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Simple Summary: In this study, we perform a sensitivity analysis in similarity-based predictive
models using computational simulations and two distinct methodologies, while focusing on a
biological application. We utilize a linear regression model as a reference point. We gauge sensitivity
by calculating the coefficient of variation of the parameter estimators from three different models.
Our findings show that the first approach outperforms the second one when dealing with categorical
variables. Moreover, this first approach offers the advantage of being more parsimonious due to a
smaller number of parameters.

Abstract: Predictive models based on empirical similarity are instrumental in biology and data science,
where the premise is to measure the likeness of one observation with others in the same dataset.
Biological datasets often encompass data that can be categorized. When using empirical similarity-
based predictive models, two strategies for handling categorical covariates exist. The first strategy
retains categorical covariates in their original form, applying distance measures and allocating
weights to each covariate. In contrast, the second strategy creates binary variables, representing each
variable level independently, and computes similarity measures solely through the Euclidean distance.
This study performs a sensitivity analysis of these two strategies using computational simulations,
and applies the results to a biological context. We use a linear regression model as a reference
point, and consider two methods for estimating the model parameters, alongside exponential and
fractional inverse similarity functions. The sensitivity is evaluated by determining the coefficient of
variation of the parameter estimators across the three models as a measure of relative variability. Our
results suggest that the first strategy excels over the second one in effectively dealing with categorical
variables, and offers greater parsimony due to the use of fewer parameters.

Keywords: biological data; coefficient of variation; data science; distance measures; estimation
methods; Monte Carlo simulation; predictive modeling; similarity functions

1. Introduction

The empirical similarity prediction method does not assume a specific functional form
relating the response variable to the covariates. Instead, it estimates the response variable
value based on a weighted average of past response variable values, where the weights
depend on the similarity of the covariate values. To apply empirical similarity in practice,
a similarity measure and an estimation method are necessary.
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Similarity measures are functions of distance that decrease as the distance decreases.
They equal one when the distance is zero and converge to zero as the distance approaches
infinity. The literature commonly considers two similarity measures: exponential inverse
(EX) and fractional inverse (FR). These measures incorporate weighted distances, where the
weights represent the relative importance of each covariate or level of a categorical variable.
Estimating these weights from the data requires two methods: ordinary least squares (OLS)
and maximum likelihood (ML).

The concept of empirical similarity has been axiomatized as a means to replicate human
reasoning or natural behavior [1,2]. In [3], the identification, consistency, and distribution
problems of the ML estimator for similarity models’ parameters were analyzed.

Categorical data, which includes multi-attribute records, are a crucial type of biological
observations as they involve separable data and qualitative characteristics. Categorical data
classify samples into mutually exclusive categories, often by counting the number of objects
that fall into each qualitative class [4–6]. When dealing with categorical covariates, the
empirical similarity literature within biological data describes two predictive approaches.
The first approach, denoted as M1 and proposed in [7], maintains the categorical variables
in their original formats. It assigns equal importance (weight) to all levels of the variable.
The second approach, denoted as M2 and proposed in [8], encodes the categorical variables
into binary variables, treating each category as a separate variable. In this case, different
weights (influences) can be associated with each category of the same variable.

In predictive models, linear regression is a well-known and often used method. How-
ever, when dealing with categorical covariates, its utility can sometimes be limited. While
linear regression provides a simple and interpretable model, it may not always capture the
complexities of categorical covariates effectively. Therefore, alternative methods, such as
empirical similarity models, may provide more nuanced and accurate predictions when
dealing with such data types. Still, in our study, linear regression is utilized as a benchmark
to provide a familiar frame of reference to readers and to aid comparison.

To the best of our knowledge, no previous studies have examined the sensitivity
analysis of a specific class of similarity models concerning the accuracy of predicted values
and the sensitivity of parameter estimators for the M1 and M2 methods. The choice of
similarity and distance measures has been subjective in previous research. Thus, this study
seeks to fill such a gap by performing a sensitivity analysis. Our study provides value
by identifying which method yields the most robust predictions and parameter estimates
under different scenarios.

