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Abstract: The data envelopment analysis is related to a non-parametric mathematical tool used to
assess the relative efficiency of productive units. In different studies on productive efficiency, it is
common to employ semi-parametric procedures in two stages to determine whether any exogenous
factors of interest affect the performance of productive units. However, some of these procedures,
particularly those based on conventional statistical inference, generate inconsistent estimates when
dealing with incoherent data-generating processes. This inconsistency arises due to the efficiency
scores being limited to the unit interval, and the estimated scores often exhibit serial correlation and
have limited observations. To address such inconsistency, several strategies have been suggested,
with the most well-known being an algorithm based on a parametric bootstrap procedure using the
truncated normal distribution and its regression model. In this work, we present a modification of
this algorithm that utilizes the beta distribution and its regression structure. The beta model allows
for better accommodation of asymmetry in the data distribution. Our proposed algorithm introduces
inferential characteristics that are superior to the original algorithm, resulting in a more statistically
coherent data-generating process and improving the consistency property. We have conducted
computational experiments that demonstrate the improved results achieved by our proposal.

Keywords: asymmetry; bootstrapping; data envelopment analysis; decision-making units; efficiency;
optimization methods; R software; Simar and Wilson algorithm; statistical consistency

1. Introduction

The data envelopment analysis (DEA) was introduced in [1] and is a non-parametric
mathematical tool employed to assess the relative efficiency of productive units, commonly
referred to as decision-making units (DMUs). The DEA [2] relies on linear programming
to determine an ideal set of weights from entries (inputs) and products (outputs) that the
DMUs utilize in their production process. This allows us to build an observed production
frontier composed of the most efficient DMUs. This frontier is a benchmark for other
DMUs when establishing scores, admitting constant returns [1] or variables for the scale
inefficiencies in DEA [3]. The calculation of production efficiency scores or measures, and
the construction of the efficiency frontier, may be considered as an approximation of a true
unobserved production frontier [4].

The DEA and its derived techniques have gained significant attention in the scientific
literature on efficiency analysis. The DEA has applications in energy (efficiency of power
stations, electric warfare plants), execution of public policies (efficiency of schools, universi-
ties, hospitals), and industry (efficiency of plants and companies), among others; for more
examples of applications, see [5].

Symmetry 2023, 15, 1362. https://doi.org/10.3390/sym15071362 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym15071362
https://doi.org/10.3390/sym15071362
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-9884-9090
https://orcid.org/0000-0002-8780-3345
https://orcid.org/0000-0003-4755-3270
https://orcid.org/0000-0002-2152-3199
https://orcid.org/0000-0001-9897-8186
https://doi.org/10.3390/sym15071362
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15071362?type=check_update&version=1


Symmetry 2023, 15, 1362 2 of 13

On the one hand, as the DEA is a non-parametric method, its main advantage is
that it does not require knowledge of the functional form that relates inputs and outputs,
simplifying the estimates of the efficiency scores for each DMU. On the other hand, a
disadvantage of the DEA is that, when applying statistical inference, its results are not
formally correct due to its deterministic nature. Despite this, several studies on efficiency
use a two-stage approach, where the relative efficiency is estimated in the first stage. Then,
the estimated efficiencies are regressed on covariates to infer which exogenous factors are
determinants of inefficiency. As mentioned, such an approach is problematic since, due to
the non-parametric nature of the DEA, there is no certainty regarding the data-generating
process of this regression. Furthermore, since the DEA efficiency scores are limited to the
unit interval, employing traditional regression estimators, such as ordinary least squares, is
inappropriate.

