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Abstract: There is no consensus on how to measure shoulder joint laxity and results reported in the
literature are not well systematized for the available shoulder arthrometer devices. This systematic
review aims to summarize the results of currently available shoulder arthrometers for measuring
glenohumeral laxity in individuals with healthy or injured shoulders. Searches were conducted on the
PubMed, EMBASE, and Web of Science databases to identify studies that measure glenohumeral laxity
with arthrometer-assisted assessment. The mean and standard deviations of the laxity measurement
from each study were compared based on the type of population and arthrometer used. Data
were organized according to the testing characteristics. A total of 23 studies were included and
comprised 1162 shoulders. Populations were divided into 401 healthy individuals, 278 athletes with
asymptomatic shoulder, and 134 individuals with symptomatic shoulder. Sensors were the most used
method for measuring glenohumeral laxity and stiffness. Most arthrometers applied an external force
to the humeral head or superior humerus by a manual-assisted mechanism. Glenohumeral laxity and
stiffness were mostly assessed in the sagittal plane. There is substantial heterogeneity in glenohumeral
laxity values that is mostly related to the arthrometer used and the testing conditions. This variability
can lead to inconsistent results and influence the diagnosis and treatment decision-making.

Keywords: shoulder; glenohumeral; arthrometer; laxity; stiffness

1. Introduction

Every year, shoulder dislocations occur on an average of 5–40 per 100,000 individuals
in the general population [1–5]. Athletes and those that engage in sports activities are more
prone to shoulder dislocation [6–10]. This is due to both the high repetitive loads involved
in sports and traumatic events. A shoulder dislocation can damage the joint stabilizers
and cause laxity. After a first dislocation, these individuals are more prone to redislocation
events [4,11]. After repeated episodes of dislocation, these individuals can develop joint
instability [4,12], which can result in persistent long-term pain and functional limitations.
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Therefore, an early diagnosis of shoulder instability is crucial in order to implement early
treatment and secondary prevention strategies.

The diagnosis of shoulder instability is mostly based on clinical history and manual
glenohumeral (GH) laxity tests [13] that are combined with imaging scans to assess the
structural integrity of musculoskeletal structures [14]. Despite manual tests (apprehension
and relocation tests) displaying high specificity, they only show suboptimal sensitivity,
thus being non-optimal for identifying those with shoulder instability with high diagnostic
accuracy [15,16]. Moreover, manual tests result in variable findings (e.g., inter-rater relia-
bility) dependent on the experience, skill, and sensibility of the examiner. These tests can
only subjectively evaluate the degree of shoulder instability and are unable to provide an
accurate measurement of joint laxity.

To overcome the limitations of validity and replicability of manual laxity testing, a
manifold of arthrometers have been developed to measure GH laxity. Joint arthrometers
apply an external force to the joint with the aim of emulating the manual testing. Shoulder
arthrometers are similar in concept to other arthrometers [16] for different joints that
are already on the market (e.g., Telos, KT-1000/200). These devices can provide objective
quantification and precise measurements of joint laxity leading to a more accurate diagnosis.
Notwithstanding, the structure and use of these arthrometers can become heterogenous,
i.e., inconsistent force application and patient positioning, and may lead to variable results
and inconclusive findings. The use of arthrometers is important for clinical practice to
provide a more precise estimate of GH joint laxity and to diagnose the presence and severity
of shoulder instability. Clinical and arthrometric data on GH laxity would help clinicians
to reach more accurate diagnosis and make an informed and adequate treatment planning
(either conservative or surgical interventions). Scientific literature reporting shoulder
arthrometry is still sparce and scattered, and there is no available source that systematizes
these data, which can lead to inconsistent implementation of shoulder arthrometry and
misinterpretation of their results. There is thus a clear need to systematize the scientific
literature of the results of shoulder arthrometers for measuring GH laxity for consistent and
reliable use of shoulder arthrometry. Our goal was to systematize the results of currently
available shoulder arthrometers for measuring GH laxity in individuals with a healthy or
injured shoulder. The purpose of this systematic review was thus to summarize state-of-
the-art of shoulder laxity measurement using arthrometry and to compare the results across
the different available devices and between injured and healthy shoulders. This summary
of current evidence can guide researchers and clinicians on how to use arthrometers for
measuring shoulder laxity and compare their results with available data according to the
different characteristics of the shoulder condition(s), arthrometer used, and method of
measurement.

