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Abstract: Understanding disease dynamics is crucial for accurately predicting and effectively man-
aging epidemic outbreaks. Mathematical modeling serves as an essential tool in such understanding.
This study introduces an advanced susceptible, infected, recovered, and dead (SIRD) model that
uniquely considers the evolution of the death parameter, alongside the susceptibility and infection
states. This model accommodates the varying environmental factors influencing disease suscepti-
bility. Moreover, our SIRD model introduces fractional changes in death cases, which adds a novel
dimension to the traditional counts of susceptible and infected individuals. Given the model’s com-
plexity, we employ the Laplace-Adomian decomposition method. The method allows us to explore
various scenarios, including non-fuzzy non-fractional, non-fuzzy fractional, and fuzzy fractional
cases. Our methodology enables us to determine the model’s equilibrium positions, compute the
basic reproduction number, confirm stability, and provide computational simulations. Our study
offers insightful understanding into the dynamics of pandemic diseases and underscores the critical
role that mathematical modeling plays in devising effective public health strategies. The ultimate
goal is to improve disease management through precise predictions of disease behavior and spread.

Keywords: decomposition; epidemic models; fractional changes; Laplace-Adomian; stability

1. Introduction and Background

Epidemic modeling, a crucial subfield of mathematical biology [1], has provided
invaluable insights into comprehending and forecasting disease dynamics [2–6]. The well-
being of individuals is frequently influenced by diverse environmental factors, such as
air pollution, contaminated water, and climate fluctuations, rendering us susceptible to a
broad range of diseases [7]. Within this spectrum, infectious diseases transmitted through
various means pose a substantial global health challenge [8].

When these infectious diseases affect a localized population, they are considered
epidemics. However, when such diseases cross geographical boundaries and affect in-
dividuals on a global scale, they evolve into pandemics. Effective management of these
diseases heavily depends on our ability to predict their behavior and spread, a task often
accomplished through mathematical models [9–11].

In the field of fuzzy mathematics [12,13], the introduction of fuzzy sets marked a
significant advancement [14], and the progress was furthered with the proposal of fuzzy
differential equations [15]. Additionally, an extension of the Newton method for a system of
nonlinear equations was introduced by using a modified version of the Laplace-Adomian
decomposition method (LADM) [16–19], a method that has been applied in the analysis of
nonlinear systems related to diseases.
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In light of the emergence and impact of recent pandemics, considerable research has
been conducted to improve our understanding of the disease [20]. Novel dynamic aspects
of the susceptible, exposed, infected, and recovered (SEIR) epidemic model [21] have been
presented with applications in the understanding of diseases such as COVID-19 [5]. More
recent studies have delved into the dynamics of a susceptible, infectious, recovered, and
vaccinated (SIRV) model [22], employing the LADM in conjunction with a vaccination
strategy [23]. Numerical solutions for a differential system considering a pure hybrid fuzzy
neutral delay theory were also provided, offering new insights into disease modeling [24].
A fractional influenza model was presented in [25]. A stochastic model for the COVID-19
outbreak was stated in [26]. The dynamics of the COVID-19 pandemic in India under
lockdown was introduced in [27]. In [28], modeling of the COVID-19 dynamics with
fractional derivatives was carried out [29]. A fractional model and optimal control of tumor
surveillance with a non-singular derivative operator was presented in [30]. In [31], an
estimator for discrete-time SEIR epidemic models was proposed.

Now, new approaches to disease modeling are being considered, such as the use of a
fractal-fractional model that addresses the psychological effects of COVID-19 [7]. Similarly,
a comprehensive model for the hepatitis B virus infection that includes vaccination and
hospitalization through a fractional framework has been developed, expanding our under-
standing of disease dynamics [32]. Furthermore, a new regression model for fractiles has
been proposed, which proves particularly beneficial in handling covariate-related response
variables that frequently arise in disease data.

Machine learning techniques are also being employed for tasks such as classifying
COVID-19 based on amino acid encoding [33] and predicting COVID-19 trends [34]. Stud-
ies have also utilized mathematical modeling to evaluate the impact of COVID-19 on
the economy [35] and predict cryptocurrency returns based on gold prices during the
pandemic [36]. Statistical analyses for the epidemiological surveillance of COVID-19 have
also been performed [37], along with the development of data-driven tools for assessing
and combating COVID-19 outbreaks [38]. Principal component analysis has been employed
to study infected cases and deaths due to COVID-19 in South American countries [39].
Survival models employing Weibull regression and machine learning have been applied
to biomedical data related to cardiac surgery [40], while autoregressive moving average
time series models have been stated in [35] for financial applications under the COVID-19
pandemic [35]. All of these advancements in epidemic modeling demonstrate its ongoing
evolution, with researchers increasingly turning towards complex mathematical methods
and computational tools to better understand and predict disease behavior. Therefore, the
objective of the present study is to develop a new epidemic model based on susceptible,
infected, recovered, and death cases (SIRD).