The two-stage DEA technique has been widely used in the scientific literature of the
area [6–10]. In [4], an algorithm and other two-stage DEA procedures were proposed based
on an efficiency measure contained in the interval from one to infinity. The algorithm pro-
posed in this work is based on an efficiency score limited to the unit interval. Additionally,
in [4], an extensive list of studies that apply two-stage DEA techniques was mentioned.
However, conventional statistical inference is often problematic due to its non-parametric
nature and the fact that scores almost always show serial correlation. The first attempts
to improve the two-stage DEA estimation was proposed in [11], who used the logarithm
transformation on the DEA scores to formulate a regression that was followed by some
authors utilizing other transformations, as logit or lognormal. Another adaptation that
became standard in the area is to use the Tobit model [12] in the second stage, based on the
truncated distribution at one, since it avoids problems with predictions outside the original
data range.

In [13], the authors compared several regression models employed in the second stage
of the DEA and showed that the Tobit structure performs better than the traditional linear
regression (based on ordinary least squares) and the inflated beta regression [14]. Although
the Tobit model is often sufficient for describing the estimated efficiency scores against
exogenous variables [13], a problem remains. The DEA efficiency scores exhibit serial
correlation [4], aside from the fact that problems of this type often have small samples,
which makes it difficult to utilize traditional inference based on asymptotic approximations.
Computationally intensive methods to deal with two-stage DEA have appeared, almost
always based on bootstrapping [15]. Some works [16] proposed a bootstrap algorithm
that resamples DMUs, dealing with the empirical distribution of data (naive bootstrap).
Nonetheless, this algorithm has been proven to be inconsistent [17].

Additionally, in [4], two parametric bootstrap algorithms were proposed (from now,
we refer to them as the Simar–Wilson –SW– algorithm) based on single and double boot-
strapping and the Tobit model. The SW algorithm employs the truncated normal distri-
bution at a value equal to one to the left and a regression model. In the SW algorithm, a
parametric resampling of the efficiency scores is performed using the vector of parameters
for the original exogenous covariates estimated with the original sample. In the same work,
the authors demonstrated the consistency property of the estimators generated by the SW
algorithm. Nevertheless, they acknowledged that no specific reason suggests the truncated
normal distribution to be superior to other distributions in the data-generating process.

The SW algorithm is based on removing the efficient observations (that is, with the
efficiency measure equal to one), estimating the truncated normal regression coefficients in
the remaining observations, and performing a single or double parameter bootstrapping
from the estimates in the original regression. This is obtained by generating random pseudo-
samples of the truncated normal distribution at one and re-estimating the regression in
the pseudo-samples. Then, sets of bootstrap estimates for each coefficient are reached,
allowing the estimation of the parameters and standard errors (SE) of the second-stage
model, enabling the construction of confidence intervals and hypothesis tests for the model
parameters or estimated efficiency measures.
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Although the SW algorithm has been widely studied in this area, it is worth remem-
bering that it is based on a truncated normal distribution. Thus, the hypothesis that the
efficiency scores follow this distribution is not always validated in real problems. This is
because, in many applications, it is common for the efficiency scores to be concentrated
close to an upper limit equal to one, mainly when the number of inputs and outputs is
close to the number of DMUs [18]. Hence, the need to employ a more flexible probability
distribution naturally arises. Until now, the beta distribution and its associated regression
model [19–21] have not been considered in DEA under the perspective of the SW algorithm.

Therefore, the objective of the present investigation is to propose and derive a bootstrap
approach inspired by the SW algorithm, but based on the beta distribution and its regression
supported at the unit interval. Such an interval of the beta distribution contains the
range of efficiency scores. In addition, this distribution is quite flexible, permitting us to
better accommodate asymmetry in the data distribution, an aspect commonly presented
in problems of this type. The utilization of parametric bootstrapping [22] enables us to
minimize the serial correlation in the estimated regressions and increase the inference
quality, since the hypothesis tests used are frequently asymptotic and DEA problems often
have small samples.

