
University of Minho
School of Engineering

Gilberto Rui Nogueira Cunha

Quantum Bayesian Reinforcement Learning

january 2023





University of Minho
School of Engineering

Gilberto Rui Nogueira Cunha

Quantum Bayesian Reinforcement Learning

Masters Dissertation
Master’s in Engineering Physics

Dissertation supervised by
Luís Barbosa
André Sequeira
Michael Oliveira

january 2023



Copyright and Terms of Use for Third Party Work

This dissertation reports on academic work that can be used by third parties as long as the internationally

accepted standards and good practices are respected concerning copyright and related rights.

This work can thereafter be used under the terms established in the license below.

Readers needing authorization conditions not provided for in the indicated licensing should contact the

author through the RepositóriUM of the University of Minho.

License granted to users of this work:

CC BY

https://creativecommons.org/licenses/by/4.0/

i

https://creativecommons.org/licenses/by/4.0/


Acknowledgements

This dissertation is a mark in my life, it represents the finish line of my MSc degree and possibly the end

of my academic path. Even so, I do believe that these years have not been about reaching this point, as

much as they were about the journey itself. These have truthfully been some of the best years of my life,

and I would like to take a moment to thank the people that decided to spend them alongside me, in one

way or another.

First and foremost, I would like to thank my family. Not all moments of these last years were sunshine

and rainbows, and I always could count on you to help me get back up. I am especially grateful to my

father. You have gone above and beyond to take good care of me. Thank you for looking after me.

To all of my friends, both those I kept from Fafe and those I made in Braga, thank you for all the fond

memories. It has been the most fun of journeys and I know some of you will stick with me for life. You

widened my horizons and made me realize there is more to life than school and work, and that balance is

key in everything. Thank you for helping me live a happier and healthier life.

To my supervisor, professor Luís Barbosa, I thank you for giving me the liberty to change the direction

of this thesis and aiding me in attending my first conferences. I am especially grateful to my co-supervisors,

André Sequeira and Michael Oliveira. It has been wonderful both working and getting to know you better. I

am extremely grateful for all of the amount of time you have dedicated to making this work more complete

and refined, and also for helping me enjoy the process. Thank you for helping me achieve my academic

goals.

Finally, I would like to thank my mother. You were the most wonderful person I have ever met, the one

who inspired me to reach greater heights and strive to be the best version of myself. Thank you for having

been the best role model I could have ever asked for. I hope I have made you proud.

ii



Statement of Integrity

I hereby declare having conducted this academic work with integrity.

I confirm that I have not used plagiarism or any form of undue use of information or falsification of results

along the process leading to its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the University of Minho.

University of Minho, Braga, january 2023

Gilberto Rui Nogueira Cunha

iii



Abstract

Reinforcement learning has had many recent achievements and is becoming increasingly more relevant

in the scientific community. As such, this work uses quantum computing to find potential advantages over

classical reinforcement learning algorithms, using Bayesian networks to model the considered decision-

making environments. For this purpose, this work makes use of quantum rejection sampling, a quantum

approximate inference algorithm for Bayesian networks proposed by Low et al. [2014] with a quadratic

speedup over its classical counterpart for sparse networks. It is shown that this algorithm can only provide

quantum speedups for partially observable environments, and a quantum-classical hybrid lookahead al-

gorithm is presented to solve these kinds of problems. Moreover, this work also includes both sample and

computational complexity analysis of both this quantum lookahead algorithm and its classical alternative.

While the sample complexity is shown to be identical for both algorithms, the quantum approach provides

up to a quadratic speedup in computational complexity. Finally, the potential advantages of this new algo-

rithm are experimentally tested in different small experiments. The results show that this speedup can be

leveraged either to improve the rational decision-making skills of agents or to reduce their decision-making

time due to the reduction in computational complexity.

Keywords reinforcement learning, Bayesian networks, quantum computing, quantum decision-making.
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Resumo

A aprendizagem por reforço tem recentemente alcançado muito sucesso e a tornar-se cada vez mais

relevante na comunidade científica. Este trabalho tira proveito da computação quântica para encontrar

potenciais vantagens do seu uso comparativamente a algoritmos clássicos de aprendizagem de reforço.

Nesta procura por vantagens, são utilizadas redes Bayesianas para modelar os ambientes de tomada

de decisão considerados. Para este propósito, é utilizado o algoritmo de quantum rejection sampling,

um algoritmo para inferência aproximada em redes Bayesianas proposto por Low et al. [2014] com um

speedup quadrático comparativamente ao equivalente clássico para redes esparsas. É mostrado que este

algoritmo quântico de inferência apenas tem vantagem na sua aplicação a ambientes parcialmente ob-

serváveis, e é apresentado um algoritmo híbrido clássico-quântico de lookahead para resolver este tipo de

problemas. Para além disto, é também incluída uma análise da complexidade de amostragem e complex-

idade computacional de ambos os algoritmos. Enquanto a complexidade de amostragem é idêntica para

as duas abordagens, o algoritmo quântico apresenta um speedup na complexidade computacional que é

quadrático no melhor dos casos. Por fim, as potenciais vantagens deste novo algoritmo são testadas em

experiências de pequena dimensão. Os resultados mostram que este speedup pode ser utilizado tanto

para melhorar a capacidade de tomada de decisão de agentes como para diminuir o tempo de tomada

de decisão dos mesmos devido à redução da complexidade computacional.

Palavras-chave aprendizagem por reforço, redes Bayesianas, computação quântica, tomada de de-

cisão quântica
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Chapter 1

Introduction

1.1 Context

In today’s world, technology can be seen almost anywhere. It has become an instrumental part of how

we communicate, perform transactions, work and entertain ourselves. All of this was made possible

due to the invention of the computer, a digital device that performs arithmetic and logic as its basic

operations. These operations are not special in the sense that only computers can do them, as we all

perform simple arithmetic in our everyday lives. In fact, the term ”computer” was used to refer to people

who performed calculations by hand. One big difference between computers and humans when carrying

out these calculations is that computers can do it much, much faster than any human ever could1. Of

course, computers have greatly evolved over time, with one of the major turning points being the transistor:

an electronic component used as a building block of computer designs, that allowed them to be made

more compact, more efficient and more powerful. Being more and more refined and compactified since its

conception, the number of transistors in a processor approximately doubled every two years, as according

to the empirical Moore’s law Schaller [1997]. However, it seems that Moore’s law is slowing down, and

possibly coming to a halt in the near future. As the refinement of the transistor seems to be reaching a

point of diminishing returns, a better option for scaling the power of computers in the long term becomes

increasingly more relevant.

During the 20th century, many extraordinary physicists, such as Albert Einstein, Werner Heisenberg,

Erwin Schrödinger and Paul Dirac, developed a new theory of Physics: the theory of quantum mechanics.

This theory proved time and time again to be one of the most precise scientific theories ever conceived, and

paved the way for a number of scientific breakthroughs on the transistor, semiconductors and magnetic

resonance imaging. As it became more and more aparent that quantum mechanics provided a better

explanation of the universe, especially on the smallest of scales, the idea of simulating quantum systems

1 Just to prove this point, most modern day laptops can perform around a thousand million of logics operations in a single second.
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seemed very appealing, as this could lead to incredible developments in chemistry and medicine. One man

in particular, Richard Feynman, who also played a big role in the development of quantum theory, found

an interest in this idea of simulating quantum systems. In 1982, he published a study Feynman [1982]

pointing out that simulating quantum systems by classical computers required an exponential overhead in

both the size of the system and the simulation time, meaning that these computers were very inefficient

at performing these kinds of simulations. In the same study, he also pointed out something that started a

entire new school of computation: the possibility of efficiently simulating a quantum system using another

quantum system. More specifically, simulating a quantum system on a quantum computer, a device that

operates on quantum information according to the laws of quantum mechanics. Naturally, back then,

the concept of a quantum computer was still a vague idea, but since then, they have been formalized,

built, and are even theorized to be more efficient than classical computers for a variety of computational

processes. For the computational processes where quantum computers seem to be advantageous, they

could be the solution to the halting of Moore’s law and the possible stagnation of classical computation,

and hence have been getting a lot of attention in the scientific community.

An interesting application of computing devices that has gained a lot of traction in recent years is

the field of artificial intelligence (AI). This field of computer science is concerned with using computers

to develop intelligent behavior, such as automating the process of rational decision making. It leverages

many mathematical fields as its foundations, among which is probability theory, a mathematical theory

concerned with the formalization of probabilities. One of the earliest examples of the use of probability

theory in AI is the use of Bayesian networks in expert systems Wiegerinck et al. [2010]. Bayesian networks

are models that use Bayesian probabilities to represent and reason about probabilistic systems in an easily

interpretable graphical manner and are especially useful for dealing with uncertainty. This makes Bayesian

networks a powerful tools, useful in a wide variety of domains, such as medical diagnosis Cruz-Ramirez

et al. [2007], risk analysis Weber et al. [2012] or model maintenance systems Nannapaneni et al. [2016].

Recently, machine learning (ML), a data-driven approach for AI, has become increasingly popular.

Systems developed with ML principles learn patterns on a set of data and are later used to make predic-

tions. This is a very different paradigm to anything previously seen, as the systems do not need to be

programmed to follow specific rules to solve a problem, but instead learn by themselves from the provided

data. One particular subfield of ML, called reinforcement learning (RL), uses this data-driven approach to

learn rational decision making in order to reach a predefined goal. It has had a number of recent notable

achievements: beating the best human players of Go Silver et al. [2016], solving the protein folding prob-

lem Jumper et al. [2021] and very recently finding efficient algorithms for matrix multiplication Fawzi et al.
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[2022].

This dissertation encompasses quantum computing, Bayesian networks and reinforcement learning

and studies their intersection. More specifically, its main goal is to find if there are any advantages in using

quantum computing for solving reinforcement learning problems using Bayesian networks.

1.2 Motivation

Learning and artificial intelligence have been among themost important developments in computer science

of the twentieth century. There have been a number of advancements, allowing for models to generate

images, stories and even programs from text, high accuracy text to speech applications, translation, rec-

ommender systems and the list goes on. These systems are somewhat intelligent, in the sense that they

are able to accurately perform these tasks, sometimes even better than human can. Still, there has been

a search for a higher form of intelligence, a general intelligence, that can not only learn patterns but un-

derstand concepts and apply them to solve a multitude of tasks without any supervision. This notion of

intelligence seems to be far off into the future, and more research has to be made in order to improve

current methods and create better ones, to improve the intelligent systems of the present day.

One of the possibilities for improving intelligent systems is quantum computing, as it is a very recent

field of computation, with few works done on its intersection with artificial intelligence. Quantum computing

is theorized to be more efficient than classical computing for certain problems, although it is known to

not solve any problems that are unsolvable on classical computers. Naturally, it is very much possible, as

some studies already show, that its advantages also apply to rationally solving decision making problems.

Bayesian networks are also very relevant tools for modeling uncertainty in a multitude of different

systems, and the use of Bayesian statistics is of utmost importance to artificial intelligence. For intelligent

decision making, it is crucial to be able to evaluate the likelihood of different outcomes and to leverage

that uncertainty in order to ponder across the different decisions that can be taken. Therefore, Bayesian

networks present themselves as models that can be very useful for rational decision making applications.

In summary, Bayesian networks are merged with reinforcement learning for their easy interpretability

and its capacity for dealing with uncertainty. Quantum computing is incorporated in this work in order to

try to amplify the capabilities of the combination of reinforcement learning and Bayesian networks. More

importantly, these topics are all extremely interesting from my own point of view, and the choice of this

dissertation topic is deliberate in both its usefulness and in an attempt to fulfill my own curiosity for learning

more about intelligent systems and Bayesian statistics.
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1.3 Contributions

The first contribution of this work is the conception of a quantum classical hybrid lookahead algorithm

for solving partially observable Markov decision processes. This entails the composition of a classical

lookahead algorithm with quantum sampling subroutines. Mathematical proofs for the correct functioning

of the quantum circuits responsible for the sampling subroutines are also provided.

In order to compare the classical and quantum classical versions of the lookahead algorithm, a detailed

derivation and theoretical analysis of both the sample and computational complexity of both of these

algorithms is provided. It is found in this analysis that the quantum classical variant indeed provides a

speedup of up to quadratic time complexity over its classical counterpart.

Finally, the two lookahead algorithms are also compared in experimental terms based on two different

studies. The first study compares the performance of the classical lookahead and the quantum classi-

cal lookahead with an increased number of samples, proportional to its speedup in complexity, across

different experiments. The goal of this study is to verify whether the speedup in computational complex-

ity of the quantum variant can also lead to better decision making agents. The second study compares

both algorithm’s execution times to verify the derived computational complexity speedup for the quantum

algorithm.

Some of the contributions of this work were accepted as contributed talks at two conferences:

1. QIP22 (Quantum Information and Probability: from Foundations to Engineering), presented at Lin-

naeus University in Växjö, Sweden, 15 June 2022.

2. WADT22 (26th International Workshop on Algebraic Development Techniques 2022), presented in

Aveiro, 28 June 2022.

1.4 Outline

This dissertation has the aim of studying Bayesian networks, reinforcement learning and quantum com-

puting and their intersection. Bayesian networks’ are presented in Chapter 2 as a powerful tool for repre-

senting probability distributions, mainly for two reasons: they are a memory compact way of representing

these distributions (by making use of conditional probability tables) and are also easily interpretable, since

Bayesian networks are graphical models. As there is usually a trade-off between space and time complex-

ity, despite the memory compactness of Bayesian networks, they require the use of inference algorithms to

extract probability distributions from them. Among these algorithms are exact algorithms and approximate

5



ones, the approximate algorithms being less precise but having a much more reasonable time complexity,

hence being preferred in the context of this dissertation. Finally, to introduce both time dynamics and

decision making into these structures, both dynamic Bayesian networks and dynamic decision networks,

extensions of regular Bayesian networks, are introduced at the end of this Chapter.

Chapter 3 details how reinforcement learning is a relevant approach to rational decision making,

formally introducing the notion of agency and environments. Moreover, Chapter 3 shows that reinforcement

learning environments, represented as fully or partially observable Markov decision processes, can be

modeled using Bayesian networks, allowing the use of these graphical models to solve rational decision

making problems and making the first connection between these two topics of study.

As an introduction to the field of quantum computation, Chapter 4 discusses the basics of the cir-

cuit model of quantum computing, from multi-qubit systems to the Grover and amplitude amplification

algorithms. More importantly, a quantum version of an approximate inference method, quantum rejection

sampling, is explained and shown to have a quadratic time complexity advantage over classical rejection

sampling for some types of Bayesian networks. The possibility of performing inference, and more effi-

ciently at that, using a quantum computer, connects Bayesian networks to quantum computing in the

context of this dissertation. By further using these Bayesian networks as models of reinforcement learning

environments, and applying this quantum inference algorithm over them, all of the three main topics of

study are finally tied together.

Starting with the contributions of this dissertation, Chapter 5 provides a more extensive explanation

of how quantum rejection sampling can be applied to reinforcement learning by using dynamic decision

networks. It explains how the three sampling processes for performing the lookahead algorithm can be

extracted with quantum circuits and provides mathematical proofs that these quantum circuits work as

intended. The Chapter closes with a brief section explaining how a hybrid quantum classical lookahead

algorithm can be used by leveraging these quantum sampling subroutines.

Chapter 6 provides a theoretical comparison between the classical and quantum lookahead algo-

rithms, described in Chapters 3 and 5, respectively. This comparison is made by mathematically deriving

the computational complexity of each algorithm. At the start of the Chapter, the sample complexity for both

algorithms is derived, providing constraints under which the lookahead algorithm can be considered prob-

ably approximately correct. The final section of this Chapter builds on the proofs of the sample complexity

to derive the full computational complexity of these algorithms, showing that the quantum lookahead does

have an advantage over its classical counterpart, one that depends on the particular problem it is applied

to.
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To experimentally analyze whether the time complexity advantage derived in Chapter 6 could be trans-

lated into better decision making agents, Chapter 7 experimentally compares the performance of the

classical algorithm to the quantum algorithm with an increase in the number of samples, which is propor-

tional to its time complexity advantage. Moreover, a comparison of the time complexity of both algorithms

is also presented. These comparisons are performed over different experiments and considering varying

configurations of the lookahead algorithm.
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Chapter 2

Bayesian Networks

Performing intelligent decisions often depends on weighing different possible outcomes and choosing

actions under uncertain situations. A rational decision-making process is always performed in the context

of some system, which can be dynamic and probabilistic in nature. One way of capturing these probabilistic

relationships is through Bayesian Networks (BNs).

This Chapter presents a description of BNs, a graphical probabilistic model that defines probabilistic

relationships using conditional probabilities. It is shown how they can be used to model a dynamic sys-

tem and how probabilistic information about that system can be extracted from the BN using inference

methods.

2.1 A brief introduction to Bayesian statistics

When making decisions, it is not always the case that all relevant information is available. To clarify, in

this work, a distinction is made between two types of decisions, just as in Russell and Norvig [2009]:

• Simple decisions: a single decision made in a time-independent system. As time dynamics are not

involved, how that action might condition future actions is not relevant to the decision process.

• Complex decisions: a sequence of decisions in a dynamic system that reacts to the actions taken.

In this scenario, an intelligent agent1 should not just consider the current action, but also how the

actions it takes might affect its future options.

Most complex decisions are associated with some degree of uncertainty since it is not always clear to

the agent in what situation it finds itself or even the possible outcomes of its actions. As intelligent beings,

people make these kinds of decisions every day. In the same way, rational agents should be able to deal

with these uncertainties and make good decisions according to their beliefs.

1 An agent is an entity that takes actions in the context of a system in which it is inserted.
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However, beliefs can be changed in light of new information. Consider that a person is outside and sees

smoke in the hills. He knows that the probability of seeing smoke is P (S) = 0.1, that the probability

of there being a fire is P (F ) = 0.01, and that the probability of seeing smoke if there is a fire is

P (S|F ) = 0.9. He wants to answer the question: ”what is the probability of there being a fire given that

I am seeing smoke?”. He knows fires are rare, but since he is seeing smoke, having a fire seems a much

more likely scenario.

This effect is very well known in probability theory and can be captured by Bayes’ theoremWasserman

[2010]:

P (A|B) =
P (B|A)P (A)

P (B)
(2.1)

Bayes’ theorem relates the a prior probability distribution P (A) to a posterior probability distribution

P (A|B). The prior probability is an initial belief, such as the probability that there is a fire in the example

above P (F ) = 0.01, while the posterior distribution described how to effectively change our prior prob-

ability given some additional information. For the example above, knowing that there is smoke increases

the chances of there being a fire, since P (F |S) = 0.9×0.01
0.1

= 0.09.

As can be seen, this theorem helps to update beliefs in the presence of new information. Its usefulness

is applicable to a very wide range of applications, from engineering to economics, and also exceptionally

helpful for intelligent agents to make decisions under uncertain situations Ghavamzadeh et al. [2016].

Moreover, and most relevant in this Chapter, BNs can use conditional probabilities to model probabilistic

environments.

2.2 Bayesian networks

A BN is a probabilistic graphical model encoding knowledge over a set of variables X whose values are

unknown (denoted as random variables). Random variables (RVs) can take discrete or continuous values

and are connected by an edge if there is a probabilistic dependency between them. Moreover, there can

not be any cyclic dependency between them. In this dissertation, RVs are denoted by a capital letter, while

their values are denoted by a lowercase one (e.g., RV X can take value x, or X = x).

A BN is a directed acyclic graph (DAG), where each node Xi contains a conditional probability

table (CPT) of its values conditioned on its parent RV values (see fig. 1), mathematically written as

P (Xi|parents (Xi)).

This representation of RVs and their dependencies allows to compactly represent joint probability
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Sprinkler

(S)

Grass wet

(W )

Rain

(R)

R S P (S|R)

False False 0.6

False True 0.4

True False 0.99

True True 0.01

R P (R)

False 0.9

True 0.1

R S W P (W |S,R)

False False False 0.6

False False True 0.4

False True False 0.1

False True True 0.9

True False False 0.01

True False True 0.99

True True False 0.01

True True True 0.99

Figure 1: A BN over three binary random variables

distributions (JPDs) Russell and Norvig [2009], which can be written as follows:

P (x1, x2, . . . , xN) =
N∏
i=1

P (xi|parents (Xi)) (2.2)

Furthermore, as discussed in the next Section, it is possible to infer any probability distribution

P (Q|E = e) from a BN, where Q is a set of query variables, E is a set of evidence variables and e

is denoted as the evidence.

These characteristics make BN a very useful tool with applications in various scientific domains, rang-

ing from performance evaluation Zhu and Deshmukh [2003], to health monitoring Kothamasu et al. [2006]

or even aircraft engineering Li et al. [2017]. Even more relevant to this work, as inferring a conditional

probability distribution from a BN can be viewed as an application of the aforementioned Bayes’ Theorem,

BNs are useful for modeling and solving decision-making problems.
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2.3 Inference in Bayesian networks

Once a BN has been constructed, some kind of algorithm is still needed to infer a posterior probability

distribution P (Q|E = e) from given evidence e, since these probability distributions can only be directly

extracted from the BN if they match with its CPT entries, which is often not the case. This extraction is

referred in the literature as inference, and algorithms that perform it are called inference algorithms.

Inference algorithms can be grouped into two big categories: exact inference and approximate infer-

ence algorithms. The first kind can calculate the exact posterior probabilities at a high computational cost,

while the second only obtain some approximation value with the advantage of being computationally more

tractable Murphy [2002].

Despite the advantage of computing a true posterior distribution rather than an approximation, real-

world applications often require the use of large BNs, which makes it prohibitive to perform exact inference

in a reasonable amount of time for most use cases, due to its high computational cost. For these applica-

tions, approximate inferencemethods are a necessity, where precision is traded for quicker computations.

As the next Chapter clarifies, BNs can be used to solve RL problems. In the search for solutions,

inference in the BN is required to extract the probabilistic dynamics of RL systems, which are called

environments. This solution-finding process is computationally expensive and inferring with exact methods

further amplifies this effect. As solving RL problems is a main goal of this study, this Section focuses mostly

on approximate inference methods, only presenting exact inference to demonstrate the exponential cost

associated with these methods.

2.3.1 Exact inference

A simple example of exact inference is the enumeration algorithm. ConsiderQ a set of query variables, E

a set of evidence variables that take the value e andR the remaining variables encoded in the BN (besides

Q and E ). Therefore, a posterior probability distribution can be expressed by the following expression:

P (Q|E = e) ∝ P (Q, E = e) =
∑
r

P (Q, E = e,R = r) (2.3)

Note that for each possible value ofQ, each term of the sum over r can be calculated using Equation

(2.2) that describes the joint probability distribution of the BN RVs. By computing each term using that

Equation, performing the sum in Equation (2.3) and normalizing the resulting distribution, one obtains the

desired posterior probability distribution P (Q|E = e).

The problem with this approach is that the number of terms to be summed over in Equation (2.3)
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scales exponentially with the size of R. In fact, in the worst case, where most variables have to be

summed over, this algorithm has a complexity ofO
(
N2N

)
Russell and Norvig [2009] for random binary

variables, where N is the number of RVs in the BN. Exact inference algorithms are, in general, NP-Hard

problems Ben-Gal [2008], which are intractable for most real-world applications.

2.3.2 Approximate inference

Given that exact inference algorithms are generally too computationally expensive, seeking approximate

methods is essential for these networks to be applicable to a wider variety of applications. The following

approximate inference algorithms rely on randomly sampling (also denoted Monte Carlo algorithms) from

a known probability distribution modeled by the BN.

The first algorithm, named direct sampling, can be used to extract a sample from the JPD encoded by

the BN. If applied repeatedly while collecting all samples, an approximation of this JPD can be obtained.

Getting a sample from the network involves iterating over its RVs in topological order 2. For the root

nodes, a value is sampled according to the probabilities of each value’s occurrence. Those values are then

propagated to their children so that a value for those child nodes can be sampled according to the values

previously sampled from their parents. This procedure is described in Algorithm 1.

Algorithm 1 Direct sampling algorithm. Returns a sample from the BN’s joint probability distribution.
Require:

B, a BN representing the distribution P (X1, X2, . . . , XN) with N nodes in topological order.

i← 0 ▷ Counter to traverse all nodes

Initialize r ▷ Initialize a sample with N empty values

while i 6= N do ▷ Traverse nodes in topological order

r [i]← xi ∼ P (Xi | parents (Xi)) ▷ Randomly sample from Xi

i← i+ 1 ▷ Go to next node

end while

return r

For the case of the BN represented in Figure 1, the algorithm involves the following steps:

1. Sample from P (Rain). Suppose it returns False

2 A topologically ordering of a DAG is one where for any edge ⟨Xi, Xj⟩ from Xi to Xj in the graph, Xi comes first in the ordering. This sorting can be

done using Kahn’s algorithm Kahn [1962] and should be established only once after constructing the BN to prevent its usage every time inference is to be

performed.
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2. Sample from P (Sprinkler|Rain = False). Suppose it returns True

3. Sample from P (Grass Wet|Rain = False, Sprinkler = True). Suppose it returns True

4. The sample gathered is Rain=False, Sprinkler=True, and Grass Wet=True

Direct sampling therefore allows the extraction of a random sample x1, x2, . . . , xN ∼ P (X1, X2, . . . , XN)

represented in the BN. By repeating this algorithm and collecting a total of nT samples, each occurring

n (x1, x2, . . . , xN) times, the joint probability distribution can be approximated by:

P (x1, x2, . . . xN) ≈
n (x1, x2, . . . , xN)

nT

(2.4)

As an example, if the sample Rain=False, Sprinkler=True, Grass Wet=True occurred 456 times out of

a total of 1000 samples, its probability would be approximated by 456
1000

= 0.456.

