the inner woven PET
yarns are the load-bearing components; thus, any high-CB-concentration-induced changes
in the coating tensile strength will not unfavourably affect the mechanical properties of the
self-sensing geosynthetic product. However, the composite must be coated to maintain
its structural integrity and shield the PET from negative environmental influences and
installation damage (i.e., electrical interference from wet soils and corrosive and other
bio-active materials such as acids, aqueous salt solutions, and alkalis).

The mechanical properties and piezoresistivity of CB-filled PVC composites were first
investigated by Hatami et al. [118] for the potential application of the composites to the
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production of self-sensing geosynthetics. To prepare PVC/PET self-sensing geosynthetics,
the authors mixed regulated concentrations of powdered low- and moderate-structured
CBs with plasticised PVC. The in-isolation strain sensitivity was adequate for both CB-
filled composites, indicating that they could be used in field applications. Nevertheless,
low-structured carbon black PVC composites such as LDPE and PP [113] exhibited in-
creased piezoresistivity responses because the conducting networks were more prone to
discontinuities and rupturing under tensile loads.

These investigations focused on the strain conductivity of self-sensing geosynthetic
materials subjected to monotonic loading. Geosynthetics are also widely employed to
stabilise various earthwork structures subjected to time-dependent loads (i.e., traffic).
Time-dependent loading can irreversibly change the strain and electrical conductivity in
CB-formed conductive networks in self-sensing geosynthetics. To investigate the effect of
cyclic loading on the piezoresistivity of CB/PVC composites, Yazdani et al. [119] employed
the identical CBs used by Hatami et al. [118] and examined how the strain magnitude,
loading rate, stress relaxation, and pre-straining influenced the cyclic loading performance
of the CB/PVC composites. Their results showed that the conductive network in coated
components composed of higher-structured CB exhibited more resilient piezoresistivity
and suffered less damage during cyclic loadings. In addition, the strain sensitivity of the
coated specimens was also increased using pre-strain. The ratio of the initial peak strain to
the subsequent operating peak strain was also used to determine the degree of pre-straining
applied to the samples. However, the composite piezoresistivity was more consistent and
steadier when the ratio was higher.

These studies on self-sensing geosynthetics primarily investigated the performance of
unitised and coated yarn-based self-sensing geosynthetic prototypes in isolation. However,
in field applications, the soil-confining pressure is expected to affect the piezoresistivity of
self-sensing geosynthetics. Yazdani et al. [120] employed a modified direct shear test set up
to evaluate the effect of confining pressure on the piezoresistivity of a PVC-coated PET-yarn-
based self-sensing geosynthetic. They conducted in-soil tensile experiments at 10, 30, and
50 kPa confining pressures to mimic the upper levels of reinforced soil structures subjected
to greater strain and deformations [121] and reported that the piezoresistivity response of
self-sensing geosynthetics was reduced by increasing the confining pressures and strain
rates. However, the amplitude and repeatability of the piezoresistivity responses recorded
in the in-soil experiments were deemed adequate for civil engineering applications.

4.3. Carbon-Nano-Tube-Based Self-Sensing Geosynthetics

Due to the continuous and considerable decline in the carbon nano-tube (CNT) price
from approximately 1,500,000 USD/kg in 1999 to the current retail price in the range
50–300 USD/kg [122], the research and development of self-sensing geosynthetics has
recently found new potential and prospects. Owing to their highly desirable properties
such as high flexibility, high aspect (i.e., length-to-diameter) ratio, high specific surface
area, low density, and remarkable mechanical and electrical characteristics, CNTs are
increasingly utilised in nano-composites. Hatami et al. [8] incorporated a specific CNT
concentration into HDPE and PP to prepare piezoresistive and UV-protected geosynthetic
prototypes and compared their performances with those of geosynthetic-containing CB.
Their results indicated that the CB-filled specimens exhibited a marked piezoresistivity
response compared with the CNT-filled PP composites. Table 4 lists the mean GFs of the
composites tested by Hatami et al. [8]. The greater piezoresistivity response and sensitivity
of the CB-containing specimens were attributed to the grape-bunch-like CB fillers, which
formed a less entangled network and, consequently, resulted in higher piezoresistivity than
the needle-shaped CNTs under tensile strain.
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Table 4. Average GFs obtained for CNT- and CB-filled PP and HDPE.

Polymer Type Filler Type Filler Concentration
(wt.%)

Maximum
Strain (%) Mean GF

HDPE
CB 50 15 20

CNT 4.38 15 7

PP
CB 33 5 25

CNT 2.8 4 0.5

Hatami et al. [8] demonstrated that self-sensing geosynthetic technology could lead
to a more cost-effective and dependable alternative to currently available strain sensors
(i.e., gauges).

However, the application of CNTs to self-sensing geosynthetics remains problematic
because CNTs do not suitably disperse in polymers. Although “dispersion” usually refers
to uniformly distributed individual fillers in the host matrix, the term must be re-defined
for fillers such as CNTs, which intrinsically thermodynamically physically agglomerate
with neighbouring tubules to form aggregated bundle morphologies. Each bundle contains
hundreds of closely packed CNTs held together by van der Waals attraction energies of
approximately 500 eV/m per CNT–CNT [123]. This entanglement and agglomeration is
particularly important in CNTs owing to their flexibility and high aspect ratio [124]. Indeed,
enhancing CNT dispersion in a polymer composite would necessitate a trade-off between
the composite mechanical and electrical properties. Usually, complete dispersion leads
to smaller bundles and, as a result, smaller stress concentration zones, which could affect
the mechanical performance, weight, and manufacturability of the polymeric matrix [125].
However, bundling and agglomeration both reduce the percolation threshold [126].

Because of the effectiveness and importance of both the electrical and mechanical
properties of self-sensing geosynthetics (particularly unitised self-sensing geosynthetics),
an optimal mixing and fabrication technique must be devised to produce the desired level
of CNT bundling. Hence, determining effective dispersion strategies and evaluating the
resulting dispersion quality are critical steps in designing CNT–polymer composites. The
effects of processing conditions and dispersion quality on the mechanical and electrical
performances of PVC composites containing multi-walled CNTs were evaluated by Yazdani
et al. [127,128] for application to self-sensing geosynthetics and other applications involving
electrically conductive polymer composites. The authors investigated the mechanical
properties and electrical conductivity of specimens prepared using various mixing methods
and quantified the specimen subsurface dispersion using an approach devised by Smith
et al. [129].