In this study, we have opted to utilize simulated data rather than real data. This
decision is justified by several advantages that simulated data offer. Obtaining precise data
in real-life situations is often challenging, which can limit the applicability of conventional
DEA models. Real data can frequently be bounded (interval), ordinal, and ratio-bounded,
thereby constraining the range of possible analysis [23]. The simulated production units
can be viewed as an abstract and generic representation, ideal for depicting a hypothetical
scenario wherein the efficiency of production units is evaluated based on inputs and out-
puts. We chose this simulation approach to be able to control and handle the underlying
relationships between variables, which, in turn, enables a more profound understanding
of their effects on efficiency measures. By employing simulated data, we can conduct
controlled experiments, offering valuable insights into the factors that influence the effi-
ciency of production units. This approach aligns with the primary objective of our study,
which is to develop and validate a new methodology for efficiency analysis, without being
constrained by real data that may be limited in scope or availability.

The remaining sections of this article are organized as follows. In Section 2, we provide
background for proposing the new methodology. Section 3 states the new methodology
using two algorithms. In Section 4, the performance of the proposed methodology utilizing
Monte Carlo simulation methods is evaluated. Concluding remarks and ideas for future
research are discussed in Section 5.

2. Background

In this section, we present some preliminary aspects as background to formulate the
new methodology proposed in this work.

2.1. Beta Models

In many statistical applications, it is common that variables are limited to the unit
interval, that is, the interval (0, 1). Standard regression models, such as normal linear
regression, are inadequate for modeling this type of variables, since they allow predictions
outside the original range. Different strategies have been proposed to model data limited
to (0, 1), with regression models based on the beta distribution for the response variable
being frequently used [14,19,24,25]. Some extensions of these models have also been
recently proposed in [26,27]. The beta regression presented in [19] is a model for continuous
variables that assumes values in the interval (0, 1); see also [28]. In this model, the regression
parameters are interpreted in terms of the mean of the dependent variable, utilizing the
parametrization of the probability density function (PDF) of the beta distribution in function
of the mean and a precision parameter.
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Note that the beta PDF is often represented by:

f (y; p, q) =
Γ(p + q)
Γ(p)Γ(q)

yp−1(1− y)q−1, 0 < y < 1,

where p > 0, q > 0, and Γ is the gamma function. In [19], the authors proposed an
alternative parametrization, making µ = p/(p + q) and φ = p + q. Therefore, we have that
the beta PDF is now given by:

f (y; µ, φ) =
Γ(φ)

Γ(µφ)Γ((1− µ)φ)
yµφ−1(1− y)(1−µ)φ−1, 0 < y < 1,

with 0 < µ < 1 and φ > 0. Then, we use the notation Y ∼ Beta(µ, φ), where µ is the mean
and µ(1− µ)/(1 + φ) is the variance. The parameter φ is known as the precision parameter,
because for fixed µ, as φ increases, the variance decreases.

Let Y1, . . . , Yn be a sample such that Yi ∼ Beta(µi, φ), for i ∈ {1, . . . , n}. Thus, the beta
regression model is defined as:

g(µi) =
k

∑
t=1

βtxit = ηi, i ∈ {1, . . . , n}, (1)

where β = (β1, . . . , βk)
> is a vector of unknown parameters, with β ∈ Rk; (xi1, . . . , xik)

> is
the set of k known values of the covariates; and g: (0, 1) → R is a link function, which is
strictly monotone, twice differentiable, and employed to describe the relationship (linear or
non-linear) between the response variable and the covariates. Thus, µi = g−1(ηi), where
the estimation of parameters β and φ is usually done by the maximum likelihood method,
whereas the significance of the parameters can be stated through a z-test, whose statistic is
the square root of the Wald statistic [29]. Hence, to test the null hypothesisH0: β j = β

(0)
j

againstH1: β j 6= β
(0)
j , we use:

Z =
β̂ j − β

(0)
j

SE(β̂ j)
, j ∈ {1, . . . , k}, (2)

where SE(β̂ j) is the square root of the j-th diagonal element of the inverse of the Fisher
information matrix, evaluated in the maximum likelihood estimates. UnderH0, the statistic
Z defined in (2) is approximately standard normal distributed. The beta regression is a
naturally heteroskedastic model based on a flexible distribution, which can accommodate
different types of asymmetries. It is worth noting that this class of models has an approach
similar to that of generalized linear models [30]. Observe the different shapes of the beta
PDF displayed in Figure 1.

