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Abstract

In this paper, we propose an Intelligent Decision Support System (IDSS)
for the design of new textile fabrics. The IDSS uses predictive ana-
lytics to estimate fabric properties (e.g., elasticity) and composition
values (% cotton) and then prescriptive techniques to optimize the fabric
design inputs that feed the predictive models (e.g., types of yarns used).
Using thousands of data records from a Portuguese textile company, we
compared two distinct Machine Learning (ML) predictive approaches:
Single-Target Regression (STR), via an Automated ML (AutoML) tool,
and Multi-Target Regression (MTR), via a deep learning Artificial Neu-
ral Network (ANN). For the prescriptive analytics, we compared two
Evolutionary Multi-objective Optimization (EMO) methods (NSGA-II
and R-NSGA-II) when optimizing 100 new fabrics, aiming to simultane-
ously minimize the physical property predictive error and the distance of
the optimized values when compared with the learned input space. The
two EMO methods were applied to design of 100 new fabrics. Overall,
the STR approach provided the best results for both prediction tasks,
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with Normalized Mean Absolute Error (NMAE) values that range from
4.05% (weft elasticity) to 11.22% (pilling) in terms of the fabric prop-
erties and a textile composition classification accuracy of 87% when
adopting a small tolerance of 0.01 for predicting the percentages of six
types of fibers (e.g., cotton). As for the prescriptive results, they favored
the R-NSGA-II EMO method, which tends to select Pareto curves that
are associated with an average 11% predictive error and 16% distance.

Keywords: Textile development, Predictive, Regression, Machine Learning,
Evolutionary Multi-objective Optimization.

1 Introduction

In the textile and clothing industry there is a frequent need to design new
fabrics in order to meet the fashion market trends. The Fabric Design (FD)
process, often termed as fabric engineering, begins with the definition of a new
prototype design, which includes several components that affect the physical
properties and aesthetics of the textile product. Initially, the textile designer
often uses her/his experience and intuition to select fabrics that have been
previously manufactured and that are similar to the desired product specifica-
tions. Aiming to reach these specifications, she/he then reshapes the selected
fabric by altering one or more of the design elements (e.g., the type and num-
ber of yarns used). Next, the prototype goes into a production stage, in order
to check if the desired physical properties are met. If not, then a new pro-
totype design iteration is attempted, in which the designer sets a new fabric
configuration that is then produced and tested. Typically, success is reached
only after a larger number of fabric prototype developments.

The development of the fabric prototypes involves specialized equipment
and personnel, manufacturing lines and several cycles of adjustments before
reaching the final prototype (the order to be mass-produced), making it a
time-consuming and expensive process [1]. Each time a prototype is produced,
laboratory quality tests are required, to assure regulatory compliance of the
physical properties [2]. In some cases, there are also validation sessions with
customers, which might require the production of replicas of the prototype in
a larger quantity.

This research is set within a R&D project involving a Portuguese textile
company that is being transformed under the Industry 4.0 context. The com-
pany expressed the need for an Intelligent Decision Support System (IDSS)
that could enhance the design of new fabrics, aiming to reduce the number of
fabric development attempts, which would highly reduce costs and fabric devel-
opment time. An IDSS is a decision support system that incorporates Artificial
Intelligence (AI) methods, such as Machine Learning (ML) and metaheuristics,
to improve decision making [3].
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As shown in Section 2, there are few research works that address the FD
task. In particular, there are only two studies that combine predictive and
prescriptive analytics for FD [4, 5] and these studies contain several limita-
tions, such as: optimization of a reduced set of fabric design features and
number of designed fabrics; usage of a single ML algorithm; and use of a single
objective optimization. In a preliminary previous work [6], we have obtained
some interesting fabric property prediction results by using an Automated ML
(AutoML). However, we did not address two important FD tasks that were
requested by the Portuguese textile company: the prediction of the final textile
composition (e.g., % of cotton) and the search for the best set of FD fea-
tures. Aiming to provide a full FD solution, in this work we propose a novel
data-driven IDSS that is based on the Adaptive Business Intelligence (ABI)
[7] concept, which assumes a combination of predictive models, based on ML,
with prescriptive analytics, based on metaheuristics.

In particular, the proposed IDSS targets two nontrivial predictive goals:
first ML goal – the estimation of four relevant fabric physical properties (bias
distortion, warp and weft elasticity, and pilling); and second ML goal – the
prediction of the final textile composition (e.g., % of cotton and % of polyester).
The physical property ML model can be used as a substitute for the fabric
production and laboratory testing, thus reducing time and costs. As for the
second ML goal (within our knowledge, first attempted here, see Section 2), it
allows to automatically compute the final textile composition from the same
set of inputs, which is a relevant information to be shown to the textile clients
and customers. Both predictive goals are modeled as regression tasks that
depend on several design inputs (e.g., the type of yarns). To solve these goals,
historical data, including around 8.6 thousands of fabric creation records, are
used to adapt and compare two ML main approaches: Single-Target Regression
(STR), based on an AutoML tool [8]; and Multi-Target Regression (MTR) [9],
based on a deep Multilayer Perceptron Artificial Neural Network (ANN) [10].

As for the IDSS prescriptive analytics, they use the first ML goal best
prediction models. The aim is to search for the model inputs that match
the desired textile properties, thus minimizing the ML predictive error. How-
ever, when adopting only this objective, the optimization methods often select
inputs that are distant from the learned input space, performing a predic-
tion that is more an extrapolation than an interpolation, thus less reliable. To
solve this issue, we also minimize the input vector distance when compared
with the ML training dataset. Both objectives are simultaneously optimized
by adapting two Evolutionary Multi-Objective Optimization (EMO) methods
[11]: NSGA-II and R-NSGA-II. The EMO methods are compared by using 100
additional records of designed fabrics (not used for the training and testing of
the predictive ML models). The EMO result is a Pareto front of fabric designs,
each related with a particular predictive error and input distance trade-off. For
the optimized solutions, the IDSS also presents the final textile composition
values by using the second ML goal predictions.
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The rest of the paper is organized as follows. Section 2 presents the related
work. Section 3 describes the fabric design task. Section 4 presents the textile
data and the proposed IDSS. Section 5 details the experiments conducted and
the obtained results. Finally, Section 6 discusses the main conclusions and also
presents future research directions.

2 Related Work

In the textile industry, even for the production of basic fabrics or garments, a
large amount of data is typically created and stored (e.g., yarn characteristics,
machine settings and quality tests). In recent years, the increase in the volume
of data being stored has enabled AI tools to enhance textile production pro-
cesses. In effect, several AI methods were applied successfully to the industry,
with different approaches being employed to optimize different textile stages.
Table 1 summarizes the most relevant related works, assuming a chronolog-
ical order and the following characterizing elements: TS - the textile stage
addressed by the study, Data - the type of data used, Pred. - if used, the
type of predictive ML approach, MH - the type of metaheuristic used, Obj.
- a description of the optimization objective, and MMM - the number of objec-
tive functions used by the metaheuristic (if M > 2 then the study assumes a
Multi-Objective approach).

Most of the analyzed studies are focused on the manufacturing of fabrics
or garments (as shown in column TS of Table 1). There are only four related
works that directly address the FD process. When compared with our approach
(last row of Table 1), the FD studies only optimize a reduced set of fabric fea-
tures (F ), ranging from four to six inputs. For example, Majumdar et al. (2017)
[5] only optimized the loop length, carriage speed, yarn input tension and yarn
count. In contrast, our work assumes a richer and more complex set of F=44
input parameters (see Section 4.1), reflecting diverse elements such as machine
settings, warp and weft yarns and finishing operations. Within our knowledge,
this work is the first to use finishing operations data (e.g., dyeing, washing, dry-
ing). Moreover, our study targets four desired physical properties (P ), which
is a higher number when compared with the related works that range from one
[13] to three targets [4, 5, 16]. In addition, only two of the related FD works
assumed a combination of predictive and prescriptive analytics [4, 16]. Regard-
ing the number of optimized fabrics (V ), the FD works optimize a reduced
number of new fabrics, ranging from 1 to 4. In contrast, this work optimizes
a substantially higher number of 100 new fabrics. Furthermore, none of the
related works with predictive approaches (column Pred from Table 1) have
modeled the final textile composition (e.g., % of cotton, % of polyester) based
on the fabric design features, which is addressed in our work. Regarding the
two FD studies that performed a prediction of the physical properties, they
used only one ML algorithm, a simpler ANN structure composed of a Multi-
layer Perceptron with only one hidden layer. In a previous work [6], we have
obtained interesting fabric property prediction results by using an AutoML
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Table 1 Summary of the related work.

