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A model is proposed for the buoyant production term in the dissipation rate equation of
turbulence kinetic energy and the molecular sink term in the turbulent heat flux equation.
Based on an analytical decomposition by the two-point correlation technique the model
consists of an inhomogeneous and a homogeneous part. The inhomogeneous part involves
the Laplacian operator of the turbulent heat flux and needs no further modelling. For
the homogeneous part a model is derived which incorporates Pr/R as key parameter,
where Pr is the Prandtl number and R is the ratio of thermal to mechanical turbulent
time scales. The model is shown to obey the correct wall-limiting behaviour without
further wall corrections. Comparisons with DNS data for Rayleigh Bénard convection in
air and sodium and for convection in an internally heated fluid layer confirm its excellent
near-wall performance for a wide range of Prandtl numbers. Utilising these DNS data,
the performance of the model in the bulk region is improved by slightly modifying the
homogeneous part of the model.

1. INTRODUCTION

In nuclear engineering, knowledge of the heat transfer capabilities of buoyant flows is
of importance for a variety of applications. Examples related to reactor safety are the
passive decay heat removal by natural convection, the in-vessel cooling of a decay-heated
pool of molten core material, and, supposed the vessel fails, the long-term sump cooling
of the core melt by a recirculating water layer, driven by natural convection. For all
these applications, computational fluid dynamics (CFD) is an important tool to explore
the velocity and temperature field and extend the safety capabilities. In engineering
CFD codes, turbulent momentum and heat transfer are modelled by statistical turbulence
closures, which need to be validated and improved to be reliably applicable to strongly
buoyant flows.

In the present paper, we focus our attention on two terms which are of importance in
statistical modelling of buoyant flows: (i) the buoyant production term P in the dynamic
equation for the dissipation rate ¢ of turbulence kinetic energy k£ = ww;/2 and (ii) the
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dissipation term &y; in the dynamic equation for the turbulent heat flux Gu,. Here, u; and
0 denote the fluctuating velocity and temperature. Introducing the correlation
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both terms of interest can be expressed as

T, (1)
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where v= kinematic viscosity, = thermal expansion coefficient, k=thermal diffusivity,
and ¢ = (0,0, —g) is the gravity vector.

In Ye et al. [8], where the two-point correlation technique and the invariant theory are
used to develop models for the e-equation for natural convection, also a model for P., was
obtained as a preliminary result by using direct numerical simulation (DNS) data. This
model together with the consistent model for €g; [9] was implemented in the engineering
CFD code FLUTAN [6]. Calculations for the buoyant flow along a heated vertical plate
* were performed and compared with experimental results. The models of [8] and [9] clearly
yielded improved results as compared to standard models for both terms. Models for eg;
were also recently proposed by Dol et al. [2] and Shikazono & Kasagi [4].

In the present paper, the development of the model proposed in [8] for P is put
on an analytical and physical basis. Furthermore, the analysis is extended to develop a
consistent closure relation for both, P, and ¢; which adequately accounts for the Prandtl
number Pr = v/k, turbulence level, and wall effects.

2. Development of model

The turbulent dissipation rate € can analytically be decomposed by the two-point cor-
relation technique [1] in an inhomogeneous and a homogeneous part [3]:
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Here, A, = 8 /0x,0x; is the Laplace operator with respect to the variable z; € represents
a local coordinate system relative to two arbitrary points (see [1]). The prime " in Eq. (3)
indicates a value for the two-point correlation function and the subscript ¢ represents the
zero separation § = 0 between the two points. Similar to &, Ye et al. [8] used the two-point
correlation technique to decompose T;:
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In correspondence to Eq. (3) Y;;, is denoted as the inhomogeneous and Y;; as the
homogeneous part of Y;. While the term Y;;, is known by second moment closure of
the turbulent heat flux, only the term T;; needs to be modelled for closure of P, and
€g;- The advantages of the above decomposition will become clear in this paper. At the
moment we only note that T, ;, will adequately account for wall effects.



