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Abstract: Breast cancer is the most prevalent cancer in the world and the fifth-leading cause of
cancer-related death. Treatment is effective in the early stages. Thus, a need to screen considerable
portions of the population is crucial. When the screening procedure uncovers a suspect lesion, a
biopsy is performed to assess its potential for malignancy. This procedure is usually performed using
real-time Ultrasound (US) imaging. This work proposes a visualization system for US breast biopsy.
It consists of an application running on AR glasses that interact with a computer application. The
AR glasses track the position of QR codes mounted on an US probe and a biopsy needle. US images
are shown in the user’s field of view with enhanced lesion visualization and needle trajectory. To
validate the system, latency of the transmission of US images was evaluated. Usability assessment
compared our proposed prototype with a traditional approach with different users. It showed that
needle alignment was more precise, with 92.67 ± 2.32◦ in our prototype versus 89.99 ± 37.49◦ in a
traditional system. The users also reached the lesion more accurately. Overall, the proposed solution
presents promising results, and the use of AR glasses as a tracking and visualization device exhibited
good performance.

Keywords: ultrasound; breast biopsy; augmented reality; convolutional neural networks; lesion
segmentation

1. Introduction

The leading cause of death worldwide is cancer [1]. Breast cancer is the world’s most
prevalent cancer, excluding nonmelanoma skin cancers, and the fifth leading cause of
cancer death, with 2.3 million women diagnosed and 685,000 deaths worldwide in 2020 [2].
Though sizeable portions of breast cancer cases do not result in death, they significantly
reduce the quality of life and generally come with higher expenses.

The treatment of this type of cancer is more effective in its early stages. As a result,
medical imaging modalities such as mammography and ultrasound (US) are used to screen
substantial parts of the population [3,4]. When mammography or US finds a suspicious
lesion, a biopsy is performed to evaluate the nature of the lesion. A biopsy consists of
taking a small sample of body tissue so it can be examined in a laboratory to determine its
potential for malignancy. Currently, real-time US-guided biopsy is the preferred method to
perform a breast biopsy [5].

US imaging is a non-invasive, radiation-free technique that effectively captures tissue
characteristics by transmitting sound waves into the body and recording the waves that
echo back to construct an image. It requires relatively simple technology and has no known
harmful effects on health. In ultrasound, since the image is dynamically acquired and relies
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on the 3D motion of the probe, operator expertise is critical during acquisition; poor image
quality and eventual artifacts further increase the demand on the operator’s expertise [6]. In
conventional clinical practice, lesion identification in US is based purely on images through
a naked-eye evaluation. Contouring lesions can be performed to extract relevant informa-
tion, but it takes time and depends on the observers [7]. As a result, several methods have
been suggested for automatic lesion segmentation. Active contour, region-growth, and
threshold-based techniques were the main segmentation techniques used in early research.
These techniques, however, frequently require manual intervention [8]. Recently, convolu-
tional neural networks (CNN) have surpassed traditional image processing techniques and
are showing promising results in breast US segmentation [9,10].

Subpar quality in US imaging can cause the performing physician to miss the le-
sion [11]. Furthermore, the sampling of lesion tissue can also have a maximum error rate
of 10%, according to Heil et al. [12]. The biopsy procedure is, therefore, highly dependent
on the skills of the physician. This work aims to improve this procedure by utilizing CNN
lesion segmentation to help analyze US images by incorporating augmented reality (AR),
that provides relevant information, such as the real-time tracking of the biopsy needle, in
the field of view.

AR-based imaging systems may be helpful in the biopsy procedure. Essentially, these
systems work by superimposing digital data over the user’s field of view (captured by the
camera), creating the illusion that holographic content is a part of the real world. They can
also utilize cameras to track the movements of objects and display information along those
movements, removing the need for the user to look away from the object’s motion [13].

