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Abstract 

Background: After almost 100 years since evidence of biofilm mode of growth and decades 

of intensive investigation about their formation, regulatory pathways and mechanisms of 

antimicrobial tolerance, nowadays there are still no therapeutic solutions to eradicate bacterial 

biofilms and their biomedical related issues.   

Purpose: This review intends to provide a comprehensive summary of the recent and most 

relevant published studies on plant-based products, or their isolated compounds with 

antibiofilm activity mechanisms of action or identified molecular targets against bacterial 

biofilms. The objective is to offer a new perspective of most recent data for clinical 

researchers aiming to prevent or eliminate biofilm-associated infections caused by bacterial 

pathogens. 

Methods: The search was performed considering original research articles published on 

PubMed, Web of Science and Scopus from 2015 to April 2023, using keywords such as 

“antibiofilm”, “antivirulence”, “phytochemicals” and “plant extracts”. 

Results: Over 180 articles were considered for this review with a focus on the priority human 

pathogens listed by World Health Organization, including Pseudomonas aeruginosa, 

Staphylococcus aureus, Klebsiella pneumoniae and Escherichia coli. Inhibition and 

detachment or dismantling of biofilms formed by these pathogens were found using plant-

based extract/products or derivative compounds. Although combination of plant-based 

products and antibiotics were recorded and discussed, this topic is currently poorly explored 

and only for a reduced number of bacterial species. 

Conclusions: This review clearly demonstrates that plant-based products or derivative 

compounds may be a promising therapeutic strategy to eliminate bacterial biofilms and their 

associated infections. After thoroughly reviewing the vast amount of research carried out 

over years, it was concluded that plant-based products are mostly able to prevent biofilm 

formation through inhibition of quorum sensing signals, but also to disrupt mature biofilms 

developed by multidrug resistant bacteria targeting the biofilm extracellular polymeric 

substance. Flavonoids and phenolic compounds seemed the most effective against bacterial 

biofilms. 
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Abbreviations 

 

AHL - N-acyl homoserine lactone  

 

AMB - Activity on mature/preformed biofilms 

 

AQSV - anti-quorum sensing/anti-virulence 

 

CF - cystic fibrosis 

 

CviR - cytoplasmic DNA binding transcription factor 

 

DSF - diffusible signal factos 

 

EPS - Extracellular polymeric substance 

 

IBF - Inhibition of biofilm formation 

 

MIC - minimum inhibitory concentration 

 

MRSA - methicillin resistant Staphylococcus aureus 

 

MSSA - methicillin sensitive Staphylococcus aureus 

 

QS – quorum sensing 

 

QSI - quorum sensing inhibitors 

 

WHO – World Health Organization  
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1. Introduction 

Chronic microbial infections have become one of the major health care problems 

worldwide due to the rise of multidrug resistance of pathogens. Bacterial infections by 

multidrug resistant pathogens are especially problematic to immunocompromised and 

hospitalized patients since they are most at risk to develop chronic infections, leading to 

significant morbidity and mortality (Christaki et al., 2020; McEwen and Collignon, 2018). 

Over the years theoretical chemistry and bioinformatics have delivered tools to design 

specific molecules with target functionalities. However, modern technology appears to be 

reaching its limit and it has not resulted in the expected drug productivity and efficiency to 

combat antibiotic resistance. In contrast, nature has millions of years of evolution in creating 

solutions for survival and adaptation to different environments and stressful conditions and 

have become one of the most important resources for developing new lead compounds and 

scaffolds. The interest of the scientific community on plant products in the healthcare field, in 

particular the investigation of plant-based products for the treatment of infectious diseases is 

clearly growing. This trend will continue or even increase in the next years because the plant 

kingdom is still a reservoir of unknown bioactive compounds. Regarding infectious diseases, 

the scientific community has essentially turned to plants to find new products with 

antimicrobial activity in an attempt to efficiently treat microbial chronic infections. However, 

clinicians and researchers understood that the global crisis of antibiotic resistance will not be 

solved only by seeking antimicrobial compounds. Much of the literature generally agrees that 

the major cause of chronic microbial infections is the presence of biofilms and according to 

the U.S. National Institute of Health (NIH), 80% of chronic infections are associated with 

biofilm formation (Jamal et al., 2018). These microbial communities are structured consortia 

of microorganisms, embedded in a self-produced matrix able to tolerate up to 1,000-fold 

higher concentrations of antimicrobial agents than those required to inhibit their planktonic 

(free living) counterparts (Römling and Balsalobre, 2012; Vestby et al., 2020).  

The substantial clinical impact of biofilms has led researchers in the last decades to 

intensively investigate the biofilm mode of growth, their regulatory pathways, and their 

antimicrobial mechanisms of resistance to get closer to the ultimate goal, biofilm eradication. 

Researchers understood that the current pharmacopeia lack compounds able to eradicate 

biofilm-associated infections, including antibiotics that forces community to seek alternative 

therapeutic strategies, and nature continues to be considered as an origin of transformative 

drugs including antibiofilm agents. Therefore, the aim of this review is to indicate promising 
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plant-based antibiofilm compounds, and provide inspiration, or new starting points for the 

development of antibiofilm agents for main problematic human pathogens. Once bacterial 

pathogenic biofilms are currently a remarkable challenge in diverse human activities such as 

in veterinary, food, environmental and clinical field, there are an increased number of reviews 

(Ćirić et al., 2019; Nuță et al., 2021; Slobodníková et al., 2016), but this review intends to 

offer a distinct perspective of the use of plant products on clinical biofilms. Typically reviews 

of antibiofilm plant-based agents present a quite similar organization and discussion of the 

information by, for instance, plant or extract (Lu et al., 2019), phytochemicals (Lu et al., 

2019; Melander et al., 2020; Shamim et al., 2023; Song et al., 2018), or mechanism of action 

(Rossi et al., 2022) lacking a discussion from a clinical point of view. In clinical field 

researchers deal with a specific infectious condition (e.g. skin, urinary, vaginal infections, 

indwelling infections) caused by a specific pathogen or a limited number of pathogens and 

they aim to easily access to the information about the antibiofilm plant products against their 

specific target species. The lack of a review with a clinical comprehensive overview of the 

recent findings of antibiofilm activity of plant-based compounds and the potential synergy 

with antibiotics for the most relevant human health threatening bacterial species implies that 

clinical researchers (and others) have to read a significant amount of information not related 

to their target species to identify possible antibiofilm products. Therefore, this review aims to 

provide a balanced high-yield resource covering the biofilm thematic and discussing the most 

relevant and sound science of antibiofilm plant products or compounds to advance drug 

discovery targeting the most difficult bacterial biofilm-associated infections to treat. 

Moreover, this review discusses the limitations and challenges posed by biofilms and the use 

of plant-based products that have contributed for few plant-based candidates in clinical trial 

testing and regulatory approval. 

The first and second section of this review summarizes the biofilm development stages 

and the different biofilm targeting approaches, respectively. Examples of successful plant-

based products with antibiofilm activity will be reviewed for the priority bacterial species 

determined by World Health Organization (WHO), including Pseudomonas aeruginosa, 

Staphylococcus aureus, Klebsiella pneumoniae and Escherichia coli (WHO, 2017). In the 

third section, the potential synergy of combining plant-based antibiofilm products with 

antibiotics are discussed despite the quite reduced number of studies addressing this topic. In 

the last section, the limitations, challenges, difficulties of handling natural products are 

debated as well as the opportunities to advance drug discovery and development from plants.  
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2. Biofilms 

Bacteria are capable to develop biofilms in the human tissues, such as infections of skin 

and soft tissues, pneumonia in cystic fibrosis (CF) patients, chronic otitis media, recurrent 

urinary tract infections, meningitis, endocarditis, periodontitis and dental caries; and in 

medical devices including catheters, ventilator tubes or organ replacements (prothesis, 

pacemakers and others) (Høiby et al., 2010b; Römling and Balsalobre, 2012; Taylor et al., 

2014; Vestby et al., 2020). Biofilm formation has been described for several bacterial species 

(O’Toole et al., 2000; Rabin et al., 2015; Vetrivel et al., 2021) and, in general, the 

development of biofilms occurs in three main steps: attachment, maturation, and 

dispersion/detachment. It starts with the attachment of planktonic cells to a biotic or abiotic 

surface (reversible attachment) and progress to irreversible attachment to the surface and to 

each other as a result of extracellular matrix production. The continued growth and division 

of cells within the biofilm leads to the formation of a more mature biofilm with full 

developed three-dimensional structure. Eventually, some cells can detach from the biofilm 

becoming motile and capable of spreading the infection, establishing new biofilms in other 

infection sites, worsening the clinical outcome (de la Fuente-Núñez et al., 2013; Vestby et al., 

2020). Although the multi-step process of biofilm formation is understood, the expression 

and regulation of the mechanisms during biofilm formation stages of the distinct bacterial 

species is diverse and still unclear. 

The major challenge of biofilms is their drug tolerance resulting from the combination of 

several mechanisms, including restricted penetration of antimicrobials through the matrix, 

bacterial slow growth and phenotypic diversity caused by microscale chemical gradients, and 

quorum sensing molecules (de la Fuente-Núñez et al., 2013; Høiby et al., 2010a; Mah, 2012; 

Rabin et al., 2015; Sousa et al., 2013). Among these mechanisms, it is uncontested the 

importance of the extracellular matrix in biofilm tolerance. The extracellular matrix produced 

by bacteria is composed of exopolysaccharides, proteins, extracellular deoxyribonucleic acid 

(DNA) and lipids, and acts as a protective barrier that prevents the penetration of antibiotics, 

resulting in an increased tolerance (Chen et al., 2013; Mah, 2012; Roy et al., 2018). 

Moreover, biofilm matrix can also be a fundamental mechanism of antibiotic tolerance in an 

“indirect way”. This barrier also limits the diffusion and distribution of nutrients and oxygen 

along the biofilm depth, sparking microbial organization into a wide range of distinct 

subpopulations within the biofilm strata with diversified metabolic profiles, genetic 

programs, spatial segregation, and differential stress responses (Mah, 2012; Penesyan et al., 
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2021; Roy et al., 2018; Walters et al., 2003; Yan and Bassler, 2019). Decreased metabolic 

activity of the cells within the biofilm is one of the most impacting features on the efficacy of 

antibiotics. Even if antibiotic molecules penetrate into biofilm matrix, biofilm subpopulations 

displaying differential growth and reduced metabolic rates, antagonize the action of the 

antimicrobials since most of them target biological processes during aerobic respiration (e.g. 

DNA replication, translation, cell wall synthesis) (Jensen et al., 2017; Ryall et al., 2012; 

Stewart and Franklin, 2008; Walters et al., 2003). Therefore, antibiotics typically are able of 

clearing the outer layers of biofilms where active growing cells are located (considering the 

most common top-to-bottom gradient of decreasing metabolic activity), and present reduced 

cell killing into the middle and inner layers (Soares et al., 2019; Walters et al., 2003; 

Williamson et al., 2012). The nutritional and oxygen constraints within the biofilm, and the 

cellular exposure to antimicrobials can also be a driving force for a small fraction of the 

population enter into a dormant state. This fraction of the population called persister cells or 

persisters or dormant cells comprise around 1% of the cells within the biofilm and are highly 

tolerant to antibiotics without undergoing genetic changes (Conlon et al., 2015; Hall and 

Mah, 2017). They can survive and remain viable even if the biofilm population is eradicated 

during an antibiotic treatment and after antibiotic level drops, persister cells can repopulate 

and originate a biofilm (Grassi et al., 2017; Soares et al., 2019). By this reason, the persister 

cells are frequently associate to the relapse of infection (Lewis, 2008; Soares et al., 2019). 