Their results revealed that specimens exhibiting superior dispersion also exhibited
higher ultimate failure strain and strength, whereas specimens exhibiting poor dispersion
also exhibited higher elastic moduli.

The mechanical properties and piezoresistivity of tensile-loaded MWCNT-reinforced
PVC composites were also investigated by Yazdani et al. [130]. They showed that incorpo-
rating 0.5 wt.% MWCNTs into the PVC composite increased the tensile modulus fivefold
and considerably reduced the failure strain while leaving the ultimate strength nearly
unchanged. They also reported that MWCNT-containing PVC-based self-sensing geosyn-
thetics exhibited higher GFs compared with standard foil strain gauges and conventional
metals, indicating that MWCNT-containing PVC-based self-sensing geosynthetics have great
potential for application to damage detection and infrastructural performance monitoring.

Notably, geosynthetics are typically installed at such depths in civil engineering
applications that the geosynthetic temperature does not change appreciably throughout
the service lifetime. Hence, the temperature will likely not affect the strain sensitivity of
self-sensing geosynthetic devices in typical applications.
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4.4. Graphene-Based Self-Sensing Geosynthetics

Graphene is a two-dimensional (2D) sheet exhibiting six-member rings organised in a
honeycomb pattern. Graphene is the strongest, most flexible, and thinnest substance [131].
Owing to its unique molecular structure, graphene exhibits several extraordinary mechani-
cal, electrical, and chemical properties including elasticity, substantial flexibility, and the
ability to connect with numerous surfaces [132]. Graphene is harder and stronger than
other well-known materials, and mono-layer graphene exhibits an elastic modulus and
a tensile strength of approximately 1.1 TPa and 125 GPa, respectively [133]. In graphene,
π electrons move at 1/1300 the velocity of light [134]. Moreover, the graphene electrical
strength is negligibly influenced by electron interference.

In addition, the graphene electrical conductivity is 60 times higher than that of single-
walled carbon nano-tubes (SWCNTs) [135]. Furthermore, graphene conductivity remains
constant over a wide temperature range, which is critical for reliability in a wide range of
applications. Although the wide conductivity range provides graphene with outstanding
electrical characteristics, the (theoretical) specific surface area is approximately twice as
large as the CNT one, that is, 2630 and 1315 m2/g for graphene and CNTs, respectively.
Consequently, graphene has attracted considerable attention in different research fields
particularly owing to its exceptional characteristics.

Graphene-based self-sensing geosynthetics offer remarkable advantages such as low
cost, high flexibility, light weight, and easy synthesis. Moreover, the composite sensitivity
may be further enhanced by optimising the synthesis method and doping with an appro-
priate graphene concentration [136]. A summary of various graphene-based polymers for
application to self-sensing geosynthetics is listed in Table 5.

Table 5. Summary of different graphene-based polymer composites for application to self-sensing
geosynthetics.

Composite Type Fabrication Method GF Maximum Strain (%) Description References

Graphene/PDMS Chemical vapour
deposition 151 5

4 Because wrinkle relaxation
already presents in composite
structure, resistance first
decreased until reaching 2.47%

4 Electrical resistance increased in
strain range 2.4–4.5%

4 Resistance irreversibly shifts with
more than 5% increase in strain,
indicating that nano-composite
structure has been destroyed and
limiting composite working
range to below 5%

[137]

Graphene/PET Drop casting 0.11 7.5

4 Light-Scribe DVD burner
produces high-quality
graphene stacks

4 Graphene-based strain sensor
displayed linear response during
multi-cycle operation, indicating
sensor longevity and precision

[138]

Graphene/paper Inkjet printing 125 1.25

4 Inkjet jet manufacturing
technology enables quick
fabrication directly on surface
and larger sensing area

4 Inkjet printing facilitates
customised printing conditions
and mixing of various
2D materials

4 Drop-casting 99 printed layers is
ideal for synthesising very
sensitive sensors, whereas 20 µm
is optimal for synthesising highly
sensitive sensors

[139]
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Table 5. Cont.

Composite Type Fabrication Method GF Maximum Strain (%) Description References

Graphene/rubber Template-induced
assembly 82.5 100

4 Electrical properties of
double-layered inter-connected
graphene network were
improved, and percolation
threshold was reduced

4 Very low percolation threshold of
0.3 vol% was obtained

4 Even at 100% strain, composite
showed proper stretchability for
300 cycles

[140]

Reduced graphene
oxide (rGO)/titanium

oxide composite
Spray coating 12–23 5

4 Linear strain response was
obtained with GF of 23 in range
2.25–5 wt.%, indicating optimal
percentage for highly
sensitive composite

[141]

Functionalised
graphene

nano-platelets/PDMS

Layer-by-layer
self-assembly 1037 2

4 Composite demonstrated high
sensitivity (GF) of 1037 in
2%-strain range

4 Marangoni effect aided rapid
scaling of graphene films at
liquid/air interface

[142]

Cotton
bandage/natural

rubber/GO

Flame
treatment/droplet

coating
416 7.5

4 Flexible strain-sensor composite
was developed using GO-woven
fabrics through cotton bandage
templating and was reduced
using ethanol flame

4 Rapid (20 ms) response
was measured

[143]

4.5. Carbon-Fibre-Based Self-Sensing Geosynthetics

Various carbon fibres (CFs) such as continuous carbon fibres, carbon short fibres,
carbon micro-fibres, and carbon nano-fibres (CNFs) are widely used as a conductive phase
in self-sensing geosynthetics. Indeed, CFs have also been braided or distributed in polymer
and fabric composites to develop self-sensing geosynthetics. Continuous carbon fibre
polymer composites are fabricated by combining various carbon fibre arrangements such
as textile or unidirectional knitted or woven tows with polymer resin under controlled
conditions [144].

These composites exhibit complex features including low density, high stiffness and
strength, high damping dispersion energy, strong impact and corrosion resistance, and
tuneable thermal expansion [145]. In addition, hybrid or multiple carbon and inorganic
fibre composites (e.g., aramid, polypropylene, and glass) have been developed to improve
the composite sensing capability and strength [146–148].

