TOPIC 2

Mechanics

2.1. Thermal-hydraulics

2.1.2 Two phase flow modelling and simulation

Dr. Martin Wörner

Karlsruhe Institute of Technology, Institute for Nuclear and Energy Technologies Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany Phone: +49 721 608 24477, e-mail: martin.woerner@kit.edu

Content

- Introduction
 - CFD in nuclear engineering
 - Gas-liquid two phase flows
- Governing equations
 - Local equations
 - Averaging and closure problem
- Models for interpenetrating continua
 - Homogeneous model
 - Algebraic slip model and drift-flux model
 - Two-fluid model and its advanced variants
- Final remarks

Multi-scale analysis of reactor thermal hydraulics

D. Bestion Nucl Eng Techn 42 (2010) 608

CFD/CMFD* codes versus 1D codes

	System codes/1D codes	CFD codes
Codes	Athlet, Cathare, Relap,	CFX, Fluent, Neptune, Star-CD, Trans-AT,
Geometry	Very much simplified	Arbitrary complex
Control volume	Large	Arbitrary small
Mathematical description	Networks of 1D/0D cells; Partial differential eqs (1D)	Partial differential equations (2D/3D)
Closure relations	Empirical correlations from large experimental data bases	Mechanistic i.e. based on clear physical phenomena

* CMFD = Computational *Multi*-Fluid Dynamics

Need for CFD in nuclear reactor safety

- Where the geometry is 2D/3D
 - Upper and lower plenum
 - Downcomer
 - Reactor core

- ...

- Where the physics is 2D/3D
 - Natural circulation
 - Mixing
 - Stratification
 - ...
- Bestion list 26 two-phase flow NRS issues that may benefit from CFD investigations
 - Bestion Nucl Eng Techn 42 (2010) 365

Fig. from Rohde et al. Nucl Eng Des 237 (2007) 1639

Essential steps in a CFD simulation

- 1. Think about the essential physics of the problem
- 2. Select governing equations / simulation method
- 3. Specify physical models

In this lecture -

- 4. Decide on computational domain
- 5. Generate grid
- 6. Specify inlet/outlet/boundary conditions
- 7. Specify discretization scheme and iterative solver
- 8. Solve the flow problem (steady state or transient)
- 9. Analyze results (post processing)
- 10. Are results valid? If not revisit the above topics ...

It is the <u>duty of the user</u> to check whether the results are an appropriate approximation of the physical problem!

Flow regimes in a vertical pipe

 Methods and models must account for the flow regime of the gas-liquid two-phase flow

Flow regime map for horizontal pipe

CFD methods for gas-liquid flows

- Interface resolving methods
 - For disperse and free surface flows
 - Volume-of-fluid, Level set, Front tracking
- Euler-Lagrange method
 - For disperse flows (bubbles/drops)
 - Point-particle approach
- Interpenetrating field approach
 - Suitable for <u>all</u> flow regimes
 - Homogenous model, algebraic slip m., two-fluid model (Euler-Euler model)

- Models covered in this lecture

The model approach depends on the scales that shall be resolved

Content

- Introduction
 - CFD in nuclear engineering
 - Gas-liquid two phase flows
- Governing equations
 - Local equations
 - Averaging and closure problem
- Models for interpenetrating continua
 - Homogeneous model
 - Algebraic slip model and drift-flux model
 - Two-fluid model and its advanced variants
- Final remarks

The exact eqs in each bulk phase

Conservation of mass, momentum, energy

$$\begin{aligned} \frac{\partial \rho_{1}}{\partial t} + \nabla \cdot \rho_{1} \mathbf{v}_{1} &= 0 \\ \frac{\partial \left(\rho_{1} \mathbf{v}_{1}\right)}{\partial t} + \nabla \cdot \left(\rho_{1} \mathbf{v}_{1} \mathbf{v}_{1}\right) &= -\nabla p_{1} + \nabla \cdot \mathbb{T}_{1} + \rho_{1} \mathbf{g} \\ \frac{\partial \left(\rho_{1} h_{1}\right)}{\partial t} + \nabla \cdot \left(\rho_{1} h_{1} \mathbf{v}_{1}\right) &= \frac{\mathbf{D}_{1} p_{1}}{\mathbf{D} t} - \nabla \cdot q_{1} + \mathbb{T}_{1} : \nabla \mathbf{v}_{1} + Q_{1} \end{aligned} \right\} \mathbf{x} \in \Omega_{1} \left(t\right)$$