Study TS Data Pred MH Obj MMM

Ghosh et al. [12] Mf F,Y ANN NSGA-II RMQ,YS 2
Das et al. [13] FD(6,1,1) FC – PSO GSM 1
Gloy et al. [14] Mf MS – GA WMP 1
Junior et al. [15] Mf YDO,PR – GA,MA YDS 1

Mitra et al. [16] FD(4,3,2) FC,FP ANN GA
EPI,PPI,
WaC,WeC

1

Majumdar et al. [4] FD(5,3,4) FC,FP ANN GA CP,UPF 1
Majumdar et al.[5] FD(4,3,2) MS,FC – NSGA-II AP,ThC 2

Zhang et al. [17] Mg DO,PR –
MO-ABC,
NSGA-II

TC,
URDV

2

Chakraborty et al. [18] Mf FC,MS –
ABC,ACO
NSGA-II,PSO

RiSP,RoSP 2

Huynh et al. [19] Mf DO,PR – MSGA-H STBD 1

Lorente-Leyva et al [20] Mg
I,PC,
PO,SF

– GA MPS 1

Liyanage et al. [21] Mf PO,PR,TR – GP FW,QAW,SW 1
Xu et al. [22] Mg CO,PR,FC – GA COP 1
Jaouachi et al. [23] Mg MS,OP – ACO,GA,PSO STC 1
Ferro et al. [24] Mf PO,PR,ST – GA PPWP 1
Ribeiro et al. [25] Mg PO,SR AutoML NSGA-II GPC,GPT 2

Tsao et al. [26] Mg FCp –
GA,SA,
HGASA

ML 1

Zhang et al. [27] Mf DO,PiO,PR – pesgMESO CE,TT 2
Elahi et al. [28] Mf DO,WC,EC – MOGCO-II WC,PP,WTC 3

This work FD(44,4,100)
FC,FO,
FP,MS,Y

AutoML,
deep ANN

NSGA-II,
R-NSGA-II

FDF 2

Acronyms used in the table are (see also Appendix A):
aFD(F ,P ,V ) - Fabric Design (F , P and V denote the number of: input features, physical
properties that are targeted and validation fabric samples); Mf - Manufacturing of fabrics;
Mg - Manufacturing of Garments.
bCO - Cutting Orders; DO - Dyeing Orders; EC - Energy Consumption; F - Fibers; FC -
Fabric Construction parameters; FCp - Fabric Cutting patterns; FO - Finishing Operations;
FP - Fabric Properties; MS - Machine Settings; OP - Operation Parameters; PC - Produc-
tion Capacities; PO - Production Orders; PiO - Printing Orders; PR - Productive Resources;
SF - Sales Forecast; SR - Subcontractor Resources; ST - Setup Times; TR - Transportation
Resources; WC - Water Consumption; Y - Yarns; YDO - Yarn Dyeing Orders.
cANN - Artificial Neural Network; AutoML - Automated Machine Learning.
dABC - Artificial Bee Colony; ACO - Ant Colony Optimization; GA - Genetic Algorithm;
GP - Genetic Programming; HGASA - Hybrid Genetic Algorithm Simulated Annealing;
MA - Memetic Algorithm; MO-ABC - Multi-Objective Artificial Bee Colony; MOGCO-
II - Multi-Objective Group Counseling Optimizer II; MSGA-H - Multi-Subpopulation
Genetic Algorithm Heuristics; NSGA-II - Non-dominated Sorting Genetic Algorithm II;
pesgMESO - parallel evolution scenario generation-based Multi-objective Evolutionary
Stochastic Optimization; PSO - Particle Swarm Optimization; R-NSGA-II - Reference point
based Non-dominated Sorting Genetic Algorithm II; SA - Simulated Annealing.
eAP - Air Permeability; CE - Carbon Emission; CP - Comfort Properties; COP - Cutting
Order Planning: EPI - Ends per Inch, FC - Freshwater Consumption; FDF - Fabric Design
Features; FW - Finishing Workflow; GPC - Garment Production Cost; GPT - Garment Pro-
duction Time; GSM - fabric Grams per Square Meter, MPS - Master Production Scheduling;
ML - Marker Layout; PP - Production Planning; PPI - Picks per Inch; PPWP - Production
Planning of Weaving Process; QAW - Quality Assurance Workflow; RMQ - Raw Material
Quality; RiSP - Ring Spinning Process; RoSP - Rotor Spinning Process; STBD - Schedul-
ing Textile Batch Dyeing; STC - Sewing Thread Consumption; SW - Sewing Workflow; TC
- Tardiness cost, ThC - Thermal Conductivity; TT - Total Tardiness; UPF - Ultraviolet
Protection Factor; URDV - Utilization Rate of Dyeing Vats; WaC - Warp Count; WeC -
Weft Count; WMP - Weaving Machine Parameters; WTC - Wastewater Treatment Costs;
YDS - Yarn Dyeing Scheduling; YS - Yarn Strength.
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STR modeling. In this research, we compare this AutoML STR approach with
an alternative MTR based on a deep learning ANN. Finally, while all four FD
studies have employed metaheuristics in order to optimize the fabric design ele-
ments, only one work adopted a EMO approach [4], via the NSGA-II method.
In this paper, we propose a novel multi-objective approach that simultane-
ously minimizes the physical properties predictive error and also the distance
of the selected inputs when compared with the learned input space. To per-
form the multi-objective task, we compare two EMO algorithms, NSGA-II and
R-NSGA-II.

3 Problem Statement

This work was carried out with collaboration of a Portuguese textile company
that produces high-quality fabrics, based on natural, synthetic, artificial and
recycled fibers, focusing on polyester, viscose and elastane blends. The com-
pany presents a vertical production system comprised of the following areas:
Research and Development, Spinning, Dyeing, Twisting, Weaving and Finish-
ing, with a production capacity of 700,000 meters per month. Currently, the
development of new fabrics consists of several trial-and-error cycles that are
executed until the client requirements are met. This process is heavily sus-
tained in the knowledge and intuition of the textile designer. When a designer
leaves the company, all this knowledge is lost.

Figure 1 presents the process flow for the development of a new fabric.
It starts with the selection of a previously developed fabric that is similar to
new fabric physical property requirements. Based on the designer experience,
she/he will then alter several parameters of the selected fabric, aiming to obtain
the desired characteristics of the new fabric. Next, a fabric physical prototype
is produced and inspected for its quality by running several laboratory tests.
If the prototype passes the tests, it is presented to the client. Often, this is
not the case and thus a new cycle is executed, where the designer attempts
a new fabric design based on the previous prototype tests. Typically, a larger
number of design cycles is needed (e.g., 20) until the fabric is ready for mass
production, with each cycle requiring costs and time.

Under this context, is essential to reduce the number of fabric development
cycles. This work proposes a data-driven IDSS approach to solve this task,
which first uses ML to model the fabric physical properties and final textile
composition, and then performs an EMO to select the best set of fabric design
values based on the previously obtained ML models. This is a nontrivial task
due to several reasons. Firstly, there is a high number of fabric design features
combinations, thus the search space is quite large. Secondly, there are inter-
actions between the features, where a desired physical property change might
only occur if there are simultaneous alterations in multiple design elements.
Thirdly, producing changes that improve one physical property can prejudice
other properties. For example, increasing the fabric elasticity can also increase
the fabric bias distortion. Fourthly, the final composition of the fabric is a
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Fig. 1 Flowchart for the development process of a new fabric (Y and N denote Yes and
No, respectively).

highly relevant information for textile clients and customers (e.g., % of cotton).
Yet, it is not trivial to compute the precise final composition for a new fabric,
since it can assume different types of yarns (each with a particular thickness)
that can be repeated in different ways in the weft and warp elements of the fab-
ric. In effect, the textile composition is often measured by using the produced
fabric prototypes, assuming a manually counting of the number of weft and
warp yarns for each fiber type contained in a fabric square of 2.54 centimeters.