The composite structural element configurations determine the strain-sensing capa-
bility and attributes of continuous carbon fibre polymer composites [149–152]. The strain
sensitivity of continuous unidirectional carbon-fibre-reinforced epoxy composites has been
reported in the fibre direction. The tensile force reversibly decreases the longitudinal
electrical resistance, whereas strain increases the transverse electrical resistance because
changes in the fibre alignment change the electrical connections of continuous carbon
fibres. When a tensile load is applied to the composite, the fibres align more in the load-
ing direction, thereby potentially increasing the electrical connections and reducing the
resistance [152,153]. However, further increasing the tensile loading reduces the fibre
cross-sectional area and consequently increases the electrical resistance. Continuous carbon
fibre polymer composites could exhibit GFs ranging from −35.7 to −37.6 and from +34.2 to
+48.7 in the longitudinal and transverse directions, respectively. Consequently, continuous
carbon fibre polymer composites could be very useful for developing sensing applications
and self-sensing geosynthetic geomaterials and for building and maintaining civil infras-
tructure, particularly railway foundations. However, carbon fibre polymer composites
usually exhibit low ductility. Consequently, multiple or continuous carbon fibre/epoxy
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hybrid composites have been investigated with other materials to enhance the self-sensing
and mechanical properties [154,155]. The fibre characteristics, constituent fibre proportion,
and composite fibre organisation all impact the composite ductility and sensitivity.

Glass fibres, one of the most common fibres, have piqued the interest of researchers to
produce hybrid CF/GF polymer composites exhibiting improved ductility and sensitiv-
ity [156,157]. These composites exhibit an internal carbon fibre core externally covered by a
glass fibre bundle, as shown in Figure 16.
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Nanni et al. also reported proper sensing capability and piezoresistivity for this
composite under cyclic and monotonic tensile loading [156,158]. By increasing the CF
content, an alarm signal was achieved practically at the failure load (2.4% CF and 49%
GF). They also reported drastically increased electrical resistance at loads much lower than
the failure load when the CF content was reduced (48% GF and 0.2% CF; 48% GF and
0.6% CF) [156,158]. However, the hybrid CF/GF epoxy composites could not identify early
damage because the fractional changes in the electrical resistance were approximately 1%
at strains below 0.6%. Indeed, low strains could only be properly detected in CF/glass
fibre composites by computing the residual resistance under pre-stress conditions [159,160].
Braided composite rods (BCRs) are another continuous carbon fibre polymer for developing
smart geosynthetics and have exhibited excellent low-strain sensitivity [161–164]. In BCRs,
a CF and glass fibre mixture was treated with polymer resin and was axially over-braided
with polyester filaments. The freshly braided structures were subsequently cured to
manufacture the composite rods.

By adjusting the polyester filament braiding tension and velocity, a certain degree of
misalignment can be introduced to the axial CF, thereby changing the electrical contacts and,
as a result, markedly changing the low-strain electrical resistance. The BCR strain-sensing
capabilities were improved by reducing the composite CF content, and the maximum GF
of approximately 24 was obtained at a flexural strain of 0.5%. The BCR cross-section and
manufacturing process are illustrated in Figure 17.

Recent developments in manufacturing technologies have enabled functional and
complex polymer composites to be rapidly and cost-effectively produced. Fused deposition
modelling (FDM) is one of the most conventional manufacturing processes, which has
currently attracted the attention of many researchers owing to its potential applicability,
ease of use, and low cost [165,166]. Luan et al. used FDM-based 3D printing to develop a
continuous carbon fibre polymer composite and subsequently detect and recognise stress
and damage locations [167]. Figure 18 clearly shows a continuous carbon fibre tow (CFT)
grid and a thermoplastic (TP) matrix were automatically printed using a double-nozzle
FDM printer. In this smart composite, the location of the applied stress and the resulting
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strain were deduced according to the maximum fractional change in the CF tow electrical
resistance, as shown in Figure 18b.
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Non-polymeric continuous carbon fibre composites are also suitable for developing
self-sensing geosynthetics owing to their consolidation capabilities and increased interac-
tions. However, the lack of a polymer reinforcement increases the effects of moisture on
their sensing capability, thereby rendering this composite more prone to environmental
factors. Goldfeld et al. [168] developed a non-polymeric hybrid continuous carbon and
glass fibre fabric (Figure 19) for application to moisture and damage sensing. The fabric
produced an electromechanical sensing GF of approximately 1 and used the Wheatstone
bridge to detect a humid environment by fractional variations of approximately 10−5 in the
electrical resistance.

Sustainability 2023, 15, x FOR PEER REVIEW 23 of 45 
 

Non-polymeric continuous carbon fibre composites are also suitable for developing 
self-sensing geosynthetics owing to their consolidation capabilities and increased interac-
tions. However, the lack of a polymer reinforcement increases the effects of moisture on 
their sensing capability, thereby rendering this composite more prone to environmental 
factors. Goldfeld et al. [168] developed a non-polymeric hybrid continuous carbon and 
glass fibre fabric (Figure 19) for application to moisture and damage sensing. The fabric 
produced an electromechanical sensing GF of approximately 1 and used the Wheatstone 
bridge to detect a humid environment by fractional variations of approximately 10−5 in the 
electrical resistance. 

 
Figure 19. Schematic showing configuration of non-polymer-based continuous carbon-fibre-based 
textile. 

Currently, micro- and nano-CFs have attracted attention to enhance polymer compo-
nent sensitivity for application to self-sensing geosynthetics. Indeed, conductive nano- 
and micro-paths formed by carbon nano- and micro-fibres are sensitive to external factors 
including low stress, strain, deformation, humidity, and temperature. 

Zhang et al. [7] used 3D printing to develop an integrated piezoresistive geobelt 
wherein conductive acrylonitrile butadiene styrene (ABS) containing ⌀7 lm × ~10 lm long 
CF powder was directly embedded into non-conductive polylactic acid (PLA) to fabricate 
a conductive wire. The geobelt stress and deformation could be determined because the 
conductive wire resistance increased with decreasing wire cross-sectional area. The inte-
grated resistance geobelt eliminated sensor contact with external humidity, which could 
otherwise lead to sensor failure and erroneous test results. To increase the sensing effi-
ciency, the authors recommended that the wires be oriented in the tension stress direction. 
They also stated that although increasing the number of conductive wire layouts may 
somewhat reduce the self-sensing geobelt tensile strength, it considerably improved the 
changes in the electrical resistance rate under pressure or tension, which more precisely 
reflected the strain. Hence, the number of longitudinal conducting wires could be accord-
ingly increased with increasing geogrid width and size. 