$$\begin{aligned} \frac{\partial \rho_2}{\partial t} + \nabla \cdot \rho_2 \mathbf{v}_2 &= 0 \\ \frac{\partial \left(\rho_2 \mathbf{v}_2\right)}{\partial t} + \nabla \cdot \left(\rho_2 \mathbf{v}_2 \mathbf{v}_2\right) &= -\nabla p_2 + \nabla \cdot \mathbb{T}_2 + \rho_2 \mathbf{g} \\ \frac{\partial \left(\rho_2 h_2\right)}{\partial t} + \nabla \cdot \left(\rho_2 h_2 \mathbf{v}_2\right) &= \frac{\mathbf{D}_2 p_2}{\mathbf{D} t} - \nabla \cdot q_2 + \mathbb{T}_2 : \nabla \mathbf{v}_2 + Q_2 \end{aligned} \right\} \mathbf{x} \in \Omega_2(t)$$

Interface Γ Fluid 1 (liquid) Fluid 2 (gas)

 $\rho_k = \text{density} \quad (k=1,2)$ $\mathbf{v}_k = \text{velocity field}$ $p_k = \text{pressure}$ $\mathbb{T}_k = \text{viscous stress tensor}$ $h_k = \text{enthalpy}$ $q_k = \text{heat flux}$ $Q_k = \text{internal heat source}$

Jump conditions at the interface*

• Kinematic condition

 $(\mathbf{v}_1 - \mathbf{v}_2) \cdot \hat{\mathbf{n}}_{\Gamma} = 0$ unit normal vector to interface (pointing in phase 1)

• Dynamic condition (force balance at a surface element Γ)

 $-(p_1 - p_2)\hat{\mathbf{n}}_{\Gamma} + (\mathbb{T}_1 - \mathbb{T}_2)\cdot\hat{\mathbf{n}}_{\Gamma} = 2H\sigma\hat{\mathbf{n}}_{\Gamma} + \nabla_{\Gamma}\sigma \quad \begin{array}{c} \text{coefficient of} \\ \text{surface tension} \end{array}$

* here for simplicity without phase change

Newtonian fluid :

$$\mathbb{T}_{k} = 2\mu_{k}\mathbb{D}_{k}$$
$$\mathbb{D}_{k} \equiv \frac{1}{2} \left[\nabla \mathbf{v}_{k} + \left(\nabla \mathbf{v}_{k}\right)^{T}\right]$$

Heat balance

$$(\mathbf{q}_1 - \mathbf{q}_2) \cdot \hat{\mathbf{n}}_{\Gamma} = \mathbf{0}$$

Steam-water flow in hot-leg of PWR

TOPFLOW facility at HZDR

- pressure up to 50 bar
- temperature up to 264°C

Reflux-condenser mode: investigation of counter-current flow limitation (CCFL) in the "hot leg" of a Konvoi PWR (scale 1:3) It is neither possible nor meaningful to perform a simulation which resolves all details of the interface/flow \Rightarrow <u>Need for averaging</u> (smoothing)

Illustration of time averaging

In the sequel we consider not time but <u>volume averaged</u> equations (all major commercial CFD codes are finite volume codes)

Definitions for volume averaging

Phase indicator function: $X_k(\mathbf{x},t) \equiv \begin{cases} 1, & \text{if } \mathbf{x} \in \Omega_k(t) \\ 0, & \text{else} \end{cases}$

Definitions for volume averaging

Phase indicator function: $X_k(\mathbf{x},t) = \begin{cases} 1, & \text{if } \mathbf{x} \in \Omega_k(t) \\ 0, & \text{else} \end{cases}$

Averaging volume Vwith boundary ∂V

Volume of phase k in V:

$$V_k(\mathbf{x},t;V) = \iiint_V X_k(\mathbf{x}+\mathbf{\eta},t) \mathrm{d}\mathbf{x}_{\eta}$$

Volume fraction of phase k in V:

$$\alpha_k \equiv \frac{V_k}{V}, \quad 0 \le \alpha_k \le 1, \quad \alpha_1 + \alpha_2 = 1$$

Phase average of variable φ_k in V:

$$\overline{\varphi_k}^k \equiv \frac{1}{V_k} \iiint_V \varphi_k(\mathbf{x} + \mathbf{\eta}, t) X_k(\mathbf{x} + \mathbf{\eta}, t) d\mathbf{x}_\eta$$