4 Material and Methods

4.1 Fabric Data

The data was provided by a Portuguese textile company that creates and pro-
duces fabrics for fashion and clothing collections. We collected data from two
main data sources: the Enterprise Resource Planning (ERP), which included
all the data related to fabrics, such as yarns, finishing operations, machine
settings and identification codes, and the laboratory testing database, which
contained the fabric quality tests performed between 2012 and 2019. We imple-
mented then an Extraction, Transformation, Load (ETL) process to merge the
different data sources and clean the data. The ERP data included 34,998 fab-
ric examples with 2,391 features per row. Using manual analysis and domain
expert knowledge, the ERP features were filtered into a total of 805 potential
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relevant attributes by removing irrelevant data (e.g., designer and customer
identification codes) and data with a low variance (thus almost constant), such
as the elasticity type of the fabric. Since the number of potential attributes
was still high, we then performed several feature selection iterations by using
domain knowledge (retrieved from textile experts) to discard more irrelevant
features (e.g., color, falling weight and rapport), ending with 68 features. The
final set of selected attributes is associated with a total of 8,650 records, and
it was obtained by executing several ML process iterations that involved the
company designers, as described in our previous work [6]. In this work, 100
randomly selected fabrics are used to execute the prescriptive experiments.
The remainder 8,550 examples are used to perform the predictive experiments
(e.g., external 10-fold cross-validation).

Table 2 summarizes the adopted set of fabric attributes in terms of their
Attribute name, Description and Range of the domain values. The first

Table 2 List of fabric design features.

Attribute Description (data type) Range

finished width Width in centimeters (numeric) [112, 155]
weave design Weave pattern of the fabric (nominal code) 15 levels
reed width Width of the reed in centimeters (numeric) [157, 242]
denting Number of the reed dents per centimeter (numeric) [50, 252]
ends/dent Number of yarns per dent (numeric) {2, 3, ..., 7}
n picks Number of picks on loom per centimeter (numeric) [13, 445]
warp total ends Total number of threads on the warp (numeric) [2448, 17970]
yarn repetitions Number of yarn repetitions in warp or weft (numeric) {0, 1, ..., 4}
yarn code Identification code of the yarn (nominal code) 1,730 levels
op Finishing operations (nominal code) 48 levels
t pol Number of finished threads per centimeter (numeric) [0, 323]
p pol Number of finished picks per centimeter (numeric) [0, 377]
weight/m2 Weight (in grams) per square meter (numeric) [0, 579]

Bias Distortion Quality test result (numeric) [1, 12.36]
Elasticity (warp) Quality test result (numeric) [5, 55]
Elasticity (weft) Quality test result (numeric) [5, 58.1]
Pilling Quality test result (numeric) [1, 4.5]

CO Percentage of cotton in a fabric (numeric) [0; 0.99]
CV Percentage of viscose in a fabric (numeric) [0; 0.54]
EL Percentage of elastane in a fabric (numeric) [0.01; 0.13]
PA Percentage of nylon in a fabric (numeric) [0; 0.83]
PES Percentage of polyester in a fabric (numeric) [0; 0.93]
WO Percentage of pure wool in a fabric (numeric) [0; 0.50]

13 rows of Table 2 are related to a fixed set of design attributes whose values
can be changed by the fabric designer. They are common to all fabrics and
therefore are used to create the 44 inputs of our predictive and prescriptive
models (as explained below). The remainder rows of Table 2 are used as the
targets of the predictive models. The physical properties are measured by
laboratory tests that were executed on the final fabric prototypes (accepted
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for mass production). It should be noted that each fabric can have one or more
distinct tests. For fabrics that had the same test repeated with a slight different
value, we opted to compute the average values in order to get a single number
per fabric and test. The analyzed dataset contained 15 different tests but only
a tiny portion of the fabrics (27) had the full 15 test values. In this work, we
model the most frequently measured physical properties, which correspond to
the four tests shown in Table 2. Finally, the last 6 rows Table 2 denote the
final textile composition attributes, representing the percentage of the 6 types
of most common fibers that are used in the yarns. Each textile composition
type includes a combination of the fiber percentages, where the sum equals
to 100%. For instance, the most popular composition type includes 63% of
PES, 27% of CV, 7% of CO and 3% of EL. In the analyzed dataset, there
are a total of 95 different types of textile compositions that include the six
types of fibers, corresponding to 93% of fabrics produced by the company. In
this work, the textile composition prediction is also modeled as a regression
task due to two main reasons. Firstly, it avoids dealing with a large multi-
class (95) classification task that would produce poor results for the least
represented classes. Secondly, it allows the reuse of the regression algorithms
already developed for the physical property goal.

Figure 2 exemplifies some of the design features related to real textile
fabrics. The left of Figure 2 presents a yarn composed of four wool fibers. The
middle of Figure 2 presents a fabric where it is possible to distinguish between
the yarns that compose the weft (horizontal yarns) and the ones that compose
the warp (vertical yarns). The right of Figure 2 presents a wool fabric with
a higher number of reed dents per centimeter making the spaces between the
weft and warp yarns much narrower.

Fig. 2 Example of a wool yarn (left) and two different textile fabrics (middle and right).

Figure 3 presents two different components of a loom machine. In the left
of Figure 3, the coils contain the warp yarns used to produce the fabric. The
right of Figure 3 presents the loom that will raise alternate warp yarns to
create a shed using a harness, which has a series of wires called heddles and the
warp yarns pass through the heddle eyelets. The weft yarn is inserted through
the shed by a carrier device. A single crossing of the filling from one side of
the loom to the other is called a pick. The reed pushes each weft yarn against
the portion of the fabric that has already been formed, resulting in a firm and
compact fabric.
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Fig. 3 Example of two components of a textile machine, namely yarn coils (left) and a
loom machine (right).

Figure 4 further exemplifies how some of the design features are related
with the textile fabric and machine settings. Structurally, a fabric is made
of two primary components: warp and weft. The left of Figure 4 presents a
view of a fabric that contains interlaced yarns related with the warp (blue
color) and weft (gray color) components used in the weaving. In the example,
the fabric has one type of yarn for the warp and another for the weft, both
repeated five times. Since the warp is the set of yarns that is placed on the
loom, it contains a minimum number of warp yarns to support the tension
applied during the weaving process. A higher number of yarns per centimeter
implies a better fabric quality. To obtain the number of finished threads per
centimeter (t pol), the designer must define how many warp yarns will be put
in a centimeter of the fabric, and for the p pol attribute, she/he defines how
many weft yarns will be per centimeter. To obtain the finished width, the
distance between the first and last warp yarn of the fabric is measured. The
top right of Figure 4 presents the weave design, where the spaces between the
yarns are eliminated and only the squares where warp yarns are over the weft
yarns are shown. This distribution defines the type of the fabric, which in this
case is a twill. The bottom left image of Figure 4 presents a representation of a
loom machine, where the weft yarns (gray color) are inserted in a loom, going
through the reed with a specific width, that will press the warp (blue color)
that is inserted in between the warps yarn threads, according to the structure
implemented in the weave design. The reed has two main characteristics: the
number of the reed dents per centimeter (denting, in this case 5) and the
reed width (in this case 15), which is the distance from the first reed dent to
the last one. When designing the fabric, it is necessary to define how many of
the weft yarns will pass in each dent (attribute ends/dent).