Bacteria within biofilms have a regulatory mechanism that acts as a communication 

system between the cells, named quorum sensing (QS) (Al-Wrafy et al., 2017). This system, 

mediated by small signalling molecules known as auto-inducers, responds to changes in the 

cell-population density to synchronize gene expression and control cellular behaviour. QS 

controls several processes and phenotypic behaviours, including stress resistance, expression 

of virulence factors, and biofilm formation. The relevance of QS leads researchers to put 

great efforts on understanding how biofilm development and QS are interconnected and 

consequently several studies have been published disclosing the regulatory mechanisms for 

several species, especially on P. aeruginosa (Balestrino et al., 2005; Li et al., 2007; Solano et 

al., 2014; Yarwood et al., 2004).  P. aeruginosa is one of the most threatening pathogens to 

human health, and its virulence potential is widely regulated by the QS system. It is 

constituted by the lasI/R system which plays the leading role in regulating the activity of the 

rhlI/R.  The las system controls the production of virulence factors such as LasB elastase, 

LasA protease, alkaline protease, exotoxin A and biofilm formation, while the rhl controls the 

production of virulent pigments, such as pyocyanin and pyoverdine, and rhamnolipids 
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(Balestrino et al., 2005; Li et al., 2007; Solano et al., 2014; Yarwood et al., 2004). These 

virulence factors are involved in cellular toxicity and acute infection development. Also, QS 

has been intensively studied on gram-positive bacteria. In S. aureus, a leading cause of 

nosocomial infections worldwide, the accessory gene regulator system (agr) mediates the QS 

system through the production and sensing of a secreted cyclic peptide signal (autoinducing 

peptide) (Abisado et al., 2018; Solano et al., 2014; Yarwood et al., 2004). The role of agr in 

biofilm formation is controversial. Some evidence has pointed that agr is need for biofilm 

formation while others demonstrated that dysfunction of agr might promote enhanced ability 

to form biofilms (Traber et al., 2008; Vuong et al., 2000; Yarwood et al., 2004). This kind of 

contradictory evidence well demonstrate the complexity of studying and combating biofilms.  

Human infections including biofilm-associated infections are frequently polymicrobial and 

this feature can complicate the design of antibiotic therapies. Interspecies interaction within 

biofilms is frequently achieved through QS signals (Abisado et al., 2018; Federle and Bassler, 

2003). For instance, P. aeruginosa and S. aureus are common etiological agents of several 

polymicrobial infections, including wounds, otitis media and oral infections and they are 

frequently isolated together from CF lungs (Reece et al., 2021). Their interspecies 

interactions can influence the pathogenesis of P. aeruginosa, contributing for its persistence 

and worsening of the patient’s condition (Magalhães et al., 2017). The cohabitation with S. 

aureus hinders the host immune response against P. aeruginosa and increases its virulence 

and tolerance to antibiotics (Beaudoin et al., 2017). In turn, several studies have shown that 

some molecules produced by P. aeruginosa, such as 4-hydroxy-2-heptylquinoline N-oxide 

(HQNO), a molecule pertaining to the Pseudomonas quinolone signal (PQS) QS system 

pathway, is able to suppress S. aureus planktonic growth, while protecting it from 

aminoglycosides by inhibition of electron transport through cytochrome b in S. aureus 

(Hoffman et al., 2006; Orazi and O’Toole, 2017; Painter et al., 2015). Moreover, it was 

showed that HQNO increased S. aureus biofilm formation, and long-term exposure was 

shown to induce formation of small colony variants known to be highly resistant to several 

antibiotics (Mitchell et al., 2010). Also, interspecies communications between 

Stenotrophomonas maltophilia and P. aeruginosa can be achieved through the action of some 

fatty acids produced by S. maltophilia, named the diffusible signal factors (DSF: cis-11-

methyl-2-dodecenoic acid). The formation of S. maltophilia and P. aeruginosa mixed 

biofilms is likely to occur in CF lungs in which several types of cis-2-unsaturated fatty acids 

were found in CF sputum, supporting the hypothesis that both species can communicate and 

interact (Twomey et al., 2012) . Communication by DSF can modulate the architecture of P. 
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aeruginosa in vitro biofilms from flat to filamentous structure when S. maltophilia is present 

(Ryan et al., 2008). Moreover, perception of DSF can also promote on P. aeruginosa the 

abundance of proteins that contribute to stress tolerance and increase virulence, including 

FliC (flagellin), AhpC (alkyl hydroperoxide reductase) and Adk (adenylate kinase) (Ryan et 

al., 2008). These alterations could contribute for P. aeruginosa chronic infection 

development in CF lungs. 

Overall, compelling evidence obtained in different bacterial species coincides that biofilm 

eradication is a tricky process due to its multifactorial antimicrobial tolerance that antibiotics 

in general are not able to eliminate. To be successful implies a shift of the current therapeutic 

paradigm making imperative to find compounds able to inhibit, disrupt and/or dismantle 

biofilms. Biofilm-associated infections could be successfully eradicated if synergies between 

antibiotics and natural or plant-based antibiofilm agents were found. In the next sections, it 

will be provided a comprehensive assessment of the latest data and representative number of 

the plant-based compounds studied as antibiofilm agents and evidences on their potential 

adjuvant effect when combined with antibiotics against the most health-threatening 

antibiotic-resistant bacteria following the priority list divulgated by WHO (WHO, 2017). For 

this review, the research was performed on three databases, PubMed, Web of Science and 

Scopus, considering only original research articles published from 2015 to April 2023 and 

using the keywords “antibiofilm”, “antivirulence”, “phytochemicals” and “plant extracts”.  

 

3. Antibiofilm activity of plant-based fractions/compounds 

Antibiofilm agents can be considered the molecules or compounds that can inhibit the 

formation of biofilms mainly by tackling the initial adhesion, extracellular polymeric 

substance (EPS) production, or disrupt or dismantle pre-formed and mature biofilms by 

targeting maturation and dispersal or detachment stages. Interestingly, plant-based products 

proved to be effective in both antibiofilm approaches (Figure 1 and Table 1).  

The benefits of preventing biofilm formation rather than eradicating are obvious and 

include decreased risk of the emergence of multidrug resistant phenotypes, and non-

development of chronic infections which are much more difficult to eradicate and harmful to 

the host cells (Chen et al., 2013; Roy et al., 2018; Solano et al., 2014). Inhibition of the 

bacterial adhesion to a surface is mainly achieved by surface-coatings altering the superficial 

properties of the surface (e.g. hydrophobicity) or impregnating the surface with antimicrobial 

molecules. For instance, Trentin et al. (2015) showed that proanthocyanidins, a compound 
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isolated from the leaves of Pityrocarpa moniliformis (Benth.) Luckow & R.W.Jobson were 

capable of prevent the Staphylococcus epidermidis initial attachment to the surface by 

changing the characteristics of the surface, which in turn reduced the biofilm formation 

without inhibiting the planktonic growth. 

Another interesting strategy for inhibition of biofilm formation is targeting the virulence 

potential of bacteria (Figure 1). This is considered one of the most promising and effective 

approaches with the advantage to better control the emergence and dissemination of antibiotic 

resistant phenotypes. Several virulence factors are involved in the initial steps of formation 

and maturation of biofilms and controlled by the QS. Consequently, QS constitutes one of the 

most exploited targets for the development of anti-virulence and antibiofilm drugs (Paluch et 

al., 2020; Rasmussen and Givskov, 2006; Zhou et al., 2020) and numerous QS inhibitors 

(QSI) have been found in plants (Figure 1) (Burt et al., 2014; Cheng et al., 2020; Ćirić et al., 

2019; Das and Mehta, 2018; Noumi et al., 2018; Rama Devi et al., 2016; Wang et al., 2019). 

Carvacrol reduced the expression of two virulence factors, violacein and chitinase activity 

regulated by the QS in Chromobacterium violaceum (Burt et al., 2014). Likewise, an 

essential oil of Melaleuca bracteata F.Muell (golden tea tree) rich in methyleugenol inhibited 

violacein production, and suppressed the production of C6-HSL, a signalling molecule 

involved in the QS of C. violaceum (Wang et al., 2019). Rosmarinic acid also supressed 

several virulence factors, such as the production of hemolysin, lipase and elastase in 

Aeromonas hydrophila (Rama Devi et al., 2016). 

EPS-targeting strategies are also the most antibiofilm approaches studied because EPS is 

responsible for the adherence of cells to the surfaces and to each other, as well as for 

structural stability and protection to the biofilm against external aggressions or stresses (de la 

Fuente-Núñez et al., 2013; Mah, 2012; Rabin et al., 2015). Therefore, products that 

destabilize the EPS matrix are an effective way of attacking biofilms. EPS targeting can 

occur in the early stages of biofilm formation by inhibiting the EPS production, which will 

interrupt the biofilm cycle averting maturation; or in pre-formed biofilms by disrupting or 

degrading the matrix, allowing biofilm-cells exposure to antibiotics and increasing their 

cellular uptake, while also promoting bacterial dispersal of the cells within the biofilm 

(Figure 1) (Chen et al., 2013; Roy et al., 2018). For example, a cranberry extract rich in 

polyphenols was capable of reducing the biofilm matrix production in Vibrio cholerae, which 

in turn inhibited the biofilm formation during the initial development (Pederson et al., 2018). 

At first sight, it seems very straightforward to eliminate biofilms, but there are several 

hitches. For example, the disassembly of biofilms by dispersal or disruption can cause a 
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massive release of bacteria, which can represent a serious risk to patients. For instance, 

bacteria can enter into the bloodstream leading to sepsis if this release is not combined with 

antibiotics to eliminate the released cells (Minasyan, 2019). Moreover, fractions of biofilm-

cells might not exhibit antibiotic susceptibilities identical to planktonic counterparts because 

biofilms encompass quite different phenotypes that may be resistant to several antibiotics 

unlike the planktonic cells. Even if an antibiofilm compound was able to significantly reduce 

biofilm biomass (cells and matrix), biofilms can contain persister cells that, once the 

treatment has stopped, are capable of generate a new biofilm with the same characteristics as 

the original one, restarting the infection (Lewis, 2008). These cells remain viable and keep 

persisting after each treatment turning this infection in a vicious cycle that can only be truly 

stopped if the persister cells are completely eradicated (Conlon et al., 2015; Hall and Mah, 

2017; Soares et al., 2019; Wood et al., 2013). Therefore, it is reasonable to assume that to 

effectively inhibit biofilm formation or disassemble pre-formed biofilms there is the need to 

master knowledge about biofilm formation, physiology, matrix composition, microbial 

composition and stratification. It is also clear that inhibition of biofilm formation is more 

feasible than disassemble pre-formed biofilms in which the complex three-dimensional 

structure and the intricated mechanisms of antibiotic tolerance (e.g. distinct physiological 

state of cells and dense extracellular matrix) are well established. The lower potential activity 

for eradication or at least reduction of preformed biofilms than for inhibition of biofilm 

formation is verified for all kind of drugs, including antibiotics and plant-derived products 

(Galvão et al., 2020; Hengzhuang et al., 2011; Silva et al., 2020). Accordingly, literature has 

accumulated a wide range of evidence that demonstrated the main antibiofilm activity of 

plant-based products relies on inhibition of bacterial adhesion to surfaces, reduction of matrix 

production, attenuation of virulence factors expression and blocking QS as demonstrated in 

Table 1. The plant extracts or their isolated compounds with antibiofilm activity against most 

human life-threatening bacteria will be discussed in more detailed in the next sections.
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3.1. Pseudomonas aeruginosa 

P. aeruginosa is a gram-negative opportunistic pathogen in hospitalized or immune-

compromised patients causing a wide range of infections, including lung infections in people 

with CF and chronic obstructive lung disease, infections in burns, and wounds, as well as it 

causes urinary tract and gastrointestinal infections, otitis media, keratitis and ventilator-

associated pneumonia in intubated patients (Høiby et al., 2010b; Taylor et al., 2014; Thi et 

al., 2020; Vetrivel et al., 2021). Since biofilms are the responsible for the majority of P. 

aeruginosa chronic infections, they are one of the most well studied biofilms worldwide (Thi 

et al., 2020; Vetrivel et al., 2021) and, consequently, there are countless studies trying to 

tackle P. aeruginosa biofilms, including through the application of plant-based products 

(Table 1).  

One of the most studied plants against biofilms is Centella asiatica (L.) Urb., commonly 

known as Indian Pennyworth, whose leaves have been used in African and Chinese medicine 

to treat skin problems and heal wounds (Hamid et al., 2002). Vasavi et al. (2016) reported 

that ethyl acetate fraction of C. asiatica exhibited anti-QS activity against P. aeruginosa. The 

leaves extract inhibited some QS-related traits such as pyocyanin production, elastolytic and 

proteolytic activities, swarming motility and it also reduced the initial formation of biofilm. 

The ethyl acetate fraction of C. asiatica also exhibited anti-QS activity against C. violaceum 

which led to consider that this extract somehow modulated the interaction of N-acyl 

homoserine lactone (AHL) with the cytoplasmic DNA binding transcription factor (CviR) 

that activates gene expression (Stauff and Bassler, 2011). This anti-QS activity of C. asiatica 

against both species might indicate a broad spectrum of action and it might be the result of 

the presence in the extract of kaempferol, a flavonoid. Nevertheless, the anti-QS activity may 

also be a result of synergism with other flavonoid compounds such as quercetin, apigenin, 

rutin, and naringin (Vasavi et al., 2016). 