The integration of US-guided breast biopsy with AR systems was initially attempted in
1996 by Fuchs et al. [14]. In this initial work, the results were promising, and the developed
system was sufficiently robust and accurate. Feedback from physicians reported that it
helped the procedure; however, it had a lengthy setup process and no needle guidance.
Due to technological limitations, the AR device weighed nearly six pounds. That work
was continued by Rosenthal et al. [15] in 2002. They used more advanced AR glasses and
implemented needle trajectory. More recently, in 2020, Asgar-Deen et al. [16] compared
the usage of AR to a traditional monitor in a simple stationary breast biopsy procedure. In
2021, Gouveia et al. [17] utilized AR in magnetic resonance-assisted breast cancer surgery.
In the same year Cattari et al. [18] developed an AR visualization tool for US-guided
interventions. However, it relies on already existing volumetric US data, meaning the
system lacks US real-time feedback. In the same year, Guo et al. [19] developed a system
for renal biopsy training. This system uses QR codes to locate a mannequin, place a 3D
rendering of the internal organs, a US probe, and the puncture needle to provide the best
puncture path for the user. In 2022, Kashiwagi et al. [20], Nguyen et al. [21] and our
previous work [22] experimented with AR glasses as a visualization tool for US images.
These solutions only display the US images in the user’s field of view. This work places
the US image with lesion location information in the correct position according to the real
position and orientation of the US probe.

The objective of this work is to conceive a solution to train or increase the efficiency
of physicians with the US-guided breast biopsy procedure. This paper describes a system
prototype that utilizes Microsoft’s HoloLens 2 AR glasses for the enhancement of the
US-guided breast biopsy procedure. It combines real-time US video, CNN segmentation,
and object tracking to provide an enhanced visualization of the procedure. Moreover, the
system’s latency is measured by comparing the developed system with an optical tracking
device and the usability assessment of different users.

Overall, the current work introduces two novelties. The first is a new AR-assisted
ultrasound breast biopsy system with embedded AI for lesions in ultrasound imaging,
consequently allowing real-time detection and localization of possible lesions in the three-
dimensional world of the AR glasses. The second novelty is the assistance for the biopsy
needle alignment, which helps the user to position the needle at the correct alignment so
that it shows in the generated US image.
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The work is structured as follows. Section 2 presents how the proposed system was
developed, followed by Section 3, which explains the experiments to assess usability and
latency and its results. Section 4 discusses the achieved results. Finally, Section 6 presents
the main conclusions.

2. Materials and Methods
2.1. Overview

The developed prototype uses a portable US probe, more specifically the Clarius L15
HD Portable Handheld Scanner, an automatic biopsy needle, the HoloLens 2 glasses, a
computer, and two 7 cm wide QR codes mounted on 3D printed cases (Figure 1). The
system is divided into an application running in AR glasses and a computer application.

Figure 1. Overview of the different components of the proposed prototype.

The computer application is a companion to the AR application. It works by: (i) connect-
ing to the US probe; (ii) processing the real-time incoming US images by segmenting them
through a CNN network, and (iii) sending those images to the AR application afterwards.

The AR application running on the glasses is mainly a visualization tool. It tracks two
QR code tags mounted on the US probe and the biopsy needle, so it can perform real-time
tracking of both. It displays in the user’s field of view the real-time US video stream along
with a trajectory from the needle tip to the lesion and validates its orientation.

2.2. Companion Application

The necessity for real-time US imaging is crucial in the biopsy procedure. However, US
imaging presents poor quality and requires a high level of expertise to be interpreted [23]. In
light of this, the solution must show real-time US video and provide a more straightforward
US imaging interpretation.

Incompatibilities and limitations with the AR glasses system led to the development of
a computer companion application that feeds data to the AR application. These data consist
of the real-time streaming of US video from the US probe’s API along with the CNN lesion
segmentation data. The CNN segmentation required an NVIDIA Graphics Processing Unit
(GPU) since it relied on its CUDA API [24]. Since the AR system was lacking such a GPU,
this computation had to be performed on a computer. The abovementioned CUDA API
makes use of the parallelism available in a GPU [25,26], such as CNN operations, to speed
up computations [27]. This application was developed using Qt (version 5.15) to create the
Graphical User Interface (GUI), and OpenCV (version 4.5.5) was utilized to conduct US
image processing and lesion segmentation.
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2.2.1. US Breast Lesion Segmentation