A single sample can be extracted using direct sampling in O(NM) time Russell and Norvig [2009],

where N is the total number of nodes in the BN andM is the maximum number of parents of any node

in the network. The time complexity is linear with respect to both of these parameters, which is a great

benefit compared to the exponential cost of exact inference methods since M is usually much smaller

than 2N (if the BN is not too densely connected). Nonetheless, this algorithm does not allow sampling

from a posterior probability distribution P (Q|E = e), as it can only sample from the joint distribution.

To solve this issue, another approximate sampling algorithm, namely rejection sampling, can be used.

Rejection sampling follows naturally from direct sampling. To sample from a probability distribution

P (Q|E = e), first repeatedly sample from the joint distribution using direct sampling and only accepting

samples with evidence E = e, discarding any sample that does not satisfy that condition. Using all

accepted samples, a count is stored for every possible value q of the query variables Q and turned into

an approximate probability as in Equation (2.4). This whole procedure is captured by Algorithm 2.

Due to the rejection of samples in this algorithm, it naturally follows that it is more costly to collect

a single sample with rejection sampling rather than direct sampling. For rejection sampling, the time

complexity to gather one sample is O (nmP (e)−1) Low et al. [2014], since the lower the probability

P (e) of the evidence taking value e, the more likely the sample is to be rejected.

Using this algorithm, it is possible to infer from the network any probability distribution involving the

RVs of its nodes. This inference can be used to extract probabilistic information about any system, which

is useful in decision-making problems to let agents reason about their uncertainties and help them make

decisions.

The algorithms presented in this Section are a small collection of the many existing inference algo-

rithms for BNs, which were chosen due both to their simplicity and for the later introduction of quantum
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Algorithm 2 Rejection sampling algorithm. Returns a conditional probability distribution.
Require:

B, a BN representing the distribution P (X1, X2, . . . , XN) with nodes topologically ordered;

Q, the set of query variables;

E , the set of evidence variables;

e, the values for the query variables;

n, the number of samples to generate;

i← 0 ▷ Counter for the number of samples gathered

Initialize r ▷ Dictionary of counts over all possible values of Q, initially zero

while i 6= n do

x← direct sampling (B) ▷ Get a sample from the BN’s JPD

if x is compatible with E = e then

r [q]← r [q] + 1 ▷ Increase count. q are the values of Q in x

i← i+ 1

end if

end while

r ← normalize (r) ▷ Turn counts into probabilities

return r
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rejection sampling, a quantum inference algorithm that has a speedup compared to its classical coun-

terpart presented here. For a description of a larger range of inference algorithms in BNs, the reader is

referred to Guo and Hsu [2002].

2.4 Dynamic Bayesian networks

BNs present a way of formulating a model involving multiple variables that are related to each other but

can only handle cases where the model is static. In some cases, information about past states of that

object is needed to infer its current state. Consider the example of inferring the position of an object: to

do this, information about the previous position and velocity is needed.

A DBN is then a collection of BNs, each corresponding to a different time slice (represented by non-

negative integers), whose RVs have temporal dependencies, meaning that any RV can depend on RVs at

previous time slices. For simplicity, it is usually considered that the structure of the BN does not change

between time slices (it contains the same RV, edges, and CPTs). Moreover, in this work, only first order

Markov models are considered, meaning that BN RVs can only depend on RVs of the previous time slice

Neapolitan and Jiang [2007]. First-order Markov models are assumed because RL environments are

generally defined in the same manner, as Chapter 3 clarifies.

Some clarification is needed when referring to changing systems. A system can be dynamic by chang-

ing states over time according to its transition dynamics. Transition dynamics, however, can also evolve

over time. In this work, a changing environment is one whose states change according to its transition

dynamics, but whose transition dynamics are static (they do not evolve, the dynamics are the same for

each time step). For a DBN to model time-dependent dynamics, its structure and/or CPT values should

change between time slices, but this work considers them fixed.

Since DBNs can model dynamic systems, they are widely used for monitoring applications. In monitor-

ing, a distinction between observable and unobservable RVs should be made. Physical information about

a system is always obtained via a measurement device that outputs some sensory readings. These read-

ings are therefore observable, while the true physical information of the system is unobservable. Sensor

measurements do not necessarily have a one-to-one correspondence with the true physical information of

the system. After all, sensors are susceptible to noise and have limited precision, but their measurement is

usually close to the true physical value. The relationship between observable and unobservable quantities

is usually called sensor model Russell and Norvig [2009].

Let S denote a set of unobservable RVs or the unobservable state of a system, and O the observable
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S0 S1

O1

S2

O2

. . .

Figure 2: A generic representation of a DBN

RVs. A DBN, such as the one presented in Figure 2, encompasses two models Russell and Norvig [2009]:

• A transition model P (St+1|St), defining state transitions between time-steps, crucial to allow the

system to evolve over time.

• A sensor model P (Ot|St), defining the relation between the observable and unobservable quan-

tities of the system, with the purpose of gathering measurement information.

Initializing a DBN requires defining both these models and a prior distribution over initial statesP (S0).

Figure 3 provides an example of a DBN for car speed monitoring, where the state RVs are accelerationt

and velocityt. At the same time, the observation RV is speedometert.

acceleration0

velocity0

acceleration1

velocity1

speedometer1

acceleration2

velocity2

speedometer2

. . .

. . .

Figure 3: A DBN for speed monitoring in a car

Inference in a DBN can be treated in the same way as a regular BN. It has not yet been explained how

to store a structure like this computationally (it is a semi-infinite collection of BNs, which would require

infinite memory to store), but for now, assume it is just a very large BN and all the inference principles

should be the same. The usefulness of inference in DBNs can be expressed in terms of four different

tasks Russell and Norvig [2009]:

• Monitoring: consists of calculating a distribution over states given all observations so farP (St|o1:t).

This distribution is called belief state.

• Prediction: similar to monitoring, but the distribution is over future states P (St+k|o1:t).
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• Smoothing: the task of calculating a distribution of past states given all observations so farP (Sk|o1:t) , k <

t.

• Most likely explanation: finding the sequence of states that is most likely to have originated a

sequence of observations. This involves computing the distribution P (S1:t|o1:t) and choosing the

state sequence s1:t with the highest probability.

In the context of this work, monitoring is the most relevant task. When an agent is in a system it can

not directly observe, calculating the belief state is a way to quantify the probability of being in any state at

any given point in time so that it can use this information to make good decisions. It is a way to quantify

its uncertainty about the system and use it rationally. However, inferring the belief state directly is a costly

process, since at time step t, inference over a DBN with t time slices is needed. It can be easily seen that

the computational cost of this inference grows with the time-step increase, which provides a big challenge

for monitoring a system over a long period of time. Fortunately, a belief state at time step t + 1 can be

expressed in terms of the previous belief state, such that a recursive computation can be used to update

beliefs Russell and Norvig [2009]:

P (St+1|o1:t+1) ∝ P (ot+1|St+1)
∑
st

P (St+1|st)P (st|o1:t) (2.5)

The update rule expressed in Equation (2.5) allows the computation of a belief state to have a constant

time cost relative to the current time-step. Since the belief state captures the information of every previous

evidence so far, when used to replace the CPT of the current state, every previous time slice of the network

can be discarded (see Figure 4). This makes it possible to only store two consecutive time-steps of the

DBN3 in memory, which impedes memory usage to scale with the increase of the time step in belief state

inference.

St St+1

Ot+1

Figure 4: A generic representation of how a DBN is stored in memory (CPTs not included).

Since in this work only dynamic systems with time-independent dynamics are considered, the CPTs of

the next state St+1 and the next observation Ot+1 need not be replaced when the time-step is increased,

3 Only two time-steps have to be stored because only first-order Markov models are considered. For a Markov model of order n, a total of n+1 time-steps need

to be stored, since variables from time-step t depend on variables of the previous n time-steps.
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as the dynamics of the DBN are time-independent. When the time-step increases, only the CPT of the

current state St needs to be updated according to the belief update rule of Equation (2.5).

2.5 Dynamic decision networks

From what is shown in the previous section, DBNs are a collection of BNs representing time-slices whose

state RVs are connected. DBNs can be used to represent dynamic systems, but are still unable to capture

the notion of agency in their structure. This section presents a description of dynamic decision networks

(DDNs), an extension of DBNs that adds agency (the ability to take actions) to dynamic systems.

To embed the notion of agency in the structure of DBNs, there are two aspects that need addressing:

• The notion of actions must be captured in the DDN structure. To do so, a new RV is introduced for

each time slice, an action node.

• In order to use some algorithm to find a good action to take, a notion for how good actions are is

needed. This is done using another RV, the reward, a real number which quantifies how good a

certain action is at each time-step4.

The way these RVs depend on each other is not strict, as there are many possible ways to do so. The

correct way to connect these new RVs to the existing ones (and vice versa) in the DBN structure varies

from problem to problem. Here, the following assumptions are considered for a DDN structure (see Figure

5):

• Actions (denoted by RVs At) influence state transitions. As such, the transition model is now given

by a probability distribution P (St+1|St, At)

• Actions influence the observations received. This changes the sensor model to be of the form

P (Ot|St, At−1)

• Rewards (denoted as RVs Rt+1) depend on the state and action. This introduces a new model, the

reward model, which is of the form P (Rt+1|St, At).

A subtle but very important point of DDNs is that action nodes are always root nodes. This is done

so that the decision-making process remains unbiased Russell and Norvig [2009]. Also regarding action

nodes, the way their CPTs are constructed can be different from other RVs. If an optimal action is found

using some algorithm (which won’t be covered until Section 3.4), a deterministic CPT with probability 1 of

4 A more detailed explanation of the reward is provided next Chapter. For now, the text will use this simplified notion of a reward.
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Figure 5: The simplest DDN, with only one node representing the states, actions, observations, and rewards

for each time step.

that action occurring and 0 otherwise is constructed and used as the CPT for that action node. Of course,

if one wishes to encode the action node CPT with some other probability distribution P (At) instead, that

is also a possibility, but the former method is preferred in this work.

Naturally, the CPTs for the state and observation nodes now must change (relative to the CPTs of

DBNs) in order to accommodate their new parent RVs. Another important point is that each state, action,

observation, and reward in a time slice does not need to be represented by a single node as in figure

5 (the same holds true for states and observations in DBNs). Each of them can have multiple nodes

interconnected in order to represent that state, action, reward, or observation, as if they were BNs of their

own, but connected to each other (although it is assumed from here on out, for simplicity, that these RVs

are all represented by a single node).

Just as with DBNs, the belief update rule can be reformulated to also include actions as a source of

information:

P (St+1|o1:t+1, a1:t) ∝ P (ot+1|St+1, at)
∑
st

P (St+1|st, at)P (st|o1:t, a1:t−1) (2.6)

By performing this belief update, the CPT of the DDNs can also be updated, allowing only two time

steps of the DDN to be stored in memory when running these structures on a computer (see Figure 6).

St St+1

At

Ot+1Rt+1

Figure 6: Generic representation of how a DDN is stored in memory (CPTs not included).

19



Even though this section does not cover any algorithms for actually performing rational decision-

making, which is left for later sections when RL is introduced, it lays the foundation of a very powerful

model that can be used to make decisions in a dynamic system. Moreover, a DDN can actually model RL

environments, as the next Chapter also clarifies.

2.6 Summary

Bayesian networks are graphical probabilistic models that can model systems by representing them with

random variables and dependencies between them. They also present a compact and memory-efficient

way of representing joint probability distributions.

To extract probabilistic information from these models, there are two groups of inference algorithms

to choose from. Exact inference is more suitable for situations where very precise calculations are needed

and time is not a very relevant factor. On the other hand, when time is of the essence and calculations

can be less precise, approximate inference methods offer a better solution.

Furthermore, it is important to note that Bayesian networks can only model time-independent sys-

tems. When dynamic systems are involved, an extension of Bayesian networks, named dynamic Bayesian

networks, can be used for their modeling. Dynamic Bayesian networks are also capable of modeling un-

certainties that arise from possibly bad measurements via belief states and updating that uncertainty with

new observations.

Finally, dynamic Bayesian networks can also be extended to include agency in their structure, forming

dynamic decision networks. These networks are able to not only model dynamic systems, but also to

add agency to those systems and make them react to the actions taken. Just as with dynamic Bayesian

networks, they can be used to update beliefs based on new information, which can be leveraged in decision-

making processes to make informed decisions even with imperfect observations.
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Chapter 3

Reinforcement learning

Intelligent decision-making is a problem that concerns the field of artificial intelligence (AI). More specifi-

cally, one of the subfields of AI that tries to solve this problem is called Reinforcement Learning (RL).

In this Chapter, a formal description of RL is presented, defining agents capable of intelligent decision-

making in the context of an environment. Moreover, to link this formalism to the previous chapter, it is

shown how DDNs can be used to both model an environment and solve decision-making problems in the

context of RL.

3.1 The reinforcement learning problem

RL is a sub-field of artificial intelligence concerned with the problem of rational decision-making, achieving

this goal by rewarding good decisions and punishing bad ones. There are four main components to RL D

and Winder [2020]:

• Actions: actions are decisions. The main point of RL is to find the best actions in a sequential

decision-making setting.

• Environment: Representation of a world, usually with many possible situations (or states) within

which decisions are made.

• Agent: Represents a decision maker that lives in a world represented by the environment. It makes

decisions in that environment to reach a certain goal.

• Rewards: A signal that encodes the goal of the agent. Rewards are usually numeric and provide

feedback on how good the agent’s decisions are.

Some parallels with BNs can already be drawn. An environment is a dynamic system, but one which

also has rewards and agency embedded in it, with an added interpretation that it represents the world an

agent is inserted in. As clarified later on in this Chapter, these environments can be modeled using DDNs.

21



Each interaction between an agent and the environment involves the following steps (see Figure 7):

1. The agent, while in the current state ”statet” of the environment, takes an action ”actiont”

2. As a reaction to the action ”actiont”, the environment changes to state ”statet+1”

3. In the new state ”statet+1”, the environment sends to the agent an observation ”observationt+1”

with information about state ”statet+1” and a reward ”rewardt+1” which evaluates the decision

made by the agent in step 1

Agent Environment

observationt+1

rewardt+1

actiont

Figure 7: Interaction at time-step t between the agent and the environment

Given the observation sent to the agent, two types of environments can be distinguished Kaelbling

et al. [1998]. If that observation completely defines the state of the environment (hence the agent always

knows in which state it is), the environment is said to be fully-observable. However, if that observation only

contains partial information about the state, meaning the agent can’t be certain about its current state,

then the environment is said to be partially observable. In the partially observable case, there is an added

layer of uncertainty the agentmust deal with, and therefore it is modeled differently from a fully observable

environment, as the following sections clarify.

Solving an RL problem entails teaching the agent how to behave in its environment to maximize its

chances of reaching a goal. It is a problem of complex decision-making since it involves making good

sequences of decisions in a possibly changing environment.

Nevertheless, how is this goal defined? And how is it possible to choose actions to reach this goal? As

stated above, a reward signal is associated with every interaction between the agent and the environment,

evaluating the decision made in that interaction at that time. It would be tempting to assume that therefore,

the agent should always take the action that gives him on average the highest reward, which isn’t far off

from the true answer but is a shortsighted view. Doing so fails to consider the future rewards of the

agent, which could hinder the decisions it has to take later on1. A better way to achieve the agent’s goal

1 As an example, suppose you are choosing between working in companies A and B. After making that choice, you can try to make the best out of your experience

in the company you chose, but you can’t take your choice back. If you end up choosing a bad company, this single decision will influence your decisions to

come, and possibly affect how happy you feel with your career as well.
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is to choose an action that maximizes an expected sequence of rewards, where future rewards are also

accounted for. This sequence of rewards, also known as utility, quantifies the desirability of that sequence

of interactions, where the most desirable leads the agent closer to its goal. Making the best decision is

therefore the same as choosing the action that maximizes the expected utility (a weighted average of all

its possible sequences of rewards) and is known as the Maximum Expected Utility (MEU) principle Russell

and Norvig [2009].

Given that the goal of RL is that of intelligent decision-making, it comes as no surprise that it has a

very broad range of applications, from robotics Kober et al. [2013], to autonomous driving vehicles Kiran

et al. [2021] and even healthcare Yu et al. [2019]. Nonetheless, in this work, no particular application is

targeted. Rather, the RL decision-making process is studied as a whole, making this study applicable to

any area in which RL is a viable solution.

3.2 Fully observable environments

3.2.1 Markov decision processes

The environment plays a key role in RL as it is responsible for representing the world with which the agent

interacts. It is a crucial part of the decision-making process as it defines the context of the agent’s actions,

without which it wouldn’t be possible to determine what good decisions are. As such, formally defining

an environment is essential for solving RL problems. In this section, a description of Markov decision

processes (MDPs) is presented as a way of modeling fully observable environments.

Let’s suppose it is known that the t previous states of an environment are given byHt = S0S1 . . . St,

which is called the history of states. This history is a very rich statistic of the environment, making it a

good candidate to both model the transitions in the environment and plan for the agent’s future. Still,

it is generally not a very good idea to use it in practice. Firstly, as the time step grows, the number of

states in the history also grows, meaning that the memory needed to store it increases over time, which

can be problematic for computing long sequences of decisions. Secondly, dynamics dependent on this

whole history are hard to define. An easier and more computationally tractable approach is Markov states.

Markov States can capture the information of the whole history, meaning that each state is a sufficient

statistic of the future Sutton and Barto [2018]. This fundamental property of Markov States is known as

the Markov property:

P (St+1|Ht) = P (St+1|St) (3.1)

The Markov property states that the current state is enough to capture the whole history in the transition

23



dynamics. An important note is that these dynamics are also generally dependent on the agent’s actions,

but that will come later in this section. Another useful reminder about this property that ties it with the

previous Chapter is that it is equivalent to only considering first order Markov processes when defining

DBNs. Given that a state RV at any time-step only depends on the state RVs of the previous time-step,

Equation (3.1) holds.

This leads to the first stepping stone in defining an MDP, which is defining a Markov process or Markov

chain. A Markov process is a tupleM = 〈S,P〉 Sutton and Barto [2018] where:

• S is a set of states

• P : S × S 7→ [0, 1] is a probabilistic transition function such that:

Pss′ = P (St+1 = s′|St = s)

where
∑
s′∈S

Pss′ = 1, ∀s ∈ S
(3.2)

As can be seen by the transition dynamics of Markov processes, they leverage the Markov property

in order to define a dynamic system. Notice how the probabilistic transition function P and the transition

model of a DBN defined in the previous Chapter are identical. In fact, if the observation RVs of a DBN are

discarded, it can be seen as an alternative representation of a Markov process.

To fully define an environment, there are still two important aspects that a Markov process does not

address:

• It does not contain any rewards, and it is therefore impossible to judge the value of each transition.

• The notion of agency is not captured either, due to the absence of actions in its definition.

The first issue is easily addressed with the addition of a reward for each transition in a Markov process.

With this addition, it is also a good time to define the value of sequences of rewards or utilities. There

are multiple ways this can be done, but generally, these utilities are defined by assuming that preferences

between state sequences are stationary, meaning that the preference ordering of the state sequences

[s0, s1, s2, . . . ] and [s0, s
′
1, s

′
2, . . . ] should be the same as the preference ordering of the sequences

[s1, s2, . . . ] and [s′1, s
′
2, . . . ], since they both start with the same state. Under this assumption, there

are only two ways of defining a utility Russell and Norvig [2009] or, as it is usually called in the RL, a return:

• Additive rewards: the return Gt is the sum of all future rewards:

Gt =
T∑

k=0

Rt+k+1 (3.3)

24



• Discounted rewards: the future rewards are added but multiplied by a power of a discount factor

γ ∈ [0, 1]:

Gt =
T∑

k=0

γkRt+k+1 (3.4)

In this work, only the discounted rewards return is considered. The main reason is that with additive

rewards, the return can diverge for infinite sequences of the MDP (sequences where the agent does not

reach a terminal state of the environment, meaning T =∞), making it difficult to compare two divergent

sequences. In contrast, the discount factor ensures that the return Gt in Equation (3.4) is bounded,

provided that the rewards are also bounded and that γ 6= 1, making the series represented in Equation

(3.4) converges.

The value of the discount factor also weighs the importance of future rewards. If γ = 0, an agent will

be myopic and make decisions only to maximize its expected immediate reward. On the other extreme,

with γ = 1, all the rewards at every time step are of equal importance to the agent’s decisions, falling

back to the original far-sighted definition of return provided in Equation (3.3). Discount factors are generally

chosen to fall somewhere between these two extremes, according to how much the agent should value its

future rewards.

Adding rewards and the discount factor to a Markov process defines a Markov reward process as a

tupleM = 〈S,P ,R, γ〉 Sutton and Barto [2018], where:

• S and P have the same definition as in a Markov process.

• R : S × S 7→ R is a reward function such that:

Rss′ = E (Rt+1|St+1 = s′, St = s) (3.5)

• γ ∈ [0, 1] is a discount factor to define a bounded return Gt as in Equation (3.4).

Finally, to add agency to a Markov Reward Process, it can be equipped with a set of actions that are

available to an agent, allowing those actions to also interfere with both the reward and transition dynamics

of a Markov reward process. As such, a Markov decision process (MDP) is a tupleM = 〈S,A,P ,R, γ〉

Sutton and Barto [2018] such that:

• S is the set of possible states.

• A is the set of possible actions.
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• P : S ×A× S 7→ [0, 1] is a probabilistic transition function:

Pa
ss′ = P (St+1 = s′|St = s, At = a)

where
∑
s′∈S

Pa
ss′ = 1, ∀s ∈ S, a ∈ A

(3.6)

• R : S ×A× S 7→ R is a reward function:

Ra
ss′ = E (Rt+1|St+1 = s′, St = s, At = a) (3.7)

• γ ∈ [0, 1] is a discount factor to define a bounded return Gt.

There are, however, variations of this MDP that can be defined from this more general one. The reward

functionR, for instance, can be dependent only on one state s 2 or on one state s and an action a.

As an example of an MDP, consider the gridworld environment of Figure 8. It has 9 states, each repre-

sented by individual positions of the grid, and therefore S = {0, 1, . . . , 8}. The agent can select between

four actions A = {left, right, up, down} to move on the grid. The state transitions are deterministic, that

is, if the agent is in the bottom left corner and decides to move up, then it moves to the middle square

on the left column of the grid with 100% probability. The rewards can be selected in many different ways,

such as the following:

• State-dependent rewards: a reward of 10 for reaching the goal state and of −1 for any other state.

• State and action dependent rewards: a reward of 1 if the agent moves closer to the goal, −1 if it

moves further or does not move, and a reward of 10 for reaching the goal state.

Figure 8: Gridworld environment representation, taken from Edwards et al. [2018].

2 this one state can be either the origin state of the transition, meaning that Rs = E (Rt+1|St = s) or the destination state of the transition, such that

Rs = E (Rt+1|St+1 = s).
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3.2.2 Optimal behavior in MDPs

How does an agent decide what action to take? Ideally, one would want it to pick the best action, but to

get there, a formalism that captures an agent’s behavior is needed. Formally, this is done using a policy

π : A× S 7→ [0, 1], a distribution of actions given states:

π (a|s) = P (At = a|St = s) (3.8)

A policy attributes a probability to every action given a state, and an agent following that policy picks

actions according to that distribution. The goal of RL is to find the best policy, or a close approximation, for

an agent given its environment, in this particular case represented as an MDP. Once again, it is important

to recall that the definition of a ”good action” depends entirely on the environment, and thus finding this

optimal policy must depend on the MDP the agent lives in.