Our main objective is to select similarity and distance measures that yield lower
prediction errors and parameter estimators with reduced variability. The sensitivity of
these models to environmental variations is simulated by splitting the data into training
and test sets and calculating the coefficient of variation (CV) over multiple repetitions.
The CV is a dimensionless and standardized measure of dispersion relative to the average
of a dataset [9,10]. Given the different scales of the weights in the models, the CV is a
suitable measure in our context.

To demonstrate the practical utility of our analysis, we employ a dataset on tooth
length growth in Guinea pigs [11]. This dataset, involving different dosage levels and
delivery methods of vitamin C, illustrates the models’ potential applications in biological
research. The structure of the article is as follows: Section 2 provides a theoretical overview
of empirical similarity and linear regression models. Section 3 describes the tooth length
growth dataset used for simulating the sensitivity analysis. The methodology employed
in the simulation study is detailed in Section 4. The results of the sensitivity analysis are
presented in Section 5. In Section 6, our conclusion states a comparative analysis of M1, M2,
and linear regression models, illustrating their competitive performances as gauged by the
CV. We highlight the M1 method for its exceptional parsimony. The insights drawn from our
research have potential to inform and guide researchers in selecting appropriate similarity
and distance measures. Such informed selections can subsequently ensure predictions with
enhanced accuracy and robustness in their parameter estimates.
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2. Theoretical Background

In this study, we first introduce the linear regression model [12], as it serves like a
benchmark for our detailed exploration of the performance of different predictive models
under various scenarios. Consider a sample of size n with for the response variable, denoted
as Y1, . . . , Yn, which can be formulated as:

Yi = x>i w + εi, i ∈ {1, . . . , n}, (1)

where x>i = (x1i, . . . , xmi) represents a 1×m vector of observed covariates, w = (w1, . . . , wm)>

is an m× 1 vector of weights for the regression model (fixed effects), and εi denotes the
model random error, with εi ∼ N(0, σ2). It is assumed that (ε1, . . . , εn)> are independent
and identically distributed.

Let X be an n×m matrix with rank m, where each row represents x>i (note that X is
the known incidence matrix relating observations to fixed effects). Hence, Yi ∼ N(x>i w, σ2),
and the formulation stated in (1) represents a linear regression model [12,13].

The OLS estimator of w, which coincides with the ML estimator in this case, is given
by:

ŵ = (X>X)−1X>Y , (2)

where Y = (Y1, . . . , Yn)>. To predict a new observation yt with features x>t = (x1t, . . . , xmt),
based on the model described in (1) and the estimate derived in (2), we use:

ŷt = ŷ(xt) = x>t (X>X)−1X>Y . (3)

It is important to note that, assuming normality of errors, the variance of ŷt in (3) can
be calculated as:

σ2x>t (X>X)−1xt.

Now, we delve into the similarity model, considering the observations (x1i, . . . , xmi, yi),
where yi represents the value of the random variable Yi for i ∈ {1, . . . , n}. We have a new
vector of covariate values xn+1 = (x1(n+1), . . . , xm(n+1)), and want to predict the future
value of Yn+1 as a weighted mean of the past values yi. The weights depend on the
similarity between the past features xi and the present value xn+1 [1]. The similarity is
measured by a function s: Rm ×Rm → R+. We provide a detailed explanation on how
variations in the similarity function and other parameters impact the model’s performance.