This article is divided into four sections. In Section 1, we provided an overview of the
research field and outline the proposed SIRD model. Section 2 clarifies essential concepts
and introduces the analytical strategies. In Section 3, the findings from applying the model
are presented and discussed, which is further divided into the analytical solution to the
problem and the fuzzy-valued solutions. Finally, Section 4 concludes the main findings of
the study, along with implications and directions for future research.

2. Methodology

In this section, we state a detailed explanation of the methodology used in our study.

2.1. SIRD Epidemic Model

Consider the fuzzy fractional model under an Atangana–Baleanu Caputo (ABC)
derivative, ABC∆α f (t) namely. This model is closed as we assume no new birth or death
will occur. The model is based on the following: an unknown disease spreads in a place
where there are a few susceptible, infected, and recovered individuals, and a few have died
out of the overall population. We assume that at the stage of observation, it is noted that a
few people died due to the severity of the disease, lack of immunity, or lack of medication.
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We also assert that no new individuals were further deceased or are expected to be
susceptible. This model aims to improve the susceptible, infectious, and recovered (SIR)
epidemic model [41,42]. The classical epidemic models do not account for changes in
susceptible, infected, and deceased cases (SID). In any common flu or severe disease, it is
natural that some people recover, some die, and the recovered people may become infected
again. Recovered individuals are also part of the susceptible group. Both recovered and
deceased individuals are free from infection, but the recovered individuals may become
infected again or even die naturally, whereas deceased individuals would not become
infected, susceptible, or recovered. Thus, the SIRD model is an extended version of the
traditional SIR model, including an additional D compartment for those who have suc-
cumbed to the disease, which allows one to gain more accurate and comprehensive insights
into the progression and impact of the disease in the population [43,44]. Furthermore, the
SIRD model provides the ability to differentiate the rates of mortality from the recovery
rates, which can provide critical information in evaluating the severity and managing the
outbreak. The model given in (1) enhances the SIRD model further by integrating it with a
fuzzy fractional-order system, providing a more flexible and sophisticated tool to handle
the inherent uncertainty and complexity associated with real-world epidemic scenarios [45].
The model accounts for uncertain parameters in the transmission dynamics, which better
characterizes the practical uncertainties such as heterogeneity in population, the stochastic
nature of human behaviors, and unpredictability in disease progression. This model is
formulated as

∆S(t) = −βS(t)I(t)
∆I(t) = βS(t)I(t)− (δ + ψ)I(t)
∆R(t) = (δ− ψ)I(t)− ψR(t)
∆D(t) = (ψ− δ)I(t)− ψD(t),

(1)

with ∆ = d/dt, a time derivative representing the rate of change in the population of
susceptible, infected, recovered, and dead individuals.

We develop a new SIRD epidemic model for which we require parameters (rates) β, δ,
and ψ according to Figure 1, where β is the transition rate from susceptible (S) to infected (I),
δ is the rate from infected (I) to recovered (R), and ψ is the rate from infected (I) to deceased
(D). These rates are crucial in understanding the spread of a disease in a population.

Figure 1. Model formulation and compartment transition rates.

2.2. Preliminary Concepts and Definitions

Next, we present some known results of fractional differential equations in terms of
fuzzy numbers [46]. We propose a modification by using the ABC derivative instead of the
integer derivative given in the model stated in (2). The motivation behind this modification
is rooted in the characteristics of fractal-fractional calculus.

Fractional calculus allows for derivatives and integrals of non-integer orders, pro-
viding a tool to model real-world phenomena more accurately compared to classical
integer-order calculus. The transition to fractional calculus in the context of epidemiologi-
cal models provides a higher degree of freedom, capturing the complexity and anomalous
dynamics inherent in the spreading process of diseases.
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Furthermore, the ABC derivative represents a specific type of fractional derivative,
incorporating the concept of fractal dimensions. Indeed, fractal dimensions describe
situations where data are between two integers, offering a sophisticated representation of
real-world systems that exhibit non-integer dimensions due to their complex, irregular, and
fragmented structure. The ABC derivative, by integrating the fractal dimension with the
fractional order, helps in capturing the intricacies of disease propagation more realistically.

As a result, the system of differential equations stated in (1) can be rewritten as a
fractional system of differential equations (FSDE) in terms of ABC derivatives, as presented
in (2). This FSDE encapsulates the complex and non-linear nature of the SIRD model,
providing a more realistic tool to understand and predict the course of epidemics. Choice
of the ABC derivative over the integer derivative stems from its ability to provide more
realistic results by considering the fractal nature of real-world phenomena, for example,
the spread of diseases in populations.

Definition 1 ([8,47]). The ABC fractional derivative is defined for a function f over the
interval [0, t] as

ABC∆α
[0,t] f (t) =

F(α)
(1− α)

∫ t

0
f ′(µ)Eα

(
−α(t− µ)α

(1− α)

)
dµ,

where 0 < α ≤ 1 is the fractional order and the Mittag-Leffler function of order α is given by

Eα(z) =
+∞

∑
k=0

zk

Γ(kα + 1)
.

As in the Caputo–Fabrizio case [47], F(α) = (1− α)/Γ(1− α) is a normalization function
that satisfies F(0) = F(1) = 1.

