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Highlights 

 The diffusion-free RTD of fully developed laminar flow is studied analytically 

 A general relation for computing the RTD of a given 1D velocity profile is derived 
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 The theory is unifying and comprises all pure convection RTDs derived so far 

 The theory is used to derive the RTD of general plane Couette-Poiseuille flow 
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Abstract 

In literature, the diffusion-free residence time distribution (RTD) of laminar flows - the so-called 

convection model - has been determined for various velocity profiles mostly on a case-by-case basis. 

In this analytical paper, we derive general mathematical relations which allow computing the diffusion-

free differential and cumulative RTD in straight planar, circular and concentric annular channels for 

arbitrary monotonic and piece-wise monotonic one-dimensional velocity profiles. The theory is used to 

determine the RTD of plane Couette-Poiseuille flow with non-monotonic velocity profile, and the 

optimal value of the volumetric flow rate where the RTD becomes most narrow. It is shown that any 

velocity profile that depends in a sub-layer linearly on the distance from a stationary or moving no-slip 

wall has a differential RTD which follows a -3 power law as the residence time approaches its 

maximum. The variance of the RTD is directly associated with the asymptotic behavior of the RTD and 

can be finite or infinite. 

 

Keywords: Residence time distribution; Laminar flow; Pure convection model; Macromixing 
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1. Introduction 

Reactors with laminar flow are frequently used for processing viscous fluids such as liquid food 

products (Torres and Oliveira, 1998) or polymers (Gogos et al., 1987), and in micro process 

engineering (Kockmann, 2006). Recent progress in microfluidic technology has turned attention to the 

residence time distribution (RTD) in micro-devices (Cantu-Perez et al., 2010; Lohse et al., 2008; 

Vikhansky, 2011; Wibel et al., 2013). The velocity profile of laminar flow causes fluid elements to spent 

different times within the reactor and gives rise to a wide RTD. In the pure convection regime, 

molecular diffusion is negligible and each fluid element follows its streamline with no intermixing with 

neighboring elements. This corresponds to ‘macrofluid behaviour’ so that the average conversion can 

be predicted by the total segregation model (Danckwerts, 1958; Fogler, 1986; Zwietering, 1959). This 

model assumes that fluid elements having the same age (residence time) ‘travel together’ in the 

reactor and do not mix with elements of different ages until they exit the reactor (Madeira et al., 2006). 

Levenspiel (1999) provides a map which recommends using the pure convection model for situations, 

where the Bodenstein number is sufficiently large while the ratio between channel length and diameter 

is sufficiently low. 

In this paper we are interested in the RTD of this pure convective regime for general laminar 

flows. Throughout the paper we assume that the ratio of the length to the hydraulic diameter of the 

channel is sufficiently long so that entrance effects can be ignored; for a discussion of entrance effects 

on the RTD we refer to Ham et al. (2011). Under these conditions, the cumulative RTD, ( )F  , and the 

non-dimensional differential RTD, ( ) d ( ) / dE F    , depend on the fully developed velocity profile 

only and are fully deterministic. Closed analytical forms of the diffusion-free RTD in laminar flows are 

known only for very few channel shapes and certain Newtonian, non-Newtonian or generalized 

velocity profiles, see Table 1. Examples are axisymmetric flows in a circular pipe (Bosworth, 1948; 

Danckwerts, 1953; Delaplace et al., 2008; Hsu and Wei, 2005; Osborne, 1975; Pegoraro et al., 2012; 

Sawinsky and Balint, 1984; Sawinsky and Deak, 1995; Wein and Ulbrecht, 1972; Zakharov, 2006), in 
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a planar channel (Asbjornsen, 1961; Levenspiel et al., 1970; Sawinsky and Simandi, 1983; Zakharov, 

2006) and in a concentric annulus (Nigam and Vasudeva, 1976). In all these cases the velocity profile 

is one-dimensional as it depends on one co-ordinate only. For fully developed two-dimensional 

laminar flows, the diffusion-free RTD has been obtained approximately for helically coiled tubes 

(Nauman, 1977) and rectangular channels (Wörner, 2010), and analytically exact for channels with 

moon-shaped cross-section (Erdogan and Wörner, 2013). 

The mathematical procedure to compute the RTD from the given laminar velocity profile is always 

similar. However, it has been applied mostly in a case-by-case manner. While Wein and Ulbrecht 

(1972) and Nauman (1974) derived a general expression for computing the RTD from a given 

monotonic velocity profile in a circular pipe flow, their relations are almost unknown to the community 

and have obviously not been used by other authors so far. In this paper we extend these studies and 

derive, for the first time, an explicit relation which allows computing the RTD from arbitrary one-

dimensional monotonic or non-monotonic (but piecewise monotonic) laminar velocity profiles in planar, 

circular and annular channels. This relation includes all previous results from literature as special 

cases. 

In Section 2 of this paper we give some basic definitions and provide a general mathematical 

expression for computing the convection model RTD from a given laminar velocity profile. In Section 3 

we apply the new theory and determine for various velocity profiles the corresponding RTD. We 

recover some known results from literature but also present new results not obtained so far. In Section 

4 we discuss the implications of the theory on the asymptotic behaviour and the variance of the RTD. 

The paper closes by a short summary and conclusions in Section 5. 
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2. General pure convection RTD theory 

2.1. Basic definitions 

We consider a straight flow domain with length L , constant cross sectional area A , volume 

V LA , constant total volumetric flow rate totalQ , mean velocity m total /U Q A , and mean 

(hydrodynamic) residence time m total m/ /t V Q L U  . We assume that the flow in this domain is 

steady, unidirectional (axial) and obeys a given fully developed laminar one-dimensional velocity 

profile. 