Herba patriniae another plant from Chinese medicine also showed impressive results 

against P. aeruginosa biofilms (Fu et al., 2017). A water extract of H. patriniae prevented the 

formation of mature biofilms only allowing the formation of smaller cell clusters. The 

impairment of biofilm maturation resulted from a significant reduction of EPS production and 

fostering swarming motility (reducing adhesion and favouring the planktonic state of 

growth). Moreover, a significant decreased of virulence genes expression including algU, 

algA, pslM, bdlA, pelA was observed after the application of the H. patriniae extract (Fu et 

al., 2017). These genes have been associated to the different stages of biofilm development 
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since surface sensing, exopolysaccharide biosynthetic functions and dispersion (Bazire et al., 

2010; Jackson et al., 2004; Morgan et al., 2006).  

The methanolic extract of Iris pallida Lam (Dalmatian iris) and Iris versicolor L. 

(northern blue flag) showed anti-adhesion activity reducing the biomass adhered when 

applied before the initial stage of biofilm development. This antibiofilm potential might be 

significantly correlated with myristic acid content that inactivates bacterial adhesins and 

enzymes hindering the bacteria-surface interaction and, consequently, the adhesion and 

biofilm formation (Hoang et al., 2020). However, myristic acid can have other mechanisms 

of action including as QSI (Abd-Alla and Bashandy, 2012). Additionally, I. pallida was able 

to disrupt 4h-old mature biofilms which might resulted from the interaction of several 

compounds including 7-beta-hydroxystigmast-4-en-3-one content with QS system but the 

underlying mechanisms are not clearly understood (Hoang et al., 2020). Attenuation of the 

QS-related traits of P. aeruginosa was also observed using methanolic extract and essential 

oils from Terminalia bellerica leaves. They inhibited the production of pyocyanin and EPS, 

while also reducing the biofilm formation up to 78% at 0.5 mg/mL. This antibiofilm activity 

might have resulted in the inhibition of the AHL molecule caused by the active compounds 

present in the extract (Sankar Ganesh and Ravishankar Rai, 2018). 

The therapeutic activity of Melaleuca alternifolia (Maiden & Betche) Cheel (tea tree) and 

Camellia sinensis (L.) Kuntze (green tea), namely their anti-inflammatory activity has been 

studied for years (Zhao et al., 2013), but recently a new biological activity showed up. Noumi 

et al. (2018) demonstrated that the essential oil of M. alternifolia inhibited the swarming 

motility in P. aeruginosa and Qais et al. (2019) reported that the leaves of green tea extracted 

with ethyl acetate inhibited P. aeruginosa QS-related phenotypes including swimming 

motility, the production of pyocyanin, pyoverdine, exoprotease, elastase and rhamnolipids. 

As reported previously by Vasavi et al. (2016), the authors verified that the compounds of the 

green tea extracts compete for ligand binding domain of CviR (Qais et al., 2019). Identical P. 

aeruginosa targets were used by chloroform and methanol extracts of Andrographis 

paniculate (Banerjee et al., 2017) and ethanol extracts of leaves of Cinnamomum verum 

J.Presl (the cinnamon tree) (Alva et al., 2021).  

Overall, it was clear that targeting initial adhesion or interfering with the QS are the major 

mechanism of action that plant-based products use to hinder P. aeruginosa biofilm formation. 

In contrast, the compounds responsible for tackling P. aeruginosa biofilms are poorly known 

but flavonoids and other phenolic compounds seemed the most active. 
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3.2. Staphylococcus aureus and MRSA 

S. aureus is a gram-positive bacterium that causes a wide range of infections such as skin 

infections, pneumonia, meningitis, endocarditis and device-related infections (Archer et al., 

2011; Lister and Horswill, 2014). Infections are further complicated by the development of 

resistant strains such as methicillin resistant Staphylococcus aureus (MRSA), one of the most 

common source of hospital acquired infections, and, more recently by vancomycin resistant 

Staphylococcus aureus (VRSA) representing a significant burden on the healthcare system 

(Archer et al., 2011; Chen et al., 2015; Muhs et al., 2017). Planktonic S. aureus are generally 

responsible for acute infections such as bacteraemia and skin abscesses through the 

production of secreted toxins and exo-enzymes, while biofilms are responsible for chronic 

infections such as osteomyelitis and endocarditis but mainly for device-related infections 

associated to the use of catheters, prosthetic joints, and pacemakers (Muhs et al., 2017). 

Similarly to other bacterial species, the formation of biofilms further contributes to the 

persistence of S. aureus infections because bacteria are protected by the matrix that reduces 

the efficacy of host defences and antibiotic activity (Kahl et al., 2016; Wolter et al., 2013).  

Several authors have found plant extracts that inhibited biofilm formation in S. aureus. For 

instance, Tamfu et al. (2020) reported that N-cerotoyltryptamine isolated from seed extract of 

Annona senegalensis Pers. (Annonaceae) showed the highest biofilm inhibition among 

asimicin (2) and ent-19-carbomethoxykauran-17-oic acid achieving a reduction of 27 and 

44% of biofilm biomass after the application of 4-fold lower minimum inhibitory 

concentration (MIC) and MIC, respectively. Muhs et al. (2017) reported that a flavone rich 

extract of Schinus terebinthifolia Raddi (Brazilian peppertree) fruits were able to inhibit the 

agr QS system and prevented biofilm formation by S. aureus without killing or inhibiting 

bacterial growth. The agr system can be necessary for S. aureus biofilm formation and its 

downregulation decrease gene expression of cell wall-associated adherence factors needed for 

initial biofilm formation stages (Archer et al., 2011; Lister and Horswill, 2014). Recently, 

Tang et al. (2020) isolated and identified three triterpenoid acids (3-oxo-olean-12-en-28-oic 

acid, 3-oxotirucalla-7,24Z-dien-26-oic acid, 3α-hydroxytirucalla-7,24Z-dien-26-oic acid) 

from methanolic extract of S. terebinthifolia that might be the responsible for the inhibition of 

the expression of S. aureus agr types.  

Plant-based products has also proved to be a promising strategy to prevent the formation 

of antibiotic resistant biofilms including MRSA. Extract of Duabanga grandiflora (Roxb. Ex 

DC.) Walp. leaves reduced cell-surface attachment of MRSA by decreasing expression levels 

of PBP2a which led to the formation of weaker biofilm structures (Santiago et al., 2015). 
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PBP2a is a protein that facilitates the cell-to-cell interactions during biofilm development 

(Mack et al., 2004; Pozzi et al., 2012; Santiago et al., 2015). A water extract of Artemisia 

princeps Pamp. also showed activity against MRSA inhibiting not only biofilm formation but 

also proliferation and expression of some virulence genes (mecA, sea, agrA, and sarA) 

involved in the biofilm formation (Choi et al., 2015). The phytochemical analysis of A. 

princeps indicated that its activity may be related to organic acids and glycosides, the major 

components of the extract (Choi et al., 2015). Moreover, phenols such as gallic acid of the 

water extract of Cochlospermum regium (Schrank) Pilg. leaves might also be the responsible 

for the complete inhibition of both MRSA and methicillin sensitive Staphylococcus aureus 

(MSSA) biofilm formation (Galvão et al., 2020), possibly by inhibiting the polysaccharide 

synthesis (glucose and fructose), as previously reported by Sendamangalam et al. (2011) and 

Liu et al. (2017). 

Eucalyptus globulus Labill. (eucalyptus) leaves have been used as conventional medicine 

for years with different purposes and recently was demonstrated its antibiofilm activity 

(Merghni et al., 2018). The essential oil obtained from the leaves of E. globulus and its 

isolated compound 1,8-cineole were capable of reducing the initial attachment and 

subsequent biofilm formation by MRSA and it was even capable of disrupt pre-formed 

biofilms (Merghni et al., 2018). Likewise, the essential oil from the leaves of M. alternifolia, 

commonly known as the tea tree, and its isolated compound terpinene-4-ol inhibited the 

formation of biofilm in MRSA by reducing the initial cell adhesion (Noumi et al., 2018). 

Dismantling of pre-formed biofilms is a harder task than inhibition but even so plant-

derived products has proven to be effective. Leaves of Allium stipitatum Regel (Karunanidhi 

et al., 2018) and Syagrus coronata (Martius) Beccari (Souza dos Santos et al., 2019) can 

cause alterations in the S. aureus biofilm structure leading to its disintegration. These plant 

extracts, or their isolated compounds penetrated in deep layers of the biofilms and affected 

mature biofilms formed by antibiotic resistant bacteria, which might represent a great 

advance in the fighting of antibiotic resistance global crisis. Also, methylene chloride-

methanol extract of Callistemon citrinus (Curtis) Skeels (a synonym of Melaleuca citrina 

(Curtis) Dum.Cours.) leaves and the isolated pulverulentone A dismantled MRSA and MSSA 

biofilms reducing the production of staphyloxanthin, a hallmark virulence factor of S. aureus 

that mostly acts as an antioxidant against host immune response (Clauditz et al., 2006) and 

causing significant alterations in the biofilm structure (Shehabeldine et al., 2020).  

Overall, it is verified that plant extracts can reduce S. aureus biofilms presenting 

promising results against the antibiotic resistant strains such as MRSA. The compounds 
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responsible for the antibiofilm activity are diverse but flavonoids, organic acids and phenolic 

acids seemed to be the most active. They can exert distinct mechanisms of action but hinder 

the initial stages of biofilm formation, such as the attachment to the surface and reduction of 

virulence potential, is the most common mechanism. 

 

3.3. Klebsiella pneumoniae 

K. pneumoniae is a leading cause of nosocomial infections and of a large spectrum of 

community-acquired infections. Typically, it infects immunocompromised patients or 

patients with indwelling devices such as urinary catheters on which bacteria are able to form 

biofilms (Guerra et al., 2022). K. pneumoniae antibiotic resistance is currently a hot topic in 

clinical community worldwide, since it often shows a high resistance to a broad spectrum of 

drugs including β-lactam antibiotics, fluoroquinolones and aminoglycosides, and frequently 

multi-drug resistance and even extremely drug resistance (Navon-Venezia et al., 2017). 

Bacteria growing in biofilms formed in living or abiotic surfaces critically exacerbate this 

scenario. Therefore, the inhibition of biofilm formation on surfaces has been the most used 

approach by researchers to avoid an escalation of drug resistance. 

Virulence factors facilitates K. pneumoniae colonization, evasion to immune system and 

infection development in the human host and biofilm formation. The capsule, type 1 and type 

3 pili and lipopolysaccharides in K. pneumoniae contribute to the formation of biofilm being 

responsible for a proper initial coverage of substrate and construction of mature biofilm 

architecture and the initial adhesion on abiotic surfaces (Guerra et al., 2022; Vuotto et al., 

2014). Extract of Arctium lappa L. (burdock) root showed promising results against K. 

pneumoniae reaching up to 80% of inhibition of biofilm formation at the maximum 

concentration tested (100 μg/ml), without affecting planktonic bacteria. Moreover, this 

extract was also capable of disrupting pre-formed biofilms (Rajasekharan et al., 2017). In 

vitro experiments and in silico docking support the hypothesis that the chlorogenic acid 

present in the extract might bind the active sites of sulfhydryl-variable-1 β-lactamase and 

downregulated biofilm-associated genes including type 3 fimbriae mrkD and trehalose-6-

phosphate hydrolase treC. 

A chloroform extract of Fagonia indica Burm.fil. inhibited biofilm formation in K. 

pneumoniae by reducing the initial bacterial attachment to the surface, while also causing 

disintegration of the bacterial cell wall (Aslam et al., 2022). Also, a methanolic extract of 

Pulicaria crispa (Forssk.) Oliv. (a synonym of Pulicaria undulata), a Saharan plant that local 

population used for antimicrobial and antiseptic purposes was capable of inhibiting biofilm 
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formation by K. pneumoniae (Thinina et al., 2020). Its antibiofilm action might be attributed 

to its chemical composition of quercetin, the major component, ellagic acid, gallic acid, 

rosmarinic acid, proanthocyanidin dimer and rutin produced in response to the arid 

environmental conditions. Indeed, the different components of this extract have different 

mechanisms of action:  proanthocyanidin dímer might contribute for reduced EPS production 

(Blanco et al., 2005); ellagic acid might damage cell membrane while also inhibit biofilm 

formation (Bakkiyaraj et al., 2013; Fontaine et al., 2017); gallic acid might inhibit the activity 

of enzymes involved in glucose and fructose synthesis leading to biofilm inhibition 

(Sendamangalam et al., 2011; Sowndarya et al., 2020); rosmarinic acid causes inhibition of 

the early stages of biofilm formation (Corral-Lugo et al., 2016; Slobodníková et al., 2013); 

and the flavonoid rutin might inhibit nucleic acid synthesis (Mirzoeva et al., 1997; Z. Wang 

et al., 2021). So far it is unclear if the antibiofilm activity results from the synergy of two or 

more compounds or only from quercetin. 