The workflow of the companion application starts with the reception of a new US
image frame from the US probe. This image has 512 × 512 pixels, dimensions manually set
in the probe’s API. These dimensions were chosen so that the image would have the correct
size to be used as input by the CNN model. The network architecture was U-Net, which
performs well in tumor segmentation [28], based on the work developed with automatic
lesion segmentation in breast cancer applications specialized in breast US images [29,30].
The incoming US image is converted, using the OpenCV library, from a 3-channel RGB
image to a single-channel grayscale image before being passed to the network, which
expects a 512 by 512-pixel wide grayscale image. The network’s output is a grayscale
image the same size as the input that highlights what it considers to be lesions. Following
that, a binary mask is created. Using a sigmoid function, the pixels’ values are normalized
between 0 and 1. Then, pixels with values above a threshold of 0.9 are converted into white
pixels, and pixels with values below it are converted into black pixels. This results in a
segmentation mask where the segmented lesion is white within a black background. The
generated binary mask could detect the lesions most of the time. However, it also identifies
image noise as lesions. Fixing this issue was accomplished by calculating a bounding box
encompassing every single lesion; the bounding boxes are then ordered by size, and the
largest one is assumed to be the lesion. After that, the lesion’s position is calculated using
its bounding box (Figure 2). The dimensions of the US image may vary in accordance
with the ultrasound’s depth, but the streamed image dimensions remain the same, being
filled with transparent pixels. However, we removed these transparent bands, ultimately
decreasing the image’s width or height.

Figure 2. Companion application workflow overview.

2.2.2. Communication Protocol

The companion application sends the processed US image and additional information
to the AR application. Therefore, a communication protocol was developed to bridge
both applications. The choice regarding the communication protocol revolves around the
use of Transmission Control Protocol (TCP) or User Datagram Protocol (UDP). Although
stream-oriented TCP protocol is a robust protocol that provides reliability, flow control,
and congestion control, it is somewhat slow in terms of performance. On the other hand,
the UDP protocol is datagram-oriented, simpler than TCP, only guarantees the integrity of
packets, and is much more useful for applications where low latency is essential [31,32].
So, the UDP protocol was chosen as the communication protocol for the task at hand. The
datagram protocol devised consists of 512 byte-sized packets that have the US image data
partitioned between them. It has (i) a header consisting of a 2-byte number that identifies
the partition of the image data; (ii) an 8-byte US image frame identifier, and (iii) 1 byte
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identifying whether or not that packet is the last one. The receiving application uses the
header information to determine when a packet is lost in the communication process. It
does this by comparing the current packet number with the last packet number with the
same image frame identifier. If the compared numbers are not sequential or the frame
identifier is different, the packet sequence is dropped, and the application waits for the next
first packet. In addition, the number one packet has additional meta-information about the
US image, such as the width and height, the image’s pixel spacing, and the predicted lesion
center in x and y-pixels.

2.3. AR Application

The original idea was, to use AR technology to help in the breast biopsy procedure
by placing a hologram in the real-world location of the lesion. This would be achieved
utilizing the tracking feature to locate the position of the US probe’s transducer and the
automatic lesion prediction (given by the CNN network) to compute the lesion position
to place a hologram there. With this information, the user would try to reach the virtual
lesion displayed by the AR glasses. This approach, however, proved to be difficult to
use. For starters, the breast might deform with the biopsy needle puncture, and the
patient may breathe or do slight movements with the torso, possibly altering the position
of the lesion. In addition, the AR glasses’ holograms also provide a misleading sense
of depth, which became evident during tests. Hence, a real-time tracking of the biopsy
needle was implemented, as well as a real-time display of the real-world position of the
lesion. The application was developed for the HoloLens 2 glasses using Unity 3D 2021
(version 2021.3.2f1), Microsoft’s Mixed Reality Toolkit for Unity and Vuforia AR Software
Development Kit (SDK).

2.3.1. Needle and US Probe Tracking

Performing the biopsy procedure with the AR glasses (Figure 3) requires the localiza-
tion of its main components, such as the US image, in the 3D world, along with the relative
position of the biopsy needle tip. Therefore, the US probe and the biopsy needle require
constant tracking by the AR glasses. The solution to actively track both objects revolved
around tracking a physical QR code tag mounted on these objects. This is performed
utilizing the Vuforia SDK to recognize QR code images in 3D space. The SDK needs prior
information of the QR code image and its real-world size. The SDK uses this information
to look for pre-determined features on the QR codes. Custom casings were 3D-printed to
house the QR code tags on the US probe and on the biopsy needle. These casings were
made of polylactic acid and were printed on the Ultimaker II 3D printer with a printing
resolution of 0.2 mm.