To find the optimal policy, the agent must leverage, in some way, the information it has about the

environment. From Figure 7, it can be seen that, in a fully observable environment, at every time step,

the agent receives a reward and knows its current state, and therefore this is the information it has to

work with to make decisions. As previously stated, rewards can be used to define returns, which are a

quantitative way of defining the value for a given sequence of rewards. Due to the probabilistic nature of

an environment, even while picking the same actions, many different trajectories (sequences of states and

rewards) can occur. As such, an optimal policy is one that maximizes the agent’s expected return, meaning

that the return of each trajectory is weighted by the probability of its occurrence. To get to this point, it is

easier to start with attributing a utility to single states and actions, which requires the introduction of value

functions:

• The state value function V : S 7→ R defines the utility of a state s while following policy π:

V π(s) = Eπ (Gt|St = s) =
∑
a∈A

π (a|s)
∑
s′∈S

Pa
ss′ (Ra

ss′ + γV π(s′)) (3.9)

• The state-action value function Q : S ×A 7→ R defines the utility of taking an action a in a state

s while following policy π:

Qπ(s, a) = Eπ (Gt|St = s, At = a) =
∑
s′∈S

Pa
ss′

(
Ra

ss′ + γ
∑
a′∈A

π (a′|s′)Qπ(s′, a′))

)
(3.10)

The value-functions defined above are a way of telling the agent the value of states and actions to make

decisions. These values are relative to the agent’s policy, meaning that different policies have different
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values associated. This is because while the agent wants to maximize its expected return along the many

possible trajectories of the MDP, the probability that each trajectory occurs is dependent on the policy

itself, because it defines the probability that an agent picks a certain action, and the MDP state transitions

depend on these actions. A better way to evaluate the value of states and actions is to consider the values

of an optimal policy (a policy that always selects the best action), which are also the optimal values for

the states and actions. It might seem like a feedback loop to use an optimal policy to define optimal value

functions to then be able to extract an optimal policy, but there are ways to estimate the optimal value

functions without knowing optimal policies.

For any optimal policy π⋆ there is both an optimal state value function V ⋆(s) = maxπ V π(s) and an

optimal state-action value functionQ⋆(s, a) = maxπQπ(s, a). Most importantly, given the optimal value

functions, it is possible to derive the optimal policy. Taking the state-action value function as an example,

if the value of each state-action pair is known, then the best action to take in any given state is simply the

one with the highest expected return:

π⋆ (a|s) =

 1, a = argmaxa′∈AQ⋆(s, a′)

0, otherwise
(3.11)

If, on the other hand, only the optimal state value function is known, the optimal state-action value

function can be derived from the state value function using Equation (3.12). After calculating the optimal

state-action value function, one can use Equation (3.11) to get the optimal policy.

Q⋆(s, a) =
∑
s′∈S

Pa
ss′ (Ra

ss′ + γV ⋆(s′)) (3.12)

Solutions to RL problems are therefore ways of obtaining this optimal policy. Note that the definition of

an optimal policy presented above depends on the definition of value functions, which requires knowledge

over the environment dynamicsPa
ss′ andRa

ss′ . These dynamics might not be known beforehand, meaning

that an agent must learn them over time by interacting with the environment. This introduces two big

families of methods for solving RL problems:

• Model-based: these methods use a known or learned model for the dynamics of the MDP. Value

iteration and policy iteration are examples of such methods, detailed in Kaelbling et al. [1996]. For

a more extensive review of these methods, the reader is referred to Moerland et al. [2020].

• Model-free: these methods do not rely on a known model of the MDP dynamics. Some notable

examples are SARSA and Q-Learning, both described in Sutton and Barto [2018].
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Model-free RL is a harder task compared to model-based methods. The main reason is that the agent

must also learn the environment over time. One of the biggest consequences of imperfect knowledge of

the environment dynamics is an interesting trade-off in RL known as the exploration-exploitation dilemma

Kaelbling et al. [1996]. On the one hand, the agent wants to increase its rewards and therefore wants to

choose the actions it thinks are optimal (exploitation). On the other hand, since the agent has imperfect

knowledge of the environment, what it thinks to be the optimal actions to take may actually be suboptimal.

As such, it is often beneficial for the agent to choose what it perceives as suboptimal actions, gathering

new information about the environment (exploration) in order to make better decisions in the future.

As interesting as this trade-off might be, this work focuses on the simpler, model-based approach,

using DDNs as the underlying model for the environment.

3.3 Partially observable environments

A partially observable environment has a subtle but impactful difference from a fully observable one. In a

fully observable environment, the observations an agent receives fully characterize the state, and therefore

the agent always knows in which state it is. However, that certainty is lost in a partially observable scenario,

because observations only contain partial information about the state. Due to these differences, a partially

observable environment is formalized using a partially observable Markov decision process (POMDP),

instead of an MDP.

POMDPs are not so formally different from MDPs. They contain two more elements: the observations

(omitted in the fully observable case because they represent the state) and a sensor model, similar to

that of DBNs, relating observations, actions, and states Littman [2009]. As such, a POMDP is a tuple

M = 〈S,A,Ω,P ,R,Z, γ〉 where:

• S , A, P ,R and γ have the same definition as in an MDP

• Ω is the set of possible observations o the agent can receive

• Z : Ω×S×A 7→ [0, 1] is the sensor model, representing a conditional distribution of observations

given states and actions:

Zo
sa = P (Ot+1 = o|St+1 = s, At = a) (3.13)

Solving a POMDP comes with the added challenge of the agent not knowing in what state it is while

taking an action. Nevertheless, while the agent might not know exactly in which state it is, it can have
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some beliefs about in what states it could be. For example, in an environment with two states, it could

believe that it is 40% likely to be in state 1 and 60% likely to be in state 2. These beliefs can be formally

defined as a probability distribution over states that represent the likelihood of being in a certain state for

the agent, the belief states b(s), also similar to these introduced for DBNs:

b(s) = P (St = s) (3.14)

As the decision-making process progresses, the agent will receive more and more observations about

the environment and will take actions in the process. These observations and actions are important

information for the agent to update its beliefs. Therefore, the definition of a belief state in Equation (3.14)

is somewhat incomplete, because an agent’s beliefs should depend on the history of observations o1:t

and actions a1:t−1 so far:

b(s) = P (St = s|O1:t = o1:t, A1:t−1 = a1:t−1) (3.15)

Belief states allow the agent to weigh its decisions according to the likelihood of being in each of the

possible states instead of considering only its current state. Due to the Markov Property, belief states in

one time step can be calculated from the belief states in the previous step in a recursive fashion Russell

and Norvig [2009], similarly to the one represented in Equation (2.5) of Chapter 2, which introduces

belief updating for DBNs. Consider that, at time-step t, an agent with a belief state b(s) takes an action a,

leading it to a new unknown state of the POMDP, which sends him an observation o. The agent can update

its belief state b(s) to a new belief state b′(s′) using the belief-update rule τ(b, a, o) Littman [2009]:

τ (b, a, o) (s′) ≡ b′(s′) ∝ Zo
s′a

∑
s∈S

Pa
ss′b(s) (3.16)

This surprising result helps tremendously in the calculation of the probabilities of Equation (3.15). It

states that the only thing needed for an agent to always know a belief state is to define it at the beginning

of the decision-making process. With an initial belief state defined, the agent can therefore take the best

actions according to that belief state and use the new observations from the environment to update those

beliefs.

In the partially observable case, the behavior of an agent is captured by a policy π that is now redefined

to be a distribution of actions given belief states:

π (a|b) = P (At = a|Bt = b) (3.17)

Solving a POMDP also comes down to finding an optimal or near-optimal policy and, similarly to the

previous section, defining such a policy is simpler with the help of value functions. However, these value
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functions also need a redefinition to depend not on a state, but on a belief state, yielding the expressions

Hauskrecht [2000]:

Qπ (b, a) =
∑
s∈S

b(s)
∑
s′∈S

Pa
ss′Ra

ss′ + γ
∑
o∈Ω

V π(τ (b, a, o))
∑
s′∈S

Zo
s′a

∑
s∈S

Pa
ss′b(s) (3.18)

V π(b) =
∑
a∈A

π (a|b)Qπ (s, a) (3.19)

Optimal value functions can be defined similarly to the MDP case. The optimal state value function is

V ⋆(b) = maxπ V π(b) and the optimal state-action value function isQ⋆(b, a) = maxπQπ (b, a). Finally,

solving a POMDP implies following an optimal policy π⋆:

π⋆ (a|b) =

 1, a = argmaxa′∈AQ⋆(b, a)

0, otherwise
(3.20)

Unfortunately, it is not possible to construct a general algorithm to find exact solutions for any POMDP,

since finding this general solution can be reduced to solving the halting problem Madani et al. [2003]. In

any case, other methods still exist to find approximate, near-optimal policies, such as the one presented

in the next section.

To connect this section with DDNs, introduced in Section 2.5, it is useful to understand how they can

model a POMDP. To show this, notice from the definition of a POMDPM = 〈S,A,Ω,P ,R,Z, γ〉 that

all of its elements are present in a DDN, except for the discount factor γ, which must be defined separately:

• The sets S , A and Ω are represented by all the possible values the RVs St, At, and Ot can take,

respectively, which are encoded in their CPTs.

• The transition function P , whose values can be obtained by inferring P (St+1|St, At), is encoded

in the CPT of state RVs St+1.

• The reward function R, whose values can be inferred from E (Rt+1|St, At) can be obtained by

the CPT of the reward RVs Rt+1, which holds the probability distribution P (Rt+1|St, At).

• The sensor model Z , whose values can be inferred from P (Ot+1|St+1, At), is encoded in the

CPT of the observation RVs Ot+1.

Given that all elements of a POMDP are captured in a DDN, then a DDN can model partially observable

environments.

31



Finally, Equation (3.18) can be rewritten in a much more compact manner, using general probability

distributions that can be extracted fromDDNs, instead of the specific probability distributions that constitute

the POMDP:

Q⋆(bt, at) = E (rt+1|bt, at) + γ
∑
ot+1

P (ot+1|bt, at) max
at+1∈A

Q⋆(bt+1, at+1)

bt+1(st+1) = P (st+1|ot+1, at, bt)

(3.21)

3.4 POMDP lookahead

Although Section 3.3 introduces and formally defines POMDPs, no algorithm has been shown for this

purpose. This section describes one algorithm for approximately solving model-based, partially observable

RL problems using a lookahead method.

The lookahead algorithm does not return a policy for the agent to follow, but rather calculates a near-

optimal action for a particular time step. Naturally, by applying this algorithm sequentially for each time

step, it is possible to make rational sequences of decisions.

The algorithm entails building a lookahead tree as in Figure 9: starting with the current belief-state as

the root (belief) node of the tree, enumerate every possible action the agent can take to create the child

(observation) nodes. Then, for every observation node, enumerate all possible observations the agent can

receive as a response to create this node’s child (belief) nodes 3. This procedure is repeated until the

desired horizon (or depth) H of the tree is reached.

1. Create the root (belief) node of the tree that holds the current belief state of the agent.

2. For each leaf belief node, enumerate every possible action the agent can take. For each action,

create a (observation) node and make it a child of the previous belief node.

3. If the desired horizon H has already been reached4, stop. Else, go to the next step.

4. For each leaf observation node, create a new belief node for each possible observation and make

them children of this observation node.

5. At each leaf belief node, perform the belief update of Equation (2.6) to calculate its belief state. To

do this, use this node’s observation and the previous action and belief state that lead to this branch

of the tree.
3 Recall from the belief-update rule of Equation (3.16) that a belief-state, action, and observation can be used to update a belief-state. This belief update should

be performed at every child belief node to calculate its respective belief state
4 For an horizon H to be reached, the tree should be of depth 2H .
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6. Go back to step 2.

b0

p21p11
. . . p

|A|
1

b21b11 . . . b
|Ω|
1

p22p12
. . . p

|A|
2

a1 a2 a|A|

o1 o2 o|Ω|

a1 a2 a|A|

Figure 9: A two-step (H = 2) lookahead tree. Belief nodes are pentagonally shaped and observation

nodes are circle shaped. For diagram simplicity, only one of the observation nodes and one of its belief

nodes are expanded.

By following the aforementioned steps, the lookahead tree is finally complete. To perform the belief

update along the tree, knowing the POMDP is a requirement. As such, this algorithm requires the use of

a model for the POMDP, such as a DDN, hence being a model-based algorithm.

After the lookahead tree has been built, all that remains to be done is extracting an action. This can

be done using the following steps:

1. Calculate the expected reward E (Rt+H |bt+H−1, at+H−1)
5 for each leaf observation node. The

belief-state bt+H−1 refers to the belief-state of the leaf node’s parent and the action at+H−1 refers

to the action of the current observation node. Assume this is an approximate Q value for the

observation node, denoted by QL(bt+H−1, at+H−1)
6.

2. If the parent node of the nodes whose values were just calculated, go to step 6. Else, go to the next

step.

3. Calculate the value of the parent belief node given the value of its children observation nodes,

propagating the values upwards in the tree, using the following expression:

V L(bt) = max
at∈A

QL(bt, at) (3.22)

4. Calculate the value of the parent observation node given the value of its children belief nodes,

5 Here, the reward is considered to be dependent only on one state and action, the same assumption used for the definition of DDNs in Section 2.5.
6 The superscript L states that the value function is calculated using the lookahead algorithm. This makes it easy to understand from the notation what method

is being used in these calculations and is used throughout the remainder of this text.
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propagating the values upwards in the tree, using the following expression:

QL(bt, at) = E (Rt+1|bt, at) + γ
∑

ot+1∈Ω

P (ot+1|bt, at)V L(τ(bt, at, ot+1)) (3.23)

5. Go back to step 2.

6. Using the values calculated for the child observation nodes of the root belief node, return the action

aL given by the following equation:

aL = argmax
at∈A

QL(bt, at) (3.24)

This procedure fully describes the lookahead algorithm. To summarize, two things are being done to

calculate a good action for the agent:

• Approximations of optimal value functions are propagated along the tree by performing a max

operation on belief nodes and taking a weighted average on observation nodes.

• The action with the highest (approximate) value is returned.

It is important to realize that the algorithm does not learn or get better over time, as in dynamic

programming methods such as value or policy iteration Kaelbling et al. [1996]. It does not use its current

knowledge to update knowledge on future time steps, but instead uses brute force to select a near-optimal

action at any given time. The outputs of the algorithm naturally still vary over time, but that is due to a

change in the belief state of the agent. This gives it both a disadvantage and an advantage relative to

learning methods. On the one hand, if the algorithm performs poorly on a particular situation, it won’t

learn from its mistakes and adapt to it, but rather keep struggling in that particular situation. On the other

hand, being an algorithm that does not learn over time, it has the benefit that it can get good results right

after being deployed, as it does not require previous training.

Suppose that a DDN is used to model the POMDP, hence using inference to calculate every probability

distribution. If these probability distributions were calculated using exact inference methods, the lookahead

algorithm’s error would only be due to its finite horizon H , because every reward after that horizon is not

accounted for to choose the actions of the agent. However, using approximate inference yields another

source of error, since every probability distribution is approximated via sampling and won’t be calculated

exactly. Chapter 6 performs both an analysis of the complexity of this algorithm and provides conditions

under which this approximation error can be bounded.
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3.5 Summary

In this Chapter, reinforcement learning was described as the interplay between a decision maker, the agent,

and an environment, the world the decision maker lives in.

It is shown how environments can be formalized with either MDPs, in cases where the environment

is fully observable, or POMDPs, for partially observable environments. Additionally, the behavior of a

decision-maker can be mathematically described by a policy, a probability distribution of actions over

states. To solve an RL problem is to find an optimal policy or optimal actions for an agent to take, such

that its Expected Utility is maximized.

Furthermore, it was also shown in this Chapter that DDNs can be used to model both MDPs and

POMDPs. They can be used together with a lookahead algorithm to build a model-based approach to solve

partially observable RL problems.
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Chapter 4

Quantum computing

Quantum computing presents itself as a new way of performing computations, vastly different from the

way conventional classical computers work. For a variety of computational processes, quantum computers

are theorized to be more efficient than classical ones.

As a way of exploring these algorithmic advantages in the domain of decision-making problems, this

Chapter is devoted to the introduction of Quantum Computation, presenting basic concepts of quantum

computing with quantum circuits. This Chapter also explains Grover’s algorithm and how it can be gen-

eralized to the amplitude amplification algorithm. Lastly, it covers how to perform inference via rejection

sampling on a BN with a quantum computer, with a quadratic speedup over classical rejection sampling.

4.1 Context

In the last few years, quantum computing emerged as a very active area of research and has even been

shown to be more efficient than classical computers for certain problems in idealized conditions. As a

concrete example, calculating a discrete Fourier transform, widely used in a variety of engineering appli-

cations, has an exponential speedup through the quantum Fourier transform (QFT) algorithm Nielsen and

Chuang [2011]. Another exponential speedup problem is Shor’s Algorithm for prime number factorization

Shor [1999], which has the potential to break cryptography protocols such as RSA encryption. Yet another

quantum algorithm, and one of extreme importance to this work, is Grover’s algorithm Grover [1996],

which provides a quadratic speedup for unstructured search problems.

Despite this, there are still many problems associated with practical implementations of quantum

algorithms, especially on large scale applications, with the most notable challenges being the scalability

of quantum devices, the fragility and noise in both quantum gates and quantum states that affect the

outcome of the computations and the fast decoherence of both quantum gates and quantum states that

currently prevent the use of deep quantum circuits Everitt [2005]. These challenges are the main reason
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why today’s quantum computers still use small numbers of qubits which are still noisy, and likely to be for

yet some time. These devices are called noisy intermediate-scale quantum (NISQ) devices, and more and

more algorithms are being developed to target this specific range of quantum computing devices, to try

and make it possible to have some near-term practical applications for this new technology.

There have also been advancements in quantum computing in the specific context of learning, one

of the most relevant topics to this dissertation. In Huang et al. [2021], the authors leverage the use of

quantum information to find an exponential speedup in three static learning tasks: acquiring information

about a large number of non-commuting observables, learning the symmetry class of a physical evolution

operator and learning about the principal component of a noisy state. In the context of active learning,

the authors of Saggio et al. [2021] found an experimental quadratic speedup in using a hybrid quantum-

classical communication channel between the agent and the environment. A more theoretical result is

that of Paparo et al. [2014], which shows that there is a quadratic speedup in projective simulation agents’

decision-making processes by using quantum hardware, enabling decisions to be computed faster. All of

these results are very interesting, but have a very narrow relation to this work: they are all applied to active

learning.

The two following works are much more similar to this one, focusing on quantum techniques to solve

RL problems. They differ in their environment and algorithm choice, but their techniques are very similar.

Firstly, by using generative models (as described in Kakade [2003]), a category of models DDNs fall

into, the authors of Wang et al. [2021] developed quantum algorithms, inspired in the value iteration

RL algorithm, with a quadratic advantage for solving MDPs, as opposed to this dissertation which deals

with POMDPs. Secondly, the authors of Wiedemann et al. [2022] developed a quantum policy iteration

algorithm (the quantum analog to the classical policy iteration algorithm for solving MDPs) that leverages

the amplitude amplification algorithm, similarly to this work, to yield a quadratic speedup in its sample

complexity. This is in contrast to the use of amplitude amplification in this work, which keeps the sample

complexity unchanged and only provides a speedup in the computational complexity.

On the topic of BNs, Moreira and Wichert [2016] propose a quantum analog of BNs that can handle

quantum information, proving very useful to model human decision-making, especially when it violates

the laws of classical probability. Moreover, while this work focuses on computing complex decisions (as

defined in Chapter 2) using DDNs, the authors of de Oliveira and Barbosa [2021] present a fully quantum

algorithm to compute simple decisions in a static environment using decision networks (a static variant of

DDNs), while also proving its computational advantage, which is dependent on the characteristics of the

problem. Perhaps the most relevant result for this work is the quadratic speedup of the rejection sampling
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inference algorithm for BNs when performed in a quantum computer Low et al. [2014]. Unfortunately, as

reported in Borujeni et al. [2020], quantum rejection sampling is not NISQ friendly, as its application in

modern quantum computers still yields very noisy results even for small BNs, such that its practical use will

probably have to be reserved for more reliable generations of quantum computing devices. Moreover, the

quantum rejection sampling algorithm was studied further by Borujeni and Nannapaneni [2021], showing

that this algorithm can be applied to time dynamic systems by using DBNs instead of regular BNs. One

of the main aims of this thesis is to extend this further by applying quantum rejection sampling to DDNs,

making it possible to use them to solve RL problems.

4.2 Quantum computing with quantum circuits

4.2.1 Single qubit systems

There are many different models of quantum computation, such as quantum annealing Finnila et al.

[1994], measurement-based quantum computing Briegel et al. [2009] and the circuit model of quantum

computation Nielsen and Chuang [2011]. Among all of these models, the one this work focuses on is the

circuit model of quantum computing and does not address any of the other alternatives.

In classical computing, the unit of information is the bit, which can be either 0 or 1 at any given time.

Conversely, in quantum computing, the unit of information is the qubit, the quantum analog of a bit. The

big difference between the two is that a qubit can be in a linear combination of 0 and 1, with complex

coefficients representing probability amplitudes, which, moreover, can interfere with each other. A general

single qubit quantum state has the following form:

|ψ〉 = α0 |0〉+ α1 |1〉 (4.1)

where αi ∈ C and, if |ψ〉 is a normalized state, |α0|2 + |α1|2 = 1.

Let |0〉 = (1, 0)T and |1〉 = (0, 1)T be basis vectors (the computational basis). The quantum

state in the Equation (4.1) can also be rewritten as |ψ〉 = (α0, α1)
T , but Dirac notation will be preferred

throughout this text. The complex conjugate of a quantum state is 〈ψ| = |ψ〉†:

〈ψ| = α∗
0 〈0|+ α∗

1 〈1| (4.2)

where α∗
i are the complex conjugates of αi.

Such that the inner product between two quantum states |ψ〉 and |φ〉 is defined as:

〈φ|ψ〉 = (β∗
0 〈0|+ β∗

1 〈1|) (α0 |0〉+ α1 |1〉) = β∗
0α0 + β∗

1α1 (4.3)
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The inner product plays a crucial role in the description of quantum states, due to the following prop-

erty: information about a quantum state can only be obtained through measurements. Measurements

in quantum mechanics are called observables and are represented by a quantum operator that acts on

quantum states. When a measurement is performed on |ψ〉 = α0 |0〉 + α1 |1〉, the state collapses to

one of the eigenstates of the corresponding observable with some probability. In quantum circuits, the

eigenstates for a measurement are typically the computational basis {|0〉 , |1〉}. The probability that |ψ〉

collapses to state |i〉 , i ∈ {0, 1} is given by the expression |〈i|ψ〉|2 = |αi|2.

Another crucial part of quantum circuits is its elementary operations, denoted by quantum gates.

Quantum gates are responsible for changing quantum states, allowing the circuits to perform quantum

computations. One of the most notable examples is the Hadamard gate H , used to create uniform

superpositions in qubits:

H =
1√
2

1 1

1 −1

 (4.4)

The Hadamard gate, when applied to the computational basis, has the following effect:

H |0〉 = 1√
2
(|0〉+ |1〉) = |+〉

H |1〉 = 1√
2
(|0〉 − |1〉) = |−〉

(4.5)

Four other very important gates are the X , Y and Z Pauli gates and the identity 1:

1 =

1 0

0 1

 X =

0 1

1 0

 Y =

0 −i

i 0

 Z =

1 0

0 −1

 (4.6)

These Pauli gates can also be used to generate rotation gates Rq(θ) ≡ ei
θ
2
q, q ∈ {X,Y, Z}. Just

as their name states, these quantum gates apply rotations to a quantum state. But how do rotations on

quantum states work?

One other possible way to represent a generic single qubit state is using the Bloch sphere (see Figure

10). The Bloch sphere is a sphere with three axes, allowing a generic single qubit state to be mathematically

written as the following:

|ψ〉 = cos
θ

2
|0〉+ eiϕ sin

θ

2
|1〉 (4.7)

Where the angles θ and ϕ are as represented in Figure 10.

TheRX , RY and RZ rotation gates perform rotations on a quantum state ψ over the x, y and z axis

of the Bloch sphere, respectively:

RX(θ) =

 cos θ
2
−i sin θ

2

−i sin θ
2

cos θ
2

 RY (θ) =

cos θ
2
− sin θ

2

sin θ
2

cos θ
2

 RZ(θ) =

e−i θ
2 0

0 ei
θ
2


(4.8)
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Figure 10: Representation of the qubit in Equation (4.7) in the Bloch Sphere.

The phase-shift gate P (θ) introduces a phase in a qubit whenever it is in state |1〉, which will be

useful do define a universal set of quantum gates later on:

P (θ) =

1 0

0 eiθ

 (4.9)

There are many other possible quantum gates (see Nielsen and Chuang [2011]). The aforementioned

ones are just a few of the most notable and useful for the purposes of this Chapter, but the key idea is

that every quantum gate changes the quantum state it is applied to (with the exception of the identity gate

1 which maps a state to itself 1 |ψ〉 = |ψ〉). Any quantum algorithm is composed of quantum gates that

change the initial state in a meaningful way in order to get the correct final state for the task at hand, such

that measuring that final state yields the expected outcome of the algorithm.

Single qubit systems are, however, limited and do not explore the full advantages and nuances of

quantum computing. This leads to the next subsection, where multi-qubit quantum circuits are considered.

