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Abstract: Fire is one of the natural agents with the greatest impact on the terrestrial ecosystem and
plays an important ecological role in a large part of the terrestrial surface. Remote sensing is an
important technique applied in mapping and monitoring changes in forest landscapes affected by fires.
This study presents a spectral separability analysis for the detection of burned areas using Landsat-8
OLI/TIRS images in the context of fires that occurred in different biomes of Brazil (dry ecosystem)
and Portugal (temperate forest). The research is based on a fusion of spectral indices and automatic
classification algorithms scientifically proven to be effective with as little human interaction as possible.
The separability index (M) and the Reed–Xiaoli automatic anomaly detection classifier (RXD) allowed
the evaluation of the spectral separability and the thematic accuracy of the burned areas for the different
spectral indices tested (Burn Area Index (BAI), Normalized Burn Ratio (NBR), Mid-Infrared Burn Index
(MIRBI), Normalized Burn Ratio 2 (NBR2), Normalized Burned Index (NBI), and Normalized Burn
Ratio Thermal (NBRT)). The analysis parameters were based on spatial dispersion with validation
data, commission error (CE), omission error (OE), and the Sørensen–Dice coefficient (DC). The results
indicated that the indices based exclusively on the SWIR1 and SWIR2 bands showed a high degree
of separability and were more suitable for detecting burned areas, although it was observed that the
characteristics of the soil affected the performance of the indices. The classification method based
on bitemporal anomalous changes using the RXD anomaly proved to be effective in increasing the
burned area in terms of temporal alteration and performing unsupervised detection without relying
on the ground truth. On the other hand, the main limitations of RXD were observed in non-abrupt
changes, which is very common in fires with low spectral signal, especially in the context of using
Landsat-8 images with a 16-day revisit period. The results obtained in this work were able to provide
critical information for fire mapping algorithms and for an accurate post-fire spatial estimation in dry
ecosystems and temperate forests. The study presents a new comparative approach to classify burned
areas in dry ecosystems and temperate forests with the least possible human interference, thus helping
investigations when there is little available data on fires in addition to favoring a reduction in fieldwork
and gross errors in the classification of burned areas.
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1. Introduction

Forests are affected by a large range of disturbances, many of which are caused by
climate change and human activity [1]. Fires can have a wide range of impacts, including
reduced soil fertility, altered water supplies, increased biodiversity loss, and a negative
impact on carbon sequestration [2]. A better understanding of fire regimes and forest
regeneration processes under a variety of environmental and climatic factors supports
sustainable forest management and the development of forest resilience [3]. A wide range
of static and dynamic factors, comprising land cover (vegetation), weather variables, and
human activities, influence the burned area [4,5]. Accurate and updated knowledge of
fire-affected areas is critical for a better understanding of the aspects that affect their
activities, as well as their implications for biogeochemical cycles, climate, and air quality,
and also for fire management [6]. Forest fire severity assessment is useful for identifying
the development and change in various ecological processes as well as the mechanisms
responsible for forest vegetation succession after forest fires [3,7,8]. Quantitative evaluation
can also be used to estimate the loss in biomass resulting from a forest fire and can provide
a reference for the study of vegetation recovery and the global carbon balance [9].

In the last decades, the use of remote sensing has allowed unprecedented advances in
mapping fire dynamics, mainly to locate the occurrence of fire in time and space, and to
quantify the total extent of the burned area [10]. To manage the phases of the dynamics of a
fire and, therefore, to determine the level of risk and understand the behavior of the fire and
its effects on the recovery of the vegetation, images from different remote sensing satellites
are used [11]. Since the mid-1980s, remote sensing has been used to address forest fire
prevention, management, and monitoring [3], in particular, for the assessment of pre-fire
conditions, active fire characteristics, and post-fire ecosystem responses [3,12]. For the first
two phases, many algorithms and strategies have been designed [3,11–13]. Contributory
challenges to mapping, monitoring, and quantifying forest degradation include the com-
plexity of the concept of degradation, limitations in the spatial and temporal resolution
of remote sensing sensors, and the inherent complexity of detecting degradation caused
by different disturbance processes and forest uses [14]. According to Kurbanov et al. [15]
several articles published in the literature present a comprehensive approach to studies
on remote sensing methods and data used to estimate the burned forest area, the severity
of the burning, the post-fire effects, and the patterns of forest recovery at global, regional,
and/or location level. Other articles focus on the geographic distribution, types of remote
sensing sensors, ecological zoning, tree species, spectral indices, and precision metrics used
in the studies. In addition to discussing key trends, Kurbanov et al. identify potential
opportunities for future research using the new generation of remote sensing systems,
cloud classification and execution techniques, and emerging process platforms for re-
gional and large-scale applications in the field of study [15]. For example, Chicas and
Nielsen [16] presented a review that provides information on the main research topics
in wildfire susceptibility modeling research, the main input factors used in models to
map wildfire susceptibility, the main researchers, the areas where this type of research
has been implemented, technology, and models used. Bot and Borges [17] presented a
review of recent applications of machine learning methods for forest fire management
decision support. The emphasis is on providing a summary of these applications with a
classification according to case study type, machine learning method, case study location,
and performance metrics [17]. Pinto et al. [18], for example, developed a deep learning
methodology based on daily sequences of multispectral images as a promising and flexible
technique that can be applied to observations with various spatial and spectral resolutions.
The results obtained are a strong indication of the advantage of deep learning approaches
for the problem of mapping and dating burned areas and provide several avenues for future
research [18]. Importantly, autonomous early detection of forest fires from unmanned aerial
vehicle (UAV)-based visual data using different deep learning algorithms has attracted
significant interest in recent years [19]. Bo et al. [20], for example, apply Salient Object
Detection (SOD) to Burned Area Segmentation (BAS), the first time this has been done,
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and propose an efficient Burned Area Segmentation Network (BASNet) to improve the
performance of UAV high-resolution image segmentation.