The warp and weft elements of the fabric can contain a variable combina-
tion of yarns, ranging from 1 to 21 in our dataset. Moreover, each fabric is
processed with a varying sequence of finishing operations, ranging from 1 to
47 in our data. In the analyzed data, the most commonly used yarns assume
combinations of the six fibers types that appear Table 2 (e.g., cotton, viscose,
elastane), while the prevalent finishing operations are drying, finishing and
dyeing. In order to represent these repeated elements, in previous work [6], we



Springer Nature 2021 LATEX template

A data-driven intelligent decision support system 11

WarpYarn

WeftYarn

Finished Width

p
_p

o
l

t_pol

Weave Design

Reed

5
1
5

Reed Width

1 2 3 4 5

Picks

Fig. 4 Visualization of some woven fabric and machine features.

performed several feature engineering experiments, resulting in the final rep-
resentation adopted in this work. For each fabric, the representation assumes
a sequence with a maximum of maxy = 6 yarns for warp and then another
similar sequence of maxy = 6 yarns for weft, allowing to encode 99.7% of
the fabrics without any information loss. Each yarn is represented by two ele-
ments: a numeric unique code and the number of times the yarn appears in
that specific element (warp or weft). When one element does not have up to
maxy = 6 yarns, a zero padding is used to fill the empty yarn values. A similar
approach was adopted to represent the finishing operations, defined in terms
of a sequence of maxop = 10 operations, which represents 85% of the ana-
lyzed fabrics. Also, if a fabric is not processed with 10 operations, then a zero
padding is used to fill the empty values. Thus, a total of 44 fabric design inputs
are adopted by the predictive models, corresponding to: 6×2 values to denote
the warp and weft yarns (total of 24 inputs), 10 values to code the finish-
ing operations, and the other 10 attributes from Table 2 (e.g., finished width,
weave design). We note that in [6] several ML feature selection experiments
were executed but worst predictive results were obtained when removing some
of the 44 fabric input elements (e.g., finishing operations).

In terms of data preprocessing, the three categorical attributes in Table 2
(weave design, yarn code and op) were first transformed into numeric
inputs. Then, all numeric inputs were standardized to a zero mean and
one standard deviation (Z-score transformation). These transformations are
needed for three main reasons. Firstly, several of the explored ML algorithms
(e.g., ANN) only work with numeric inputs. Secondly, the ML is often more
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efficient when all inputs are standardized [29]. Thirdly, the computation of dis-
tance measures when comparing two sets of inputs is much simpler when all
inputs are numeric and standardized (e.g., usage of the Euclidean distance).

Given that some of the categorical attributes present a high cardinality
(e.g., the yarn code contains 1,730 distinct levels), we opted to transform all
nominal attributes by using the Inverse Document Frequency (IDF) function
[30]:

IDF (xi) = ln(
n

fl
) (1)

where xi denotes a data attribute, n is the total number of instances and fl
is the number of occurrences (frequency) of the level l ∈ xi in the analyzed
data. The IDF mapping is computed using only training data and then stored,
in order to enable a future encoding for unseen data. If a new level appears
on the unseen data, it is replaced by the highest ln(n) value present on the
training data, which represents the most infrequent IDF value.

The advantage of the IDF method is that encodes a nominal attribute into
a single numeric value, where the levels with a higher frequency are set near
0 (but with a larger difference between them), while the less frequent lev-
els are coded close to each other and near a IDF (xi) maximum value. Thus,
more frequent levels are more easily distinguished by the ML algorithms. And
while the one-hot encoding is a popular categorical transform, assigning one
Boolean value per nominal level, its usage would highly increase the input
space, resulting in a very sparse representation that would enlarge the com-
putational memory and effort required by the ML algorithms [31]. Moreover,
given that IDF produces a single numeric value for each categorical input, the
computation of input distance measures is much straightforward than when
adopting the one-hot method.

4.2 Intelligent Decision Support System

The proposed IDSS consists of three main modules (Figure 5): data extraction
and processing, predictive and prescriptive. All modules were implemented by
using the Python programming language. The first module is responsible for
extracting the relevant textile data, converting it into the adopted fabric design
representation (with 44 inputs), leading to a stored fabric design database.

The prediction module receives the data, which is then divided into training
and test sets, according to the adopted cross-validation method. Then, the
features are preprocessed (IDF and standardization). Next, an ML algorithm
is trained and evaluated (using validation data), allowing to perform a model
selection. The best ML per task is stored, allowing a later computation of
fabric physical properties (first ML goal) and textile composition (second ML
goal). More ML modeling details are provided in Section 4.3.

The prescriptive module performs two main operations. It can search for
previously manufactured fabrics that are similar to some desired product spec-
ifications. This search is executed by iterating all data examples, aiming to
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Fig. 5 Flow diagram describing the components of the proposed IDSS.

minimize the Euclidean distance between the desired values and the histori-
cal data, assuming a standardized multidimensional space. It can also execute
a EMO search for the best set of design inputs, returning a Pareto front of
solutions. Section 4.4 presents further EMO details.

The proposed IDSS includes also a friendly dashboard that sets the interac-
tion with the textile designer. This interaction can assume several possibilities.
First, the designer can inspect the historical data and search for the most sim-
ilar fabrics, when assuming a desired set of physical properties. Second, the
selected fabrics can be changed in some of their components, with the IDSS
presenting the predicted physical properties and fabric composition. Third, a
set of selected fabrics can be fed into the EMO search, thus using a seeding
procedure to generate the initial population (instead of a purely random pro-
cess). Fourth, Pareto front of solutions returned by the EMO can be further
inspected, allowing to select one or more interesting candidate designs for pro-
totype production. Fifth, once more prototypes are produced and tested, the
predictive modules can be retrained using the recently acquired data. Sixth,
if none of the suggested EMO designs are accepted by the designer, then the
search can be rerun by reshaping some of previously obtained Pareto solutions
and then seeding them into the next EMO population. All these interaction
scenarios were found interesting by the analyzed textile company. However, in
order to obtain an objective evaluation of the EMO results (independent of a
specific designer), in this work we assume a pure automated IDSS usage, with
no designer interaction. First we evaluate the predictive models (Section 4.3).
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After selecting the best ML approaches, we then evaluate the EMO methods
(Section 4.4).

The proposed IDSS can be integrated into the textile information system
by deploying it in the company computer server. If an optimized IDSS fabric
design is accepted by the textile designer then a textile production order is
created. Currently, any production order (manually designed or IDSS assisted)
involves both automated and manual machine settings. For instance, the warp
yarn coils (left of Figure 3) are manually inserted but once the yarns are fed
into the loom (right of Figure 3), the fabric production process is automated.
As mentioned in Section 1, we note that the main IDSS goal is to reduce the
number of fabric prototype development attempts and not the fabric produc-
tion order execution time. Nevertheless, in the future it is possible to further
optimize the production order execution time by adopting more Industry 4.0
components (e.g., usage of automated and digitally connected machines).

4.3 Predictive Modeling

In this work, the two goals (physical properties and textile composition) con-
tain multiple regression outputs for the same number of inputs. In particular,
there are four targeted physical properties and six types of fiber percentages
(Table 2). Under this context, performing a MTR can be interesting modeling
approach, since it requires a single ML model to simultaneously model several
equally important targets [9]. Thus, less effort is required to design and main-
tain a single MTR model when compared with several STR ones. In this work,
we adopt a deep multilayer ANN, which is a natural ML model for MTR, since
it can directly model several regression targets without requiring any learning
algorithm changes by simply assigning a distinct output node for each tar-
get. Another interesting ML modeling possibility is to adopt an AutoML tool,
which automates the search for the best ML algorithm and its associated set
of hyperparameters. Thus, it alleviates the ML design, allowing future model
updates to new data without a human effort. In this work, we adopt the H2O

AutoML tool [32], which achieved good results in a recent AutoML bench-
mark study [8]. Since the H2O AutoML only performs a STR, the H2O tool is
set to generate a distinct ML model for each output target (e.g., four distinct
models will be searched for the first ML goal).