Anthocyanins isolated from Syzygium cumini (L.) Skeels (commonly known as black plum 

or Indian blackberry) well known for its antimicrobial activity against food-borne pathogens, 

were capable of inhibiting the biofilm formation and EPS production up to 70%, through a 

pronounced inhibitory effect on QS (Gopu et al., 2015). Similarly to other bacterial species, 

QS also plays a significant role in K. pneumoniae biofilm formation in the initial adhesion to 

surfaces and maturation, and regulation of the production of EPS that protects cells from 

external aggressions (Guerra et al., 2022). The anti-QS activity of the anthocyanin of S. 

cumini might be attributed to malvidin that exhibited high binding rate with LasR receptor 

(Gopu et al., 2015). 

Extracts of Hyptis suaveolens (L.) Poit. (a synonym of Mesosphaerum suaveolens (L.) 

Kuntze) exhibited various effects on biofilms (Salini et al., 2015). In general, methanol, 

hexane, ethyl acetate and aqueous extracts of H. suaveolens exhibited anti-QS activities in K. 

pneumoniae. Among them, hexane extract exhibited a notorious antibiofilm activity reducing 

the biomass in K. pneumoniae biofilms while also reducing the bacterial motility (disabling 

bacteria to reach and adhere to surfaces) and the production of several QS-related virulence 

factors important in the development of the infection, including protease, hemolysin, 

prodigiosin. In this study, it was shown that this extract had effect not only on K. pneumoniae 

but also on other pathogens involved in urinary tract infections including Proteus mirabilis, 

Proteus vulgaris, Serratia marcescens and E. coli (Salini et al., 2015). This could be a 

relevant feature since biofilm-associated infections are frequently polymicrobial. 
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Although the great impact of K. pneumoniae in the global crisis of antibiotic resistance 

and be a serious threat to the patients, there are scares studies of plant-based products for the 

inhibition of biofilms. Comparing with other species such P. aeruginosa, S. aureus, S. 

epidermidis, E. coli, the understanding about the ecology and physiology of K. pneumoniae 

biofilms is still limited which impact on the number of studies addressing antibiofilm 

strategies. Therefore, a significant effort must be put on providing insights about K. 

pneumoniae biofilm physiology in order to design effective antibiofilm strategies. 

 

3.4. Escherichia coli 

E. coli is a gram-negative bacterium mainly responsible for urinary tract infections, one of 

the most common bacterial infections in humans. Living commonly in the urinary tract, it 

frequently forms biofilms on the surface of catheter materials and on the bladder epithelial 

cells (Sharma et al., 2016). The ability to form biofilm is highly dependent on the expression 

of virulence factors such as Type 1 fimbriae, curli fimbriae and adhesins that allows it to 

move and colonize various sites in the urinary system and overcoming host defences (Eberly 

et al., 2017; Lüthje and Brauner, 2014). The clinical importance of E. coli biofilms was 

clearly stated with its correlation with antibiotic resistance in catheter-associated urinary tract 

infections (CAUTI) (Sharma et al., 2016). 

A. senegalensis is widely used in West and Central Africa due to its antimicrobial and 

antioxidant activities, but recently it was also reported antibiofilm activity against E. coli and 

S. aureus. Tamfu et al. (2020) reported that N-cerotoyltryptamine, asimicin and ent-19-

carbomethoxykauran-17-oic acid isolated from seed extract of A. senegalensis inhibited 

biofilm formation, being asimicin the most active compounds against E. coli. It provoked a 

reduction of 19 and 43% of biofilm biomass using 4-fold lower MIC and MIC, respectively.  

Clinopodium bolivianum (Benth.) Kuntze, a South American aromatic herb known for its 

anti-infective and immunomodulatory activities and frequently used to treat gastrointestinal 

disorders was found to reduce the adherence ability of E. coli to uroepithelial cells and, 

consequently, reduce the biofilm formation without inhibiting bacterial growth (Mohanty et 

al., 2017). The authors considered that polyphenols and fructose present in the extract are the 

suppressors of biofilm formation.  

A methanolic extract of Citrus limon (L.) Burm fruits was also capable of reducing the 

biofilm formation while also decreasing the maturation of the biofilm matrix (Singha et al., 

2023). The authors found the two major components of this extract, cyclobarbital and 3-

methylsalicylhydrazid, to be responsible for the antibiofilm activity. Likewise, an aqueous 
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extract of Polypodium vulgare L. rhizome was capable of altering the structure of 

uropathogenic E. coli biofilms, producing a much weaker biofilm than the untreated cultures 

(Gleńsk et al., 2019).  The authors found that the compound osladin was responsible for this 

activity. However, the rhizome extract was more effective against biofilms than the isolated 

compound, meaning that other compounds present in the extract might also have antibiofilm 

activity or several compounds might act synergistically. 

Essential oil of Rosmarinus officinalis L. (a synonym of Salvia rosmarinus Spenn.) 

(rosemary), Thymus zygis L. (thyme) and Origanum majorana L. (sweet marjoram) were 

studied on E. coli cells isolated from urinary tract infections and these essential oils were 

capable of inhibiting the initial attachment. R. officinalis demonstrated the highest inhibition 

rate of biofilm formation (Lagha et al., 2019). According to the biochemical composition, 

1.8-cineole present in R. officinalis might be the biofilm suppressor compared to the linalool 

and terpinen-4-ol present in the other essential oils. Interestingly, in this work, the essential 

oil with the highest antibiofilm activity corresponded the lowest antibacterial effect. Also, 

Abu El-Wafa et al. (2020) and Zhang et al. (2014) verified that antibiofilm activity was not 

related to antibacterial action. For instance, polyphenolic extract of Rosa rugosa Thunb. tea 

blocked QS system affecting the QS-controlled traits including swarming motility and 

biofilm formation of E. coli and P. aeruginosa at sub-MIC concentrations, without having an 

antibacterial effect on the planktonic cells (Zhang et al., 2014). This evidence reinforce that 

plant-based products must be evaluated independently of the previous reported activities, in 

particular antimicrobial activity.  

The leaves of Symplocos racemosa Roxb., commonly known as Lodh tree in India, 

displayed a significant antibiofilm potential against several bacterial species including E. coli 

(Sood et al., 2020). Diverse compounds were obtained from this plant, but flavonoids were 

the most effective against E. coli. They caused inhibition of the initial cell attachment and 

disruption of pre-formed biofilms, and also reduced the biofilm-cells metabolic activity (Sood 

et al., 2020). Nevertheless, cardiac glycosides also provoked a reduction in biofilm-cells 

viability but less efficiently than the flavonoids. The antibiofilm potential of flavonoids and 

cardiac glycosides were also verified for other bacterial species, including K. pneumoniae and 

S. aureus (Arora and Mahajan, 2019; Sood et al., 2020).  

Aqueous extract of Acacia nilotica (L.) Willd. ex Delile (a synonym of Vachellia nilotica 

(L.) P.J.H.Hurter & Mabb.), in particular 3-cyclohexane-1-carboxaldehyde, 2,6,6-trimethyl; 

á-selinene; oleic acid; globulol and isochiapin detected in the its composition demonstrated a 

promising ability to reduce biofilm biomass of E. coli as well as K. pneumoniae, P. mirabilis 
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and P. aeruginosa (Elamary et al., 2020). Several other phytochemicals have shown activity 

against E. coli. For instance, the compound ginkgolic acid isolated from Ginkgo biloba L. 

caused downregulation of the curli and prophage genes which inhibited the biofilm formation 

(Lee et al., 2014); and a maple syrup extract rich in phenolic compounds caused a reduction 

in adhesion and biofilm formation, while also repressed drug resistance genes in E. coli 

(Maisuria et al., 2015).  

In summary, it is clear the activity of plant extracts on E. coli biofilms predominantly 

acting on their inhibition. Polyphenols and flavonoids seemed the most active compounds in 

the inhibition of bacterial adhesion and blocking QS. It is also noted that there are few studies 

of plant products against E. coli biofilms, despite their relevance in community and hospital-

acquired infections. 

 

4. Synergism of plant extract/compounds and antibiotics 

The current international, national and local approaches used for control of biofilm-

associated infections included the administration of dual or combinatorial therapies, either by 

administrating two antibiotics simultaneously or by combining an antibiotic with a 'helper’ or 

adjuvant agent/drug/compound. For instance, to manage P. aeruginosa biofilm-associated 

infections, combinations of antibiotics such as ceftolozane and tazobactam are used to treat 

urinary tract infections (Bassetti et al., 2018); and combinations of sulfamethoxazole and 

trimethoprim are used treat S. aureus and MRSA infections (Hodille et al., 2017). There is no 

doubt about the value of antibiotics to control or eliminate infections and the lives that they 

can save, but antibiotics are designed to target and kill bacteria and not to disrupt or 

dismantle biofilms. Consequently, most of the biofilm-associated infections persist after 

antibiotic treatments (Conlon et al., 2015; Römling and Balsalobre, 2012; Vestby et al., 

2020). An antibiofilm compound acting alone towards pre-existing biofilms will release an 

overload burden of ‘single’ cells or produce small aggregates of biofilm-cells that most of the 

antibiofilm compounds cannot eradicate. If the released biofilm-cells were not eliminated, 

bacteria can initiate a new cycle of biofilm formation perpetuating the infection (Chen et al., 

2013; Roy et al., 2018; Yan and Bassler, 2019). Therefore, it seems beneficial the 

combination of two kind of compounds, antibiotic and antibiofilm drug in order to achieve 

the eradication of the biofilm-associated infections. Although therapies using more than one 

molecule increase the risk of negative interactions between drugs or increased the toxicity to 

the host, the benefit of increased efficacy of antibiotics can outweigh the risk. The clinical 
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community have understood this benefit long time ago against planktonic bacteria. A 

polyphenolic flavonoid (glabridin) isolated from Glycyrrhiza glabra L. has shown to 

potentiate the activity of oxacillin, vancomycin and norfloxacin against planktonic S. aureus 

(Singh et al., 2015). The authors found that the oxacillin and vancomycin MIC were reduced 

by 2-fold when combined with glabridin and the norfloxacin MIC reduced by 4-fold, 

demonstrating the potential of glabirin as antibiotic adjuvant. The polyphenol 

epigallocatechin gallate (EGCG) isolated from C. sinensis has shown to improve gentamicin 

activity against both E. coli and S. aureus, probably by the cell membrane disruption caused 

by the EGCG (Parvez et al., 2019). Likewise, the use of antibiofilm plant extracts or isolated 

compounds with antibiotics holds great expectation for fighting biofilms. Liu et al. (2015) 

reported that four essential oils components (thymol, eugenol, and cinnamaldehyde) 

potentiated the activity of streptomycin against Listeria monocytogenes and Salmonella 

Typhimurium. The authors showed that these components facilitate the antibiotic penetration 

into the biofilm, allowing the antibiotic to access and kill the biofilm cells. Similarly, it has 

also been reported that thyme oil increased the activity of ciprofloxacin in K. pneumoniae 

biofilms, reducing the biofilm cells viability (Mohamed et al., 2018). 