Multispectral analysis has been shown to be useful for detecting risk areas in large
forest fires [6,21,22], particularly Landsat data [23–25]. The increasing growth in the
availability of Landsat data opens up new possibilities for fire research that requires better
quality information regarding biomass burning, improving coarser spatial resolution data
sets of active fire from satellites [26]. Because of its broad spatial coverage and open
data policy, the efficiency of Landsat-8 OLI in recognizing burned scars has indeed been
thoroughly investigated [23,25]. Landsat-8/OLI active fire images, due to their great
quality, might become part of new earth observation systems providing improved spatial
and temporal surveillance of forest fires at large scales [26].

The mixture of complex images and very similar spectral signatures in multispectral
bands can result in many false-positive errors when detecting burned areas after forest fires
using multi-temporal data, which hinders the accurate delimitation of fired areas [27]. After
a fire, the spectral behavior of vegetation changes due to fuel consumption, the presence of
ash, reduced vegetation transpiration, and increased surface temperature [28].

In the last decades, several studies were carried out with the objective of mapping,
assessing, and estimating the burned area through comparisons between spectral indices
based on satellite data [21,29,30]. Many spectral indices have been designed to detect
burned areas following a fire and, in particular, to discriminate between various degrees of
burned surfaces [31]. Other indices were developed as a result of the investigation of new
spectral bands, including mainly the Burned Area Index (BAI) [32], Normalized Burn Ratio
(NBR) [33], Normalized Burned Index (NBI) [34], Mid-Infrared Burn Index (MIRBI) [35],
Normalized Burn Ratio 2 (NBR2) [33], and Normalized Burn Ratio Thermal (NBRT) [36].

Remote sensing data are used for mapping burned areas based on the changes caused
by the fire and, basically, involve the use of different spectral indices, digital image pro-
cessing, and machine learning techniques. Distinctly identified forest classes are needed to
assess classifiers and obtain thematic accuracy [37]. A spectral index that presents good
separability is one whose values between the burned areas and the different targets are
presented with great distinction [38]. According to these authors, equal values can confuse
automatic classifiers, causing mapping errors. Many authors have reported the feasibility of
spectral indices to show different degrees of fire severity. The ability of remote sensing spec-
tral indices to reflect different degrees of fire severity has been repeatedly demonstrated, for
example, in studies by Pereira et al., Santos et al., Teodoro et al. and Vlassova et al. [39–42],
among others.

New support for the classification of burned areas has been derived using decision tree
classification techniques, which integrate fire information with reflectance data [6,39,42].
Using supervised and unsupervised classification techniques, many algorithms have been
developed to map burned areas [43,44]. Among the techniques used for supervised or
unsupervised image classification, we can find the decision tree, which is commonly
used through pixel information or thresholds in spectral indices [9,27,44]. In particular, a
considerable advance has been made for contextual algorithms, which are used to refine
the classification results of burned areas [23,43].

Supervised classification methods are frequently used to map forest areas affected by
fire [45]. These methods are based on the selection of a training data set used to perform
the classification. This constraint is not necessary for unsupervised classification methods.
These methods are based on the analysis of the spectral values of the image pixels and
cluster them into groups based on their values [10,39,45,46]. Likewise, due to their ease of
use and data management, they offer a great advantage for end-users not specialized in
software or image processing, such as those dedicated to planning, disaster prevention, or
security work. Despite these advantages, unsupervised classification methods applied to
burned area classification are typically limited to ISO-DATA, K-means, and the Reed–Xiaoli
detector (RXD) anomaly [47,48].
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RXD, proposed by Reed and Yu, extracts distinct spectral signatures from the sur-
roundings of the burned area without the need for prior information. The separability
index is used to estimate the effectiveness of individual bands and spectral indices to dis-
criminate between burned and unburned land [49,50]. The separability index M proposed
by Kaufman and Remer [51] allows for analyzing the degree of discrimination between
vegetation and fire, for example. Burned areas can be considered anomalies since fires are
inconsistent spatial and temporal events [49].

This work aims to present a spectral separability analysis for the detection of burned
areas using Landsat-8 OLI/TIRS images, in the context of fires occurring in different biomes
of Brazil (dry ecosystem) and Portugal (temperate forest). The separability index (M) and
the Reed–Xiaoli automatic anomaly detection classifier (RXD) are used to evaluate the
spectral separability and the thematic accuracy of the burned areas for the different spectral
indices tested (Burn Area Index (BAI), Normalized Burn Ratio (NBR), Mid-Infrared Burn
Index (MIRBI), Normalized Burn Ratio 2 (NBR2), Normalized Burned Index (NBI), and
Normalized Burn Ratio Thermal (NBRT)).

2. Materials and Methods
2.1. Study Area

The study sites cover two forest fires that occurred in north-eastern Brazil and central
Portugal (Figure 1).

Figure 1. Location of study areas in Brazil and Portugal as well as pre- and post-fire images.