4.2.2 Multi-qubit systems

In single qubit systems, a quantum state lives in a two-dimensional complex space C2. For a multi-qubit

system with N qubits, this space is expanded to C2N . Considering the set B = {0, 1}, a general N

qubit quantum state has the form:

|ψ〉 =
∑
x∈BN

αx |x〉 (4.10)

Once again, ensuring that the probability amplitudes obey the relationship
∑

x∈BN |αx|2 = 1. A

multi-qubit system can be a composition of single-qubit ones. Constructing a multi-qubit quantum state

|ψ〉 from single-qubit states |ψi〉 can be done using the tensor product (represented by the mathematical
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symbol ⊗):

|ψ〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψN〉 =
N⊗
i=1

|ψi〉 (4.11)

For compactness, a tensor product |ψ1〉 ⊗ · · · ⊗ |ψN〉 will be shorthanded as |ψ1 . . . ψN〉. In a

similar fashion, a multi-qubit quantum gate can be composed of single-qubit gates. As an example, a

multi-qubit Hadamard gate H⊗N , to make uniform multi-qubit superpositions, is just the tensor product

of single-qubit Hadamard gates. Considering the quantum state |ψ〉 in Equation (4.11):

H⊗N |ψ〉 =
N⊗
i=1

H |ψi〉 (4.12)

Nevertheless, not all multi-qubit systems can be described in terms of tensor products of single-qubit

ones. This happens because sometimes, a quantum system can only be described as a whole, and not

by a description of each of its parts. When this is the case, a quantum state is said to be entangled. To

illustrate this point, let’s introduce the first two-qubit quantum gate, the CNOT :

CNOT ≡ |0〉 〈0| ⊗ 1 + |1〉 〈1| ⊗X =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 (4.13)

The CNOT is a controlled gate, that flips the second qubit only if the first qubit is in the state |1〉:

CNOT |00〉 = |00〉 , CNOT |01〉 = |01〉

CNOT |10〉 = |11〉 , CNOT |11〉 = |10〉
(4.14)

Now consider the application of a CNOT to a 2 qubit quantum state where the first qubit is in

uniform superposition:

CNOT (H ⊗ 1) |00〉 = CNOT
1√
2
(|00〉+ |10〉) = 1√

2
(|00〉+ |11〉) =

∣∣Ψ+
〉

(4.15)

The final state |Ψ+〉 can not be written as a tensor product of single-qubit states. To prove this,

consider the tensor product of two general single-qubit quantum states:

|ψ〉 ⊗ |ϕ〉 = (α0 |0〉+ α1 |1〉)⊗ (β0 |0〉+ β1 |1〉)

= α0β0 |00〉+ α0β1 |01〉+ α1β0 |10〉+ α1β1 |11〉
(4.16)

Notice that for the tensor product of Equation (4.16) to equal the quantum state of Equation (4.15),

then (α0 = 0 ∨ β1 = 0) ∧ (α1 = 0 ∨ β0 = 0). Let’s consider all of these four possibilities separately:
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• If α0 = 0 and α1 = 0, then |ψ〉 ⊗ |ϕ〉 has probability amplitude 0 for any of the four states

|00〉 , |01〉 , |10〉 , |11〉. The same is true if β0 = 0 and β1 = 0.

• If α0 = 0 and β0 = 0, then |ψ〉 ⊗ |ϕ〉 = α1β1 |11〉 6= |Ψ+〉, independently of the choice of α1

and β1.

• If α1 = 0 and β1 = 0, then |ψ〉 ⊗ |ϕ〉 = α0β0 |00〉 6= |Ψ+〉, independently of the choice of α0

and β0.

Therefore, it can be concluded that the quantum state of Equation (4.15) can not be written as the

tensor product of two single qubit quantum states, and so it is called an entangled state.

Having introduced theCNOT gate, it is an important fact that, together withRX(θ),RY (θ),RZ(θ)

and P (θ), these gates form a universal set of quantum gates Williams [2011], meaning that any other

quantum operation can be decomposed into these five ones.

Quantum gates can also be composed in various different ways to create more complex operations,

denoted as quantum operators. As Solovay-Kitaev’s Theorem Nielsen and Chuang [2011] states, any

quantum operation can be efficiently approximated, with arbitrary accuracy, by using specific sets of

quantum gates, namely the universal sets. These quantum gates are considered elementary operations,

while quantum operators are an abstraction of the underlying quantum gates that compose them and

have a higher computational complexity. This is crucial to define the computational complexity of quantum

circuits: the elementary operations are quantum gates, and the complexity of a quantum circuit counts

the total number of quantum gates that decompose that quantum circuit.

4.3 Grover’s algorithm and amplitude amplification

The amplitude amplification algorithm Brassard et al. [2002], is a generalization of the previously men-

tioned Grover’s algorithm Grover [1996] for unstructured search problems. Consider the function f :

BN 7→ B that separates the set of bit-strings BN into two sets: the good elements X , for which

f(x) = 1, ∀x ∈ X , and the bad elements X for which f(x) = 0, ∀x ∈ X . Both Grover and amplitude

amplification algorithms solve the task of finding the good elements X in a probabilistic manner, only

differing in the initial distribution of its inputs.

Classically, the worst case for solving this problem for an N bit-string has a complexity of O
(
2N
)
,

representing the total number of elements 2N to be searched over. Nonetheless, Grover’s algorithm

accomplishes the same task with a complexity of O
(√

2N
)
, yielding a quadratic speedup over the
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best classical algorithms. This is accomplished by amplifying the probability amplitudes of the qubits

representing good elements while decreasing the amplitudes of the rest.

Grover’s algorithm consists in the successive application of Grover’s operator G:

G = H⊗NS0H⊗NSf (4.17)

The number of applications of Grover’s operator depends on the number of good states |X |, as

detailed later in this section. Moreover, the first application of this operator should be performed on

a uniform superposition state |ψ〉 = 1√
2N

∑
x∈BN |x〉. To better understand Grover’s operator, it is

important to take a closer look at the three distinct operators that compose it:

1. The oracle Sf that flips the phase of the good states X and does so by using the Boolean function

f defined above:

Sf |x〉 = (−1)f(x) |x〉 , ∀x ∈ BN (4.18)

2. The multi-qubit Hadamard H⊗N that creates an N qubit uniform superposition.

3. The reflection operator S0 = 2 |0〉⊗N 〈0|⊗N − 1 that flips the phase of all non-zero states:

S0 |x〉 =

 |x〉 , x = 00 . . . 0

− |x〉 , x 6= 00 . . . 0
, ∀x ∈ BN (4.19)

The oracle operator varies according to the Boolean function f and therefore changes according to

the problem at hand. The description of this operator presented above is therefore sufficient for the

purposes of this section and is revisited in the next section for the application of this algorithm to a specific

problem. For now, the main focus is shifted to the remaining gates in Grover’s operator, shorthanded as

W = H⊗NS0H⊗N , to build some additional insight on how Grover’s algorithm works. This operator

can be re-expressed using the initial uniform superposition state |ψ〉 = 1√
2N

∑
x∈BN |x〉:

W = H⊗N
(
2 |0〉⊗N 〈0|⊗N − 1

)
H⊗N = 2 |ψ〉 〈ψ| − 1 (4.20)
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And now consider its effect on an N qubit state, as expressed by Equation (4.10):

W
∑
x∈BN

αx |x〉 = (2 |ψ〉 〈ψ| − 1)

(∑
x∈BN

αx |x〉

)

=
2√
2N
|ψ〉

∑
x∈BN

∑
y∈BN

αx 〈y|x〉 −
∑
x∈BN

αx |x〉

=
2√
2N
|ψ〉

∑
x∈BN

∑
y∈BN

αxδxy −
∑
x∈BN

αx |x〉

=
2√
2N
|ψ〉

∑
x∈BN

αx −
∑
x∈BN

αx |x〉

=
∑
x∈BN

2α |x〉 −
∑
x∈BN

αx |x〉

=
∑
x∈BN

(2α− αx) |x〉

Hence:

W
∑
x∈BN

αx |x〉 =
∑
x∈BN

(2α− αx) |x〉 (4.21)

Where α = 1
2N

∑
x∈BN αx is themean amplitude of the initial state. Equation (4.21) asserts that the

operatorW inverts every probability amplitude αx of the initial state about themean probability amplitude

α. With this in mind, it can be said that the Grover operator performs two operations:

• Sf flips the phase of the good states,

• W then performs an inversion about the mean on the probability amplitudes.

Consider figure 11 that represents the probability amplitudes of a quantum state when applied the

Grover operator. In this picture, states are represented in decimal instead of binary notation for com-

pactness and there is only one good state X = {1}. For this particular example, only one application

of Grover’s operator is needed to find the solution, as the only solution is guaranteed to be the result of

a measurement on the final state, as represented in the sub-figure on the right since it has maximum

probability amplitude associated.

The final question that remains unanswered is how many times Grover’s operator needs to be applied.

To understand this question, it is useful to consider the initial state |ψ〉 to which the first Grover operator

is applied, and express it as a superposition of a solution state |X 〉 and remainder state
∣∣X 〉:

|ψ〉 = 1√
2N

∑
x∈BN

|x〉 =
√
|X |
2N
|X 〉+

√
2N − |X |

2N
∣∣X 〉 (4.22)
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Figure 11: Representation of the probability amplitudes of a quantum state during the application of the

Grover Operator. a) represents the probability amplitudes of the initial state in a uniform superposition, b)

represents the probability amplitudes of the initial state after the phase flip of the good state |1〉, and the

red line represents the mean amplitude α = 0.25. Finally, c) represents the probability amplitudes after

the inversion about the mean.

where the solution state |X 〉 is a uniform superposition of every state that is a solution to the problem

and the remainder state
∣∣X 〉 a uniform superposition of the remaining states:

|X 〉 = 1√
|X |

∑
x∈X

|x〉 ,
∣∣X 〉 = 1√

2N − |X |

∑
x∈X

|x〉 , (4.23)

As such, the probability amplitudes in Equation (4.22) can be expressed in terms of a rotation angle

θ:

|ψ〉 = sin
θ

2
|X 〉+ cos

θ

2

∣∣X 〉 , θ = 2 arcsin

√
|X |
2N

(4.24)

It just so happens that the Grover operator G performs a θ angle rotation on state |ψ〉 Nielsen and

Chuang [2011], giving it a geometrical interpretation, such that:

G |ψ〉 = sin
(
θ

2
+ θ

)
|X 〉+ cos

(
θ

2
+ θ

) ∣∣X 〉 (4.25)

And therefore, k applications of Grover’s operator rotate state |ψ〉 by an angle of kθ:

Gk |ψ〉 = sin
(
2k + 1

2
θ

)
|X 〉+ cos

(
2k + 1

2
θ

) ∣∣X 〉 (4.26)

The number of times k the Grover operator has to be applied is such that it rotates state |ψ〉 as close

as possible to the solution state |X 〉 (see figure 12).

In view of the fact that states |X 〉 and
∣∣X 〉 are orthogonal, the angle between the solution state and

|ψ〉 is π−θ
2
, and since the Grover operator rotates |ψ〉 by an angle of θ, the number of times k it has to

be applied is:

k = round
(
π − θ
2θ

)
= round

(√
2N

|X |
arccos

(√
|X |
2N

))
(4.27)
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Figure 12: Representation of the rotational effect of the Grover operator G.

As such, Grover’s algorithm amounts to applying the quantum operator G = H⊗NS0H⊗NSf k

times as in Equation (4.27), followed by a measurement to retrieve a good state.

Grover’s algorithm considers a uniform distribution in the initial quantum state |ψ〉 = 1√
2N

∑
x∈BN |x〉,

resulting from the Hadamard gate applied to every qubitH⊗N . What if instead, we want the search to be

performed on a general, possibly non-uniform, distribution p? This is the idea of amplitude amplification:

generalize Grover’s algorithm to arbitrary distributions by substituting the N qubit Hadamards H⊗N in

the Grover operator by an arbitrary state preparation circuit B. If the desired distribution for the initial

quantum state is p, then the state preparation circuit B performs the following operation:

B |0〉⊗N =
∑
x∈BN

√
p(x) |x〉 (4.28)

Therefore, an operator for the amplitude amplification algorithm can be defined by:

G = BS0B†Sf (4.29)

This generalization allows the initial state to be prepared by an arbitrary operator B, removing the

restriction of a uniform superposition imposed in Grover’s algorithm due to the use of the Hadamard gate

H⊗N . A consequence of this is a wider range of applications for the algorithm, as now more complex

distributions aside from uniform ones can be searched over.

Non-withstanding, calculating the optimal number of iterations k using Equation (4.27) requires know-

ing beforehand how many solutions |X | there are to the problem. In some cases, however, this just isn’t

possible. Thankfully, using the QSearch algorithm in Brassard et al. [2002], as in Algorithm 3, it is still

possible to construct a classical-quantum algorithm to find solutions with a quadratic speedup on average,

even when |X | is unknown:
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Algorithm 3 QSearch.
Require:

B, a state preparation quantum circuit with N qubits;

G, the Grover operator for the problem at hand;

f , the boolean function that outputs the ”goodness” of a state

l ← 0

c← C ▷ C ∈ (1, 2)

go← 1

while go 6= 0 do

l ← l + 1

m←
⌈
cl
⌉

Q ← B |0〉⊗N

r ← measure Q

go← 1− f (r)

if go 6= 0 then

k ← sample_uniform_distribution(1,m) ▷ k is a random integer such that 1 ≤ k ≤ m

r ← measure GkB |0〉⊗N

go← 1− f (r)

end if

end while

return r
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The next section details an application of the amplitude amplification algorithm to BN inference, where

the state preparation circuit B is responsible for encoding the BN into a quantum circuit.

4.4 Quantum Bayesian inference

As already stated in Chapter 2, BNs are a powerful tool for representing probability distributions in a

compact way and, as seen in Chapter 3, they can also be used to solve RL problems when regarding that

BN as a DDN. Nonetheless, inference is required to use BNs in order to solve these problems, because

it allows the retrieval of a conditional probability distribution P (Q|E = e), with query variables Q and

evidence variables E with value e, from the joint probability distribution P (X1, X2, . . . , XN) that the

BN encodes.

This section presents a quantum version of the rejection sampling inference algorithm described in

Section 2.3.2, which provides a quadratic speedup over its classical counterpart due to the use of amplitude

amplification, detailed in Section 4.3.

Quantum rejection sampling inference works by encoding the BN in a quantum operator B and using

amplitude amplification to amplify quantum states with evidence E = e. To further explain this algorithm,

this section is subdivided into two subsections, the first one explaining how to construct the quantum

operator B, and the second detailing how to build the evidence phase flip operator Se that performs the

phase flip on the states with the right evidence, similar to the oracle operator Sf .

4.4.1 Quantum embedding of Bayesian networks

The problem of encoding a BN in a quantum circuit can be easily understood. A BN encodes a probability

distribution P (X1, X2, . . . , XN) over its RVs, and encoding it in a quantum circuit means being able to

construct a quantum state |Ψ〉 = B |0〉⊗N whose qubits represent the RVs. Once the circuit is properly

encoded, sampling from the BN joint distribution in the quantum setting is equivalent to performing mea-

surements in the qubits of the circuit. Nevertheless, for this method to work, the BN can only have discrete

RVs due to selected the encoding scheme. Additionally, for simplicity, this discussion only considers the

binary RVs case, where each RV can only take two values and is encoded in a single qubit. For a descrip-

tion of this process for arbitrary discrete RVs, the reader is referred to Borujeni et al. [2021]. Hence, to

successfully encode the BN, the following equation must hold:

|〈x1x2 . . . xN |Ψ〉|2 = P (X1 = x1, X2 = x2, . . . , XN = xN) (4.30)

This can be achieved by encoding each of the values of the CPTs in the BN into the quantum circuit.
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To understand how this is done in Low et al. [2014], consider a quantum circuit with N qubits qi, each

representing a binary RVXi. As previously seen in Section 2.2, each entry of the CPT encodes a probability

P (Xi = xi|parents (Xi) = xp) of the occurrence of a value xi in a RVXi, given a value xp for the RV’s

parents, parents (Xi). In the quantum setting, for each RVXi, a controlledRY (θ) rotation gate is applied

for each possible value xp its parent RVs can take, where the control qubits of this gate are the qubits qi

representing RVs parents (Xi). This ensures that any RVs that share an edge in the BN are entangled in

the quantum circuit, expressing the information they share.

Consider the BN from Figure 1 as an example. To encode it in a quantum circuit, the following gates

have to be applied (see Figure 13):

• For the variable Rain R, with no parents, an uncontrolled rotation gate is applied.

• For Sprinkler S, with R as a parent, two rotation gates are applied, controlled by the qubit rep-

resenting R. The first one represents the case when |R〉 = |0〉 1, and the second one when

|R〉 = |1〉.

• For WetGrassW , which has two parents, four rotation gates, controlled by both |R〉 and |S〉, are

needed. The first one for when |RS〉 = |00〉, the second for when |RS〉 = |01〉, the third for

|RS〉 = |10〉 and a final one for |RS〉 = |11〉.

R : |q0〉

S : |q1〉

W : |q2〉

RY (θ1) X

RY (θ2)

X

RY (θ3)

X

X

RY (θ4)

X

RY (θ5)

X

X

RY (θ6)

X

RY (θ7)

Figure 13: Quantum circuit encoding the BN of Figure 1.

Finally, the only missing step for the encoding is knowing the angle for each rotation gate. Consider

the controlled rotation gate for a binary RVXi with value xp for its parents. The angle of rotation θ is given

by:

θ = 2 arctan

(√
P (Xi = 1|parents (Xi) = xp)

P (Xi = 0|parents (Xi) = xp)

)
(4.31)

As Low et al. [2014] details, this encoding can be done with a complexity O
(
N2M

)
, where N

represents the number of RVs in the BN andM represents the greatest number of parents of any RV. Given

1 For |R⟩ = |0⟩, anX gate must be applied before and after the control operation on qubit |R⟩. This is because a controlled gate, by definition, only changes

the target state when its control qubit is in state |1⟩, but in this case, the opposite effect is wanted. Therefore, the first X gate flips state |R⟩ before the

control operation, and the second X gate returns the |R⟩ state to the way it was before the first X gate was applied, leaving it unchanged.
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that this encoding allows the sampling from the joint probability distribution, it can be directly compared

to direct sampling, explained in Subsection 2.3.2, which has a complexity of O (NM). The quantum

encoding is therefore generally slower than direct sampling, due to the at mostM qubit uniformly controlled

rotations, each resulting in a decomposition of O
(
2M
)
elementary gates Bergholm et al. [2005].

4.4.2 The evidence phase flip operator

Having explained the state preparation circuit B, the missing part of the algorithm is the oracle operator,

which, in this particular example, is the evidence phase flip operator Se. In quantum Bayesian inference,

the good states are states where the evidence qubits E match the evidence value e of the conditional

distribution P (Q|E = e) that is to be inferred.

In this sense, the amplitude amplification technique turns the joint probability distribution of the BN into

the aforementioned conditional distribution by decreasing the amplitudes of states with incorrect evidence

E 6= e and amplifying the amplitudes of states with the right evidence E = e. Formally, the resulting

state |Ψ〉 = B |0〉⊗N of the BN quantum encoding can be expressed as:

|Ψ〉 =
√
P (e) |Q, e〉+

√
1− P (e) |Q, e〉 (4.32)

where |Q, e〉 represents the quantum states with the correct evidence e, |Q, e〉 the quantum states with

the wrong evidence and P (e) the probability of occurrence of evidence e. Therefore, the effect of Se on

this quantum state is given by:

Se |Ψ〉 = −
√
P (e) |Q, e〉+

√
1− P (e) |Q, e〉 (4.33)

Let e = e1e2 . . . ek represent the evidence bit string, with ei ∈ B. Constructing this operator requires

the help of two other operators:

• The operator Xi = 1⊗ · · · ⊗X ⊗ · · · ⊗ 1, which flips the i-th evidence qubit by applying anX

gate to it and leaving every other qubit unchanged,

• The controlled phase operator P1...k, which flips the phase of a quantum state if all evidence qubits

are in state |1〉.

With the above two operators defined, the evidence phase flip operator Se can be defined as follows:

Se = FP1...kF , F =
k∏

i=1

X 1−ei
i (4.34)
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R : |q0〉
S : |q1〉
W : |q2〉 X X

Figure 14: Quantum circuit for the evidence phase flip operator Se for the BN of Figure 1 with evidences

R = 1 andW = 0.

Consider once more the example of Figure 1 with evidence qubits R and W and values 1 and 0,

respectively, to infer the probability distribution P (S|R = 1,W = 0). The evidence phase flip operator

for this specific case is represented in Figure 14

Notice from Equation (4.34) that the quantum operator F only flips the evidence qubits with evidence

ei = 0, otherwise it leaves them unchanged. This allows for the operator Se to behave as expressed by

Equation (4.33). To show this, let |Q, ẽ〉 = F |Q, e〉, where |ẽ〉 6= |1〉⊗k, represent the application of

the quantum operator F to a superposition of quantum states whose evidence does not match e. Then:

Se |Ψ〉 = FP1...kF
(√

P (e) |Q, e〉+
√
1− P (e) |Q, e〉

)
= FP1...k

(√
P (e) |Q, 1〉+

√
1− P (e) |Q, ẽ〉

)
= F

(
−
√
P (e) |Q1〉+

√
1− P (e) |Q, ẽ〉

)
= −

√
P (e) |Q, e〉+

√
1− P (e) |Q, e〉

(4.35)

This operator, together with the BN encoding, leads to an amplitude amplification operator G =

BS0B†Se, making the quantum inference in BNs quadratically faster than in the classical case, provided

that the BN has a small maximum number of parentsM :

Classical Quantum

Complexity O (NMP (e)−1) O
(
N2MP (e)−

1
2

)
Table 1: Comparison between classical and quantum complexity for rejection sampling inference in BNs,

taken from Low et al. [2014].

Contrary to many other speedups in quantum algorithms, this particular one does not require any

oracle queries. As the authors state, the complexity of this algorithm is completely determined by counting

primitive quantum operations. Another important mention is that this algorithm can also be applied to

DBNs, as Borujeni and Nannapaneni [2021] show, by also encoding observation nodes in the quantum

circuit and considering a finite number of time-slices of the network at a time, performing inference over
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those finite slices. The only difference concerning performing inference in a regular BN is their relative

size. Moreover, the same concept can be applied to DDNs by also encoding action and reward nodes into

qubits, allowing this inference to be performed in the context of solving RL problems.

4.5 Summary

This Chapter presents a brief introduction to quantum computing with quantum circuits, from single-qubit

systems to multi-qubit ones. Grover’s algorithm and its generalization, amplitude amplification, are also

discussed in detail.

Finally, as a way to tie this Chapter together with the previous ones, regarding BNs and RL, an algorithm

for performing inference over a BN in a quantum circuit is described. This quantum algorithm has a

classical counterpart described in Subsection 2.3.2 and has a quadratic speedup over it, allowing for

faster inference times. Moreover, as shown in Chapter 6, quantum rejection sampling also provides a

computational advantage over classical rejection sampling for solving RL partially observable problems.
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Part II

Core of the Dissertation
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Chapter 5

Quantum sampling subroutines

Section 3.4 shows how to extract a near-optimal action in a POMDP using a lookahead-based algorithm.

This algorithm must have access to three different probability distributions encoding the environment

dynamics. This Chapter presents quantum circuits based on the quantum rejection sampling algorithm of

Section 4.4 for sampling these probability distributions, allowing for the definition of a classical quantum

lookahead algorithm by leveraging these subroutines. Furthermore, this chapter also contains formal

proofs along each section, showing that the presented quantum circuits do encode the desired probability

distributions.

5.1 Quantum direct sampling

Performing inference in a BN can be tricky in its details. Consider, for example, the arbitrary conditional

probability distribution P (Q|E = e). Given that it is a conditional probability distribution, it should be

necessary to extract it from the BN using rejection sampling, right? Not quite. Suppose that this BN is a

DDN and that the evidence e corresponds to a belief state b, such that the probability distribution now is

P (Q|b). The belief state of an agent is always updated and used as the CPT of the root state node of a

DDN (see Figure 15). As such, the belief state is already encoded in the DDN, and therefore all samples

collected from it are sampled from the probability distribution P (Q|b), even when using direct sampling!

St

b(s)

St+1

At

Ot+1Rt+1

Figure 15: Representation of a DDN for performing the belief update operation.

And what if the conditioning RV is the action, and therefore the distribution is P (Q|a)? The value for
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the action has to be directly encoded into its CPT every time-step, for two possible reasons:

• The best action is not known, and therefore all actions have to be tested (as in the lookahead

algorithm). In this case, every action is encoded into the DDN individually to test their performance.

• The best action has already been determined and therefore has to be encoded directly into the

DDN.