Definition 2 ([8]). The Laplace transform of the ABC derivative is presented as

L{ABC∆α
[0,t] f (t)}(s) = F(α)

(1− α)

(
sαL{ f (t)}(s)− sα−1

sα + α/(1− α)

)
,

where 0 < α ≤ 1.

Definition 3 ([8]). The Atangana–Baleneanu integral of a function f (t) of order α > 0 is
established as

ABC Jα
[0,t] f (t) =

(1− α)

F(α)
f (t) +

α

F(α)Γ(α)

∫ t

0
f (µ)(t− µ)α−1dµ.

The integral combines the function f (t), the normalization function F(α), and the usual
gamma function. It converges to a classical integral as α approaches 1.

Next, we present the FSDE consisting of four equations describing the dynamics of a
SIRD model as

ABC∆α1 S(t) = −βS(t)I(t)

ABC∆α2 I(t) = βS(t)I(t)− (δ + ψ)I(t)

ABC∆α3 R(t) = (δ− ψ)I(t)− ψR(t)

ABC∆α4 D(t) = (ψ− δ)I(t)− ψD(t).

(2)
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In the fuzzy fractional order system of differential equations, the same four expressions
presented in (2) are modified by introducing fuzzy numbers (0.75 + 0.25r, 1.125− 0.125r), with
r ∈ [0, 1], to state uncertain parameters and then we have

ABC∆α1 S̃(t) = (0.75 + 0.25r, 1.125− 0.125r)(−βS(t)I(t))
ABC∆α2 Ĩ(t) = (0.75 + 0.25r, 1.125− 0.125r)(βS(t)I(t)− (δ + ψ)I(t))
ABC∆α3 R̃(t) = (0.75 + 0.25r, 1.125− 0.125r)(δ− ψ)I(t)− ψR(t)
ABC∆α4 D̃(t) = (0.75 + 0.25r, 1.125− 0.125r)(ψ− δ)I(t)− ψD(t).

(3)

In the particular utilization of the fuzzy fractional order system of differential equations,
a fuzzification process is employed. In this process, any given function, f (t) say, is altered
into its fuzzy equivalent according to the universal rule given by

f̃ (t) = (0.75 + 0.25r, 1.125− 0.125r) f (t),

with r ∈ [0, 1] acting as the common guideline for the fuzzification of functions or parame-
ters. In this context, r ∈ [0, 1] symbolizes the degree of fuzziness, where 0 corresponds to
certainty while 1 represents the maximum level of uncertainty.

In the ensuing discourse and in various figures throughout this document, we repre-
sent these fuzzy functions simply as S(t), I(t), R(t), and D(t) for the sake of brevity and
clarity. Nonetheless, it is crucial to remember that these representations stand for their
fuzzy counterparts with a fuzziness degree in the range r ∈ [0, 1].

Moving on to initial conditions, it is assumed that the total population size, denoted
by N, remains constant. This total is derived from the sum of initial populations of
susceptible, infected, recovered, and deceased individuals, mathematically expressed
as S(0) + I(0) + R(0) + D(0) = N. The specific initial population values are given as
S(0) = S0 = m1 = 350, I(0) = I0 = m2 = 400, R(0) = R0 = m3 = 400, and D(0) = D0 =
m4 = 350. Hence, we introduce the parameters β, δ, and ψ, each representing a distinct rate
associated with the disease dynamics, where β denotes the rate at which the susceptible
individuals become infected, given as 0.0007; δ characterizes the rate at which the infected
individuals recover, given as 0.09; and ψ signifies the rate at which the infected individuals
succumb to the disease, given as 0.08.

2.3. Equilibrium and Stability Snalyses

We examine the equilibrium state [48] of the epidemic model and its stability [49,50].
The basic reproduction number, denoted as B0, is particularly important for understanding
the potential of an outbreak. Note that B0 represents the number of secondary infections
produced by a single infected individual throughout the epidemic period. This number is
calculated from the rate of change in the population of infected individuals at the initial
time point t = 0. When

ABC∆α2 I(t0) = 0,

we have
βS(t0)I(t0)− (δ + ψ)I(t0) = 0,

which simplifies to
βS0 I0 − (δ + ψ)I0 = 0,

and it further reduces to
I0(βS0 − (δ + ψ)) = 0.

This last expression gives
βS0 = δ + ψ,

which yields

S0 =
δ + ψ

β
.
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Then, the basic reproduction number is given by

B0 =
S0β

δ + γ
,

where (ψ + δ)/β = Sc. If the initial number of susceptible individuals, S0 say, is less than
the critical threshold, Sc, the disease will not persist in the population. In addition, if
S0 > Sc, the disease is expected to resurge, leading to an epidemic. In our model, the
estimated B0 is approximately 1.44, indicating a likelihood of subsequent waves of infection,
especially when S0 > Sc. Thus, if S0 = 350 and Sc = 242.86 (approximately), the disease is
expected to resurge because S0 is greater than Sc. These conditions suggest that our model
represents a pandemic growth scenario, where the disease continues to spread and recur
within the population.

Now, we analyze the equilibrium points of the FSDE presented in (2) under the
conditions stated as

ABC∆α1 S(t) = 0, ABC∆α2 I(t) = 0, ABC∆α3 R(t) = 0, ABC∆α4 D(t) = 0.