In Brazil, a fire on 30 September 2019 affected an area of 10.6 km2 located in the semi-
arid municipality of São José do Belmonte, centered at geographic coordinates 7◦59′4′′ S and
38◦52′58′′ W (WGS84) in the northern sector of the state of Pernambuco. The municipality
of São José do Belmonte is located in the domains of the hydrographic basin of the Pajeú
River. The characteristic vegetation of the mesoregion of the semi-arid state of Pernambuco,
specifically the municipality of São José do Belmonte, is the Caatinga biome. This set of
ecosystems occurs endemically in Brazil. The native plant species are specimens of the
hyperxerophilous Caatinga, of a drier character, with an abundance of cactaceous and
smaller plants, as well as stretches of deciduous forest. According to the Brazilian Ministry
of the Environment [52], the coverage area of this biome corresponds to about 10% of the
Brazilian territory. The Caatinga vegetation has as its main characteristic the adaptation
to periods of drought. The vegetative extract of the Caatinga is formed, especially, by
shrub and herbaceous species. It has a semi-arid climate, a very dry type with low air
humidity, as well as thermal amplitude, and is considered a dry ecosystem [52,53]. This
biome has a high level of degradation from human and natural activities, being extremely
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affected by fires caused predominantly by human activities. The partial or total removal of
vegetation in Caatinga areas results in a reduction in the production stock of plant biomass
and a reduction in soil cover in the semi-arid region, factors that lead to an increase in the
degradation of the biome [52].

The study area of Portugal is located at 39◦48′26′′ N and 8◦5′22′′ W (WGS84). A fire
on 20 June 2019 covered 93.4 km2 in the districts of Santarém and Castelo Branco (central
Portugal). In the central region of Portugal, maritime pine vegetation predominates. The
microclimate is characterized by long summers and very limited rainfall. High tempera-
tures reduce the moisture content of forest fuels, making the region prone to large fires,
especially if combined with strong winds [54]. Portugal is characterized by having a mild
Mediterranean climate with climatic variability, including droughts and desertification in
the south [55]. Nunes et al. [56] analyzed 506 fires occurring in Portugal in 1991, concluding
that the large fires (greater than 1500 ha) are produced mainly in posts of Pinus Pinaster,
Eucalyptus Globulus Labill, a mixture of eucalyptus/pine trees, and later by bushes. How-
ever, because these plants are seeders that respond to the fire by dispersing seeds quickly,
post-fire regrowth in central Portugal will be highly dependent on the destruction of seeds
existing on the surface of the ground during the fire [57].

2.2. Methodology Flowchart

Figure 2 presents the methodological data processing steps for the determination and
classification of the burned areas of the studied fires, which are described in the following
subsections.
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2.3. Data and Pre-Processing

The Landsat series stands out for its collection of images, which favors the multi-
temporal analysis of forest dynamics and post-fire effects [32,58].

Landsat-8 was launched by NASA in 2013 including onboard the Operational Land
Imager (OLI) and Thermal Infrared Sensor (TIRS) with a 16–day temporal resolution [59].
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According to USGS [59], the OLI sensor features a four-mirror telescope and a 12-bit
quantization. It can capture data for a variety of spectrums, including the VIS, NIR, and
SWIR bands, as well as a panchromatic band of 0.4–2.5 µm. TIRS, on the other hand, collects
images in the 10–12.5 µm spectrum in the thermal area. Landsat-8 OLI TIRS has a spatial
resolution of 30 m for each band, except TIRS and panchromatic bands. For panchromatic
bands, the resolution is 15 m. The TIRS sensor provides two bands: 10 (10.6–11.19 µm) and
11 (11.5–12.51 µm) with a resolution of 100 m [59].

Calibration studies of the TIRS bands of Landsat 8 mounting the band 10 TIRS showed
better performance than Band 11 TIRS [60]. They found an overestimation of approximately
1.37 K for band 10 while band 11 presented an underestimation of up to –3 K. The calibra-
tion parameters for TIRS satellite data are still unstable, especially for TIRS Band 11 [60].
According to this evidence, the TIRS 10 band was chosen for our study.

Two scenes from Landsat-8 OLI and TIRS sensors were used for each study area (before
and after the fire), being the orbit/point and dates of the images summarized in Table 1.
The selected bands were Band 2 Blue (0.450–0.51 µm); Band 3 Green (0.53–0.59 µm); Band 4
Red (0.64–0.67 µm); Band 5 Near-Infrared (0.85–0.88 µm); Band 6 SWIR 1 (1.57–1.65 µm);
Band 7 SWIR 2 (2.11–2.29 µm); and Band 10 TIRS 1 (10.6–11.19 µm) [59].

Table 1. Landsat-8 images over Brazil and Portugal used in this study.