Based on this concept, we give insights into the similarity model proposed in [8] and
specify it as:

Yt =
∑i 6=t s(xi, xt)yi

∑i 6=t s(xi, xt)
+ εt, 1 < t ≤ n, (4)

where the error term εi represents a non-observable variable that accounts for the inherent
uncertainty of the phenomenon under study, and s(xi, xt) is a similarity measure between
xi and xt. Notably, the error term, for 1 < t ≤ n, is uniquely defined as ε1 =

√
n(Yn − α),

where Yn = (1/n)∑n
i=1 Yi, and α = E(Yt). This special error term, ε1 namely, is used

to incorporate the inherent variability in the data that is not captured by the similarity
measure s(xi, xt). Such additional variability, as mentioned, might be due to the inherent
uncertainty of the studied phenomenon or possible measurement errors. Moreover, ε1 acts
as a form of regularization, helping to avoid overfitting to the similarity model. This is
particularly important for complex and high-dimensional models, where overfitting can be
a relevant issue. Therefore, the specific need for ε1, with 1 < t ≤ n, arises to capture the
additional variability in the data not addressed by the similarity measure and to provide
regularization, avoiding overfitting.

In [8], parametric estimation of the similarity function, s say, was conducted. The esti-
mation is considered parametric because εi is assumed to follow a well-defined distribution
with unknown parameters. The assumption is that the similarity function s is the same
for all subjects generating Yt with t ≤ n. Two estimation methods are considered: OLS
and ML.
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Particularly, in [8], the study was focused on similarity functions that depend on a
weighted Euclidean distance (WED). The square of the WED between two vectors x =
(x1, . . . , xm) ∈ Rm and x′ = (x′1, . . . , x′m) ∈ Rm is defined as:

dw(x, x′) = ∑
j≤m

wj(xj − x′j)
2, (5)

where w = (w1, . . . , wm) ∈ Rm
+, as mentioned, represents a weight vector.

The function defined in (5) allows for different variables to have distinct influences
on the distance measure, permitting adjustments for covariates with different scales.
The weights in this function do not need to add up to one, providing flexibility in the
modeling process. In the present study, we recall two specific similarity functions, denoted
as EX and FR, are considered. These functions are defined as:

sEX
w = e−dw , sFR

w =
1

1 + dw
, (6)

where sEX
w represents the exponential similarity function, and sFR

w represents the fractional
similarity function. These functions are derived from the WED, dw namely.

By incorporating these similarity functions into the model specified in (4), we obtain
the parametric version of the empirical similarity model, which was estimated in [8] using
the ML method. The ML estimation procedure is described in more detail in [7,8].

Utilizing the estimated values ŵ obtained from the expression defined in (2) and
the expressions given in (4), we can calculate the predicted value for a new observation
xt using:

Ŷt =
∑i 6=t ŝ(xi, xt)yi

∑i 6=t ŝ(xi, xt)
, (7)

where ŝ represents the similarity function evaluated at ŵ.
In the case of handling categorical covariates, the distance measure defined in (5) is

not suitable, particularly when there is no ordinal categories available. In such cases, a cod-
ification approach was proposed in [8], which involves transforming categorical variables
into binary variables. This approach, referred to as M2, utilizes the WED stated in (5) to
measure similarity. However, the method proposed in [8] has certain drawbacks. First, it
may lead to a large number of parameters if a categorical variable has a high number of
levels. Second, since different levels of the same categorical variable are treated as inde-
pendent variables, they might be associated with significantly different weights, making
the interpretation of the model more challenging. To address these issues, an alternative
approach called M1 was introduced in [7] to handle categorical variables.

In the M1 approach, categorical variables are kept in their original format, and a
weighted binary distance (WBD) is employed to measure similarity between vectors
x = (x1, . . . , xm) ∈ Rm and x′ = (x′1, . . . , x′m) ∈ Rm. The WBD is defined as:

dw(x, x′) = ∑
l≤m

wl1l(xl , x′l), (8)

where 1l(xl , x′l) is an indicator function given by:

1l(xl , x′l) =

{
0, if xl = x′l ,
1, if xl 6= x′l .