Derivation of volume-averaged eqs

- Take the two sets of local conservation equations (valid only in the respective phase)
- 2. Multiply by respective phase indicator function \Rightarrow equations become valid in <u>entire</u> domain
- 3. Integrate over a control volume (in practice the control volume corresponds to a mesh cell)
- 4. Apply the Gauss and Leibniz rule (volume average and time/space derivative do <u>not</u> commute here)
- 5. Obtain two sets of "**interpenetrating**" volumeaveraged conservation eqs valid in entire domain

Volume averaged momentum eqs

$$\frac{\partial \alpha_1 \rho_1 \overline{\mathbf{v}_1}^1}{\partial t} + \nabla \cdot (\alpha_1 \rho_1 \overline{\mathbf{v}_1 \mathbf{v}_1}^1) = -\nabla \alpha_1 \overline{p_1}^1 + \alpha_1 \rho_1 \mathbf{g} + \nabla \cdot \alpha_1 \overline{\mathbb{T}_1}^1 + \mathbf{M}_1$$

$$\frac{\partial \alpha_2 \rho_2 \overline{\mathbf{v}_2}^2}{\partial t} + \nabla \cdot (\alpha_2 \rho_2 \overline{\mathbf{v}_2 \mathbf{v}_2}^2) = -\nabla \alpha_2 \overline{p_2}^2 + \alpha_2 \rho_2 \mathbf{g} + \nabla \cdot \alpha_2 \overline{\mathbb{T}_2}^2 + \mathbf{M}_2$$

Non-linear terms:
$$\rho_k \overline{\mathbf{v}_k \mathbf{v}_k}^k = \rho_k \overline{\mathbf{v}_k}^k \overline{\mathbf{v}_k}^k - \underbrace{\rho_k \overline{\mathbf{v}_k' \mathbf{v}_k'}^k}_{\mathbb{T}_k^{sgs}} \quad \mathbb{T}_k^{sg}$$

 Γ_k^{sgs} = subgrid stress tensor

Momentum transfer term:

$$\mathbf{M}_{1} = -\frac{1}{V} \iint_{\Gamma \cap V} \left[-p_{1} \mathbb{I} + \mu_{1} \left(\nabla \mathbf{v}_{1} + \left(\nabla \mathbf{v}_{1} \right)^{\mathrm{T}} \right) \right] \cdot \hat{\mathbf{n}}_{\Gamma} \mathrm{d}s$$

$$\mathbf{M}_{1} + \mathbf{M}_{2} = \frac{1}{V} \iint_{\Gamma \cap V} (\sigma H \hat{\mathbf{n}}_{\Gamma} + \nabla_{s} \sigma) \mathrm{d}s$$

The two momentum equations are coupled by a jump condition which results from volume averaging of the dynamic condition at the interface

Closure problem (hydrodynamics)

Equations	#	Unknowns #
Mass conservation phase 1	1	α_1, α_2 2
Mass conservation phase 2	1	$\overline{\mathbf{v}_1}^1, \overline{\mathbf{v}_2}^2$ 6
Momentum conservation phase 1	3	$\frac{1}{p_1^{-1}, p_2^{-2}}$ 2
Momentum conservation phase 2	3	$\mathbf{M}_1, \mathbf{M}_2$ 6
Constraint on volume fractions	1	$\mathbb{T}_1^{\mathrm{sgs}}, \mathbb{T}_2^{\mathrm{sgs}}$ 12
Momentum jump condition	3	
Total	12	Total 28

Closure problem (hydrodynamics)

Equations	#	Unknowns	#
Mass conservation phase 1	1	α_1, α_2	2
Mass conservation phase 2	1	$\overline{\mathbf{v}}_1^1, \overline{\mathbf{v}}_2^2$	6
Momentum conservation phase 1	3	$\overline{p_1}^1 = \overline{p_2}^2 = p$	1
Momentum conservation phase 2	3	$\mathbf{M}_1, \mathbf{M}_2$	6
Constraint on volume fractions	1	$\mathbb{T}_1^{\text{sgs}} = \mathbb{T}_2^{\text{sgs}} = 0$	0
Momentum jump condition	3	(turbulence model)	
Total	12	Total	15

 \Rightarrow 3 scalar or one vector equation is required for closure!