Country Orbit/Point Image Date Time Interval in Relation to the Fire (Days)

Brazil (Fire on 30 September 2019) 216/66
13 April 2019 (before) 170 (before)

16 November 2019 (after) 47 (after)

Portugal (Fire on 20 June 2019) 203/33
7 April 2019 (before) 74 (before)
1 August 2019 (after) 42 (after)

The images were made available by the Earth Explorer site (https://earthexplorer.usgs.
gov/, accessed on 20 January 2023) with Level 2 processing, which consists of radiometrically
calibrated and georeferenced data within the prescribed tolerances: Collection 2 Level-2
Science Products (L2SP) [59]. L2SP includes products based on surface reflectance and surface
temperature scenes. Landsat scenes with the highest quality data available are placed at
Level 2 and are considered suitable for time series analysis. Level 2 includes Level 2 Precision
and Terrain Correction (L2TP) data that have well-characterized radiometry and are calibrated
between different Landsat instruments. Landsat Level-2 scientific products are generated
from the Collection 2 Level 1 input that meets the solar zenith angle <76 degrees constraint
and includes the auxiliary data inputs necessary to generate a scientifically viable product.
Landsat 8 Operational Land Imager (OLI) surface reflectance products are generated using
the Land Surface Reflectance Code (LaSRC) algorithm (version 1.5.0). This algorithm corrects
for the temporal, spatial, and spectral dispersion and absorption effects of atmospheric gases,
aerosols, and water vapor, necessary to reliably characterize the Earth’s land surface [59].
Landsat Level 2 surface reflectance requires an input of auxiliary atmospheric data from
external USGS data sources. The USGS retrieves data from the data source and extracts
specific parameters for Landsat Collection 2 Level 2 processing [59].

2.4. Spectral Indices

After pre-processing the Landsat-8 images, the spectral indices BAI, NBR, MIRBI,
NBR2, NBI, and NBRT were computed based on the reflectance values of the spectral bands
of the OLI and TIRS sensors, according to Table 2. The spectral characteristics of the objects
of interest directly affect the reflectance values and, consequently, the performance of the
spectral indices.

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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Table 2. Analyzed Spectral indices.

Index Identification Formula Reference

Burn Area Index BAI 1/
[
(0.1− R)2 + (0.06− NIR)2 + 7

]
Chuvieco et al. [43]

Normalized Burn Ratio NBR (NIR− SWIR2)/(NIR + SWIR2) Key and Benson [44]
Mid-Infrared Burn Index MIRBI (10·SWIR2)–(9.8·SWIR1) + 2 Trigg and Flasse [45]
Normalized Burn Ratio 2 NBR2 (SWIR1–SWIR2)/(SWIR1 + SWIR2) Key and Benson [44]

Normalized Burned Index NBI (SWIR2− BLUE)/(SWIR + BLUE) Alleaume et al. [46]
Normalized Burn Ratio Thermal NBRT (NIR− SWIR2·TIR)/(NIR + SWIR2·TIR) Holden et al. [33]

The BAI index, proposed by Chuvieco et al. [32], uses the reflectance values in the
red and NIR part of the spectrum to identify the areas of the land affected by the fire. It
emphasizes the coal signal in post-fire images.

The NBR index was initially developed for use with Landsat TM and ETM+ bands 4 and 7
but can be used with any multispectral sensor that has NIR bands between 0.76 and 0.9 µm
and SWIR between 2.08 and 2.35 µm. It was proposed by Key and Benson [33]. The NIR
and Longer SWIR (LSWIR) spectral regions are used instead of the red region as used by
NDVI [23]. The water content in plants or soils absorbs a significant amount of radiation in the
LSWIR band. After a fire, scorching, drying, or dry soil exposure increases LSWIR reflection,
lowering the NBR index [33,61].

Trigg and Flasse [34] developed the MIRBI index for shrub-savannah vegetation, where
NIR wavelengths are less efficient because of the senescent condition of the plant during the
fire event. The index was created in the Shorter SWIR (SSWIR)/LSWIR spectral space, and its
performance in savannah ecosystems was shown to be fairly stable over time [10].

García and Caselles [62] and later Key and Benson [33] devised the NBR2 index. It
alters NBR to emphasize water sensitivity in plants, which might be valuable in post-fire
recovery research. Roteta et al. [63] and Storey et al. [64] are two recent implementations of
this index.

The NBI index, as proposed by Alleaume et al. [35], is computed considering how the
radiometric values change between the pre- and post-fire events. Initially designed for
MODIS bands. This index considers the response from the heterogeneous surface covered
by burned, unburned, and partially burned vegetation, ash, and bare soil [35].

An improvement of the NBR index was proposed by Holden et al. [36] who included
a thermal band in the computation for better separability between burned and unburned
surfaces, deriving the NBRT index. This index was designed for Landsat TM and ETM+
bands 4, 7, and 6. It will work, however, with any multispectral sensor that has bands in
the following ranges: 0.76 to 0.9 µm (NIR), 2.0 8 to 2.35 µm (SWIR), and 10.4 to 12.5 µm
(Thermal) [36].

2.5. Separability Analysis

In this study, separability was used to quantify the ability of statistical separation
between pre- and post-fire pixels. The separability M index proposed by Kaufman and
Remer [51] allows us to analyze the degree of discrimination between classes (in this case,
vegetation and fire). The M index is a statistical test that calculates the difference between
the averages of the reflectance values of the pixels of the two categories, normalized by the
sum of the standard deviations [51]. The M index is an estimator of the signal/noise ratio,
that is, it consists of the absolute difference between the mean values of the two classes
(associated with their variability) and the sum of the standard deviations that represent the
noise [65]. M values can range from 0 to 2. Values lower than 1 indicate that the two classes
do not show spectral differences from each other and, therefore, are not distinguishable
(low separability) while values larger than 1 indicate that the spectral responses of the
two classes are different and, therefore, the classes can be unambiguously identified (high
separability) [38,40,65].

The separability index (M) has great potential in remote sensing, being useful in
analyzing the discrimination of classes of interest. It is calculated according to Equation (1)
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considering the mean values of the spectral band considered from the burned and unburned
areas, respectively, and the corresponding standard deviations [51]:

M =
m(q)−m(nq)
a(q) + a(nq)

(1)

where m(q) and a(q), and m(nq) and a(nq) are, respectively, the mean and standard deviation
of the values corresponding to the burned (q) and unburned (nq) class of pixels for each
index [51].