Abu El-Wafa et al. (2020) showed that the combination of both extracts of pomegranate 

and rosemary with piperacillin, ceftazidime, imipenem, gentamycin, or levofloxacin 

provoked a higher biofilm eradication activity compared with plant extracts and antibiotics 

acting alone. Microscopic evidence indicated that the pre-formed biofilms of P. aeruginosa 

were destroyed and removed from the surface and bacteria eliminated after this combinatorial 

treatment (Abu El-Wafa et al., 2020). Dey et al. (2020) reported that the flavonoid naringin in 

combination with ciprofloxacin and tobramycin had a stronger antibiofilm activity against P. 

aeruginosa than the antibiotics or the flavonoid alone. Both combinations caused a 

significant disintegration of mature biofilms, with loss of EPS and reduced biofilm thickness 

and cell density. Vitexin, a flavone glycoside found in the passion flower, bamboo leaves and 

pearl millet, combined with azithromycin and gentamicin was also capable of reducing the 

initial attachment of biofilm forming cells to the surface and the production of EPS in P. 

aeruginosa (Das et al., 2016). Both combinations had anti-QS activity, hindering the 

swarming motility and the production of virulence factors such as pyoverdine and pyocyanin 

while also reducing the activity of LasA protease and LasB elastase (Das et al., 2016). 

Proanthocyanidins isolated from Vaccinium macrocarpon Aiton known as American 

cranberry was combined with ciprofloxacin against biofilm of P. aeruginosa and surprisingly 

the activity of the proanthocyanidins did not reduce the biofilm but, instead, the isolated 
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compound acted on the QS system reducing the expression of some virulence factors which 

improved the activity of ciprofloxacin (Vadekeetil et al., 2016). A polyphenolic compound, 

hordenine, isolated from barley was combined with the antibiotic netilmicin and they 

significantly reduced biofilm formation by interfering with the lasR gene expression (Zhou et 

al., 2018).  

The potential of plant extracts as antibiotic adjuvants was also reported for S. aureus. 

Abreu et al. (2016) showed that methanolic extract of Buxus sempervirens L. combined with 

erythromycin, ciprofloxacin and tetracycline (at MIC level) provoked 88, 81, 79% of biofilm 

reduction, respectively, that antibiotics alone did not achieve. After extract fractionation for 

the identification of the bioactive compounds, oleanolic acid seemed to be the main 

responsible for the improved antibiotic performance. Endo et al. (2018) tested the activity of 

hydroalcoholic extracts of leaves of R. officinalis and Tetradenia riparia (Hochst.) Codd, and 

peel of Punica granatum L. (pomegranate) and the three extracts were capable of destroying 

24h preformed biofilms. Moreover, extracts had synergistic interactions with penicillin 

against S. aureus and MRSA (Endo et al., 2018). 

Wojnicz et al. (2015) found that the pentacyclic triterpenes asiatic acid and ursolic acid 

enhanced the activity of ciprofloxacin against E. coli. In that study, the combination of 

ciprofloxacin with ursolic acid was capable of reducing the formation of biofilm in microtiter 

plates. Also, when combined with each of these compounds, ciprofloxacin was able to 

penetrate the biofilm structure. Likewise, an extract of Myrtus communis L., rich in ursolic 

acid, was found to increase the activity of erythromycin and clindamycin against biofilms of 

Propionibacterium acnes (Feuillolay et al., 2016). 

Although it seems noticeable how antibiofilm compounds extracted from plants can 

function together with antibiotics and the benefits of this combination or synergy, there are 

few studies addressing the combination of antibiofilm plant-based products with antibiotics 

against biofilms. The issues behind the limited knowledge about the interactions between 

antibiofilm plant-based products and antibiotics and the development hurdles of a therapy are 

discussed in the next section. 

 

 

5. Current challenges  
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It is undoubtable the potential of plant-derived products as therapeutic agents in particular 

to inhibit biofilm formation or disrupt/disassemble pre-formed biofilms. However, there are 

some challenges associated with the use of plant compounds at different levels. 

 

Environmental factors 

One of the first issues about the development of drugs from natural products, including 

plants, is the wide variability in the composition of the matrix due to the diversity of factors 

involved in the growth of the plant. Environmental factors such humidity, soil change, light 

and temperature can cause a drastic variation in the final plant composition. These factors can 

change the final composition, varying the content of water, lipids, proteins and secondary 

metabolites, which will obviously affect the drug performance that is being developed 

(Batista and Oliveira, 2010). Further, other factors like the plant age and harvesting 

procedures are also determinant in the final composition. Therefore, standardization 

procedures have to be carefully thought to overcome this high variability. 

 

Technical factors: extraction 

The recovery procedure to obtain an active plant extract is also decisive to the feasibility 

of the final application. The extraction parameters, for instance, such as temperature, time 

and solvent, may have a critical impact on the final extract obtained (Butler, 2004). Many 

bioactive compounds are susceptible to the extraction conditions and may be degraded or 

changed by the extraction and recovery process (Koehn and Carter, 2005). For instance, it has 

been shown that the solvent used in the extraction has a key role in the bioactivity of the 

extract. Alam et al (2020) has reported that the same matrix extracted with different solvents 

had distinct activity against biofilms of P. aeruginosa. Methanolic extract of Bergenia ciliata 

(Haw.) Sternb achieved over 70% of inhibition of biofilm formation, probably through 

inhibition of some virulence factors preserving P. aeruginosa growth, while ethanolic extract 

also inhibited biofilm formation (also at around 70%) but provoked by its antimicrobial effect 

on the bacterial cells. In turn, extractions performed with acetone, ethyl acetate, hexane and 

water, produced extracts with less than 20% of biofilm inhibition, and the extraction with 

chloroform resulted in a product that increased the biofilm formation (Alam et al., 2020). 

These various activities arise due to solvents have distinct affinity for different compounds 

and, therefore, the extract (relative) chemical composition depends mainly on the solvent and 

compound’s polarities (Cowan, 1999). Consequently, a plant that has been studied with one 

solvent with unsuccessful results against biofilms (or planktonic bacteria) does not 
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necessarily imply that it will not have activity when extracted with a different solvent. The 

same can be said about the activity against different bacteria species and the interactions 

between plant extracts and antibiotics. For instance, the activity of Anacardium microcarpum 

Ducke (a synonym of Anacardium occidentale L.) , a type of cashew nut, exhibited synergy 

with different antibiotics against planktonic bacteria, but the final activity was dependent on 

the solvent used for the extraction (Coutinho et al., 2015). Ethyl acetate fraction (EAF) of A. 

microcarpum showed synergy with imipenem and gentamicin against planktonic S. aureus, 

while ethanolic extract (CEE) only exhibited synergy with imipenem and methanolic fraction 

(MF) with gentamicin. Moreover, an antagonism effect was found when combining 

gentamicin with CEE. Also, for P. aeruginosa synergies were dependent on the solvent used 

during extraction. Synergies were found combining CEE with amikacin, EAF with 

gentamicin and MF with ciprofloxacin, but EAF combined with amikacin had antagonistic 

effects (Coutinho et al., 2015). These findings lead to another issue. Biofilm infections are 

frequently polymicrobial making the design of antibiofilm therapies much more difficult. 

Since extracts have distinct activity against different species, higher concentrations of extract 

or even combinations of natural products can be needed to inhibit or eradicate the 

polymicrobial biofilms. For instance, methanol extracts of leaves of Iris pallida were capable 

of disrupting mature single species biofilms of S. aureus and P. aeruginosa, achieving a 

disruption of 60% in biofilm viability (Hoang et al., 2020). However, when tested against 

multi-species biofilms of dental plaque (Streptococcus gordonii, Veillonella parvula, 

Fusobacterium nucleatum, and Actinomyces naeslundii), the biofilm viability was only 

reduced 20% (Hoang et al., 2020). 

 

Plant extract stability 

Natural medicines or drugs for human use need to be stored for long periods of time 

without losing their effect. Most of the antibiofilm plant-derived extracts or products are a 

multi-component formulations, i.e., are constitute by a wide range of different molecules 

which raises concerns about their stability for clinical trial testing and for regulatory approval 

(Beutler, 2009; Butler, 2004). Several factors can perturb the stability of a plant-based 

product including temperature, light, air, humidity and the presence of various compounds in 

the product that might interact with each other under specific conditions which could reduce 

the efficacy of the final product or promote undesired or unexpected effects. This drawback 

can be overcome by fractioning and purifying the extract in order to find the compound that 

has the specific activity and specifically address its stability issues; however, besides loosing 

                  



 26 

possible synergies between different compounds responsible for the bioactivity, this also 

brings the next issue.  

 

 

 

Quantity available and chemical composition 

After fractioning and purifying the extract, there is a chance that the final compound 

obtained will not be in enough quantity, either to continuing the tests or to develop a feasible 

final drug. This gets even more problematic for some extracts or products that after 

fractioning and purifying may not maintain the level of activity of the initial extract because 

the compound present in higher concentrations is not the one responsible for the extract 

activity, but the activity result from one or more compounds in lower concentrations. For 

instance, Vasavi et al (2016) found that the major compound of the extract, asiatic acid (a 

triterpene compound) had no anti-QS activity, but others in minor concentrations, including 

kaempferol showed an anti-QS activity similar to the extract. Merghni et al (2018) also 

reported the essential oil of eucalyptus had anti-QS activity, whereas its main component the 

1,8-cineole showed a much lower activity even at higher concentrations. Similarly, the 

extracts of Bistorta officinalis Delarbre and Persicaria maculosa Gray showed higher 

inhibition of virulence factors in P. aeruginosa than the pure compounds present in each 

extract (Jovanović et al., 2020). Therefore, there is a chance that the activity of some plant 

products may be a result from synergism amongst several compounds present in the extract, 

which makes the fractioning and purification much harder. Thus, huge quantities of the 

source need to be collected and used which in turn may cause over-exploration of the 

environment (Butler, 2004; Mahidol et al., 1998). Integrated biorefinery strategies should be 

designed to use the side-streams and by-products generated in order to decrease this impact 

and allow efficient exploitation of the entire resource (Beutler, 2009; Koehn and Carter, 

2005).   

Drug delivery systems like micro and nanoparticles may be a solution for several of the 

issues associated with the use natural products here discussed, such as low availability, 

compound stability and others such as cytotoxicity. For instance, these particles are typically 

designed to deliver very low quantities of product to a specific target solving thus the low 

availability of compounds. At the same time, it would be needed less product to achieve the 

same effect while also avoiding possible toxic side effects (cytotoxicity) of the bioactivity 

compounds. Encapsulation of the natural products can also reduce degradation of the 
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compounds by efficient storage, and increase the drug stability and shelf life (Armendáriz-

Barragán et al., 2016). 

 

Web-based resources 

This wide range of factors with influence in the expressed bioactivity creates another 

important hurdle in the development of new drugs: screening the available information and 

comparing results. Different plants, parts of plants, growth conditions, harvesting procedures, 

solvents, extraction protocols, fractioning, purification, synergies, etc. creates an 

unmanageable range of possible combinations. There should be a worldwide database and 

searching tools for the activity of natural or plant products and extracts, constituted not only 

by those that are bioactive but also by those which do not. Currently, this information is so 

spread out on various studies that makes difficult for the researchers and organizations to find 

and use it and thus moving forward in testing. The creation of a universal web-

knowledgebase for easy access would boost the discovery of the natural antibiofilm products 

against the different species. For instance, a web-based central resource that allows storage 

and annotation of information, comparison and analysis of results can be a crucial step for the 

development of new natural product-based therapies.  

 

 

6. Conclusions and Perspectives 

Bacterial biofilms are of great clinical concern since the existing antibiotics are not 

capable of eliminating their causative infections and there are no expectations that the new 

generation of antibiotics in the horizon will be able to do it. Plant-based products may be a 

solution or part of it. In this review it was studied the vast research that has been carried out 

to find plants with potential to inhibit biofilm formation or disrupt the complex three-

dimensional structure of mature biofilms. A considerable effort was made in this review to 

provide details about the bioactive compounds of the plant extracts responsible for the 

antibiofilm activity and their underlying mechanism, but few data is described in literature 

which limited the discussion. It is imperative to identify the antibiofilm phytochemical(s) 

further unlocking the drug discovery and development processes. New methodologies and 

approaches must be implemented to boost compound identification, isolation and testing. 

High-throughput screenings and multivariate data analysis coupled to metabolomics 

(eventually coupled with artificial intelligence) may be relevant tools to allow broadening the 

search and identification of the active compounds. To help disclosing the associated 
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mechanism of action Attenuated Total Reflectance-Fourier Transform InfraRed (ATR-FTIR) 

spectroscopy may be further explored. The application of these and other methods can be 

helpful in speed up the formulation of new antibiofilm therapies. 