Either way, the value of the action is encoded into the DDN, and therefore all samples extracted

from it already satisfy the conditioning of the distribution P (Q|a). Once again, only direct sampling is

needed to extract this distribution. Of course, the same reasoning can be applied to any distribution that

is conditioned on both a belief state and an action: both of them just have to be encoded into the DDN’s

CPTs.

Can this same reasoning be applied to the observation Ot+1, reward Rt+1 and state St+1 RVs of

Figure 15? No, otherwise rejection sampling would have no purpose for DDNs. The reason why this

encoding trick works for the belief and action RVs is that they are root RVs of the DDN, and so their CPTs

are not dependent on any other RVs. The remaining RVs of the DDN are not root RVs, and therefore the

same does not apply to them.

With this encoding trick covered, it is important to check whether it can be used to calculate any of

the distributions of the lookahead algorithm of Section 3.4:

• Reward sampling distribution P (Rt+1|bt, at): conditioned on the belief state and action, and

therefore can be performed with direct sampling.

• Observation sampling distribution P (Ot+1|bt, at): conditioned on the belief state and action, and

therefore can also be performed with direct sampling.

• Belief-update distribution P (St+1|ot+1, bt, at): conditioned not just on the belief state and action,

which can be directly encoded into the DDN, but also on the observation. This distribution must be

extracted using rejection sampling.

Two of the three probability distributions can be extracted using direct sampling, and therefore should,

as direct sampling is a more efficient algorithm when compared to rejection sampling. Seeing as encoding

a BN into a quantum circuit, the quantum analog of direct sampling, has a complexity of O
(
N2M

)
,

which is more costly than direct sampling O (NM). Thus, the classical alternative should be preferred.

Detailed proof that both reward and observation sampling can be performed on a quantum computer by

only encoding the corresponding DDN is provided in Appendices A.1 and A.2, respectively.
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This entails that the belief update is the only possible source of quantum advantage, as it is the only

probability distribution used in the lookahead algorithm that is eligible to use quantum rejection sampling

and have a possible speedup over its classical alternative. This is discussed in Section 5.2, showing how

to use quantum rejection sampling to perform the belief-update operation on a DDN.

Another very important observation is that this encoding trick can be applied to any MDP distribution.

Recall from Section 3.2 that the distributions in an MDP are the transition dynamics P (St+1|st, at) and

the reward dynamics P (Rt+1|st, at), both of which are only dependent on a state and an action, and

therefore can be extracted using direct sampling as described above. A consequence is that quantum

rejection sampling does not provide a quantum advantage for MDPs, but only for POMDPs.

5.2 Quantum belief update

When using either DBNs or DDNs to model dynamic systems, one of the most important operations is the

belief update, as discussed in Chapters 2 and 3. This section shows how this procedure can be performed

in a quantum circuit by leveraging the amplitude amplification algorithm.

Performing a belief update requires two time steps of a DDN, as shown in Figure 15. Consider the

scenario where the value of St is unknown, but the agent has a belief-state b(s) at time t. Also, suppose

that action At = a has been chosen and that the environment sent back observation Ot+1 = o. In this

scenario, the new belief state τc (b, a, o) (s′) of the agent can be determined by the following equation:

τc (b, a, o) (s
′) ≡ P (s′|o, a, b)

∝ P (o|s, a)
∑
s∈S

P (s′|a, s) b(s)
(5.1)

Classically, a belief update requires performing the computation expressed in Equation (5.1). Let us

show, however, that a belief update can be performed in a quantum setting by encoding the DDN in Figure

16 with the right action At = a, a superposition on RV St according to its belief-state b and performing

amplitude amplification on observation Ot+1 = o. If τq(b, a, o) represents the quantum belief update,

then the following reasoning seeks to show that the following equation holds:

τq(b, a, o)(s
′) = τc(b, a, o)(s

′), ∀s′ ∈ S (5.2)

To prove this claim, first consider the quantum circuit corresponding to a belief update represented in

Figure 16:

The various U gates perform the encoding of the CPTs of the DDN, while the operator Gk(o) per-

forms the amplitude amplification of the quantum states with the observation o. To formally define these
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St : |0〉⊗k1

At : |0〉⊗k2

St+1 : |0〉⊗k3

Ot+1 : |0〉⊗k4

Rt+1 : |0〉⊗k5

U(b)

U(a)

U1
U2
U3

Gk(o)

Figure 16: Quantum circuit for a belief update in the DDN of Figure 15

operators, a number of definitions are required.

To encode the belief state of the DDN, the operator U(b) is applied as in Definition 5.2.1:

Definition 5.2.1. The quantum operator U(b) encodes belief state b into the qubits of St:

U(b) |0〉⊗k1 =
∑
s∈S

√
b(s) |s〉

The quantum operator U(a) is used to encode action a into the quantum circuit of the DDN, as in

Definition 5.2.2:

Definition 5.2.2. The quantum operator U(a) encodes action a into qubits representing At, such that:

U(a) |0〉⊗k2 = |a〉

To encode the transition dynamics of the DDN, a controlled operator, U1 is applied to the quantum

circuit, as in Definition 5.2.3:

Definition 5.2.3. The operatorU1 is a controlled quantum operator that encodes the transition dynamics

P (St+1|st, at) on the qubits of RV St+1, based on the values st and at of RVs St and At, respectively:

U1 |sa〉 |0〉⊗k3 =
∑
s′∈S

√
P (s′|s, a) |sas′〉

For the encoding of the sensor model of the DDN, the quantum operator U2 is used as in Definition

5.2.4:
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Definition 5.2.4. U2 is a controlled quantum operator encoding the sensor model P (Ot+1|st+1, at)

on the qubits of RV Ot+1 given the values st+1 and at of RVs St+1 and At, respectively:

U2 |as′〉 |0〉⊗k4 =
∑
o∈Ω

√
P (o|s′, a) |as′o〉

The final encoding operator is U3, which encodes the reward dynamics of the DDN into the quantum

circuit, as expressed by Definition 5.2.5:

Definition 5.2.5. The quantum operator U3 encodes the reward dynamics P (Rt+1|st, at) into the

qubits of RV Rt+1 given the values st+1 and at of RVs St and At, respectively:

U3 |sa〉 |0〉⊗k5 =
∑
r∈R

√
P (r|s, a) |sar〉

All of the aforementioned quantum operators can be implemented by the encoding schemes discussed

in Section 4.4. The rotation operators are responsible for encoding the CPTs of the DDN in Figure 15 into

the quantum circuit according to the discussion in Subsection 4.4.1.

Applying all of these encoding operators, in the order they were presented in the definitions above, is

the same as encoding the DDN. They can also be grouped into another quantum operator B, the DDN

encoding operator, as in Lemma 5.2.6.

Lemma 5.2.6. The DDN encoding operator B is composed of the sequential application of quantum

operators U(b), U(b), U1, U2 and U3 fom Definitions 5.2.1 up to 5.2.5, in this order. Its application

results in the following quantum state:

B |0〉⊗N =
∑
s∈S

√
b(s)

∑
s′∈S

√
P (s′|s, a)

∑
o∈Ω

√
P (o|s′, a)

∑
r∈R

√
P (r|s′, a) |sas′or〉

Proof. First, the operators U(b) and U(a) are applied to the initial quantum state |0〉⊗n, according to

Definitions 5.2.1 and 5.2.2:

|ψ1(b, a)〉 = (U(b)⊗ U(a)⊗ 1) |0〉⊗n =
∑
s∈S

√
b(s) |sa〉 |0〉⊗(k3+k4+k5)

Then, the transition dynamics encoding operator U1 is applied to the quantum state |ψ1(b, a)〉 as in

Definition 5.2.3:

|ψ2(b, a)〉 = (U1 ⊗ 1) |ψ1(b, a)〉
(5.2.3)
=

∑
s∈S

√
b(s)

∑
s′∈S

√
P (s′|s, a) |sas′〉 |0〉⊗(k4+k5)
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Afterwards, the sensor model encoding operator U2 is applied to |ψ2(b, a)〉, according to Definition

5.2.4, yielding:

|ψ3(b, a)〉 = (1⊗ U2 ⊗ 1) |ψ2(b, a)〉
(5.2.4)
=

∑
s∈S

√
b(s)

∑
s′∈S

√
P (s′|s, a)

∑
o∈Ω

√
P (o|s′) |sas′o〉 |0〉⊗k5

Finally, using Definition 5.2.5, the reward dynamics encoding operator U3 is applied to |ψ3(b, a)〉.

The output quantum state is given by:

|ψ4(b, a)〉 = (1⊗ U3) |ψ3(b, a)〉
(5.2.5)
=

∑
s∈S

√
b(s)

∑
s′∈S

√
P (s′|s, a)

∑
o∈Ω

√
P (o|s′, a)

∑
r∈R

√
P (r|s′, a) |sas′or〉

The DDN encoding operator is therefore used to create the amplitude amplification operator G(o) =

BS0B†Se, as described in Sections 4.3 and 4.4. This operator is then applied a certain amount k of

times to transform the quantum states into only goal states. For some cases, estimating a number k of

applications of the amplitude amplification operator that guarantees the measurement outcome to be a

solution state might not be possible. It is often the case that a solution is only measured up to some

probability. However, using Algorithm 3, it is always possible to obtain a solution state, not by choosing

the perfect k, but by applying many different k’s until one of them works. As such, in this section, it

is assumed that the number k always gives a solution state with 100% probability, as it still proves that

the quantum circuit of Figure 16 is correct. The only difference is that in a real practical application, the

quantum circuit of Figure 16 would not be used on its own, but applied within Algorithm 3.

Thus, assuming a perfect parameter k for the number of amplitude amplification operator applications,

this operator will completely zero all the amplitudes of the quantum states with the wrong observation

Ot+1 6= o, amplifying the amplitudes of quantum states with the observation Ot+1 = o, as follows:

Assertion 5.2.7. Suppose the amplitude amplification operator G(o) is applied to a quantum state

|ψ〉 =
∑

x∈X
∑

o′∈Ω αx,o′ |x, o′〉 (a superposition over values of the sets X and observations Ω) a

perfect number k of times. In this scenario, this operator amplifies the amplitudes of quantum states with

observations o, while leaving all other states with zero amplitude:

Gk(o) |ψ〉 = 1
√
η

∑
x∈X

αx,o |x, o〉

where η =
∑

x∈X |αx,o|2 is a normalization constant such that the resulting quantum state |ψ′〉 =

Gk(o) |ψ〉 obeys the relationship 〈ψ′|ψ′〉 = 1.
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The amplitude amplification operator can be implemented using the phase flip operator discussed in

Subsection 4.4.2. Now, with every operator defined, Lemma 5.2.8 derives the final quantum state after

applying the encoding circuit depicted in Figure 16.

Lemma 5.2.8. The final quantum state |ψfinal(b, a, o)〉 of the quantum circuit depicted in Figure 16 is

given by the following equation:

|ψfinal(b, a, o)〉 =
1
√
η

∑
s∈S

√
b(s)

∑
s′∈S

√
P (s′|s, a)

√
P (o|s′, a)

∑
r∈R

√
P (r|s′, a) |sas′or〉

where η =
∑

s′∈S P (o|s′, a)
∑

s∈S P (s
′|s, a)b(s) is a normalization constant.

Proof. The final quantum state is the application of the amplitude amplification operator to the output

quantum state of the DDN encoding operator of Lemma 5.2.6:

|ψfinal(b, a, o)〉 = Gk(o)
∑
s∈S

√
b(s)

∑
s′∈S

√
P (s′|s, a)

∑
o∈Ω

√
P (o|s′, a)

∑
r∈R

√
P (r|s′, a) |sas′or〉

(5.2.7)
=

1
√
η

∑
s∈S

√
b(s)

∑
s′∈S

√
P (s′|s, a)

√
P (o|s′, a)

∑
r∈R

√
P (r|s′, a) |sas′or〉

The quantum state |ψfinal〉 is the result of the application of every quantum operator in the circuit of

Figure 16. The measurement, the final operation of this circuit, is performed only on the qubit of St+1.

The likelihood of an outcome of this measurement can be derived from the partial density matrix ρ(b, a, o)

only representing qubit St+1. In turn, this matrix can be calculated by executing a partial trace (over every

other RV except St+1) in the density matrix |ψfinal(b, a, o)〉 〈ψfinal(b, a, o)| representing the final quantum

state. Using this approach, Lemma 5.2.9 calculates the measurement probabilities of the quantum circuit

of Figure 16:

Lemma 5.2.9. The probability of measuring St+1 = s′ in the quantum circuit of Figure 16 is given by

the following expression:

〈s′|ρ(b, a, o)|s′〉 = 1

η
P (o|s′, a)

∑
s∈S

P (s′|s, a)b(s) (5.3)

Proof. First, let us compute the partial density matrix:

ρ(b, a, o) =
∑

s,a′,o′,r

〈sa′o′r|ψfinal(b, a, o)〉 〈ψfinal(b, a, o)|sa′o′r〉
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=
1

η

∑
s,a′,o′,r

(∑
s⋆∈S

√
b(s⋆)

∑
s′∈S

√
P (s′|s⋆, a)

√
P (o|s′, a)

∑
r′∈R

√
P (r′|s⋆, a) 〈sa′o′r|s⋆as′or′〉

)
(∑

s⋆∈S

√
b(s⋆)

∑
s′∈S

√
P (s′|s⋆, a)

√
P (o|s′, a)

∑
r′∈R

√
P (r′|s⋆, a) 〈s⋆as′or′|sa′o′r〉

)

=
1

η

∑
s,a′,o′,r

(∑
s⋆∈S

√
b(s⋆)

∑
s′∈S

√
P (s′|s⋆, a)

√
P (o|s′, a)

∑
r′∈R

√
P (r′|s⋆, a)δss⋆δaa′δoo′δrr′ |s′〉

)
(∑

s⋆∈S

√
b(s⋆)

∑
s′∈S

√
P (s′|s⋆, a)

√
P (o|s′, a)

∑
r′∈R

√
P (r′|s⋆, a)δss⋆δaa′δoo′δrr′ 〈s′|

)

=
1

η

∑
s∈S

b(s)
∑
r∈R

(∑
s′∈S

√
P (s′|s, a)

√
P (o|s′, a)

√
P (r|s, a) |s′〉

)
(∑

s′∈S

√
P (s′|s, a)

√
P (o|s′, a)

√
P (r|s, a) 〈s′|

)

Then, the probability of measuring state St+1 with value s′ is computed as follows:

〈s′|ρ(b, a, o)|s′〉 = 1

η

∑
s∈S

b(s)
∑
r∈R

(∑
s⋆∈S

√
P (s⋆|s, a)

√
P (o|s⋆, a)

√
P (r|s, a) 〈s′|s⋆〉

)
(∑

s⋆∈S

√
P (s⋆|s, a)

√
P (o|s⋆, a)

√
P (r|s, a) 〈s⋆|s′〉

)

=
1

η

∑
s∈S

b(s)
∑
r∈R

(∑
s⋆∈S

√
P (s⋆|s, a)

√
P (o|s⋆, a)

√
P (r|s, a)δs′s⋆

)
(∑

s⋆∈S

√
P (s⋆|s, a)

√
P (o|s⋆, a)

√
P (r|s, a)δs⋆s′

)

=
1

η

∑
s∈S

b(s)
∑
r∈R

P (s′|s, a)P (o|s′, a)P (r|s, a)

=
1

η
P (o|s′, a)

∑
s∈S

P (s′|s, a)b(s)
∑
r∈R

P (r|s, a)

=
1

η
P (o|s′, a)

∑
s∈S

P (s′|s, a)b(s)

Once the probabilities of measurement of the final quantum state of the belief update quantum circuit

are known, let us rename τq(b, a, o)(s′) = 〈s′|ρ(b, a, o)|s′〉 as the quantum belief update rule. Thus,

Theorem 5.2.10 proves the initial claim, that the quantum and classical belief update rules, as in Equation

(5.2), are equivalent:

Theorem 5.2.10. The quantum and classical belief update rules τq(b, a, o) and τc(b, a, o), for DDNs
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using rejection sampling, are equivalent:

τq(b, a, o)(s
′) = τc(b, a, o)(s

′), ∀s′ ∈ S

Proof. Equation (5.3) can be re-written as:

τq(b, a, o)(s
′) =

1

η
P (o|s′, a)

∑
s∈S

P (s′|s, a)b(s)

It is also known from the classical case that the classical belief update can be re-written to incorporate a

proportionality constant:

τc(b, a, o)(s
′)

((5.1))
=

1

η′
P (o|s′, a)

∑
s∈S

P (s′|s, a)b(s)

Since both τq(b, a, o)(s′) and τc(b, a, o)(s′) are probability distributions, their sum over s′ is the

same, which is equal to one, and therefore:∑
s′

τq(b, a, o)(s
′) =

∑
s′

τc(b, a, o)(s
′)

⇔ 1

η

∑
s′∈S

P (o|s′, a)
∑
s∈S

P (s′|s, a)b(s) = 1

η′

∑
s′∈S

P (o|s′, a)
∑
s∈S

P (s′|s, a)b(s)

⇔ η = η′

Therefore, the quantum and the classical belief update are equivalent:

τq(b, a, o)(s
′) = τc(b, a, o)(s

′), ∀s′ ∈ S

As a consequence of Theorem 5.2.10, the belief updating procedure on the lookahead algorithm

described in Section 3.4 (or any other algorithm that uses the belief update procedure) can be performed

in a quantum setting, leveraging the quadratic speedup of quantum rejection sampling.

Naturally, the way to perform this quantum belief update operation is not to just run the circuit once

and retrieve a measurement. What is shown in Theorem 5.2.10 is that the probabilities of obtaining a

certain measurement match the probabilities of the classical belief update rule. Nonetheless, obtaining

an approximation of the next belief state using this circuit should be done with a certain number of samples

n.
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The simplest way to proceed is to run the quantum circuit of Figure 16 n times (n being the desired

number of samples), extracting the samples s′i ∼ τq(b, a, o), i = {1, . . . , n} for the next state, and

approximating the next belief state b′(s′) by the following equation:

b′n(s
′) =

1

n

n∑
i=1

δs′s′i (5.4)

where b′n is an approximation of the belief state, computed resorting to n samples. Equation (5.4) simply

states that the next belief state value for state s′ is the fraction of extracted samples that match state s′.

5.3 A classical quantum lookahead algorithm

All of the three subroutines of this Chapter (belief update, reward sampling, and observation sampling)

are necessary for the lookahead algorithm described in Section 3.4. More specifically, these are the only

three distributions needed to calculate the values for each belief state or belief state action pair, according

to Equations (3.22) and (3.23), which in turn allows the selection of a near-optimal action, as in Equation

(3.24).

Using these quantum subroutines in the lookahead algorithm defines a new, hybrid quantum-classical

algorithm to solve partially observable RL problems. However, as shown in this section, a better option

is to only use the quantum belief update subroutine, while resorting to the classical versions of reward

sampling and observation sampling, because their quantum versions are more costly in terms of time

complexity.

Finally, it is interesting to note that for a fully observable MDP where the reward depends on state

St and action At, there is no advantage in using quantum rejection sampling, because the environment

dynamics P (r|s, a) and P (s′|s, a) are distributions where direct CPT encoding can be applied, which

in turn means that they can be extracted using direct sampling (rather than rejection sampling), which is

more efficient if performed classically. As such, using quantum rejection sampling is only advantageous

over its classical counterpart for POMDPs.

5.4 Summary

This Chapter details the use of quantum circuits for sampling subroutines used in the RL lookahead

algorithm of Section 3.4.

It is shown how these quantum circuits encode the desired probability distributions and how they tie

with both quantum direct and rejection sampling, as introduced in Section 4.4.
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Finally, Section 5.3 mentions how these quantum sampling subroutines can be applied to the looka-

head algorithm to make a hybrid quantum-classical lookahead algorithm, which is possibly more efficient

than the fully classical one. This section also establishes that quantum rejection sampling is only ad-

vantageous when compared to classical rejection sampling for partially observable environments, making

classical rejection sampling better than its quantum equivalent for dealing with MDPs.
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Chapter 6

Complexity analysis

Analyzing algorithms, either in terms of memory consumption or execution time, typically entails perform-

ing a complexity analysis. This Chapter is devoted to performing an execution time complexity analysis of

both the classical and quantum-classical lookahead algorithms in order to compare the two and check for

potential speedups in the quantum approach.

Both of these lookahead algorithms, however, are approximate and probabilistic algorithms. To execute

them, samples have to be extracted and used to approximate probability distributions, which in turn are

used to calculate a near-optimal action. As such, to determine their computational complexity, one should

also determine their sample complexity: the total number of samples needed to execute the algorithm.

This Chapter is therefore divided into two sections: one discussing the sample complexity analysis and

another carrying on the computational complexity analysis using the sample complexity results.

6.1 Sample complexity

The sample complexity of the quantum-classical algorithm counts the total number of samples 1 required

to achieve a certain goal. In this analysis, the chosen goal is to reach an ϵ approximation of the action

value function of the optimal action, with a confidence interval of 1− δ.

To exemplify, consider that the value r is approximated by the output rL of a probabilistic algorithm

L. For a given precision ϵ, the output of a single execution of L is said to be ϵ-approximate if:∣∣r − rL∣∣ ≤ ϵ (6.1)

However, if algorithm L is probabilistic, the error of the approximation varies from one execution

to another. As a consequence, if this algorithm is executed an extremely high number of times, the

approximation error of some of these executions is likely to be higher than the defined precision. Therefore,

most probabilistic algorithms can not be called ϵ-approximate, as not every execution obeys Equation (6.1).
1 which corresponds to the total amount of times that the dynamic decision network (DDN) has to be called
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A better alternative is not to force the approximation of every execution to have a precision of ϵ, but to

guarantee instead that each execution has at least some probability 1− δ (confidence interval) of having

an error no greater than ϵ:

P
(∣∣r − rL∣∣ ≤ ϵ

)
≥ 1− δ (6.2)

To start off, recall the definition of the optimal action value functionQ⋆(bt, at)
2 from Equation (3.21):

Q⋆(bt, at) = E (rt+1|bt, at) + γ
∑
ot+1

P (ot+1|bt, at) max
at+1∈A

Q⋆(bt+1, at+1)

bt+1(st+1) = P (st+1|ot+1, at, bt)

The analysis of the sample complexity of the algorithm entails many manipulations of these expres-

sions. So, for the sake of compactness and comprehensibility of the proofs of the results ahead, it is

useful to resort to vectorial notation 3. As such, let prt ∈ ∆R
4 represent the probability distribution

P (rt+1|bt, at), ∀rt+1 ∈ R, pot ∈ ∆Ω represent the probability distribution P (ot+1|bt, at), ∀ot+1 ∈

Ω, r ∈ R|R| be a vector whose entries enumerate every possible reward and V ⋆
t+1 ∈ R|Ω| be a vector

whose entries are the values maxat+1∈AQ
⋆(bt+1, at+1) for every belief update of bt after taking action

at
5. The previous equation can be re-written, using this notation, as6:

Q⋆(bt, at) = p⊤
rtr + γp⊤

otV
⋆
t+1 (6.3)

The lookahead algorithm L calculates a near-optimal value function QL similarly to that of Equation

(6.3), but replacing prt with its empirical estimation prt,nt using nt samples, pot with its empirical es-

timation pot,mt using mt samples and V ⋆
t+1 with its empirical estimation V L

t+1 calculated recursively.

Thus, the lookahead algorithm, starting with root belief node bt at time-step t obeys the following recur-

sive Equation (6.4) with a terminal case described by Equation (6.5) (according to the lookahead horizon

H):

QL(bt, at) = p⊤
rt,nt

r + γp⊤
ot,mt

V L
t+1 (6.4)

QL(bt+H , at+H) = 0 (6.5)

So far, three sources of error for the lookahead algorithm have been mentioned:

• Approximating the reward distribution prt by its empirical estimation prt,nt , using nt samples.

2 In this section, vector quantities are represented in bold.
3 Although vectorial notation in preferred in this section, explicitly writing out the probability distributions is sometimes clearer and occasionally used.
4 In this notation, p ∈ ∆V means that p is a probability distribution vector over the space V .
5 Since the belief update rule is bt+1(st+1) = P (st+1|ot+1, at, bt) and both at and bt are fixed, there are |Ω| different possible bt+1, one for each

observation ot+1 ∈ Ω.
6 In vector notation, v⊤ is the transpose of v, such that the inner-product of two vectors u and v can be written as u⊤v.
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• Approximating the observation distribution pot by its empirical estimation pot,mt , using mt sam-

ples.

• The stopping case for the lookahead algorithms in the horizon H limit.

There is yet another source of error, coming from the estimation of the belief state. This estima-

tion, however, differs slightly from the estimations of the two distributions mentioned above. Suppose

we have an empirical estimation blt of the belief state bt, using lt samples. When performing the be-

lief update to get the next belief state blt+1(st+1) = Plt+1(st+1|ot+1, at, blt), this quantity estimates

P (st+1|ot+1, at, blt) rather than the belief-update P (st+1|ot+1, at, bt) of the true belief-state bt. As a

consequence, blt+1 has two sources of error: the fact that the belief update is performed on a previous

estimator and the sampling process that comes after it.