Moreover, the authors also used a parabolic function to fit the relationship between 
the stress and the resistance at both ends of the grid. Based on the experimental results, 
the test ranges of the 3D-printed self-sensing geobelt were approximately 2.1–10% of the 
effective geobelt length. 

Wang et al. [169] dispersed 0.5, 1.0, 1.5, 2.0, and 3.0 wt.% CNFs in epoxy resin and 
then infused the composites into glass fibre fabric to produce CNF/glass-fibre-reinforced 
polymer laminates for application to geomembranes (Figure 20). The authors measured 
the fractional change in the electrical resistance under constant- and incremental-ampli-
tude cyclic and monotonic tensile loadings. 

Glass fibreCarbon fibre

Figure 19. Schematic showing configuration of non-polymer-based continuous carbon-fibre-based textile.

Currently, micro- and nano-CFs have attracted attention to enhance polymer com-
ponent sensitivity for application to self-sensing geosynthetics. Indeed, conductive nano-
and micro-paths formed by carbon nano- and micro-fibres are sensitive to external factors
including low stress, strain, deformation, humidity, and temperature.

Zhang et al. [7] used 3D printing to develop an integrated piezoresistive geobelt
wherein conductive acrylonitrile butadiene styrene (ABS) containing
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7 lm × ~10 lm long
CF powder was directly embedded into non-conductive polylactic acid (PLA) to fabricate
a conductive wire. The geobelt stress and deformation could be determined because
the conductive wire resistance increased with decreasing wire cross-sectional area. The
integrated resistance geobelt eliminated sensor contact with external humidity, which could
otherwise lead to sensor failure and erroneous test results. To increase the sensing efficiency,
the authors recommended that the wires be oriented in the tension stress direction. They
also stated that although increasing the number of conductive wire layouts may somewhat
reduce the self-sensing geobelt tensile strength, it considerably improved the changes in
the electrical resistance rate under pressure or tension, which more precisely reflected the
strain. Hence, the number of longitudinal conducting wires could be accordingly increased
with increasing geogrid width and size.

Moreover, the authors also used a parabolic function to fit the relationship between
the stress and the resistance at both ends of the grid. Based on the experimental results,
the test ranges of the 3D-printed self-sensing geobelt were approximately 2.1–10% of the
effective geobelt length.

Wang et al. [169] dispersed 0.5, 1.0, 1.5, 2.0, and 3.0 wt.% CNFs in epoxy resin and
then infused the composites into glass fibre fabric to produce CNF/glass-fibre-reinforced
polymer laminates for application to geomembranes (Figure 20). The authors measured the
fractional change in the electrical resistance under constant- and incremental-amplitude
cyclic and monotonic tensile loadings.

According to the classical power law, a percolation threshold of approximately 0.86 wt.%
was achieved using the optimal CNF concentration. Furthermore, proper piezoresistivity
was also achieved under monotonic tensile loading until the final failure. The authors cate-
gorised the fractional changes in the electrical resistivity according to different main phase
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damage mechanisms including matrix micro-cracking, transverse cracking, debonding,
longitudinal splitting, breakage, and fibre delamination.
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4.6. Intrinsically Conductive-Polymer-Based Geosynthetics

Intrinsically conductive polymers are π-conjugated systems, meaning they feature
alternating single and double bonds in their chemical structures [170–172]. The backbone
of these polymers is composed of sp2-hybridised carbon atoms. Consequently, one valence
electron resides in the pz orbital orthogonal to the three sigma bonds. Therefore, the valence
electrons are delocalised and exhibit high mobility. Indeed, in intrinsically conductive
polymers, this mobility is a charge transport mechanism. However, to enhance the polymer
conductivity and charge transfer, the structure must be disrupted by doping to either add
or remove an electron [173].

Doping changes polymer conductivity from insulating to metallic [174] by either
extracting electrons from the valence band highest occupied molecular orbital (HOMO)—
i.e., oxidation—or moving electrons to the conduction band lowest unoccupied molecular
orbital (LUMO)—i.e., reduction. To establish a positive molecular charge, the polymer
backbone can be treated with electron-deficient species. Owing to hole formation, the
polymer chain is converted to p-type, and electron removal from the main chain is known
as p-doping or oxidation [175]. Alternatively, to induce a negative molecular charge, the
polymer backbone can be improved with electron-rich species. Adding electrons is known
as reduction or n-doping [175], and the electrons convert the polymer chain to n-type.

Both n- and p-doping markedly boost conjugated polymer conductivity, which is
determined by the dopant characteristics and concentration and the doping time. Dopants
may include smaller cations and anions such as Na+, Cl−, and ClO−4 and large polymeric
species such as polystyrene and polyvinyl sulfonates. Owing to their high conductivities,
doped intrinsically conductive polymers are suitable for various smart geosynthetics and
electronics applications. However, their relatively high production cost should be consid-
ered. The intrinsically conductive polymer structure and charge transport mechanism due
to delocalised π electrons are illustrated in Figure 21.

Moreover, dopant properties considerably impact conductive polymer characteristics.
Large dopant molecules can change the polymer physical properties and surface topogra-
phy and increase the polymer density. Furthermore, large dopant molecules strongly attach
to conjugated polymers and are more difficult to leach than smaller dopant molecules,
which may easily leach. Therefore, small dopant molecules are suitable for applications
requiring rapid detachment and attachment [176]. Consequently, sensitivity to environ-
mental ionic species increases with decreasing dopant molecular size. Furthermore, the
dopant molecular size affects the doped polymer solubility. For example, with increasing
dopant chain length, polyaniline (PANI) solubility increases, thereby facilitating solution
processing [177]. However, increasing the dopant chain length by increasing the d-spacing
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and inter-chain separation reduces the polymer crystallinity. Moreover, the polymer con-
ductivity increased with increasing dopant concentration until saturation. Finally, because
doping is a reversible physical process, it can be followed by de-doping to revert to the
original polymer exhibiting all its original characteristics.
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In these polymers, temperature and conductivity are inextricably linked. In addition,
highly doped polymers are less vulnerable to temperature-induced conductivity changes
than less-doped polymers [178]. Reversible doping/de-doping and the polymer conduc-
tivity dependence on concentration, temperature, and dopant molecular size have all
been used to design sensitive components for sensing stress and various chemical species
and for electrochemical capacitors, electrochromic displays, energy devices, and smart
windows [170,179].