When the Vuforia SDK is actively tracking a QR code, it places a virtual square
hologram with the exact dimensions and orientation as the real QR code on top of it to
inform the user whether the object is being actively tracked or not. The AR application
uses the coordinates of the hologram to access the 3D world position of the QR code. These
coordinates represent the center of the QR code tag in the virtual 3D world. By having the
QR code tag’s center, the real-world size of the 3D printed casing, and the physical object
it is mounted on, the application can precisely determine the location of the US probe’s
transducer and the tip of the biopsy needle.
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Figure 3. User’s point of view performing the biopsy procedure with the AR device.

2.3.2. AR Hologram Generation

The AR glasses use the QR code markers to track the pose of the needle and the US
probe, which allows accurately placing the holograms in the 3D world. To accomplish
this, we utilize the real dimensions of the QR codes, which the application knows before
the tracking process, as references to estimate the target position and orientation. For it,
we use the AR system as the reference coordinate system (i.e., the world), and in real-
time, we estimate the transformations TW

US_QR and TW
Needle_QR that map the pose of the

QR code attached to the ultrasound and needle, respectively, with the world (i.e., the
AR system). Once we have these transformations, we compute the pose of the needle
and ultrasound tip from the predefined fixed transformations TUS_QR

US and TNeedle_QR
NeedleTip ,

respectively. Equations (1) and (2) show these conversions in more detail. Figure 4 depicts
a visual representation of this conversion. In both cases, a CAD software was used to
precisely measure the required offset between the centroid of the QR code and the device’s
tip on the digital models (in STL format) of the US probe and the biopsy needle. The digital
probe model was provided directly by the manufacturer. The outer surface of a real biopsy
needle was manually designed in SolidWorks by two experienced designers.

TW
US = TW

US_QR × TUS_QR
US (1)

TW
NeedleTip = TW

Needle_QR × TNeedle_QR
NeedleTip (2)

The UDP packets received from the companion application contain various segments
of a US image, that are later combined into a single image hologram. To match the real-
world dimensions in the virtual environment, this hologram is resized according to the
pose of the US probe. For it, the hologram’s dimensions are obtained by multiplying the
image’s pixel spacing by its width and height. This hologram is then displayed in the
correct location and orientation of the already calculated probe’s transducer. An expanded
version of the hologram is also displayed to facilitate the visualization of small details of
the US image. A red circle is also placed in the lesion center virtual coordinates inside the
hologram showing the user where the predicted lesion is located.
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Figure 4. Representation of the conversion between the real-world objects and their virtual location.

The physician needs to visualize the needle in real-time while performing the ultra-
sound imaging to ensure that the needle will hit the targeted lesion [33]. In this work,
strategies were implemented to assist the user in aligning the biopsy needle with the US
image plane. This was accomplished by displaying a line from the tracked needle tip, as
shown in Figure 4 (green ball), to the predicted lesion that changes colors depending on
the needle’s alignment. The colors vary between green, which indicates alignment, and
red, indicating unalignment, as shown in Figure 3 (red line) and Figure 5. The calculation
of this alignment is based on the angle between two vectors: the vector between the needle
tip and the lesion position and the normal vector of the US image hologram plane. The
cross-product of these two vectors is calculated, and afterwards the resulting angle is
computed, as described in [34]. The ideal angle value is precisely 90◦, meaning that both
vectors form a right angle. This value, however, is virtually impossible to reach in the
application context due to hand movements and computational uncertainties. An angle
range was, therefore, empirically defined, ranging between 86 and 94◦.

Figure 5. Needle alignment and calculation representation. Alignment is represented by the green
line and unalignment is represented by thew red line.
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Using the proposed system, the procedure would start by localizing the lesion in the
US image with the help of the CNN segmentation. Then, the user must track the probe
and the biopsy needle’s QR code tags so the system can calculate the alignment of both
elements and guide the biopsy needle to the predicted lesion, using a virtual line than
connects them.

3. Results
3.1. Latency and Execution Times

The described prototype relies on a real-time calculation to correctly function. Thus,
an essential metric to evaluate in the system is latency. In particular, the latency between
the US being generated in the US probe to that image being displayed in the AR system.
Therefore, the experiment consisted of marking two distinct positions on a breast phantom
and comparing the image’s timestamps to compare time differences.