In deriving a closure for T;; we proceed similar to Shikazono & Kasagi [4] who de-
veloped a model for gyg;. We define a correlation coefficient for Y; and relate it to the
correlation coefficient for the turbulent heat flux via a functional coefficient C which has
to be determined:
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We note the definition of the thermal variance dissipation rate
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and assume that the ratio of kinetic energy to dissipation rate of velocity component %
equals the ratio of the total turbulence kinetic energy to total dissipation rate:

(5)

uly ok
©_~ 2 (7)

3u(1) 2 £
( Oz, ) Y
Making use of definition (6) and approximation (7) and introducing the ratio of thermal
to mechanical turbulence time scale
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we can rewrite (5) to yield
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T o X (9)
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In their model for g, Shikazono & Kasagi [4] introduced two rather complicated wall
functions to account for wall effects. In the present approach, the wall effects in modelling
T; are already taken into account by the inhomogeneous part of decomposition (4), i.e. by
T,in- To model the homogeneous part T, we make use of (9) but replace Y; by T;; and
the total dissipation rate £ by the homogeneous one, ¢, = & — %quk. For the moment
we leave open whether R defined by Eq. (8) involving the total dissipation rates shall be
used, or whether the homogeneous dissipation rates shall be involved, i.e.
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where g, = €9 — i/ﬁ;Aw@i. With Ry beeing either R or Rj; we obtain
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This eventually results in our basic model for P, and ep;:
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Beside the selection of Ry also the functional coefficient C has to be determined. To do
0, in the next section the near-wall behaviour of the above basic model is analysed. In
a second step, DNS data will be used to determine C. Below, however, we first compare
our basic model with the model of Ye et al. [8] proposed for P, and &p; [9]:
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where the term (Pr/R)%" was obtained by fitting DNS data. We see, that (12) and (14)
and (13) and (15) are quite similar and will be identical for Ry = R and C = (Pr/R)%?

3. Near-wall behaviour of basic model

The wall-limiting behaviour of the basic model can be evaluated by expanding the
temperature and velocity fluctuations near the wall:
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where z3 is the wall-normal coordinate. Here, we consider no-slip boundary conditions

(a; = 0), an incompressible fluid (b3 = 0) and isothermal walls (ap = 0). By this, we
obtain the limiting behaviour
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For the near-wall behaviour of the analytical term Y3, it follows
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To determine the wall-limiting behaviour of our model for Y5, we consider the wall-
limiting behaviour of the individual variables on the r.h.s. of Eq. (11):
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Thus, we obtain the well known result
R=Pr+.---, R,=Pr—+---, (21)
which is valid only for isothermal walls. Introducing these results in Eq. (11) we get
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To establish the correct near-wall behaviour of model (11), the comparison with Eq. (19)
requires the wall-limiting behaviour of the functional coefficient C to be

C=14+:--, (23)
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Figure 1. g3 for Rayleigh Bénard convection in sodium (Pr = 0.006, Ra = 12,000).

4. Comparison of basic model with DNS data

In this section we investigate the performance of the basic model for £g3 with Ry beeing
either R or Ry, and C = 1 by comparison with DNS data. For this purpose, all turbulence
quantities appearing on the r.h.s. of Eq. (13) are taken from the DNS database. Two
types of natural convection in a horizontal layer bounded by isothermal top and bottom
walls are considered. For the Rayleigh Bénard convection, where the lower wall is heated
and the upper wall is cooled, a series of simulations has been performed with the TURBIT
code at the Research Centre Karlsruhe [10]. The fluids investigated encompass sodium
(Pr = 0.006), mercury (Pr = 0.025), and air (Pr = 0.71) and cover a wide range of
Prandtl numbers. In this paper the DNS data for sodium at Ra = 12,000 and for air at
Ra = 630,000 are utilised. The Rayleigh number is given by Ra = v2D/(vk), where D
is the channel height, ugp = +/gB8ATD is the buoyant velocity scale, and AT is the overall
temperature difference. The second type of natural convection is a fluid layer heated
internaﬂy by a volumetric heat source ¢,. Both walls have the same temperature and the
fluid is over a wide area stratified thermally stable. The direct numerical simulations,
documented in [7], are for Pr = 7 and internal Rayleigh numbers up to Ra; = 10°, where
Rar = (90q,D°)/(vsA) with A=thermal conductivity. Here, we use the DNS data for
Ra; = 10°. In the present paper all data displayed in Figures are dimensionless; the
normalisation is by D, ug, and AT

In Figure 1 we analyse the perfomance of the basic model for Rayleigh Bénard convec-
tion in liquid sodium for Ry = R and Ry = Rj,. Because of symmetry, only the lower
half of the channel is displayed. It appears, that the inhomogencous part is of importance
in the entire channel. The homogeneous part is predominant in the channel centre. In
the near wall region we find a good agreement of the basic model with the DNS data if
Ry = Ry, is used. In the channel centre the discrepancy between the basic model and the
DNS data is considerable. This holds for both, Ry = R and Ry = R}, where the latter
performs somewhat worse. Due to its superior wall-behaviour we choose Ry = Ry,.