For the MTR experiments, we implemented a ANN using the Keras Python
module [33]. Table 3 summarizes the main characteristics of the ANNs imple-
mented for the MTR experiments. The ANN consists of a fully connected
(thus dense) multilayer perceptrons [10]. Let (I, L1, ..., Lh, O) denote a vector
with the layer sizes, where I is the input layer size, h is the number of hid-
den layers, and O is the output layer. In this work, the ANNs assume a total
of I =44 fabric design inputs (see Section 4.1), while the number of outputs
depends on the number of MTR tasks (O = 4 for the four physical proper-
ties; and O=6 for the six textile composition percentages). Some preliminary
experiments were held to set the ANN structure (in terms of number of hidden
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layers and their layer sizes) using older textile data and triangular-shaped mul-
tilayer perceptrons, in which each subsequent layer size is smaller [34]. As the
result of these experiments, the MTR ANN was set to use the ReLU activa-
tion function under two types of structures: first ML goal (physical properties)
– (44, 28, 20, 12, 4) (h=3 hidden layers); and second ML goal (textile composi-
tion) – (44, 18, 12, 6) (h=2 hidden layers). The popular ADAM optimizer was
used to adjust the ANN weights during the training phase [35], assuming the
Mean Absolute Error (MAE) loss function, an early stopping (with 10% of the
training data being used as the validation set) and maximum of 1,000 epochs.

Table 3 Summary of the main characteristics of the ANN MTR models.

ML goal
Activation
Function

Structure
Loss
Function

Optimizer
Function

Max.
epochs

Physical
Property

ReLu (44, 28, 20, 12, 4) MAE ADAM 1000

Textile
Composition

ReLu (44, 18, 12, 6) MAE ADAM 1000

Regarding the STR experiments, the adopted AutoML tool was configured
to automatically select the optimal regression model and its hyperparame-
ters for each validation fold data by minimizing the MAE measure, using an
internal 10-fold cross-validation applied over the training data. The AutoML
was run with its default configuration values, including a maximum execution
duration of 1 hour. We used the same ML search setup adopted in [8], which
provided competitive results for the H2O tool when compared with seven other
AutoML frameworks (e.g., TPOT, AutoGluon). Thus, a total of six different ML
algorithms are automatically searched by the AutoML tool for each regression
task: Random Forests (RF), Extremely Randomized Trees (XRT), Generalized
Linear Models (GLM), Gradient Boosting Machines (GBM), XGBoost (XG)
and Stacked Ensembles (SE). The H2O tool utilizes a grid search to set the
hyperparameters for GLM (1 hyperparameter), GBM (9 hyperparameters),
and XG (10 hyperparameters), while RF and XRT are configured using their
default hyperparameters. As for the SE, the tool uses GLM as the second-
level learner and compares three distinct ensemble methods: one with the best
model of each individual approach (e.g., the best XG model), one with the
best 100 models and one with all trained models.

To evaluate the ML models for both regression tasks, an external 10-fold
cross-validation [29] was implemented, which is a standard ML evaluation
procedure (e.g., used in [36]). The regression quality was assessed by using
the MAE and the Normalized MAE (NMAE) metrics. The NMAE measure
presents a standardized MAE result, thus scale independent, showing the
error as a percentage of the response range. The MAE and NMAE errors are
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calculated as [37]:

MAE =

∑
j∈T |yi,j − ŷi,j |

#T

NMAE =
MAE

max (yi)−min (yi)

(2)

where T denotes the test set with a cardinality of #T , yi,j and ŷi,j represent
the desired and predicted value for output target i and test example j, and
max (yi) and min (yi) corresponds to the highest and the lowest values of the
target yi (considering all available data). For both metrics, the closer the value
is to zero the better is the regression.

Regarding the specific second ML goal, both STR or MTR prediction mod-
els can return values such that the sum of the six fiber percentages is not equal
to 100%, resulting in unfeasible textile compositions (this direct normal output
usage is termed here as the N approach). To solve this issue, we explore two
output post-processing strategies that return feasible compositions. The first
strategy assumes a proportional normalization (P), where first all negative
values are replaced by zero and then transformed according to:

ŷ′i,j =
ŷi,j∑K

k=1(ŷk,j)
(3)

where ŷ′i,j is the transformed value of the predicted fiber target ŷi,j , i ∈
{1, 2, ...,K} (one value for each fiber type, thus K = 6). The second strategy
works similarly to the previous one except that the zero or positive values are
now transformed by using the softmax (S) function:

ŷ′i,j =
exp(ŷi,j)∑K

k=1(exp(ŷk,j))
(4)

To select the best strategy and provide a final composition class value, we com-
pute the overall classification accuracy for a given low tolerance T value, where
a class composition is considered correct if all six fiber percentages are cor-
rectly predicted within the T absolute tolerance value. This measure is based
on the Regression Error Characteristic (REC) curve concept, which allows an
easy visual comparison of different prediction methods [38]. In this work, we
selected 10 small tolerance values within the range T ∈ {0.01, 0.02, ..., 0.10}.

4.4 Prescriptive Modeling

A possible solution s = (s1, s2, ..., sI) is represented as a sequence of I =44
numeric values (as explained in Section 4.1), assuming the IDF standard-
ized input space, as it allows to provide the same importance to each value
when computing distance measures. Each si value is set within the range
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[min (si),max (si)], where min (si) and max (si) denote the minimum and max-
imum values of the IDF standardized space using the training data. We repair
solutions in two different types of design features: yarns and finishing opera-
tions. A yarn is represented by a code and its number of repetitions. Thus,
when one of the two values is empty (thus 0 in the original space), then the
other value is also set to zero. For instance, if a yarn code is 0 (“empty”), then
the number of its repetitions is also set to 0. Moreover, we also assure that
both the warp and weft have at least one yarn, set to the first yarn type with
one repetition (if needed). In case of the finishing operations, any zero interme-
diate value (no operation followed by an operation) is shifted right, such that
the initial part of the sequence contains concrete operating values. Further-
more, since a fabric needs to be processed by at least two finishing operations,
we set the lower bound as min (si) > 0 (in the original space) for the first two
finishing operations values of the sequence.

The EMO goal is to simultaneously minimize the absolute error predictive
error (fp) and the training distance (fd) associated with a candidate solution
s. Let D denote the data used to train Mi, where Mi is the selected ML
method to predict a desired physical property i, under the mapping: i = 1 –
bias distortion; i = 2 – warp elasticity; i = 3 – weft elasticity; and i = 4 –
pilling. Let Yi(s) and Ŷi(s) denote normalized (using a min-max normalization
within the [0,1] range) desired target and predicted values when using model
Mi and the input solution s. In this work we assume normalized objective
functions, set within the [0,1] range. This facilitates the EMO result analysis,
since each computed objective can be interpreted as a percentage value:

fp(s) =
∑4

i=1 |Yi(s)−Ŷi(s)|
4 (predictive error)

fd(s) =
argminx∈D (

√
(x−s)2)√

I
(distance)

(5)

where fp(s) corresponds to the MAE error for all four desired properties and
fd(s) is the minimum Euclidean distance of solution s when compared with
the training set D. For the second objective, the term

√
I corresponds to a

high distance value (deviation of 1 for each of the analyzed I =44 inputs). As
explained in Section 1, ideally both fp and fp should present lower values. A
low predictive error (fp) means that the desired target properties are reached,
while a small distance (fd) reflects that the selected inputs (s) are close to
known input space, meaning that the predictions should be more reliable.

Two EMO approaches are compared in this work: NSGA-II and R-NSGA-
II, as implemented in the pymoo Python module [39]. The Non-dominated
Sorting Genetic Algorithm (NSGA)-II, adopts several distinct features (e.g.,
elitist strategy, fast crowded distance estimation procedure) and it is con-
sidered a parameterless approach [40]. When compared with other EMO
algorithms, such as based on the hypervolume measure (e.g, SMS-EMOA),
NSGA-II tends to obtain competitive results when only two or three objec-
tives are optimized [41]. As for R-NSGA-II, it consists of a more recent NSGA
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variant that assumes a modified survival selection, which is based on one or
more user defined reference points [42].