Under these conditions, the system has a disease-free equilibrium point given by DFEP =
(0, 0, 0, 0). It also possesses disease-dependent equilibrium points (DDEP) formulated as

DDEP =

(
δ + ψ

β
, I(t0),

(δ− ψ)I(t0)

ψ
,
(ψ− δ)I(t0)

ψ

)
= (242.857, 400, 50,−50).

To determine whether the model is asymptotically stable, we check if all the eigenval-
ues of the linearized form of the FFDE are less than zero. Let us begin by linearizing the
FFDE given by (2) in the form of the Jacobian matrix expressed as

J =


−βI(t) −βS(t) 0 0
βI(t) βS(t)− (δ + ψ) 0 0

0 δ− ψ −ψ 0
0 ψ− δ 0 −ψ

.

Thus, the characteristic polynomial of J is found to be

0.00031 + 0.00893λ + 0.08680λ2 + 0.36500λ3 + λ4.

Then, the corresponding eigenvalues are −0.1025 + 0.1926 i, −0.1025− 0.1926 i, −0.0800,
and −0.0800, respectively, where i is the complex number. Note that all the eigenvalues
have negative real parts. As shown in Figure 2, the complex plane portrait illustrates that
the negative real parts of the eigenvalues lie within the second and third quadrants, that
is, the left half of the complex plane. Therefore, we conclude that the system we have
considered is asymptotically stable, and the model exhibits stable dynamics around the
equilibrium points.

-0.100 -0.095 -0.090 -0.085

-0.2

-0.1

0.1

0.2

Figure 2. Complex plane plot.
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2.4. Positive Boundedness of Solutions

Next, we conduct an analysis of the positivity and boundedness of the solutions, which
are crucial for any epidemic model. Positivity ensures that the solutions, representing the
population of each compartment, remain non-negative over time, mirroring the biological
reality of non-negative populations. Boundedness guarantees that the solutions do not
increase indefinitely but rather remain within a certain range, considering the finite size of
the population. It become a mandatory aspect when dealing with the real-world situations
to establish that the results are bounded positively. Thus, we are presenting here the
analysis of positiveness of the solutions. From the formulations given in (1) and (2), we
obtain the solutions of S(t), I(t), R(t), and D(t) expressed as

S(t) = S(t0) + e−β
∫ t

t0
I(k)dk, 0 < S(t) < +∞,

I(t) = I(t0) + e
∫ t

t0
(βS(k)−(δ+ψ))dk, 0 < I(t) < +∞,

R(t) = e−r(t−t0)(R(t0) +
∫ t

t0

(ψ− δ)I(k)er(k−t0)dk), 0 < R(t) < +∞,

D(t) = e−r(t−t0)(D(t0) +
∫ t

t0

(δ− ψ)I(k)er(k−t0)dk), 0 < D(t) < +∞,

where “e” is the exponential or Euler function. We know that the total population is the
sum of all cases, that is,

N(t) = S(t) + I(t) + R(t) + D(t),

which is presented as

N(t) = S(t0) + e−β
∫ t

t0
I(k)dk

+ I(t0) + e
∫ t

t0
(βS(k)−(δ+ψ))dk

+e−r(t−t0)

(
R(t0) +

∫ t

t0

(ψ− δ)I(k)er(k−t0)dk
)

+e−r(t−t0)

(
D(t0) +

∫ t

t0

(δ− ψ)I(k)er(k−t0)dk
)

.

From the above expression of N(t), we can conclude that the solution of the total population
is always positive because the initial populations are positive and the solutions S(t), I(t),
R(t), and D(t) are positively bounded. Therefore, 0 < N(t) < +∞. Thus, the total
population is always positively bounded at any time t ∈ [0, ∞) for both expressions
presented in (1) and (2).

3. Results and Analysis

This section presents a comprehensive analysis of our novel SIRD model, including
the analytical solution using the LADM and the examination of fuzzy-valued solutions.

3.1. Analytical Solution Using the LADM

To obtain the analytical solution of the new fractional epidemic model stated in (3), we
employ the LADM, following a similar approach to that used in [19]. The values of S(t),
I(t), R(t), and D(t) are obtained through an iterative procedure formulated as

S(k + 1) = L−1(−β/sα1L(Ak))

I(k + 1) = L−1(β/sα2L(Ak)− (δ + ψ)/sα2L(Ik))

R(k + 1) = L−1((δ− ψ)/sα3L(Ik)− (ψ/sα3L(Rk)))

D(k + 1) = L−1((ψ− δ)/sα4L(Ik)− (ψ)/sα4L(Dk)).

(4)
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In the expressions stated in (4), Ak denotes an Adomian polynomial, which is defined as

Ak =
1
k!

Dk

λk

k

∑
l=0

(
λl Sl λl Il

)∣∣∣∣
λ=0

.