In the sequel, we express all results in terms of the non-dimensional time m/t t  . The non-

dimensional residence time of the fastest fluid elements is commonly denoted as first-appearance time 

or break-through time; it is given by F m max/U U  , where maxU  is the maximum velocity of the profile. 

For F   it is 0E F   ; the equations given for E  and F  in the remainder of the paper refer to 

F   only. 

For any RTD, the zero and first moment are unity, i.e. 

0 1

0 0

d 1, d 1E E     
 

      (1) 

The definition of the variance is 

 
F

22 2
F

0 0

1 d 1 2 (1 )d 1 2 (1 )dE F F 


       
  

              (2) 

In the absence of diffusion, species transport is by convection only and the differential and cumulative 

RTD are given by 

total total

d ( ) ( )
d , ( )

Q Q
E F

Q Q
     (3) 
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Here, ( )Q   is the volumetric flow rate associated with a residence time   or lower (Wein and 

Ulbrecht, 1972). 

2.2. Analytical RTDs for one-dimensional velocity profiles 

In this paper, we consider three types of channels, namely parallel plates with distance H , a 

circular pipe with radius R , and a concentric annulus with outer radius R  and inner radius R , where 

0 1  . For normalization, we use either H  or R  as length scale and mU  as velocity scale. The 

non-dimensional velocity mˆ ˆ/ ( )u u U f y   is a function of the non-dimensional lateral coordinate ŷ , 

which is in the range minˆ ˆ 1y y  . For the planar channel and the pipe it is minˆ 0y   and for the 

annulus minŷ  . The velocity values at the lower and upper boundaries of the flow domains are 

0 min 0 mˆ ˆ ˆ( ) /u u y U U   and 1 1 mˆ ˆ ˆ( 1) /u u y U U   , respectively. 

With these definitions, the non-dimensional residence time of fluid elements at position ŷ  is 

m

/ 1 1
ˆ ˆ( )

L u

t u f y
     (4) 

In the sequel, we need the inverse relation of Eq. (4). We denote the inverse function of f  as 1f   so 

that 1 1ˆ ( )y f    and distinguish two types of velocity profiles. 

2.2.1. Monotonic velocity profile with maximum at one boundary 

In the first case, the maximum velocity maxU  is located at one boundary (here we choose the 

lower one minŷ ) while the minimum velocity minU  is located at the other boundary (here the upper one 

ˆ 1y  ). In this case f  is strictly monotonic decreasing from 1
min Fˆ( )f y    to min m(1) /f U U  so that 

1f   is unique. The region that is associated with a residence time   or lower is minˆ ˆ ˆy y y   so that 
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1 1 1 1

min min

( ) ( )

ˆ ˆ

1
ˆ ˆ ˆ ˆ( ) ( )d (2 ) ( )d

f f

y y

F f y A y f y y
A

 


   

    (5) 

Here, we used the relation ˆ ˆd / (2 ) dA A y y  with 0   for the planar channel and 1   for the pipe 

and annulus. Partial integration of the right-hand-side of Eq. (5) gives 

1 1 1 1 1 1
min min minˆ ˆ ˆ( ) (2 ( )) ( ( )) (2 ) ( ) 2 ( ( )) ( )F f G f y G y H f H y                 (6) 

where G  is the antiderivative of f  and H  is the antiderivative of G . 

The differential RTD is given by 

1 1

1 1
min

( )
1 1 1 1

( )ˆ

ˆd ( ) d d
ˆ ˆ ˆ(2 ) ( )d (2 ( )) ( ( ))

d d d

f

fy

F y
E y f y y f f f


 




  
  

 

 

        (7) 

With 1 1 1( ( ))f f      and 

2 2

ˆ ˆ ˆ ˆd d d 1 d 1
ˆ ˆ ˆd d d d ( )

y y u y

u u f y   
    


 (8) 

Eq. (7) becomes 

1 1

3 1 1

(2 ( ))1

( ( ))

f
E

f f






 

 

  


 (9) 

2.2.2. Piecewise monotonic velocity profile with maximum within the channel 

We now consider velocity profiles which have a maximum at a certain position within the channel 

and distinguish two cases. In the first case, the velocity profile is double-valued in the entire domain 

minˆ ˆ 1y y  . Then, 1f   has the two branches 1 1ˆ ( )y f  
   and 1 1ˆ ( )y f  

  . The region that is 

associated with a residence time   or lower is then given by ˆ ˆ ˆy y y    so that the cumulative RTD 

becomes 

1 1

1 1

( )

( )

ˆ ˆ ˆ( ) (2 ) ( )d
f

f

F y f y y







 


 


   (10) 
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Partial integration of the right-hand-side of Eq. (10) gives 

1 1 1 1 1 1 1 1 1 1 1 1( ) (2 ( )) ( ( )) (2 ( )) ( ( )) 2 ( ( )) ( ( ))F f G f f G f H f H f                   
            (11) 

The differential RTD is then given by 

1 1

1 1

( ) 1 1 1 1

3 1 1 1 1

( )

(2 ( )) (2 ( ))d ( ) d 1
ˆ ˆ ˆ(2 ) ( )d

d d ( ( )) ( ( ))

f

f

f fF
E y f y y

f f f f

  





 
    

 


 


   
 

   
 

 
       

  (12) 

In the second case, the velocity profile is double valued in one part of the domain and is single-

valued in the rest of the domain. Here, we assume that the double-valued part with the velocity 

maximum is in the region min dvˆ ˆ ˆy y y   while the single-valued part is in region dvˆ ˆ 1y y  . The 

cumulative and differential RTD are then given by Eq. (11) and (12) for dv dvˆ ˆ1/ ( )u y   , whereas 

for dv   we have 

1 1
dv

min dv

dv

ˆ ( )

ˆ ˆ

( )

ˆ ˆ ˆ ˆ ˆ ˆ( ) (2 ) ( )d (2 ) ( )d
y f

y y

F

F y f y y y f y y


 




 



  


 (13) 

Partial integration of the second integral in Eq. (13) gives 

1 1 1 1 1 1
dv dv dv dvˆ ˆ ˆ( ) ( ) (2 ( )) ( ( )) (2 ) ( ) 2 ( ( )) ( )F F f G f y G y H f H y                   (14) 

The differential RTD for dv   is given by Eq. (9). Eqs. (6), (9), (11), (12) and (14) are one of the 

main innovation of the present paper. 