2. Materials and Methods

This systematic review was conducted according to the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) 2020 statement [17]. The protocol was a
priori registered in the PROSPERO database under the number CRD42023404088.

2.1. Eligibility Criteria

The eligibility criteria are framed according to the Participants, Intervention/Exposure,
Comparison, Outcome and Study design (PICOS) strategy.

As the eligible population, we included studies comprising both male and female
individuals that were healthy (asymptomatic) and those presenting symptomatic shoulder
conditions (shoulder pain and shoulder instability, among other conditions). Studies
including individuals after shoulder stabilization surgery or rehabilitation were deemed
eligible if they had the outcome of interest (GH laxity).

Under exposure and the outcome of interest, studies that made an arthrometer-assisted
measurement of GH laxity were also considered. GH laxity was defined as the objective
quantification of joint displacement (mm) or joint stiffness (N/mm). Arthrometers must in-



Bioengineering 2023, 10, 799 3 of 16

clude a system that measures joint laxity (either visually, as an external connected device or
software, or with concomitant imaging methods). The external application of load had to be
applied locally at the shoulder joint by a direct mechanical actuator (activated manually or
by an electrical system). Studies where the load was applied via free weights with a pulley
system were excluded. A comparator group of exposure was not compulsory, but studies
comparing shoulder arthrometry with other methods were included. Studies involving
different methods under the implementation of shoulder arthrometer evaluation (e.g.,
different populations, patient positioning, applied loads, and methods of measurement)
were also considered.

We included all laboratory or clinical trials (from randomized controlled trials to
case series) that allowed for the evaluation of the outcome of interest. Letters, editorials,
conference abstracts, cadaveric and animal studies, case studies, commentaries, and reviews
were excluded. Due to unavailable translation resources, only included studies written in
English were analyzed.

2.2. Search Strategy

Computerized searches were conducted in the PubMed, EMBASE and Web of Science
databases up to 3 May 2023. The full search strategy for each database is reported in
Table S1. The reference lists of the relevant reviews and of the included studies were
screened for additional potentially eligible studies not identified via the database searches.

2.3. Study Selection

All records were exported to EndNote X7 (Thomson and Reuters, Philadelphia, PA,
USA); duplicates were removed using the software’s “duplicates” tool and then confirmed
manually to check for any missing duplicate records. Two authors (E.G. and R.A.) inde-
pendently scanned all titles and abstracts, and then revised the full texts of all potentially
eligible studies. Disagreements were resolved by a third author (C.V.).

2.4. Data Collection and Extraction

All data related to the study characteristics, arthrometers, and their outcomes were
extracted in duplicate by two authors (E.G. and R.A.). Disagreements were resolved by
consensus. We used an excel spreadsheet to record data, including: (i) Study characteristics
(year and region); (ii) characteristics of the included population (number of individuals
and shoulders, percentage of males/females, mean age, height, and body weight) and
their clinical condition (asymptomatic or symptomatic); (iii) description of the arthrometer
and testing conditions (name of the device, method of force application, amount of load,
direction of force, patient positioning, shoulder fixation, laxity measurement system, and
procedure) and their validity and reliability outcomes; (iv) outcome measures (laxity and
stiffness).

2.5. Data Management

Studies that included overlapping populations but that presented different outcomes
were merged into a cluster of studies. The population characteristics were collected for
each study (as means and standard deviations), but then summarized using proportions
and pooled means, as well as standard deviations weighted to the sample size.