These polynomials are generated iteratively, which is a characteristic feature of the Adomian
decomposition method. This method allows us to approximate the solution of a differential
equation by dividing it into a series of simpler problems. At each iteration, the polynomial
Ak is calculated based on the solution from the previous iteration (or the initial guess for
k = 0) and the non-linear part of the differential equation. This iterative process continues
until the solution converges or a predetermined maximum number of iterations is reached.
For example: A0 = S0 I0, A1 = S0 I1 + S1 I0, A2 = S0 I2 + S1 I1 + S2 I0, and so on. In our
model, the polynomials Ak are used to construct the iterative solutions for the fractional
epidemic model functions S(t), I(t), R(t), and D(t), represented as infinite series given as

S(t) =
∞

∑
k=0

S(k), I(t) =
∞

∑
k=0

I(k), R(t) =
∞

∑
k=0

R(k), D(t) =
∞

∑
k=0

D(k).

Concerning the error term and convergence analysis, it is important to note that this
study does not encompass a detailed analysis of the error term or the convergence of the
LADM. However, the convergence properties of the LADM have been extensively studied
and verified in related works [19]. Although an explicit analysis of the error term is not
included in this article, the LADM is recognized in the scientific community as an effective
approach for obtaining accurate and reliable numerical solutions in fractional calculus. Our
study primarily focuses on the development of the new fractional epidemic model and the
investigation of its dynamics under various conditions.

Compared to homotopy methods, the LADM offers the advantage of simplicity in
terms of implementation, and it is well-suited for problems involving non-linearities.
Moreover, the LADM does not require the presence of a homotopy parameter, which is
needed in homotopy methods. The absence of this parameter simplifies the analysis and
makes the LADM a more straightforward tool for our investigation.

We suggest that further research could explore the specific analysis of the error term
and convergence properties in the context of our proposed model, potentially including
a direct comparison of the LADM and homotopy methods in the context of fractional
epidemic models.

3.2. Fuzzy-Valued Solutions

For the FSDE given in (2), after assigning the values to all the parameters, by applying
the LADM up to fourth order and setting the fractional orders α1 = α2 = α3 = α4 = 1, we
obtain crisp (non-fuzzy) solutions. Then, these crisp solutions are transformed into fuzzy-
valued solutions by multiplying them with the fuzzy numbers (0.75+ 0.25r, 1.125− 0.125r),
where r ∈ [0, 1] is a measure of uncertainty or fuzziness, and presented as

S̃(t) = (0.75 + 0.25r, 1.125− 0.125r)
(

350− 98t + 10.045t2 + 0.7771t3 − 0.31925t4
)

Ĩ(t) = (0.75 + 0.25r, 1.125− 0.125r)
(

400 + 30t− 12.595t2 − 0.0633t3 + 0.32195t4
)

R̃(t) = (0.75 + 0.25r, 1.125− 0.125r)
(

400− 28t + 1.270t2 − 0.0758t3 + 0.00136t4
)

D̃(t) = (0.75 + 0.25r, 1.125− 0.125r)
(

350− 32t + 1.130t2 + 0.0118t3 − 0.00008t4
)

.

The stability of our solutions is demonstrated using a complex plane portrait, as shown
in Figure 2. The non-fuzzy, non-fractional numbers of S(t), I(t), R(t), and D(t) for the
time interval t ∈ [0, 1] are presented in Table 1. The corresponding graphical representa-
tion, covering a more extended time, with t ∈ [0, 100], is displayed in Figure 3. The 2D
representations of the non-fuzzy fractional cases S(t), I(t), R(t), and D(t) are respectively
illustrated in Figures 4–7.
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Table 1. Crisp valued and non-fractional solutions for S(t), I(t), R(t), and D(t) with t ∈ [0, 1].

t S(t) I(t) R(t) D(t)

0.0 350.000 400.000 400.000 350.000
0.1 340.301 402.874 397.213 346.811
0.2 330.808 405.496 394.450 343.645
0.3 321.522 407.867 391.712 340.502
0.4 312.449 409.989 388.998 337.382
0.5 303.588 411.863 386.308 334.284
0.6 294.943 413.494 383.641 331.209
0.7 286.512 414.884 380.997 328.158
0.8 278.296 416.039 378.375 325.129
0.9 270.293 416.963 375.774 322.124
1.0 262.503 417.664 373.196 319.142

Figure 3. Ordinary differential model for S(t), I(t), R(t), and D(t) with t ∈ [0, 100] and α = 1.

0.2 0.4 0.6 0.8 1.0
time

260

280

300

320

340

Susceptible

Figure 4. Fractional model for S(t) with t ∈ [0, 1] and α ∈ [0, 1].
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Figure 5. Fractional model for I(t) with t ∈ [0, 1] and α ∈ [0, 1].
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Figure 6. Fractional model for R(t) with t ∈ [0, 1] and α ∈ [0, 1].
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345

350
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Figure 7. Fractional model for D(t) with t ∈ [0, 1] and α ∈ [0, 1].