Poly 3,4-ethylenedioxythiophene (PEDOT) is an intrinsically conductive polymer that
has a wide range of applications [180]. Losaria et al. [181] developed a stretchable sensor
made of PEDOT dispersed in a thermoplastic polyurethane (TPU) host matrix and com-
pared the performances of FeCl3 and fluoroalkylsilane (FTS) dopants. Although increasing
the dopant concentration diminished the polymer elasticity, the plasticity mitigated the
FTS-induced polymer stiffening. Therefore, FTS was eventually chosen to fabricate very
stretchable (above 300%) and durable (more than 100 cycles) strain sensors exhibiting a
proper GF (approximately 10 at 100% strain). Lu et al. [182] used poly (2-acrylamido-2-
methyl-1-propane sulfonic acid (PAAMPSA), phytic acid (PA), and PANI to develop a
strain sensor laminate wherein PA serves as a cyclic protonic acid, PANI is an inherently
conductive polymer, and PAAMPSA is an ionic polyelectrolyte. In addition, PA reportedly
forms cationic complexes. Because of their suitable characteristics, PAAPMSA and PA were
employed as a PANI dopant and cross-linker, respectively.

The strain sensor components were fabricated using a soft, flexible membrane and
reportedly exhibited extremely high stretchability, bending, and longitudinal strain sen-
sitivity. Moreover, the strain sensor reportedly exhibited repeated self-healing owing to
electrostatic interactions and considerable hydrogen bonding in the polymer complex,
which also provided the exceptional stretchability. By constructing reduced (GO)- and
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PA-based nano-rod arrays on fabric substrates, Zheng et al. [183] developed a textile-based
flexible stress sensor exhibiting a linear response over a wide stress range (0.0005–40 kPa)
and pressures as low as 0.5 Pa. Similarly, nano-rods consecutively assembled on the textile
offered a GF of −78 when utilised as strain sensors. In addition, the sensitive components
exhibited remarkable cycling durability, with 1000 and 11,000 cycles reported for the strain
and pressure sensors, respectively.

4.7. Geosynthetic Production and Fabrication Processes

Owing to the increasing use of conductive micro- and nano-particles to produce self-
sensing geosynthetics and their polymer components, a suitable method of fabricating
smart geosynthetics must be developed.

4.7.1. In Situ Polymerisation

In in situ polymerisation—which is mostly used for carbon-based conductive fillers
such as graphene, CNTs, CB, and CNFs—particles and their derivatives are initially ab-
sorbed into a liquid monomer, and polymerisation is subsequently initiated using a suit-
able initiator such as radiation or heat [184–186]. Various nano-composites including
polyimide- [187], PA- [188], PVC- [189], and polyurethane-based [190] ones have been
produced using this method. Because of the considerable filler material interfacial in-
teraction and the increased interfacial compatibility, this approach disperses conductive
fillers and their derivatives well throughout the polymer matrix, thereby enabling equal
stress transfer and improving the overall performance. Furthermore, functional groups
provide a multitude of reactive sites that aid in modifying the polymer matrix or nano-
filler. However, including conductive fillers and their derivatives alters the polymerisation
rate, thereby influencing the end product molecular weight and complicating the process
management [191].

4.7.2. Solution Blending

In this method, the conductive filler and polymer matrix are first dissolved in the
solvent, and then external pressures such as ultrasonication and mechanical stirring inter-
calate polymer matrix chains into filler agglomerations, thereby enabling the conductive
filler to be uniformly dispersed throughout the polymer matrix. The solvent is then re-
moved to recover the conductive polymer nano-composite [192]. Epoxy [193], polystyrene,
PP [194], PA [195], PVC [196], and polyvinyl alcohol [197] are among the polymer matrices
generated through solution blending. The interfacial compatibility and interaction between
the polymer matrix and the filler can be considerably increased by grafting polymer seg-
ment chains or tiny molecules on the filler surface, thereby enabling the filler to be more
uniformly dispersed throughout the matrix [198]. Consequently, solvent clean-up is a key
concern, thereby rendering this process environmentally non-friendly, non-scalable, and
expensive [199].

4.7.3. Melt Blending

Extrusion, injection, and compression mouldings and other technologies are used to
prepare conductive polymer nano-composites in melted polymer matrixes. Because of
the high polymer viscosity used in this approach, conductive fillers and their derivatives
clump and are difficult to exfoliate under severe shearing forces. Based on the investiga-
tions carried out for in situ polymerisation and solution blending, melt blending results in
poor filler dispersion in the polymer matrix [190,200]. However, because melt blending is
highly efficient and low cost, it is preferable for large-scale production, and several con-
ductive polymer nano-composites including polyvinylidene fluoride [201], polyethylene
oxide [202], polyethylene terephthalate [203], and ultra-high-molecular-weight polyethy-
lene [204] have been prepared using this technique.
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4.7.4. Dip (Solution) Coating

This is one of the most widely used methods of preparing carbon nano-materials
(CNMs)/conductive fabrics and involves preparing a CNM (usually graphene) suspen-
sion in deionised water or a suitable solvent and then dipping a fabric into the solution
(Figure 22). For instance, Dai et al. [205] used dip coating to fabricate composites from
coated fabrics to produce in situ area sensors.

Tzounis et al. [206] employed customised blade coating, which is modified dip coating,
to deposit a CNT solution onto a glass fabric to manufacture CNT/glass fabric conductive
piezoresistive reinforcements. The contact between the CNMs and the fabric surface is
critical because the interfacial strength ultimately influences the composite characteristics
and sensor performance [207]. Tzounis et al. [208,209] improved the CNT and glass fibre
interfacial strength by modifying their surfaces before dip coating. These approaches can
improve the interaction between CNMs and fabrics without requiring additional treatment.
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system.