Thus, the WBD stated in (8) sums the weights associated with covariates that have
different observed values. Consequently, the predicted value for the response variable
related to a given set of features is obtained as the weighted mean of the other observed
values of this variable, where observations with more features in common in relation to the
given set have a higher weight.
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Here, we explore the use of the weighted Minkowski distance (WMD) to handle
dichotomous covariates, considering ordinal categories. The WMD of order γ between two
vectors x = (x1, . . . , xm) ∈ Rm and x′ = (x′1, . . . , x′m) ∈ Rm is defined as:

dWMD
w (x, x′) =

( m

∑
l=1

wl
∣∣xl − x′l

∣∣γ)1/γ
. (9)

Since the WMD stated in (9) introduces an additional parameter γ, we also introduce
another parameter δ in the WBD and WED to provide more flexibility in explaining the
observed data. The WBD and the WED are then stated as:

dWBD
w,δ (x, x′) =

(
∑

l≤m
wl Il(xl − x′l)

)δ
, dWED

w,δ (x, x′) =
(

∑
l≤m

wl(xl − x′l)
2
)δ

. (10)

Note that, as δ increases, the distances defined in (10) also increase. However, for δ = 1,
we obtain the standard distance measures, dWBD

w,1 = dWBD
w . The approach that handles

categorical covariates without codification is M1. It is important to emphasize that for M2,
where all covariates are binary, the Minkowski, binary, and Euclidean distances coincide.

3. Biological Application

The biological dataset used in this study investigates the effect of vitamin C on the
tooth growth of Guinea pigs. Scientifically known as Cavia porcellus, Guinea pigs are
rodents belonging to the Caviidae family and the Cavia genus [14]. The dataset consists
of 60 observations, where the response variable (Y) is the length of the Guinea pig tooth
measured in micrometers (µm), and the covariates are as follows:

• Vitamin C dose (X1): This covariate is measured in milligrams (mg) and has three
levels: 0.5 mg, 1.0 mg, and 2.0 mg. The vitamin C dose variable is ordinal.

• Food supplemental type (X2): This covariate has two categories: ascorbic acid (VC) and
orange juice (OJ). These categories are represented as 0 and 1, respectively. The food
supplemental type variable is also ordinal.

To conduct an exploratory data analysis, violin plots are created to visualize the tooth
length distribution based on the vitamin C dose and food supplemental type. Figure 1
shows the violin plots, where each plot represents the distribution of tooth length for a
specific combination of the two covariates. The plots reveal that the vitamin C dose has
an impact on tooth growth, showing a similar trend in both food supplemental types.
However, there are differences in the central tendency and variability measures between
the two types. A violin plot combines the features of a box plot and a kernel density plot,
providing information about the data distribution and density peaks.

Figure 1. Violin plots of tooth length (in µm) for listed vitamin C dose (in mg) and food supplement.
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4. Setup to Evaluate Sensitivity

In the Monte Carlo simulation, a sensitivity analysis was conducted to assess the
variability of the parameter estimators and the predicted values of the response variable.
The simulation consisted of 30 iterations, where each iteration involved a randomly gener-
ated training dataset comprising 70% of the total data, and a test dataset comprising the
remaining 30%.

For each training dataset, numerical computations were performed to obtain parameter
estimates using the empirical similarity methods. To initiate the estimation process, five
initial parameter values were considered. The specific values of these initial parameters
are not provided in the given text and should be defined based on the methodology and
requirements of the empirical similarity methods used in the study as:

• For each fixed value of vitamin C dose (0.5, 1.0 and 2.0), the mean of the response
variable is calculated. Let us denote these means by y11, y12 and y13, respectively.

• For each fixed value of the supplemental type (VC and OJ), the mean of the response
variable is also computed and denoted by y21 and y22, respectively.

• The five initial parameter values (w0
1, w0

2) for M1 are: (y11, y21), (y11, y22), (y12, y21),
(y12, y22), and (y13, y21).

• The five initial parameter values (w0
1, w0

2, w0
3, w0

4) for M2 are: (y11, y11, y11, y21), (y11, y11,
y11, y22), (y12, y12, y12, y21), (y12, y12, y12, y22), and (y13, y13, y13, y21).

For each of the initial parameter values, the model is estimated for the training data and
the mean square error (MSE) for the prediction in the test data is calculated. The predicted
response value and the estimated weights for the case with a minimal MSE are chosen.

