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Introduction

• Monolithic reactors with catalytic walls

– Chemical inert gas bubbles segment the liquid phase  

and enhance its mixing

Multi-fluid flow in narrow channels

1 mm
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• Micro bubble column of IMM*

– High values of interfacial area per unit volume

• Efficient mass transfer across interface 

(e.g. absorption, liquid-liquid extraction)

– Defined interface geometry

• Concept of  

„numbering up“ 

instead of „scaling up“ 

Introduction
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Motivation

• Experimental investigation of these two-phase flows 

is difficult because of small dimensions and often 

yields integral data only

• Goal:

– Perform direct numerical simulation of bubble train 

flow in a single channel to resolve local flow 

phenomena 

– Use DNS results to evaluate residence time 

distribution for liquid phase



6

In-house code TURBIT-VOF

• Volume-of fluid method for interface tracking
– Interface is locally approximated by plane (PLIC method)

• Governing equations for two incompressible fluids
– Single field momentum equation with surface tension term

– Zero divergence condition for center-of-mass velocity

– Advection equation for liquid volumetric fraction f

• Solution strategy
– Projection method resulting in pressure Poisson equation 

– Explicit third order Runge-Kutta time integration scheme

• Discretization in space
– Finite volume formulation for regular staggered grid

– Second order central difference approximations
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• Elongated bubble which fill almost 

the entire channel cross section 

(Taylor bubbles)

• Bubbles have identical shape and 

move with same axial velocity 

• The flow is fully described by a  

unit cell of length Luc consisting 

of a bubble and a liquid slug

Flow characterization

Luc
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• Square vertical channel

– Channel cross section : 2 mm × 2 mm (W * = 2 mm)

• Air bubbles in silicon oil

– Silicon oil of different viscosity

– Wide range of capillary numbers CaB ≡ µ1
*UB

*/σ* 

• Specification of flow rates of air and oil

• Length of unit cell, gas content in unit cell and  axial 

pressure drop adjust accordingly

Experiment of Thulasidas et al.*
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Numerical set up with TURBIT-VOF 

• Consider one flow unit cell only (one bubble, one slug)

• Account for influence of trailing/leading unit cells 

by periodic boundary conditions in axial direction

• Flow is driven in vertical direction by specified axial 

pressure gradient and buoyancy

– Gas and liquid flow rates adjust accordingly

• Length of flow unit cell, Luc, is input parameter

– Investigation of influence of Luc



10

• Fluid properties

• Initial bubble shapes (void fraction ε = 33%)

• Simulations are started from gas and liquid at rest

Physical parameters 

ρl ρg µl µg σ

957 kg/m3 11.7 kg/m3 0.048 Pa s 1.84×10-4 Pa s 0.022 N/m

Factor 10 higher than ρ and µ of air
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Computational parameters 

Case Luc / W Domain Grid Time steps

A1 1 1 × 1 × 1 48 × 48 × 48 24,000

A2 1 1 × 1 × 1 64 × 64 × 64 60,000

B 1.25 1 × 1.25 × 1 48 × 60 × 48 24,000

C 1.5 1 × 1.5 × 1 48 × 72 × 48 26,000

D 1.75 1 × 1.75 × 1 48 × 84 × 48 26,000

E 2 1 × 2 × 1 48 × 96 × 48 28,000

Results on both grids show only slight differences 
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Case A2
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Bubble shape and trajectories of 

mass less particles for case A 

View from topView from sideView from side

• Bubble has axisymmetric shape

• One large vortex inside the bubble

• Small azimuthal flow inside bubble  
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Computed bubble shape and velocity field 

for different values of Luc

Velocity field in vertical mid-plane

Right half: frame of reference moving with bubble 

Left half: fixed frame of reference
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Comparison with experiment

Case Luc / W CaB DB / W (UB–Jtotal)/UB UB/Jtotal

A 1 0.204 0.81 1.80 0.445

B 1.25 0.207 0.84 1.75 0.430

C 1.5 0.215 0.85 1.75 0.430

D 1.75 0.238 0.85 1.78 0.438

E 2 0.253 0.85 1.8 0.445

Experimental data* correlated in terms of capillary number CaB ≡ µlUB/σ

0.2 − 0.25 0.82 − 0.86 1.68 − 1.84 0.435 − 0.475

� � �

Non-dimensional bubble diameter Relative velocity Non-dimensional UB
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Residence time distribution

• The residence time distribution (RTD) is an important 

measure for characterization of any chemical reactor

– The RTD influences yield and selectivity

• Common experimental method to determine RTD

– Add tracer at reactor inlet as a pulse and measure the tracer 

concentration at the outlet
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Examples for RTD

• Problems for micro reactors

– Reaction volume is usually much smaller than the volume of inlet 

and the volume necessary to measure tracer at outlet

• Alternative: Determine RTD from DNS data
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Procedure to evaluate RTD from DNS data

• Use previously computed DNS results for fully developed flow  
at a certain instant in time

• Introduce virtual particles in mesh cells entirely filled with liquid

– particle distance = 1 / nppul

– nppul = number of particles per unit length

• Track particles in fixed frame of reference

– Problem: Velocity field in fixed frame of reference is unsteady

– But: steady velocity field in frame of reference moving with bubble

– Determine fluid velocity at the instantaneous particle position  from 
its relative position to the virtually with velocity UB moving bubble

• Store time the particle needs to travel an axial distance of Luc

• Normalize histogram for all particles to obtain RTD
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Influence of nppul for BTF Case A
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Compartment model
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Plug flow reactor and 

stirred vessel in series
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Compartment model for case A
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Compartment model for case B
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Compartment model for case C
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Compartment model for case D
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Compartment model for case E
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Conclusions 

• Direct numerical simulation of bubble train flow (BTF)

– Square vertical mini-channel of width W = 2 mm

– Co-current vertical flow of air bubbles in silicon oil

– Good agreement with experimental data from literature

• Original procedure to evaluate the liquid phase RTD

– Introduction of mass-less particles into volume of liquid phase

– Tracking of particles and detecting time to travel distance Luc

– Evaluated RTD is well described by compartment model with 
plug flow reactor and stirred vessel in series

• Outlook

– Determine RTD for traveling distance nuc · Luc (nuc = 2, 3, ...)

– Obtain RTD for arbitrary nuc by convolution of RTD for nuc = 1 (?)