Fractal Fract. 2023, 7, 528 11 of 21

Now, based on the fuzzy-valued solutions given by

S̃(t) = 350− 98 tα

Γ(1 + α)
+

20.09 t2α

Γ(1 + 2α)
+

0.5464 t3α

Γ(1 + 3α)
+

2.058 t3αΓ(1 + 2α)

Γ(1 + α)2Γ(1 + 3α)

− 1.0683 t4α

Γ(1 + 4α)
− 0.0720 t4αΓ(1 + 2α)

Γ(1 + α)2Γ(1 + 4α)
− 2.1499 t4αΓ(1 + 3α)

Γ(1 + α)Γ(1 + 2α)Γ(1 + 4α)

Ĩ(t) = 400 +
30 tα

Γ(1 + α)
− 25.19 t2α

Γ(1 + 2α)
+

3.7359 t3α

Γ(1 + 3α)
− 2.058 t3αΓ(1 + 2α)

Γ(1 + α)2Γ(1 + 3α)

+
0.4332 t4α

Γ(1 + 4α)
+

0.4219 t4αΓ(1 + 2α)

Γ(1 + α)2Γ(1 + 4α)
+

2.1499 t4αΓ(1 + 3α)

Γ(1 + α)Γ(1 + 2α)Γ(1 + 4α)

R̃(t) = 400− 28 tα

Γ(1 + α)
+

2.54 t2α

Γ(1 + 2α)
− 0.4551 t3α

Γ(1 + 3α)
+

0.0738 t4α

Γ(1 + 4α)

−0.0206 t4αΓ(1 + 2α)

Γ(1 + α)2Γ(1 + 4α)

D̃(t) = 350− 32 tα

Γ(1 + α)
+

2.26 t2α

Γ(1 + 2α)
+

0.0711 t3α

Γ(1 + 3α)
− 0.0430 t4α

Γ(1 + 4α)

+
0.0206 t4αΓ(1 + 2α)

Γ(1 + α)2Γ(1 + 4α)
,

we extend our analysis to the cases of the infected, recovered, and dead populations for
t ∈ [0, 1], considering varying values of α in two ranges: [0, 0.4] and [0.5, 1].

The 3D non-fuzzy population data for each group are visualized and tabulated. Specif-
ically, the susceptible cases are detailed in Tables 2 and 3 and Figure 8. Infected cases are
presented in Tables 4 and 5 and Figure 9. Recovered cases are depicted in Tables 6 and 7
and Figure 10, while deceased cases are outlined in Tables 8 and 9 and Figure 11. All these
representations correspond to the fractional orders αi ∈ [0, 1], for i ∈ {1, 2, 3, 4}.

Figure 12 provides the complete visualization of the SIRD model for non-fuzzy frac-
tional cases. For the fuzzy-valued cases, graphical representations are provided for varying
fuzziness degrees r ∈ [0, 1]. For a fixed common fractional order αi = 1, with i ∈ {1, 2, 3, 4},
the plots for S(t), I(t), R(t), and D(t) are shown in Figures 13–16 over the time inter-
val t ∈ [0, 1]. Similarly, for varying fractional orders αi ∈ [0, 1], with i ∈ {1, 2, 3, 4}, the
fuzzy-valued plots for S(t), I(t), R(t), and D(t) are provided in Figures 17–20, respectively.

Table 2. Cases of susceptible population for t ∈ [0, 1] and α ∈ [0, 0.4].

t α = 0 α = 0.1 α = 0.2 α = 0.3 α = 0.4

0 271.404 271.404 271.404 271.404 271.404
0.1 350.000 281.949 277.988 275.584 273.837
0.2 350.000 291.836 284.654 280.134 276.778
0.3 350.000 301.077 291.384 285.024 280.187
0.4 350.000 309.547 298.109 290.224 284.056
0.5 350.000 317.094 304.690 295.653 288.350
0.6 350.000 323.626 310.962 301.181 292.987
0.7 350.000 329.136 316.784 306.658 297.848
0.8 350.000 333.682 322.058 311.944 302.796
0.9 350.000 337.364 326.735 316.925 307.701
1 350.000 340.301 330.808 321.522 312.449
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Table 3. Cases of susceptible population for t ∈ [0, 1] and α ∈ [0.5, 1].

t α = 0.5 α = 0.6 α = 0.7 α = 0.8 α = 0.9 α = 1

0 271.404 271.404 271.404 271.404 271.404 271.404
0.1 272.457 271.314 270.335 269.479 268.716 268.028
0.2 274.086 271.825 269.871 268.143 266.593 265.184
0.3 276.244 272.893 269.967 267.36 265.004 262.848
0.4 278.932 274.519 270.624 267.126 263.941 261.012
0.5 282.146 276.716 271.865 267.467 263.433 259.699
0.6 285.849 279.482 273.711 268.419 263.521 258.955
0.7 289.959 282.775 276.155 270.003 264.248 258.835
0.8 294.369 286.52 279.156 272.210 265.632 259.38
0.9 298.953 290.614 282.64 274.998 267.661 260.608
1 303.588 294.943 286.512 278.296 270.293 262.503

Table 4. Cases of infected population for t ∈ [0, 1] and α ∈ [0, 0.4].