The results presented in this review demonstrated that mostly plant-based products show 

antivirulence activity affecting the expression of virulence determinants essential to initiate 

biofilm formation. In this regard, inhibition of QS seems the preferential mechanism of action 

of plant-based products that avoid the QS signal molecules accumulation in the environment 

or within immature biofilms manipulating thus the gene expression of virulence factors such 

as exopolysaccharide production. The most active anti-QS plant-derived compounds are 

flavonoids, phenols, terpenoids, and steroids. An interesting feature of their bioactivity 

against biofilms reported by some studies is their reduced antimicrobial activity. More future 

studies must be oriented towards the investigation of plant extracts or products regardless 

their antimicrobial activity in order to have a wider range of possible antibiofilm drug 

candidates. 

The eradication of an already formed biofilm is clinically more relevant but more difficult 

to achieve including by plant-based products. The main mechanism of action against mature 

or pre-formed biofilms by plant-based products seems to be EPS targeting. Plant extracts or -

derived products or compounds mainly act on the various structural components of EPS (e.g. 

extracellular DNA, exopolysacharides) weakening the cohesiveness of biofilm and favouring 

the detachment of cells or small aggregates. Even the gathered information allowed to 

understand this common mechanism of action, much efforts are still need to verify the action 

of several antibiofilm extracts and compounds on mature biofilms.  

Although the promising potential of plant extracts or derivative products, most of them are 

not able to kill bacteria, meaning that eradication of infection is not achieved. Therefore, co-

administration of antibiofilm plant products with antibiotics are a fruitful strategy, however 

there are a limited number of studies focused on the combination of these two distinct agents. 

The limitations might be mainly related to the ‘nature’ of plant products that can alter the 

final plant composition, the wide range of different extraction and recovery processes 

producing distinct extracts with distinct outcomes; poor extraction yield; the lack of stability 

of the product; poor identification of effector compounds because activity is frequently a 

result of complex synergism amongst several compounds of the extract making fractioning 

and purification harder; and product cytotoxicity at effective dosages. 

Biofilms also represent a significant barrier to the development of an effective therapy. 

Biofilm formation is a complex and dynamic process influenced by numerous factors of 
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different kind (e.g. chemical, biological) making each biofilm a unique entity to target. Most 

of the studies are conducted in laboratories and although few of them used the most advanced 

in vitro models, the interplay between biofilms and host tissues and cells can influence the 

antibiofilm activity. More research needs to be done for elucidating therapy formulation 

(composition and dosages), efficacy, frequency and duration of therapy, safety issues using 

adequate in vivo models to better mimic the clinical condition. 

Moreover, in clinical field, biofilms are frequently polymicrobial rather than single species 

and the efficacy of antibiofilm plant-derived products might not be identical when other 

bacterial species are present in the biofilm. Interspecies interactions have been increasingly 

pointed out as one of the factors that can influence the pathogenesis of organisms and 

augmenting the tenacity and recalcitrance of biofilms. Therefore, it would be of utmost 

importance that studies include plant product activity against polymicrobial biofilms. It may 

be that in this way the in vitro results would be more similar to the in vivo performance. 

Another limitation of the review is data discussion centred on the application of plant-

based products on surface-attached biofilms. These studies certainly cover an important part 

of biofilm-associated infections detected for instance in endotracheal tubes, vascular 

catheters, urinary catheters, prosthetic joints and orthopaedic implants, but there is a 

significant part of infections that biofilms are formed on human tissues or fluids including 

cystic fibrosis, burn and chronic wounds, urinary tract, genital tract (e.g. vaginosis). It is vital 

to conduct in vitro and in vivo studies to assess antibiofilm activity of plant products on 

biofilms formed on biotic surfaces. 

Although the limitations and development hurdles, research on biofilm inhibition and 

eradication using plant (and also natural) products remains a booming field. However, focus 

must put on the identified challenges in order to put product candidates in clinical trial 

testing. 
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Legend of Figures 

 

Figure 1 – Representation of the different stages of biofilm formation and the most common 

mechanisms of antibiofilm activity found in plant extracts. In this scheme, examples of plant 

extracts or phytochemicals (if identified) are associated to each mechanism of action. 
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Table 1  List of the most relevant studies reporting extracts of plants with antibiofilm activity (published in 2015-2023).  

Plant Plant family Extract/compound
a
 Bacterial species 

tested 

Mode of action Reference 

Acacia macrostachya Rchb. 

Ex DC. 

(syn. Senegalia 

macrostachya (Rchb. Ex 

DC.) Kyal. & Boatwr.) 

Fabaceae Juss. Methanol extract of 

stem bark 

S. aureus 

P. aeruginosa 

E. coli 

IBF: reduced biofilm biomass adhered 

AQSV: inhibited efflux pump activity 

Barfour et al. 

(2021) 

Acacia nilotica (L.) Willd. 

ex Delile (a synonym of 

Vachellia nilotica (L.) 

P.J.H.Hurter & Mabb.) 

Fabaceae Juss. Aqueous extract 

(N/S) 

E. coli 

K. pneumoniae 

P. mirabilis 

P. aeruginosa 

AMB: reduced biofilm activity Elamary et al. 

(2020) 

Acca sellowiana (O.Berg) 

Burret  

Myrtaceae Juss. Acetone extract of 

fruit 

S. aureus 

MRSA 

IBF: reduced biofilm biomass adhered by inhibition of 

the initial attachment and without inhibiting bacterial 

growth 

AMB: disrupted biofilm structure 

Dell’Olmo et 

al. (2021) 

Adiantum philippense L. (a 

synonym of A.  lunulatum 

Burm. f.) 

Pteridaceae 

E.D.M.Kirchn. 

Methanol extract of 

whole plant 

E. coli 

S. aureus 

P. aeruginosa 

S. flexneri 

IBF: inhibited the initial attachment and reduced the 

EPS production 

AMB: disrupted biofilm structure 

Adnan et al. 

(2020) 

Agrimonia pilosa Ledeb. Rosaceae Juss Wogonin P. aeruginosa IBF: reduced biofilm biomass adhered 

AQSV: downregulating the expression of QS-related 

genes and reducing the production of virulence factors, 

including the EPS production, twitching, swimming, 

and swarming motilities 

S. Wang et al. 

(2021) 

Allium stipitatum Regel Amaryllidaceae 

J.St.-Hil. 

Hexane and 

dichloromethane 

extracts of bulb 

S. aureus 

MRSA 

A. baumannii 

S. maltophilia 

AMB: reduction in biofilm viability and disruption of 

biofilm structure 

Karunanidhi et 

al. (2018) 

Andrographis paniculata 

(Burm.f.) Wall. ex Nees  

Acanthaceae 

Juss. 

 

 

Chloroform and 

methanol extracts of 

whole plant 

P. aeruginosa IBF: reduced swarming motility without affecting its 

planktonic growth; inhibited the adherence to surface 

affecting the initial step of biofilm formation 

AQSV: reduced production of pyocyanin, elastase, 

Banerjee et al. 

(2017) 
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protease, rhamnolipid and hemolysin 

Ethyl acetate extract 

of leaves 

E. coli AQSV: reduced EPS production and downregulated the 

expression of AmpC gene 

Sah et al. 

(2019) 

Anethum graveolens L. Apiaceae Lindl. Methanol extract of 

seeds 

S. marcescens IBF: reduced biofilm biomass adhered and microcolony 

formation 

AQSV: reduced biosynthesis of prodigiosin, 

downregulated bsmA, fimC and flhD gene; reduced 

motility and adherence 

Salini and 

Pandian (2015) 

Anthemis stiparum subsp. 

sabulicola (Pomel) Oberpr 

Asteraceae 

Giseke 

Methanol extract and 

essential oil of aerial 

parts 

S. aureus 

S. epidermidis 

B. subtilis 

IBF: reduced biofilm biomass adhered Chemsa et al. 

(2018) 

Arisaema sinii K.Krause Araceae Juss. Ethanol extract of 

whole plant 

M. tuberculosis IBF: reduced biofilm formation, without inhibiting the 

bacterial growth 

AMB: promoted dispersion on 4h-old biofilms and 

disruption or dissolution on 35 day-old biofilms 

Jiang et al. 

(2019) 

Artemisia herba-alba Asso 

Artemisia campestris Pursh  

Artemisia absinthium L. 

Asteraceae 

Giseke 

Essential oils of 

aerial parts 

E. coli IBF: reduced biofilm biomass adhered, by reducing EPS 

and forming scattered microcolonies 

Mathlouthi et 

al. (2021) 

Artemisia princeps Pamp. Asteraceae 

Giseke 

Ethanol extract of 

leaves 

MRSA IBF: Inhibited bacterial proliferation 

AQSV: inhibited acid production, and decreased gene 

expression of mecA, sea, agrA and sarA 

Choi et al. 

(2015) 

Citrus ×bergamia (Risso) 

Risso & Poit. (a synonym of 

Citrus ×limon (L.) 

Burm.fil.) 

Aspidosperma quebracho-

blanco Schltdl. 

Rutaceae Juss. 

 

 

Apocynaceae 

Juss. 

Essential oils P. aeruginosa IBF: reduced biofilm biomass adhered 

AQSV: inhibited swarming motility and inhibited the 

production of protease and pyocyanin. 

Ahmed et al. 

(2021) 

Bergenia ciliata (Haw.) 

Sternb 

Clematis grata O.Hoffm. ex 

Baker (a synonym of 

Clematis wightiana Wall. ex 

Saxifragaceae 

Juss. 

Ranunculaceae 

Juss. 

Methanol extract of 

rhizome with skin (B. 

ciliata) 

Ethanol extract of 

leaves (C. grata) 

P. aeruginosa IBF: inhibited formation of biofilm without affecting 

bacterial growth 

Alam et al. 

(2020) 
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Wight & Arn.) 

Callistemon citrinus (Curtis) 

Skeels (a synonym of 

Melaleuca citrina (Curtis) 

Dum.Cours.) 

Myrtaceae Juss. 

 

 

Dichloromethane -

methanol extract of 

leaves/ 

pulverulentone A 

S. aureus 

MRSA 

AMB: reduced biofilm biomass adhered and thickness 

and destroyed the architecture without affecting the 

planktonic growth 

AQSV: lowered staphyloxanthin biosynthesis 

Shehabeldine et 

al. (2020) 

Calpurnia aurea (Aiton) 

Benth.  

Fabaceae Juss. Acetone, ethanol and 

ethyl acetate extracts 

of leaves 

P. aeruginosa IBF: reduced biofilm biomass adhered by cell 

membrane damages (ethanolic and ethyl acetate extracts 

showing only mild interferences) 

AMB: biofilm biomass adhered by disruption of biofilm 

structure (acetone extracts showed a moderate 

eradication) 

AQSV: inhibited violacein production in C. violaceum; 

reduced swimming and swarming motility in P. 

aeruginosa 

Cosa et al. 

(2020) 

Camellia sinensis (L.) 

Kuntze 

Theaceae Mirb. Ethyl acetate fraction 

of methanol extract 

of leaves 

P. aeruginosa 

S. marcescens 

IBF:  reduced biofilm biomass and caused weaker 

structure 

AQSV: Inhibited violacein production in C. violaceum; 

reduced virulence factors expression of P. aeruginosa 

PAO1: pyocyanin, pyoverdine, exoprotease, elastase, 

rhamnolipid production, and swimming motility; 

decreased prodigiosin, protease activity, cell surface 

hydrophobicity, and swimming of S. marcescens 

Qais et al. 

(2019) 

Tea polyphenols/ 

epigallocatechin-3-

gallate (EGCG) 

F. nucleatum IBF: reduced biofilm biomass adhered 

AMB: time-dependent decrease in biofilm viability 

(ATP measure) 

AQSV: damaged the integrity of bacterial cell 

membrane, inhibited hemolysis, and decreased 

adherence to epithelial cells 

Ben Lagha et 

al. (2017) 

Capsicum baccatum var. 

pendulum (Willd.) Eshbaugh 

Solanaceae 

Adans. 

Aqueous extract of 

seeds 

P. aeruginosa 

S. epidermidis 

IBF: prevented bacterial adhesion to the surface, only 

allowed the formation of smaller cell clusters or cells 

Von Borowski 

et al. (2019) 
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(a synonym of Capsicum 

frutescens L.) 

without biofilm matrix 

Carissa spinarum L. Apocynaceae 

Juss. 

Methanol extract of 

unripe and ripe fruits 

P. aeruginosa IBF: reduced biofilm biomass adhered 

AQSV: inhibited violacein production in C. violaceum 

and swimming motility 

Nazareth et al. 

(2021) 

Carum copticum (L.) Benth. 