3. Pure convection RTDs for various velocity profiles 

In this section we apply the theory from Section 2.2 to various velocity profiles. Amongst others, 

we consider three different generalized monotonic velocity profiles: generalized power law (which 

arises for Ostwald-de Waele power law fluids), generalized root law, and generalized film flow (which 

arises from Newtonian plane Couette-Poissueille flow). In Table 2 we list for each case the function 

( )f x  of the velocity profile, the inverse function 1f  , the derivative d / df f x  , and the anti-
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derivatives dG f x   and dH G x  , as well as F , both for a planar channel and for a circular pipe. 

In all cases, f  fulfills the normalization condition 

min

1

ˆ

ˆ ˆ ˆ(2 ) ( )d 1
y

y f y y   (15) 

In the following subsections we derive the differential and cumulative RTD for the three mentioned 

generalized functions and some further velocity profiles. We start with pressure-driven flows in a 

circular pipe (Section 3.1), proceed with planar Couette and pressure-driven flows (Section 3.2) and 

finally consider the pressure-driven flow in a concentric annulus (Section 3.3). 

3.1. Flows in a circular pipe 

For the laminar flow in a circular pipe it is 1  , minˆ 0y   and the velocity profile mˆ ˆ( ) ( )u r U f r  is 

always monotonic. Then, Eqs. (9) and (6) become 

1 1

3 1 1

( )2

( ( ))

f
E

f f


 

 

  


 (16) 

1 1 1 1 1 1( ) 2 ( ) ( ( )) 2 ( ( )) 2 (0)F f G f H f H            (17) 

3.1.1. Ostwald-de Waele power law fluid in a pipe 

In a circular pipe, the velocity profile of an Ostwald-de Waele power law fluid with flow behavior 

index n  is given by  ( 1)/
F( ) 1 /n nf x x    where F m max/ ( 1) / (3 1)U U n n     . The fluid is 

pseudoplastic for 1n  , is dilatant for 1n  , and is Newtonian for 1n  . With 

1 1 /( 1)
F( ) (1 / )n nf        and f   as given in Table 2, Eq. (16) yields 

1

1

3

1 2 1 1
1

3 1 3 1

n

nn n
E

n n  


     

 (18) 
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This RTD was first derived by Foraboschi and Vaccari (1965) and Novosad and Ulbrecht (1966). 

Osborne (1975) and Garcia-Serna et al. (2007) also derived this RTD1, however, represented it in 

terms of the power law velocity profile index ( 1) /q n n  . For 0 2q   the differential RTD E  has 

a finite maximum at 2( 1) / 3( 2)q q     while for 2q   the maximum is infinite and located at 

F/ ( 2)c q q     (Osborne, 1975). For the cumulative RTD Eq. (17) yields 

2

12 1 1 1
1 1

3 1 3 1

n

nn n
F

n n 
         

 (19) 

in agreement with Cintron-Cordero et al. (1968). For 1n   it is F 1/ 2   and Eqs. (18) and (19) 

reduce to the well-known RTD of Newtonian pipe flow which was first obtained by Bosworth (1948) 

and is given by 30.5  E , 21 0.25  F . 

3.1.2. Generalized root law velocity profile in a pipe 

The velocity profile of the generalized rot law is 1/
F( ) (1 ) /mf x x    where we assume 1m  . For 

pipe flow it is 2 1 1
F 2 ( 1) (2 1)m m m     . With 1 1

F( ) 1 ( / )mf        and f   as given in Table 2 we 

obtain from Eq. (16) the result 

2

F F
2
F

2
1

m m
m

E
 

  

     
     

     
 (20) 

This RTD was first obtained by Bosworth (1949) as well. For the cumulative RTD Eq. (17) yields 

1

F F2 1 1
1 1

2 1

n m
m m

F
m m

 
 

                 
 (21) 

3.1.3. Pipe flow of a Prandtl-Eyring fluid 

The monotonic velocity profile of the flow of a Prandlt-Eyring fluid in a circular pipe is given by 

                                                 
1 Note that in Osborne (1975) and Garcia-Serna et al. (2007) the symbol n  is not the flow behavior index 

but the power law velocity profile index, which we here denote as q . 
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F

1 cosh( ) cosh( )
( )

cosh( ) 1

p px
f x

p





 (22) 

where 

 
 

 
 F 2

cosh 1 sinh2
1 1

cosh 1 cosh

p p p

p p p


  
         

 (23) 

Here, p  is a constant non-dimensional rheological parameter (Schenk and Van Laar, 1958); its effect 

on the velocity profiles is shown in Fig. 1 a). For 1p   the velocity profile is close to that of Newtonian 

pipe flow whereas for 100p   it approaches plug flow. 