t α = 0 α = 0.1 α = 0.2 α = 0.3 α = 0.4

0 409.493 409.493 409.493 409.493 409.493
0.1 400.000 410.036 409.913 409.811 409.725
0.2 400.000 410.305 410.395 410.321 410.207
0.3 400.000 410.061 410.705 410.860 410.838
0.4 400.000 409.316 410.672 411.232 411.449
0.5 400.000 408.233 410.260 411.311 411.881
0.6 400.000 407.006 409.532 411.061 412.039
0.7 400.000 405.784 408.593 410.517 411.891
0.8 400.000 404.663 407.553 409.750 411.462
0.9 400.000 403.689 406.500 408.841 410.806
1 400.000 402.874 405.496 407.867 409.989

Table 5. Cases of infected population for t ∈ [0, 1] and α ∈ [0.5, 1].

t α = 0.5 α = 0.6 α = 0.7 α = 0.8 α = 0.9 α = 1

0 409.493 409.493 409.493 409.493 409.493 409.493
0.1 409.653 409.589 409.533 409.483 409.437 409.396
0.2 410.082 409.958 409.838 409.724 409.616 409.514
0.3 410.736 410.593 410.429 410.256 410.079 409.904
0.4 411.481 411.403 411.256 411.063 410.843 410.604
0.5 412.163 412.252 412.208 412.069 411.859 411.598
0.6 412.651 413.000 413.153 413.152 413.031 412.816
0.7 412.868 413.539 413.964 414.185 414.238 414.148
0.8 412.793 413.807 414.550 415.057 415.356 415.472
0.9 412.443 413.786 414.861 415.689 416.288 416.674
1 411.863 413.494 414.884 416.039 416.963 417.664

Table 6. Cases of recovered population for t ∈ [0, 1] and α ∈ [0, 0.4].

t α = 0 α = 0.1 α = 0.2 α = 0.3 α = 0.4

0.0 374.138 374.138 374.138 374.138 374.138
0.1 400.000 378.137 376.667 375.765 375.104
0.2 400.000 381.779 379.223 377.573 376.328
0.3 400.000 385.021 381.727 379.490 377.748
0.4 400.000 387.844 384.118 381.452 379.307
0.5 400.000 390.252 386.349 383.403 380.951
0.6 400.000 392.270 388.389 385.296 382.633
0.7 400.000 393.931 390.220 387.096 384.312
0.8 400.000 395.279 391.836 388.776 385.950
0.9 400.000 396.359 393.243 390.318 387.519
1.0 400.000 397.213 394.450 391.712 388.998
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Table 7. Cases of recovered population for t ∈ [0, 1] and α ∈ [0.5, 1].

t α = 0.5 α = 0.6 α = 0.7 α = 0.8 α = 0.9 α = 1

0.0 374.138 374.138 374.138 374.138 374.138 374.138

0.1 374.581 374.145 373.771 373.444 373.151 372.887

0.2 375.318 374.462 373.717 373.055 372.458 371.914

0.3 376.301 375.053 373.949 372.956 372.051 371.217

0.4 377.482 375.878 374.439 373.126 371.917 370.791

0.5 378.814 376.900 375.155 373.543 372.040 370.627

0.6 380.254 378.080 376.067 374.181 372.402 370.712

0.7 381.759 379.380 377.140 375.012 372.981 371.032

0.8 383.291 380.763 378.341 376.009 373.753 371.566

0.9 384.817 382.194 379.637 377.139 374.694 372.296

1.0 386.308 383.641 380.997 378.375 375.774 373.196

Table 8. Cases of dead population for t ∈ [0, 1] and α ∈ [0, 0.4].

t α = 0 α = 0.1 α = 0.2 α = 0.3 α = 0.4

0.0 320.309 320.309 320.309 320.309 320.309

0.1 350.000 324.864 323.184 322.154 321.401

0.2 350.000 329.040 326.102 324.210 322.784

0.3 350.000 332.773 328.977 326.402 324.400

0.4 350.000 336.030 331.732 328.658 326.185

0.5 350.000 338.809 334.308 330.909 328.079

0.6 350.000 341.134 336.664 333.097 330.023

0.7 350.000 343.046 338.777 335.178 331.965

0.8 350.000 344.595 340.640 337.118 333.860

0.9 350.000 345.833 342.258 338.896 335.675

1.0 350.000 346.811 343.645 340.502 337.382

Table 9. Cases of dead population for t ∈ [0, 1] and α ∈ [0.5, 1].

t α = 0.5 α = 0.6 α = 0.7 α = 0.8 α = 0.9 α = 1

0.0 320.309 320.309 320.309 320.309 320.309 320.309

0.1 320.804 320.309 319.884 319.511 319.179 318.879

0.2 321.629 320.653 319.803 319.049 318.370 317.752

0.3 322.739 321.309 320.046 318.912 317.879 316.929

0.4 324.085 322.241 320.588 319.084 317.699 316.412

0.5 325.614 323.409 321.399 319.545 317.818 316.197

0.6 327.276 324.767 322.443 320.269 318.219 316.275

0.7 329.018 326.270 323.682 321.225 318.880 316.632

0.8 330.793 327.873 325.075 322.379 319.773 317.246

0.9 332.560 329.532 326.580 323.693 320.866 318.093

1.0 334.284 331.209 328.158 325.129 322.124 319.142
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Figure 8. Fractional model S(t) for t ∈ [0, 1] and α ∈ [0, 1].