Figure 1. Plots of beta PDFs for the indicated values of µ and φ = 8.
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The formulation described in (1) assumes that the precision parameter φ is fixed, an
assumption that may not always hold true in empirical applications. In [31], an extension of
the original model was proposed, in which the mean is described as previously indicated,
and the parameter of precision is also similarly formulated through a linear predictor
(which may or not employ the same covariates as the mean model) and a link function.
Then, we have that:

g(µi) =
k

∑
j=1

β jxij = ηi, h(φi) =
m

∑
j=1

γjzij = νi, i ∈ {1, . . . , n},

where γ = (γ1, . . . , γm)> is a vector of unknown parameters in Rm; (zi1, . . . , zim)
> is the set

of m known values of the covariates, which may or may not be equal to the set (xi1, . . . , xik),
with k + m < n; and h: (0, ∞) → R is a link function to be also strictly monotone, twice
differentiable, and employed to describe the relationship (linear or non-linear) between the
response variable and the covariates.

The maximum likelihood method estimates the parameters β, γ, and φ. However,
the functional form of the precision parameter is often unknown, making its modeling
difficult. In [32], a robust estimator was proposed for the covariance matrix of the maximum
likelihood estimator of β. This estimator was directly inspired by the sandwich estimators
proposed in [33] for the normal linear regression model, later generalized to other regression
models [34]. In [32], hypothesis testing on the regression coefficients was performed for the
mean submodel, even when φ is varying, employing robust estimators of the covariance
matrix of β̂, eliminating the need of submodels for φ. The test statistics, named quasi z,
utilized to contrast the null hypothesisH0: β j = β

(0)
j againstH1: β j 6= β

(0)
j are given by:

ZRj =
β̂ j − β

(0)
j

SER(β̂ j)
, j ∈ {1, . . . , k},

where SER(β̂ j) is the square root of the j-th diagonal element of the robust covariance
matrix of the estimators, as presented in [32]. Like the z-test, under H0, ZRj also has an
approximately standard normal distribution.

2.2. Data Envelopment Analysis

To explain the concept of DEA, let us assume the existence of a DMU, denoted by
A, and its non-negative sets of inputs xA = (xA

1 , . . . , xA
r )
> ∈ Rr

+ and outputs yA =
(yA

1 , . . . , yA
s )
> ∈ Rs

+, as well as another DMU, denoted by B, with its respective inputs
xB = (xB

1 , . . . , xB
r )
> ∈ Rr

+ and outputs yB = (yB
1 , . . . , yB

s )
> ∈ Rs

+.
Note that the DEA works with the fundamental assumption that if A can produce the

quantities of outputs yA, using the quantities of inputs xA, other DMUs could also do the
same if they operate efficiently. If DMUs A and B are efficient, they can be linearly combined
to create a virtual DMU, which utilizes a mixture of inputs to produce a combination of
outputs. The goal of the DEA is to identify the optimal virtual DMU for each DMU in the
sample. An inefficient DMU is one where the virtual DMU outperforms the original DMU,
either by producing more outputs with the same inputs or by achieving the same outputs
with fewer inputs. Similarly, if B produces the quantities of product yB, employing xB as
inputs, then other DMUs might produce the same.

The first model of interest in this work was developed in [1], whose authors con-
structed the efficiency frontiers assuming constant returns to scale inefficiencies in DEA,
known as the DEA-CCR model. Boundaries and, consequently, efficiency scores are calcu-
lated using linear programming, in which we look for the set of weights u = (u1, . . . , ur)>

for the inputs and v = (v1, . . . , vs)> for the outputs that maximize the ratio between the
linear combination of inputs and the combination of outputs.