When studies reported data for both shoulders or subgroups by sex, we collected and
reported the outcomes of both shoulders/sexes separately (when available). When reported,
the mean difference between shoulders was also collected. When studies presented data for
the same outcome using different measuring methods (e.g., radiography and ultrasound)
and varying loads or different patient positioning, the data from both methods in data
synthesis were reported separately. However, when data were reported for the same
population under the same testing conditions (e.g., for test–retest purposes) from the same
study but from different trial reports, the data were combined using pooled means and
standard deviations.



Bioengineering 2023, 10, 799 4 of 16

2.6. Risk of Bias

The risk of bias was judged using the Risk of Bias Assessment tool for Non-randomized
Studies (RoBANS) [18]. The RoBANS is a validated tool to assess the risk of bias of non-
randomized studies, comprising six domains of bias: (i) The selection of participants,
(ii) confounding variables, (iii) measurement of exposure, (iv) blinding of outcome assess-
ment, (v) incomplete outcome data, and (vi) selective outcome reporting (Table S2). Each
domain was judged as low risk of bias, high risk of bias, or unclear. Risk of bias was
judged at the outcome level for laxity and stiffness. Two authors (E.G. and R.A.) made all
judgements, and disagreements were resolved by a third author (C.V.).

2.7. Data Synthesis

Data were stratified according to population characteristics into three subgroups:
(i) Healthy individuals with asymptomatic shoulders, (ii) athletes with asymptomatic
shoulders, and (iii) individuals with injured shoulders.

Data pooling for joint laxity and stiffness was not attempted due to the wide hetero-
geneity across the studies’ populations, arthrometers, and testing methods. In addition to
stratification based on population characteristics, we also stratified the data based on the
device used and we organized data in regard to testing characteristics (e.g., measurement
system, amount of load, shoulder positioning, and shoulder being assessed). Laxity data
were then plotted into figures for visual display of the anterior (PA), posterior (AP), inferior,
and global laxity. Stiffness was not reliable to plot into a figure due to many overlapping
slopes, and it was thus reported for each individual study.

3. Results

The database and hand-searches yielded 2614 titles and abstracts. After removing
the duplicates, the full texts of the 1435 relevant studies were analyzed according to the
eligibility criteria. A total of 24 trial reports from 23 studies [19–41] met the eligibility
criteria and were included in this systematic review (Figure 1).

3.1. Risk of Bias

Nearly one-fourth of the studies (k = 9; 23%) were judged as having a high risk of
selection bias due to the selection of participants, including healthy individuals and athletes
with asymptomatic shoulders but reporting shoulder pain or a previously diagnosed
shoulder injury. More than half of the studies (k = 13; 57%) were judged as having a high
risk of selection bias due to uncontrolled confounding variables, mostly due to unreported
sex and unbalanced shoulder dominance. Three-quarters of the studies (k = 15; 75%) were
judged as having a high risk of performance bias for their measurement of laxity, but none
for measuring stiffness. Likewise, most of the studies were also judged as having a high
risk of detection bias for their laxity (k = 13; 65%) and stiffness (k = 4; 80%) measurements.
Incomplete data outcome was not a concern, with no study being judged as having a high
risk of attrition bias. Only one study [32] was judged as having a high risk of selective
reporting, but as no study registered an a priori protocol, this domain should be viewed
with some concerns for all studies. The judgment of risk of bias for each included study
and domain is provided in Figure S1.

3.2. Population Characteristics

A total of 1162 shoulders from 813 individuals with a mean age of 23.0 ± 3.7 years
were included for analysis (Table 1). Among them, 401 were voluntary individuals with
asymptomatic shoulders, 278 were athletes with asymptomatic shoulders, and 134 were
individuals with injured shoulders. Table S3 details the population characteristics for each
study.
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Table 1. Summary of the population characteristics of the included studies.