Content

- Introduction
 - CFD in nuclear engineering
 - Gas-liquid two phase flows
- Governing equations
 - Local equations
 - Averaging and closure problem
- Models for interpenetrating continua
 - Homogeneous model
 - Algebraic slip model and drift-flux model
 - Two-fluid model and its advanced variants
- Final remarks

Three concepts for closure

- Homogeneous model
 - Assumption of mechanical and thermal equilibrium (phases have same velocity/temperature in CV)
- Algebraic slip (drift-flux) model
 - The relative velocity in the CV is modeled by an algebraic equation

Four equations:

- mass liquid
- mass vapor
- momentum of <u>mixture</u>
- energy of <u>mixture</u>

- Two-fluid (Euler-Euler) model
 - The momentum and energy transfer between the phases is modeled

<u>Six</u> equations:

- mass, momentum
 & energy of liquid
- mass, momentum
 & energy of vapor

Homogeneous model (HM)

- Closure assumption: $\overline{\mathbf{v}_1}^1 = \overline{\mathbf{v}_2}^2 = \mathbf{v}$
 - "Mechanical equilibrium"
- Summing up the two momentum equations
 - "Single field" momentum equation for two-phase mixture

$$\frac{\partial \boldsymbol{\rho}_{\mathrm{m}} \mathbf{v}}{\partial t} + \nabla \cdot \boldsymbol{\rho}_{\mathrm{m}} \mathbf{v} \mathbf{v} = -\nabla p + \boldsymbol{\rho}_{\mathrm{m}} \mathbf{g} + \nabla \cdot \boldsymbol{\mu}_{\mathrm{m}} \left(\nabla \mathbf{v} + (\nabla \mathbf{v})^{\mathrm{T}} \right) + \frac{1}{V} \iint_{\Gamma \cap V} 2\sigma H \hat{\mathbf{n}}_{\Gamma} \,\mathrm{d}s$$

$$\boldsymbol{\rho}_{\mathrm{m}} \equiv \boldsymbol{\alpha}_{\mathrm{l}} \boldsymbol{\rho}_{\mathrm{l}} + (1 - \boldsymbol{\alpha}_{\mathrm{l}}) \boldsymbol{\rho}_{\mathrm{l}} \qquad \boldsymbol{\mu}_{\mathrm{m}} \equiv \boldsymbol{\alpha}_{\mathrm{l}} \boldsymbol{\mu}_{\mathrm{l}} + (1 - \boldsymbol{\alpha}_{\mathrm{l}}) \boldsymbol{\mu}_{\mathrm{l}}$$

- Density/viscosity vary in space and time depending on the local volume fraction $\alpha_1 = \alpha_1 (\mathbf{x}, t)$
- α_1 is obtained from solution of mass conservation eq. for phase 1
- The surface tension term is often neglected

Applicability of homogeneous model

- Mechanical equilibrium can be a valid assumption for separate flow or disperse flow (*not buoyancy driven!*)
 - Fine dispersed or well separated depends on the size of the particle and that of the averaging volume/mesh cell

In almost all cells $0 < \alpha_1 < 1$

In almost all cells $\alpha_1 = 0$ or $\alpha_1 = 1$

- 1. No neglect of surface tension
- 2. Special scheme for solution of α_1 eq. (VOF, Level set)
- 3. Very fine grid
- = Interface resolving simulation ("DNS")

HM for 2D "dam break" problem*

- Code CFX 5.5
- Structured mesh with 19010 cells
- No surface tension
- Eqs are solved with two discretization schemes
- Numerical diffusion
 of upwind scheme
 smears the interface
- Both, model and 0.75 s
 discr. scheme must
 be adequate for the 1.00 s
 physical problem!

Liquid volume fraction field red: $\alpha_1=0$ (gas), blue: $\alpha_1=1$ (water)

Upwind scheme (1st O.) High resolution scheme

* F. Menter, personal information

Algebraic slip model (ASM)

- Constitutive equation of the ASM
 - The relative velocity between the phases (slip velocity) is modeled by an algebraic relation

$$\mathbf{v}_{\mathrm{r}} \equiv \overline{\mathbf{v}_{2}}^{2} - \overline{\mathbf{v}_{1}}^{1} = \mathbf{v}_{\mathrm{r}}(\rho_{1}, \rho_{2}, \mu_{1}, \mu_{2}, \sigma, \alpha_{1}, \mathbf{v}_{\mathrm{m}}, d_{\mathrm{p}}, \dots)$$

- The continuity eqs and the mixture momentum eq include additional terms that depend on v_r
- The HM is a special case of the ASM ($\mathbf{v}_r = 0$)
- The surface tension force is usually neglected
- Applicability: disperse flow only
 - Applicability: disperse flow only Example: closure relation for bubbly flow $\mathbf{v}_{r} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ cm/s