Symmetry 2023, 15, 1362 6 of 13

Let xA = (x1A, . . . , xrA)
> and yA = (y1A, . . . , ysA)

> be the set of inputs and outputs
of a DMU A, and P be the set of indices of the DMUs. Then, we can measure the relative
efficiency of this DMU, with a focus on inputs, using:

max
u,v

hA =
∑r

j=1 ujyjA

∑s
i=1 vixiA

,

subject to:
∑r

j=1 ujyjk

∑s
i=1 vixik

≤ 1, ∀k ∈ P ,

vi, uj > 0, ∀i, j.

The above formulation corresponds to a fractional programming problem requiring a
high computational cost to be solved. A possible modification to simplify problem-solving
is to fix ∑s

i=1 vixik = 1, for all k. Thus, we have:

max
u,v

hA =
r

∑
j=1

ujyjA,

subject to:
s

∑
i=1

vixik = 1,

r

∑
j=1

ujyjk −
s

∑
i=1

vixik ≤ 0, ∀k ∈ P ,

vi, uj > 0, ∀i, j.

We can calculate the efficiency scores more directly using the dual formulation of the
previous problem as:

min
hA ,λ

hA,

subject to:

hAxiA −
n

∑
k=1

xikλk ≥ 0, ∀i,

−yjA +
n

∑
k=1

yjkλk ≥ 0, ∀j,

λk > 0, ∀k ∈ P .

For variable returns to scale inefficiencies in DEA, in [3], a modification of the above
problem was proposed using the formulation given by:

min
hA ,λ

hA,

subject to:

hAxiA −
s

∑
k=1

xikλk ≥ 0, ∀i,

−yjA +
r

∑
k=1

yjkλk ≥ 0, ∀j,

n

∑
k=1

λk = 1,

λk > 0, ∀k ∈ P .
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The addition of the last constraint ∑n
k=1 λk = 1 introduces convexity at the production

frontier. It allows DMUs to operate with either decreasing, increasing, or constant returns
to scale inefficiencies in DEA, known as the DEA-BCC model. The estimation of the
efficiency measure for the DMU A, which is denoted by δ̂(xA, yA) or δ̂A, is then calculated
as δ̂A = 1/hA, where hA ≥ 1 is called the “efficiency measure”, with the DMU being
efficient if hA = 1 and inefficient if hA > 1. Similarly, 0 < δ̂A ≤ 1 is called the “efficiency
score”, where the DMU is efficient if δ̂A = 1 and inefficient if 0 < δ̂A < 1.

The efficiency calculation for the output-oriented DEA-CCR model is so given by:

max
hA ,λ

hA,

subject to:

−hAyjA +
s

∑
k=1

yjkλk ≥ 0, ∀j,

xiA +
r

∑
k=1

xikλk ≥ 0, ∀i, λk > 0, ∀k ∈ P .

Therefore, the output-oriented DEA-BCC model is stated as:

max
hA ,λ

hA,

subject to:

−hAyjA +
s

∑
k=1

yjkλk ≥ 0, ∀j,

xiA +
r

∑
k=1

xikλk ≥ 0, ∀i,

n

∑
k=1

λk = 1, λk > 0, ∀k ∈ P .

In Figure 2, we see an example of an efficiency frontier construction with one input
and one output. This figure shows the efficiency frontier constructed assuming variable
returns to scale inefficiencies in DEA. The efficient DMUs are located on the efficiency
frontier and have an estimated efficiency score δ̂(xi, yi) = 1, which are the benchmarks,
that is, the efficiency references for the other DMUs. Hence, the inefficient DMUs may be
compared with the virtual DMUs, formed by the linear combination of the efficient DMUs
and located on the efficiency frontier.