We investigated the variability by modifying the following aspects:

• Models: M1 [7], M2 [8], and the linear regression [12].
• Estimation methods: ML and OLS.
• Similarity functions: EX and FR.
• Distance measures: WBD, WED, and WMD for M1; and WED for M2. We test the

values {1/4, 1/2, 1, 2, 4} for the parameter γ of the WMD, and the values {1, 2, 4} for
the parameter δ in the modified WBD and WED. Values of δ less than one are also
tested, but they do not provide convergence in the estimation algorithm.

To quantify the variability of the parameter estimators and the predicted response
variable, the empirical CV and MSE are calculated based on the 30 iterations of the Monte
Carlo simulation.

For M1:

• The parameter estimators correspond to w1 (intercept) and w2 (associated with an
increase in dose of 1.0 mg).

• The empirical CV of the parameter estimators can be calculated as the ratio of the
sample standard deviation to the sample mean of the parameter estimates w1 and w2
across the 30 iterations.

• The MSE of the predicted response variable may be computed as the average squared
difference between the predicted response variable values and the true values across
the 30 iterations.

For M2:

• The parameter estimators correspond to w1 (intercept), w2 (associated with dose of
0.5 mg), w3 (associated with dose of 1.0 mg), and w4 (associated with dose of 2.0 mg
and supplemental type).

• The empirical CV of the parameter estimators can be obtained as the ratio of the
sample standard deviation to the sample mean of the parameter estimates w1, w2, w3,
and w4 across the 30 iterations.

• The MSE of the predicted response variable can be determined as the average squared
difference between the predicted response variable values and the true values across
the 30 iterations.
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5. Simulation Results

The simulations were carried out on a computer equipped with an Intel© Core™,
i7-5500UK CPU 4 gigahertz, 16 gigabyte RAM, System Type 64 bit operating system Linux,
using the R language, a software environment for statistical computing and graphics, in its
version 3.5.2 [15]. Codes are available upon request from the authors.

Based on our simulation results, it is clear that the empirical similarity models (M1
and M2) and the linear regression model show comparable performance in terms of the
mean MSE of the predicted values for the length of the Guinea pig tooth, a testament to the
robustness of our analysis.

While we recognize that an increased sample size might result in a broader distribution
of the results, the consistent findings among different models under our current conditions
attest to the reliability of our work. Furthermore, our chosen sample size reflects a practical
balance between computational complexity and statistical validity, a key consideration in
all real-world application.

The mean MSE and standard deviation of the linear regression model, being compa-
rable to those of M1 and M2, serve as a strong benchmark in our analysis. Furthermore,
from Figure 2, we find no significant statistical difference among the MSE of the response
variable predictions for all tested models, in addition to corroborating the robustness of our
chosen models. Such robustness underlines the adaptability of these models to different
scenarios and conditions. It serves as a valuable insight for making informed decisions on
model selection, considering factors such as model complexity, interpretability, and spe-
cific objectives of the analysis. Notably, M1 stands out as the most parsimonious model,
requiring only two parameters. This parsimony enhances its applicability, particularly
when dealing with a large number of categorical covariates or when these covariates have
numerous levels.

In summary, the empirical similarity models (M1 and M2) and the linear regression
model demonstrate competitive performance in terms of the variability of the predicted
values for the length of the Guinea pig tooth. These insights from the simulation and data
analysis can guide the anticipation of the models’ performance under different conditions
and make adjustments to the research design accordingly. Our findings contribute to
the current literature on empirical similarity prediction models, and we consider further
research with larger Monte Carlo simulations and other comparison strategies in the future.

Figures 3 and 4 display the CVs of the parameter estimators for model M1 when the
WBD and WED are considered, respectively. The plots illustrate the impact of different
similarity measures and estimation methods on the variability of the parameter estimators.
The results highlight the influence of the exponential inverse similarity and the choice of
the ML method, particularly when δ = 4, in reducing the CVs for the parameter estimates.

Figures 3 and 4 provides valuable insights, summarized as follows:

• The OLS method, when used with the fractional inverse similarity, exhibits high
variability in the estimates for the parameter w1.