With the first derivative 

F

sinh( )
( )

cosh( ) 1

p px
f x

p
  


, (24) 

the inverse function 

 1 1 1
F( ) cosh cosh( ) cosh( ) 1f x p p x p        , (25) 

and the antiderivatives 

1

F

1 cosh( ) sinh( )
( )

cosh( ) 1

x p p px
G x

p





,   

2 21
2

F

cosh( ) cosh( )1
( )

cosh( ) 1

x p p px
H x

p





 (26) 

we obtain from Eqs. (16) and (17) the results 

 

 

1 F

F
3 2

1 F

cosh cosh( ) cosh( ) 1
2 cosh( ) 1

sinh cosh cosh( ) cosh( ) 1

p p
p

E
p

p p





 






 
    

  
   

  

 (27) 

  2
2

F

1 1 1
cosh( ) 2 sinh( ) 2 1 cosh( )

cosh( ) 1
F p

p p
       


 (28) 

where 

 1 Fcosh cosh( ) cosh( ) 1p p



  
    

 
 (29) 
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This RTD was first derived by Wein and Ulbrecht (1972). Fig. 1 b) illustrates the change of E  from 

Newtonian pipe flow toward plug flow as p  is increased from 1 to 100. 

3.2. Flows in a planar channel 

For the laminar flow in a planar channel it is 0  , minˆ 0y   and m ˆ( )u U f y . If the velocity profile 

is monotonic, then Eq. (9) and Eq. (6) simplify to the form 

3 1 1

1 1

( ( ))
E

f f    


 (30) 

1 1( ( )) (0)F G f G    (31) 

For a non-monotonic velocity profile, Eq. (12) and Eq. (11) apply, and reduce to 

3 1 1 1 1

1 1 1

( ( )) ( ( ))
E

f f f f      
 

 
     

 (32) 

1 1 1 1( ( )) ( ( ))F G f G f    
    (33) 

3.2.1. Couette flow of Ostwald-de Waele power law fluid 

The Couette flow velocity profile of an Ostwald-de Waele power law fluid with flow behavior index 

n  is ( 1)/
F( ) (1 ) /n nf x x   , where F ( 1) / (2 1)n n    . With 1 1 /( 1)

F( ) (1 / )n nf        Eqs. (30) and 

(31) become 

1

1 1

3

1 1 1 1 1 1
1 , 1 1

2 1 2 1 2 1 2 1

n

n nn n n n
E F

n n n    


                        

 (34) 

This RTD was first derived by Foraboschi and Vaccari (1965). For 1n   we have 2
F( ) (1 ) /f x x    

and F 2 / 3  . This case corresponds to planar falling film flow and Eq. (34) yields the following 

results which were first obtained by Asbjornsen (1961) 
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1 1

2 2

3

1 2 1 2
( ) 1 , ( ) 1 1

3 3 3 3
E F  

   


            
    

 (35) 

In the limit n   we have F( ) (1 ) /f x x    and F 1/ 2  . This case corresponds to planar Couette 

flow and Eq. (34) yields the same RTD as for Newtonian pipe flow (see above). 

3.2.2. Planar Poiseuille flow 

For planar Poiseuille flow it is F( ) 4 (1 ) /f x x x    and F 2 / 3  . With 

 1
F

F

4(1 2 ) 1
( ) , ( ) 1 1

2

x
f x f x x





      (36) 

Eqs. (32) and (33) become identical to the RTD of planar falling film flow, Eq. (35). This result is 

expected, because planar Poiseuille flow can be interpreted as consisting of two symmetric falling film 

flows which meet at the channel mid-plane (Levenspiel, 1989). 

3.2.3. Falling film flow of a Prandtl-Eyring fluid 

The monotonic velocity profile of the planar falling film flow of a Prandlt-Eyring fluid is given by Eq. 

(22). In the planar case, the non-dimensional first appearance time is 

1

F

cosh( ) sinh( )

cosh( ) 1

p p p

p






 (37) 

With the first derivative, Eq. (24), the inverse function, Eq. (25), the two antiderivatives, Eq. (26), the 

abbreviation 

cosh( ) sinh( )
cosh( )

p p p
p

p


    (38) 

and the identities  1 2sinh cosh ( ) 1      and  1 2cosh ( ) ln 1       we obtain from Eqs. 

(30) and (31) the relations 
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3 2 2

1 cosh( ) sinh( )

1

p p p
E

p
 




 
 (39) 

 2 2cosh( ) ln 1 1

cosh( ) sinh( )

p
F

p p p

       



 (40) 

which were first derived by Sawinsky and Simandi (1983). 

3.2.4. Plane Couette-Poiseuille flow of a Newtonian fluid 

The velocity profile of plane Couette-Poiseuille flow of a Newtonian fluid can be found e.g. in 

Drazin and Riley (2006). In the terminology of the present paper, it is described by the function 

W

1
( ) (1 )(1 )f x x sx


    (41) 

Here, 

2

W2

H p
s

U z


 


  (42) 

is a constant non-dimensional axial pressure gradient and W 0U   is the velocity of the moving lower 

wall, while the upper wall is at rest. For 0s   we have Couette flow, for 1s   falling film flow (with a 

shear-free interface at ˆ 1y  ) and for s   we have plane Poiseuille flow. In Eq. (41), W (3 ) / 6s    

is the non-dimensional residence time that corresponds to the wall velocity WU . 