& Hook.f. ex Hiern 

Apiaceae Lindl. Ethanol and methanol 

extracts 

A. baumannii IBF: disruption of biofilm structure and reduced biofilm 

metabolic activity 

 

Mohammadi et 

al. (2019)  

Centella asiatica (L.) Urb. 

 

Apiaceae Lindl. Ethyl acetate extract 

of leaves  

P. aeruginosa IBF: reduced biofilm biomass adhered 

AQSV: inhibited production of pyocyanin and 

pyoverdine and violacein production in C. violaceum 

Khan et al. 

(2022) 

Ethyl acetate fraction 

of ethanol extract of 

leaves 

P. aeruginosa IBF: reduced biofilm biomass adhered 

AQSV: decreased production of pyocyanin and 

elastolytic and proteolytic activities, decreased 

swarming motility 

Vasavi et al. 

(2016) 

Cinnamomum verum 

J.Preslce 

Lauraceae Juss. Ethanol extract of 

leaves 

P. aeruginosa IBF: reduced biofilm biomass adhered 

AQSV: reduced the production of elastase and 

pyocyanin, reduced the swarming motility; lower 

expression of virulence genes 

Alva et al. 

(2021) 

Ethanol extract of 

bark powder 

E. coli  

V. 

parahaemolyticus  

IBF: reduced biofilm biomass adhered, by reducing EPS 

and forming scattered microcolonies 

AMB: disrupted biofilm structure 

Lu et al. (2021) 

Citrus limon (L.) Burm Rutaceae Juss. Methanol extract of 

fruits 

E. coli IBF: reduced biofilm biomass adhered by inhibiting the 

formation and maturation of the biofilm matrix 

Singha et al. 

(2023) 

Clinacanthus nutans 

(Burm.f.) Lindau  

Acanthaceae 

Juss. 

Chloroform extract of 

leaves/ purpurin-18 

phytyl ester 

S. mutans IBF: reduced biofilm biomass without inhibiting 

planktonic growth 

AMB: purpurin-18 phytyl ester penetrates biofilm 

structure and kill bacteria. 

Roeslan et al. 

(2019) 

Clinopodium bolivianum 

(Benth.) Kuntze 

Lamiaceae 

Martinov 

Hydro-ethanolic 

extract of leaves and 

stems 

E. coli IBF: reduced adhesion by bacterial and reduced biofilm 

formation, without inhibiting the bacterial growth 

Mohanty et al. 

(2017) 

Cochlospermum regium 

(Schrank) Pilg. 

Bixaceae Kunth Aqueous and ethanol 

extracts of leaves 

MRSA IBF: reduced biofilm biomass adhered; altered cell 

morphology and provoke loss of cell wall integrity; 

Galvão et al. 

(2020) 
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decrease carbohydrate and protein content in the matrix 

Coriandrum sativum L.  

Mentha × piperita L.  

Pimpinella anisum L. 

Apiaceae Lindl. 

Lamiaceae 

Martinov 

Apiaceae Lindl. 

Essential oils of seeds 

(C. sativum and P. 

anisum) and leaves 

(M. piperita) 

E. coli  

S. aureus 

IBF: reduced initial bacterial attachment to surface Bazargani and 

Rohloff (2016) 

Cuphea carthagenensis 

(Jacq.) J.F.Macbr.  

Lythraceae J.St.-

Hil. 

Methanol extract of 

leaves 

P. aeruginosa IBF: reduced biofilm biomass adhered without affecting 

bacterial growth and reduced EPS production 

AQSV: inhibited swimming and production of 

pyocyanin and pyoverdine 

Rather et al. 

(2021) 

Drosera rotundifolia L. 

Drosera intermedia Hayne 

Droseraceae 

Salisb. 

Ethanol extract of 

whole plants 

E. coli IBF: reduced biofilm biomass adhered Gerschler et al. 

(2022) 

Duabanga grandiflora 

(Roxb. Ex DC.) Walp. 

Lythraceae J.St.-

Hil. 

Ethyl acetate extract 

of leaves 

MRSA IBF: inhibited cell-surface attachment leading to weaker 

biofilm structure, and attenuation of PBP2a level 

Santiago et al. 

(2015) 

Eruca sativa Miller Brassicaceae 

Burnett 

Ethanol extract of 

whole plants 

E. coli  

S. aureus 

IBF: reduced bacterial adhesion to surface and inhibited 

the EPS production, weaker biofilm structure 

AMB: reduced viability of cells within the biofilm 

Awadelkareem 

et al. (2022) 

Eucalyptus globulus Labill. Myrtaceae Juss. Essential oil of leaves 

and isolated 1,8-

cineole 

S. aureus 

P. aeruginosa 

IBF: anti-attachment effect and reduced biofilm 

biomass adhered 

AMB: decreased biofilm viability 

AQSV: inhibited violacein production in C. violaceum 

and reduced swarming motility in P. aeruginosa 

Merghni et al. 

(2018) 

Fagonia indica Burm.f.  

(a synonym of Zygophyllum 

indicum (Burm.f.) Christenh. 

& Byng) 

Zygophyllaceae 

R.Br. 

Chloroform extract of 

aerial parts 

S. aureus 

K. pneumoniae 

IBF: reduced the initial attachment to surface and 

caused disintegration of bacterial cell wall 

Aslam et al. 

(2022) 

Ginkgo biloba L. Ginkgoaceae 

Engl. 

Ethanol extract of 

exocarp 

S. aureus  

MRSA 

IBF: reduced biofilm biomass adhered 

AQSV: downregulation of virulence factirs icaA, sarA 

and sigB 

AMB: disrupted mature biofilms 

B. Wang et al. 

(2021) 

Glycyrrhiza glabra L. Fabaceae Juss. Aqua-alcoholic 

extract of stem and 

glycyrrhizic acid 

P. aeruginosa IBF: reduced biofilm biomass adhered 

AQSV: reduced efflux pump activity and altered the 

membrane permeability. 

Chakotiya et al. 

(2016) 

                  



 56 

/glabridin isolated 

Gutierrezia microcephala 

(DC.) A.Gray 

Prosopis laevigata (Humb. 

et Bonpl. ex Willd) M.C. 

Opuntia ficus-indica (L.) 

Mill. 

Asteraceae 

Giseke 

Fabaceae Juss. 

 

Cactaceae Juss. 

Methanol extracts of 

aerial parts (G. 

microcephala), bark 

and leaves (P. 

laevigata) and 

cladode (O. fucus-

indica) 

E. coli IBF: reduced biofilm biomass adhered and caused 

weaker biofilm structure 

Sánchez et al. 

(2016) 

Himatanthus drasticus 

(Mart.) Plumel  

Apocynaceae 

Juss. 

Hydroalcoholic 

extract of leaves 

K. pneumoniae IBF: reduced biofilm biomass adhered and caused 

destabilization of cell membrane 

Figueiredo et 

al. (2017) 

Humulus lupulus L. Cannabaceae 

Martinov 

Humulone, lupulone 

and xanthohumol 

S. epidermidis 

S. aureus 

MRSA 

AMB: inhibited the release of cells from the biofilm; 

penetrated into biofilms and kill bacteria. 

Bogdanova et 

al. (2018) 

Iris pallida Lam 

Iris versicolor L. 

Iridaceae Juss. Methanol extract of 

leaves, roots and 

rhizomes 

P. aeruginosa 

S. aureus 

multi-species 

biofilm 

IBF: reduced the initial adhesion of cells to the surface 

(mono and multispecies) 

AMB: disruption of mature P. aeruginosa biofilms. 

Hoang et al. 

(2020) 

Juglans regia L. Juglandaceae 

DC. ex Perleb 

Methanol extract of 

leaves 

P. aeruginosa IBF: reduced biofilm biomass adhered Dolatabadi et 

al. (2018) 

Ethanolic extract of 

pellicle 

S. epidermidis IBF: reduced biofilm biomass adhered and cell viability Acquaviva et 

al. (2021) 

Kalanchoe blossfeldiana 

Poelln. 

Crassulaceae 

J.St.-Hil. 

Methanol extracts of 

leaves 

P. aeruginosa IBF: reduced biofilm biomass adhered 

AMB: disrupted mature biofilms 

AQSV: secretion of virulence factors (protease and 

pyoverdin) along with generation of acyl homoserine 

lactone (AHL) 

Sarkar et al. 

(2015) 

Kalanchoe laxiflora Baker Crassulaceae 

J.St.-Hil. 

Methanol extract of 

flowers 

E. coli IBF: reduced biofilm biomass adhered 

 

Osman et al. 

(2022) 

Melaleuca alternifolia 

(Maiden & Betche) Cheel 

Myrtaceae Juss. Essential oil of 

leaves/ terpinene-4-ol 

S. aureus 

MRSA 

P. aeruginosa 

IBF: reduction of cell adhesion in S. aureus 

AMB: bacterial killing and degradation of extracellular 

matrix in S. aureus 

Noumi et al. 

(2018) 
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AQSV: reduced violacein production in C. violaceum, 

inhibited swarming motility in P. aeruginosa 

Melianthus comosus Vahl Francoaceae 

A.Juss. 

Water, methanol and 

dichloromethane 

extracts of leaves/ 

guanosine 

S. aureus 

P. aeruginosa 

IBF: reduced biofilm biomass adhered by inhibition of 

the initial attachment 

AQSV: inhibited swimming and swarming motility in 

P. aeruginosa; disrupt violacein production in C. 

violaceum 

Baloyi et al. 

(2021) 

Musa acuminata Colla Musaceae Juss. Methanol extract of 

fruit peel 

P. aeruginosa IBF: reduced biofilm biomass adhered, initial 

attachment and EPS and protein production 

AQSV: interfered with Lasl and Rhll gene expression 

and decreased the production of pyocyanin, protease, 

elastase, rhamnolipid and alginate. 

Vijayakumar 

and 

Ramanathan 

(2020) 

Musa paradisiaca L. Musaceae Juss. Methanol extract of 

fruit/ 1, 8-cineole  

P. aeruginosa IBF: reduced biofilm biomass adhered without affecting 

bacterial growth 

AQSV: reduced production of virulence factors 

(protease, elastase, pyocyanin, alginate and 

rhamnolipid) 

AMB: disrupted biofilm structure turning it into 

microcolonies 

Karuppiah et 

al. (2021) 

Myrsine umbellata Mart. Primulaceae 

Batsch ex Borkh. 

Ethanol extract and 

essential oil of leaves 

E. coli 

S. aureus 

S. enteritidis 

AMB: reduced the biomass in the biofilm Laskoski et al. 

(2022) 

Nigella sativa L. Ranunculaceae 

Juss. 

Supercritical CO2 

extraction of seeds/ 

thymoquinone 

(isolated from the 

extract) 

S. aureus 

MRSA 

IBF: reduced biofilm biomass adhered dependent on 

thymoquinone content 

Gawron et al. 

(2019) 

Notopterygium incisum 

K.C.Ting ex H.T.Chang 

Apiaceae Lindl. Isolated compound 

falcarindiol 

P. aeruginosa IBF: reduced biofilm biomass adhered 

AQSV: reduced production of virulence factors 

(elastase, pyocyanin, and rhamnolipid) 

Zhao et al. 

(2021) 

Origanum majorana L. Lamiaceae 

Martinov 

Essential oil of 

leaves/ sabinene 

E. coli IBF: reduced biofilm biomass adhered 

AQSV: reduced efflux pump ativity 

Ghazal et al. 

(2022) 

Origanum vulgare L. Lamiaceae Ethanol extracts E. coli IBF: reduced biofilm biomass adhered without affecting Panayi et al. 
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Rosmarinus officinalis L. (a 

synonym of Salvia 

rosmarinus Spenn.) 

Salvia officinalis L. 

Martinov (N/S) bacterial growth 

AQSV: inhibited swimming and swarming motility 

(2022) 

Patrinia villosa Juss. Caprifoliaceae 

Juss. 

Water extract (N/S) P. aeruginosa IBF: reduced biofilm biomass adhered, formation of 

smaller cell clusters, altered the structure of biofilms, 

and inhibited exopolysaccharide production 

AQSV: affected the expression of algU, algA, pslM, 

bdlA, pelA genes associated to biofilm formation 

Fu et al. (2017) 

Peganum harmala L. Nitrariaceae 

Lindl. 

n-butanol extract of 

seeds/ harmaline 

P. aeruginosa IBF: reduced biofilm biomass adhered, formation of 

smaller cell clusters 

AMB: disruption of mature biofilm and reduction in cell 

viability 

Khadraoui et 

al. (2022) 

Persea americana Mill. Lauraceae Juss. Ethanol extract of 

seeds 

E. coli IBF: reduced biofilm biomass adhered by inhibition of 

the initial attachment 

Molina Bertrán 

et al. (2022) 

Persicaria maculosa Gray 

Bistorta officinalis Delarbre 

Polygonaceae 

Juss. 

