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Multi-scale analysis of reactor 

thermal hydraulics

3

D. Bestion Nucl Eng Techn 42 (2010) 608



CFD/CMFD* codes versus 1D codes

System codes/1D codes CFD codes

Codes Athlet, Cathare, Relap,  …
CFX, Fluent, Neptune, 

Star-CD, Trans-AT, …

Geometry Very much simplified Arbitrary complex

Control volume Large Arbitrary small

Mathematical 

description

Networks of 1D/0D cells; 

Partial differential eqs (1D)

Partial differential 

equations (2D/3D)

Closure

relations

Empirical correlations from 

large experimental data bases 

Mechanistic i.e. based on 

clear physical phenomena

* CMFD = Computational Multi-Fluid Dynamics
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Need for CFD in nuclear reactor safety

• Where the geometry is 2D/3D
– Upper and lower plenum

– Downcomer

– Reactor core

– …

• Where the physics is 2D/3D
– Natural circulation

– Mixing 

– Stratification

– …

• Bestion list 26 two-phase flow 
NRS issues that may benefit 
from CFD investigations 
– Bestion Nucl Eng Techn 42 (2010) 365
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Fig. from Rohde et al. Nucl Eng Des 237 (2007) 1639



Essential steps in a CFD simulation

1. Think about the essential physics of the problem

2. Select governing equations / simulation method

3. Specify physical models

4. Decide on computational domain

5. Generate grid 

6. Specify inlet/outlet/boundary conditions

7. Specify discretization scheme and iterative solver

8. Solve the flow problem (steady state or transient)

9. Analyze results (post processing)

10. Are results valid? If not revisit the above topics …

In this lecture

It is the duty of the user to check whether the results are 

an appropriate approximation of the physical  problem!
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Flow regimes in a vertical pipe

7
Fig. from O. Bratland „Pipe Flow 2: Multi-phase Flow Assurance” (http://www.drbratland.com/index.html)

• Methods and models must account for the 

flow regime of the gas-liquid two-phase flow 



Flow regime map for horizontal pipe
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CFD methods for gas-liquid flows
• Interface resolving methods

– For disperse and free surface flows

– Volume-of-fluid, Level set, Front tracking

• Euler-Lagrange method

– For disperse flows (bubbles/drops)

– Point-particle approach

• Interpenetrating field approach

– Suitable for all flow regimes

– Homogenous model, algebraic slip m., 
two-fluid model (Euler-Euler model)
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Models covered in this lecture

The model approach depends on the scales that shall be resolved
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The exact eqs in each bulk phase 

Conservation of mass, momentum, energy 
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Jump conditions at the interface*
• Kinematic condition

• Dynamic condition (force balance at a surface element Γ)
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coefficient of 

surface tension

unit normal vector to interface (pointing  in phase 1)
1 2

ˆ( ) 0Γ− ⋅ =v v n

* here for simplicity without phase change
1 2

ˆ( ) 0Γ− ⋅ =q q n

• Heat balance



Steam-water flow in hot-leg of PWR 
TOPFLOW facility  at HZDR

• pressure up to 50 bar

• temperature up to 264°C

Reflux-condenser mode: investigation of  

counter-current flow limitation (CCFL) in 

the „hot leg“ of a Konvoi PWR (scale 1:3)
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It is neither possible nor 

meaningful to perform a 

simulation which resolves all 

details of the interface/flow

⇒ Need for averaging (smoothing)



Illustration of time averaging

At any point there exists 

either phase 1 or phase 2 

The phases coexist and form 

“interpenetrating continua”

In the sequel we consider not time but volume averaged equations  

(all major commercial CFD codes are finite volume codes)

Instantaneous view Time averaged view
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Definitions for volume averaging
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,

0, else              
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Definitions for volume averaging
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Derivation of volume-averaged eqs

1. Take the two sets of local conservation equations 
(valid only in the respective phase) 

2. Multiply by respective phase indicator function 
⇒ equations become valid in entire domain 

3. Integrate over a control volume (in practice the 
control volume corresponds to a mesh cell) 

4. Apply the Gauss and Leibniz rule (volume average 
and time/space derivative  do not commute here)

5. Obtain two sets of “interpenetrating” volume-
averaged conservation eqs valid in entire domain

17



Volume averaged momentum eqs

Momentum transfer term:

The two momentum equations are 

coupled by a jump condition which 

results from volume averaging of the 

dynamic condition at the interface
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Closure problem (hydrodynamics)

Equations # Unknowns #

Mass conservation phase 1 1 2

Mass conservation phase 2 1 6

Momentum conservation phase 1 3 2

Momentum conservation phase 2 3 6

Constraint on volume fractions 1 12

Momentum jump condition 3

Total 12 Total 28

1 2,α α

1 2

1 2,v v

1 2

1 2,p p

1 2,M M

sgs sgs

1 2,T T
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Closure problem (hydrodynamics)

Equations # Unknowns #

Mass conservation phase 1 1 2

Mass conservation phase 2 1 6

Momentum conservation phase 1 3 1

Momentum conservation phase 2 3 6

Constraint on volume fractions 1 0

Momentum jump condition 3

Total 12 Total 15

1 2,α α

1 2

1 2,v v

1 2

1 2p p p= =

1 2,M M

sgs sgs

1 2 0= =T �T

⇒ 3 scalar or one vector equation is required for closure!

(turbulence model)
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Three concepts for closure

• Homogeneous model

– Assumption of mechanical and 
thermal equilibrium (phases have 
same velocity/temperature in CV)

• Algebraic slip (drift-flux) model

– The relative velocity in the CV is 
modeled by an algebraic equation 

• Two-fluid (Euler-Euler) model 

– The momentum and energy 
transfer between the phases 
is modeled

Four equations:

• mass liquid

• mass vapor

• momentum 

of mixture

• energy of mixture

Six equations:

• mass, momentum 

& energy of  liquid

• mass, momentum  

& energy of vapor 

22



Homogeneous model (HM)

• Closure assumption:
– “Mechanical equilibrium”

• Summing up the two momentum equations
– “Single field” momentum equation for two-phase mixture 

– Density/viscosity vary in space and time depending on the local 
volume fraction α1 = α 1 (x,t)

– α1 is obtained from solution of mass conservation eq. for phase 1

– The surface tension term is often neglected

1 2

1 2= =v v v
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ρ ρ σµ Γ

Γ∩

∂
+ ∇ ⋅ = −∇ + + ∇ ⋅ ∇ + ∇ +

∂ ∫∫
v

vv v ng v

1m 21 1(1 )α αρ ρρ ≡ + − 1m 21 1(1 )α αµ µµ ≡ + −
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Applicability of homogeneous model

• Mechanical equilibrium can be a valid assumption for 

separate flow or disperse flow (not buoyancy driven!)

– Fine dispersed or well separated depends on the size of the 

particle and that of the averaging volume/mesh cell 

In almost all cells 0 < α1 < 1 In almost all cells α1=0 or α1=1

1. No neglect of 

surface tension

2. Special scheme for 

solution of α1 eq. 

(VOF, Level set)

3. Very fine grid 

=    Interface resolving 

simulation  (“DNS”)

24



HM for 2D “dam break” problem*

Upwind scheme (1st O.)

• Code CFX 5.5

• Structured mesh 

with 19010 cells

• No surface tension

• Eqs are solved with 

two discretization 

schemes  

• Numerical diffusion 

of upwind scheme 

smears the interface

• Both, model and

discr. scheme must 

be adequate for the 

physical problem!

Liquid volume fraction field 
red: α1=0 (gas),  blue: α1=1 (water)

25
* F. Menter, personal information

High resolution scheme      



• Constitutive equation of the ASM

– The relative velocity between the phases 
(slip velocity) is modeled by an algebraic relation

– The continuity eqs and the mixture momentum eq
include additional terms that depend on vr

– The HM is a special case of the ASM  (vr = 0)

– The surface tension force is usually neglected  

• Applicability: disperse flow only

– Example: closure relation for bubbly flow

Algebraic slip model (ASM)

2 1

r 2 1 r 1 2 1 2 1 m p( , , , , , , , ,...)dρ ρ µ µ σ α≡ − =v v v v v

r

0

0 cm/s

20

 
 =  
 
 

v
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Drift-flux model (DFM)

• Closure by algebraic eq. for the disperse phase drift velocity

• Definitions of the drift velocities of the phases:

• Relation between drift velocities and relative velocity:

• The DFM is usually applied in its 1D form (obtained by area 

averaging over the channel cross-section)

• Constitutive relations for 1D DFM are available for various 

flow regimes (bubbly, slug, annular, stratified flow, ...) 