Figure 2. Example of the construction of an empirical efficiency frontier. Source: [35].
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3. The New Methodology by Using Two Algorithms

In this section, we propose two simple parametric bootstrap algorithms based on beta
regression to estimate a two-stage DEA. These algorithms aim to improve the inference of
the exogenous variables of interest in the second stage by employing a distribution that
best fits the data. By utilizing bootstrapping, we can enhance the quality and performance
of the tests used to detect the significance of the beta regression coefficients, particularly in
cases where the DEA efficiency scores exhibit serial correlation and small sample sizes.

3.1. Context

The proposed methodology introduces a new approach for estimating the efficiency
measures and assessing the impact of covariates on the efficiency of production units. We
conducted Monte Carlo simulations, generating data with known generating processes, to
evaluate the performance of the proposed methodology. As mentioned, by using simulated
data, we can control and handle the relationships between variables to better understand
the effects on efficiency measures. The simulated production units can be considered as
an abstract and generic example, representing a hypothetical scenario where the efficiency
of production units is evaluated based on inputs and outputs. This approach allows us
to conduct controlled experiments and gain insights into the factors that influence the
efficiency of production units.

The two bootstrap algorithms presented in this section provide a more robust and
reliable approach for estimating the efficiency measures and assessing the impact of co-
variates. These algorithms, described in detail below, utilize beta regression and employ
bootstrapping techniques to improve the quality and performance of the tests used to detect
the significance of the beta regression coefficients.

3.2. Bootstrap Algorithm Using Beta Regression with the z-Test

Consider the set of n DMUs with their respective sets x of inputs and y of outputs. In
addition, let δ̂i = δ̂(xi, yi) be the estimated efficiency score for DMU i given the inputs xi
and outputs yi, for i ∈ {1, . . . , n}.

Let Z be the matrix of covariates, with zi being its respective rows (set of values of the
variables per observation), and β = (β1, . . . , βk)

> be the vector of regression parameters in
the second stage. Algorithm 1 describes a simple parametric bootstrap approach based on
beta regression to estimate a two-stage DEA.

With the bootstrap p-value and a chosen fixed significance level α, we then have the
decision rule in which we reject the null hypothesis of the coefficient of the variable of
interest being equal to zero, that is, the variable is not a statistically significant factor for
the efficiency if p-value < α.

3.3. Bootstrap Algorithm Using Beta Regression with Quasi z-Test

A modification of Algorithm 1 is accomplished by utilizing a quasi z-statistic [32] to
avoid possible biases and errors in the inference caused by misspecification in the precision
parameter. Algorithm 2 describes a second parametric bootstrap approach based on beta
regression to estimate a two-stage DEA considering this modification.

Figure 3 illustrates the underlying flow diagram of Algorithms 1 and 2 as well as their
integration into the research methodology. This diagram provides a clear visualization of
the information flow, starting from the collection of input and output data from the DMUs,
followed by the application of the DEA to estimate efficiency scores. Then, the diagram
shows the utilization of the two bootstrap algorithms based on beta regression, along with
the evaluation of their performance through computational experiments using Monte Carlo
simulations. The diagram also highlights the analysis of the simulation results and the
conclusion drawn from them.
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Algorithm 1 Approach with the z-test.

1: Collect original input and output data from the n DMUs.

2: Use the DEA to estimate the efficiency scores δ̂i = δ̂(xi, yi), for i ∈ {1, . . . , n}.

3: Employ m < n observations, where 0 < δ̂i < 1, to estimate β̂ such that δ̂ = Zβ by the
maximum likelihood method utilizing a beta regression, assuming constant precision.

4: Obtain a statistic c of the z-test to contrast significance of the regression coefficients for
the covariate of interest.

5: State H0: β j = β
(0)
j against H1: β j 6= β

(0)
j on the coefficient of covariate j of interest

and fit an auxiliary regression δ̂ = Zβaux also assuming constant precision, that is,
βaux = β, such that β j = 0.

6: Enter the bootstrap loop by means of:

• Generate m random observations δ̂∗ under the beta distribution, that is, δ̂∗ ∼
Beta(Zβ̂aux, φ̂) using the parametrization proposed in [19], where Zβ̂aux are the
responses predicted by the regression estimated at Step 5 and φ̂ is the precision
parameter estimated at this same step.