Drift-flux model (DFM)

- Closure by algebraic eq. for the disperse phase <u>drift velocity</u>
- Definitions of the drift velocities of the phases:

 $\mathbf{v}_{1j} \equiv \overline{\mathbf{v}_1}^1 - \mathbf{j}_m, \quad \mathbf{v}_{2j} \equiv \overline{\mathbf{v}_2}^2 - \mathbf{j}_m \quad \text{where} \quad \mathbf{j}_m \equiv \alpha_1 \overline{\mathbf{v}_1}^1 + \alpha_2 \overline{\mathbf{v}_2}^2$

• Relation between drift velocities and relative velocity:

 $\mathbf{v}_{1j} = -\alpha_2 \mathbf{v}_r, \quad \mathbf{v}_{2j} = \alpha_1 \mathbf{v}_r$

- The DFM is usually applied in its 1D form (obtained by area averaging over the channel cross-section)
- Constitutive relations for 1D DFM are available for various flow regimes (bubbly, slug, annular, stratified flow, ...)

⁻ see e.g. Ishii & Hibiki Thermo-fluid dynamics of two-phase flow, Springer, 2006

Content

- Introduction
 - CFD in nuclear engineering
 - Gas-liquid two phase flows
- Governing equations
 - Local equations
 - Averaging and closure problem

• Models for interpenetrating continua

- Homogeneous model
- Algebraic slip model and drift-flux model
- Two-fluid model and its advanced variants
- Final remarks

Closure term in two-fluid model

- Interfacial transfer of momentum (and energy)
 - Integral is over that part of the interface that is in the CV

$$\mathbf{M}_{1} = -\frac{1}{V} \iint_{\Gamma \cap V} \left[-p_{1} \mathbb{I} + \mu_{1} \left(\nabla \mathbf{v}_{1} + \left(\nabla \mathbf{v}_{1} \right)^{\mathrm{T}} \right) \right] \cdot \hat{\mathbf{n}}_{\Gamma} \mathrm{d}s$$

 Analogy : closed integral over entire surface area of bubble, drop, rigid particle of the *dynamic* pressure and normal viscous stress = <u>hydrodynamic force</u>

$$\mathbf{F}_{\text{hydr}} = \bigoplus_{\mathcal{A}_{p}} \left[-p_{1,\text{dyn}} \mathbb{I} + \mu_{1} \left(\nabla \mathbf{v}_{1} + \left(\nabla \mathbf{v}_{1} \right)^{\mathrm{T}} \right) \right] \cdot \hat{\mathbf{n}}_{\Gamma} \, \mathrm{d}s$$

Hydrodynamic force on a rigid sphere

Analytical solution for creeping flow (Stokes)

$$\mathbf{F}_{\text{hydr}} = \bigoplus_{\mathcal{A}_{p}} \left[-p_{1,\text{dyn}} \mathbb{I} + \mu_{1} \left(\nabla \mathbf{v}_{1} + \left(\nabla \mathbf{v}_{1} \right)^{\text{T}} \right) \right] \cdot \hat{\mathbf{n}}_{\Gamma} \, ds$$
$$= \underbrace{-3\pi\mu_{1}d_{p}V_{p}\hat{\mathbf{e}}_{r}}_{\text{Stokes drag force}} \underbrace{-\frac{1}{2}\mathcal{V}_{p}\rho_{1} \frac{dV_{p}}{dt}\hat{\mathbf{e}}_{r}}_{\text{Virtual mass force}} \underbrace{-\frac{3}{2}\sqrt{\pi\mu_{1}\rho_{1}}d_{p}^{2}\hat{\mathbf{e}}_{r}}_{\text{Basset history force}} \frac{dV_{p}(\tau)/d\tau}{\sqrt{t-\tau}} d\tau$$

• Generalization: $\mathbf{F}_{hydr} = \mathbf{F}_{drag} + \mathbf{F}_{vm} + \mathbf{F}_{hist} + \mathbf{F}_{lift} + ...$

 \mathcal{A}_{p} = particle surface area

$$\mathcal{V}_{p}$$
 = particle volume

- $V_{\rm p} = |\mathbf{V}_{\rm p}| = \text{particle velocity}$
- $A_{\rm p}$ = particle cross-sectional area