– see e.g. Ishii & Hibiki Thermo-fluid dynamics of two-phase flow, Springer, 2006

m m1j 2j

1 2 1 2

1 2 1 1 2m 2, α α≡ − ≡ − ≡ +v v j vv vj jv where

r1j r1j2 2,α α= − =v v vv
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Closure term in two-fluid model

( )( )
p

T

hydr 1,dyn 1 1 1
ˆ dp sµ Γ

 = − + ∇ + ∇ ⋅
 ∫∫F v v n�
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1 1 1 1 1
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ˆ d

V

p s
V

µ Γ
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 = − − + ∇ + ∇ ⋅
 ∫∫M v v nI

• Interfacial transfer of momentum (and energy)

– Integral is over that part of the interface that is in the CV

• Analogy : closed integral over entire surface area 

of bubble, drop, rigid particle of the dynamic pressure 

and normal viscous stress = hydrodynamic force
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Hydrodynamic force on a rigid sphere

• Analytical solution for creeping flow (Stokes)

• Generalization:
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p 1 eq rel 1/Re dρ µ= U
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Drag coefficient for a bubble/drop
Fig. from Clift, Grace & Weber 1978

Reduced drag due to internal circulation

Increased drag due to 

bubble deformation
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Further hydrodynamic forces

• Virtual (added) mass force

– Sphere:  Cvm = 0.5

• Transversal lift force

– Particle rotation

– Particle in shear flow 

• History force (is usually neglected)

• Turbulent dispersion force, e.g.

• Wall lubrication force

• … 

For a comparison of 14 different formulations for the drag coefficient and 

of 8 for the lift coefficient see Pang & Wei Nucl Eng Des 241 (2011) 2204 

( )L L p 1 rel liquidC ρ= × ∇×F U vV

rel
VM VM p 1

d

d
C

t
ρ=

U
F V

Acceleration/deceleration

TD TD p 1 1 1C kρ α= − ∇F V

33

(k1 = liquid turbulent kinetic energy)



Closure of the two-fluid model (1)

Assumption: the volume 

of the particles is much 

smaller than that of the 

mesh cell, i.e.

( )

( )
p

p

p

1,h 1,dyn 1 1

1,dyn 1 1

1

hydr

1

1
ˆ2 d

1
ˆ2 d

1

j

V

j

j

j

N

N

p s
V

p s
V

V

µ

µ

Γ
Γ∩

Γ
=

=

= − − + ⋅

≈ − − + ⋅

= −

∫∫

∑ ∫∫

∑

M n

n

F

I D

I D�
A

p

p

1,h 2,h

1

1
ˆ2 d

1
ˆ2 d 0

j

N

V

j

H s
V

H s
V

σ

σ

Γ
Γ∩

Γ
=

+ =

≈ =

∫∫

∑ ∫∫

M M n

n�
A

V

V∂

p VV ≪

Dynamic boundary condition:

Np = number of 

particles in V
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Closure of the two-fluid model (2)

Assumption: the flow is mono-disperse so that

all particles have the same volume 3

eqp / 6dπ=V

� �
( )

p

p 2

p p p
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1 1
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Equivalent bubble diameter deq must be specified!
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two momentum eqs



Closure of the two-fluid model (3)

• Heat transfer across the interface

• Phase change (boiling/condensation)

• Interfacial heat transfer coefficient h1,i

– Ranz-Marshall correlation (0 < Rep < 200; 0 < Pr1 < 250)

36
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Example for application of the TFM: 

mixing in a bubble plume

Background:

Pressurized Thermal Shock (PTS) in a PWR

• Fast temperature or pressure transients yield 
non-uniform temperature distribution and induce 
stresses in the pressure vessel wall

• Irradiation reduces ductility of pressure vessel wall 
and makes reactor more prone for cracks and failure

• A key phenomenon during the PTS events is the 
bubble-induced mixing (was one of the topics in the 
EU project NURESIM)
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Bubble plume experiment

• LINX facility at PSI (CH)

– Cylindrical vessel 

(2 m diameter, 3.4 m height)

• Turbulent bubble plume

– Needle plate: 350 capillaries

– Bubble diameter 2-3 mm

• Measurements

– Time-averaged radial void 

fraction profiles (opt. probes)

– Instantaneous bubble and 

liquid velocity distributions

(particle image velocimetry)

38



Computations with two-fluid model*

• Code CFX 4.3

• Modeled hydrodynamic forces

– Drag force (influence of CD, four different models) 

– Virtual mass force (standard formulation with Cvm = 0.5)

– Lift force (standard formulation with CL = 0.1)

– Turbulent dispersion force (two different formulations)

• Turbulence model (for liquid phase only)

– k-ε model of Launder & Spalding with standard coeff. 

