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Abstract
We give necessary and sufficient conditions for the divisibility of two finite geometric
series Gn(x) = 1 + x + x2 + · · · + xn−1 over a field of characteristic zero.

Keywords Finite geometric series · Divisibility · Greatest common divisor

Mathematics Subject Classification 13F07 · 11A05

1 Introduction

The geometric series

Gn(x) = 1 + x + x2 + · · · + xn−1

(also called geometric progression or GP for short) is an important two-parameter
concept used in many branches of mathematics, such as in power series, convergence,
telescoping matrix theory [4], number theory [2, 3] and algebraic curves, and has
applications in cryptography [1].

For convenience, we shall write Gn for Gn(x), when there is no risk of confusion.
It is well known that (x − 1)Gn(x) = xn − 1. As such, it is clear that many of the
properties of Gn(x) follow from those of xn − 1. We shall refer to the latter as the
“binomial" of the geometric progression.
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When q is a prime power, say q = pe, the geometric ratio Gn(q) corresponds to
the number of points and of hyperplanes of the projective space Pn−1(Fq); if it is a
prime number, then Gn(q) is called a projective prime.

The case G2
(
22

e)
turns into a Fermat number, whereas 2n − 1 = Gn(2) is a

Mersènne number. As in these two particular cases, it is conjectured that there exist
infinitely many projective primes.

As in the Mersènne numbers, the primality of Gn(q) implies the primality of n.
Indeed, we may use the Product Rule (see (1)) that we will address later to write
Gn(q) = Gdt (q) = Gd(q)Gt (qd), assuming n = dt is a non-trivial factorization.

Our aim is investigate the fundamental question of whenGn(x p) dividesGm(xq)—
as a polynomial. This four-parameter problem will be referred to as the (n, p,m, q)
property.

As always, we shall build on the simpler cases, such as the (n, 1, n, q) and
(n, 1,m, q) cases, where m = n and p = 1, or just when p = 1.

All our results will be over a field F with char(F) = 0. The greatest common
divisor and the least common multiple of a and b will be denoted by (a, b) and [a, b],
respectively.

We shall need a multitude of preliminary results, which are needed to build our
case.

2 Building Blocks

Given integers m and n, let (m, n) = d and suppose that n = mq + r , where 0 ≤ r <

m ≤ n. Then,

xn − 1 = xr (xmq − 1) + xr − 1 = (xm − 1)xrGq(x
m) + xr − 1.

This shows at once that

m|n ⇔ xm − 1|xn − 1 ⇔ Gm(x)|Gn(x)

and hence that

(xm − 1, xn − 1) = xd − 1 = (x − 1)(Gm,Gn).

Consequently,

Gd = xd − 1

x − 1
= (Gm,Gn)

and thus

(Gm,Gn) = 1 ⇔ (m, n) = 1.

Next, let L = [m, n] = lcm(m, n) = mn
d . We also set m = dm′ and n = dn′ so

that L = mn′ = nm′ = m′n′d.
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We now observe that if n|L andm|L , then xn −1|x L −1 and xm −1|x L −1. Hence,
[xm − 1, xn − 1]|x L − 1|xmn − 1, and thus

(xm − 1)(xn − 1)

(xd − 1)
|x L − 1|xmn − 1

which may be expressed as

Gm(x)Gn(x)|GL(x)Gd(x)|Gmn(x)Gd(x).

For x �= 1, we have

Gnp(x)

Gp(x)
= xnp − 1

x − 1
.
x − 1

x p − 1
= xnp − 1

x p − 1
= Gn(x

p),

and thus for all x

Gnp(x) = Gp(x)Gn(x
p), (1)

which we refer to as the Product Rule.
It immediately extends to larger products such as

Gabc = GaGbc(x
a) = GaGb(x

a)Gc(x
ab).

A further consequence of the Product Rule is the “q equals one lemma":

Lemma 2.1 (The q = 1 case) The following are equivalent:

(i) (n, p, n, 1) holds.
(ii) Gn(x p)|Gn(x).
(iii) Gnp|GnGp.
(iv) n = 1 or p = 1.

Proof The equivalence of (ii)–(iii) follows from the definition and the Product Rule.
If (iii) holds, then using degrees we see that (np − 1) ≤ (n − 1) + (p − 1), which

tells us that

(n − 1)(p − 1) ≤ 0.

Since n ≥ 1 and p ≥ 1, it follows that (iv) must hold. Lastly, it is clear that (iv) implies
(ii). ��

The following is a key result, which critically depends on the fact that char(F) = 0.
This will be referred to it as the Linking Lemma with parameter m and links the sub-
and superscripts in the two GPs, each of which contains the parameter m.