The EMO methods return a Pareto curve of optimized solutions, contain-
ing a set of trade-off points. Once the Pareto curve is optimized and for the
user selected trade-offs, the IDSS computes the prediction of the textile com-
position (using the second ML goal prediction models), such that the user can
further inspect the quality of the obtained solutions. In order to obtain a sin-
gle measure per Pareto curve, we adopt the hypervolume measure, which is
computed by defining a baseline reference point (anti-optimal) [43]. The higher
the hypervolume value, the better is the Pareto curve optimization.

For the evaluation of the EMO methods, we use the selected 100 exter-
nal fabric records, that are not used in the predictive experiments. The best
physical property prediction models (as shown in Section 5.1) are selected and
retained with all predictive experiment data (8,550 records). The EMO meth-
ods are then run by adopting an initial random population of individuals. We
highlight that each EMO method is executed for V=100 times (one run for
each new targeted fabric), which is a number that is substantially higher when
compared with the state-of-the-art FD works (see Section 2).

5 Experiments and Results

All experiments were conducted using code written in the Python program-
ming language. The experiments were executed on a personal computer with a
Intel Core i7 2.20GHz processor, with 6 cores, a NVIDIA GeForce GTX 1050
Ti, using a Windows operating system.

5.1 Physical Property Prediction Results

Table 4 presents the physical property predictive performance results. For
each predicted task (Property), we compare the two STR (AutoML) and
MTR (deep ANN) approaches. The results are shown in terms of the mean
MAE and NMAE values, associated with its student-t 95% confidence inter-
vals, for the external 10 folds, with the best values being highlighted by using
a boldface text font (statistical significance is measured by executing a paired
t-test). When comparing both approaches it becomes clear that STR is the
best regression strategy, achieving the lowest regression errors for all four tar-
gets, with the NMAE values ranging from 4.05% to 11.22%. Thus, the STR
approach, as provided by the AutoML modeling, is the selected regression
approach that is adopted by the EMO methods.

For demonstration purposes, Figure 6 shows the Regression Error Charac-
teristic (REC) curves for the four targets and the 6th external k-fold iteration.
Each REC curve plots the percentage of correctly predicted examples (y-axis)
for a given absolute error tolerance (x-axis) [38]. The curves confirm that the
STR presents slight better results for the pilling and bias distortion tests, and
much better results for both elasticity tests. For example, for the warp elas-
ticity, the STR method correctly predicts around 80% of the examples when



Springer Nature 2021 LATEX template

A data-driven intelligent decision support system 19

Table 4 Predictive results for each quality test target (mean MAE and NMAE test set
values pm 95% confidence intervals; best results per task are in bold).

STR MTR

Property MAE NMAE MAE NMAE
Bias Distortion 0.555±0.199 5.92%±0.448 0.558±0.028 6.62%±0.479
Elasticity (warp) 2.358±0.178 4.81%±0.355 3.599±1.366 7.38%±2.878
Elasticity (weft) 1.952±0.041∗ 4.05%±0.175∗ 3.529±1.326 7.31%±2.740
Pilling 0.350±0.008∗ 11.22%±0.306∗ 0.597±0.046 19.13%±1.648

∗ - Statistically significant when compared with MTR (p-value<0.05).

a small tolerance of T =0.1 points. To complement the visualization of the
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Fig. 6 REC curves of Elasticity Warp (top left), Elasticity Weft (top right), Bias Distortion
(bottom left) and Pilling (bottom right) predictions.

obtained STR results, Figure 7 presents the scatter plots of the measured (x-
axis) versus the predicted values (y-axis), complemented with coefficient of
determination (R2) for the specific 6th external fold. This metric has a positive
orientation, that is, the closer the result is to 1 the better are the predictions.
Visually, it can be seen that the predictions for the elasticity warp and elas-
ticity weft tests (top of Figure 7) are close to the ideal prediction diagonal
line and both present very good R2 values of 0.90 and 0.87 respectively. While
the same effect is not that visible for the pilling predictions (bottom right of
Figure 7), it should be noted that the real values are mainly distributed in 6
clusters, and the predicted values variate within each cluster, resulting in an
interesting R2 of 0.64. The bias distortion test presented the lowest R2 (0.32),
with a higher concentration of values between 1.5 and 4, which confirms that
this property is more difficult to be predicted. Nevertheless, the REC curve
(bottom left plot of Figure 6) shows that, for the same 6th external fold, the
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Fig. 7 Regression scatter plot of Elasticity Warp (top left), Elasticity Weft (top right),
Bias Distortion (bottom left) and Pilling (bottom right) predictions.

selected STR prediction model for the bias distortion is still capable of pre-
dicting around 50% of the examples for a 0.1 tolerance and around 80% of the
examples for a 0.25 tolerance value.

5.2 Textile Composition Prediction Results

Table 5 presents the predictive performance results of the test data regarding
the fabric composition. For each predicted task (%Fiber), we compare the
two regression approaches (STR, MTR). The results are shown in terms of
the mean MAE values (with their student-t 95% confidence intervals), for the
external 10-fold test sets, with the best values being highlighted by using a
boldface text font. It should be noted that only the MAE error is computed,
since the targets are already scaled within [0,1], thus the NMAE values are
identical to MAE in this case. Similarly to the physical property results, the
STR approach presents lowest MAE values for all six types of fibers, ranging
from 0.002 to 0.01. It also obtains the lowest average MAE value over all six
fibers (difference of 0.007 points when compared with MTR).

Additional comparative results are shown in Table 6, which presents the
composition classification accuracy (in %) when assuming a small tolerance
(T). For each regression approach (STR and MTR), we compare the three
output normalization strategies (N, P and S), with the best results for a given
tolerance value being highlighted by using a boldface text font. The results
clearly favor the STR regression approach. As for the output normalization
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Table 5 Fabric composition predictive results (mean MAE test set values associated with
its student-t 95% confidence intervals; best results are in bold).

MAE

%Fiber STR MTR

CO 0.009±0.002 0.013±0.002
CV 0.006±0.000∗ 0.017±0.001
EL 0.002±0.000∗ 0.006±0.000
PA 0.002±0.001∗ 0.005±0.001
PES 0.010±0.001∗ 0.020±0.002
WO 0.002±0.001∗ 0.011±0.002

Average 0.005 0.012

∗ - Statistically significant when compared with MTR (p-value<0.05).

Table 6 Percentage of fabric compositions correctly predicted per approach (best results
per T value are in bold).

STR MTR

T N P S N P S

0.01 87% 87% 87% 56% 58% 56%
0.02 89% 89% 89% 66% 65% 66%
0.03 90% 90% 90% 73% 72% 73%
0.04 91% 91% 91% 81% 76% 81%
0.05 92% 92% 92% 84% 84% 84%
0.06 93% 93% 93% 86% 86% 86%
0.07 93% 94% 93% 86% 86% 86%
0.08 94% 94% 94% 86% 87% 86%
0.09 94% 94% 94% 87% 87% 87%
0.10 94% 95% 94% 87% 87% 87%

strategies, all three strategies provide high classification accuracy values even
for very low tolerances (e.g., 87% when T=0.01%). Given that there is a large
number of different composition classes (95), this is a very interesting result,
confirming the value of the proposed ML textile composition approach. In
particular, the second output normalization strategy, based on proportions
(P), obtained a slight increase of 1 percentage point for the tolerance values of
T = 0.07 and T = 0.10. Given that when compared with the no normalization
strategy (N), it presents the additional advantage of always showing feasible
compositions, the STR approach with the P output transformation method
was selected to be used in the proposed IDSS system.

5.3 Fabric Input Optimization Results

The selected 100 external fabrics for the EMO experiments (not used in the
predictive experiments) present the following physical property ranges: Bias
Distortion – [1.1, 8.9]; Elasticity Warp – [5.2, 45.5]; Elasticity Weft – [5.4,
44.3]; and Pilling – [2, 4.5]. A distinct EMO execution is performed for each
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target fabric, thus 100 runs were executed for each of the tested NSGA-II
and R-NSGA-II methods. The initial populations were randomly generated (as
explained in Section 4.4). Moreover, all solutions were repaired (e.g., removal of
yarn codes when there are no repetitions) before computing the two objective
functions.