• Estimate β̂∗ such that δ̂∗ = Zβ∗ with the values of all covariates in matrix Z.
• Calculate the statistic c∗ of the z-test for the variable of interest in the previous

regression.
• Repeat the steps B times and count the quantity q of times that |c∗| ≥ |c|.

7: Calculate the bootstrap p-value p∗ = (1 + q)/B + 1.

8: Make a decision about rejectingH0 or not at a significance level fixed.

Algorithm 2 Approach with the quasi z-test.

1: Collect original input and output data from the n DMUs.

2: Use the DEA to estimate the efficiency scores δ̂i = δ̂(xi, yi), for i ∈ {1, . . . , n}.

3: Employ m < n observations, where 0 < δ̂i < 1, to estimate β̂ such that δ̂ = Zβ by the
maximum likelihood method utilizing a beta regression, assuming constant precision.

4: Obtain a statistic d of the quasi z-test to contrast significance of the regression coeffi-
cients for the covariate of interest.

5: State H0: β j = β
(0)
j against H1: β j 6= β

(0)
j on the coefficient of covariate j of interest

and fit an auxiliary regression δ̂ = Zβaux also assuming constant precision, that is,
βaux = β, such that β j = 0.

6: Enter the bootstrap loop by means of:

• Generate m random observations δ̂∗ under the beta distribution, that is, δ̂∗ ∼
Beta(Zβ̂aux, φ̂) using the parametrization proposed in [19], where Zβ̂aux are the
responses predicted by the regression estimated at Step 5 and φ̂ is the precision
parameter estimated at this same step.

• Estimate β̂∗ such that δ̂∗ = Zβ∗ with all covariates in matrix Z.
• Calculate the statistic d∗ of the quasi z-test for the variable of interest in the

previous regression.
• Repeat the steps of this item B times and count the quantity q of times that
|d∗| ≥ |d|.

7: Calculate the bootstrap p-value p∗ = (1 + q)/B + 1.

8: Make a decision about rejectingH0 or not at a significance level fixed.
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Collect original data

Estimate efficiency scores δ̂i

Estimate β̂

Obtain statistic d

StateH0 and fit auxiliary regression

Enter bootstrap loop

Calculate bootstrap p-value p∗Repeat steps in the loopCalculate statistic d∗

Apply z-test

Perform quasi z-test

Figure 3. Flow diagram of sequential execution with two algorithms for estimation and testing of the
proposed DAE methodology.

4. Computational Experiments

In this section, we evaluate the performance of the two inferential approaches proposed
in this work. We conduct Monte Carlo simulations similarly to [4]. We generate data with a
known generating process and apply the bootstrap algorithms to each of the Monte Carlo
replicates. For comparison purposes, we consider the SW double bootstrap algorithm.

4.1. Simulation Setting

In the simulation, we establish the amount n of desired artificial DMUs and carry out
the following procedure:

• Simulate data from observations of covariates randomly generated from Zi1 ∼ N(2, 4),
for i ∈ {1, . . . , n}, that is, normally distributed.

• Generate values εi from the standard normal distribution truncated at 1− β0 − z1iβ1
and state δi = β0 + z1iβ1 + εi, for i ∈ {1, . . . , n}.

• Obtain the set of inputs (considering one input and one output) and obtain values
from Xi ∼ U(6, 16), for i ∈ {1, . . . , n}, that is, uniformly distributed.

• Set yi = δ−1x3/4
i to generate the output data for i ∈ {1, . . . , n}.

• Add a second covariate from Zi2 ∼ N(2, 4) to the model, which is not part of the data
generating process.

In our simulation, we set β0 = β1 = 0.5 allowing us to test the significance of the
parameters in the linear predictor β0 + β1zi1 + β2zi2. Note that we know in advance that
parameters β0 and β1 are statistically significant (as they are part of the data-generating
process) and β2 is not (as it is not part of this process).