 $C_{\rm D}$ = drag coefficient

$$\mathbf{F}_{\rm drag} = -\frac{1}{2} \rho_1 A_{\rm p} C_{\rm D} \mathbf{U}_{\rm rel} \left| \mathbf{U}_{\rm rel} \right|$$

$$\mathbf{U}_{\text{rel}} = \mathbf{V}_{\text{p}} - \mathbf{v}_{\text{liquid}}$$

Drag coefficient for a rigid sphere

Drag coefficient for a bubble/drop

Reduced drag due to internal circulation

Further hydrodynamic forces

- Virtual (added) mass force
 - Sphere: $C_{\rm vm} = 0.5$
- Transversal lift force
 - Particle rotation
 - Particle in shear flow

$$\mathbf{F}_{\rm VM} = C_{\rm VM} \mathcal{V}_{\rm p} \rho_{\rm l} \frac{\mathrm{d} \mathbf{U}_{\rm rel}}{\mathrm{d} t}$$

Acceleration/deceleration

$$\mathbf{F}_{\mathrm{L}} = C_{\mathrm{L}} \mathcal{V}_{\mathrm{p}} \rho_{\mathrm{l}} \mathbf{U}_{\mathrm{rel}} \times \left(\nabla \times \mathbf{v}_{\mathrm{liquid}} \right)$$

- History force (is usually neglected)
- Turbulent dispersion force, e.g. $\mathbf{F}_{TD} = -C_{TD} \mathcal{V}_p \rho_1 k_1 \nabla \alpha_1$
- Wall lubrication force

(k_1 = liquid turbulent kinetic energy)

•

For a comparison of 14 different formulations for the drag coefficient and of 8 for the lift coefficient see Pang & Wei *Nucl Eng Des* **241** (2011) 2204

Closure of the two-fluid model (1)

<u>Assumption</u>: the volume of the particles is much smaller than that of the mesh cell, i.e. $\mathcal{V}_{p} \ll V$

$$\mathbf{M}_{1,\mathrm{h}} = -\frac{1}{V} \iint_{\Gamma \cap V} \left(-p_{1,\mathrm{dyn}} \mathbb{I} + 2\mu_1 \mathbb{D}_1 \right) \cdot \hat{\mathbf{n}}_{\Gamma} \mathrm{d}s$$
$$\approx -\frac{1}{V} \sum_{j=1}^{N_\mathrm{p}} \bigoplus_{\mathcal{A}_\mathrm{p}^j} \left(-p_{1,\mathrm{dyn}} \mathbb{I} + 2\mu_1 \mathbb{D}_1 \right) \cdot \hat{\mathbf{n}}_{\Gamma} \mathrm{d}s$$
$$= -\frac{1}{V} \sum_{j=1}^{N_\mathrm{p}} \mathbf{F}_{\mathrm{hydr}}^j \qquad N_\mathrm{p} = \text{number of particles in } V$$

Dynamic boundary condition:

$$\mathbf{M}_{1,h} + \mathbf{M}_{2,h} = \frac{1}{V} \iint_{\Gamma \cap V} 2\sigma H \hat{\mathbf{n}}_{\Gamma} ds$$
$$\approx \frac{1}{V} \sum_{j=1}^{N_{p}} \bigoplus_{\mathcal{A}_{p}^{j}} 2\sigma H \hat{\mathbf{n}}_{\Gamma} ds = 0$$

Closure of the two-fluid model (2)

<u>Assumption</u>: the flow is <u>mono-disperse</u> so that all particles have the same volume $V_p = \pi d_{eq}^3 / 6$

$$\mathbf{M}_{1,h} \approx -\frac{1}{V} \sum_{j=1}^{N_{p}} \mathbf{F}_{hydr}^{j} \approx -\frac{N_{p}}{V} \mathbf{F}_{hydr} = -\frac{N_{p} \mathcal{V}_{p}}{V} \frac{1}{\mathcal{V}_{p}} \left(\mathbf{F}_{drag} + \mathbf{F}_{vm} + \mathbf{F}_{lift} + \mathbf{F}_{hist} + \dots \right)$$

$$\mathbf{M}_{1,\text{drag}} = -\frac{\alpha_2}{\mathcal{V}_p} \mathbf{F}_{\text{drag}} = \frac{1}{2} \frac{A_p}{\mathcal{V}_p} C_D \alpha_2 \rho_1 \mathbf{U}_{\text{rel}} \left| \mathbf{U}_{\text{rel}} \right| \qquad \mathbf{U}_{\text{rel}} = \overline{\mathbf{v}_2}^2 - \overline{\mathbf{v}_1}^1$$
$$\frac{A_p}{\mathcal{V}_p} \approx \frac{\pi d_{\text{eq}}^2 / 4}{\pi d_{\text{eq}}^3 / 6} = \frac{3}{2} \frac{1}{d_{\text{eq}}} \qquad \text{From solution of the two momentum eqs}$$

Equivalent bubble diameter *d*_{eq} **must be specified**!