Figure 9. Fractional model I(t) for t ∈ [0, 1] and α ∈ [0, 1].

Figure 10. Fractional model R(t) for t ∈ [0, 1] and α ∈ [0, 1].
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Figure 11. Fractional model D(t) for t ∈ [0, 1] and α ∈ [0, 1].

Figure 12. Fractional differential SIRD model of S(t), I(t), R(t), and D(t) for t ∈ [0, 100] and α ∈ [0, 1].

Figure 13. Fractional model S(t) for t ∈ [0, 1] and r ∈ [0, 1].
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Figure 14. Fractional model I(t) for t ∈ [0, 1] and r ∈ [0, 1].

Figure 15. Fractional model R(t) for t ∈ [0, 1] and r ∈ [0, 1].

Figure 16. Fractional model D(t) for t ∈ [0, 1] and r ∈ [0, 1].
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Figure 17. Fuzzy fractional model Sα(t) for t ∈ [0, 1] and α ∈ [0, 1].

Figure 18. Fuzzy fractional model Iα(t) for t ∈ [0, 1] and α ∈ [0, 1].

Figure 19. Fuzzy fractional model Rα(t) for t ∈ [0, 1] and α ∈ [0, 1].
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Figure 20. Fuzzy fractional model Dα(t) for t ∈ [0, 1] and α ∈ [0, 1].

Note that the decay observed in all compartments S(t), I(t), R(t), and D(t) suggests
a decline in S(t), I(t), and R(t), as well as a decrease in D(t), over time t. This can
be attributed to various factors such as the implementation of preventive measures, the
development of immunity, and effective medical interventions.

The faster decay observed in S(t) indicates a decrease in the number of individuals
who are susceptible to the disease. This could be a result of interventions such as vaccination
campaigns or public health measures that reduce the transmission of the disease and
protect individuals from becoming infected. In addition, the slower decay observed in R(t)
suggests a longer duration of the recovery process. This may be due to the time required
for individuals to fully recover from the disease and regain their health.

Regarding the non-fuzzy fractional cases, the similar decaying behaviors of S(t), R(t),
and D(t) indicate that these compartments are influenced by similar factors and follow
similar trends over time. However, the distinct behavior of I(t) highlights the complexity of
the disease dynamics. For lower values of the fractional order α, the number of cases tends
to increase, indicating a higher transmission rate or a slower recovery process. In contrast,
for higher values of α, the number of cases decreases, suggesting a reduced transmission
rate or a more efficient recovery process.

When considering the model with fuzzy values, the behaviors of the different compart-
ments undergo relative changes compared to the crisp-valued model. In the fuzzy-valued
cases, the compartments S(t), I(t), R(t), and D(t) exhibit different dynamics compared to
the non-fuzzy fractional cases.

For the fuzzy-valued S(t), the behavior is influenced by the degree of fuzziness rather
than by a specific fractional order. This indicates that the uncertainty in the susceptible
population affects the spread of the disease, with different levels of fuzziness leading to
different patterns of disease transmission.

Similarly, the fuzzy-valued I(t), R(t), and D(t) show different behaviors compared to
their non-fuzzy counterparts. The presence of fuzziness introduces additional variability
in the number of infections, recoveries, and deaths, reflecting the uncertainty in the dis-
ease progression and outcomes. These changes in behavior highlight the importance of
considering fuzziness in epidemiological models.

Overall, the inclusion of fuzzy values in the model enhances our understanding of
the uncertainties associated with the disease’s spread and outcomes, enabling more robust
decision-making in public health interventions and policy development.
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4. Conclusions

In conclusion, our study presented a novel susceptible, infected, recovered, and dead
model that effectively captures the epidemic spread dynamics. We identified equilibrium
states and computed the basic reproduction number, also confirming the asymptotic stabil-
ity of the solutions through stability analysis. The use of a fourth-order Laplace-Adomian
decomposition method provided accurate and reliable numerical solutions, demonstrating
a fourth-order convergence.

The inclusion of fuzziness in our model deepened our understanding of population
dynamics under various conditions. By taking into account different levels of uncertainty
and fractional orders, we gained insights into the evolution of susceptible, infected, recov-
ered, and deceased populations over time. The incorporation of fuzziness enhanced the
model’s ability to represent the complexity and inherent uncertainty present in real-world
epidemic scenarios.

Looking forward, there are several avenues for future research. Firstly, we plan to
conduct a more in-depth analysis of the positivity and boundedness of the solutions, fur-
ther validating the feasibility of the model. This analysis will ensure that the population
compartments remain non-negative and finite over time, strengthening the model’s applica-
bility. Furthermore, additional investigations could explore the impact of delay differential
systems on epidemic dynamics. Incorporating delays will offer a more comprehensive
understanding of temporal dynamics and enable the development of strategies to mitigate
the effects of delays on public health responses.

By pursuing these research directions, we aim to significantly contribute to the un-
derstanding and effective management of public health crises, including pandemics. Our
work provides a solid foundation for future studies and offers valuable insights into the
behavior and control of epidemic outbreaks.
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