– Term in k- and ε-eq. for bubble-induced turbulence (BIT)

* Dhotre & Smith Chem Eng Sci 62 (2007) 6615
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Comparison experiment-simulation (1)

− “Base case” (BC): CD = 0.44, CL = 0.1, no TD

− “Davidson model“: BC + TD model of Davidson

− „Lopez de Bertodano model“: BC + TD model of Lopez de Bertodano

− „Davidson model + SV“: BC + TD model of Davidson 

+ BIT model of Simonin & Viollet

40

gives best agreement



Comparison experiment-simulation (2)

41

– BC + TD model of Davidson + BIT model of Simonin & Viollet and 

variation of drag coefficient (CD = 0.44 gives best results)

– Predictions of void fraction, axial gas and liquid velocity are in 

reasonable agreement with exp. data except close to the injector

– Poor agreement for turb. kinetic energy and turb. shear stresses



Closure laws for other flow regimes

• Interfacial exchange of 

momentum and energy 

depend strongly on the 

flow regime 

• Closure relations for 

wavy/annular/slug/churn 

flow have been mainly 

developed for the 

one-dimensional 

two-fluid model
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Limitations of the standard TFM

• The flow regime must be known in advance in 

order to specify meaningful models for the 

interfacial transfer of momentum/heat

• Limitations for disperse flow regime

– only mono-disperse flow (bubble diameter is “input”) 

– coalescence/ breakup result in bubble size distribution 

– hydrodynamic forces depend on bubble size/volume

• Extension of standard TFM must account for a 

variable bubble size or interfacial length scale 
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Extensions of the standard TFM 

• Four-field two fluid-model

– Continuous liquid, disperse liquid, 

continuous vapor, disperse vapor

– see e.g. R. Lahey, 

Nucl Eng Des 235 (2005) 1043 

• Multi-size group models

– Suitable for disperse flows only

• Interfacial area transport equation (IATE)

– Suitable for all flow regimes

44

see next two pages

Twelve equations:

mass, momentum 

& energy for each 

of the four fields



Multi-size group (MUSIG) models

• Size distribution is represented by M groups/classes

• Multi-field formulation for poly-disperse flows

– 1 mass and 1 momentum conservation eq for liquid phase

– Mmass conservation eqs for gas phase

– N ≤ Mmomentum cons. eqs for gas phase

(some groups share a velocity field)

– CPU time increases with M and N
45
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Interfacial area transport eq (IATE)

• Interfacial area concentration

• Transport equation for ai

• Ishii & Hibiki: 1D two-group IATE
– Gr. 1: spherical and ellipsoidal bubbles

– Gr. 2: cap-type and elongated bubbles

46
Fig. from Vasavasa et al. Int J Multiph Flow 35 (2009) 323
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Modeling of source/sink terms is a challenge
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Scientific challenges for CMFD

• Polydisperse flows
– Kernel functions for probabilities of coalescence/breakup

• 3D closure relations for non-disperse flow regimes
– E.g. churn-turbulent flow

• Transition between different flow regimes

• Turbulence modeling (interface-turbulence interactions)
– Statistical models (Reynolds averaged Navier-Stokes eqs)

– Large eddy simulation techniques for flows with interfaces
• Filtering of velocity field and interface (D. Lakehal; O. Lebaigue)

– Wall functions

• Multi-scale models and hybrid models

• …
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Best practice guidelines
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• F. Menter

CFD Best Practice Guidelines for CFD Code Validation for 

Reactor Safety Applications

EC Project ECORA, Report EVOL-ECORA-D 01, Feb. 2002
(https://domino.grs.de/ecora/ecora.nsf)

• M. Casey, T. Wintergerste

Best practice guidelines for industrial computational fluid 

dynamics of single-phase flows

ERCOFTAC 2002 

• M. Sommerfeld, B. van Wachem, R. Oliemans

Best practice guidelines for computational fluid dynamics of 

dispersed multiphase flows

ERCOFTAC 2008



Topical NED issues related to CFD
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