The higher the separability index M, the better the discrimination. M values greater
than one indicate good separability while values less than one represent a large degree of
histogram overlap between the burned and unburned classes [50].

2.6. Unsupervised Anomaly Change Classification Reed–Xiaoli Detector (RXD)

An anomaly classifier aims to evaluate the spectral separability and thematic accuracy
of the burned area for the different spectral indices.

According to Reed and Yu [48], the RXD algorithm detects the spectral or color
differences between a region to be tested and its neighboring pixels or the entire data set.
In this way, it extracts targets that are spectrally distinct from the image background. The
results of RXD analysis are unambiguous and have proven to be very effective in detecting
subtle spectral features [48].

The RXD detector makes it possible to distinguish changes in the image that have an
anomalous behavior, such as burned areas, from generalized changes, such as seasonal
effects, which extend over large areas of the image and occur periodically [66].

The RXD algorithm generates automatic classifications of burned areas obtained by
spectral indices. It was proposed by Reed and Yu [48] to extract signatures that are unique
from the surroundings without the requirement for a priori knowledge. These anomalies
are detected as outliers due to (i) spectral signatures that differ from adjacent pixels and
(ii) a low likelihood of occurrence [49]. As a result, RXD differentiates burned areas from
the rest of the image as they are identified as anomalous changes from other generalized
changes such as seasonal trends which occur on a regular basis and span large parts
of the image [61]. The Mahalanobis distance between a given pixel and the average of
surrounding pixels is calculated by RXD using the covariance matrix [67]. As a result, the
anomalous change score (AC) for any pixel x is computed using Equation (2) [48]:

AC(x) =
(
x′ − µ

)>C−1(x′ − µ
)

(2)

where x′ is a vector constructed using the different bands of the pixel x, µ represents the
stable areas of each band computed averaging the values of the background pixels, and
C is the covariance matrix of the spectral index images.

2.7. Validation

For the validation of spatial data in the study area of Brazil, the mapping product
developed by the Forest Fires Monitoring Program of the National Institute for Space
Research (INPE) was used as a reference. This product is available free of charge at
http://queimadas.dgi.inpe.br/queimadas/aq30m/ (accessed on 20 January 2023) [68].
It uses images from the Landsat series with 30 m of spatial resolution. The data are
available in vector format and operationally and automatically estimate the burned surface,
generating digital maps, temporal comparisons, and support products for the management
and assessment of the impact of fire use on vegetation. In this way, it is possible to obtain
a regular detection and quantification of the burned area through satellite images of the
extent of burned vegetation in the country.

The validation product utilized as a reference for the study area in Portugal was the
2019 Annual Burned Areas Atlas from the National Institute for Nature Conservation and
Forests (ICNF) of Portugal (http://www.icnf.pt/, accessed on 20 January 2023) [69]. The

http://queimadas.dgi.inpe.br/queimadas/aq30m/
http://www.icnf.pt/
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data are available in a shapefile ESRI format. It consists of a collection of burned areas
represented by polygons accompanied with information about the date and duration of the
fire, the area, and the probable causes that provoked it, as polygon attributes. The global
map of all the fires in the Portuguese territory is composed of geospatial files generated by
semi-automatic classifications using 10 m resolution Sentinel-2 data [69].

2.8. Classification Assessment

The quality of a specific remote sensing-derived thematic product is generally de-
termined by comparisons with other remote sensing-derived maps. The quality indi-
cators are derived from the confusion matrix between the reference product and the
burned/unburned classified areas shown in Table 3 [70]. In this matrix, a is the num-
ber of pixels classified as burned in the reference map and in the classified product; b is
the number of pixels classified as unburned in the reference map and as burned in the
classified product; c is the number of pixels classified as burned in the reference map and
as unburned in the classified product, and d is the number of pixels classified as unburned
in the reference map and in the classified product.

Table 3. Confusion matrix.

Reference Map (True Class)

Burned Unburned Total

Classified Product (BA)
Burned a b a + b

Unburned c d c + d
Total a + c b + d a + b + c + d

In this work, the assessment metric used is the Sørensen–Dice coefficient (DC) [71,72].
The DC coefficient is a statistic used to compare the similarity between two samples, in this
case, the classification results of the burned pixels and the reference map. It is calculated
according to Equation (3), as:

DC =
2

2 + OE
1−OE + CE

1−CE
(3)

By counting the pixels classified as burned or unburned in a certain classification, the
overall omission error (OE) and commission error (CE) measurements can be calculated.
However, it is necessary to assess the accuracy of each validation scar for a more accurate
analysis. OE reflects the proportion of burn scars not correctly classified by the classifier.
On the other hand, the CE is the error produced when a pixel is assigned to a certain class,
actually belonging to some other. DC is an estimate of accuracy and ranges from 0 to 1,
where values close to or equal to 1 represent the proportion of overlapping pixels labeled
as burned in the reference map that was really classified as burned while values close to or
equal to 0 correspond to no overlap in the present category [71,72].

3. Results

Table 4 shows the M index values between the images before and after the fire for the
different spectral indices used in this study. The analysis performed with the shortest possible
time interval brings more efficient results in data separability according to Pereira et al. [38],
as a smaller interval is ideal to avoid the dispersion of the spectral signal of the fire.