Ethanol extract of 

aerial parts (P. 

maculosa) and 

rhizome (B. 

officinalis) 

P. aeruginosa 

S. enteritidis 

S. aureus 

IBF: both extracts reduced biofilm biomass adhered of 

P. aeruginosa and S. enteritidis; B. officinalis only 

reduced biofilm biomass adhered of S. aureus 

AQSV: reduced violacein production in C. violaceum 

and reduced pyocyanin production, altered swarming 

motility and reduced the activity of LasR receptor in P. 

aeruginosa. 

Jovanović et al. 

(2020) 

Piper betle L. 

 

Piperaceae 

Giseke 

Ethyl acetate extract 

of leaves 

S. marcescens IBF: reduce total biomass adhered and microcolony 

formation 

AQSV: reduction of prodigiosin production, interrupted 

EPS production, reduction in swarming motility, and 

downregulation of QS regulated genes fimA, fimC, 

flhD, bsmA and bsmB 

Srinivasan et 

al. (2016) 

 Ethanol extract of 

leaves 

E. coli 

S. aureus 

IBF: reduced biofilm biomass adhered 

AMB: disrupted mature biofilms 

Saeloh and 

Visutthi (2021) 

Plectranthus barbatus 

Andrews (a synonym of 

Lamiaceae 

Martinov 

Essential oil of root P. aeruginosa IBF: reduced biofilm biomass adhered 

AQSV: inhibited swarming and twitching motility in P. 

Chatterjee and 

Vittal (2021) 
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Coleus barbatus (Andrews) 

Benth. ex G.Don) 

aeruginosa. 

Plumbago zeylanica L. Plumbaginaceae 

Juss. 

Methanol extract of 

root 

P. aeruginosa IBF: reduced biofilm biomass adhered 

AQSV: inhibited motility and inhibited the production 

of pyocyanin, pyoverdine, rhamnolipid. 

Qais et al. 

(2021) 

Podocarpus lambertii 

Klotzsch ex Endl. 

Podocarpaceae 

Endl. 

Methanol extract of 

leaves 

E. coli AMB: reduced biomass of 24h preformed biofilms Bandeira et al. 

(2022) 

Polypodium vulgare L. Polypodiaceae 

J.Presl & C.Presl 

Aqueous extract of 

rhizome/ compound 

osladin 

E. coli IBF: reduced biofilm biomass adhered and caused 

weaker biofilm structure 

Gleńsk et al. 

(2019) 

Pongamia pinnata (L.) 

Pierre 

Fabaceae Juss. Ethyl acetate extract 

of seeds 

S. epidermidis  IBF: reduced biofilm biomass adhered; Rajput et al. 

(2021) 

Prunus avium L. Rosaceae Juss. Methanol extracts of 

cherry stalks 

P. aeruginosa IBF: reduced biofilm biomass adhered 

AQSV: inhibited swarming motility 

Önem et al. 

(2021) 

Pulicaria crispa (Forssk.) 

Oliv. (a synonym of 

Pulicaria undulata) 

Asteraceae 

Giseke 

Methanol extract 

(N/S) 

K. pneumoniae IBF: reduced biofilm biomass adhered 

 

Thinina et al. 

(2020) 

Rhamnus prinoides L'Hér.  Rhamnaceae 

Juss. 

Ethanol extract of 

leaf and stem 

S. aureus 

B. subtilis 

S. mutans 

IBF: inhibited biofilm formation by biocidal or 

bacteriostatic mechanism 

Campbell et al. 

(2019) 

Rosa canina L. Rosaceae Juss. Methanol extract of 

leaves 

E. coli 

P. aeruginosa 

IBF: reduced biofilm biomass adhered Živković et al. 

(2015)  

Rosmarinus officinalis L. (a 

synonym of Salvia 

rosmarinus Spenn.) 

Thymus zygis L. 

Origanum majorana L. 

Lamiaceae 

Martinov 

Essential oils (N/S) E. coli IBF: reduced the attachment of cells to the abiotic 

surface 

Lagha et al. 

(2019) 

Rosmarinus officinalis L. (a 

synonym of Salvia 

rosmarinus Spenn.) 

Lamiaceae 

Martinov 

1,8-cineole E. coli AMB: disruption of mature biofilm and reduction in cell 

viability 

 

Vazquez et al. 

(2020) 

Russula integra (L.) Fr. Russulaceae Methanol and ethanol S. aureus AMB: disruption of 24h biofilms  Kostić et al. 
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Russula rosea Pers. 

Russula nigricans (Bull.) Fr. 

Lotsy extracts (N/S) (2020) 

Salacia crassifolia (Mart.) 

G.Don 

Celastraceae 

R.Br. 

Hexane extract of 

root/ pristimerin 

S. aureus AMB: disrupted biofilms and altered the membrane 

stability 

Nizer et al. 

(2021) 

Salvadora persica L. Salvadoraceae 

Lindl. 

Methanol extracts of 

fruit, stem and leaves 

S. aureus  

P. aeruginosa 

IBF: reduced biofilm biomass adhered in S. aureus 

AQSV: inhibited violacein production in C. violaceum, 

and inhibited swarming motility in P. aeruginosa 

Noumi et al. 

(2017) 

Sanguisorba officinalis L. Rosaceae Juss. Ethanol extract of 

root 

MRSA IBF: reduced biofilm biomass adhered and caused 

weaker structure 

AQSV: increase transcript level icaR leading to strong 

inhibitory effect of icaADBC operon (adhesin synthesis) 

Chen et al. 

(2015) 

Sapindus mukorossi Gaertn. Sapindaceae 

Juss. 

Methanol extract of 

seeds  

MRSA IBF: reduced biofilm biomass adhered without affecting 

bacterial growth 

AQSV: in cell surface hydrophobicity, slime and 

production of EPS and extracellular DNA, 

downregulation of virulence genes (icaA, ciaD,fnbA, 

fnbB, clfA, can and altA) 

Selvaraj et al. 

(2021) 

Sarcochlamys pulcherrima 

(Roxb.) Gaudich.  

Urticaceae Juss.  Tormentic acid, 23-

hydroxycorosolic 

acid 

P. aeruginosa IBF: reduced biofilm biomass adhered and reduction of 

EPS formation 

AQSV: suppressed the production of pyoverdine, 

protease and swarming motility 

Ghosh et al. 

(2020) 

Schinus terebinthifolia 

Raddi 

 

Anacardiaceae 

R.Br. 

Triterpenoid acids (3-

oxo-olean-12-en-28-

oic acid, 3-

oxotirucalla-7,24Z-

dien-26-oic acid, 3α-

hydroxytirucalla-

7,24Z-dien-26-oic 

acid) 

S. aureus IBF: reduced biofilm biomass adhered without 

inhibiting growth 

AQSV: Inhibited agr types and d-toxin production. 

Tang et al. 

(2020) 

Methanol extract of 

fruits 

S. aureus IBF: inhibition of the initial attachment for biofilm 

formation without affecting the planktonic growth 

AQSV: inhibition of agr system  

Muhs et al. 

(2017) 

Syagrus coronata (Martius) Arecaceae Essential oil of seeds S. aureus AMB: decrease cell viability in biofilm, caused Souza dos 
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Beccari Bercht. & J.Presl structural alterations, and loss of roughness in biofilm 

structure 

Santos et al. 

(2019) 

Symplocos racemose Roxb. Symplocaceae 

Desf. 

Ethyl acetate extract 

of bark 

E. coli 

K. pneumoniae 

S. aureus 

IBF: reduced biofilm biomass adhered by inhibition of 

the initial attachment 

AMB: disruption of biofilms and reduced metabolically 

active cells 

Sood et al. 

(2020) 

Terminalia bellirica 

(Gaertn.) Roxb. 

Combretaceae 

R.Br. 

Methanol extract and 

essential oil of leaves 

P. aeruginosa IBF: reduced biofilm biomass adhered 

AQSV: inhibited violacein production in C. violaceum; 

inhibited pyocyanin and EPS production 

Sankar Ganesh 

and 

Ravishankar 

Rai (2018) 

Thymus daenensis Čelak.  

Satureja hortensis L. 

Lamiaceae 

Martinov 

Essential oils (N/S) E. coli IBF: reduced biofilm biomass adhered 

AQSV: downregulation of luxS and pfs 

Sharifi and 

Nayeri Fasaei 

(2022) 

Torilis japonica (Houtt.) 

DC.  

Apiaceae Lindl. Ethanol extract of 

fruits 

S. aureus 

MRSA 

IBF: reduced biofilm biomass adhered 

AQSV: expression of agrA, sarA, icaA, hla, and RNAIII 

Kim et al. 

(2022) 

Trigonella foenum-graecum 

L. 

Fabaceae Juss. Methanol extract 

(N/S) 

E. coli 

S. aureus 

IBF: reduced biofilm biomass Alenazy (2023) 

Vaccinium corymbosum L.  

 

Ericaceae Juss. Water extract of fruit E. coli 

S. aureus 

IBF: reduced bacterial adhesion without affecting the 

planktonic growth 

 

Silva et al. 

(2016) 

Saline extract of fruit K. pneumoniae IBF: altered the bacterial adherence capacity inhibiting 

the initial stage of biofilm formation without affecting 

growth 

Gato et al. 

(2020) 

Vernonia adoensis Sch.Bip. 

ex Walp. (a synonym of 

Baccharoides adoensis 

(Sch.Bip. ex Walp.) H.Rob.) 

Asteraceae 

Giseke 

Chondrillasterol 

isolated from acetone 

extract of leaves 

S. aureus 

K. pneumoniae 

P. aeruginosa 

IBF: biofilm formation by supressing bacterial growth 

AMB: disrupted mature 72h-old biofilms of P. 

aeruginosa 

Mozirandi et al. 

(2019) 

Vitex gardneriana Schauer Lamiaceae 

Martinov 

Essential oil of leaves S. aureus 

P. aeruginosa 

IBF: reduced biofilm biomass and number of viable 

cells 

Vale et al. 

(2019) 

Warburgia ugandensis 

Sprague 

Canellaceae 

Mart. 

Ethanol and acetone 

extract of leaves/ 

alpha-linolenic acid 

(ALA), warburganal 

S. epidermidis 

S. aureus 

IBF: extracts and ALA reduced biofilm biomass 

adhered 

AMB: warburganal reduced biofilm biomass adhered 

Kipanga et al. 

(2020) 
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Zingiber officinale Roscoe Zingiberaceae 

Martinov 

Aqua-alcoholic 

extract of rhizome 

P. aeruginosa IBF: reduced biofilm biomass adhered 

AQSV: affected the permeability and efflux activity of 

bacteria. 

Chakotiya et al. 

(2017) 

Zingiber zerumbet (L.) 

Roscoe ex Sm.  

Zingiberaceae 

Martinov 

zerumbone  S. aureus IBF: inhibited initial adhesion, reduced biofilm biomass 

adhered 

AMB: reduced biofilm amount determined by cell 

metabolic activity 

Shin and Eom 

(2019) 

a 
N/S: plant part not specified 

A. baumannii: Acinetobacter baumannii; B. subtilis: Bacillus subtilis; C. violaceum: Chromobacterium violaceum; E. coli: Escherichia coli; F. nucleatum: Fusobacterium 

nucleatum; K. pneumoniae: Klebsiella pneumoniae; MRSA: methicillin-resistant Staphylococcus aureus; M. tuberculosis: Mycobacterium tuberculosis; P. mirabilis: Proteus 

mirabilis; P. aeruginosa: Pseudomonas aeruginosa; S. enteritidis: Salmonella enteritidis; S. marcescens: Serratia marcescens; S. flexneri: Shigella flexneri; S. aureus: 

Staphylococcus aureus; S. epidermidis: Staphylococcus epidermidis; S. maltophilia: Stenotrophomonas maltophilia; S. mutans: Streptococcus mutans; V. parahaemolyticus: 

Vibrio parahaemolyticus 

EPS: Extracellular polymeric substance QS: Quorum sensing 

IBF: Inhibition of biofilm formation; AMB: Activity on mature/preformed biofilms; AQSV: anti-quorum sensing/antivirulence 
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