• Increasing the value of the parameter δ results in parameter estimates with lower
variability.

• The exponential inverse similarity generally produces parameter estimates with less
variability compared to the fractional inverse similarity.

• The ML method generally provides estimates with lower variability for the parameter
w1 compared to the OLS method.

• The minimum CVs obtained for ŵ1 and ŵ2 are 0.01 and 0.05, respectively, when the
ML method is utilized with the exponential inverse similarity and δ = 4.

By combining these insights, we gain a comprehensive understanding of the variability
in the parameter estimators for model M1 with different similarity measures and distances.
Figure 5 illustrates the CVs of the parameter estimators for model M1 when the WMD
is employed.
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(a)

(b)

(c)

(d)

Figure 2. Plots of average MSE of the indicated response prediction and parameter (with error bars)
for: (a) model M1 and binary distance; (b) Model M1 and Euclidean distance; (c) Model M1 and
Minkowski distance; and (d) model M2 and Euclidean distance.
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Figure 3. CVs of parameter estimators for model M1 with WBD.

Figure 4. CVs of parameter estimators for model M1 with WED.

Figure 5. CVs of the parameter estimators for model M1with WMD.
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The following observations can be made from Figure 5:

• The OLS method, in conjunction with the FR similarity, yields parameter estimates
with notably high variability.

• With the exception of the parameter ŵ1 estimated using the OLS method and FR
similarity, the variability of parameter estimates generally increases with higher values
of γ.

• The EX similarity measure, except for the case of ŵ1 estimated using the OLS method
and γ = 4, results in parameter estimates with less variability than the FR similarity.

• In all other cases, parameter estimates obtained using the ML method exhibit less
variability compared to the corresponding estimates from the OLS method.

• The combination of the ML method with the EX similarity and γ = 1/4 yields the
lowest variability, as evidenced by the sum of the CVs of ŵ1 and ŵ2, which are 0.03 and
0.07, respectively.

Figure 5 provides valuable insights into the variability of parameter estimators for
model M1 with different similarity measures and the Minkowski distance. It is evident
that the choice of similarity measure and estimation method can significantly impact the
variability of the parameter estimators. Furthermore, the ML method, particularly when
used with the EX similarity and appropriate parameter values, demonstrates superior
performance in terms of reduced variability.

By considering the results from both models, we can compare the variability of the
parameter estimates for M1 and M2 with the regression model. Model M2, which has the
same number of parameters as the regression model, allows for a more straightforward
visual comparison. In terms of the EX similarity, except for the case where δ = 4, where
the estimate of the weight w2 has high variability, the estimates for model M2 exhibit
competitive variability with the regression model in other cases. Figures 6 and 7 present a
visualization of the CVs of the parameter estimates for model M2 and the regression model
using the ML method, respectively. The figures highlight the variability of the estimates and
show the competitive performance of model M2, with the EX similarity yielding consistent
results except for the case where δ = 4.

From Figures 6 and 7, the following observations can be stated:

• The OLS method, when used with the FR similarity, yields parameter estimates for w1,
w2, and w3 with high variability. Additionally, when the EX similarity is employed,
the estimates for w2 exhibit increased variability.

• Estimates of parameter w2 are consistently zero when the ML method is utilized with
δ = 1 and δ = 2, indicating that the variable dose of 1.0 mg has no influence on the
response variable estimation.

• Among the tested scenarios, using δ = 4 results in estimates with the least variability
in 13 out of 16 cases.

• The EX similarity measure consistently provides parameter estimates with variability
at least as low as, if not lower than, those obtained with the FR similarity in 20 out of
24 cases.

• When considering the sum of the CVs of ŵ1, ŵ2, ŵ3, and ŵ4, the combination of the
ML method with the EX similarity and δ = 2 yields the lowest variability. In this case,
the CVs of ŵ1, ŵ2, ŵ3, and ŵ4 are 0.07, 0.00, 0.08, and 0.11, respectively.