When s  is in the range 0 1s  , the velocity profile is monotonic and the inverse function is 

unique (see Table 2). The non-dimensional first appearance time is F W  . With the derivative f   

given in Table 2 Eq. (30) becomes 

1

2
2W W

3
(1 ) 4 1E s s

 
 


         

 (43) 
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This result was first obtained by Levenspiel et al. (1970)2. From Eq. (31) we obtain for the cumulative 

RTD after some tedious algebraic manipulations the result 

3 2 2W W
2

W

1
1 (1 ) (1 ) 2 (1 ) 4 1

12
F s s s s s

s

 
  

                     
 (44) 

For 1s   the velocity profile is not monotonic, see Fig. 2 a). The velocity maximum is located at 

( 1) / (2 )s s  and the corresponding value of the first appearance time is 

2 2
F W(2 / 3)(3 ) / (1 s) 4 / (1 )s s s s      . For dvˆ ˆ ( 1) /y y s s    the inverse function is single-

valued and the same as given in Table 2. For dvˆ ˆy y  the inverse function has two branches: 

2
W1 ( 1) ( 1) 4 (1 )

( )
2

s s s x
f x

s




    
  (45) 

By the theory in the second paragraph of Section 2.2.2 we obtain for the differential RTD the result 

1

2
2W W

3 W W2

1

2
2W W W

3

2 4(1 ) 4 1
(1 )

3
(1 ) 4 1 6

ss s
s

E
s

s s



 
   

   
 






               

             

 (46) 

This RTD is derived here for the first time. It is displayed in Fig. 2 b) for four different values of s  and 

has two interesting features. First, it is discontinuous at W  where it decreases by a factor of two. 

While this behavior is at first surprising, it is reasonable since for W   there are two lateral locations 

within the channel with a given residence time, whereas for W   it is only one. This explains the 

sudden decrease of E  by a factor of two at W  . The second notable feature of this RTD is the 

non-monotonic dependence of its first appearance time on s . For 1s   and s   we have F 2 / 3   

while for 1 s    we have F 2 / 3  . The maximum value F 0.75   is obtained for 3s  . This result 

has some practical implications for tracers with high Schmidt number in plane Couette-Poiseuille flow 

                                                 
2 Note that in their nomenclature it is 1s   . 
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of Newtonian liquids. It suggest that in order to achieve a narrow residence time distribution (which is 

usually wanted in practice), s  should be close to 3. From Eq. (42) we can then directly determine the 

optimal value of the axial pressure drop which minimizes the width of the RTD, and the corresponding 

optimal value of the volumetric flow per unit depth which is total WQ H U  . 

3.2.5. Generalized root law velocity profile in a planar channel 

For the planar case, the non-dimensional first appearance time of the generalized root velocity 

profile from Section 3.1.2 is given by F / ( 1)m m   . With 1 1
F( ) 1 ( / )mf        we obtain from Eqs. 

(30) and (31) the results 

11
F
2 2

1 1
, 1

( 1) 1

mm m

m m m

m m m
E F

m m


  



 

       
 (47) 

To our knowledge, also this RTD has not been derived before. 

3.3. Flow in a concentric annulus 

As final example we consider the flow of a Newtonian fluid in an annulus formed by two concentric 

cylinders. The velocity profile m ˆ( )u U f r  in the range ˆ 1r    is given by 

2 2

2 2
F

1 1 2 ln
( )

1 2 ln

x x
f x


   

 


 
 (48) 

The first appearance time is  

2 2

F 2 2

1 1 2
( )

2 1 2 ln

  
  
 


 

 (49) 

where 

2

1

1
( )

2 ln

 



  (50) 

is the non-dimensional radial position of the maximum velocity (Nigam and Vasudeva, 1976). The first 

derivative and the inverse function are given by 



18 

2 1

2 2
F

1 2 2
( )

1 2 ln

x x
f x


   

  
 

, 
2 2

1 F
2 2 2

(1 2 ln )1 1
( ) exp

x
f x W

   
  


 

   
      

  
 (51) 

Here, 0( ) ( )W x W x   and 1( ) ( )W x W x   are the lower and upper branch of the Lambert W-function 

(Golicnik, 2012; Veberic, 2012; Williams, 2010), where the argument is in the range 1 0e x   . With 

the latter equations and 1  , the RTD can be expressed via Eq. (12) in the following closed 

analytical form 

   
2

2 0 1
3 1

0 1

( ) ( )1 1
1

2 ln 1 ( ) 1 ( )

W W
E

W W
 

   





  
      

 (52) 

where 

2 2
F

2 2 2

1 1 1 2 ln
exp

   
   

  
    

 
 (53) 

Nigam and Vasudeva (1976) where the first who derived this RTD; however, they gave it only in 

implicit form and their Eq. (11) for F contains two errors. The RTD of annular flow is similar to that of 

flow between parallel plates except when   is very small (Nauman and Buffham, 1983). We remark 

that the RTD given by Foraboschi and Vaccari (1965) for the flow of a Newtonian liquid in an annulus 

is incorrect, as noted by Pechoč (1983). 

Lin (1980) determined the RTD of an Ostwald-de Waele power law fluid in a concentric annulus 

analytically on basis of the approximate velocity profile of Mishra and Mishra (1976). Pechoč (1983) 

evaluated the RTD numerically from the exact velocity profile and showed that the approximate results 

of Lin (1980) differ significantly from the exact ones only in the vicinity of F . 

3.4. Further non-Newtonian velocity profiles 

In literature the diffusion-free RTD of fully developed laminar flow in a circular pipe has been 

derived for further generalized velocity profiles (Pegoraro et al., 2012) as well as for further non-

Newtonian fluids. The latter encompass Herschel-Bulkley fluids (Delaplace et al., 2008; Sawinsky and 

Deak, 1995; Wein and Ulbrecht, 1972), Bingham and Rabinowitsch fluids (Wein and Ulbrecht, 1972) 
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and Cassonian fluids (Sawinsky and Balint, 1984). The RTD of a Bingham fluid in a planar falling film 

was derived by Zakharov (2006). We expect that all these RTDs are recovered from the present 

theory as well, though we have not explicitly checked this for all these velocity profiles. 