4.7.5. Spray Coating

Because of its relative convenience and scalability, spray coating is also a very conve-
nient method of depositing CNMs directly onto reinforcements [211–213]. Spray coating
was utilised by Rodriguez et al. [214–216] to coat CNTs and CNT/GO hybrids onto glass
textiles and CF/epoxy pre-pregs. Spray coating was also employed by Gnidakouong
et al. [217], Pinto et al. [211], and Zhang et al. [218,219] to attach CNTs to fabrics or pre-
pregs. Figure 23 depicts a spray coating schematic. In this technique, because a uniform
coating is prepared by manually spraying a conductive filler solution onto a fabric, achiev-
ing repeatable piezoresistivity in the final composite can be challenging. Luo et al. [220,221]
continuously spray-coated a single-filament glass fibre instead of coating the entire fabric
(Figure 23b). During vacuum-assisted resin transfer moulding (VARTM), the coated-fibre-
based sensor (dubbed “FibSen”) was sandwiched between pre-preg layers to fabricate an in
situ composite sensor. If the entire fibre tow is coated, it can also be braided into the fabric.
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4.7.6. Screen Printing

In the screen printing method, a mesh is used to transfer ink (or paste), with the
exception of areas made impermeable to the ink by a blocking stencil. The screen printing
method is also known as serigraph printing and serigraphy. The open mesh holes on the
screen are filled with ink using a blade or squeegee motion, and the screen briefly touches
the substrate along a line of contact when the motion is reversed. The different electrical
circuits can be printed on the surface of the host bed such as fabrics and polymer films.
For a design that requires a greater and more delicate level of detail, a finer and smaller
aperture for the mesh would be adopted. The mesh might be composed of a synthetic
polymer, including nylon. The mesh must be installed on a frame and put under tension to
function properly. Before printing, the pre-press procedure must be carried out on the frame
and screen. Presses for screen printing typically come in three different configurations:
flatbed, cylinder, and rotary. Rotary, flatbed, and cylinder printing are three common types
of screen printing presses. Generally, different unsaturated polymeric substrates including
polythiophene, polypyrrole, polyaniline, polyacetylene, polyurethane, and polystyrene
containing different conductive fillers specifically CNMs are used as conductive inks or
pastes [221–227]. A non-conductive polymer is used on the surface of the host bed as
an interface layer to improve the interaction and surface condition before the printing
process [221,228–230]. The printing of complex circuits with high delicacy, simplicity of
the process, economy, and diversity of the host platform are the main advantages of this
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method. However, low control of layer thickness, sensitivity to humidity, and relatively
low durability are among the limitations of using this method.

4.7.7. Electrophoretic Deposition

Electrophoretic deposition (EPD) involves moving and depositing charged conductive
filler particles onto electrodes under electric fields (Figure 24). This approach has particu-
larly been used to coat fabrics with CNMs such as CNTs and graphene [231–234]. Although
EPD is intended to improve the uniformity of conductive filler coatings on fibre surfaces, it
requires more time than dip or spray coating. Therefore, the application of EPD to large
structures may be limited.
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4.7.8. Chemical Vapour Deposition

Chemical vapour deposition (CVD) is a typical process for depositing a thin layer
of material onto a surface. In CVD, CNMs grow directly on the host matrix surface.
Unlike dip and spray coatings, which can be performed using liquids at room temperature,
CVD requires relatively severe conditions to develop and deposit CNMs onto matrix
surfaces [231,235–237]. Felisberto et al. [236] used CVD to develop CNTs on CF surfaces and
improve interfacial adhesion between CFs and the epoxy matrix in laminated composites.
In addition, the authors initially used dual direct current (DC) sputtering equipment to
coat catalytic nickel nano-particles (NPs) onto CFs at room temperature. The re-designed
CVD apparatus grew CNTs deposited on the CF surfaces. He et al. [238] also used CVD
to grow CNTs on glass fibre surfaces and produce self-sensing CNT/glass fibre/epoxy
composite fabrics.

5. Smart Geosynthetics Limitations

As mentioned, the concept of “smart geosynthetics” refers to the integration of sen-
sors and monitoring technologies within geosynthetic materials used in civil engineering
applications. While it offers several advantages in terms of real-time data collection and
remote monitoring, there are limitations to consider, particularly in terms of durability and
economic perspectives when compared with traditional monitoring techniques. Here are
some limitations:

Durability is one limitation: Smart geosynthetics rely on the integration of electronic
components, such as sensors and communication devices, into the geosynthetic mate-
rial [239]. These electronic components may be prone to environmental factors, such as
moisture, UV radiation, temperature variations, and mechanical stresses. Over time, these
factors can affect the performance and durability of the electronic components, leading to
potential failures or inaccurate measurements [239].

Longevity is another limitation: Geosynthetics are often used in infrastructure projects
with long lifespans, such as roads, embankments, and retaining walls [5,6]. However,
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the electronic components integrated into smart geosynthetics may have shorter lifespans
compared with the geosynthetic material itself. This can result in the need for frequent replace-
ments or maintenance of the smart geosynthetics, which can be costly and time-consuming.

From an economic perspective, smart geosynthetics are generally more expensive than
traditional geosynthetics due to the additional cost of integrating sensors and monitoring
technologies [239]. The installation and maintenance of the necessary equipment for data
collection and analysis also add to the overall cost. In some cases, the cost of implementing
smart geosynthetics may outweigh the benefits gained from real-time monitoring, especially
for projects with limited budgets or smaller-scale applications.

Another limiting factor is complexity: Implementing smart geosynthetics requires
expertise in both geotechnical engineering and sensor technology. The design, installation,
and calibration of the sensors and monitoring systems require specialised knowledge and
skills. This complexity may increase the overall project timeline and the need for highly
trained personnel, potentially leading to higher costs [239].

Compatibility is a limitation: Smart geosynthetics may not be compatible with exist-
ing infrastructure or traditional monitoring techniques. Retrofitting existing structures
with smart geosynthetics can be challenging and may require significant modifications or
adaptations. In some cases, it may be more practical and cost-effective to continue using
traditional monitoring techniques or explore alternative solutions.

It is important to evaluate the specific project requirements and consider these lim-
itations when deciding whether to implement smart geosynthetics or rely on traditional
monitoring techniques. Each approach has its own advantages and disadvantages, and the
choice should be based on a comprehensive analysis of the project’s needs, budget, and
long-term goals.

6. Geosynthetic Applications

Smart geosynthetics can contribute to sustainable infrastructure development in
several ways:

Early detection of issues: Smart geosynthetics integrate sensors that can monitor
various parameters such as strain, deformation, temperature, and moisture content [118].
By continuously monitoring these factors, smart geosynthetics can detect early signs of
potential problems, such as slope instability, soil erosion, or excessive settlement. Timely
detection allows for prompt intervention and remediation, preventing more significant
damage and reducing the need for costly repairs or replacements.

Improved maintenance and asset management: Real-time data provided by smart
geosynthetics enable proactive maintenance and asset management [118,239]. By moni-
toring the condition of geosynthetic materials and their surrounding environment, infras-
tructure managers can make informed decisions about maintenance schedules, prioritise
resources, and allocate funds more efficiently. This helps in optimising the lifespan of the
infrastructure, reducing downtime, and maximising its performance.