Definition 6.1.1 introduces the lookahead error using the notion of regret Liu et al. [2021], a scalar

quantity generally used in RL to define an algorithm’s error. It is defined as the absolute difference between

the utility of the best action that could be taken and the utility of the action that the agent actually took.

The remainder of this section serves to provide and analyze an upper bound to this error in order to give

theoretical guarantees concerning the performance of the algorithm. These theoretical guarantees are the

conditions under which the algorithm can be considered ϵ-approximate with a confidence interval of 1−δ,

as per Equation (6.2).

Definition 6.1.1. (Lookahead error). Let aLt = argmaxat∈AQ
L(blt , at) be the near optimal action

chosen by the algorithm at time t. The lookahead error ϵt at time t is defined as the regret:

ϵt =

∣∣∣∣maxat∈A
Q⋆(bt, at)−Q⋆(blt , a

L
t )

∣∣∣∣ (6.6)

Using Lemmas B.0.1 and B.0.2, Lemma 6.1.2 decomposes the lookahead error into three distinct

errors, each one easier to bound than the original definition of the error:

Lemma 6.1.2. The lookahead error ϵt can be bounded by the following expression:

ϵt ≤ max
at∈A

(∣∣Q⋆(bt, at)−QL(bt, at)
∣∣+ ∣∣QL(bt, at)−QL(blt , at)

∣∣)+∣∣Q⋆(blt , a
L
t )−QL(blt , a

L
t )
∣∣
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Proof.

ϵt
(6.1.1)
=

∣∣∣∣maxat∈A
Q⋆(bt, at)−Q⋆(blt , a

L
t )

∣∣∣∣
(B.0.2)

≤
∣∣∣∣maxat∈A

Q⋆(bt, at)− max
at∈A

QL(blt , at)

∣∣∣∣+ ∣∣∣∣Q⋆(blt , a
L
t )− max

at∈A
QL(blt , at)

∣∣∣∣
(B.0.1)

≤ max
at∈A

∣∣Q⋆(bt, at)−QL(blt , at)
∣∣+ ∣∣Q⋆(blt , a

L
t )−QL(blt , a

L
t )
∣∣

= max
at∈A

∣∣(Q⋆(bt, at)−QL(bt, at)
)
+
(
QL(bt, at)−QL(blt , at)

)∣∣+ ∣∣Q⋆(blt , a
L
t )−QL(blt , a

L
t )
∣∣

(B.0.2)

≤ max
at∈A

(∣∣Q⋆(bt, at)−QL(bt, at)
∣∣+ ∣∣QL(bt, at)−QL(blt , at)

∣∣)+ ∣∣Q⋆(blt , a
L
t )−QL(blt , a

L
t )
∣∣

Lemma 6.1.2 states that the total lookahead error can be decomposed into three distinct errors:

•
∣∣Q⋆(bt, at)−QL(bt, at)

∣∣: the error between the true action value function and the approximate
one, both evaluated at belief state bt.

•
∣∣QL(bt, at)−QL (blt , at)

∣∣: the error between the approximate action value function evaluated

at the true belief state bt and at the approximate belief-state blt .

•
∣∣Q⋆(blt , a

L
t )−QL(blt , a

L
t )
∣∣: the error between the true and approximate action value functions,

both evaluated at the approximate belief blt and the near-optimal action a
⋆
t .

The remainder of this section determines upper bounds to all error terms in order to define an upper

bound for the lookahead error. The main result that allows defining these bounds is Hoeffding’s inequality,

stated in Theorem 6.1.37.

Theorem 6.1.3. (Hoeffding’s Inequality Sidford et al. [2018]). Let p ∈ ∆V be a probability vector and

V ∈ R|V| a vector. Let pm ∈ ∆V be an empirical estimation of p using m i.i.d. 8 samples and

δ ∈ (0, 1) a parameter. Then, with probability at least 1− δ:∣∣p⊤V − p⊤
mV

∣∣ ≤ ‖V ‖∞H(m, δ)
WhereH(m, δ) =

√
1
2m

log
(
2
δ

)
.

The lemmas and theorems above already provide the necessary tools to bound two of the error sources

that compose the lookahead error as in Lemma 6.1.2. Using these results, Lemma 6.1.4 bounds the error

between the true value function and the approximate one, both evaluated at the same belief state and

action:
7 ∥·∥∞ denotes the l∞ norm of a vector, which extracts its maximum element. If u = ∥U∥∞, then u ≥ u′, ∀u′ ∈ U .
8 Independent and identically distributed
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Lemma 6.1.4. Let Γ = (1− γ)−1 be the effective horizon, rmax = ‖r‖∞ be the maximum reward

and σt ∈ (0, 1) a parameter defining the confidence interval 1 − σt for sampling both prt and pot at

time-step t. The error
∣∣Q⋆(bt, at)−QL(bt, at)

∣∣ has the following upper bound:

∣∣Q⋆(bt, at)−QL(bt, at)
∣∣ ≤ rmax

H−1∑
k=0

γk (H(nt+k, σt+k) + γΓH(mt+k, σt+k)) + γHΓrmax

Proof. Using the definitions for Q⋆ and QL from Equations (6.3) and (6.4), respectively:

∣∣Q⋆(bt, at)−QL(bt, at)
∣∣ (B.0.2)

≤
∣∣r⊤prt − r⊤prt,nt

∣∣+ γ
∣∣p⊤

otV
⋆
t+1 − p⊤

ot,mt
V L

t+1

∣∣
Identity pot − pot,mt ≤ |pot − pot,mt | ⇔ −pot,mt ≤ |pot − pot,mt | − pot yields:∣∣Q⋆(bt, at)−QL(bt, at)

∣∣ (B.0.2)

≤
∣∣r⊤prt − r⊤prt,nt

∣∣+γ ∣∣p⊤
otV

L
t+1 − p⊤

ot,mt
V L

t+1

∣∣+γ ∣∣p⊤
otV

⋆
t+1 − p⊤

otV
L
t+1

∣∣
The terms

∣∣r⊤prt − r⊤prt,nt

∣∣ and ∣∣p⊤
otV

L
t+1 − p⊤

ot,mt
V L

t+1

∣∣ can be bounded through Hoeffding’s

inequality in Theorem 6.1.3 and the fact that, by definition, ‖V L
t+1‖∞ ≤ Qmax = Γrmax. The other term

can be decomposed into a sum:

∣∣Q⋆(bt, at)−QL(bt, at)
∣∣ (6.1.3)≤ rmax (H(nt, σt) + γΓH(mt, σt))

+ γ max
at+1∈A

∑
ot+1∈Ω

P (ot+1|bt, at)
∣∣Q⋆(bt+1, at+1)−QL(bt+1, at+1)

∣∣
Let µt+1 be a belief-state and a′t+1 an action such that

∣∣Q⋆(µt+1, a
′
t+1)−QL(µt+1, a

′
t+1)

∣∣ =
maxat+1,bt+1

∣∣Q⋆(bt+1, at+1)−QL(bt+1, at+1)
∣∣. Then:∣∣Q⋆(bt, at)−QL(bt, at)

∣∣ ≤ rmax (H(nt, σt) + γΓH(mt, σt))

+ γ
∣∣Q⋆(µt+1, a

′
t+1)−QL(µt+1, a

′
t+1)

∣∣ ∑
ot+1∈Ω

P (ot+1|bt, at)

= rmax (H(nt, σt) + γΓH(mt, σt))

+ γ
∣∣Q⋆(µt+1, a

′
t+1)−QL(µt+1, a

′
t+1)

∣∣
Finally, with the recursive application of this inequality to

∣∣Q⋆(µt+1, a
′
t+1)−QL(µt+1, a

′
t+1)

∣∣, with
Equation (6.5) as a stopping case to the approximate action value function, the result of this lemma is
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attained:

∣∣Q⋆(bt, at)−QL(bt, at)
∣∣ ≤ rmax

H−1∑
k=0

γk (H(nt+k, σt+k) + γΓH(mt+k, σt+k))

+ γH
∣∣Q⋆(µt+H , a

′
t+H)−QL(µt+H , a

′
t+H)

∣∣
((6.5))
= rmax

H−1∑
k=0

γk (H(nt+k, σt+k) + γΓH(mt+k, σt+k))

+ γH
∣∣Q⋆(µt+H , a

⋆
t+H)

∣∣
≤ rmax

H−1∑
k=0

γk (H(nt+k, σt+k) + γΓH(mt+k, σt+k)) + γHΓrmax

Lemma 6.1.4 gives a bound to the difference between the true value function and the value function

calculated by the lookahead algorithm, both evaluated at the same action and belief state. Notice, however,

that the bound holds for any choice of action and belief state, because it is independent of both these

quantities. Thus, both
∣∣Q⋆(bt, at)−QL(bt, at)

∣∣ and ∣∣Q⋆(blt , a
L
t )−QL(blt , a

L
t )
∣∣ can be bounded by

this lemma.

Before moving on to the next lemma, it will prove useful to first count the total number of Hoeffding

inequalities that were used in the proof of Lemma 6.1.4. This count will be useful later on to calculate

the confidence interval of the lookahead algorithm’s bounds. The bound in Lemma 6.1.4 was attained by

splitting the error source
∣∣Q⋆(bt, at)−QL(bt, at)

∣∣ in two terms, one where the Hoeffding bounds are ap-
plied (

∣∣r⊤prt − r⊤prt,nt

∣∣+γ ∣∣p⊤
otV

L
t+1 − p⊤

ot,mt
V L

t+1

∣∣) and a recursive term (γ
∣∣p⊤

otV
⋆
t+1 − p⊤

otV
L
t+1

∣∣)
where the same procedure is applied until a stopping case is found. Let’s call these two terms immediate

and recursive, respectively. To bound the immediate term, 2 Hoeffding inequalities were used. For the

first time-step in the recursive term, 2AΩ Hoeffding inequalities are needed (2 Hoeffding inequalities as

per the immediate term, but for every action and every observation). As such, a total of 2
∑H−1

k=0 AkΩk

Hoeffding inequalities are used to derive the bound of Lemma 6.1.4.

To bound the full lookahead error, only the error of approximating the belief state remains to be

bounded. As mentioned above, the belief states for the lookahead algorithm are approximated in a dif-

ferent manner from the reward and observation distributions. The only true belief state that is known

to the lookahead algorithm is the prior b0, and therefore, the belief estimations blt are calculated by

performing a belief update on the previous estimation blt−1 , yielding the distribution pt ∈ ∆S with en-

tries P (st|ot, at−1, blt−1), and extracting lt samples from it, creating an empirical estimation distribution

pt,lt = blt ∈ ∆S with entries Plt(st|ot, at−1, blt−1). As such, Hoeffding’s inequality can not be applied
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to the distributions bt and blt , because they are not direct estimations of one another. It can be applied,

however, to pt and pt,lt , since the latter approximates the former distribution via sampling, as stated

above.

Lemma 6.1.5 uses an indirect approach to applying the Hoeffding inequalities and still be able to

bound the error between the true belief state bt and the approximate belief state blt of the algorithm at

time t:

Lemma 6.1.5. Given a distribution pst from a family of distributions P (·|st, ·) conditioned on the state

st ∈ S 9, the following inequality bounds the error of approximating the belief-state at time t, using lk

samples and a confidence interval of 1− σk to estimate it at time-step k:

∣∣p⊤
stbt − p⊤

stblt
∣∣ ≤ S t

t∑
k=0

1

Sk
H(lk, σk)

Proof.

∣∣p⊤
stbt − p⊤

stblt
∣∣ = ∣∣∣∣∣∑

st∈S

P (·|st, ·)
(
P (st|ot, at−1, bt−1)− Plt(st|ot, at−1, blt−1)

)∣∣∣∣∣
Notice that the difference P (st|ot, at−1, bt−1) − Plt(st|ot, at−1, blt−1) in the equation above is

between two distributions conditioned on different belief state. As such, Hoeffding’s inequality can’t be di-

rectly applied. To overcome this issue, the triangle inequalityP (st|ot, at−1, bt−1) ≤ P (st|ot, at−1, blt−1)+∣∣P (st|ot, at−1, bt−1)− P (st|ot, at−1, blt−1)
∣∣ = P (st|ot, at−1, blt−1) +

∣∣p⊤
st−1

bt−1 − p⊤
st−1

blt−1

∣∣ is
used, allowing the expression above can be re-written as:∣∣p⊤

stbt − p⊤
stblt

∣∣ ≤ ∑
st∈S

P (·|st, ·)
(
P (st|ot, at−1, blt−1)− Plt(st|ot, at−1, blt−1) +

∣∣p⊤
st−1

bt−1 − p⊤
st−1

blt−1

∣∣)
≤
∣∣p⊤

stpt − p⊤
stpt,lt

∣∣+ S ∣∣p⊤
st−1

bt−1 − p⊤
st−1

blt−1

∣∣
Applying the inequality above in a recursive manner and using Hoeffding’s inequality:

∣∣p⊤
stbt − p⊤

stblt
∣∣ ≤ t∑

k=0

St−k
∣∣p⊤

sk
pk − p⊤

sk
pk,lk

∣∣
(6.1.3)

≤ S t

t∑
k=0

1

Sk
H(lk, σk)

9 In the results of this lemma and the lemmas and theorems that follow, the notation X for a set X can have two meanings, that depend on the context of use:

it can refer to the set itself, or to the size of the set |X |.
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This lemma states that the belief-approximation error bound is cumulative over time. This is intuitive,

given that the approximation of a belief state at time-step t is attained by estimating over the previous

estimation, and therefore the estimation errors pile up as time progresses.

A few more bounds are useful to derive the full upper bound of the belief error. Due to the fact that an

inaccurate belief state is used throughout every time step of the algorithm, not only does this cause errors

in the algorithm’s belief states themselves, but also in calculating other probability distributions that are

conditioned on the belief state (because they should be conditioned on the true belief-state rather than an

estimation of it). This implies that both reward sampling and observation sampling also suffer from this

belief-state approximation error, and so these error contributions should be accounted for. Lemma 6.1.6

bounds the reward sampling error caused by this belief-approximation:

Lemma 6.1.6. Let p ∈ ∆R represent the probability distribution P (rt+1|bt) and p̂ ∈ ∆R represent

distribution P (rt+1|blt). Also, let pnt and p̂nt be their respective estimations using nt samples. Then,

the following inequality holds:∣∣p⊤
nt
r − p̂⊤

nt
r
∣∣ ≤ rmax

(
2H(nt, σt) +RSt

t∑
k=0

1

Sk
H(lk, σk)

)

Proof. ∣∣p⊤
nt
r − p̂⊤

nt
r
∣∣ ≤ ∣∣(p⊤ +

∣∣p⊤ − p⊤
nt

∣∣) r +
(
−p̂⊤ +

∣∣p̂⊤ − p̂⊤
nt

∣∣) r∣∣
(B.0.2)

≤
∣∣p⊤r − p⊤

nt
r
∣∣+ ∣∣p̂⊤r − p̂⊤

nt
r
∣∣+ ∣∣p⊤r − p̂⊤r

∣∣
(6.1.3)

≤ 2rmaxH(nt, σt) +
∑
rt∈R

rt
∣∣p⊤

stbt − p⊤
stblt

∣∣
(6.1.5)

≤ rmax

(
2H(nt, σt) +RSt

t∑
k=0

1

Sk
H(lk, σk)

)

Analogously to the Lemma 6.1.6, Lemma 6.1.7 bounds the observation sampling error due to the

belief-state approximation:

Lemma6.1.7. Letpot ∈ ∆Ω be a probability distributionP (ot+1|bt, at) and p̂ot ∈ ∆Ω beP (ot+1|blt , at),

such that pot,mt and p̂ot,mt are their empirical estimations with mt samples. Also, let V ∈ R|Ω| be a

vector of value functions with entries V (bt) and V L a similar vector with entries V L(blt). Then, the

following inequality holds:∣∣p⊤
ot,mt

V − p̂⊤
ot,mt

V L∣∣ ≤ Γrmax

(
2H(mt, σt) + ΩSt

t∑
k=0

1

Sk
H(lk, σk)

)
+
∣∣p̂⊤

ot,mt
V − p̂⊤

ot,mt
V L∣∣
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Proof.∣∣p⊤
ot,mt

V − p̂⊤
ot,mt

V L∣∣ ≤ ∣∣(p⊤
ot +

∣∣p⊤
ot − p⊤

ot,mt

∣∣)V +
(
−p̂⊤

ot +
∣∣p̂⊤

ot − p̂⊤
ot,mt

∣∣)V L∣∣
(B.0.2)

≤
∣∣p⊤

otV − p⊤
ot,mt

V
∣∣+ ∣∣p̂⊤

otV
L − p̂⊤

ot,mt
V L∣∣+ ∣∣p⊤

otV − p̂⊤
otV

L∣∣
(6.1.3)

≤ 2ΓrmaxH(mt, σt) +
∣∣p⊤

otV − p̂⊤
otV

∣∣+ ∣∣p̂⊤
otV − p̂⊤

otV
L∣∣

= 2ΓrmaxH(mt, σt) +
∑

ot+1∈Ω

V L(bt+1)
∣∣p⊤

stbt − p⊤
stblt

∣∣+ ∣∣p̂⊤
otV − p̂⊤

otV
L∣∣

≤ 2ΓrmaxH(mt, σt) + ΓrmaxΩ
∣∣p⊤

stbt − p⊤
stblt

∣∣+ ∣∣p̂⊤
otV − p̂⊤

otV
L∣∣

(6.1.5)

≤ Γrmax

(
2H(mt, σt) + ΩSt

t∑
k=0

1

Sk
H(lk, σk)

)
+
∣∣p̂⊤

ot,mt
V − p̂⊤

ot,mt
V L∣∣

The final recursive term
∣∣p̂⊤

ot,mt
V − p̂⊤

ot,mt
V L
∣∣ is expanded and used to give an upper bound to the

full belief error in Lemma 6.1.8.

Finally, using the results of Lemmas 6.1.6 and 6.1.7, Lemma 6.1.8 provides an upper bound to the

belief approximation error:

Lemma 6.1.8. The belief error
∣∣QL(bt, at)−QL(blt , at)

∣∣ is bounded by the following expression 10:∣∣QL(bt, at)−QL(blt , at)
∣∣ ≤ rmax

H−1∑
k=0

γk

(
2H(nt+k, σt+k) + 2γΓH(mt+k, σt+k) + (R+ γΓΩ)St+k

t+k∑
j=0

1

Sj
H(lj, σj)

)

Proof. ∣∣QL(bt, at)−QL(blt , at)
∣∣ ≤ ∣∣p⊤

nt
r − p̂⊤

nt
r
∣∣+ γ

∣∣p⊤
ot,mt

V − p̂⊤
ot,mt

V L∣∣
using Lemmas 6.1.6 and 6.1.7:∣∣QL(bt, at)−QL(blt , at)

∣∣ ≤ rmax

(
2H(nt, σt) + 2γΓH(mt, σt) + (R+ γΓΩ)St

t∑
j=0

1

Sj
H(lj, σj)

)

+ γ
∣∣p̂⊤

ot,mt
V − p̂⊤

ot,mt
V L∣∣

≤ rmax

(
2H(nt, σt) + 2γΓH(mt, σt) + (R+ γΓΩ)St

t∑
j=0

1

Sj
H(lj, σj)

)

+ γ
∑

ot+1∈Ω

Pmt(ot+1|blt , at)max
at+1

∣∣QL(bt+1, at+1)−QL(blt+1 , at+1)
∣∣

10 In this bound, and throughout the remaining of this section, it is assumed that every sampling operation on the same time-step t (be it reward, observation or

belief-state sampling) has the same confidence interval 1− σt.
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let µt+1 and a′t+1 be a belief-state and an action, respectively, such that∣∣QL(µt+1, a
′
t+1)−QL(µlt+1 , a

′
t+1)

∣∣ ≥ ∣∣QL(bt+1, at+1)−QL(blt+1 , at+1)
∣∣ , ∀bt+1, at+1. Then:

∣∣QL(bt, at)−QL(blt , at)
∣∣ ≤ γ

∣∣QL(µt+1, a
′
t+1)−QL(µlt+1 , a

′
t+1)

∣∣
+ rmax

(
2H(nt, σt) + 2γΓH(mt, σt) + (R+ γΓΩ)St

t∑
j=0

1

Sj
H(lj, σj)

)

Using the inequality above recursively, and the stopping case from Equation (6.5):

∣∣QL(bt, at)−QL(blt , at)
∣∣ ≤ rmax

H−1∑
k=0

γk

(
2H(nt+k, σt+k) + 2γΓH(mt+k, σt+k) + (R+ γΓΩ)St+k

t+k∑
j=0

1

Sj
H(lj, σj)

)

Once again, let us count the number of Hoeffding inequalities used to prove this result. Analogously

to the count done for Lemma 6.1.4, consider the immediate and recursive components. Notice that, for

the immediate term, (t+1)+2 Hoeffding inequalities are used. The first time-step in the recursive term

needs AΩ ((t+ 2) + 2) Hoeffding inequalities (it should hold for every action and observation, and the

t + 1 Hoeffding inequalities from the belief-error bound now become t + 2 because the time-step has

increased by one). In total,
∑H−1

k=0 AkΩk (t+ k + 2) Hoeffding inequalities are needed to prove this

bound.

Finally, with the two error terms of the lookahead already bounded, the full lookahead error can be

derived:

Lemma 6.1.9. The lookahead error ϵt has the following upper bound:

ϵt ≤ rmax

H−1∑
k=0

γk

(
4H(nt+k, σt+k) + 4γΓH(mt+k, σt+k) + (R+ γΓΩ)St+k

t+k∑
j=0

1

Sj
H(lj, σj)

)

+ 2γHΓrmax

Proof. Lemma 6.1.2 yields:

ϵt ≤ max
at∈A

(∣∣Q⋆(bt, at)−QL(bt, at)
∣∣+ ∣∣QL(bt, at)−QL(blt , at)

∣∣)+∣∣Q⋆(blt , a
L
t )−QL(blt , a

L
t )
∣∣

Applying Lemmas 6.1.4 and 6.1.8 to the previous expression concludes the proof.
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The error bound estimated in Lemma 6.1.9 encompasses all four errors of the quantum-classical

lookahead algorithm. They can easily be identified from the expression in Lemma 6.1.9:

• Approximating the reward distribution: this error term is captured by the nt+k term in the sum.

• Approximating the observation distribution: this error term is captured by the mt+k term in the

sum.

• Approximating the belief states: this error is captured by the lj term of the bound and increases

over time due to repeated approximation of the belief state.

• The finite horizon of the lookahead: the lookahead tree has a fixed depth, given by the finite horizon

H , introducing a systematic error that can’t be compensated by increasing the number of samples.

It is captured by the 2γHΓRmax term in the bound.

Lemma 6.1.9 provides an upper bound to the lookahead error of Definition 6.1.1. This upper bound

takes into account the use of multiple sampling operations throughout the lookahead tree: reward sam-

pling, observation sampling, and belief-state sampling. Given that the bounds used for each sampling

operator fail with a probability of σt, the bound for the whole lookahead error also has a non-zero chance

of failure, which depends on the confidence interval of each sampling operation and is yet to be defined.

This is because the confidence interval 1− σt only holds locally for each sampling operation, and not for

the whole expression presented in Lemma 6.1.9. Naturally, if none of the sampling operation bounds fail,

the lookahead error bound holds. As such, the probability of failure δt of the lookahead error bound is at

least as large as the probability that any one of the sampling bounds fails.

One way to relate the confidence interval 1−δt of the bound of Lemma 6.1.9 to the confidence interval

1− σt of each sampling operation is by using Theorem 6.1.10. It states that the probability of the union

of multiple events is at least as small as the sum of the probabilities of each individual event:

Theorem 6.1.10. (Boole’s Inequality Seneta [1992]). Let Z1, Z2, . . . , Zn be probabilistic events that

occur with probability P (Z1) , P (Z2) , . . . , P (Zn). Then:

P

(
n⋃

i=1

Zi

)
≤

n∑
i=1

P (Zi)

In the formulation of Theorem 6.1.10, the probabilistic events Zi could have a higher sampling error

than the one provided in Theorem 6.1.3. By attributing this meaning to the probabilistic events, Boole’s
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inequality can be used to relate the sampling bound’s confidence interval 1−σt to the confidence interval

of the algorithm’s upper bound presented in Lemma 6.1.9.