4. Discussion 

In this section we use Eq. (9) to investigate certain properties of the differential RTD of diffusion-

free fully developed laminar flow. In particular we investigate (i) the asymptotic behavior of the RTD for 

large values of  , (ii) the variance of the RTD and (iii) the effect of a finite wall velocity. 

4.1. Asymptotic behavior of the RTD 

Large values of the residence time correspond to low velocities. The lowest velocities and, 

therefore, the largest residence times occur in the vicinity of the wall (or more generally the domain 

boundary where minu U ). The corresponding upper limit of the dimensionless residence time is 

max m min/U U  . For any viscous flow, there exists a sublayer of thickness   in the immediate vicinity 

of a no-slip wall (which may be either stationary or moving with a finite velocity) where the fluid velocity 

increases linearly with the wall distance so that  
ˆ 1

ˆ ˆd / d
y

a u y


  . Thus, for 0a   there is an interval 

 1 ,1x    where max( ) (1 ) 1/f x a x     so that 1
max( ) 1 ( 1/ ) /f x x a     and f a const    . 

Introducing these relations into Eq. (9) yields 

3
max

1 2 1 1
2E

a a



   
  

    
  

 (54) 

so that  

max
3

2 1
lim E

a



  
  (55) 

By Eq. (55) we have shown that for any laminar velocity profile in a duct with a no-slip condition at a 

stationary or moving wall and a linear slope 0a   the asymptotic behavior of the diffusion-free 
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differential RTD follows a 3   power law. This asymptotic behavior was already shown by Wein and 

Ulbrecht (1972) for the special case of a circular pipe and a stationary no-slip wall. In fact, for 1   

and max   the present Eq. (55) reduces to Eq. (42a) in Wein and Ulbrecht (1972). By integration of 

Eq. (55) we find for the asymptotic behavior of the cumulative RTD the relation 

max

1

2

2 1
lim ( ) 1F

a



 







   (56) 

This result is in accordance with the theoretical considerations of Nauman (1977) on generalized flow 

situations with a stationary wall. In the absence of molecular diffusion he found for the cumulative RTD 

in the limit    the asymptotic behavior 2( ) 1 /F     , where   is a constant. Here, we 

determined the value of this constant as 12 / a   and demonstrated that this asymptotic behavior is not 

limited to no-slip conditions at stationary walls but applies to moving walls as well. 

To illustrate the asymptotic -3 power law behavior of the differential RTD, we display in Fig. 3 a) 

and b) the term 3E  for the generalized power law velocity profile in a circular pipe and in a planar 

channel for different values of parameter q . From this figure it is evident, that 3E  becomes indeed 

independent of   for large residence times. The respective constant value is in all cases consistent 

with Eq. (55). 

In Fig. 3 c) we show the term 3E  versus   for the generalized root law velocity profile in a 

planar channel. It is interesting to note that the asymptotic behavior of this RTD does not follow a 3  

power law for 1m  . Instead 3E  approaches zero for large values of  . This also holds for the 

generalized root law velocity profile in a circular pipe not shown here. The reason for this different 

asymptotic behavior stems from the fact that for the generalized root velocity profile it is 

 
1

ˆd / d 0
y

a u y


    for 1m  , i.e. this velocity profile does not show the linear increase of the 

velocity with the wall distance which is in reality characteristic for viscous laminar flows. 
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4.2. Variance of the RTD 

In this subsection we investigate the implications of the above theory for the variance of the RTD. 

Sawinsky and Balint (1984) remarked that in the case of pure laminar flow with no molecular diffusion 

the concept of variance of the RTD has no meaning. They argued that the variance it a statistical 

quantity, which gives the mean square deviation from the statistical mean values. The variance has a 

meaning only when the distribution is of a statistical nature. This is not the case for laminar flows with 

no molecular diffusion, where the RTD is fully deterministic. Also Nauman (2004) noted that the 

dimensionless variance has limited usefulness in laminar flow systems. In the present context the 

variance of the RTD is, nevertheless, of some theoretical interest. 

The definition of the variance 2
  is given in Eq. (2). Whether the variance of an RTD is finite or 

infinite depends on the tail of the RTD, i.e. the asymptotic behavior of the RTD as   approaches 

infinity (cf. section 4.1). Nauman (1977) noted that the asymptotic behavior 2( ) 1 /F      implies 

that – were it not for diffusion – all residence time distributions would have an infinite variance. 

Here, we consider as an example the general monotonic velocity profile of section 2.2.1 for the 

planar case ( 0  ). By expansion of the quadratic term in Eq. (2), by taking into account Eq. (1) and 

by introducing these expressions into Eq. (9) it follows 

F F

2 2
1 1

1 1
1 d 1 d

( ( ))
E

f f 
 

   
 

 

      
   (57) 

Whether the integral in Eq. (57) converges or not depends on the behavior of the integrand in the limit 

  . This limit is equivalent to ˆ 1/ 0u   , i.e. the behavior of the normalized velocity profile at a 

stationary no-slip wall. For the generic monotonic laminar velocity profile of Section 2.2.1, the solid 

wall is located at ˆ 1y   and it is ˆ 1 asymptoticˆ ˆ ˆ( ) (1 )yu f y a y     with the wall velocity gradient 0a  . Then 

it is asymptoticf a    so that Eq. (57) becomes  
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asymtotic

F asymtotic

2
1 1

1 1 1
1 d d

( ( ))f f a



 

  
  



    
   (58) 

While the value of the first integral in Eq. (58) is finite, that of the second integral is infinite so that 

2   . A similar analysis can be done for general non-monotonic velocity profiles and the case 

1  . This result suggests that for diffusion-free laminar flows with a stationary no-slip wall the 

variance of the RTD and any moment higher than one is infinite. 