According to Table 4, in general, the spectral indices that use the shortwave infrared
bands (NBR, NBRT, NBI, MIRBI, and NBR2) presented high separability (M > 1.5). The BAI
index presented a separability polarity between the study sites, while the MIRBI presented
the best performance of the set. The NBR, NBRT, NBR2, and NBI indices showed high
separability and no significant variations between each other (1.5 to 1.78) and between
study sites.
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Table 4. Separability M index calculated for each spectral index.

Spectral Index Brazil Portugal

BAI 0.97 2
NBR 1.62 1.6

MIRBI 2 2
NBR2 1.5 1.71
NBI 1.7 1.78

NBRT 1.83 1.74

The separability values shown in Table 4 help in the analysis of the automatic classifiers,
which can predict or identify mapping errors, such as those represented in Figures 3 and 4,
which show the spatial distribution of the true positive (TP) pixels (where true burned
areas were detected) by the unsupervised classification method RXD anomaly in relation
to the reference data (Table 5). The reference areas for the fires in Brazil and Portugal are
8.88 and 93.45 km2, respectively (Figure 5).
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Table 5. Burned area (S) according to each spectral index. The reference areas for the fires in Brazil
and Portugal are 8.88 and 93.45 km2, respectively.

Spectral Index Brazil
S [km2]

Portugal
S [km2]

Brazil
∆S [km2]

Portugal
∆S [km2]

BAI 5.88 84.80 −3 −8.75
NBR 5.27 73.80 −3.61 −19.75

MIRBI 8.79 82.30 −0.09 −11.25
NBR2 8.15 80.21 −0.73 −13.34
NBI 5.87 59.05 −3.01 −34.5

NBRT 6.71 81.70 −2.17 −11.85

In the case of the fire in Brazil (Figure 3), the NBR index showed the lowest perfor-
mance in the delimitation of the studied polygon. The low distribution of compact pixels of
this index was responsible for about 3.61 km2 not classified as “burned area”, correspond-
ing to 40% of the percentage difference in relation to the reference map. The BAI, NBI, and
NBRT indices showed a disparity of −3, −3.01, and −2.17 km2, respectively. The indices
based exclusively on the shortwave infrared bands (NBR2 and MIRBI) were responsible for
the best spatial estimates of the burned area, where they presented percentage differences
of 9% and 1%, respectively. The MIRBI index showed the best performance among the
indices, with a disparity of −0.09 km2, while the NBR2 diverged by −0.73 km2 in relation
to the reference perimeter.

In the case of the fire in Portugal (Figure 4), the NBI index had the lowest detection
capacity with about 34.5 km2 (37%) of the burned area without its correct attribution.
Similar behavior was found in the NBR index, with a percentage difference of 21.1% in
relation to the reference map, being the NBR2 with 14.3%. The non-normalized indices
(BAI, MIRBI, and NBRT) showed more consistent results, mainly the BAI with a percentage
difference of 9.3%, with 12 and 12.7% for MIRBI and NBRT respectively.

Algorithm Accuracy

Table 6 shows the OE and CE percentages and DC for the burned areas generated by
the spectral indices in relation to the reference data. Confusion matrices formed by pixels
belonging to the same burned area class by all indices were used to compute the metrics.

Table 6. Metrics for evaluating the detected burned area by the spectral indices with respect to
reference data for Brazil and Portugal.

Spectral Index
Brazil Portugal

OE (%) CE (%) DC OE (%) CE (%) DC

BAI 56 10 0.59 3 10 0.98
NBR 35 12 0.79 6 37 0.97

MIRBI 7 4 0.98 2 14 0.99
NBR2 42 0.1 0.74 6 32 0.97
NBI 26 4 0.85 4 14 0.98

NBRT 11 3 0.94 4 17 0.98

In the case of the Brazil fire, CE had the lowest estimates in relation to OE, reaching
values below 12% for all indices. The highest estimate of CE was found for the NBR index,
corresponding to approximately 1.1 km2 erroneously classified as “unburned areas”. For
the NBR2 index, which presented the lowest CE estimate, the CE was around 0.009 km2.
Overall, the CE spatializations did not show significant variations in correspondence to the
high separability estimates shown in Table 1, although the MIRBI index, even with its high
separability, occupied together with NBI the third position of CE, which overestimated
about 0.36 km2 of burned area. On the other hand, OE presented higher values in relation
to CE with variations between 7 and 56%, with emphasis on the BAI and NBR2 indices.
The BAI index showed about 4.97 km2 of area wrongly classified as “unburned”, resulting
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in the highest estimate of OE in the series (56%). In the OE estimates (42%), the NBR2
index classified 3.73 km2 without the correct attribution of the burned area presence class.
The MIRBI index presented the lowest estimate of OE by a slight amount, with a value
below 7 %, thus showing a low underestimation and a high performance in spatial fire
detection, followed by the NBRT index with an estimate of 11%. In general, it is possible
to observe that the OE values found for all the indices are directly proportional to the
separability ranking summarized in Table 1. The highest accuracy of burning area detection
was found for the MIRBI and NBRT indices, presenting values of DC > 90%. The BAI index
presented the lowest performance in the classification, with an estimate of 59% of accuracy,
corresponding to the high values found for OE and the second place for CE. The NBR,
NBR2, and NBI indices showed significant precision (DC > 70%).