The NDI Polaris Vega ST optical tracker measurements were used as a benchmark to
evaluate the latency. This tracker has a sampling rate of 60 Hz and maximum latency of
16 ms. The probe was fitted with an optical navigation marker (Figure 6A), and during the
experiment, the coordinates of the probe, along with the timestamp of each position, were
registered. Meanwhile, the AR glasses save the received US images and their timestamps.
Since the US images acquired in the two positions are different, it is possible to measure
the time difference between the last image of the first position and the first image of the
second position (Figure 6). This time difference is compared with the optical tracker data to
measure the latency of the AR image-displaying system. The latency values were recorded
from 10 runs and their average was calculated. In addition, the costliest operations that
account for the system’s latency were evaluated over 10 2-min runs.

Figure 6. Latency test setup, showing in picture (A) the optical marker mounted on the US probe, in
picture (B) the breast phantom with both positions marked, and in pictures (C,D) the US probe in its
different test positions.

The average time between moving the US probe and that movement being registered
in the AR glasses was 143 ± 51.492 milliseconds (ms). Figure 7 shows the latency time data
along with the execution times of the observed costliest operations.
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Figure 7. Latency and execution times.

Of all the different operations, three were observed to be costliest performance-wise:
(i) the CNN segmentation of the US image; (ii) the render time of the US image on the
AR glasses, and (iii) the time and failure rate in the reception of US images in the AR
application. The longest execution time was of the reception of US images in the AR
application. On average, it took 23.681 ± 0.637 ms, followed by the US image rendering
on the AR application with 14.247 ± 0.953 ms. Finally, the segmentation computing took
14.341 ± 0.831 ms. It was also noted that, on average, 57.3% of the images sent were lost in
the communication process.

3.2. Usability

The developed system prototype could assist either a novice or an experienced physi-
cian. Thus, its usability must be simple but effective in aiding the breast biopsy procedure.
The assessment was made using 18 people, with a median age of 23.3 years and some
or no experience with the biopsy procedure (Figure 8). A custom version of our system
was developed, mimicking a traditional biopsy procedure, without any visualization en-
hancement. However, even in this version, the system needs to track both QR codes
to measure the user’s accuracy in targeting what the user thinks is a lesion versus the
CNN-predicted lesion.

Figure 8. Third-person usability test view of a user performing the biopsy in a breast phantom.

Initially, the user was informed of how the biopsy procedure is performed and in-
structed to perform the procedure until they think they have reached the lesion. Then, the
built-in calibration tool in the HoloLens glasses is used to calibrate the rendering engine for
each user. Finally, the user performs the procedure with the limited version and developed
prototype and the relevant data is stored on the device. Then, we evaluate the accuracy
of the procedure, the time, the angle between the intersection of the US hologram plane
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normal, and the Euclidean distance between the lesion and needle tip location with all the
gathered data.

The usability test results presented in Figure 9 show that the user, on average, claimed
to have completed the biopsy procedure faster in the no-help traditional version, with a
time of 33.5 s. Our proposed system with needle guidance and lesion prediction took an
average of 74.1 s. However, the results demonstrate that the user reached the targeted lesion
more regularly, with a much lower standard deviation. According to the results acquired,
the procedure allowed the users to reach the predicted lesion location more accurately and
precisely in our proposed system.

Figure 9. Procedure time, distance from the needle tip to the lesion and angle measurements.

4. Discussion

According to the literature, similar solutions have been attempted. The most similar
system was developed in 2002 by Rosenthal et al. [15]. This solution used dated equipment
compared with today’s standards and did not have real-time lesion location prediction.
It did, however, prove the concept of using AR as a valuable help in the procedure by
having positive physician feedback. Other research has also attempted to use AR glasses
as a visualization tool for US images, such as Kashiwagi et al. [20] or Nguyen et al. [21].
These approaches facilitated hand-eye coordination since users do not need to look away
from the US probe’s movements to see the US video stream. To the best of our knowledge,
no study has presented a technique that uses AR glasses to display real-time video from
a US probe while simultaneously displaying lesion prediction from a CNN network and
showing the trajectory of the biopsy needle in real time. This work is focused on proving
the concept and technology for AR-assisted US-guided breast biopsies.