When comparing the M1, M2, and regression models, M2 stands out as the most
suitable for visual comparison due to its equal number of parameters. Based on minimal
CV, we selected model M2 due to its best fit. Figures 6 and 7 also compare the regression
and M2 models using the ML method, consistently showing superior results for model M2.
While the estimate of weight w2 exhibits higher variability when δ = 4 in the EX similarity
case, the variability of the estimates for model M2 remains competitive with that of the
regression model in the other cases.
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Figure 6. CVs of the parameter estimators for model M2.

Figure 7. CVs of the parameter estimators for the regression model using the ML method.

6. Conclusions

This study aimed to evaluate the performance of empirical similarity models in a
biological application, specifically in the context of predicting the length of Guinea pig
teeth. Two empirical similarity models, M1 and M2, were compared against a linear
regression model, serving as a benchmark. On the one hand, M1 preserved the original
format of categorical covariates and utilized general distance measures with a single
weight assigned to each covariate. On the other hand, M2 constructed binary variables
for each level of the categorical covariates and employed similarity measures based solely
on the Euclidean distance. For both M1 and M2, parameter estimation was conducted
using ordinary least squares and maximum likelihood methods. It was observed that
the maximum likelihood method consistently provided parameter estimates with low
variability across both models, emphasizing the robustness of our approach.

In terms of the mean square error of the predicted response values, all models demon-
strated competitive performance. Interestingly, M1 emerged as the most parsimonious
model with only two parameters. The mean square error of the predicted values for the
empirical similarity models did not exhibit dependency on the estimation method, similar-
ity function, or distance measure. Different similarity functions were also explored for both
models, including the exponential inverse and fractional inverse similarity functions.
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The results indicated that the exponential inverse similarity function yielded less vari-
ability in most scenarios. For M1, three different distance functions were tested: weighted
binary, Euclidean, and Minkowski distances. In the case of the binary and Euclidean
distances, introducing an exponential parameter (δ ∈ {1, 2, 4}) reduced variability. For the
Minkowski distance, smaller values of the parameter γ resulted in better performance.
However, it is important to note that values of δ greater than four or values of γ less than
1/4 may lead to convergence issues in the estimation algorithms. In our analysis, when we
employed the maximum likelihood estimation and the exponential inverse similarity func-
tion, we observed that the coefficients of variation for the parameter estimates were similar
across the M1, M2, and linear regression models. This suggests that such models are com-
parable in terms of sensitivity. Nonetheless, M1 stands out due to its simplicity, requiring
only two parameters. This simplicity can be particularly advantageous when dealing with
a large number of categorical covariates or when these covariates have numerous levels.

To address potential overfitting in the M2 model, regularization techniques could
be introduced [16]. However, to ensure a fair comparison between the models, we did
not introduce this penalty in the empirical similarity framework in the current study.
Nevertheless, we recognize the value of incorporating regularization methods in future
investigations to explore their impact on the performance and generalization ability of the
empirical similarity models.

It is important to acknowledge that the performance of these models can be influenced
by several factors that warrant further investigation. Among these factors are the total
sample size, the distribution of samples across different covariate categories, and the
number of simulations performed. Although our findings contribute significantly to the
existing literature on empirical similarity prediction models and methods, we deem it
crucial to conduct expanded research to explore and understand the potential impact of
these factors. Furthermore, the utility of simulation and data analysis is evident in our study.
They serve as strategic tools, providing a clear understanding of how the models perform
under different scenarios. Such insights permit informed adjustments to the models,
thereby enhancing their functionality. The comprehensive analysis of model performance,
encompassing different scenarios, similarity functions, and distance measures, facilitates
effective decisions regarding model selection, taking into account specific objectives of the
analysis, complexity, and interpretability.

In sum, our work contributes significantly to the burgeoning field of empirical similar-
ity prediction models and methods. Our findings, which provide robust models capable of
handling a variety of scenarios, serve as a foundation for future research, particularly for
further exploration of the impact of sample size, number of simulations, and distribution
of covariates on the performance of these models, as mentioned.
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