Indeed, evaluation of Eq. (2) for the diffusion-free RTDs of the various velocity profiles from 

Section 3 confirms that 2
  is infinite, with one notable exception. Namely, for the RTDs of the 

generalized root velocity profile the variance is finite. For the circular pipe RTD, Eq. (20), we obtain 

2 2
2

2 2

4 (7 1)

1 ( 1) (2 1)(2 1)( )

m m

m m mm



   

 (59) 

while for the planar channel RTD, Eq. (47), it is 

2
2

2

( 1)( 1)

m

m m 
 

 (60) 

These finite values of the variance for 1m   are related to the fact that for the root law velocity profile 

it is 0a   so that 3E  does not approach asymptotically a finite constant value but zero instead (cf. 

Fig. 3 c). 

4.3. Effect of finite wall velocity 

While the results in the previous section apply to velocity profiles which are zero at the wall, we 

extend our analysis in this section to laminar flows where the fluid velocity at the wall is finite. Typical 

examples are flows where the wall is moving and electro-osmotic flows where both, an applied 

pressure gradient and an external electric field drive the flow. In the latter case the charge on the wall 

leads to a finite velocity of the electrolyte within the electric double-layer close to the wall. Hsu and 

Wei (2005) studied the influence of the electric field and double layer thickness on the RTD in a 

cylindrical micro-reactor numerically and showed that this technique can be used to narrow the RTD.  
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To study the effect of a finite wall velocity on the RTD we consider a planar channel where the 

lower and upper wall move with velocity maxU  and min maxU U , respectively, where 0 1  . The 

linear velocity profile is  

F

1 (1 )
( )

x
f x




 
  (61) 

where F (1 ) / 2   . The value 0   corresponds to plane Couette flow (see Section 3.2.1) and the 

limit 1   to plug flow. With F(1 ) /f       we obtain from Eq. (30) the result 

F
F F3

1
/

1

0 otherwise

E

    
 


  




 (62) 

The variance of this RTD is 

F

F

/ 2
2 F

3

( 1) 1 1+
d 1 ln

1 2 1

 




   
  


   
   (63) 

This relation is displayed in Fig. 4. The variance according to Eq. (63) is finite for 0 1  , whereas it 

is infinite in the limit 0  , i.e. for a stationary no-slip wall. In the limit 1   the velocity profile 

approaches plug flow and the variance becomes zero. 

5. Conclusions 

In this paper general mathematical expressions have been derived which allow computing the 

diffusion-free differential and cumulative RTD of a given one-dimensional velocity profile. These 

relations are useful to compute the convection model RTD of fully developed laminar flow in straight 

planar and axisymmetric ducts. The present theory is unifying in the sense that it should include all 

convection model RTDs published in literature so far. This has been demonstrated for a number of 

Newtonian, non-Newtonian and generalized velocity profiles in a planar channel or film, in a circular 

pipe and in a concentric annulus, which were derived in previous literature on a case-by-case basis. 
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The theory is used to derive some convection model RTDs for velocity profiles or geometries that have 

not been obtained before. Most notable is the differential RTD of Newtonian plane Couette-Poiseuille 

flow with non-monotonic velocity profile, which is found to be discontinuous at that value of the 

residence time which corresponds to the moving wall velocity. The optimum flow rate where the 

residence time distribution is most narrow is also determined. 

The general mathematical expression for the non-dimensional differential RTD is used to study 

the asymptotic behavior of the RTD in the limit of large residence times. It is demonstrated that any 

one-dimensional velocity profile which shows a linear dependence on the distance from a stationary or 

moving no-slip wall results in a diffusion-free RTD which follows an asymptotic -3 power law. This has 

implications for general laminar and turbulent flow systems. Since any viscous fluid flow possesses a 

laminar sublayer, where the axial velocity increases linearly with the wall distance, the pure convection 

RTD of any real viscous flow system should show this asymptotic -3 power law behavior of the 

differential RTD. This finding is consistent with the respective -2 power law of the diffusion-free 

cumulative RTD of general flow systems proposed by Nauman (1977). Closely related to the 

asymptotic behavior of the RTD is the variance of the RTD. For the asymptotic -3 power law behavior, 

the variance is shown to be infinite for a stationary wall and finite for a moving wall. 

At this stage, the present mathematical analysis on the pure convection RTD of laminar flows is 

mainly of theoretical and scientific interest, since in practice diffusion is always present. For liquid 

flows in micro-channels, the diffusivity is very small (high Schmidt number) and there are situations 

where the effect of diffusion on the RTD is limited to regions close to the channel walls (where the 

residence time is very large), while convection governs the RTD in the channel center (where the 

residence time is low). At present, there exist to our knowledge no suitable and predictive models to 

describe such RTDs. We now work on combing the present pure convective RTD theory with near wall 

diffusion effects, in order to develop a model which is also of some practical relevance for certain 

situations. A key parameter in this model will be the “critical” residence time c  above which diffusion 

becomes important as it changes the asymptotic behavior (“tailing”) of the RTD and making the 
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variance finite. The present theory suggests, that one can estimate this critical residence time c  by 

displaying 3E  versus  , cf. Fig. 1. In a semi-logarithmic plot, 3E  should exhibit - at sufficient large 

values of   - a range where the curve is about constant ( c  ) before it decays to zero ( c  ). 
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Notation 