To investigate the influence of Prandtl number and turbulence level, we show in Figure
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Figure 2. €¢3 for Rayleigh Bénard convection in air (Pr = 0.71, Ra = 630, 000).
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Figure 3. eg3 for internally heated convection (Pr =7, Ra; = 108).

2 the perfomance of the basic model for Rayleigh Bénard convection in air. The inhomo-
geneous part of the model is predominant inside the thermal boundary layer, but zero in
the channel centre. This is because the bulk region is isothermal and the vertical turbu-
lent heat flux takes a spatially constant value. The basic model for the homogeneous part
yields an almost constant value in the bulk region. Figure 2 shows an excellent agreement
between the basic model and the DNS data near the wall, while the performance in the
channel centre is also good, but may be further improved.

In Figure 3 a comparison of the basic model with DNS data for internally heated
The profiles are not symmetric, thus the complete

convection and Pr = 7 is given.
channel is shown. Again, we find a good agreement for both boundary layers. In the

region 0.1 < z3 < 0.25 a negative value of gy3 is predicted by the model, which is not



realistic. This failure can directly be attributed to the linear relation between ep;,, and
Ous. Indeed, the DNS data show that for 0.1 < 23 < 0.25 the vertical turbulent heat
flux is negative. While for 0.35 < z3 < 0.8 the model again performs well, it somewhat
underpredicts the DNS data in region 0.8 < z3 < 0.95.

From these results we conclude, that the model reproduces the DNS data near the wall
very well due to the correct limiting behaviour. In the bulk region there is a need and
certain potential for further improvement. We therefore modify the homogeneous part of
the model, since this is the predominant contribution far from walls.

5. Fine tuning of homogeneous part of model by DNS data

While we want to improve the performance of the model in the channel centre, we
do not want to weaken its good performance near the walls. Therefore, the correct wall
limiting behaviour of the model must be preserved. This requires a limiting behaviour of
C as defined by Eq. (23). Thus, the possibilities of tuning the model without changing
the correct wall behaviour are rather limited.

The unsatisfactory performance of the basic model for sodium in the channel centre
may be attributed to the small Prandtl number and low turbulence level. The correla-
tion between fluctuating temperature-gradient and fluctuating velocity-gradient may be
expected to be maximised when the thermal turbulence time scale is ”in phase” with the
mechanical one, i.e. R = 1. For very small fluid Prandtl numbers and low turbulence lev-
els, however, the thermal turbulence time scale is much smaller than the mechanical one
and R < 1. This may explain why the basic model overestimates €43 in sodium, as well as
in mercury (the results are not shown here). We therefore identify the key parameter for
fine tuning of the model by R or R,. Because we want to prevail the correct wall-limiting
behaviour of the basic model, we perform modifications not in terms of R, or R, but by
the ratio Pr/R), or Pr/R, respectively. A reasonable ansatz which is in accordance with
the requirement of Eq. (23) is of the form

Pr\* " Py
£ = (—) = (—) . 24

R R (24)
The exponent a may be a function of Prandtl number and, to account for the influence
of the turbulence level, of the sum of turbulence Reynolds and Peclet number:

a = a(Pr, Re, + Pey), (25)

where Re, = k*/(ve) and Pe, = Pr - Re;. Here we take for simplicity a = a(Pr). The
investigation of the influence of the turbulence level requires the analysis of DNS data for
a certain Prandtl number at various Rayleigh numbers. This will be done in future work.