Enhanced safety: Smart geosynthetics contribute to safer infrastructure by providing
continuous monitoring and early warning systems [113]. For example, in geotechnical appli-
cations such as retaining walls or embankments, sensors embedded in smart geosynthetics
can detect signs of structural instability, allowing for timely evacuation or intervention to
prevent accidents or failures. This improves the overall safety for both infrastructure users
and nearby communities.

Resource efficiency: By enabling real-time monitoring, smart geosynthetics can help
optimise resource usage [239]. For instance, by monitoring soil moisture content, irriga-
tion systems in green infrastructure projects can be automated to provide precise water
requirements, reducing water waste and promoting efficient water management prac-
tices. Similarly, real-time data on temperature and humidity can aid in optimising energy
consumption in geosynthetically lined buildings or landfills.

Data-driven decision-making: Smart geosynthetics generate a wealth of data that
can be analysed and utilised for data-driven decision-making. By integrating these data
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with advanced analytics and machine learning algorithms, infrastructure managers can
gain valuable insights into the performance of geosynthetic materials, geotechnical condi-
tions, and environmental factors [239]. This information can guide design improvements,
inform future infrastructure projects, and support evidence-based decision-making for
sustainable development.

Reduced environmental impact: Smart geosynthetics can contribute to reduced envi-
ronmental impact in multiple ways. By detecting and addressing issues early on, they help
minimise the potential for environmental hazards and ecological damage. Additionally,
by optimising maintenance and asset management, they reduce the need for extensive
excavation or disruptive repairs, minimising disturbance to natural habitats. Furthermore,
by facilitating resource efficiency, they support the sustainable use of water, energy, and
other resources, reducing the overall environmental footprint.

By leveraging the capabilities of smart geosynthetics, sustainable infrastructure devel-
opment can be achieved through improved safety, enhanced resource efficiency, proactive
maintenance, and informed decision-making. However, it is crucial to consider the limita-
tions and challenges associated with implementing and maintaining smart geosynthetics
to ensure their successful integration into sustainable infrastructure projects.

Because of their numerous advantages, smart geosynthetics exhibit a wide range of
applications other than geotechnical ones and are used in various fields. A summary of
different smart geosynthetics used in various applications is presented in Table 6. The
many advantages of using smart geosynthetics in monitoring applications include issuing
warnings about imminent infrastructural damage or failure, controlling infrastructure
construction, providing the data required to aid in selecting methods of remediating
infrastructural damage or problem-solving techniques to manage urban development
and transportation infrastructure in smart cities, and elucidating the design of unknown
structures by monitoring the behaviour of existing infrastructure in the field during the
infrastructure service life.

Table 6. Summary of different smart geosynthetic applications.

Application Type of Geosynthetic Sensing Technique Coverage Type References

Seismic reinforcement
and monitoring of
masonry buildings

Textiles (including
multi-functional fibre-

reinforced plastics)
Embedded sensors

Unidirectional strips
and full coverage on

external surfaces
[49,240–242]

Strengthening and
monitoring buildings

Grids (including
multi-functional fibre-

reinforced plastics)
Embedded sensors Full coverage on

external surfaces [49]

Reinforcement,
monitoring, and
management of

earthquake-vulnerable
civil infrastructure

Geotextiles (including
glass fibres, CFs, and

polymer resins)
FBG and DOFS Full coverage [49,243]

Railway embankment
reinforcement

and monitoring
Geotextiles OF sensors Full coverage [244]

Monitoring of dykes
and coastal

protection structures
Geotextiles Embedded sensors Full coverage [49]

Landslides Tubular braids and
epoxy resins DOFS Distributed boreholes [245]
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Table 6. Cont.

Application Type of Geosynthetic Sensing Technique Coverage Type References

Tunnel walls and vaults Geogrids and
geotextiles BOTDR, BOTDS Full coverage [61,246–248]

Pipelines and piles Geogrids and
geotextiles BOTDR, BOTDS, FBG Full coverage [249–253]

Soil nails and anchors Tubular braids and
epoxy resins BOTDR, BOTDS Full coverage [50,254,255]

7. Future Trends and Challenges

Despite many studies conducted on materials technologies and production methods,
no effective techniques for developing applicable smart geosynthetics are available yet. Al-
though recent advances in strain gauges, fibre optics, nano-materials, conductive polymers,
and self-sensing geosynthetics promise to provide appropriate solutions to developing
smart geosynthetics, considerable obstacles remain to applying smart geosynthetics to
continuously, feasibly, and reliably monitor and reinforce infrastructure in real time, some
of which are outlined as follows:

• Because soil contains corrosive organic, inorganic, and chemical substances and be-
cause of naturally destructive climate cycles, smart geosynthetics should be designed
and manufactured such that these factors do not interfere with monitoring systems
and structural reinforcements.

• Smart geosynthetics should be designed and produced such that they exhibit appro-
priate inter-twining between the host matrix and the sensing elements so that the
strain and stress applied to the geosynthetic components are properly reflected by the
sensing system.

• Owing to the widespread application of geosynthetics in many large projects, geosyn-
thetics should be produced as cost-effectively and simply as possible so that they are
easily industrially scalable.

• Smart geosynthetics should be simply designed to minimise the need for support and
complementary systems including wires, electrodes, capacitors, power supplies, data
acquisition, analysers, receivers, and transmitters to prevent damage during storage,
transport, implementation, and the device service life. These components also cause
sectional discontinuities and increase installation and maintenance costs.

• To electrically insulate smart geosynthetic products against the surrounding envi-
ronment while minimising the installation damage, a durable, non-conductive, UV-
protective shield should be developed to protect smart geosynthetics.

• When nano-particles, particularly CNMs, are used to develop smart geosynthetic
materials, the nano-particles should be well dispersed throughout the polymer matrix
through a feasible and compatible method to prevent the nano-particles from possibly
adversely affecting the mechanical and microstructural properties and the durability
of the host matrix.

• Owing to the widespread application of geosynthetics to infrastructure, especially in
nature, environmental issues must be considered in all geosynthetic production aspects.

• To mitigate adverse weather conditions such as moisture and water infiltration, temper-
ature variations, UV radiation, and wind and mechanical stresses on smart geosynthet-
ics, appropriate measures including proper design and material selection, protective
measures, regular inspection and maintenance, and calibration and testing processes
should be considered.