Lemma 6.1.11. The confidence interval 1−δt of the algorithm’s upper bound given in Lemma 6.1.9 and

the confidence interval 1 − σt of the Hoeffding’s bound for each sampling operation obeys the following

inequality:

δt ≤
H−1∑
i=0

AiΩi (2 +A (t+ i+ 4)) σt+i

Proof. Recall, from Lemma 6.1.2, that the lookahead error is bounded by the following expression:

ϵt ≤ max
at∈A

(∣∣Q⋆(bt, at)−QL(bt, at)
∣∣+ ∣∣QL(bt, at)−QL(blt , at)

∣∣)+∣∣Q⋆(blt , a
L
t )−QL(blt , a

L
t )
∣∣

The terms
∣∣Q⋆(bt, at)−QL(bt, at)

∣∣ and ∣∣Q⋆(blt , a
L
t )−QL(blt , a

L
t )
∣∣ can both be bounded using

Lemma 6.1.4, which needs 2
∑H−1

i=0 AiΩi Hoeffding inequalities to be derived. The term∣∣QL(bt, at)−QL(blt , at)
∣∣ can be bounded using Lemma 6.1.8, which requires∑H−1

i=0 AiΩi(t+ i+2) Hoeffding inequalities. However, both the terms
∣∣Q⋆(bt, at)−QL(bt, at)

∣∣ and∣∣QL(bt, at)−QL(blt , at)
∣∣ are under a maxat∈A operation in the lookahead error bound above, so their

number of Hoeffding inequalities should be multiplied by a factor A, since these bounds should hold for

any possible action. As such, the total number of Hoeffding inequalities to bound the lookahead error is

given by:

2
H−1∑
i=0

AiΩi + 2A
H−1∑
i=0

AiΩi +A
H−1∑
i=0

AiΩi(t+ i+ 2) =
H−1∑
i=0

AiΩi (2 +A (t+ i+ 4))

Each term of the previous sum represents the total number of Hoeffding inequalities at that particular

depth in the lookahead tree (if i = 2, the corresponding term represents the number of Hoeffding inequal-

ities at depth 2). Given that, for a depth i at time-step t, the probability of a sampling operation failing is

σt+1, Boole’s inequality in Theorem 6.1.10 yields:

δt ≤
H−1∑
i=0

AiΩi (2 +A (t+ i+ 4)) σt+i

The bounds derived in Lemmas 6.1.9 and 6.1.11 depend on the definition of four successions:

• nt,mt, and lt: the successions that define how the number of samples for each sampling operation

varies over time.
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• σt: the succession defining how the confidence interval of each sampling operation varies over

time.

Unfortunately, due to the cumulative nature of the belief-state error, the lookahead error grows expo-

nentially as time progresses (it grows with St, and the state size S of the POMDP can be extremely large

by itself!). This effect could be counteracted by an appropriate choice for both lt and σt, but this work

does not try to answer this question. Instead, a much simpler case is considered: both nt,mt, lt, and σt

are fixed, such that they do not change over time, as stated in Definition 6.1.12.

Definition 6.1.12. The lookahead algorithm’s samples nt,mt and lt and the confidence interval 1−σt
are considered to be time-invariant:

nt = n, mt = m, lt = l, σt = σ

Moreover, a further simplification is assumed to reduce the degrees of freedom in the choice of the

number of samples: the contribution of each sampling operation to the whole lookahead error at time-step

t = 0 is assumed to be the same, such that the number of samples n, m, and l can be related to each

other according to Lemma 6.1.13:

Lemma 6.1.13. If the contribution to the error bound of Lemma 6.1.9 of each sampling operation is

considered to be the same at time-step t = 0, the number of samples can be related to each other

according to the following expressions:

m = (γΓ)2 n, l =

(
1

4

R+ γΓΩ

S − 1

(
S

Γ (1− γH)
(γS)H − 1

γS − 1
− 1

))2

n

Proof. According to Lemma 6.1.9 and Definition 6.1.12, the lookahead error at time t = 0 has the following

upper-bound:

ϵ0 ≤ rmax

H−1∑
k=0

γk

(
4H(n, σ) + 4γΓH(m,σ) + (R+ γΓΩ)SkH(l, σ)

k∑
j=0

1

Sj

)

+ 2γHΓrmax = Sn + Sm + Sl + 2γHΓrmax

where Sn, Sm and Sl represent the sums over the number of samples n,m and l, respectively. For their

contributions to be the same, as stated in Lemma 6.1.13, all of these sums must be equal (Sn = Sm =

Sl).
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Letting Sn = Sm
11 yields:

4rmaxH(n, σ)
H−1∑
k=0

γk = 4γΓrmaxH(m,σ)
H−1∑
k=0

γk

√
n−1 = γΓ

√
m−1

m = (γΓ)2 n

Finally, making Sn = Sl and resorting to Lemma B.0.3:

4rmaxH(n, σ)
H−1∑
k=0

γk =rmaxH(l, σ) (R+ γΓΩ)
H−1∑
k=0

γkSk

k∑
j=0

1

Sj

4
√
n−1

H−1∑
k=0

γk
(B.0.3)
=
√
l−1 (R+ γΓΩ)

H−1∑
k=0

γk
Sk+1 − 1

S − 1

4
√
n−1Γ

(
1− γH

)
=
√
l−1 (R+ γΓΩ)

1

S − 1

(
S

H−1∑
k=0

(γS)k −
H−1∑
k=0

γk

)

4
√
n−1Γ

(
1− γH

) (B.0.3)
=
√
l−1 (R+ γΓΩ)

1

S − 1

(
S (γS)

H − 1

γS − 1
− Γ

(
1− γH

))

l =

(
1

4

R+ γΓΩ

S − 1

(
S

Γ (1− γH)
(γS)H − 1

γS − 1
− 1

))2

n

Given Definition 6.1.12 and Lemma 6.1.13, the bounds in Lemmas 6.1.9 and 6.1.11 can be re-written

as follows:

Theorem 6.1.14. The algorithm’s error ϵt has the following upper bound, with a confidence interval of

1− σt:

ϵt ≤ rmax

√
1

2n
log
(
2

σ

)(
8Γ + 4St

)
+ 2γΓrmax

δt ≤ σ (AΩ)H
(
t+A

(
8 + Ω

H − 1

(AΩ− 1)2

))

Proof. The bound on the error ϵt, follows directly from Lemma 6.1.9, by substituting m and l using the

expressions in Lemma 6.1.13.

11 Recall that H(n, σ) =
√

1
2n

log
(
2
σ

)
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As for the bound for the confidence δt, it follows from Lemma 6.1.11 that:

δt ≤
H−1∑
i=0

AiΩi (2 +A (t+ i+ 4)) σt+i

= σ

H−1∑
i=0

AiΩi (2 +A (t+ 4) + iA)

By using the geometric series of Lemma B.0.3 on the 2 +A (t+ 4) multiplicative term in the sum:

δt
(B.0.3)

≤ σ

(
A

H−1∑
i=0

iAiΩi + (2 +A (t+ 4))
(AΩ)H − 1

AΩ− 1

)

≤ σ

(
A

H−1∑
i=0

iAiΩi + (2 +A (t+ 4)) (AΩ)H
)

Analogously applying a variation of the finite geometric series given by Lemma B.0.4 to the sum∑H−1
i=0 iAiΩi, the bound becomes:

δt
(B.0.4)

≤ σ

(
A(H − 1) (AΩ)H+1 −H (AΩ)H +AΩ

(AΩ− 1)2
+ (2 +A (t+ 4)) (AΩ)H

)

≤ σ

(
A(H − 1) (AΩ)H+1

(AΩ− 1)2
+ (2 +A (t+ 4)) (AΩ)H

)

≤ σ
(
A2Ω

)H (AΩ (H − 1)

(AΩ− 1)2
+A (t+ 4) + 2

)
≤ σ (AΩ)H

(
2 +A

(
t+ 4 +AΩ H − 1

(AΩ− 1)2

))

As can be seen in Theorem 6.1.14, both the bounds for ϵt and δt grow over time. Suppose that the

designed algorithm accepts three arguments as input: the maximum error ϵ, the minimum confidence

interval 1− δ, and the stopping time T for the decision-making algorithm. In this scenario, both ϵt and δt

will have a maximum bound for t = T . To ensure the error ϵ and the confidence interval 1− δ, Theorem

6.1.14 can be re-expressed to derive a lower-bound for the number of samples and an upper bound for σ

(the probability of failure for the sampling bounds):

n ≥ 1

2
log
(
2

σ

)(
rmax

ϵ− 2γHΓrmax

(
8Γ + 4ST

))2

σ ≤ δ (AΩ)−H

(
2 +A

(
T + 4 +AΩ H − 1

(AΩ− 1)2

))−1 (6.7)

The above conditions, however, are not enough to ensure the error ϵ. This is because no matter how

many samples one extracts for approximating the probability distributions, the number of samples can’t
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compensate for the error of performing a finite lookahead if the chosen horizon H is too shallow 12. As

such, it should also be assured that the lookahead horizon H is large enough to make the desired error ϵ

attainable. This condition is met when 2γHΓrmax < ϵ, such that:

H > logγ

(
ϵ

2Γrmax

)
(6.8)

The three bounds presented in Equations (6.7) and (6.8) sum up the whole sample complexity analysis

of the lookahead algorithm. They are captured in Theorem 6.1.15, the main theorem of this analysis:

Theorem 6.1.15. Consider a stopping time T , horizon H , and Definition 6.1.12 and Lemma 6.1.13

for the lookahead algorithm. A near-optimal action is guaranteed to be taken at each time step of the

decision-making process with a regret of at most ϵ and confidence interval of at least 1 − δ if all of the

following conditions are met:

n ≥ 1

2
log
(
2

σ

)(
rmax

ϵ− 2γHΓrmax

(
8Γ + 4ST

))2

σ ≤ δ (AΩ)−H

(
2 +A

(
T + 4 +AΩ H − 1

(AΩ− 1)2

))−1

H > logγ

(
ϵ

2Γrmax

)

6.2 Computational complexity

To calculate the computational complexity of the lookahead algorithm, in both the classical and quantum-

classical versions, one must multiply the total number of samples required by the computational complexity

necessary to compute each sample. Given that the computational complexity for each sample has already

been defined in Section 4.4, the only task left is to define the total number of samples that need to be

extracted.

In order to do so, it is important to recall that there are three types of sampling operations that the

algorithm performs:

• Reward sampling: this sampling operation is performed at every observation node and requires n

samples.

• Observation sampling: performed at every observation node and requiresm samples.

12 Using a finite lookahead introduces an error of 2γΓrmax, as in Theorem 6.1.14.

80



• Belief sampling: performed at every belief node and requires l samples.

As such, the total number of samples Ns can be defined in terms of the number of belief nodes Nb

and the number of observation nodes No as:

Ns = lNb + (n+m)No

where the number of belief nodes is computed as

Nb =
H−1∑
i=0

(AΩ)i = (AΩ)H − 1

AΩ− 1

and the number of observation nodes as

No = A
H−1∑
i=0

(AΩ)i = A(AΩ)H − 1

AΩ− 1

such that the total number of samples can be re-expressed as

Ns =
(AΩ)H − 1

AΩ− 1
(l +A (n+m))

Let Cn, Cm, and Cl represent the computational complexity of extracting each of the three types of

samples considered. In asymptotic terms, where S ,A,R, Ω,H , and T are all assumed to be very large,

the computational complexity of the algorithm can be expressed as:

O
(
AH−1ΩH−1 (lCl +A (nCn +mCm))

)
Recalling the relation between the number of samples n,m and l established in Lemma 6.1.13, this

complexity becomes:

O

nAH−1ΩH−1

(1

4

R+ γΓΩ

S − 1

(
S

Γ (1− γH)
(γS)H − 1

γS − 1
− 1

))2

Cl +A
(
Cn + γ2Γ2Cm

)
= O

(
nAH−1ΩH−1

(
A (Cn + Cm) +

(
(R+ Ω)SH−1

)2
Cl

))
(6.9)

To substitute the computational complexities Cn, Cm, and Cl, a distinction has to be made for the

classical and quantum-classical algorithms, since they use different inference algorithms to extract prob-

ability distributions.

In the classical case, direct sampling is used for performing inference on the rewards and observations,

while belief updating uses rejection sampling. The computational complexities are of order O (NM) for

direct sampling and O (NMP (e)−1) for rejection sampling.
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What does the evidence stand for in the case of rejection sampling? As this operation is performed

at every observation node in the lookahead tree, to account for all these sampling operations, it is the

mean inverse probability of evidence for belief updating. Since belief updating only uses observation RVs

as evidence, then it is given by cl =
∑

ot+1
P (ot+1|bt, at)−1, where the sum is over all observations in

the lookahead tree, conditioned on the previous belief state bt and previous action at.

For the quantum-classical case, direct sampling is still used for reward and observation sampling, hav-

ing the same complexity as the classical case. Quantum rejection sampling is, however, applied for belief

updating. Therefore, in the quantum-classical case, the complexity for Cl is of the order O
(
N2Mql

)
,

where ql = P (e)−
1
2 =

∑
ot+1

P (ot+1, bt, at)
− 1

2 . In this scenario, cl is no longer adequate to represent

P (e)−
1
2 , because the latter is an average of the inverse square rooted probabilities P (ot+1|bt, at)−

1
2

and not of the inverse probabilities P (ot+1|bt, at)−1.

It is also important to mention that the complexity of the algorithm can be written both in terms of

the number of samples n or in terms of the precision ϵ and confidence interval 1− δ, since they can be

related according to Theorem 6.1.15:

O (n) ≤ O

((
ST

ϵ

)2

log
(
1

σ

))
≤ O

((
ST

ϵ

)2

log
((

T +
H

AΩ

)
AH+1ΩH

δ

))
(6.10)

Proof. This result is directly attained with Equations (6.9) and (6.10) and using Cn = Cm = O(NM)

and Cl = O
(
N2Mcl

)
.

In this context, Theorem 6.2.1 characterizes the computational complexity of the classical lookahead

algorithm:

Theorem 6.2.1. The computational complexity of the classical lookahead algorithm is given by any of

the following expressions:

O
(
nNMAH−1ΩH−1

(
A+

(
(R+ Ω)SH−1

)2
cl

))
O

(
NMAH−1ΩH−1

(
A+

(
(R+ Ω)SH−1

)2
cl

)(ST

ϵ

)2

log
((

T +
H

AΩ

)
AH+1ΩH

δ

))

Proof. This result is directly attained with Equations (6.9) and (6.10) and using Cn = Cm = O(NM)

and Cl = O
(
N2Mql

)
.

Theorem 6.2.2 is analogous to the previous theorem, but characterizes the computational complexity

of the quantum-classical lookahead algorithm:
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Theorem 6.2.2. The computational complexity of the quantum-classical lookahead algorithm is given

by any of the following expressions, whenever 2M ≈M :

O
(
nNMAH−1ΩH−1

(
A+

(
(R+ Ω)SH−1

)2
ql

))
O

(
NMAH−1ΩH−1

(
A+

(
(R+ Ω)SH−1

)2
ql

)(ST

ϵ

)2

log
((

T +
H

AΩ

)
AH+1ΩH

δ

))

As can be seen from Theorems 6.2.1 and 6.2.2, a partial speedup is obtained in the quantum case

for the belief-state sampling operations, while the computational complexity of the rest of the algorithm

is similar across both classical and quantum algorithms. This is so whenever the considered dynamic

decision networks are sparse enough (such that 2M ≈ M ), just as in the case of quantum rejection

sampling. However, for some specific situations, the portion of the algorithm that uses a quantum subrou-

tine dominates the complexity of the algorithm so much, that the contribution of the classical subroutines

to the computational complexity of the algorithm is negligible. In these scenarios, detailed in Corollaries

6.2.3 and 6.2.4, the quantum-classical lookahead has the greatest possible speedup over its classical

counterpart:

Corollary 6.2.3. Under the assumption that 1
ql
� ((R+Ω)SH−1)

2

A , the expressions for the computa-

tional complexity of the classical lookahead algorithm of Theorem 6.2.1 can be re-written as:

O
(
nNMAH−1ΩH−1

(
(R+ Ω)SH−1

)2
cl

)
O

(
NMAH−1ΩH−1

(
(R+ Ω)

ST+H−1

ϵ

)2

cl log
((

T +
H

AΩ

)
AH+1ΩH

δ

))

Proof. Given that ql ≤ cl, it follows that 1
cl
≤ 1

ql
, and therefore 1

ql
� ((R+Ω)SH−1)

2

A ⇒ cn
cl
�

((R+Ω)SH−1)
2

A . Thus, the result of this corollary follows directly from Theorem 6.2.1.

Corollary 6.2.4. Under the assumption that cn
ql
� ((R+Ω)SH−1)

2

A , the expressions for the computa-

tional complexity of the quantum-classical lookahead algorithm of Theorem 6.2.2 can be re-written as:

O
(
nN2MAH−1ΩH−1

(
(R+ Ω)SH−1

)2
ql

)
O

(
N2MAH−1ΩH−1

(
(R+ Ω)

ST+H−1

ϵ

)2

ql log
((

T +
H

AΩ

)
AH+1ΩH

δ

))
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Corollaries 6.2.3 and 6.2.4 compare the classical and quantum algorithm’s complexity in the best-case

scenario for the quantum algorithm, where cn
ql
� ((R+Ω)SH−1)

2

A . It remains to be answered as to what

RL problems this assumption can be applied to in practice, as this work does not address this question.

Nonetheless, it gives a benchmark as to what speedup one can expect from the quantum algorithm in a

best-case scenario.

What speedups can therefore be expected? Although one might initially think that using quantum

rejection sampling would provide a quadratic speedup, this is not always the case. Dividing the classical

complexity by the quantum complexity (and assuming that M and 2M have about the same order of

magnitude), this fraction reduces to cl
ql
=

∑
x P−1(x)∑
x P− 1

2 (x)
, where the sum over x represents the sum over the

evidence. From inequality
√∑

x ax ≤
∑

x

√
ax ≤

∑
x ax, it is easy to derive that:

1 ≤ cl
ql
≤ ql (6.11)

The inequality in Equation (6.11) entails that the complexity of the quantum algorithm relative to the

classical one can range between no speedup to a quadratic one, but it is most likely to fall somewhere

in between these two extremes. This comes from the notion that, although using quantum rejection

sampling yields a quadratic advantage over classical rejection sampling, the same cannot be said about

using it sequentially, due to the mathematical property that the sum of square roots can be (and usually

is) larger than the square root of the sum.

6.3 Summary

The first section of this Chapter contains a detailed analysis of the sample complexity of the lookahead

algorithm, giving conditions under which there are theoretical guarantees for the algorithm to run with an

error of at most ϵ, and a confidence interval of at least 1 − δ. This analysis applies to both the classical

and quantum algorithms, as the number of samples that need to be extracted is the same in both cases.

The second and final section of this Chapter uses the sample complexity analysis to determine the

computational complexity of both algorithms. In this analysis, it is possible to conclude that, despite the

use of a quantum subroutine with a quadratic speedup over the classical counterpart, the complexity of

the quantum algorithm when compared to the classical one can range between no speedup to a quadratic

one, most of the times falling somewhere in between.
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Chapter 7

Experimental results and discussion

In Chapter 6, it is shown that the quantum lookahead algorithm has a time complexity advantage over its

classical counterpart, which depends on the problem it is applied to.

This Chapter leverages this theoretically proven speedup to experimentally verify whether this advan-

tage is noticeable on agents applied to a range of different partially observable RL problems.

7.1 Comparison metrics

In Sections 3.4 and 5.3, two similar lookahead algorithms were discussed. Both use a tree structure to

brute-search every possible situation an agent can encounter in its environment, a few time steps in the

future (the horizon). Leveraging this information, the algorithms then choose an action that maximizes the

expected return in those time steps. To perform these algorithms, subroutines for performing sampling

operations are needed, and this is where the two algorithms differ: one uses classical rejection sampling,

while the other uses quantum rejection sampling.

As derived in Chapter 6, the quantum lookahead algorithm can have a time complexity advantage over

its classical counterpart, but what kind of benefits can this time complexity advantage yield for the quantum

algorithm? This chapter tries to experimentally elucidate this question by comparing the performance of

the two algorithms.

Consider that both algorithms are applied to the same problem, with the restriction that each time

step must be calculated in a finite amount of time (the same for both algorithms). Given that the quantum

version has a possibly lower time complexity, this implies that it should be able to be executed with an

increased number of samples, improving the precision of the calculations, and consequently also improving

its decision-making capabilities.

By dividing the time complexities of the classical lookahead algorithm in Corollary 6.2.3 by the quantum
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lookahead algorithm in Corollary 6.2.4, the following expression is obtained:

ncNMAH−1ΩH−1 (R+ Ω)2 cl

nqN2MAH−1ΩH−1 (R+ Ω)2 ql
=

ncMcl
nq2Mql

Under the assumption that both these algorithms take the same time to finish, the fraction above must

be equal to one. With the further assumption that the number of parentsM in the DDN is small, meaning

that 2M ≈ M , then the following relation between the number of quantum samples nq and the number

of classical samples nc can be established as:

nq =
cl
ql
nc (7.1)

Calculating cl
ql
implies calculating every probability P (ot+1|bt, at) in the lookahead tree, as descrided

in Section 6.2. Notice that, as the lookahead algorithm is executed over multiple time steps, and the

belief state of the agent is updated over time, cl
ql
also varies over time (because the belief states in the

conditioning of P (ot+1|bt, at) also change). Therefore, to get the results for the experiments, the number

of quantum samples is calculated at each time step using Equation (7.1). Since the ratio cl
ql
depends on

both the POMDP of the problem and the current belief state of the agent, calculating it at every time step

ensures that the adequate quantum advantage in the number of samples is always given for the quantum

lookahead algorithm.

To compare the classical and quantum algorithms, the chosen metric is the expected cumulative

reward of the agent. This metric quantifies the amount of reward that the agent has been able to collect,

on average, since the beginning of each experiment. Supposing that an agent starts at time 0 and is now

at time t, its expected cumulative reward is given by:

t∑
i=0

E (Ri+1|bi, ai) (7.2)

Agents that perform better have a higher expected cumulative reward than others, and therefore the

advantage of agents using the quantum classical lookahead should be reflected on this metric.

Finally, the two algorithms can also be executed with the same number of samples. If this is the

case, then the quantum approach should have a time advantage due to its decreased time complexity.

Since the quantum algorithm has to be simulated (because quantum rejection sampling is not a NISQ-

friendly algorithm, as explained in Section 4.4), the execution time can not be calculated experimentally,

at least in a direct manner. This would be unfair to the quantum algorithm, as simulating it is more costly

than actually using a quantum device to execute it. Therefore, the times for executing the algorithms are

calculated using the time-complexities derived in Section 6.2 and the experimental values for cl and ql on

each time-step.
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To summarize, two different metrics are used to compare the two algorithms:

• The cumulative expected reward, under the condition that both the classical and quantum algo-

rithms take the same time to calculate decisions.

• The time taken to execute the classical and quantum algorithms, under the condition that they both

use the same number of samples.

7.2 Experiments

To compare the two lookahead algorithms, some small problems were selected. Firstly, this was due to

the lack of computational power to run big problems. Secondly, because the quantum algorithms were

run in a quantum simulator using qiskit, the cost of simulation grows very quickly with the increase in the

number of qubits. Using a simulator is preferred because today’s NISQ devices are still very noisy to run

quantum circuits as deep as the ones considered here. As such, the following experiments were chosen

to compare the quantum and classical lookahead algorithms:

• Tiger problem

• Robot exploration problem

7.2.1 Tiger problem

The tiger problem is one of the simplest POMDPs that can be conceived. There are two doors, where

behind one of them is a tiger and behind the other a treasure (see Figure 17). The agent must choose

between three possible actions: pick the left door, the right door or listen to try and figure out in what

door the tiger is. If the agent finds the treasure, it gets a reward of 5, whereas if he picks the tiger he

gets a reward of −10. Listening is not free, as it also comes with a negative reward of −1. Furthermore,

listening does not always give away the position of the tiger correctly: it fails 15% of the time.

After the agent has chosen a door, the tiger and treasure are randomly re-assigned to different doors

to make the decision process continue. In this problem, the sets of states, actions, observations, and

rewards are the following:

• S = {tiger left, tiger right}

• A = {left door, right door, listen}
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Figure 17: Representation of the tiger problem.

• Ω = {tiger left, tiger right}

• R = {−10,−1, 5}

To excel at this problem, the agent must balance obtaining information about where the tiger is, keeping

in mind that listening negatively affects its rewards, and picking the right door.

7.2.2 Robot exploration problem

The robot exploration problem, represented in Figure 18, encompasses a robot that is trying to find a

treasure chest. The robot can move between four rooms, where each room can be a hall or the treasure

room (TR), and are circularly connected. There are two possibilities for the agent to move: clockwise (CW)

or counterclockwise (CCW). Either way, moving is time-consuming and gives the agent a reward of −1.

However, once the agent reaches the treasure room, it does not immediately find the treasure. Instead, it

can choose to pull between two levers:

• leverA: gives a 70% chance of lowering the treasure, giving the robot a reward of 10. The other

30% of the time, it drops a weight on the robot, slightly damaging it, giving it a reward of −5.

• leverB : gives a 90% chance of lowering the treasure, giving the robot a reward of 10. The other

10% of the time, it drops a very heavy weight on the robot, causing it significant damage, giving it

a reward of −20.

