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Motivation

X. Cai,  M. Wörner, O. Deutschmann25.02.2014

oil recovery from porous structure

insecticides spray

ink-jet printing

coating

lubrication

solid sponge chemical reactor   

droplet wetting / spreading
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Focus & Difficulty of Numerical Modeling

X. Cai,  M. Wörner, O. Deutschmann25.10.2013

Paradox btw. motion of 

contact line & no-slip BC  
Solid

Gas
Liquid

 e.g. VOF, Level-set method

 via Navier-slip BC 

 Ls is slip length  difficult to 

choose in physical sense!

This paradox can be resolved by:  
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Sharp interface method 

 e.g. Phase Field Method

 via diffusion term

 C is order parameter 

 Φ is chemical potential 

Diffuse interface method 
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F: phase indicator
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Phase Field Method

Order parameter (C) as phase indicator

 C = 1 for liquid, C = -1 for gas 

C varies continuously following a tahn func.

 Diffuse interface with a finite thickness

 Built on physical sense

 Sufficient mesh resolution for interface

Dimensionless Cahn-Hilliard equation

X. Cai,  M. Wörner, O. Deutschmann25.10.2013
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L: reference length

U:        reference length

 :       mobility parameter

σ :       surface tension coefficient

ξ :        mean-field thickness

Cn: interface thickness Peκ: ratio of convection to diffusion

 They are model parameters  Identification of suitable ranges
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Dimensionless Equation for Two-phase Flow 

Cahn-Hilliard equation is coupled with momentum equation:

 Mixture density & viscosity:

 Dimensionless Groups:

X. Cai,  M. Wörner, O. Deutschmann25.02.2014
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g: gravitational acceleration;  ρA: droplet density;  ρB: ambient fluid density;  μA: droplet viscosity;  
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1. Calculate chemical potential 

2. Solve C-H eq. for order 
parameter 

3. Calculate surface tension, 
buoyancy & mixture ρ, μ

4. Solve N-S eqs. for velocity

In a single time step

Implementation in OpenFOAM®

X. Cai,  M. Wörner, O. Deutschmann25.02.2014

icoDyMFoam as starting point

 Transient, with mesh adaptation

 Incompressible, laminar, Newtonian

Cahn-Hilliard (C-H) eq. added as 

scalar transport equation 

 Implicit convection  

 Explicit diffusion, 4th order derivative

Surface tension & buoyancy added 

into momentum equation as

 Explicit source terms

Numerical schemes in following 

simulations

 Convection: central differencing

 Time integration: backward
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Validation of Diffusion Term in C-H Equation

Diffusion term is formulated from chemical potential gradient

X. Cai,  M. Wörner, O. Deutschmann25.02.2014
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Compare 1D simulation 

results against following 

analytical solution: 
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Validation of Diffusion Term in C-H Equation

Diffusion term is formulated from chemical potential gradient

X. Cai,  M. Wörner, O. Deutschmann25.02.2014
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Compare 1D simulation 

results against following 

analytical solution: 

Interface thickness must 

be resolved by at least 4 

mesh cells to obtain 

accurate result

2 cells in interface

4 cells in interface

8 cells in interface

Analytical solution 

C

x [-]

Cn = 0.01
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→ 4th order derivative in total
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Influence of model parameter: Cahn (Cn) No.

“out-of-physical-bound” in order 

parameter (C) in 2D domain

Theoretical analysis(*) gives 

linear relation btw. ΔC and Cn 

Simulation results agree 

Cn  interface thickness

Compromise btw. accuracy and 

computational cost  Cn = 0.01

Suitable value for Peκ = 1000(**)

X. Cai,  M. Wörner, O. Deutschmann25.02.2014

1.0052

-0.9948 

C

Shift in limit ΔC = 0.0052

Theoretical(*)

Simulation

Cn

Δ
C

(*) Yue et al. 2007

(**) Cai et al. 2013 
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Validation of Surface Tension Term

Surface tension force is 

formulated in a potential form

X. Cai,  M. Wörner, O. Deutschmann25.02.2014

Re = 0.10

Re = 0.05

Re = 0.01

Analytical(*) 

Ca

D

Analytical solution(*) relates 

deformation parameter (D) to 

Capillary no. (Ca)

 Assumptions: same μ, ρ and

creeping unbounded flow (*) Taylor 1934

Drop deformation in shear flow
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hydrophilic surface 

hydrophobic surface 

0 = 90° e = 45°

0 = 90° e = 135°

Young’s equation:

 e: equilibrium contact angle

 Surface wettability

e is specified via Neumann BC 

for order parameter:

If 0  e , droplet begins to 

move with   e

cos( ) SG SL
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Capillarity-driven Droplet Spreading / Dewetting
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Capillarity-driven Droplet Spreading / Dewetting

X. Cai,  M. Wörner, O. Deutschmann25.02.2014

Initial shape

Final shape

R0

H

L

e

L* =  L / R0     

H* = H / R0

e

L
*,

 H
*

(*) Chen et al. 2009

L*, Analytical(*)   

L*, Simulated

H*, Analytical(*)  

H*, Simulated 

hydrophilic                                               hydrophobic

e = 45° e = 90° e = 135°
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Capillarity- / Gravity-driven Spreading

Eötvös number (Eo):

 Eo << 1

capillarity-driven regime

 Eo >> 1

gravity-driven regime

 Eo  1

transitional regime

X. Cai,  M. Wörner, O. Deutschmann25.02.2014

Analytical capillarity reg. (*)

Analytical gravity reg.(**)

Simulation results

Eo = 0.1 Eo = 1 Eo = 10Eo = 0.01

Eo

H
’(
**

*)

(*)Chen et al. 2009  (**)Dupont et al. 2007     (***) H’ : normalized height of droplet 

e = 60°
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Capillarity-driven Droplet Spreading Process

X. Cai,  M. Wörner, O. Deutschmann25.02.2014

r

r: instantaneous  

spreading radius  

r* =  r / R0    

t* =  tU / R0

(*) Zosel 1993

Experiment(*)  

Pe =    250   

Pe = 1 000   

e = 45°

t*

r*

 Strict limitation on Δt 

from 4th order diffusion

 Smaller Pe 

smaller Δt

Pe Max. Δt

1000 2*10-3

250 1*10-3

100 1*10-4
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Outlook on Next Steps

X. Cai,  M. Wörner, O. Deutschmann25.02.2014

Optimization of current numerical scheme

 Decomposing Cahn-Hilliard eq. into 2 Helmholtz eqs. (Yue et al. 2004)

3D adaptive mesh refinement simulation

 Mesh refinement around interface

Take into account dynamic contact angle

 d = f(e,Cacl)

Application in sponge chemical reactor

 Wetting process on 3D irregular surface
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Conclusions

Phase field method has been implemented in OpenFOAM®

The method has been verified in terms of

 Identification of suitable ranges for model parameters 

 Surface tension force

The method is capable of 

 predicting spreading/dewetting process 

 reproducing two spreading regimes 

 achieving good agreement with experimental data 

X. Cai,  M. Wörner, O. Deutschmann25.02.2014
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(*) Website: https://www.hzdr.de/db/Cms?pNid=2972
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Thank you for your attention!
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