4.2. Simulation Results

Each algorithm was tested over 5000 Monte Carlo replicates. Within each replicate,
Algorithms 1 and 2 were run with 2000 iterations each in the bootstrap loop, as recom-
mended in [36], to minimize power loss without significantly increasing computational
cost. The SW algorithm had 2000 repetitions in the first loop and 100 repetitions in the
second loop of the bootstrap, as suggested in [4]. We employed the logit link function in
Algorithms 1 and 2. We estimated power by evaluating the proportion of correct rejection
of the null hypothesis in the testH0: β1 = 0 againstH1: β1 6= 0. We assessed test coverage
by evaluating the correct proportion of non-rejection of the null hypothesis H0: β2 = 0
againstH1: β2 6= 0. All tests were conducted at level 1− α = 0.95 and the simulations were
carried out in a computational environment of the R software.
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The findings from the results presented in Tables 1 and 2 are consistent across the
three quantities of DMUs studied. Under the selected data-generating process, the z-test
made with the SW algorithm tends to be conservative, meaning the estimated probability
of correctly not rejecting the null hypothesis never exceeds the specified nominal level [37].
In contrast, the significance test in Algorithm 1 leans liberal (Table 2). The quasi z-test
conducted with Algorithm 2, which we propose, offers superior test coverage, coming
closer to the selected level of 1− α = 0.95. Another observation is that, with a smaller
number of DMUs (n = 40), tests conducted with Algorithms 1 and 2 outperform and yield
higher power than the z-tests with the SW algorithm (Table 1), demonstrating a higher
rate of correct null hypothesis rejection. As the number of DMUs increases (n ≥ 70), the
tests performed with Algorithm 2 show less power than those with the SW algorithm. The
performance of the algorithms across the three quantities of DMUs studied suggests using
Algorithm 2 for two-stage DEA involving smaller quantities of DMUs. This is because it
displays equal or superior power than the SW algorithm while keeping the test coverage at
the specified nominal level.

Table 1. Estimated rejection rate for the null hypothesis β1 = 0.

n Algorithm 1 Algorithm 2 SW Algorithm
40 0.230 0.204 0.191
70 0.433 0.375 0.405
100 0.581 0.520 0.605

Table 2. Estimated non-rejection rate for the null hypothesis β2 = 0.

n Algorithm 1 Algorithm 2 SW Algorithm
40 0.933 0.943 0.967
70 0.932 0.944 0.965
100 0.935 0.950 0.968

5. Conclusions

In this article, we have introduced two parametric bootstrap algorithms that leverage
the beta regression model proposed in [19] as an alternative to the Simar and Wilson
algorithm for inferring the significance of exogenous variables determining the efficiency
of production units. Our simulations show that Algorithm 2 performed better in terms of
power and coverage when the number of decision-making units under analysis is smaller
(n ≈ 40), positioning it as a viable alternative for two-stage data envelopment analysis with
smaller production unit sets.

Based on the behavior of the algorithms with different quantities of decision-making
units, we recommend Algorithm 2 for studying two-stage data envelopment analysis
problems with smaller production unit sets. This algorithm exhibits equal or greater power
than the Simar and Wilson algorithm, while maintaining the test coverage at the specified
nominal level.

For future research, we suggest conducting simulations with more inputs and outputs,
as well as fewer decision-making units. It could also be worth considering a quantile
regression model based on the Kumaraswamy distribution [38] instead of the beta regres-
sion model. This model could be a compelling alternative, especially when outliers are
present in the response variable under consideration. Furthermore, exploring the use of
inflated beta regression [39] in algorithm formulation, or incorporating heuristics or other
optimization algorithms in the maximum likelihood method (steps 3 of both Algorithms 1
and 2) for larger n values, may yield valuable insights. Lastly, we propose developing an
R package encompassing the algorithms presented here to facilitate their implementation
and use in future studies.
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