The NSGA-II and R-NSGA-II algorithms were configured with a check pro-
cedure that eliminates duplicates, ensuring that the mating produces offspring
that are different from themselves and the existing population regarding their
design space values. The NSGA-II was set up with the default values provided
by the pymoo Python module: population size of 100, two-point crossover with
90%, polynomial mutation probability of 20%. After some preliminary exper-
iments, in which the hypervolume measure was monitored for 5 fabrics, the
total number of generations was set to 200 generations, with an average exe-
cution time of 1,750 seconds per fabric. The R-NSGA-II method was set up
with the same configuration. Given that in this domain it is highly relevant
to obtain a low predictive error and a low input to training set distance, two
reference points were adopted close to the ideal (0,0) point: (0.05, 0.01) and
(0.01, 0.05). The goal is to guide the R-NSGA-II to obtain trade-off points
near the (0,0) region. R-NSGA-II contains an additional parameter, ϵ that was
set to a low value (0.01), which increases the search pressure to select points
closer to the two reference points. The R-NSGA-II had an average execution
time of 1,852 seconds per fabric. Following a similar reasoning to the one used
for the setting the R-NSGA-II reference points, we defined the baseline refer-
ence point for the hypervolume metric as (0.3, 0.3) when evaluating the EMO
methods. For each optimized fabrics, we discard the solutions that are outside
that area and calculate the hypervolume.

Table 7 presents the obtained hypervolume performance results for the
two EMO methods (% values, where 100% denotes the perfect Pareto curve).
For each Method, we present the mean hypervolume value associated with
its student-t 95% confidence interval (column Mean), and the Median and
its associated nonparametric Wilcoxon-Signed-Rank 95% confidence interval
(since this interval is not symmetric, it is fully shown in a different column)
[44, 45]. Statistical significance is measured by executing paired t-test (for the
Mean values) and Wilcoxon tests (for the Median values). When comparing
the EMO methods, it becomes clear that the R-NSGA-II is the best approach.
It outperforms the NSGA-II in both aggregation measures, with a difference
of around 5 points for the mean and around 10 points for the median.

Table 7 Hypervolume performance results (in %) for the 100 fabrics (best results per
approach are in bold).

Method Mean Median Median Interval

NSGA-II 20.86±3.25 24.31 [21.21, 28.04]
R-NSGA-II 25.95±4.31 34.22∗ [30.09, 38.78]

∗ - Statistically significant when compared with NSGA-II (p-value<0.05).
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To complement the hypervolume results, for each optimized Pareto front,
the nearest points to the ideal (0,0) solution were computed, assuming an
Euclidean distance under the optimized multi-objective space. These points
represent potential interesting solutions that are associated with both low pre-
dictive error and distance values. Table 8 summarizes the obtained results
in terms of the mean and median values of all 100 selected points for each
individual objective (fp and fd). Table 8 also presents the mean and median
values for the required CPU time (in s) and final number of optimized Pareto
solutions. Similarly to Table 7, the student-t and Wilcoxon-Signed-Rank 95%
confidence intervals and paired tests were also computed. The results confirm
that R-NSGA-II is the best approach for the optimization process. In effect,
R-NSGA-II presents lower mean and median values for both objectives, with a
difference of 2 percentage points for the distance (fd) and 3 percentage points
for the predictive error (fp) when compared with NSGA-II. The R-NSGA-
II optimized points that are closer to the ideal (0,0) solution present similar
mean and median values, which are 11% for the predictive error (fp) and 16%
for the inputs distance (fd). Regarding the additional EMO evaluation crite-
ria, R-NSGA-II requires a slight higher computational effort when compared
with NSGA-II, returning an average execution of 1,852 seconds. This value is
still considered reasonable for a new fabric design optimization, since it corre-
sponds to around 30 minutes. More importantly, R-NSGA-II tends to return a
richer Pareto front, containing on average around 50 distinct solutions, which
is substantially better when compared with NGSA-II (average of around 22
Pareto points).

Table 8 Summary of the selected point results, required EMO CPU time and obtained
number of Pareto solutions (best results per approach are in bold)

Method Mean Median Median Interval

NSGA-II

Distance (fd) 0.18± 0.01 0.18 [0.17, 0.19]
Predictive error (fp) 0.14± 0.01 0.14 [0.12, 0.16]
CPU time 1,750.2±0.3 1,750 [1749.9, 1750.4]
Pareto solutions 22.1± 3.5 20 [21.5, 27.0]

R-NSGA-II

Distance (fd) 0.16±0.01∗ 0.16∗ [0.15, 0.17]
Predictive error (fp) 0.11±0.01∗ 0.11∗ [0.10, 0.12]
CPU time 1, 852.2± 0.3 1,852 [1,852.0, 1,852.5]
Pareto solutions 49.7±8.0∗ 45.5∗ [57.5, 73.0]

∗ - Statistically significant when compared with NSGA-II (p-value<0.05).

For demonstration purposes, we selected two fabrics (#64 and #82) from
the 100 external fabrics used to evaluate the optimization process. Figure 8
presents the evolution of both EMO methods in terms of a percentage hyper-
volume measure (y−axis) through the executed 200 generations. It should be
noted that the measure is calculated for the baseline reference point (0.3, 0.3),
thus it returns a value of zero for the first EMO generations, since these include
worst solutions than the baseline. The plots show a substantial improvement



Springer Nature 2021 LATEX template

24 A data-driven intelligent decision support system

that is obtained by R-NSGA-II when comparing with NSGA-II. In fact, R-
NSGA-II requires fewer generations to start to obtain solutions that are within
the evaluation range (e.g., 75 generations for fabric #64), and after 200 genera-
tions, the difference in the hypervolume % value of both fabrics is considerable,
with an improvement of 28 percentage points for fabric #64 and 33 percentage
points for fabric #82.
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Fig. 8 NSGA-II and R-NSGA-II hypervolume (y−axis, in %) generation evolution (x−axis)
for fabrics #64 (left) and #82 (right).

Another demonstration example is provided in Figure 9, which presents
the Pareto front of both algorithms after 200 generations when considering
the #64 (left) and #82 (right) fabrics, with the defined reference points uti-
lized by R-NSGA-II. Considering fabric #64, the Pareto front of NSGA-II
contains 31 solutions, with the distance objective ranging from 0.172 to 0.290
and predictive error objective ranging from 0.023 to 0.060. As for R-NSGA-II,
it returns a Pareto curve with 100 non-dominated solutions, with the distance
measure ranging from 0.085 to 0.290 and the predictive error going from 0.015
to 0.055. The computed hypervolume (HV) is thus much higher for R-NSGA-
II (66%) when compared with NSGA-II (38%). Regarding fabric #82, the
Pareto front of NSGA-II contains 37 solutions (inputs distance ranging from
0.185 to 0.298; predictive error within 0.026 to 0.068; hypervolume of 32%),
while the R-NSGA-II returns a Pareto front with 44 solutions (distance rang-
ing from 0.077 to 0.229; predictive error from 0.023 to 0.076; hypervolume of
65%). The nearest point to the ideal point (0,0) is also shown in both plots.
They belong to the R-NSGA-II optimized fronts and correspond to: fabric #64
– (fd =0.155,fp =0.026) and fabric #82 – (fd =0.097,fp =0.053).

These examples confirm that R-NSGA-II outperforms NSGA-II. In fact,
R-NSGA-II tends to provide more Pareto front solutions and lower values for
both optimized objectives. Thus, we select R-NSGA-II for the proposed IDSS.