Variable

Asymptomatic Shoulders
Injured

Shoulders
Total SampleHealthy

Individuals Athletes

K (population) 401 278 134 813

N (shoulders) 570 455 137 1162

Sex (M/F) 196/161 103/41 71/36 370/238

Age (years) 21.2 ± 7.2 21.5 ± 2.9 24.4 ± 7.7 23.0 ± 3.7

Weight (kg) 72.9 ± 6.1 83.6 ± 13.2 NR 79.3 ± 12.1

Height (cm) 171.7 ± 4.3 182.0 ± 7.7 NR 177.8 ± 8.5
NR: No reported.

3.3. Device Characteristics

Six different shoulder arthrometers were reported in the literature (Table S4). The
most reported arthrometers were the Telos + LigMaster™ (six studies) [27,28,30,34–36] and
the customized instrumented shoulder arthrometer (six studies) [20–23,39,40], followed
by the Telos (five studies) [24–26,29,37]. The remaining arthrometers included a shoul-
der adaptation of the KT-1000/2000 (three studies) [31,38,41], the Donjoy® Laxity Tester
(two studies) [32,33], and a custom-designed robotic device (one study) [19]. The validity
and reliability data from these arthrometers are described in Table S5.
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3.4. Characteristics of Evaluation and Method of Measurement

Sensors were the most commonly used method for measuring GH laxity and
stiffness (15 studies). The sensors measured the force-induced position changes at the
glenohumeral joint, which were used calculate the joint laxity and/or stiffness
(12 studies) [20–23,27,28,30,34–36,39,40], while the other devices visually displayed the
amount of laxity on a screen (three studies) [31,38,41]. Apart from sensors, other studies
used stress imaging either with radiography or US devices (five studies) [24–26,29,37], a
visual scale (two studies) [32,33], or a digital motion controller (one study) [19].

Force was applied with a controlled manual instrumented-assisted mechanism, with
only one study using an electromechanical system [19]. The direction of force was usually
in the sagittal plane (AP or PA), with only three studies applying an inferior-directed
force [19,22,23]. The amount of load applied during the testing procedures was heteroge-
nous across the studies. The load applied ranged from 10 to 150 N. Three studies used a
progressive application of load (0–100, 0–134, or 10–80 N) and two studies applied force
until the capsular endpoint [22,23].

The shoulder was usually positioned at 90◦ of abduction in the scapular plane
(15 studies) [19,24–31,34–38,41], in either external rotation (12 studies) or neutral rota-
tion (four studies). Other studies positioned the shoulder at 20◦ of abduction with neutral
rotation (nine studies) [20–23,32,33,39–41]. The individuals were either lying in a supine po-
sition (modified KT-1000/2000 and modified custom-designed robotic device) or seated in a
chair (customized instrumented shoulder arthrometer, Telos GA-II/E, Telos, and Donjoy®).
Methods of fixation varied considerably across the studies and devices, and are detailed in
Table S4.

The measurement methods for GH laxity showed heterogeneity across the included
studies (Table S4). Imaging methods measured the bone displacements (distance between
the center or posterior humeral head to the glenoid) to calculate the joint laxity. When
using sensors, laxity was calculated as the distance between two sensors placed at the
humeral head and acromion (sagittal displacement) or between the humeral head and
lateral epicondyle of the distal humerus (inferior displacement). While in most studies
it was measured to total displacement, other studies restricted the displacement to the
distance between the inflection point until the data point at the highest load. Stiffness was
always calculated as the slope of the linear portion of the force–displacement curve. The
KT1000/2000 estimated the humeral head displacement with a single sensor placed at this
anatomical point, but without any other reference point. The Donjoy® arthrometer used a
visual-instrumented scale on the spring balance to measure the sagittal displacement of the
humeral head.

3.5. Laxity and Stiffness Values

The GH laxity was analyzed across asymptomatic healthy individuals, asymptomatic
athletes, and individuals with injured shoulders. Overall, there was a wide heterogeneity
in laxity values across and within subgroups of individuals with asymptomatic shoulders,
especially when compared between devices. The laxity and stiffness data for each study
and testing condition are detailed in Table S5.