A  area of channel cross section, m2 

a  gradient of velocity profile at the wall, dimensionless 

E  differential RTD function, dimensionless 

f   function describing the one-dimensional velocity profile, dimensionless 

1f    inverse function of f , dimensionless 

f    derivative of function f , dimensionless 

F  cumulative RTD function, dimensionless 

G  antiderivative of function f , dimensionless 

H  antiderivative of function G , dimensionless 

H  height of planar channel or film, m 

L  channel length, m 

m  parameter in generalized root law velocity profile, dimensionless 

n  flow behavior index of Ostwald-de Waele fluid, dimensionless 

p  rheological parameter of Prandtl-Eyring fluid, dimensionless 

q  parameter in generalized power law velocity profile, ( 1) /q n n  , 

dimensionless 

Q  volumetric flow rate, m3/s 

Qtotal  total volumetric flow rate, m3/s 

r  radial co-ordinate in pipe and annulus, m 

ˆ /r r R  normalized radial co-ordinate in pipe and annulus, dimensionless 

R  radius of pipe or outer radius of annulus, m 

s  parameter in plane Couette-Poiseuille flow velocity profile, dimensionless 

t  time, s 
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mt  mean residence time, s 

u  profile of axial velocity, m/s  

mˆ /u u U  normalized profile of axial velocity, dimensionless 

maxU  maximum velocity of profile u , m/s 

minU  minimum velocity of profile u , m/s 

mU  mean velocity, m/s 

V  volume of flow domain, m3 

,W W   upper and lower branch of Lambert W -function, dimensionless 

x   argument of function f , dimensionless 

y  wall-normal (lateral) co-ordinate, m 

ŷ  normalized wall-normal (lateral) co-ordinate, dimensionless 

Greek letters 

  ratio of inner to outer diameter of concentric annulus, dimensionless 

  expression in RTD of concentric annulus, dimensionless  

  thickness of viscous sublayer, m 

  normalized residence time, dimensionless 

F  first appearance time, dimensionless 

W  residence time corresponding to wall velocity in Couette-Poiseuille flow, 

dimensionless 

  geometry parameter, dimensionless 

  radial position of maximum velocity in annulus, dimensionless 

0 1,   zero and first moment of differential RTD, dimensionless 

2
  variance of differential RTD, dimensionless 

  ratio between mean and maximum velocity, dimensionless 
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Figure captions 

 

Fig. 1: Velocity profile (a) and differential RTD (b) of a Prandtl-Eyring fluid flowing in a circular pipe for 

four different values of the non-dimensional rheological parameter p  (solid lines). The dashed 

and dotted lines in both figures correspond to the velocity profile and RTD of Newtonian pipe 

flow and plug flow, respectively. 

 

Fig. 2: Velocity profile (a) and differential RTD (b) of plane Couette-Poiseuille flow of a Newtonian fluid 

for different values of the non-dimensional pressure drop parameter s . 

 

Fig. 3:  Asymptotic behavior of the differential RTD of the generalized power law velocity profile in a 

circular pipe (a) and a planar channel (b), and of the generalized root law velocity profile in a 

planar channel (c). 

 

Fig. 4: Variance of the RTD of planar channel flow as function of min max/U U  . 
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Figures 

 

 

 

Fig. 1: Velocity profile (a) and differential RTD (b) of a Prandtl-Eyring fluid flowing in a 

circular pipe for four different values of the non-dimensional rheological parameter p  (solid 

lines). The dashed and dotted lines in both figures correspond to the velocity profile and 

RTD of Newtonian pipe flow and plug flow, respectively. 
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Fig. 2: Velocity profile (a) and differential RTD (b) of plane Couette-Poiseuille flow of a 

Newtonian fluid for different values of the non-dimensional pressure drop parameter s .  
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Fig. 3:  Asymptotic behavior of the differential RTD of the generalized power law velocity 

profile in a circular pipe (a) and a planar channel (b), and of the generalized root law velocity 

profile in a planar channel (c). 
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Fig. 4: Variance of the RTD of planar channel flow as function of min max/U U  . 
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Tables 

 

Table 1: Overview on pure convection RTDs for one-dimensional velocity profiles derived in previous 

literature for different fluids and flow type/driving-force (C = Couette flow, E = electro-osmotic driven, F 

= falling film flow, G = generalized velocity profile, P = pressure-driven flow). RTDs which are first 

derived in the present paper are also included. 

Geometry Fluid/velocity profile Flow type Reference 

Planar Newtonian C Levenspiel et al. (1970) 

         “ F Asbjornsen (1961) 

         “ P Levenspiel et al. (1989) 

         “ C+P 

 

Levenspiel et al. (1970) only 
monotonic case; present paper: non-
monotonic case 

 Bingham F Zakharov (2006) 

 Ostwald-de Waele C Foraboschi and Vaccari (1965) 

          “ F Zakharov (2006) 

 Prandtl-Eyring F Sawinsky and Simandi (1983) 

 Generalized root law G Present paper 

Circular pipe Newtonian P Bosworth (1948), Danckwerts (1953) 

         “ P+E Hsu and Wei (2005) 

 Bingham P Wein and Ulbrecht (1972) 

 Casson P Sawinsky and Balint (1984) 

 Ostwald-de Waele P Foraboschi and Vaccari (1965), 

Novosad and Ulbrecht (1966) 

 Herschel-Bulkley P Wein and Ulbrecht (1972) 

 Prandtl-Eyring P Wein and Ulbrecht (1972) 

 Rabinowitsch P Wein and Ulbrecht (1972) 

 Generalized root law G Bosworth (1949) 

 Generalized exponential 
and sinusoidal law 

G Pegoraro et al. (2012) 

Concentric annulus Newtonian P Nigam and Vasudeva (1976) in 
implicit form; present paper: explicit 
form 

 Ostwald-de Waele P Lin (1980) approximate; Pechoč 
(1983) numerical 
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Table 2: Function f  and related quantities for generalized monotonic velocity profiles. 
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