The results show that the developed prototype has a significant latency of 143 ms on
average. This value is partly due to the data streaming from the companion application
to the AR application via a wireless connection. According to the execution times tests,
the computation that lasted longer was the reception of US frames, lasting approximately
23.681 ms. However, the failure rate in the reception of US image frames is 57.3%, meaning
most frames sent via the network are lost. The approximate US frame reception time is
significantly smaller than the latency value. This phenomenon can be attributed to the extra
computation needed for rendering (14.247 ms) and CNN image segmentation (14.341 ms).
The latency time measurements are performed by analyzing the received US image frames
on the AR application and the timestamp in which they are received, comparing these with
the data generated by the optical tracker. However, due to the high failure rate with the
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communication process, the exact image frame generated in the US probe’s second position
might be lost, artificially increasing the latency times.

The usability assessment tests showed that the developed prototype improves the overall
procedure as opposed to a traditional scenario. For starters, as shown in Figure 9-procedure
time results, the measured time increases, meaning the users spend more time aligning the
biopsy needle with the US image plane. The observed times are higher than the ones obtained
in Bluvol et al. [35]; this may be due to the adaptation to the visualization in the AR glasses.
The needle’s alignment with the US image became more precise, as noted by the much
lower standard deviation value shown in the angle results in Figure 9. These results can be
attributed to the implemented angle guidance, which helps the user insert the needle at the
optimal angle. The distance between the tip of the needle to the estimated lesion position
(distance to lesion results in Figure 9) decreased from 16.25 mm in the traditional version to
5.09 mm in the proposed version, so it is possible to assume that the process became more
precise in the proposed version. The variation in the image segmentation can partially explain
this difference. The distance is calculated from the needle tip to a single point that roughly
indicates the center of the lesion. However, this point may vary due to slight variations in
the US probe’s position. The custom no-help application is not the optimal comparison to the
developed prototype, as the user needs to wear the AR glasses to track the position of the US
probe and the biopsy needle (for comparison with the helped version). The user, however,
needed to see the US images on an external display through the AR glasses screen. Possibly
hampering the procedure by limiting the visibility of the US video. The system was also tested
by a radiologist who gave positive feedback and pointed out that, in the future, it may be
used as well as a training device.

As potential disadvantages of the proposed concept, we must say that the AR technol-
ogy being used in this work suffers from the already mentioned misleading sense of depth
that hampers the hologram visualization during the procedure. The image quality is also
not ideal and can inflict some motion sickness on the user after long periods. Furthermore,
since the device is wireless, it has limited performance that can increase latency and require
external workstations to alleviate some of the performance load. Finally, the high cost of
AR technology can further impede its adoption [36,37].

5. Study Limitations

Besides the improvement on the biopsy obtained with the proposed system, there are
some limitations that should be addressed in the future. First, only Microsoft’s HoloLens
2 headset was used. In this aspect, the headset used provided every feature necessary to
accomplish this. Still, in the future it would be interesting to test different headsets and see
if the results are consistent.

Second, the calibration between the US image hologram and the US probe is not exact.
This calibration is performed by capturing the probe’s QR code center and then rigidly
transforming the tracked position to the bottom of the ultrasound (part in with the body
surface). During the experiments of this work, no relevant errors were found when locating
and reaching specific lesions displayed with the hologram. However, it may results in
small misalignments, since the real sound beam generator site was not considered.

Third is the lack of clinical testing. The usability testing was conducted by non-
clinicians with little or no experience with the breast procedure. With this being said, we
received positive feedback from a radiologist.

6. Conclusions

This paper describes and evaluates a solution for the US-guided breast biopsy proce-
dure. The AR glasses receive US images from a companion application along with lesion
segmentation data on each image, which is then displayed in the user’s field of view. The
application calculates the positions of the US probe’s transducer and the biopsy needle
tip using the tracking data and the actual measurements of the objects. These data are
combined into a single solution that displays needle tracking and lesion segmentation on
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the user’s field of view. The results show that the proposed solution improves the overall
accuracy and precision of the procedure when compared to a traditional system.

This solution can potentially be used in clinical practice, possibly enhancing the
information that a physician has in their line of sight. The system can also help the biopsy
training process by providing needle alignment and trajectory guidance to trainees.

As for future work, a new tracking solution must be pursued to cut the reliance on QR
codes, which somewhat limit usability during the biopsy procedure. An effort to use an
optical tracker is contemplated. With the help of an optical tracker, it would be possible
to know the location and orientation of objects, even when hidden from the user’s line of
sight. The high latency measured and the high failure rate in the image streaming process
must also be addressed by improving the communication protocol or experimenting with a
wired connection. Additionally, clinical validation will be pursued.
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