Asymptomatic healthy individuals showed varying laxity values, ranging from 0.7 to
27.72 mm for PA, 1 to 21.75 mm for AP (Figure 2a), and 0.6 and 2.1 mm for global translation
(Figure 2b). Stiffness ranged from 16.3 to 16.7 N/mm for PA and 1.51 to 15.7 N/mm for
inferior (Table 2). Only one study [22] assessed inferior laxity with a 13.9 mm displacement,
while another study assessed AP stiffness with a similar slope of 15.4 N/mm [23].
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Asymptomatic athletes also showed varying laxity values, ranging from 1.4 to
12.57 mm for PA, 4.82 to 12.71 mm for AP (Figure 3a), and 7.81 to 24.92 mm for global trans-
lation (Figure 3b). When comparing the dominant/throwing arm against the contralateral,
there was no significant difference in the mean laxity values. The mean values of stiffness
also showed a large range from 7.77 to 16.6 N/mm for PA and 8 to 15.3 N/mm for AP
(Table 2).

Table 2. Stiffness of the included studies.

Population Arthrometer Studies Amount
of Load Device Evaluated

Arms PA AP Inferior

Healthy
Individuals

Custom-designed
robotic device

Azarsa et al.
(2021) [19] 10–80 N

Digital
motion

controller +
software

Right arm NR NR 1.51

Customized
instrumented

shoulder
arthrometer

Borsa et al.
(2001,2002) [22,23] NR Sensor Nondominant

arms 16.7 15.4 15.7

Borsa et al.
(2000) [21] 0–134 N Sensor Bilateral

arms—male 20.5 NR NR

Borsa et al.
(2000) [21] 0–134 N Sensor Bilateral

arms—female 16.3 NR NR

Healthy
Athletes

Telos + Ligmaster

Crawford & Sauers
(2006) [28] 15 dN Sensor

Throwing
arm—neutral

rotation
8.05 8.00 NR

Crawford & Sauers
(2006) [28] 15 dN Sensor

Nonthrowing
arm—neutral

rotation
7.77 8.05 NR

Crawford & Sauers
(2006) [28] 15 dN Sensor

Throwing
arm—external

rotation
10.87 NR NR

Crawford & Sauers
(2006) [28] 15 dN Sensor

Nonthrowing
arm—external

rotation
10.24 NR NR

Borsa et al.
(2006) [27] 15 dN Sensor Throwing arm 16.6 15.1 NR

Borsa et al.
(2006) [27] 15 dN Sensor Nonthrowing

arm 16.2 15.3 NR

Injured shoulders displayed a more uniform pattern of laxity, with mean values
ranging from 2 to 3.4 mm for PA, 3.0 to 5.42 mm for AP (Figure 4a), and 2.8 to 11.9 mm
for global translation (Figure 4b). None of the included studies assessed the stiffness of
individuals with injured shoulders.
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4. Discussion

The most important finding of this systematic review is the high diversity of GH
laxity outcomes. This considerable variation might have resulted from the wide variety of
arthrometers being used and their different testing conditions, such as the amount of load,
shoulder positioning, and methods of measurement.

4.1. Why Are the Laxity Outcomes So Variable across Studies?

The Telos device, which comes in different device models and adaptations, is the most
widely used arthrometer and is always used in conjunction with either imaging methods
(radiography or ultrasound) or the Ligmaster™ for measuring GH laxity or stiffness. The
Ligmaster™ is a software incorporated into the Telos device to allow the estimation of
joint laxity without the need of imaging control. This software accounts for soft tissue
compression by calculating an inflection point along the force–response curve, providing an
approximation of GH displacement. In contrast, the Telos device, when used concomitantly
with imaging control, can provide an adequate measurement of GH laxity by means of
measuring the true bone displacements before and after stress. Other available arthrometers
(custom-designed robotic device, customized instrumented shoulder arthrometer, modified
KT-1000/2000, and Donjoy®) can measure the GH laxity without concomitant imaging
control, and thus do not provide accurate laxity measurements. More specifically, the
modified KT-1000 and KT-2000 usually result in considerably higher GH laxity values
when compared to the other arthrometers. The rationale behind this may be that this device
was designed with sensors that are not sensitive to the displacement of the humeral head.