Lemma 2.2 (Linking Lemma) For any m, n and k,

(Gm(x),Gn(x
km)) = 1.
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Proof We begin by noting that Gn(1) = n, which when char(F) = 0 cannot be equal
to 0. Now by the remainder theorem

Gn(x) = (x − 1)Q(x) + Gn(1)

and thus as Gn(1) �= 0, we conclude that (x − 1) � | Gn(x), or

(x − 1,Gn(x)) = 1.

Replacing x by xmk gives
(
xmk − 1,Gn(xmk)

) = 1 and so

(
(x − 1)Gm(x)Gk(x

m),Gn(x
mk)

)
= 1.

This means that for any m, n and k

(
Gm(x),Gn(x

mk)
)

= 1.

��

We use both the Product Rule and the Linking Lemma in the following Basic
Lemma, which is a first step in our investigation of Gn(x p)|Gm(xq).

Lemma 2.3 ((n,1,n,q)) The following are equivalent:

(1) Gn(x)|Gn(xq) i.e. (n, 1, n, q) holds.
(2) Gn(x)Gq(x)|Gqn(x).
(3) (q, n) = 1.

Proof From the Product Rule, it is clear that (1) ⇔ (2).
Let (q, n) = d and q = q ′d, n = n′d and suppose that (1) holds. Then,

Gn(x)|Gn(x
q) ⇒ Gn′d(x)|Gn(x

q ′d) ⇒ GdGn′(xd)|Gn(x
q ′d).

By the Linking Lemma, we now get Gd = 1 and thus (3) follows.
Conversely, we always have that

GqGn|GqnGd

and hence, if d = 1, then (2) follows. ��

We can immediately extend this to
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Lemma 2.4 (Key (n,1,m,q)) The following are equivalent:

(1) Gn(x)|Gm(xq) i.e. (n,1,m,q) holds.
(2) Gn(x)Gq(x)|Gmq(x).
(3) (n, q) = 1 and n|m.

Proof The equivalence of (1) and (2) follows again from the Product Rule.
Let (m, n) = d andm = m′d, n = n′d. Also set (n, q) = e and n = n′′e, q = q ′′e.

Then, Gn(x) = Ge(x)Gn′′(xe)|Gm(xq
′′e). By the Linking Lemma, with exponent e,

we see that Ge(x) = 1 and thus e = (q, n) = 1. Applying the Basic Lemma, we get
GnGq |Gnq . Combining this with (2), we conclude that

GnGq |(Gmq ,Gnq) = G(mq,nq) = Gqd .

This implies that Gn|Gdq and thus n|dq. Since (n, q) = 1, it follows that n|d, and we
may conclude that n = d and n|m so that (3) follows.

Conversely, if (n, q) = 1, then Lemma 2.3, GnGq |Gnq and since n|m, we also
have Gnq |Gmq . Combining these, we arrive at GnGq |Gmq giving (2). ��

3 The Polynomial Ratio

In what follows, we shall need several polynomial results dealing with greatest com-
mon divisors. In particular, we recall

Lemma 3.1 Over an Euclidean domain,

1. The gcd Product Rule holds:

(ab, cd) = (a, c)(b, d)(a′b′, c′d ′),

where a′ = a/(a, c), c′ = c/(a, c), b′ = b/(b, d), d ′ = d/(b, d).
2.

(ab, cd) = 1 if and only if 1 = (a, c) = (a, d) = (b, c) = (b, d).

We now come to a refinement of the four parameters m, n, p and q, indicating the
interaction between them.

Given p and q, let (p, q) = w and set p = p′w and q = q ′w, with (p′, q ′) = 1.
Consider the rational ratio

R = Gm(xq)

Gn(x p)
= Gm(xq

′w)

Gn(x p′w)
= Gm(yq

′
)

Gn(y p
′
)
,

where y = xw. Thus, without loss of generality we may assume that (p, q) = 1;
otherwise, in the final answer replace x by xw.
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We begin by establishing the desired splitting of our four parameters. As such, we
define:

d = (m, n), m = m′d, n = n′d, with (m′, n′) = 1
f = (m′, p), m′ = m̂ f , p = p̂ f , with (m̂, p̂) = 1
g = (n′, q), n′ = n̄g, q = q̄g, with (n̄, q̄) = 1
h = ( p̂, d), p̂ = p̃h, d = d̃h, with ( p̃, d̃) = 1
t = (q̄, d), q̄ = q ′′t, d = d ′′t, with (q ′′, d ′′) = 1.

Further, we set r = m̂q̄ and s = p̂n̄.
Because (m′, n′) = 1 = (p, q), we know that e = (m′q, n′ p) = (m′, p)(n′, q) =

f g.
We also observe that

(s, r) = ( p̂ · n̄, m̂q̄) = 1,

because all four partial gcds equal one, i.e. ( p̂, q̄) = 1 = (m̂, n̄) = ( p̂, m̂) = (n̄, q̄).
From the Product Rule, we know that

R is a polynomial ⇔ Gn(x
p)|Gm(x

q) ⇔ Gnp

G p
|Gmq

Gq
⇔ GqGnp|GpGmq .