• While smart geosynthetics offer various benefits, they can also present certain envi-
ronmental issues such as e-waste generation, material recycling and disposal, energy
consumption, and greenhouse gas emissions during manufacturing processes. To
address these environmental issues, the following measures can be considered:
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# Promote extended producer responsibility (EPR) programs to ensure responsible
management of electronic waste generated from smart geosynthetics.

# Encourage research and development to improve the recyclability and biodegradabil-
ity of geosynthetic materials.

# Implement life cycle assessment (LCA) and eco-design principles to minimise the
environmental impact of smart geosynthetics from the design stage.

# Increase awareness and education among stakeholders regarding the proper disposal
and recycling options for smart geosynthetics.

# Support sustainable manufacturing practices, including the use of renewable energy
sources and eco-friendly materials.

# Implement environmentally responsible installation practices, such as minimising
ground disturbance and employing erosion control measures.

8. Concluding Remarks

Geosynthetics are manufactured synthetic substances (such as hydrocarbon chains or
polymers) employed in a wide range of engineering applications. Various factors such as
inherent variability, material aging, over-loading, prolonged use and duty cycles, environ-
mental corrosion, and lack of adequate inspection and maintenance weaken the soil mass,
enable micro-cracks to extend over time, and lead to sudden catastrophic collapse. How-
ever, timely monitoring and proper maintenance of the soil mass can markedly improve
the infrastructure service life and prevent sudden failures. Multi-functional geosynthetics
can be used for applications such as extracting and transmitting information about the
stress, strain, deformation, damage, and temperature of the systems into which they are
incorporated in addition to performing their traditional roles. This paper reviews a wide
range of technologies, manufacturing processes, materials, and methods that have been
used to develop smart geosynthetics to date. The various applications of multi-functional
geosynthetics and the future challenges have also been discussed to pave the way for
developing applicable smart geosynthetics.

This review demonstrates that self-sensing geosynthetic technology could lead to
the development of a more economical and reliable alternative to conventional smart
geosynthetics (e.g., sensor-embedded and OF-encapsulated geosynthetics). A summary
of the limitations and advantages of different smart geosynthetic technologies developed
for infrastructural monitoring is presented in Table 7. Self-sensing geosynthetics technol-
ogy is more cost-effective owing to the lack of complex and expensive analyser and data
acquisition system requirements, which are usually used for other conventional smart
geosynthetics and instrumentations. Self-sensing geosynthetics may also improve the pre-
cision of measured parameters such as strain, stress, and deformation. In-isolation tensile
tests are commonly used to calibrate strain gauges or OF-encapsulated geosynthetics. How-
ever, interlocking impacts and soil confining pressure could cause considerable inaccuracies
in these parameters and, subsequently, in strains measured using geosynthetics in the field.
Furthermore, strain gauges and OF sensors encapsulated in the geosynthetic layer usually
form local “hard spots” that cause global tensile strains to be under-registered, thereby
potentially rendering the detection of impending infrastructure failures fruitless.

Table 7. Summary of limitations and advantages of different smart geosynthetic technologies for
application to infrastructural monitoring.

Technology Limitations Advantages

Strain-gauge-integrated geosynthetics

Measurement frequency, bending diameter,
measurement resolution, point strain

measurements, high cost, temperature and
humidity sensitivity, lower reliability and stability

in highly explosive monitoring environments,
inappropriate for long-term monitoring, requires
expensive complementary devices and systems,

calibration required

Easy installation, compact size, lightweight,
and simple connection and handling
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Table 7. Cont.

Technology Limitations Advantages

OF-encapsulated geosynthetics

Measurement frequency, pre-tension required, loop
optical fibre measurement, bending diameter,

measurement resolution, point strain
measurements, high cost, complex encapsulation

methods, requires sophisticated encapsulation,
temperature and humidity sensitivity, lower
reliability and stability in highly explosive

monitoring environments, inappropriate for
long-term monitoring, requires expensive

complementary devices and systems, calibration
required, reduced geosynthetic resistance

Compact size, no electromagnetic interference,
lightweight, simple connection and handling,

multi-plex properties, real-time dynamic
monitoring, small size, single-end

measurement

Self-sensing geosynthetics Costs of producing and using nano-materials,
temperature sensitivity

High measurement resolution, integrated
strain measurements, no magnetic interference,

no humidity sensitivity, easy installation,
long-term dynamic real-time monitoring, high

precision, high reliability and stability in
highly explosive monitoring environments,

simple production and installation, no
calibration required, lightweight, multi-plex

properties, wireless monitoring, wide
measurement range, long-distance monitoring,

high robustness and elasticity, incremental
geosynthetic resistance

Self-sensing geosynthetics avoid these limitations by integrating self-sensing func-
tionality into the host polymer matrix and products and could be a convenient solution to
developing long-term, reliable, real-time, and feasible infrastructure monitoring systems.
However, self-sensing geosynthetics development technology remains in its infancy and
must overcome these challenges.
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Abbreviations

ABS Acrylonitrile butadiene styrene
ASTM American Society for Testing and Materials
BCR Braided composite rods
BOTDA Brillouin optical time domain
BOTDR Brillouin optical time domain analysis
CB Carbon black
CF Carbon fibre
CFT Carbon fibre tow
CNF Carbon nano-fibre
CNM Carbon nano-material
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CNT Carbon nano-tube
Cu–Ni Copper–nickel
CVD Chemical vapour deposition
DOFS Distributed optical fibre sensor
EPD Electrophoretic deposition
FBG Fibre Bragg grating
FDM Fused-deposition modelling
FRP Fibre-reinforced polymer
HDPE High-density polyethylene
HOMO Highest occupied molecular orbital
LDPE Low-density polyethylene
LUMO Lowest unoccupied molecular orbital
MWCNT Multi-wall carbon nano-tube
NP Nickel nano-particle
OF Optical fibre
OSA Optical spectrum analyser
PA Phytic acid
PAAMPSA Poly 2-acrylamido-2-methyl-1-propanesulfonic acid
PANI Polyaniline
PDMS Poly dimethyl siloxane
PEDOT Poly 3,4-ethylenedioxythiophene
PLA Polylactic acid
PP Polypropylene
PVC Polyvinyl chloride
PVP Polyvinylpyrrolidone
SHM Structural health monitoring
SWCNT Single-wall carbon nano-tube
TP Thermoplastic matrix
TPU Thermoplastic polyurethane
VARTM Vacuum-assisted resin transfer moulding
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