Varying laxity outcomes can also arise from heterogeneity in the testing conditions.
Most arthrometers apply an external force to the humeral head or superior humerus by a
manually assisted mechanism. Although the arthrometer may provide a system to control
the manually assisted forces applied (usually a dynamometer), there is nevertheless some
risks for poor reproducibility in repeated measures. Laxity was commonly evaluated
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in the sagittal plane, but with varying loads, usually ranging from 67 to 150 N. Only
one study measured and reported the inferior GH laxity (axial plane) [22]. The reduced
number of studies evaluating the inferior shoulder translations may be due the fact that
inferior shoulder dislocations are uncommon [42]. The shoulder positioning was less
heterogenous across studies, with the shoulder usually being positioned at 90◦ of abduc-
tion in the scapular plane, but perhaps varying in the positioning of rotation (neutral or
external rotation).

4.2. Is GH Laxity Symmetric and What Are the Differences between Symptomatic and
Asymptomatic Shoulders?

Most shoulder dislocations occur anteriorly (85–95%) [43,44] and thus higher mean
values of anterior GH laxity were expected, but the studies did not show this tendency. The
mean values for anterior laxity (as evaluated by Telos and Telos + Ligmaster™) were not
relevantly different between athletes and non-athletes with asymptomatic shoulders. More
relevant differences were only seen for posterior laxity, with athletes showing higher laxity
mean values. Several sports require athletes to repeatedly perform overhead movements,
placing large intra-articular force and stress on their shoulders, which can result in GH laxity
and instability [45–47]. This mechanism results in some asymptomatic athletes displaying
asymmetrical shoulder laxity that may eventually develop instability-related symptoms
(e.g., pain) [48–50]. Excessive laxity, mostly due to repetitive microtrauma or functional
deterioration, can cause functional limitations and force many of these athletes to sit out
of games [51]. Notwithstanding, the included studies reported no statistically significant
differences between throwing and non-throwing arms and differences were small and
probably clinically irrelevant [24,28–30]. There was a wide variation in stiffness values
among the different studies, without clinically relevant differences between throwing and
non-throwing arms or between anterior and posterior stiffness. These findings do not
support the evidence that the throwing arms of athletes commonly develop a thickened
and fibrotic posterior capsule [52–55]. However, some caution is required when interpreting
the stiffness outcomes (especially if comparing them to cadaveric studies) because all of
the included studies calculated stiffness by means of determining the slope of the linear
section of the force–displacement curve within the elastic region, which could potentially
lead to an overestimation of these values.

The anterior and posterior mean GH laxity values were not different between injured
and non-injured shoulders when measured solely by the Telos device. This finding is
interesting because it was expected that injured shoulders would present higher sagittal
GH laxity due to the nature of the injury (anterior dislocation or multidirectional instability),
which is associated with higher grades of GH laxity [56]. However, when the GH laxity was
compared in the same study using exactly the same testing conditions, the anterior laxity
(and not posterior) was significantly superior in shoulders with instability [37]. The same
findings were not seen when comparing shoulders with a history of shoulder pain (due to
tendinitis, thoracic outlet syndrome, or labral tear) to healthy asymptomatic shoulders, but
these injury conditions are not prone to cause either shoulder instability or GH laxity [26].