For the accuracy analysis of the results in the Portugal fire, it is possible to observe
high accuracy (DC > 96%) for all indices in Table 6, with emphasis on MIRBI. However,
significant values of CE were found, ranging between 10 and 37% for all the indices. The
NBR and NBR2 indices had the highest CE values, with 3.29 and 2.84 km2 being incorrectly
classified as burned areas, respectively. The MIRBI and NBI indices presented the same
values (14%), followed by the NBRT (17%). The lowest CE estimate was found for the BAI
index, with inconsistencies in the classification of around 0.89 km2.

OE values were low compared to CE, that is, there was a greater distribution of burned
area pixels consistent with the reference data. The highest OE values were found for the
NBR and NBR2 indices (6%), with 0.53 km2 being classified as “unburned area”, when
in fact it belonged to the burned area class. As with the CE, the BAI and MIRBI indices
presented the lowest estimates of OE, with 0.27 and 0.18 km2 of the classified area without
their correct attribution in relation to the reference data, respectively. In general, compared
to Brazil, the burned area data in Portugal were more accurate; however, they presented
more overestimated data in all indices.

4. Discussion

This study provides an assessment of the effectiveness of the BAI, NBR, MIRBI,
NBR2, NBI, and NBRT spectral indices to discriminate burned areas across a Landsat-8
satellite scene in two different ecosystems. It supports findings from previous studies that
spectral indices solely based on NIR, SWIR, and TIR bands provide high discrimination
of burned areas in a variety of ecosystems, including, for example, boreal forest [73,74],
Amazonia [8,75,76], Cerrado [38,46,77,78], and semiarid [79]. However, this study also
reinforces the fact that the behavior of the indices can vary between different ecosystems.
For example, the MIRBI index showed a residual bias in the results of Brazil while the BAI
index showed better performance in Portugal. This suggests that functionally different
forest types have different spectral responses and, therefore, the same index may not have
the same performance in detecting the burned area.

4.1. Behavior of Spectral Indices in the Two Areas of Study

The results found in Mpakairi et al. [21] agree with the high performance of BAI in
Portugal. These authors revealed that forest ecosystems require spectral indices of burned
areas that can explain soil reflectance. Thus, the BAI index, which uses the red band,
could detect the soil reflectance, and thanks to NIR and red bands, the vegetation loss. In
Mediterranean ecosystems, where most of the burning leaves are behind coal residues, the
BAI index has been especially applied in fire studies. In Brazil, the BAI index showed a low
yield, making it impossible to identify the burned area (Figure 3). This may be related to the
studies by Smith et al. [80]. These authors argued that the use of BAI in savanna ecosystems,
characterized by low albedo surfaces (plowed soil), may overestimate burned areas. In
another study, Pereira et al. [38] also did not find good results using the BAI index in the
discrimination of fires in the Brazilian Cerrado, which can be explained by the differences
in characteristics between the Cerrado vegetation and the vegetation of countries located in
the Mediterranean region of Europe, where the study by Chuvieco et al. [32] was developed.



Forests 2023, 14, 663 14 of 20

MIRBI was the best index to distinguish between pixels of burned and unburned areas
in the two study sites, presenting high separability (Table 4) and precision (above 97%) and
low estimates of OE and CE. This result agrees with Liu et al. [27], who reported that the
reflectance values in SWIR1 and SWIR2 bands present in MIRBI show distinct differences
between the characteristics and the soil state, which provided a greater possibility of
discrimination and the variation in the degree of severity of the fires. From the selected
indices, only NBR2 and MIRBI considered the influence of SWIR1 and SWIR2 bands, which
was probably the reason for the better performance of these indices.

The NBR index, which is widely used for burning area mapping, performed moder-
ately at both study sites. Lu et al. [81] explained that in semi-arid vegetation, the reflectance
in the NIR and SWIR bands does not show significant distinctions in the dry season. As a
result, the capacity of NBR to detect the burned region and its severity is likely reduced.
Furthermore, because most spectral changes in the NIR and SWIR regions occur practically
parallel to the NBR isolines, NBR has been observed to have a limited capacity to describe
the severity of burning quickly after a fire develops [76]. In this study, this statement was
intensified since the Landsat-8 images used were acquired 47 days after the fire in Portugal
and approximately 42 days in Brazil. The low performance of NBR was most likely due to
this fact.

The NBI index also presented a moderate result in both study sites, in agreement with
those obtained by Veraverbeke et al., Schepers et al. and Pereira et al. [38,50,82]. According
to Schepers et al. [50], indices that use VIS wavelengths may have very low performance in
distinguishing between burned areas in some ecosystems, as this range does not present
a significant sensitivity in post-fire vegetation in remote sensing images. In classification
analyses, a likely explanation for the inconsistencies presented by the NBI is that in the VIS
range, water-rich landscapes and peat soil types are sparse forests that are shown practically
dark in the images. It can be confused with burned areas for the different spectral bands,
especially in the blue [50]. However, even so, in Brazil, the NBI stood out from the BAI and
presented values similar to the NBR and NBRT.

The NBRT index presented itself with almost the highest detection accuracy in Portugal
and practically the third position in Brazil, proving to be advantageous when compared to the
reference data. According to Holden et al. and Harris et al. [36,83], the spectral variability in
the NIR and SWIR range of ash and coal increases in degraded ground cover (due to post-fire
vegetation removal), complementary to surface thermal data, and is able to provide level-
sensitive NBRT values of burning severity. It is important to note that due to the temporal
dynamics and the characteristics of the environment after the fire, the advantage of adding the
TIR range for evaluating the burned area will strongly depend on the post-fire acquisition time
and the seasonal variation in meteorological conditions [84–86]. For that reason, it is important
to note that the revisit time for Landsat-8 is 16 days in addition to noting the necessity of
acquiring cloud-free images [83].