Naturally, if the robot tries to pull either of the levers when it is not in the treasure room, nothing

happens. As for the observations, the agent can only receive two of them: either it is in a hall, or in the
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Figure 18: Diagram of the robot exploration problem

treasure room. Nevertheless, the robot’s sensors are faulty and give it the wrong observation 10% of the

time.

Finally, when the robot pulls a lever, it is sent back into Hall1, to continue the decision-making process.

The sets of states, actions, observations, and rewards are therefore the following:

• S = {Hall1,Hall2,Hall3, TR}

• A = {CW, CCW, leverA, leverB}

• Ω = {Hall, TR}

• R = {−20,−5,−1, 10}

This problem mixes exploring the environment to find the treasure room and choosing the best lever to

maximize the agent’s rewards. The best lever turns out to be leverB , because it has the highest expected

reward:

• For leverA: E (Rt+1|TR, leverA) = −5× 0.3 + 10× 0.7 = 5.5

• For leverB : E (Rt+1|TR, leverB) = −20× 0.1 + 10× 0.9 = 7

7.3 Results

All of the data collection was performed for multiple configurations of each experiment, varying two quan-

tities of the lookahead algorithms: the horizon H of the lookahead, and the number of classical samples
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nc for the sampling processes. For each configuration of each experiment, a total of 40 different runs over

50 time-steps were performed, in order to collect data on multiple different ways that the experiment could

have played out over those 50 time-steps, should small deviations change the course of the experiment.

Moreover, although the number of samples for performing the algorithms varies depending on the config-

uration that is being run, the average rewards (and standard deviations) used as metrics for the algorithm

evaluation are collected using 250 samples for every configuration, to assure a high degree of confidence

on the results obtained. The same is true for the calculations of the classical and quantum coefficients cl

and ql, respectively.

7.3.1 Cumulative reward comparison

Firstly, comparing only the classical algorithm with H = 1 to itself over the various different numbers of

classical samples nc, as in Figure 19, it is possible to check whether each algorithm has a big separation

in its cumulative rewards just by varying the number of samples:

(a) (b)

Figure 19: Comparison of the performance of the classical lookahead with horizon H = 1 over different

numbers of classical samples for a) the tiger problem, and b) the robot exploration problem. The higher

the cumulative reward, the better the performance.

From Figure 19 it can be seen that the Tiger problem is the one most likely to have a good separation

of cumulative rewards, since its curves are the ones that are most spread out in all of the experiments.

This is not the only factor that determines whether or not a good separation of the classical and quantum

algorithms is found, as the ratio cl
ql
also determines how many extra quantum samples can be leveraged

against the classical lookahead algorithm. The separation between the two algorithms in the following

results is a trade-off between these two possible sources of separation.

For the same setting, if the classical and quantum algorithms are compared, the following results are

obtained:
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(a) (b)

Figure 20: Comparison of the performance of the classical lookahead with horizon H = 1 against the

quantum lookahead over different numbers of classical samples for a) the tiger problem, and b) the robot

exploration problem. A positive difference implies an advantage to the quantum lookahead.

As expected, results from Figure 20 show that there is no separation between the classical and quan-

tum algorithm for H = 1, independently of the number of classical samples used, for any experiment.

This is because the number of classical and quantum samples is the same for H = 1, as this horizon

only considers the immediate reward for each action, and does not need to perform the belief update

necessary for the quantum speedup. As such, the performance of both these algorithms, independently

of the experiment, is identical for a horizon of 1, as the results confirm.

Moving on to a horizon of H = 2, agents are able to look two time-step into the future in order to

perform their actions. The cumulative reward difference between the quantum and classical lookahead

algorithms is shown in Figure 21:

(a) (b)

Figure 21: Cumulative reward difference of the quantum and classical lookahead with horizon H = 2

over different numbers of classical samples for a) the tiger problem, and b) the robot exploration problem.

A positive difference implies quantum advantage.
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As Figure 21 clearly depicts, there is a noticeable separation between the quantum and classical

lookahead algorithms, with the quantum algorithm having an advantage. For the Tiger problem, the

expected cumulative reward is significantly higher in the quantum case when using 5 classical samples,

with this difference dropping as the number of classical samples increases. This likely occurs because

the tiger problem has very simple dynamics, and therefore adding more and more samples to get better

decisions has diminishing returns. However, for the robot problem, the reward difference increases with

the number of classical samples. It is possible that this increase is due to the more complex dynamics

of this environment, requiring a higher number of samples to extract good decisions from the lookahead

algorithm. Nonetheless, both problems agree on a better decision-making capacity for quantum agents.

Another relevant distinction is that the reward difference is higher in the tiger problem than in the robot

exploration problem. There are three main aspects that can account for these differences:

1. The ratio cl
ql
. The higher the ratio, the higher the quantum advantage.

2. The rewards of the environments. Environments with higher (and more frequent) rewards will gen-

erally lead to higher expected rewards.

3. How sensitive the problem is to sample variations. If a small difference in the number of samples

of a problem provides a large improvement in the rewards of the agent, that problem is likely to

have a large quantum advantage in its rewards.

All of these experiments have somewhat similar rewards, so point number 2 should not be too impact-

ful. From the two experiments, the robot exploration problem has a higher ratio, averaging 2.76, with the

tiger problem having a smaller ratio of 1.54. This means that the robot problem gets more extra samples

compared to the tiger problem, according to Equation (7.1). In contrast, as seen in Figure 19, the tiger

problem presents a higher reward sensitivity with respect to the number of samples. As such, even with a

smaller ratio, it is possible (and is observed in Figure 21) for the tiger problem to have a higher cumulative

reward difference than the robot exploration problem.

7.3.2 Execution time comparison

For the execution time comparison, results for horizon H = 1 are not considered, since there is no

quantum advantage for this scenario as already stated and experimentally shown above.

Nevertheless, considering a horizon of H = 2, the quantum algorithm should start showing an

execution time speedup over the classical algorithm, as it has a reduced time complexity. The results for

the execution time are presented in Figure 22:
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(a) (b)

Figure 22: Mean decision-making execution time over time of the quantum and classical lookahead al-

gorithms. The algorithms were executed with a horizon H = 2 and using 5 classical samples for the

experiments: a) the tiger problem, and b) the robot exploration problem. The lower the execution time,

the better the performance.

The execution time difference results clearly show that the quantum algorithm has a time complexity

advantage over its classical counterpart for every experiment. Moreover, the robot exploration problem

has the most noticeable quantum advantage, given it has the highest cl
ql
ratio, averaging 2.76. The tiger

problem has a mean ratio of 1.54, leading to a more modest speedup, as can be seen by comparing the

slopes of the lines of Figure 22.

7.4 Discussion

The quantum lookahead algorithm, as detailed in Chapter 6, has an advantage in terms of time complexity

when compared to its classical alternative, which is dependent on the specific problem the algorithm is

applied to.

In order to quantify this advantage, this Chapter compares the cumulative reward gathered by agents

that use each of these algorithms across different experiments, to verify what kind of advantage the time

complexity speedup of the quantum lookahead algorithm might provide to the quantum agent.

Two different aspects appear to be important for a specific problem to be able to get the full advantage

of the quantum lookahead algorithm:

• A high sensitivity to varying the number of samples. That is, small variations in the number of

samples used for that problem lead to high variations in the agent’s cumulative reward.

• A high ratio cl
ql
, quantities defined in Section 6.2. The higher this ratio is, the higher the number of
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extra quantum samples (relative to the base number of classical samples) an agent can leverage.

The results presented in Section 7.3 show an advantage of the quantum algorithm across all experi-

ments, clearly demonstrating that these quantum agents are better decision-makers. The tiger problem

quantum advantages come mainly from its high sensitivity to the number of samples, even with its low

ratio. The opposite is true for the robot exploration problem, having a low sensitivity but compensating

with a high ratio, allowing quantum agents to use many more samples to make their decisions.

The time complexity results further confirm the theoretical complexity analysis of Chapter 6. It was

observed that the quantum algorithm has a clear speedup across all experiments, especially those with a

high cl
ql
ratio, such as the robot exploration problem.
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Chapter 8

Conclusions and future work

8.1 Conclusions

This dissertation studied the interplay between Bayesian networks, reinforcement learning, and quantum

computing. The main aim was to verify whether or not quantum computing could have a positive impact

on reinforcement learning based on Bayesian networks. It was possible to conclude that quantum com-

puting does seem to bring advantages to this specific problem. The advantages reported in this work are

comparable to those verified in Grover’s algorithm, but not nearly as noticeable as landmark algorithms

with exponential separation such as Shor’s algorithm or QFT.

A quantum version of a lookahead algorithm for solving POMDPs is advantageous when compared to its

classical counterpart in terms of time complexity, with a speedup that can be quadratic at most, as proved

in Chapter 6. This naturally implies that the quantum lookahead algorithm studied in this work can reduce

the decision-making times of reinforcement learning agents, making them more efficient. Alternatively,

as detailed in Chapter 7, this speedup can be leveraged to make more informed decisions than with the

classical lookahead in the same amount of time, significantly improving the rational decision-making skills

of agents.

Another very interesting conclusion of this work is the fact that using quantum rejection sampling

for dynamic decision networks only leads to time complexity speed-ups when they represent partially ob-

servable reinforcement learning environments. This is because this quantum sampling subroutine is only

advantageous for performing a belief-update operation, which is only necessary when solving POMDPs.

In contrast, all fully observable MDP distributions can be extracted using direct sampling instead, an al-

gorithm that is more efficiently performed on a classical computer. As a consequence, fully observable

Markov decision processes should not make use of quantum rejection sampling, as this would lead to

poorer performance.
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8.2 Prospects for future work

For future work, a very interesting approach would be the development of a fully quantum algorithm for

extracting an action from the lookahead tree of the classical lookahead algorithm of Section 3.4, and

comparing this method with both the classical and the quantum-classical hybrid lookahead algorithms

proposed in this work. A possible starting point for developing this algorithm is the encoding of every tree

branch into a quantum circuit, followed by the encoding of the expected return of each branch into the

amplitude of its corresponding quantum state. Were this possible, the actions most likely to be measured

from this quantum circuit would be the actions that are more likely to yield a high expected return for

the agent. This approach is similar to the one applied by de Oliveira and Barbosa [2021], where the

authors develop a quantum unitary operator that weights the probability amplitudes of the quantum states

by their utility. This operator, however, is devised in the context of static decision-making and would have

to be revised in order to be applied not to a static utility, but to a sequence of rewards, to account for the

sequential decision-making process applied in reinforcement learning.

Finally, this dissertation focuses on model-based approaches for solving reinforcement learning prob-

lems, as it is assumed that a model of the environment is known (in the form of a dynamic decision

network). An alternative is the study of model-free methods using quantum sampling techniques. This

would imply both not only using a model of the environment to choose actions, but also learning that

model from the data the agent receives by interacting with its environment. This approach could even

build on the work of this dissertation by using structure learning algorithms to determine a structure for

the dynamic decision networks from data, and later using the quantum lookahead algorithm presented

here to extract a good action.
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Appendix A
Quantum reward and observation sampling

A.1 Quantum reward sampling

Once again leveraging the quantum rejection sampling algorithm, the same principles for constructing a

quantum belief update can be used to perform a quantum reward sampling. This operation entails the

extraction of the reward dynamics P (r|b, a) of a DDN.

Consider the same circuit as in Figure 16, now with the measurement performed on the reward node

and without the amplitude amplification operator, as in Figure 23:

St

b(s)

St+1

At

Ot+1Rt+1

(a)

St : |0〉⊗k1

At : |0〉⊗k2

St+1 : |0〉⊗k3

Ot+1 : |0〉⊗k4

Rt+1 : |0〉⊗k5

U(b)

U(a)

U1
U2
U3

(b)

Figure 23: a) A DDN for performing the reward sampling operation. Green nodes are encoded and red
nodes are measured in the quantum circuit on the right. b) Quantum circuit for reward sampling using
the DDN on the left.

To prove that this algorithm in fact extracts the desired probability distribution, recall that it is the same

quantum circuit as in the quantum belief update procedure, except the measurement is now on the reward

RV and no observation needs to be amplified. As such, the final quantum state for this circuit is the same

as Lemma 5.2.6:

|ψfinal(b, a)〉 =
∑
s∈S

√
b(s)

∑
s′∈S

√
P (s′|s, a)

∑
o∈Ω

√
P (o|s′, a)

∑
r∈R

√
P (r|s′, a) |sas′or〉 (A.1)

Nonetheless, calculating the measurement probabilities now is slightly different. The same approach

used to calculate the density matrix and find its expectation is followed, but the density matrix is now

constructed by executing a partial trace on every RV except for the reward one.
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Using this procedure, Lemma A.1.1 shows that the quantum circuit encodes the desired probability

distribution in its measurement outcomes:

Lemma A.1.1. The measurement probabilities of the quantum circuit in figure 23 follow the reward
dynamics P (r|b, a) of its DDN:

〈r|ρ(b, a)|r〉 = P (r|b, a)

Proof. First, for the calculation of the partial density matrix for the circuit:

ρ(b, a) =
∑

s,a′,o′,s′

〈sa′s′o′|ψfinal(b, a)〉 〈ψfinal(b, a)|sa′s′o′〉

=
∑

s,a′,o′,s′

(∑
s⋆∈S

√
b(s⋆)

∑
s⋆∈S

√
P (s⋆|s⋆, a)

∑
o∈Ω

√
P (o|s⋆, a)

∑
r∈R

√
P (r|s⋆, a) 〈sa′s′o′|s⋆as⋆or〉

)
(∑

s⋆∈S

√
b(s⋆)

∑
s⋆∈S

√
P (s⋆|s⋆, a)

∑
o∈Ω

√
P (o|s⋆, a)

∑
r∈R

√
P (r|s⋆, a) 〈s⋆as⋆or|sa′s′o′〉

)

=
∑

s,a′,o′,s′

(∑
s⋆∈S

√
b(s⋆)

∑
s⋆∈S

√
P (s⋆|s⋆, a)

∑
o∈Ω

√
P (o|s⋆, a)

∑
r∈R

√
P (r|s⋆, a)δss⋆δaa′δs′s⋆δoo′ |r〉

)
(∑

s⋆∈S

√
b(s⋆)

∑
s⋆∈S

√
P (s⋆|s⋆, a)

∑
o∈Ω

√
P (o|s⋆, a)

∑
r∈R

√
P (r|s⋆, a)δss⋆δaa′δs′s⋆δoo′ 〈r|

)

=
∑
s∈S

b(s)
∑
s′∈S

P (s′|s, a)
∑
o∈Ω

P (o|s′, a)

(∑
r∈R

√
P (r|s, a) |r〉

)(∑
r∈R

√
P (r|s, a) 〈r|

)

Using this density matrix, the probability of measuring reward Rt+1 with value r is given by the
expression:

〈r|ρ(b, a)|r〉 =
∑
s∈S

b(s)
∑
s′∈S

P (s′|s, a)
∑
o∈Ω

P (o|s′, a)

(∑
r′∈R

√
P (r′|s, a) 〈r|r′〉

)(∑
r′∈R

√
P (r′|s, a) 〈r′|r〉

)

=
∑
s∈S

b(s)
∑
s′∈S

P (s′|s, a)
∑
o∈Ω

P (o|s′, a)

(∑
r′∈R

√
P (r′|s, a)δrr′

)(∑
r′∈R

√
P (r′|s, a)δr′r

)
=
∑
s∈S

b(s)
∑
s′∈S

P (s′|s, a)
∑
o∈Ω

P (o|s′, a)P (r|s, a)

=
∑
s∈S

b(s)P (r|s, a)
∑
s′∈S

P (s′|s, a)
∑
o∈Ω

P (o|s′, a)

=
∑
s∈S

b(s)P (r|s, a)

= P (r|b, a)

Similarly to the belief update, Lemma A.1.1 states that the quantum circuit in Figure 23 is able to

encode the environment’s reward dynamics in its measurement outcomes. Therefore, by extracting ri ∼
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P (r|b, a), i = {1, . . . , n} reward samples from this circuit, the reward dynamics can be approximated

using the following equation:

Pn(r|b, a) =
1

n

n∑
i=1

δrri (A.2)

Where Pn(r|b, a) is an approximator for the reward dynamics P (r|b, a) using n samples. Nonethe-

less, the usefulness of gathering the reward dynamics is to estimate the expected reward E(R|b, a), as

this quantity shows up in every calculation of RL values. The expectation value can be easily related to the

reward dynamics by the following equation:

E(R|b, a) =
∑
r∈R

P (r|b, a)r (A.3)

such that an estimator for the expectation value can be calculated using the estimator of the reward

dynamics:

En(R|b, a) =
∑
r∈R

Pn(r|b, a)r (A.4)

Although this section shows that it is possible to extract the reward dynamics from the environment

using a quantum circuit, it is disadvantageous to use this method when compared to the classical case.

This is because its quantum implementation does not require amplitude amplification, which is the source

of the quadratic speedup in quantum rejection sampling. Instead, this algorithm is a quantum version of

direct sampling, where the DDN only needs to be encoded into a quantum circuit. However, as already seen

in Section 4.4.1, quantum direct sampling is disadvantageous when compared to its classical counterpart,

because of the exponential cost associated with BN encoding.

A.2 Quantum observation sampling

This section, which is analogous to the previous two sections, shows how to extract the observation prob-

ability distribution P (o|b, a) from a DDN using a quantum circuit.

The setup is analogous to the quantum reward sampling: construct a circuit that encodes the DDN

and measures the observation RV (see Figure 24).

The claim is that this circuit encodes the probability distribution P (o|b, a) in its measurement out-

comes. To prove this, the same approach of the previous sections is followed. First, recall the final state

of this circuit, analogous to quantum reward sampling:

|ψfinal(b, a)〉 =
∑
s∈S

√
b(s)

∑
s′∈S

√
P (s′|s, a)

∑
o∈Ω

√
P (o|s′, a)

∑
r∈R

√
P (r|s′, a) |sas′or〉

By calculating the partial density matrix for the observation RV and its expectation value, Lemma A.2.1

proves that the initial claim is true.
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Figure 24: a) A DDN for performing the observation sampling operation. Green nodes are encoded and
red nodes are measured in the quantum circuit on the right. b) Quantum circuit for observation sampling
using the DDN in the sub-figure on the left.

Lemma A.2.1. The measurement probabilities of the quantum circuit in Figure 24 follow the observation
probability distribution P (o|b, a) of its DDN:

〈o|ρ(b, a)|o〉 = P (o|b, a)

Proof. First, let us start by computing the partial density matrix for the circuit:

ρ(b, a) =
∑

s,a′,s′,r′

〈sa′s′r′|ψfinal(b, a)〉 〈ψfinal(b, a)|sa′s′r′〉

=
∑

s,a′,s′,r′

(∑
s⋆∈S

√
b(s⋆)

∑
s⋆∈S

√
P (s⋆|s⋆, a)

∑
o∈Ω

√
P (o|s⋆, a)

∑
r∈R

√
P (r|s⋆, a) 〈sa′s′r′|s⋆as⋆or〉

)
(∑

s⋆∈S

√
b(s⋆)

∑
s⋆∈S

√
P (s⋆|s⋆, a)

∑
o∈Ω

√
P (o|s⋆, a)

∑
r∈R

√
P (r|s⋆, a) 〈s⋆as⋆or|sa′s′r′〉

)

=
∑

s,a′,s′,r′

(∑
s⋆∈S

√
b(s⋆)

∑
s⋆∈S

√
P (s⋆|s⋆, a)

∑
o∈Ω

√
P (o|s⋆, a)

∑
r∈R

√
P (r|s⋆, a)δss⋆δaa′δs′s⋆δrr′ |o〉

)
(∑

s⋆∈S

√
b(s⋆)

∑
s⋆∈S

√
P (s⋆|s⋆, a)

∑
o∈Ω

√
P (o|s⋆, a)

∑
r∈R

√
P (r|s⋆, a)δss⋆δaa′δs′s⋆δrr′ 〈o|

)

=
∑
s∈S

b(s)
∑
r∈R

P (r|s, a)
∑
s′∈S

P (s′|s, a)

(∑
o∈Ω

√
P (o|s′, a) |o〉

)(∑
o∈Ω

√
P (o|s′, a) 〈o|

)

Using this density matrix, the probability of measuring reward Ot+1 with value o is given by the
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expression:

〈o|ρ(b, a)|o〉 =
∑
s∈S

b(s)
∑
r∈R

P (r|s, a)
∑
s′∈S

P (s′|s, a)

(∑
o′∈Ω

√
P (o′|s′, a) 〈o|o′〉

)(∑
o′∈Ω

√
P (o′|s′, a) 〈o′|o〉

)

=
∑
s∈S

b(s)
∑
r∈R

P (r|s, a)
∑
s′∈S

P (s′|s, a)

(∑
o′∈Ω

√
P (o′|s′, a)δoo′

)(∑
o′∈Ω

√
P (o′|s′, a)δo′o

)
=
∑
s∈S

b(s)
∑
r∈R

P (r|s, a)
∑
s′∈S

P (s′|s, a)P (o|s′, a)

=
∑
s′∈S

P (o|s′, a)
∑
s∈S

P (s′|s, a)b(s)
∑
r∈R

P (r|s, a)

=
∑
s′∈S

P (o|s′, a)
∑
s∈S

P (s′|s, a)b(s)

=
∑
s′∈S

P (o|s′, a)P (s′|b, a)

Now, consider the following independence statement: RV Ot+1 is independent of St when St+1 is
known1, such that P (o|s′, a) = P (o|s′, b, a). Therefore, the expectation value above can be re-written
as:

〈o|ρ(b, a)|o〉 =
∑
s′∈S

P (o|s′, a)P (s′|b, a)

=
∑
s′∈S

P (o|s′, b, a)P (s′|b, a)

=
∑
s′∈S

P (o|s′, b, a)P (s
′, b, a)

P (b, a)

=
∑
s′∈S

P (o, s′, b, a)

P (b, a)

=
∑
s′∈S

P (o, s′|b, a)

= P (o|b, a)

Given that the quantum circuit of Figure 24 does indeed capture the observation distribution P (o|b, a)

in its measurement outcomes, it is possible to estimate this probability distribution in a quantum device. To

do this, collect n observation samples oi ∼ P (o|b, a), i = {1, . . . , n} and use the following expression

to construct the estimator Pn(o|b, a):

Pn(o|b, a) =
1

n

n∑
i=1

δooi (A.5)

1 St, St+1 and Ot+1 form a chain in the DDN of Figure 24. A chain of three RVs is a very common example of independence tests in BNs: the leaf RV
(Ot+1) is independent of the root RV St when the middle RV (St+1) is known.
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Just as in the reward sampling case, extracting this probability distribution in a quantum device is dis-

advantageous relative to its classical counterpart, because it does not leverage the amplitude amplification

technique.
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Appendix B
Complexity analysis auxiliary results

To derive an upper bound on the lookahead algorithm’s error of Definition 6.1.1, some lemmas are of use.

One example is Lemma B.0.1, an inequality that relates the difference of the maxima of two vectors and

the maximum of their difference:

Lemma B.0.1. Let U ,V ∈ W be vectors in some vector spaceW . Then:

‖U‖∞ − ‖V ‖∞ ≤ ‖U − V ‖∞

Proof. Let Ui and Vi represent entries of U and V , respectively. Then:

Ui ≤ |Ui − Vi|+ Vi

max
i
Ui ≤ max

i
(|Ui − Vi|+ Vi)

max
i
Ui ≤ max

i
|Ui − Vi|+ max

i
Vi

max
i
Ui − max

i
Vi ≤ max

i
|Ui − Vi|

‖U‖∞ − ‖V ‖∞ ≤ ‖U − V ‖∞

Another result that is used repeatedly throughout the proofs of Chapter 6 is a generalization of the

triangle’s inequality, stated in Lemma B.0.2:

Lemma B.0.2. Let U ,V ∈ W be vectors in an Euclidean spaceW . Then:

‖U + V ‖ ≤ ‖U‖+ ‖V ‖

Proof.
‖U + V ‖ =

√
‖U‖2 + ‖V ‖2 + 2U⊤V

Using the Cauchy-Schwarz inequality, stating that
∣∣U⊤V

∣∣ ≤ ‖U‖‖V ‖, we get:
‖U + V ‖ ≤

√
‖U‖2 + ‖V ‖2 + 2‖U‖‖V ‖

‖U + V ‖ ≤ ‖U‖+ ‖V ‖
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Lemma B.0.3 simplifies a finite geometric series into a fraction:

LemmaB.0.3. The finite geometric series can be simplified according to the following expression Herman
and Strang [2016]:

N∑
i=0

zi =
zN − 1

z − 1

Finally, a variation of the finite geometric series is also simplified in Lemma B.0.4:

Lemma B.0.4. A variation of the finite geometric series of Lemma B.0.3 can be simplified according to
the following expression Herman and Strang [2016]:

N∑
i=0

izi =
(N − 1)zN+1 −NzN + z

(z − 1)2
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