4.3. Recommendations for Clinical Practice and Future Directions

Assessing GH laxity with manual testing is simple, accessible, and practical. However,
the clinician should be aware of the poor reproducibility, insufficient reliability, and limited
precision of these manual tests, which do not allow to accurately measure laxity, but solely
provide a subjective assessment of joint laxity. The use of arthrometers to objectively
quantify GH laxity is important in order to overcome the abovementioned limitations of
manual laxity tests [57,58].

Although arthrometers are widely used to evaluate the laxity of knee and ankle
joints [59–61], there are still a limited number of studies and available arthrometers to
measure GH laxity. The process of developing a shoulder arthrometer device is challenging
due to the complex interactions between the GH and other shoulder joints, the difficulty
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in measuring changes in translation due to soft tissue compliance, and the individual’s
inability to relax [16]. Most arthrometers rely on sensors to estimate the GH laxity, but
this method is less precise because it is not able to measure true intra-articular bone
displacement. When available, clinicians should prioritize those arthrometers that allow to
confirm bone displacement with imaging control.

Although heterogeneity was found in the testing characteristics, there are still clinically
relevant findings that can be summarized. When comparing GH laxity values to those
reported in the literature, researchers and clinicians must be aware that GH laxity varies
considerably across arthrometers and should thus compare their results to those that are
specific to the arthrometer being used. Shoulder position (especially related to rotation)
can affect the GH laxity values and clinicians should be aware of the potential differencing
factor. The shoulder may be evaluated in both positions (neutral and external rotation) or
the position that best applies to the population being assessed (for example, in external
rotation for overhead athletes). The devices also offer an array of different possible loads,
but it appears that loads of around 100–150 N are the most common for sagittal translation.
For stiffness measurements, a progressive and controlled increment of loading is required
to compute the force–displacement curves.

Future research should aim to standardize arthrometer devices and the methods for
measuring GH laxity. Until then, there is no reliable comparison of GH laxity values across
studies, and thus no definitive conclusions can be made in regard to normal physiological
laxity and pathological laxity. A standardized device and methods of measurement are in
great need. These would allow to calculate cut-off values to assist the medical community
in deciding on the most effective treatment for each condition. Devices that allow con-
comitant imaging control should also be prioritized in order to allow bone displacement
measurements. Arthrometers that can be used concomitantly with magnetic resonance
imaging are already being used for other joints [62–68] and they allow to correlate the
structural integrity of anatomical structures (most notably the ligaments) with the joint’s
functional competence (laxity). Future directions may focus on the development of a similar
device that can be applied to the shoulder joint in a similar fashion.

4.4. Limitations

This systematic review has several limitations that should be considered when inter-
preting the results. The studies included in this systematic review exhibited variability in
the devices and methods used to objectively measure GH laxity, and only one study [19]
used an electromechanical device to apply the force during the test. Other devices applied
the load with a hand-assisted mechanism, which may have resulted in less reproducible
loads being applied to the joint. The differences between the various devices resulted in
inconsistent GH laxity outcomes when comparing healthy individuals or athletes with
asymptomatic shoulders to individuals with injured shoulders. The variability found
in laxity and stiffness values did not allow to estimate reliable cut-offs to differentiate
physiological and pathologic GH laxity. Moreover, the absence of validity and reliability
data for arthrometers in some studies [21,24,26,30,33–36] makes it uncertain if these devices
provide consistent and accurate measurements.

5. Conclusions

There is a wide heterogeneity of GH laxity outcomes across the literature, which
may be explained by the different arthrometer devices used. This limitation hampers the
generalizability of our findings and a reliable estimation of physiologic and pathologic
GH laxity. Most arthrometers use sensors to measure joint displacement, but these are
prone to less accurate and imprecise laxity measurements. The use of concomitant imaging
control should be considered the “gold standard” method to calculate bone displacement
and measure the GH laxity. Future research should focus on standardization of the use
of shoulder arthrometers and their methods to strive for a valid comparison of results



Bioengineering 2023, 10, 799 13 of 16

across the literature and to allow to determine reliable cut-offs that can be used to assist
clinical decisions.
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