To illustrate the R-NSGA-II convergence, Figure 10 presents the evolu-
tion of the solutions towards the Pareto-optimal front. Each point represents a
potential solution and line segments are used to connect the points that belong
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Fig. 9 NSGA-II and R-NSGA-II Pareto curves for fabrics #64 (left) and #82 (right). The
respective hypervolume (HV) % values are shown in parentheses. The x−axis denotes the
inputs distance (fd), while the y−axis represents the predictive error (fp).

to the Pareto front. A color scheme is employed to facilitate the visual inspec-
tion of the plots, ranging from light gray (first generation) to full black (last
generation). For both #64 and #82 fabrics, there is an initial fast R-NSGA-
II convergence, with substantial movements of the Pareto front towards the
interesting bottom left region.
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Fig. 10 Example of the convergence of R-NSGA-II algorithm for fabric #64 (left) and
fabric #82 (right). The x−axis denotes the inputs distance (fd), while the y−axis represents
the predictive error (fp).

6 Conclusions

Due to fashion trend dynamics, the textile and clothing industry is constantly
designing new fabrics. However, the creation of a new fabric is a nontriv-
ial, costly and time-consuming process, often based on the textile designer
experience and requiring a large number of design, prototype production and
laboratory testing cycles. Aiming to reduce the number of fabric prototype
production attempts, this paper proposes a purely data-driven and automated
Intelligent Decision Support System (IDSS) that combines predictive and
prescriptive analytics.
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Using a large and realistic set of 44 fabric design components (e.g., yarns
used for the warp and weft components), two main predictive goals were used
by the proposed IDSS, the estimation of four desired physical properties (e.g.,
warp and weft elasticity) and the detection of the final textile composition
(e.g., % of cotton, % of polyester). Thousands of historical fabric production
records, collected from a Portuguese textile company, were used to compare two
distinct Machine Learning (ML) approaches, a Single-Target Regression (STR)
using an Automated ML (AutoML) approach, and Multi-Target Regression
(MTR) performed by a deep Artificial Neural Network (ANN). Overall, the
STR approach provided the best results for both predictive goals, resulting
in Normalized Mean Absolute Error (NMAE) values that ranged from 4%
(weft elasticity) to 11% (pilling), when predicting the physical properties, and
a textile composition classification accuracy of 87%, when assuming a small
tolerance of 0.01 for predicting the percentages of six main types of fibers (e.g.,
cotton, polyester).

Regarding the prescriptive analytics, they assume an Evolutionary Multi-
objective Optimization (EMO) search. Using the best physical property
prediction models (provided by STR), the EMO optimizes the set of 44 fabric
inputs that simultaneously minimizes the physical property predictive error
and its distance to the training input space. Using 100 additional fabric records
(not used in the predictive experiments), two EMO methods were compared:
NSGA-II and R-NSGA-II. Thus, each method was executed 100 times, result-
ing in 100 distinct Pareto fronts. Several EMO measures, such as hypervolume
and selection of the Pareto front points that were closer to the ideal solu-
tion, allowed to confirm the R-NSGA-II as the best EMO method, thus being
included in the proposed IDSS. On average, the R-NSGA-II selected points
closer to the perfect (0,0) value and that are associated with an 16% distance
and 11% predictive error. Moreover, the R-NSGA-II method returned a richer
set of Pareto points (average of around 50 distinct solutions for each new
fabric).

We note that the obtained results can not be directly compared with
the state-of-the-art works, since the four related Fabric Design (FD) studies
(Section 2) are more limited and target different FD goals. For instance, the
ANNs used in [4] predicted different physical properties (ultraviolet protec-
tion factor, air permeability and moisture vapor transmission rate). The study
used a smaller dataset (with just 42 fabric examples) and a simpler validation
procedure (random holdout split and not the 10-fold cross-validation adopted
in this work). Furthermore, in [4] a Genetic Algorithm was used to reduce the
ANN predictive error (single objective) regarding the three physical properties
and only 4 new fabrics were optimized, presenting a fabric property devia-
tion that ranged from 2% to 20%. While these results are comparable to our
average 11% predictive error, we note that our research contains substantial
differences. For instance, we target four different physical properties (e.g., weft
elasticity) and optimize a much larger set of 100 fabrics under a true EMO
approach that also aims to reduce the distance to the learned input space.
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In terms of scientific contributions, this research shows that the combina-
tion of predictive and prescriptive analytics can be a valuable tool to address
the nontrivial FD task. Indeed, the predictive and prescriptive IDSS results
were shown to the textile company experts, which provided a very positive
feedback.

While interesting results were obtained, this research includes some limi-
tations. As already mentioned in Section 4.2, this paper assumes an objective
evaluation of the EMO results by using unseen test data. Thus, there was no
assessment of the IDSS interaction with textile designers. Moreover, since the
proposed IDSS was not deployed in a real environment, we have not directly
measured the IDSS value in terms of reducing the number of FD prototype
attempts. In effect, in future work, we intend to address these limitations by
deploying the IDSS in the real textile company environment. This will allow
us to gather further feedback from the textile designers by using the Technol-
ogy Acceptance Model (TAM) model, such as executed in [46]. Also, the IDSS
deployment will be used to confirm its potential to reduce the costs and time
associated with each new fabric development. Also, we plan to study a many
objective approach [47], which is more challenging than the approached bi-
objective EMO, aiming to simultaneously minimize the individual predictive
error when predicting a larger set of fabric physical properties (e.g., abrasion,
seam slippage, stability to steam). Finally, although the combination of pre-
dictive and prescriptive analytics was targeted to support the creation of new
textile fabrics, it can be adapted to other production domains that have similar
prototype design processes, such the plastic and chemical industries.
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A Acronyms Used

Tables 9 and 10 present the full list of acronyms used in work.

Table 9 List of acronyms used in Table 1.

Acronym Description

ABC Artificial Bee Colony
ACO Ant Colony Optimization
ANN Artificial Neural Network
AP Air Permeability
AutoML Automated Machine Learning
CE Carbon Emission
CO Cutting Orders
COP Cutting Order Planning
CP Comfort Properties
DO Dyeing Orders
EC Energy Consumption
EPI Ends per Inch
F Fibers
FC Fabric Construction parameters
FCp Fabric Cutting patterns
FD Fabric Design
FDF Fabric Design Features
FO Finishing Operations
FP Fabric Properties
FW Finishing Workflow
GA Genetic Algorithm
GP Genetic Programming
GPC Garment Production Cost
GPT Garment Production Time
GSM Fabric Grams per Square Meter
HGASA Hybrid Genetic Algorithm Simulated Annealing
MA Memetic Algorithm
Mf Manufacturing of fabrics
Mg Manufacturing of garments
ML Marker Layout
MO-ABC Multi-Objective Artificial Bee Colony
MOGCO-II Multi-Objective Group Counseling Optimizer II
MPS Master Production Scheduling
MS Machine Settings
MSGA-H Multi-Subpopulation Genetic Algorithm Heuristics
NSGA-II Non-dominated Sorting Genetic Algorithm II
OP Operation Parameters
PC Production Capacities

pesgMESO
parallel evolution scenario generation-based
Multi-objective Evolutionary Stochastic Optimization
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Table 10 List of acronyms used in Table 1 (continued).

Acronym Description

PiO Stochastic Optimization
PO Production Orders
PP Production Planning
PPI Picks per Inch
PPWP Production Planning of Weaving Process
PR Productive Resources
PSO Particle Swarm Optimization
QAW Quality Assurance Workflow
RiSP Ring Spinning Process
RMQ Raw Material Quality
R-NSGA-II Reference point based Non-dominated Sorting Genetic Algorithm II
RoSP Rotor Spinning Process
SA Simulated Annealing
SF Sales Forecast
SR Subcontractor Resources
ST Setup Times
STBD Scheduling Textile Batch Dyeing
STC Sewing Thread Consumption
SW Sewing Workflow
TC Tardiness cost
ThC Thermal Conductivity
TR Transportation Resources
TT Total Tardiness
UPF Ultraviolet Protection Factor
URDV Utilization Rate of Dyeing Vats
WC Water Consumption
WaC Warp Count
WeC Weft Count
WMP Weaving Machine Parameters
WTC Wastewater Treatment Costs
Y Yarns
YDO Yarn Dyeing Orders
YDS Yarn Dyeing Scheduling
YS Yarn Strength
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