In Figure 4 the profiles of Pr/R and Pr/Ry, are shown for the simulation with sodium.
In addition, the profile of the function f = (gg3 — 43 11,) /€3, is displayed, where € =1
is used in £y; ;. If we manage to construct a function C which meets the profile of f,
then a model is obtained which exactly agrees with the DNS data. From Figure 4 it is
evident that this is an impossible task, because near the wall f tends to zero while for the
coefficient C we require near the wall C — 1. Comparing the different profiles in Figure 4
we find, that both f and Pr/R show a local maximum while Pr /Ry, does not. A relation
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Figure 4. Determination of C for Rayleigh Bénard convection in sodium.

of type C = (Pr/Ry,)* is thus unsuited to approximate the profile of f. Therefore, we use

Pr/R. The best fit to f in the central region of the channel is obtained with a = 0.27, see

Figure 4. However, with the exponential ansatz (24) it is not possible to shift the vertical

position of the maximum of C in such a way that its location coincides with that of f.
In Figure 5 we compare the modified model
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for © = 3 and a(Pr = 0.006) = 0.27 with DNS data for liquid sodium. We now find a
much better agreement with the DNS data than was obtained with the basic model. For
0.08 < z3 < 0.3 the agreement is still not fully satisfactory. We note that not having
matched f near the wall is not really relevant, because there the contribution of the
homogeneous part of the model is small as compared to the inhomogeneous part. In
Figure 5 a comparison with the model of Ye et al. [9] is also given. It can be scen that
the use of Ry = Ry, in the present study is superior to Ry = R chosen in Eq. (15).

In Figure 6 we compare the modified model with the value a = 0.27 optimized for
sodium with the DNS data for Rayleigh Bénard convection in air. Again a clear improve-
ment is obtained by the modified model without trying to further optimize a. A quite
similar profile is predicted by the model of Ye et al., Eq. (15).

As discussed above, for internally heated convection the basic model underpredicts the
DNS data for gy3 in region 0.8 < z3 < 0.95. As it is shown in Figure 7, the modified
model with ¢ = 0.27 overpredicts the DNS data. The same holds for the model of Ye et al.
[9]. In fact, for internally heated convection the profiles of R and R), are nearly identical.
Therefore our modified model would almost agree with the Ye et al. model for a = 0.2.
We obtain the best fit with the DNS data for internally heated convection when the rather
low value a = 0.09 is choosen, see Figure 7. This indicates that a(Pr) is decreasing with
increasing Prandtl number and approaches zero. This would effectively result in C — 1
in the entire channel and the basic model is obtained. However, the clarification of the
functional relationship a(Pr) requires further more detailed investigations.
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Figure 6. Comparison of models for ey3 for Rayleigh Bénard convection in air.
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Figure 7. Comparison of models for ep3 for internally heated convection.



6. Conclusions

A model is developed for the fluctuating temperature-gradient-velocity-gradient corre-
lation, which appears in the buoyant production term in the dynamic dissipation rate
equation and in the molecular sink term in the turbulent heat flux equation. Motivated
by an analytical decomposition by the two-point correlation technique, the model is for-
mulated consisting of an inhomogeneous and a homogencous part. The inhomogeneous
part is important near walls and needs no further modelling. For the homogeneous part a
model is derived which incorporates the ratio Pr/Ry, as key parameter. It is shown that
for isothermal walls the model obeys the correct wall-limiting behaviour without explicit
wall corrections. From comparisons with DNS data of natural convection in a horizontal
fluid layer the excellent near-wall performance is confirmed for a wide range of Prandtl
numbers. Using the DNS data, the homogeneuos part of the model is optimised by in-
troducing a function (Pr/R)®, where the exponent a = a(Pr, Re; + Pe;) accounts for the
Prandtl number and turbulence level. Towards the determination of a only a first step
has been undertaken and further detailed investigations are needed.

While the performance of the model for the present DNS data of natural convection in
horizontal fluid layers are very promising, the universality of the model needs to be shown.
This requires the validation for other types of buoyant flows, e.g. natural convection in a
differentially heated vertical channel. Here, the DNS data of Versteegh and Nieuwstadt [5]
could be used. Dol et al. [2] proposed a model for gp; and tested it against the DNS data
of [5]. They use a wall function in terms of the invariant of the Reynolds stress anisotropy
tensor, and a full differential or algebraic stress model is required. The performance of
their model for the present DNS data will be investigated in future.

The present model for g4, and P, shows a good performance, in particular near walls,
while it is much simpler than models for these terms available in literature. This makes it
attractive for implementation in engineering CEFD codes to be applied to flows dominated
by buoyancy. It can also be used when a second moment closure for Gu; is combined with
a k — & model, instead of a full Reynolds stress model. Such a mixed first/second order
model for turbulent momentum /heat transfer is used in our FLUTAN code.
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