Now np = (de)( p̂n̄) = (de)s and mq = (de)m̂q̄ = (de)r and hence

R is a polynomial ⇔ GqGdeG p̂n̄(x
de)|GpGdeGm̂q̄(x

de) ⇔ GqGs(x
de)|GpGr (x

de).

Because (p, q) = 1 = (r , s), we know that (Gp(x),Gq(x)) = 1 = (Gr (xde),
Gs(xde)). And thus R will be a polynomial if and only if both of the following
conditions hold:

(I) Gq(x)|Gr (x
de) and (II) Gs(x

de)|Gp.

Let us now examine these two conditions.
Turning to condition (I), we have q = gq̄ and r = m̂q̄ , and thus

Gq(x)|Gr (x
de) ⇔ Gg(x)Gq̄(x

g)|Gq̄(x
de)Gm̂(x

deq̄).

Since g divides de, we can use the Linking Lemma to conclude that Gg is coprime
to both factors of the RHS. As such, we must have Gg = 1, and thus g = 1. This
means that n′ = n̄ and q = q̄ .

We are left with

Gq̄ |Gq̄(x
de)Gm̂(x

deq̄).

Again, the Linking Lemma implies that

(Gq̄ ,Gm̂(x
deq̄)) = 1
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which leaves us with

Gq̄ |Gq̄(x
de).

Using the Basic (n, 1, n, q) Lemma, we arrive at (q̄, de) = (q, de) = 1. This shows
that

t = (q, d) = 1 (2)

in addition to (q, e) = (q, f ) = 1.
Turning to the second condition (II) with e = f , we see that splitting s = p̂n̄ and

p = p̂ f , we deduce that

Gs(x
d f )|Gp ⇔ G p̂(x

d f ) · Gn̄(x
de p̂)|G f · G p̂(x

f ).

Because f |d f |d f p̂ and p̂|d f p̂, we may conclude that

Gn̄(x
de p̂) = 1

and thus we must have

n̄ = 1.

This ensures that n′ = n̄ · g = 1 and hence n = d = (m, n) or

n|m.

We are left with

G p̂(x
de)|G p̂(x

f ).

Comparing degrees

( p̂ − 1)d f ≤ ( p̂ − 1) f

or by using the “q equals one Lemma”, we see that either p̂ = 1 or d = 1. In the latter
case, we get n = n′d = 1 · 1 = 1, which is excluded.

On the other hand, when p̂ = 1, p = f = (m′, p) so that p|m′ = m
d = m

n .
Combining these results with (2), we see that if R is a polynomial, then n|m, p|mn

and (n, q) = 1.
Conversely, suppose n|m, p|mn and (q, n) = 1.

The latter shows that (q, pn) = (q, p)(q, n) = 1. Next, let m = m′n, m′ = p
and m = npw. As np divides npw, and (np, q) = 1, we see by the Key (n, 1,m, q)
Lemma that Gnp|Gnpw(xq). Hence,

Gnp|GpGpnw(x
q) or Gn(x

p)|Gm(x
q).
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We have proven

Theorem 3.1

Gm (xq)

Gn (x p)
is a polynomial

if and only if

n|m, p|m
n
, (n, q) = 1.

4 Remarks

The above establishes when the ratio R will be a polynomial. However, it does not tell
us what the actual polynomial is or when it will again be a GP. Also, the ratio question
is a first step towards the computation of the gcd of two GPs. These topics will involve
geometric series of the form Gn(−x) with negative arguments and will be addressed
in a later examination.

We close with a couple of non-trivial examples.

1. The (6, 3, 18, 5) case, with n = 6, p = 3,m = 18, q = 5. In this case, it is clear
that 3|(18/6) and (5, 6) = 1. The GPs are G18(x5) = x85 + x80 + x75 + x70 +
x65 + x60 + x55 + x50 + x45 + x40 + x35 + x30 + x25 + x20 + x15 + x10 + x5 + 1,

and G6(x3) = x15 + x12 + x9 + x6 + x3 + 1. The quotient R = G18(x5)
G6(x3)

equals

x70 − x67 + x65 − x62 + x60 − x57 + x55 + x50 − x49 + x45 − x44 + x40 − x39 +
x35 − x31 + x30 − x26 + x25 − x21 + x20 + x15 − x13 + x10 − x8 + x5 − x3 + 1.

2. The (4, 1, 4, 3) case, with n = 4, p = 1,m = 4, q = 3. The GPs are G4(x3) =
x9 + x6 + x3 + 1 and G4(x) = x3 + x2 + x + 1. This time, R = G4(x3)

G4(x)
=

x6 − x5 + x3 − x + 1 = G3(−x2)G3(−x).
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