4.2. Influence of Spatial and Temporal Resolution

The high OE values obtained in the assessments carried out in Brazil are mainly due to
the small undetected areas. Very small patches are often lost and contaminated by spectral
mixing. However, compared to the total burned area, they represent a small portion,
not interfering, or only in small part, with the overall accuracy. Another factor for the
presence of the high OE might be the inadequacy of the indices in mapping burned areas
of minor severity, found in the southern part of the study area. The low signal from the
minor burned area, intensified by the interval of days from imaging to the start of burning,
results in spectral indices with more unwanted noise, causing interference in the automatic
classification algorithms.

The validation data used in the study area in Brazil were generated by Landsat-8
images and on the same date as the post-fire images, reducing the presence of OE and
consequently increasing the degree of spatial detection of burned areas. For the case of
Portugal, the validation data provided by ICNF were based on Sentinel-2 images (10 m)
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and were acquired on different dates than the Landsat-8 images. This may have directly
influenced the results found, mainly in CE. Sentinel-2 temporal resolution is 5 days and
Landsat-8 16 days. Thus, an early classification of the burned area obtained by Sentinel-2
makes the Landsat-8 classification more backward and overestimated. However, the greater
spatial detail of the burned area provided by the ICNF data (100 m2/pixel) was able to
slightly increase the classification accuracy, which was not possible with the same efficiency
in Brazil.

Differences in separability performance between forest fires were observed by Las-
aponara [87], who states that these observations may be due to the different types of land
cover affected by the fire. The results obtained in this study indicate that different types of
vegetation within the burn scar cause differences in separability performance. There are
divergences in the application of different spectral indices in burned areas. According to
Pereira et al. [38,39], these divergences can occur due to the period of time between the
occurrence of fires and the acquisition of the images and also considering the differences
between each biome, both in relation to their edaphoclimatic characteristics and their
post-fire reaction time.

Overall, the omission errors found are mainly due to small areas missed by the RXD
anomaly; very small patches are often missed and contaminated by spectral mixing, al-
though these events represent a small proportion of the total burned area and may not
interfere with overall accuracy. Another factor in omission errors may be related to the
inadequacy of the indices in mapping low-severity burned areas, which can result in un-
wanted noise and the identification of inadequate thresholds in the automatic classification
algorithms although this work was not intended to precisely identify different fire sever-
ities. Liu et al. [88] and Seydi et al. [89] highlighted that it is important to understand
the different types of land cover or land uses in the study area during fire events, which
can help to reduce the misclassification of the burned area. Chen et al. [90] emphasized
that supervised and unsupervised classification methods lack the integration of human
knowledge based on specialists in the classification process since they can contribute to
the identification and better classification, for example, of low-severity fires, enhancing the
accuracy of classification of the burned area.

The results of this study corroborate the findings of Tran et al. [73], which indicate
that the index performance is similar in forest types with similar functional characteristics
(structure and regeneration strategy of dominant canopy species).

5. Conclusions

This work presented a comparative approach to classifying spectral indices and burned
areas in dry ecosystems and temperate forests. The BAI, NBR, MIRBI, NBR2, NBI, and
NBRT spectral indices made it possible to discriminate burned areas in Brazil and Portugal
from Landsat-8 satellite images, corroborating previous studies to discriminate burned
areas in different ecosystems, such as boreal forest, Amazonia, Cerrado, and semiarid.

The BAI index presented a separability polarity between the study sites, while the
MIRBI presented the best performance of the set. The NBR, NBRT, NBR2, and NBI indices
showed high separability and no significant variations between each other (1.5 to 1.78) and
between study sites.

The results of the study indicated that the indices based exclusively on the SWIR1 and
SWIR2 bands showed a high degree of separability and were more suitable for detecting
burned areas, although it was observed that the location affects the performance of the indices.

The indices provided by the Landsat-8 multitemporal data help forest management in
the spatial monitoring of the studied fire scars, adapting to the different linked biomes.

This study also indicates that the behavior of the indices may vary between different
ecosystems, suggesting that functionally different forest types have different spectral
responses. Therefore, the same index may not have the same performance in detecting the
burned area. Landsat-8 OLI and TIRS sensors with medium spatial resolution allowed more
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detailed spatial and spectral monitoring of fires, making it possible to reduce temporal
incompatibilities with the validation data used in this study.

The classification method based on bitemporal anomalous changes (RXD anomaly)
proved to be effective in increasing the burned area in terms of temporal alteration and
performing unsupervised detection without depending on the ground truth. It was ap-
plicable in different environmental systems through remote sensing images without the
need for a priori information and fixed thresholds, in addition to representing a tool to
link spectral indices and spatial dynamics. On the other hand, the main limitations of RXD
were observed in non-abrupt changes, which is very common in fires with low spectral
signals, especially in the context of using Landsat-8 images with a 16-day revisit time.

The results obtained in this study were able to provide critical information for fire
mapping algorithms and for an accurate post-fire spatial estimation in temperate forests
and dry ecosystems.

The study presents a new comparative approach to classifying burned areas in dry
ecosystems and temperate forests with the least possible human interference, assisting
investigations when little data on fires is available, in addition to favoring the reduction in
gross errors in the classification of burned areas and the reduction in fieldwork.
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