Closure of the two-fluid model (3)

- Heat transfer across the interface $q_{k,i} = Q_{k,i} / A_i = \frac{h_{k,i}}{T_k} (\overline{T_k}^k - T_i) \qquad q_{1,i} + q_{2,i} = 0$
- Phase change (boiling/condensation)

$$T_{\rm i} = T_{\rm sat}$$
 $q_{1,\rm i} + q_{2,\rm i} = \dot{m}(h_2^{\rm sat} - h_1^{\rm sat})$

• Interfacial heat transfer coefficient $h_{1,i}$

- Ranz-Marshall correlation ($0 < Re_p < 200; 0 < Pr_1 < 250$)

$$Nu = \frac{h_{1,i}d_{p}}{\lambda_{1}} = 2 + 0.6Re_{p}^{0.5}Pr_{1}^{0.33} \qquad Pr_{1} = \frac{\mu_{1}c_{p,1}}{\lambda_{1}}$$

Ranz & Marshall Chem Eng Prog 48 (1952) 141

Example for application of the TFM: mixing in a bubble plume

Background:

Pressurized Thermal Shock (PTS) in a PWR

- Fast temperature or pressure transients yield non-uniform temperature distribution and induce stresses in the pressure vessel wall
- Irradiation reduces ductility of pressure vessel wall and makes reactor more prone for cracks and failure
- A key phenomenon during the PTS events is the bubble-induced mixing (was one of the topics in the EU project NURESIM)

Bubble plume experiment

- LINX facility at PSI (CH)
 - Cylindrical vessel(2 m diameter, 3.4 m height)
- Turbulent bubble plume
 - Needle plate: 350 capillaries
 - Bubble diameter 2-3 mm
- Measurements
 - Time-averaged radial void fraction profiles (opt. probes)
 - Instantaneous bubble and liquid velocity distributions (particle image velocimetry)

Computations with two-fluid model*

- Code CFX 4.3
- Modeled hydrodynamic forces
 - Drag force (influence of $C_{\rm D}$, four different models)
 - Virtual mass force (standard formulation with $C_{\rm vm}$ = 0.5)
 - Lift force (standard formulation with $C_{\rm L} = 0.1$)
 - Turbulent dispersion force (two different formulations)
- Turbulence model (for liquid phase only)
 - -k- ε model of Launder & Spalding with standard coeff.
 - Term in k- and ε -eq. for bubble-induced turbulence (BIT)

^{*} Dhotre & Smith Chem Eng Sci 62 (2007) 6615

Comparison experiment-simulation (1)

– "Base case" (BC):

 $C_{\rm D} = 0.44, C_{\rm L} = 0.1, \text{ no TD}$

– "Davidson model":

- BC + TD model of Davidson
- "Lopez de Bertodano model": BC + TD model of Lopez de Bertodano

Comparison experiment-simulation (2)

- BC + TD model of Davidson + BIT model of Simonin & Viollet and variation of drag coefficient ($C_D = 0.44$ gives best results)
- Predictions of void fraction, axial gas and liquid velocity are in reasonable agreement with exp. data except close to the injector
- Poor agreement for turb. kinetic energy and turb. shear stresses

Closure laws for other flow regimes

- Interfacial exchange of momentum and energy depend strongly on the flow regime
- Closure relations for wavy/annular/slug/churn flow have been mainly developed for the one-dimensional two-fluid model

Limitations of the standard TFM

- The flow regime must be known <u>in advance</u> in order to specify meaningful models for the interfacial transfer of momentum/heat
- Limitations for disperse flow regime
 - only mono-disperse flow (bubble diameter is "input")
 - coalescence/ breakup result in bubble size distribution
 - hydrodynamic forces depend on bubble size/volume
- Extension of standard TFM must account for a *variable* bubble size or interfacial length scale

Extensions of the standard TFM

- Four-field two fluid-model
 - Continuous liquid, disperse liquid, continuous vapor, disperse vapor
 - see e.g. R. Lahey,
 Nucl Eng Des 235 (2005) 1043

Twelve equations: mass, momentum & energy for each of the four fields

- Multi-size group models
 - Suitable for disperse flows only
- Interfacial area transport equation (IATE)

– Suitable for all flow regimes

see next two pages

<u>Multi-size group (MUSIG) models</u>

• Size distribution is represented by *M* groups/classes

$$\begin{array}{c} \circ \quad & \circ \quad & \\ \mathcal{V}_{p,1} < \mathcal{V}_{p,2} < \dots \\ \mathcal{V}_{p,k} \dots < \mathcal{V}_{p,M} \end{array} \end{array} \qquad \mathbf{M}_{1} \approx -\sum_{k=1}^{M} \frac{\alpha_{2,k}}{\mathcal{V}_{p,k}} \mathbf{F}_{hydr,k} \qquad \alpha_{2} = \sum_{k=1}^{M} \alpha_{2,k} \end{array}$$

- Multi-field formulation for poly-disperse flows
 - 1 mass and 1 momentum conservation eq for liquid phase
 - M mass conservation eqs for gas phase

$$\frac{\partial \alpha_{2,k} \rho_2}{\partial t} + \nabla \cdot (\alpha_2 \rho_2 \overline{\mathbf{v}_{2,k}}^2) = S_k$$

Source term due coalescence/break-up

- $N \le M$ momentum cons. eqs for gas phase (some groups share a velocity field)
- CPU time increases with \pmb{M} and N

Interfacial area transport eq (IATE)

• Interfacial area concentration

 $a_i \equiv A_i / V$ [1/m] (inverse of a length scale)

• Transport equation for a_i

$$\frac{\partial a_{i}}{\partial t} + \nabla \cdot (a_{i} \mathbf{v}_{i}) = S_{\text{Breakup}} - S_{\text{Coalescence}}$$

 $\pm S_{\rm Expansion/Contraction} \pm S_{\rm Boiling/Condensation}$

Modeling of source/sink terms is a challenge

- Ishii & Hibiki: 1D two-group IATE
 - Gr. 1: spherical and ellipsoidal bubbles
 - Gr. 2: cap-type and elongated bubbles

Random Collision Driven by Turbulent Eddies

Wake Entrainment Based Coalescence

Breakup Due to Impact from Turbulent Eddies

Content

- Introduction
 - CFD in nuclear engineering
 - Gas-liquid two phase flows
- Governing equations
 - Local equations
 - Averaging and closure problem
- Models for interpenetrating continua
 - Homogeneous model
 - Algebraic slip model and drift-flux model
 - Two-fluid model and its advanced variants
- Final remarks

Scientific challenges for CMFD

- Polydisperse flows
 - Kernel functions for probabilities of coalescence/breakup
- 3D closure relations for non-disperse flow regimes
 - E.g. churn-turbulent flow
- Transition between different flow regimes
- Turbulence modeling (interface-turbulence interactions)
 - Statistical models (Reynolds averaged Navier-Stokes eqs)
 - Large eddy simulation techniques for flows with interfaces
 - Filtering of velocity field and interface (D. Lakehal; O. Lebaigue)
 - Wall functions
- Multi-scale models and hybrid models
- ...

Best practice guidelines

- F. Menter
 - CFD Best Practice Guidelines for CFD Code Validation for Reactor Safety Applications

EC Project ECORA, Report EVOL-ECORA-D 01, Feb. 2002 (https://domino.grs.de/ecora/ecora.nsf)

- M. Casey, T. Wintergerste
 Best practice guidelines for industrial computational fluid dynamics of single-phase flows
 ERCOFTAC 2002
- M. Sommerfeld, B. van Wachem, R. Oliemans
 Best practice guidelines for computational fluid dynamics of dispersed multiphase flows
 ERCOFTAC 2008

Topical NED issues related to CFD

Nuclear Engineering and Design

Volume 238, Issue 3, Pages 443-786 (March 2008)

Benchmarking of CFD Codes for Application to Nuclear Reactor Safety Munich, Germany 05-07 September 2006

Edited by Brian L. Smith and Yassin Hassan

Nuclear Engineering and Design

Volume 240, Issue 9, Pages 2075-2382 (September 2010)

Experiments and CFD Code Applications to Nuclear Reactor Safety (XCFD4NRS) Edited by Brian L. Smith, Dominique Bestion and Yassin Hassan

